5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ECC support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
63 static struct nand_ecclayout nand_oob_16 = {
65 .eccpos = {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64 = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128 = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 struct mtd_oob_ops *ops);
103 * For devices which display every fart in the system on a separate LED. Is
104 * compiled away when LED support is disabled.
106 DEFINE_LED_TRIGGER(nand_led_trigger);
108 static int check_offs_len(struct mtd_info *mtd,
109 loff_t ofs, uint64_t len)
111 struct nand_chip *chip = mtd->priv;
114 /* Start address must align on block boundary */
115 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 pr_debug("%s: unaligned address\n", __func__);
120 /* Length must align on block boundary */
121 if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 pr_debug("%s: length not block aligned\n", __func__);
130 * nand_release_device - [GENERIC] release chip
131 * @mtd: MTD device structure
133 * Deselect, release chip lock and wake up anyone waiting on the device.
135 static void nand_release_device(struct mtd_info *mtd)
137 struct nand_chip *chip = mtd->priv;
139 /* De-select the NAND device */
140 chip->select_chip(mtd, -1);
142 /* Release the controller and the chip */
143 spin_lock(&chip->controller->lock);
144 chip->controller->active = NULL;
145 chip->state = FL_READY;
146 wake_up(&chip->controller->wq);
147 spin_unlock(&chip->controller->lock);
151 * nand_read_byte - [DEFAULT] read one byte from the chip
152 * @mtd: MTD device structure
154 * Default read function for 8bit buswidth
156 static uint8_t nand_read_byte(struct mtd_info *mtd)
158 struct nand_chip *chip = mtd->priv;
159 return readb(chip->IO_ADDR_R);
163 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
164 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
165 * @mtd: MTD device structure
167 * Default read function for 16bit buswidth with endianness conversion.
170 static uint8_t nand_read_byte16(struct mtd_info *mtd)
172 struct nand_chip *chip = mtd->priv;
173 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
177 * nand_read_word - [DEFAULT] read one word from the chip
178 * @mtd: MTD device structure
180 * Default read function for 16bit buswidth without endianness conversion.
182 static u16 nand_read_word(struct mtd_info *mtd)
184 struct nand_chip *chip = mtd->priv;
185 return readw(chip->IO_ADDR_R);
189 * nand_select_chip - [DEFAULT] control CE line
190 * @mtd: MTD device structure
191 * @chipnr: chipnumber to select, -1 for deselect
193 * Default select function for 1 chip devices.
195 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
197 struct nand_chip *chip = mtd->priv;
201 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212 * nand_write_buf - [DEFAULT] write buffer to chip
213 * @mtd: MTD device structure
215 * @len: number of bytes to write
217 * Default write function for 8bit buswidth.
219 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
222 struct nand_chip *chip = mtd->priv;
224 for (i = 0; i < len; i++)
225 writeb(buf[i], chip->IO_ADDR_W);
229 * nand_read_buf - [DEFAULT] read chip data into buffer
230 * @mtd: MTD device structure
231 * @buf: buffer to store date
232 * @len: number of bytes to read
234 * Default read function for 8bit buswidth.
236 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
239 struct nand_chip *chip = mtd->priv;
241 for (i = 0; i < len; i++)
242 buf[i] = readb(chip->IO_ADDR_R);
246 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
247 * @mtd: MTD device structure
248 * @buf: buffer containing the data to compare
249 * @len: number of bytes to compare
251 * Default verify function for 8bit buswidth.
253 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
256 struct nand_chip *chip = mtd->priv;
258 for (i = 0; i < len; i++)
259 if (buf[i] != readb(chip->IO_ADDR_R))
265 * nand_write_buf16 - [DEFAULT] write buffer to chip
266 * @mtd: MTD device structure
268 * @len: number of bytes to write
270 * Default write function for 16bit buswidth.
272 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
275 struct nand_chip *chip = mtd->priv;
276 u16 *p = (u16 *) buf;
279 for (i = 0; i < len; i++)
280 writew(p[i], chip->IO_ADDR_W);
285 * nand_read_buf16 - [DEFAULT] read chip data into buffer
286 * @mtd: MTD device structure
287 * @buf: buffer to store date
288 * @len: number of bytes to read
290 * Default read function for 16bit buswidth.
292 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
295 struct nand_chip *chip = mtd->priv;
296 u16 *p = (u16 *) buf;
299 for (i = 0; i < len; i++)
300 p[i] = readw(chip->IO_ADDR_R);
304 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
305 * @mtd: MTD device structure
306 * @buf: buffer containing the data to compare
307 * @len: number of bytes to compare
309 * Default verify function for 16bit buswidth.
311 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
314 struct nand_chip *chip = mtd->priv;
315 u16 *p = (u16 *) buf;
318 for (i = 0; i < len; i++)
319 if (p[i] != readw(chip->IO_ADDR_R))
326 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
327 * @mtd: MTD device structure
328 * @ofs: offset from device start
329 * @getchip: 0, if the chip is already selected
331 * Check, if the block is bad.
333 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
335 int page, chipnr, res = 0, i = 0;
336 struct nand_chip *chip = mtd->priv;
339 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
340 ofs += mtd->erasesize - mtd->writesize;
342 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
345 chipnr = (int)(ofs >> chip->chip_shift);
347 nand_get_device(chip, mtd, FL_READING);
349 /* Select the NAND device */
350 chip->select_chip(mtd, chipnr);
354 if (chip->options & NAND_BUSWIDTH_16) {
355 chip->cmdfunc(mtd, NAND_CMD_READOOB,
356 chip->badblockpos & 0xFE, page);
357 bad = cpu_to_le16(chip->read_word(mtd));
358 if (chip->badblockpos & 0x1)
363 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
365 bad = chip->read_byte(mtd);
368 if (likely(chip->badblockbits == 8))
371 res = hweight8(bad) < chip->badblockbits;
372 ofs += mtd->writesize;
373 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
375 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
378 nand_release_device(mtd);
384 * nand_default_block_markbad - [DEFAULT] mark a block bad
385 * @mtd: MTD device structure
386 * @ofs: offset from device start
388 * This is the default implementation, which can be overridden by a hardware
389 * specific driver. We try operations in the following order, according to our
390 * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
391 * (1) erase the affected block, to allow OOB marker to be written cleanly
392 * (2) update in-memory BBT
393 * (3) write bad block marker to OOB area of affected block
394 * (4) update flash-based BBT
395 * Note that we retain the first error encountered in (3) or (4), finish the
396 * procedures, and dump the error in the end.
398 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
400 struct nand_chip *chip = mtd->priv;
401 uint8_t buf[2] = { 0, 0 };
402 int block, res, ret = 0, i = 0;
403 int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
406 struct erase_info einfo;
408 /* Attempt erase before marking OOB */
409 memset(&einfo, 0, sizeof(einfo));
412 einfo.len = 1 << chip->phys_erase_shift;
413 nand_erase_nand(mtd, &einfo, 0);
416 /* Get block number */
417 block = (int)(ofs >> chip->bbt_erase_shift);
418 /* Mark block bad in memory-based BBT */
420 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
422 /* Write bad block marker to OOB */
424 struct mtd_oob_ops ops;
427 nand_get_device(chip, mtd, FL_WRITING);
431 ops.ooboffs = chip->badblockpos;
432 if (chip->options & NAND_BUSWIDTH_16) {
433 ops.ooboffs &= ~0x01;
434 ops.len = ops.ooblen = 2;
436 ops.len = ops.ooblen = 1;
438 ops.mode = MTD_OPS_PLACE_OOB;
440 /* Write to first/last page(s) if necessary */
441 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
442 wr_ofs += mtd->erasesize - mtd->writesize;
444 res = nand_do_write_oob(mtd, wr_ofs, &ops);
449 wr_ofs += mtd->writesize;
450 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
452 nand_release_device(mtd);
455 /* Update flash-based bad block table */
456 if (chip->bbt_options & NAND_BBT_USE_FLASH) {
457 res = nand_update_bbt(mtd, ofs);
463 mtd->ecc_stats.badblocks++;
469 * nand_check_wp - [GENERIC] check if the chip is write protected
470 * @mtd: MTD device structure
472 * Check, if the device is write protected. The function expects, that the
473 * device is already selected.
475 static int nand_check_wp(struct mtd_info *mtd)
477 struct nand_chip *chip = mtd->priv;
479 /* Broken xD cards report WP despite being writable */
480 if (chip->options & NAND_BROKEN_XD)
483 /* Check the WP bit */
484 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
485 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
489 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
490 * @mtd: MTD device structure
491 * @ofs: offset from device start
492 * @getchip: 0, if the chip is already selected
493 * @allowbbt: 1, if its allowed to access the bbt area
495 * Check, if the block is bad. Either by reading the bad block table or
496 * calling of the scan function.
498 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
501 struct nand_chip *chip = mtd->priv;
504 return chip->block_bad(mtd, ofs, getchip);
506 /* Return info from the table */
507 return nand_isbad_bbt(mtd, ofs, allowbbt);
511 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
512 * @mtd: MTD device structure
515 * Helper function for nand_wait_ready used when needing to wait in interrupt
518 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
520 struct nand_chip *chip = mtd->priv;
523 /* Wait for the device to get ready */
524 for (i = 0; i < timeo; i++) {
525 if (chip->dev_ready(mtd))
527 touch_softlockup_watchdog();
532 /* Wait for the ready pin, after a command. The timeout is caught later. */
533 void nand_wait_ready(struct mtd_info *mtd)
535 struct nand_chip *chip = mtd->priv;
536 unsigned long timeo = jiffies + 2;
539 if (in_interrupt() || oops_in_progress)
540 return panic_nand_wait_ready(mtd, 400);
542 led_trigger_event(nand_led_trigger, LED_FULL);
543 /* Wait until command is processed or timeout occurs */
545 if (chip->dev_ready(mtd))
547 touch_softlockup_watchdog();
548 } while (time_before(jiffies, timeo));
549 led_trigger_event(nand_led_trigger, LED_OFF);
551 EXPORT_SYMBOL_GPL(nand_wait_ready);
554 * nand_command - [DEFAULT] Send command to NAND device
555 * @mtd: MTD device structure
556 * @command: the command to be sent
557 * @column: the column address for this command, -1 if none
558 * @page_addr: the page address for this command, -1 if none
560 * Send command to NAND device. This function is used for small page devices
561 * (256/512 Bytes per page).
563 static void nand_command(struct mtd_info *mtd, unsigned int command,
564 int column, int page_addr)
566 register struct nand_chip *chip = mtd->priv;
567 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
569 /* Write out the command to the device */
570 if (command == NAND_CMD_SEQIN) {
573 if (column >= mtd->writesize) {
575 column -= mtd->writesize;
576 readcmd = NAND_CMD_READOOB;
577 } else if (column < 256) {
578 /* First 256 bytes --> READ0 */
579 readcmd = NAND_CMD_READ0;
582 readcmd = NAND_CMD_READ1;
584 chip->cmd_ctrl(mtd, readcmd, ctrl);
585 ctrl &= ~NAND_CTRL_CHANGE;
587 chip->cmd_ctrl(mtd, command, ctrl);
589 /* Address cycle, when necessary */
590 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
591 /* Serially input address */
593 /* Adjust columns for 16 bit buswidth */
594 if (chip->options & NAND_BUSWIDTH_16)
596 chip->cmd_ctrl(mtd, column, ctrl);
597 ctrl &= ~NAND_CTRL_CHANGE;
599 if (page_addr != -1) {
600 chip->cmd_ctrl(mtd, page_addr, ctrl);
601 ctrl &= ~NAND_CTRL_CHANGE;
602 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
603 /* One more address cycle for devices > 32MiB */
604 if (chip->chipsize > (32 << 20))
605 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
607 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
610 * Program and erase have their own busy handlers status and sequential
615 case NAND_CMD_PAGEPROG:
616 case NAND_CMD_ERASE1:
617 case NAND_CMD_ERASE2:
619 case NAND_CMD_STATUS:
625 udelay(chip->chip_delay);
626 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
627 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
629 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
634 /* This applies to read commands */
637 * If we don't have access to the busy pin, we apply the given
640 if (!chip->dev_ready) {
641 udelay(chip->chip_delay);
646 * Apply this short delay always to ensure that we do wait tWB in
647 * any case on any machine.
651 nand_wait_ready(mtd);
655 * nand_command_lp - [DEFAULT] Send command to NAND large page device
656 * @mtd: MTD device structure
657 * @command: the command to be sent
658 * @column: the column address for this command, -1 if none
659 * @page_addr: the page address for this command, -1 if none
661 * Send command to NAND device. This is the version for the new large page
662 * devices. We don't have the separate regions as we have in the small page
663 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
665 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
666 int column, int page_addr)
668 register struct nand_chip *chip = mtd->priv;
670 /* Emulate NAND_CMD_READOOB */
671 if (command == NAND_CMD_READOOB) {
672 column += mtd->writesize;
673 command = NAND_CMD_READ0;
676 /* Command latch cycle */
677 chip->cmd_ctrl(mtd, command & 0xff,
678 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
680 if (column != -1 || page_addr != -1) {
681 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
683 /* Serially input address */
685 /* Adjust columns for 16 bit buswidth */
686 if (chip->options & NAND_BUSWIDTH_16)
688 chip->cmd_ctrl(mtd, column, ctrl);
689 ctrl &= ~NAND_CTRL_CHANGE;
690 chip->cmd_ctrl(mtd, column >> 8, ctrl);
692 if (page_addr != -1) {
693 chip->cmd_ctrl(mtd, page_addr, ctrl);
694 chip->cmd_ctrl(mtd, page_addr >> 8,
695 NAND_NCE | NAND_ALE);
696 /* One more address cycle for devices > 128MiB */
697 if (chip->chipsize > (128 << 20))
698 chip->cmd_ctrl(mtd, page_addr >> 16,
699 NAND_NCE | NAND_ALE);
702 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
705 * Program and erase have their own busy handlers status, sequential
706 * in, and deplete1 need no delay.
710 case NAND_CMD_CACHEDPROG:
711 case NAND_CMD_PAGEPROG:
712 case NAND_CMD_ERASE1:
713 case NAND_CMD_ERASE2:
716 case NAND_CMD_STATUS:
717 case NAND_CMD_DEPLETE1:
720 case NAND_CMD_STATUS_ERROR:
721 case NAND_CMD_STATUS_ERROR0:
722 case NAND_CMD_STATUS_ERROR1:
723 case NAND_CMD_STATUS_ERROR2:
724 case NAND_CMD_STATUS_ERROR3:
725 /* Read error status commands require only a short delay */
726 udelay(chip->chip_delay);
732 udelay(chip->chip_delay);
733 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
734 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 NAND_NCE | NAND_CTRL_CHANGE);
737 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
741 case NAND_CMD_RNDOUT:
742 /* No ready / busy check necessary */
743 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
744 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
745 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
746 NAND_NCE | NAND_CTRL_CHANGE);
750 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
751 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753 NAND_NCE | NAND_CTRL_CHANGE);
755 /* This applies to read commands */
758 * If we don't have access to the busy pin, we apply the given
761 if (!chip->dev_ready) {
762 udelay(chip->chip_delay);
768 * Apply this short delay always to ensure that we do wait tWB in
769 * any case on any machine.
773 nand_wait_ready(mtd);
777 * panic_nand_get_device - [GENERIC] Get chip for selected access
778 * @chip: the nand chip descriptor
779 * @mtd: MTD device structure
780 * @new_state: the state which is requested
782 * Used when in panic, no locks are taken.
784 static void panic_nand_get_device(struct nand_chip *chip,
785 struct mtd_info *mtd, int new_state)
787 /* Hardware controller shared among independent devices */
788 chip->controller->active = chip;
789 chip->state = new_state;
793 * nand_get_device - [GENERIC] Get chip for selected access
794 * @chip: the nand chip descriptor
795 * @mtd: MTD device structure
796 * @new_state: the state which is requested
798 * Get the device and lock it for exclusive access
801 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
803 spinlock_t *lock = &chip->controller->lock;
804 wait_queue_head_t *wq = &chip->controller->wq;
805 DECLARE_WAITQUEUE(wait, current);
809 /* Hardware controller shared among independent devices */
810 if (!chip->controller->active)
811 chip->controller->active = chip;
813 if (chip->controller->active == chip && chip->state == FL_READY) {
814 chip->state = new_state;
818 if (new_state == FL_PM_SUSPENDED) {
819 if (chip->controller->active->state == FL_PM_SUSPENDED) {
820 chip->state = FL_PM_SUSPENDED;
825 set_current_state(TASK_UNINTERRUPTIBLE);
826 add_wait_queue(wq, &wait);
829 remove_wait_queue(wq, &wait);
834 * panic_nand_wait - [GENERIC] wait until the command is done
835 * @mtd: MTD device structure
836 * @chip: NAND chip structure
839 * Wait for command done. This is a helper function for nand_wait used when
840 * we are in interrupt context. May happen when in panic and trying to write
841 * an oops through mtdoops.
843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
847 for (i = 0; i < timeo; i++) {
848 if (chip->dev_ready) {
849 if (chip->dev_ready(mtd))
852 if (chip->read_byte(mtd) & NAND_STATUS_READY)
860 * nand_wait - [DEFAULT] wait until the command is done
861 * @mtd: MTD device structure
862 * @chip: NAND chip structure
864 * Wait for command done. This applies to erase and program only. Erase can
865 * take up to 400ms and program up to 20ms according to general NAND and
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
871 unsigned long timeo = jiffies;
872 int status, state = chip->state;
874 if (state == FL_ERASING)
875 timeo += (HZ * 400) / 1000;
877 timeo += (HZ * 20) / 1000;
879 led_trigger_event(nand_led_trigger, LED_FULL);
882 * Apply this short delay always to ensure that we do wait tWB in any
883 * case on any machine.
887 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
888 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
890 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
892 if (in_interrupt() || oops_in_progress)
893 panic_nand_wait(mtd, chip, timeo);
895 while (time_before(jiffies, timeo)) {
896 if (chip->dev_ready) {
897 if (chip->dev_ready(mtd))
900 if (chip->read_byte(mtd) & NAND_STATUS_READY)
906 led_trigger_event(nand_led_trigger, LED_OFF);
908 status = (int)chip->read_byte(mtd);
913 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
915 * @ofs: offset to start unlock from
916 * @len: length to unlock
917 * @invert: when = 0, unlock the range of blocks within the lower and
918 * upper boundary address
919 * when = 1, unlock the range of blocks outside the boundaries
920 * of the lower and upper boundary address
922 * Returs unlock status.
924 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
925 uint64_t len, int invert)
929 struct nand_chip *chip = mtd->priv;
931 /* Submit address of first page to unlock */
932 page = ofs >> chip->page_shift;
933 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
935 /* Submit address of last page to unlock */
936 page = (ofs + len) >> chip->page_shift;
937 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
938 (page | invert) & chip->pagemask);
940 /* Call wait ready function */
941 status = chip->waitfunc(mtd, chip);
942 /* See if device thinks it succeeded */
944 pr_debug("%s: error status = 0x%08x\n",
953 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
955 * @ofs: offset to start unlock from
956 * @len: length to unlock
958 * Returns unlock status.
960 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
964 struct nand_chip *chip = mtd->priv;
966 pr_debug("%s: start = 0x%012llx, len = %llu\n",
967 __func__, (unsigned long long)ofs, len);
969 if (check_offs_len(mtd, ofs, len))
972 /* Align to last block address if size addresses end of the device */
973 if (ofs + len == mtd->size)
974 len -= mtd->erasesize;
976 nand_get_device(chip, mtd, FL_UNLOCKING);
978 /* Shift to get chip number */
979 chipnr = ofs >> chip->chip_shift;
981 chip->select_chip(mtd, chipnr);
983 /* Check, if it is write protected */
984 if (nand_check_wp(mtd)) {
985 pr_debug("%s: device is write protected!\n",
991 ret = __nand_unlock(mtd, ofs, len, 0);
994 nand_release_device(mtd);
998 EXPORT_SYMBOL(nand_unlock);
1001 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1003 * @ofs: offset to start unlock from
1004 * @len: length to unlock
1006 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1007 * have this feature, but it allows only to lock all blocks, not for specified
1008 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1011 * Returns lock status.
1013 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1016 int chipnr, status, page;
1017 struct nand_chip *chip = mtd->priv;
1019 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1020 __func__, (unsigned long long)ofs, len);
1022 if (check_offs_len(mtd, ofs, len))
1025 nand_get_device(chip, mtd, FL_LOCKING);
1027 /* Shift to get chip number */
1028 chipnr = ofs >> chip->chip_shift;
1030 chip->select_chip(mtd, chipnr);
1032 /* Check, if it is write protected */
1033 if (nand_check_wp(mtd)) {
1034 pr_debug("%s: device is write protected!\n",
1036 status = MTD_ERASE_FAILED;
1041 /* Submit address of first page to lock */
1042 page = ofs >> chip->page_shift;
1043 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1045 /* Call wait ready function */
1046 status = chip->waitfunc(mtd, chip);
1047 /* See if device thinks it succeeded */
1048 if (status & 0x01) {
1049 pr_debug("%s: error status = 0x%08x\n",
1055 ret = __nand_unlock(mtd, ofs, len, 0x1);
1058 nand_release_device(mtd);
1062 EXPORT_SYMBOL(nand_lock);
1065 * nand_read_page_raw - [INTERN] read raw page data without ecc
1066 * @mtd: mtd info structure
1067 * @chip: nand chip info structure
1068 * @buf: buffer to store read data
1069 * @oob_required: caller requires OOB data read to chip->oob_poi
1070 * @page: page number to read
1072 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1074 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1075 uint8_t *buf, int oob_required, int page)
1077 chip->read_buf(mtd, buf, mtd->writesize);
1079 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1084 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1085 * @mtd: mtd info structure
1086 * @chip: nand chip info structure
1087 * @buf: buffer to store read data
1088 * @oob_required: caller requires OOB data read to chip->oob_poi
1089 * @page: page number to read
1091 * We need a special oob layout and handling even when OOB isn't used.
1093 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1094 struct nand_chip *chip, uint8_t *buf,
1095 int oob_required, int page)
1097 int eccsize = chip->ecc.size;
1098 int eccbytes = chip->ecc.bytes;
1099 uint8_t *oob = chip->oob_poi;
1102 for (steps = chip->ecc.steps; steps > 0; steps--) {
1103 chip->read_buf(mtd, buf, eccsize);
1106 if (chip->ecc.prepad) {
1107 chip->read_buf(mtd, oob, chip->ecc.prepad);
1108 oob += chip->ecc.prepad;
1111 chip->read_buf(mtd, oob, eccbytes);
1114 if (chip->ecc.postpad) {
1115 chip->read_buf(mtd, oob, chip->ecc.postpad);
1116 oob += chip->ecc.postpad;
1120 size = mtd->oobsize - (oob - chip->oob_poi);
1122 chip->read_buf(mtd, oob, size);
1128 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1129 * @mtd: mtd info structure
1130 * @chip: nand chip info structure
1131 * @buf: buffer to store read data
1132 * @oob_required: caller requires OOB data read to chip->oob_poi
1133 * @page: page number to read
1135 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1136 uint8_t *buf, int oob_required, int page)
1138 int i, eccsize = chip->ecc.size;
1139 int eccbytes = chip->ecc.bytes;
1140 int eccsteps = chip->ecc.steps;
1142 uint8_t *ecc_calc = chip->buffers->ecccalc;
1143 uint8_t *ecc_code = chip->buffers->ecccode;
1144 uint32_t *eccpos = chip->ecc.layout->eccpos;
1145 unsigned int max_bitflips = 0;
1147 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1149 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1150 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1152 for (i = 0; i < chip->ecc.total; i++)
1153 ecc_code[i] = chip->oob_poi[eccpos[i]];
1155 eccsteps = chip->ecc.steps;
1158 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1161 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1163 mtd->ecc_stats.failed++;
1165 mtd->ecc_stats.corrected += stat;
1166 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1169 return max_bitflips;
1173 * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1174 * @mtd: mtd info structure
1175 * @chip: nand chip info structure
1176 * @data_offs: offset of requested data within the page
1177 * @readlen: data length
1178 * @bufpoi: buffer to store read data
1180 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1181 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1183 int start_step, end_step, num_steps;
1184 uint32_t *eccpos = chip->ecc.layout->eccpos;
1186 int data_col_addr, i, gaps = 0;
1187 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1188 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1190 unsigned int max_bitflips = 0;
1192 /* Column address within the page aligned to ECC size (256bytes) */
1193 start_step = data_offs / chip->ecc.size;
1194 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1195 num_steps = end_step - start_step + 1;
1197 /* Data size aligned to ECC ecc.size */
1198 datafrag_len = num_steps * chip->ecc.size;
1199 eccfrag_len = num_steps * chip->ecc.bytes;
1201 data_col_addr = start_step * chip->ecc.size;
1202 /* If we read not a page aligned data */
1203 if (data_col_addr != 0)
1204 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1206 p = bufpoi + data_col_addr;
1207 chip->read_buf(mtd, p, datafrag_len);
1210 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1211 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1214 * The performance is faster if we position offsets according to
1215 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1217 for (i = 0; i < eccfrag_len - 1; i++) {
1218 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1219 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1225 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1226 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1229 * Send the command to read the particular ECC bytes take care
1230 * about buswidth alignment in read_buf.
1232 index = start_step * chip->ecc.bytes;
1234 aligned_pos = eccpos[index] & ~(busw - 1);
1235 aligned_len = eccfrag_len;
1236 if (eccpos[index] & (busw - 1))
1238 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1241 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1242 mtd->writesize + aligned_pos, -1);
1243 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1246 for (i = 0; i < eccfrag_len; i++)
1247 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1249 p = bufpoi + data_col_addr;
1250 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1253 stat = chip->ecc.correct(mtd, p,
1254 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1256 mtd->ecc_stats.failed++;
1258 mtd->ecc_stats.corrected += stat;
1259 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1262 return max_bitflips;
1266 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1267 * @mtd: mtd info structure
1268 * @chip: nand chip info structure
1269 * @buf: buffer to store read data
1270 * @oob_required: caller requires OOB data read to chip->oob_poi
1271 * @page: page number to read
1273 * Not for syndrome calculating ECC controllers which need a special oob layout.
1275 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1276 uint8_t *buf, int oob_required, int page)
1278 int i, eccsize = chip->ecc.size;
1279 int eccbytes = chip->ecc.bytes;
1280 int eccsteps = chip->ecc.steps;
1282 uint8_t *ecc_calc = chip->buffers->ecccalc;
1283 uint8_t *ecc_code = chip->buffers->ecccode;
1284 uint32_t *eccpos = chip->ecc.layout->eccpos;
1285 unsigned int max_bitflips = 0;
1287 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1288 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1289 chip->read_buf(mtd, p, eccsize);
1290 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1292 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1294 for (i = 0; i < chip->ecc.total; i++)
1295 ecc_code[i] = chip->oob_poi[eccpos[i]];
1297 eccsteps = chip->ecc.steps;
1300 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1303 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1305 mtd->ecc_stats.failed++;
1307 mtd->ecc_stats.corrected += stat;
1308 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1311 return max_bitflips;
1315 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1316 * @mtd: mtd info structure
1317 * @chip: nand chip info structure
1318 * @buf: buffer to store read data
1319 * @oob_required: caller requires OOB data read to chip->oob_poi
1320 * @page: page number to read
1322 * Hardware ECC for large page chips, require OOB to be read first. For this
1323 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1324 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1325 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1326 * the data area, by overwriting the NAND manufacturer bad block markings.
1328 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1329 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1331 int i, eccsize = chip->ecc.size;
1332 int eccbytes = chip->ecc.bytes;
1333 int eccsteps = chip->ecc.steps;
1335 uint8_t *ecc_code = chip->buffers->ecccode;
1336 uint32_t *eccpos = chip->ecc.layout->eccpos;
1337 uint8_t *ecc_calc = chip->buffers->ecccalc;
1338 unsigned int max_bitflips = 0;
1340 /* Read the OOB area first */
1341 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1342 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1343 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1345 for (i = 0; i < chip->ecc.total; i++)
1346 ecc_code[i] = chip->oob_poi[eccpos[i]];
1348 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1351 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1352 chip->read_buf(mtd, p, eccsize);
1353 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1355 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1357 mtd->ecc_stats.failed++;
1359 mtd->ecc_stats.corrected += stat;
1360 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1363 return max_bitflips;
1367 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1368 * @mtd: mtd info structure
1369 * @chip: nand chip info structure
1370 * @buf: buffer to store read data
1371 * @oob_required: caller requires OOB data read to chip->oob_poi
1372 * @page: page number to read
1374 * The hw generator calculates the error syndrome automatically. Therefore we
1375 * need a special oob layout and handling.
1377 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1378 uint8_t *buf, int oob_required, int page)
1380 int i, eccsize = chip->ecc.size;
1381 int eccbytes = chip->ecc.bytes;
1382 int eccsteps = chip->ecc.steps;
1384 uint8_t *oob = chip->oob_poi;
1385 unsigned int max_bitflips = 0;
1387 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1390 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1391 chip->read_buf(mtd, p, eccsize);
1393 if (chip->ecc.prepad) {
1394 chip->read_buf(mtd, oob, chip->ecc.prepad);
1395 oob += chip->ecc.prepad;
1398 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1399 chip->read_buf(mtd, oob, eccbytes);
1400 stat = chip->ecc.correct(mtd, p, oob, NULL);
1403 mtd->ecc_stats.failed++;
1405 mtd->ecc_stats.corrected += stat;
1406 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1411 if (chip->ecc.postpad) {
1412 chip->read_buf(mtd, oob, chip->ecc.postpad);
1413 oob += chip->ecc.postpad;
1417 /* Calculate remaining oob bytes */
1418 i = mtd->oobsize - (oob - chip->oob_poi);
1420 chip->read_buf(mtd, oob, i);
1422 return max_bitflips;
1426 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1427 * @chip: nand chip structure
1428 * @oob: oob destination address
1429 * @ops: oob ops structure
1430 * @len: size of oob to transfer
1432 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1433 struct mtd_oob_ops *ops, size_t len)
1435 switch (ops->mode) {
1437 case MTD_OPS_PLACE_OOB:
1439 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1442 case MTD_OPS_AUTO_OOB: {
1443 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1444 uint32_t boffs = 0, roffs = ops->ooboffs;
1447 for (; free->length && len; free++, len -= bytes) {
1448 /* Read request not from offset 0? */
1449 if (unlikely(roffs)) {
1450 if (roffs >= free->length) {
1451 roffs -= free->length;
1454 boffs = free->offset + roffs;
1455 bytes = min_t(size_t, len,
1456 (free->length - roffs));
1459 bytes = min_t(size_t, len, free->length);
1460 boffs = free->offset;
1462 memcpy(oob, chip->oob_poi + boffs, bytes);
1474 * nand_do_read_ops - [INTERN] Read data with ECC
1475 * @mtd: MTD device structure
1476 * @from: offset to read from
1477 * @ops: oob ops structure
1479 * Internal function. Called with chip held.
1481 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1482 struct mtd_oob_ops *ops)
1484 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1485 struct nand_chip *chip = mtd->priv;
1486 struct mtd_ecc_stats stats;
1488 uint32_t readlen = ops->len;
1489 uint32_t oobreadlen = ops->ooblen;
1490 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1491 mtd->oobavail : mtd->oobsize;
1493 uint8_t *bufpoi, *oob, *buf;
1494 unsigned int max_bitflips = 0;
1496 stats = mtd->ecc_stats;
1498 chipnr = (int)(from >> chip->chip_shift);
1499 chip->select_chip(mtd, chipnr);
1501 realpage = (int)(from >> chip->page_shift);
1502 page = realpage & chip->pagemask;
1504 col = (int)(from & (mtd->writesize - 1));
1508 oob_required = oob ? 1 : 0;
1511 bytes = min(mtd->writesize - col, readlen);
1512 aligned = (bytes == mtd->writesize);
1514 /* Is the current page in the buffer? */
1515 if (realpage != chip->pagebuf || oob) {
1516 bufpoi = aligned ? buf : chip->buffers->databuf;
1518 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1521 * Now read the page into the buffer. Absent an error,
1522 * the read methods return max bitflips per ecc step.
1524 if (unlikely(ops->mode == MTD_OPS_RAW))
1525 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1528 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1529 ret = chip->ecc.read_subpage(mtd, chip,
1530 col, bytes, bufpoi);
1532 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1533 oob_required, page);
1536 /* Invalidate page cache */
1541 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1543 /* Transfer not aligned data */
1545 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1546 !(mtd->ecc_stats.failed - stats.failed) &&
1547 (ops->mode != MTD_OPS_RAW)) {
1548 chip->pagebuf = realpage;
1549 chip->pagebuf_bitflips = ret;
1551 /* Invalidate page cache */
1554 memcpy(buf, chip->buffers->databuf + col, bytes);
1559 if (unlikely(oob)) {
1560 int toread = min(oobreadlen, max_oobsize);
1563 oob = nand_transfer_oob(chip,
1565 oobreadlen -= toread;
1569 if (!(chip->options & NAND_NO_READRDY)) {
1570 /* Apply delay or wait for ready/busy pin */
1571 if (!chip->dev_ready)
1572 udelay(chip->chip_delay);
1574 nand_wait_ready(mtd);
1577 memcpy(buf, chip->buffers->databuf + col, bytes);
1579 max_bitflips = max_t(unsigned int, max_bitflips,
1580 chip->pagebuf_bitflips);
1588 /* For subsequent reads align to page boundary */
1590 /* Increment page address */
1593 page = realpage & chip->pagemask;
1594 /* Check, if we cross a chip boundary */
1597 chip->select_chip(mtd, -1);
1598 chip->select_chip(mtd, chipnr);
1602 ops->retlen = ops->len - (size_t) readlen;
1604 ops->oobretlen = ops->ooblen - oobreadlen;
1609 if (mtd->ecc_stats.failed - stats.failed)
1612 return max_bitflips;
1616 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1617 * @mtd: MTD device structure
1618 * @from: offset to read from
1619 * @len: number of bytes to read
1620 * @retlen: pointer to variable to store the number of read bytes
1621 * @buf: the databuffer to put data
1623 * Get hold of the chip and call nand_do_read.
1625 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1626 size_t *retlen, uint8_t *buf)
1628 struct nand_chip *chip = mtd->priv;
1629 struct mtd_oob_ops ops;
1632 nand_get_device(chip, mtd, FL_READING);
1637 ret = nand_do_read_ops(mtd, from, &ops);
1638 *retlen = ops.retlen;
1639 nand_release_device(mtd);
1644 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1645 * @mtd: mtd info structure
1646 * @chip: nand chip info structure
1647 * @page: page number to read
1649 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1652 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1653 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1658 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1660 * @mtd: mtd info structure
1661 * @chip: nand chip info structure
1662 * @page: page number to read
1664 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1667 uint8_t *buf = chip->oob_poi;
1668 int length = mtd->oobsize;
1669 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1670 int eccsize = chip->ecc.size;
1671 uint8_t *bufpoi = buf;
1672 int i, toread, sndrnd = 0, pos;
1674 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1675 for (i = 0; i < chip->ecc.steps; i++) {
1677 pos = eccsize + i * (eccsize + chunk);
1678 if (mtd->writesize > 512)
1679 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1681 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1684 toread = min_t(int, length, chunk);
1685 chip->read_buf(mtd, bufpoi, toread);
1690 chip->read_buf(mtd, bufpoi, length);
1696 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1697 * @mtd: mtd info structure
1698 * @chip: nand chip info structure
1699 * @page: page number to write
1701 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1705 const uint8_t *buf = chip->oob_poi;
1706 int length = mtd->oobsize;
1708 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1709 chip->write_buf(mtd, buf, length);
1710 /* Send command to program the OOB data */
1711 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1713 status = chip->waitfunc(mtd, chip);
1715 return status & NAND_STATUS_FAIL ? -EIO : 0;
1719 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1720 * with syndrome - only for large page flash
1721 * @mtd: mtd info structure
1722 * @chip: nand chip info structure
1723 * @page: page number to write
1725 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1726 struct nand_chip *chip, int page)
1728 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1729 int eccsize = chip->ecc.size, length = mtd->oobsize;
1730 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1731 const uint8_t *bufpoi = chip->oob_poi;
1734 * data-ecc-data-ecc ... ecc-oob
1736 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1738 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1739 pos = steps * (eccsize + chunk);
1744 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1745 for (i = 0; i < steps; i++) {
1747 if (mtd->writesize <= 512) {
1748 uint32_t fill = 0xFFFFFFFF;
1752 int num = min_t(int, len, 4);
1753 chip->write_buf(mtd, (uint8_t *)&fill,
1758 pos = eccsize + i * (eccsize + chunk);
1759 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1763 len = min_t(int, length, chunk);
1764 chip->write_buf(mtd, bufpoi, len);
1769 chip->write_buf(mtd, bufpoi, length);
1771 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1772 status = chip->waitfunc(mtd, chip);
1774 return status & NAND_STATUS_FAIL ? -EIO : 0;
1778 * nand_do_read_oob - [INTERN] NAND read out-of-band
1779 * @mtd: MTD device structure
1780 * @from: offset to read from
1781 * @ops: oob operations description structure
1783 * NAND read out-of-band data from the spare area.
1785 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1786 struct mtd_oob_ops *ops)
1788 int page, realpage, chipnr;
1789 struct nand_chip *chip = mtd->priv;
1790 struct mtd_ecc_stats stats;
1791 int readlen = ops->ooblen;
1793 uint8_t *buf = ops->oobbuf;
1796 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1797 __func__, (unsigned long long)from, readlen);
1799 stats = mtd->ecc_stats;
1801 if (ops->mode == MTD_OPS_AUTO_OOB)
1802 len = chip->ecc.layout->oobavail;
1806 if (unlikely(ops->ooboffs >= len)) {
1807 pr_debug("%s: attempt to start read outside oob\n",
1812 /* Do not allow reads past end of device */
1813 if (unlikely(from >= mtd->size ||
1814 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1815 (from >> chip->page_shift)) * len)) {
1816 pr_debug("%s: attempt to read beyond end of device\n",
1821 chipnr = (int)(from >> chip->chip_shift);
1822 chip->select_chip(mtd, chipnr);
1824 /* Shift to get page */
1825 realpage = (int)(from >> chip->page_shift);
1826 page = realpage & chip->pagemask;
1829 if (ops->mode == MTD_OPS_RAW)
1830 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1832 ret = chip->ecc.read_oob(mtd, chip, page);
1837 len = min(len, readlen);
1838 buf = nand_transfer_oob(chip, buf, ops, len);
1840 if (!(chip->options & NAND_NO_READRDY)) {
1841 /* Apply delay or wait for ready/busy pin */
1842 if (!chip->dev_ready)
1843 udelay(chip->chip_delay);
1845 nand_wait_ready(mtd);
1852 /* Increment page address */
1855 page = realpage & chip->pagemask;
1856 /* Check, if we cross a chip boundary */
1859 chip->select_chip(mtd, -1);
1860 chip->select_chip(mtd, chipnr);
1864 ops->oobretlen = ops->ooblen - readlen;
1869 if (mtd->ecc_stats.failed - stats.failed)
1872 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1876 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1877 * @mtd: MTD device structure
1878 * @from: offset to read from
1879 * @ops: oob operation description structure
1881 * NAND read data and/or out-of-band data.
1883 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1884 struct mtd_oob_ops *ops)
1886 struct nand_chip *chip = mtd->priv;
1887 int ret = -ENOTSUPP;
1891 /* Do not allow reads past end of device */
1892 if (ops->datbuf && (from + ops->len) > mtd->size) {
1893 pr_debug("%s: attempt to read beyond end of device\n",
1898 nand_get_device(chip, mtd, FL_READING);
1900 switch (ops->mode) {
1901 case MTD_OPS_PLACE_OOB:
1902 case MTD_OPS_AUTO_OOB:
1911 ret = nand_do_read_oob(mtd, from, ops);
1913 ret = nand_do_read_ops(mtd, from, ops);
1916 nand_release_device(mtd);
1922 * nand_write_page_raw - [INTERN] raw page write function
1923 * @mtd: mtd info structure
1924 * @chip: nand chip info structure
1926 * @oob_required: must write chip->oob_poi to OOB
1928 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1930 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1931 const uint8_t *buf, int oob_required)
1933 chip->write_buf(mtd, buf, mtd->writesize);
1935 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1939 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1940 * @mtd: mtd info structure
1941 * @chip: nand chip info structure
1943 * @oob_required: must write chip->oob_poi to OOB
1945 * We need a special oob layout and handling even when ECC isn't checked.
1947 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1948 struct nand_chip *chip,
1949 const uint8_t *buf, int oob_required)
1951 int eccsize = chip->ecc.size;
1952 int eccbytes = chip->ecc.bytes;
1953 uint8_t *oob = chip->oob_poi;
1956 for (steps = chip->ecc.steps; steps > 0; steps--) {
1957 chip->write_buf(mtd, buf, eccsize);
1960 if (chip->ecc.prepad) {
1961 chip->write_buf(mtd, oob, chip->ecc.prepad);
1962 oob += chip->ecc.prepad;
1965 chip->read_buf(mtd, oob, eccbytes);
1968 if (chip->ecc.postpad) {
1969 chip->write_buf(mtd, oob, chip->ecc.postpad);
1970 oob += chip->ecc.postpad;
1974 size = mtd->oobsize - (oob - chip->oob_poi);
1976 chip->write_buf(mtd, oob, size);
1979 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1983 * @oob_required: must write chip->oob_poi to OOB
1985 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1986 const uint8_t *buf, int oob_required)
1988 int i, eccsize = chip->ecc.size;
1989 int eccbytes = chip->ecc.bytes;
1990 int eccsteps = chip->ecc.steps;
1991 uint8_t *ecc_calc = chip->buffers->ecccalc;
1992 const uint8_t *p = buf;
1993 uint32_t *eccpos = chip->ecc.layout->eccpos;
1995 /* Software ECC calculation */
1996 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1997 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1999 for (i = 0; i < chip->ecc.total; i++)
2000 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2002 chip->ecc.write_page_raw(mtd, chip, buf, 1);
2006 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2007 * @mtd: mtd info structure
2008 * @chip: nand chip info structure
2010 * @oob_required: must write chip->oob_poi to OOB
2012 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2013 const uint8_t *buf, int oob_required)
2015 int i, eccsize = chip->ecc.size;
2016 int eccbytes = chip->ecc.bytes;
2017 int eccsteps = chip->ecc.steps;
2018 uint8_t *ecc_calc = chip->buffers->ecccalc;
2019 const uint8_t *p = buf;
2020 uint32_t *eccpos = chip->ecc.layout->eccpos;
2022 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2023 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2024 chip->write_buf(mtd, p, eccsize);
2025 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2028 for (i = 0; i < chip->ecc.total; i++)
2029 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2031 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2035 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2036 * @mtd: mtd info structure
2037 * @chip: nand chip info structure
2039 * @oob_required: must write chip->oob_poi to OOB
2041 * The hw generator calculates the error syndrome automatically. Therefore we
2042 * need a special oob layout and handling.
2044 static void nand_write_page_syndrome(struct mtd_info *mtd,
2045 struct nand_chip *chip,
2046 const uint8_t *buf, int oob_required)
2048 int i, eccsize = chip->ecc.size;
2049 int eccbytes = chip->ecc.bytes;
2050 int eccsteps = chip->ecc.steps;
2051 const uint8_t *p = buf;
2052 uint8_t *oob = chip->oob_poi;
2054 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2056 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2057 chip->write_buf(mtd, p, eccsize);
2059 if (chip->ecc.prepad) {
2060 chip->write_buf(mtd, oob, chip->ecc.prepad);
2061 oob += chip->ecc.prepad;
2064 chip->ecc.calculate(mtd, p, oob);
2065 chip->write_buf(mtd, oob, eccbytes);
2068 if (chip->ecc.postpad) {
2069 chip->write_buf(mtd, oob, chip->ecc.postpad);
2070 oob += chip->ecc.postpad;
2074 /* Calculate remaining oob bytes */
2075 i = mtd->oobsize - (oob - chip->oob_poi);
2077 chip->write_buf(mtd, oob, i);
2081 * nand_write_page - [REPLACEABLE] write one page
2082 * @mtd: MTD device structure
2083 * @chip: NAND chip descriptor
2084 * @buf: the data to write
2085 * @oob_required: must write chip->oob_poi to OOB
2086 * @page: page number to write
2087 * @cached: cached programming
2088 * @raw: use _raw version of write_page
2090 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2091 const uint8_t *buf, int oob_required, int page,
2092 int cached, int raw)
2096 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2099 chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2101 chip->ecc.write_page(mtd, chip, buf, oob_required);
2104 * Cached progamming disabled for now. Not sure if it's worth the
2105 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2109 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2111 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2112 status = chip->waitfunc(mtd, chip);
2114 * See if operation failed and additional status checks are
2117 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2118 status = chip->errstat(mtd, chip, FL_WRITING, status,
2121 if (status & NAND_STATUS_FAIL)
2124 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2125 status = chip->waitfunc(mtd, chip);
2128 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2129 /* Send command to read back the data */
2130 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2132 if (chip->verify_buf(mtd, buf, mtd->writesize))
2135 /* Make sure the next page prog is preceded by a status read */
2136 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2142 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2143 * @mtd: MTD device structure
2144 * @oob: oob data buffer
2145 * @len: oob data write length
2146 * @ops: oob ops structure
2148 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2149 struct mtd_oob_ops *ops)
2151 struct nand_chip *chip = mtd->priv;
2154 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2155 * data from a previous OOB read.
2157 memset(chip->oob_poi, 0xff, mtd->oobsize);
2159 switch (ops->mode) {
2161 case MTD_OPS_PLACE_OOB:
2163 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2166 case MTD_OPS_AUTO_OOB: {
2167 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2168 uint32_t boffs = 0, woffs = ops->ooboffs;
2171 for (; free->length && len; free++, len -= bytes) {
2172 /* Write request not from offset 0? */
2173 if (unlikely(woffs)) {
2174 if (woffs >= free->length) {
2175 woffs -= free->length;
2178 boffs = free->offset + woffs;
2179 bytes = min_t(size_t, len,
2180 (free->length - woffs));
2183 bytes = min_t(size_t, len, free->length);
2184 boffs = free->offset;
2186 memcpy(chip->oob_poi + boffs, oob, bytes);
2197 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2200 * nand_do_write_ops - [INTERN] NAND write with ECC
2201 * @mtd: MTD device structure
2202 * @to: offset to write to
2203 * @ops: oob operations description structure
2205 * NAND write with ECC.
2207 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2208 struct mtd_oob_ops *ops)
2210 int chipnr, realpage, page, blockmask, column;
2211 struct nand_chip *chip = mtd->priv;
2212 uint32_t writelen = ops->len;
2214 uint32_t oobwritelen = ops->ooblen;
2215 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2216 mtd->oobavail : mtd->oobsize;
2218 uint8_t *oob = ops->oobbuf;
2219 uint8_t *buf = ops->datbuf;
2221 int oob_required = oob ? 1 : 0;
2227 /* Reject writes, which are not page aligned */
2228 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2229 pr_notice("%s: attempt to write non page aligned data\n",
2234 column = to & (mtd->writesize - 1);
2235 subpage = column || (writelen & (mtd->writesize - 1));
2240 chipnr = (int)(to >> chip->chip_shift);
2241 chip->select_chip(mtd, chipnr);
2243 /* Check, if it is write protected */
2244 if (nand_check_wp(mtd))
2247 realpage = (int)(to >> chip->page_shift);
2248 page = realpage & chip->pagemask;
2249 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2251 /* Invalidate the page cache, when we write to the cached page */
2252 if (to <= (chip->pagebuf << chip->page_shift) &&
2253 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2256 /* Don't allow multipage oob writes with offset */
2257 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2261 int bytes = mtd->writesize;
2262 int cached = writelen > bytes && page != blockmask;
2263 uint8_t *wbuf = buf;
2265 /* Partial page write? */
2266 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2268 bytes = min_t(int, bytes - column, (int) writelen);
2270 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2271 memcpy(&chip->buffers->databuf[column], buf, bytes);
2272 wbuf = chip->buffers->databuf;
2275 if (unlikely(oob)) {
2276 size_t len = min(oobwritelen, oobmaxlen);
2277 oob = nand_fill_oob(mtd, oob, len, ops);
2280 /* We still need to erase leftover OOB data */
2281 memset(chip->oob_poi, 0xff, mtd->oobsize);
2284 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2285 cached, (ops->mode == MTD_OPS_RAW));
2297 page = realpage & chip->pagemask;
2298 /* Check, if we cross a chip boundary */
2301 chip->select_chip(mtd, -1);
2302 chip->select_chip(mtd, chipnr);
2306 ops->retlen = ops->len - writelen;
2308 ops->oobretlen = ops->ooblen;
2313 * panic_nand_write - [MTD Interface] NAND write with ECC
2314 * @mtd: MTD device structure
2315 * @to: offset to write to
2316 * @len: number of bytes to write
2317 * @retlen: pointer to variable to store the number of written bytes
2318 * @buf: the data to write
2320 * NAND write with ECC. Used when performing writes in interrupt context, this
2321 * may for example be called by mtdoops when writing an oops while in panic.
2323 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2324 size_t *retlen, const uint8_t *buf)
2326 struct nand_chip *chip = mtd->priv;
2327 struct mtd_oob_ops ops;
2330 /* Wait for the device to get ready */
2331 panic_nand_wait(mtd, chip, 400);
2333 /* Grab the device */
2334 panic_nand_get_device(chip, mtd, FL_WRITING);
2337 ops.datbuf = (uint8_t *)buf;
2341 ret = nand_do_write_ops(mtd, to, &ops);
2343 *retlen = ops.retlen;
2348 * nand_write - [MTD Interface] NAND write with ECC
2349 * @mtd: MTD device structure
2350 * @to: offset to write to
2351 * @len: number of bytes to write
2352 * @retlen: pointer to variable to store the number of written bytes
2353 * @buf: the data to write
2355 * NAND write with ECC.
2357 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2358 size_t *retlen, const uint8_t *buf)
2360 struct nand_chip *chip = mtd->priv;
2361 struct mtd_oob_ops ops;
2364 nand_get_device(chip, mtd, FL_WRITING);
2366 ops.datbuf = (uint8_t *)buf;
2369 ret = nand_do_write_ops(mtd, to, &ops);
2370 *retlen = ops.retlen;
2371 nand_release_device(mtd);
2376 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2377 * @mtd: MTD device structure
2378 * @to: offset to write to
2379 * @ops: oob operation description structure
2381 * NAND write out-of-band.
2383 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2384 struct mtd_oob_ops *ops)
2386 int chipnr, page, status, len;
2387 struct nand_chip *chip = mtd->priv;
2389 pr_debug("%s: to = 0x%08x, len = %i\n",
2390 __func__, (unsigned int)to, (int)ops->ooblen);
2392 if (ops->mode == MTD_OPS_AUTO_OOB)
2393 len = chip->ecc.layout->oobavail;
2397 /* Do not allow write past end of page */
2398 if ((ops->ooboffs + ops->ooblen) > len) {
2399 pr_debug("%s: attempt to write past end of page\n",
2404 if (unlikely(ops->ooboffs >= len)) {
2405 pr_debug("%s: attempt to start write outside oob\n",
2410 /* Do not allow write past end of device */
2411 if (unlikely(to >= mtd->size ||
2412 ops->ooboffs + ops->ooblen >
2413 ((mtd->size >> chip->page_shift) -
2414 (to >> chip->page_shift)) * len)) {
2415 pr_debug("%s: attempt to write beyond end of device\n",
2420 chipnr = (int)(to >> chip->chip_shift);
2421 chip->select_chip(mtd, chipnr);
2423 /* Shift to get page */
2424 page = (int)(to >> chip->page_shift);
2427 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2428 * of my DiskOnChip 2000 test units) will clear the whole data page too
2429 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2430 * it in the doc2000 driver in August 1999. dwmw2.
2432 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2434 /* Check, if it is write protected */
2435 if (nand_check_wp(mtd))
2438 /* Invalidate the page cache, if we write to the cached page */
2439 if (page == chip->pagebuf)
2442 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2444 if (ops->mode == MTD_OPS_RAW)
2445 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2447 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2452 ops->oobretlen = ops->ooblen;
2458 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2459 * @mtd: MTD device structure
2460 * @to: offset to write to
2461 * @ops: oob operation description structure
2463 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2464 struct mtd_oob_ops *ops)
2466 struct nand_chip *chip = mtd->priv;
2467 int ret = -ENOTSUPP;
2471 /* Do not allow writes past end of device */
2472 if (ops->datbuf && (to + ops->len) > mtd->size) {
2473 pr_debug("%s: attempt to write beyond end of device\n",
2478 nand_get_device(chip, mtd, FL_WRITING);
2480 switch (ops->mode) {
2481 case MTD_OPS_PLACE_OOB:
2482 case MTD_OPS_AUTO_OOB:
2491 ret = nand_do_write_oob(mtd, to, ops);
2493 ret = nand_do_write_ops(mtd, to, ops);
2496 nand_release_device(mtd);
2501 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2502 * @mtd: MTD device structure
2503 * @page: the page address of the block which will be erased
2505 * Standard erase command for NAND chips.
2507 static void single_erase_cmd(struct mtd_info *mtd, int page)
2509 struct nand_chip *chip = mtd->priv;
2510 /* Send commands to erase a block */
2511 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2512 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2516 * multi_erase_cmd - [GENERIC] AND specific block erase command function
2517 * @mtd: MTD device structure
2518 * @page: the page address of the block which will be erased
2520 * AND multi block erase command function. Erase 4 consecutive blocks.
2522 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2524 struct nand_chip *chip = mtd->priv;
2525 /* Send commands to erase a block */
2526 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2527 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2528 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2529 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2530 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2534 * nand_erase - [MTD Interface] erase block(s)
2535 * @mtd: MTD device structure
2536 * @instr: erase instruction
2538 * Erase one ore more blocks.
2540 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2542 return nand_erase_nand(mtd, instr, 0);
2545 #define BBT_PAGE_MASK 0xffffff3f
2547 * nand_erase_nand - [INTERN] erase block(s)
2548 * @mtd: MTD device structure
2549 * @instr: erase instruction
2550 * @allowbbt: allow erasing the bbt area
2552 * Erase one ore more blocks.
2554 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2557 int page, status, pages_per_block, ret, chipnr;
2558 struct nand_chip *chip = mtd->priv;
2559 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2560 unsigned int bbt_masked_page = 0xffffffff;
2563 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2564 __func__, (unsigned long long)instr->addr,
2565 (unsigned long long)instr->len);
2567 if (check_offs_len(mtd, instr->addr, instr->len))
2570 /* Grab the lock and see if the device is available */
2571 nand_get_device(chip, mtd, FL_ERASING);
2573 /* Shift to get first page */
2574 page = (int)(instr->addr >> chip->page_shift);
2575 chipnr = (int)(instr->addr >> chip->chip_shift);
2577 /* Calculate pages in each block */
2578 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2580 /* Select the NAND device */
2581 chip->select_chip(mtd, chipnr);
2583 /* Check, if it is write protected */
2584 if (nand_check_wp(mtd)) {
2585 pr_debug("%s: device is write protected!\n",
2587 instr->state = MTD_ERASE_FAILED;
2592 * If BBT requires refresh, set the BBT page mask to see if the BBT
2593 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2594 * can not be matched. This is also done when the bbt is actually
2595 * erased to avoid recursive updates.
2597 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2598 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2600 /* Loop through the pages */
2603 instr->state = MTD_ERASING;
2606 /* Check if we have a bad block, we do not erase bad blocks! */
2607 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2608 chip->page_shift, 0, allowbbt)) {
2609 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2611 instr->state = MTD_ERASE_FAILED;
2616 * Invalidate the page cache, if we erase the block which
2617 * contains the current cached page.
2619 if (page <= chip->pagebuf && chip->pagebuf <
2620 (page + pages_per_block))
2623 chip->erase_cmd(mtd, page & chip->pagemask);
2625 status = chip->waitfunc(mtd, chip);
2628 * See if operation failed and additional status checks are
2631 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2632 status = chip->errstat(mtd, chip, FL_ERASING,
2635 /* See if block erase succeeded */
2636 if (status & NAND_STATUS_FAIL) {
2637 pr_debug("%s: failed erase, page 0x%08x\n",
2639 instr->state = MTD_ERASE_FAILED;
2641 ((loff_t)page << chip->page_shift);
2646 * If BBT requires refresh, set the BBT rewrite flag to the
2647 * page being erased.
2649 if (bbt_masked_page != 0xffffffff &&
2650 (page & BBT_PAGE_MASK) == bbt_masked_page)
2651 rewrite_bbt[chipnr] =
2652 ((loff_t)page << chip->page_shift);
2654 /* Increment page address and decrement length */
2655 len -= (1 << chip->phys_erase_shift);
2656 page += pages_per_block;
2658 /* Check, if we cross a chip boundary */
2659 if (len && !(page & chip->pagemask)) {
2661 chip->select_chip(mtd, -1);
2662 chip->select_chip(mtd, chipnr);
2665 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2666 * page mask to see if this BBT should be rewritten.
2668 if (bbt_masked_page != 0xffffffff &&
2669 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2670 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2674 instr->state = MTD_ERASE_DONE;
2678 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2680 /* Deselect and wake up anyone waiting on the device */
2681 nand_release_device(mtd);
2683 /* Do call back function */
2685 mtd_erase_callback(instr);
2688 * If BBT requires refresh and erase was successful, rewrite any
2689 * selected bad block tables.
2691 if (bbt_masked_page == 0xffffffff || ret)
2694 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2695 if (!rewrite_bbt[chipnr])
2697 /* Update the BBT for chip */
2698 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2699 __func__, chipnr, rewrite_bbt[chipnr],
2700 chip->bbt_td->pages[chipnr]);
2701 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2704 /* Return more or less happy */
2709 * nand_sync - [MTD Interface] sync
2710 * @mtd: MTD device structure
2712 * Sync is actually a wait for chip ready function.
2714 static void nand_sync(struct mtd_info *mtd)
2716 struct nand_chip *chip = mtd->priv;
2718 pr_debug("%s: called\n", __func__);
2720 /* Grab the lock and see if the device is available */
2721 nand_get_device(chip, mtd, FL_SYNCING);
2722 /* Release it and go back */
2723 nand_release_device(mtd);
2727 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2728 * @mtd: MTD device structure
2729 * @offs: offset relative to mtd start
2731 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2733 return nand_block_checkbad(mtd, offs, 1, 0);
2737 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2738 * @mtd: MTD device structure
2739 * @ofs: offset relative to mtd start
2741 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2743 struct nand_chip *chip = mtd->priv;
2746 ret = nand_block_isbad(mtd, ofs);
2748 /* If it was bad already, return success and do nothing */
2754 return chip->block_markbad(mtd, ofs);
2758 * nand_suspend - [MTD Interface] Suspend the NAND flash
2759 * @mtd: MTD device structure
2761 static int nand_suspend(struct mtd_info *mtd)
2763 struct nand_chip *chip = mtd->priv;
2765 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2769 * nand_resume - [MTD Interface] Resume the NAND flash
2770 * @mtd: MTD device structure
2772 static void nand_resume(struct mtd_info *mtd)
2774 struct nand_chip *chip = mtd->priv;
2776 if (chip->state == FL_PM_SUSPENDED)
2777 nand_release_device(mtd);
2779 pr_err("%s called for a chip which is not in suspended state\n",
2783 /* Set default functions */
2784 static void nand_set_defaults(struct nand_chip *chip, int busw)
2786 /* check for proper chip_delay setup, set 20us if not */
2787 if (!chip->chip_delay)
2788 chip->chip_delay = 20;
2790 /* check, if a user supplied command function given */
2791 if (chip->cmdfunc == NULL)
2792 chip->cmdfunc = nand_command;
2794 /* check, if a user supplied wait function given */
2795 if (chip->waitfunc == NULL)
2796 chip->waitfunc = nand_wait;
2798 if (!chip->select_chip)
2799 chip->select_chip = nand_select_chip;
2800 if (!chip->read_byte)
2801 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2802 if (!chip->read_word)
2803 chip->read_word = nand_read_word;
2804 if (!chip->block_bad)
2805 chip->block_bad = nand_block_bad;
2806 if (!chip->block_markbad)
2807 chip->block_markbad = nand_default_block_markbad;
2808 if (!chip->write_buf)
2809 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2810 if (!chip->read_buf)
2811 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2812 if (!chip->verify_buf)
2813 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2814 if (!chip->scan_bbt)
2815 chip->scan_bbt = nand_default_bbt;
2817 if (!chip->controller) {
2818 chip->controller = &chip->hwcontrol;
2819 spin_lock_init(&chip->controller->lock);
2820 init_waitqueue_head(&chip->controller->wq);
2825 /* Sanitize ONFI strings so we can safely print them */
2826 static void sanitize_string(uint8_t *s, size_t len)
2830 /* Null terminate */
2833 /* Remove non printable chars */
2834 for (i = 0; i < len - 1; i++) {
2835 if (s[i] < ' ' || s[i] > 127)
2839 /* Remove trailing spaces */
2843 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2848 for (i = 0; i < 8; i++)
2849 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2856 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2858 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2861 struct nand_onfi_params *p = &chip->onfi_params;
2865 /* Try ONFI for unknown chip or LP */
2866 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2867 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2868 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2871 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2872 for (i = 0; i < 3; i++) {
2873 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2874 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2875 le16_to_cpu(p->crc)) {
2876 pr_info("ONFI param page %d valid\n", i);
2885 val = le16_to_cpu(p->revision);
2887 chip->onfi_version = 23;
2888 else if (val & (1 << 4))
2889 chip->onfi_version = 22;
2890 else if (val & (1 << 3))
2891 chip->onfi_version = 21;
2892 else if (val & (1 << 2))
2893 chip->onfi_version = 20;
2894 else if (val & (1 << 1))
2895 chip->onfi_version = 10;
2897 chip->onfi_version = 0;
2899 if (!chip->onfi_version) {
2900 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2904 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2905 sanitize_string(p->model, sizeof(p->model));
2907 mtd->name = p->model;
2908 mtd->writesize = le32_to_cpu(p->byte_per_page);
2909 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2910 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2911 chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2912 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2914 if (le16_to_cpu(p->features) & 1)
2915 *busw = NAND_BUSWIDTH_16;
2917 chip->options |= NAND_NO_READRDY;
2919 pr_info("ONFI flash detected\n");
2924 * Get the flash and manufacturer id and lookup if the type is supported.
2926 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2927 struct nand_chip *chip,
2929 int *maf_id, int *dev_id,
2930 struct nand_flash_dev *type)
2936 /* Select the device */
2937 chip->select_chip(mtd, 0);
2940 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2943 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2945 /* Send the command for reading device ID */
2946 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2948 /* Read manufacturer and device IDs */
2949 *maf_id = chip->read_byte(mtd);
2950 *dev_id = chip->read_byte(mtd);
2953 * Try again to make sure, as some systems the bus-hold or other
2954 * interface concerns can cause random data which looks like a
2955 * possibly credible NAND flash to appear. If the two results do
2956 * not match, ignore the device completely.
2959 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2961 for (i = 0; i < 2; i++)
2962 id_data[i] = chip->read_byte(mtd);
2964 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2965 pr_info("%s: second ID read did not match "
2966 "%02x,%02x against %02x,%02x\n", __func__,
2967 *maf_id, *dev_id, id_data[0], id_data[1]);
2968 return ERR_PTR(-ENODEV);
2972 type = nand_flash_ids;
2974 for (; type->name != NULL; type++)
2975 if (*dev_id == type->id)
2978 chip->onfi_version = 0;
2979 if (!type->name || !type->pagesize) {
2980 /* Check is chip is ONFI compliant */
2981 ret = nand_flash_detect_onfi(mtd, chip, &busw);
2986 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2988 /* Read entire ID string */
2990 for (i = 0; i < 8; i++)
2991 id_data[i] = chip->read_byte(mtd);
2994 return ERR_PTR(-ENODEV);
2997 mtd->name = type->name;
2999 chip->chipsize = (uint64_t)type->chipsize << 20;
3001 if (!type->pagesize && chip->init_size) {
3002 /* Set the pagesize, oobsize, erasesize by the driver */
3003 busw = chip->init_size(mtd, chip, id_data);
3004 } else if (!type->pagesize) {
3006 /* The 3rd id byte holds MLC / multichip data */
3007 chip->cellinfo = id_data[2];
3008 /* The 4th id byte is the important one */
3012 * Field definitions are in the following datasheets:
3013 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3014 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
3016 * Check for wraparound + Samsung ID + nonzero 6th byte
3017 * to decide what to do.
3019 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3020 id_data[0] == NAND_MFR_SAMSUNG &&
3021 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3022 id_data[5] != 0x00) {
3024 mtd->writesize = 2048 << (extid & 0x03);
3027 switch (extid & 0x03) {
3042 /* Calc blocksize */
3043 mtd->erasesize = (128 * 1024) <<
3044 (((extid >> 1) & 0x04) | (extid & 0x03));
3048 mtd->writesize = 1024 << (extid & 0x03);
3051 mtd->oobsize = (8 << (extid & 0x01)) *
3052 (mtd->writesize >> 9);
3054 /* Calc blocksize. Blocksize is multiples of 64KiB */
3055 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3057 /* Get buswidth information */
3058 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3062 * Old devices have chip data hardcoded in the device id table.
3064 mtd->erasesize = type->erasesize;
3065 mtd->writesize = type->pagesize;
3066 mtd->oobsize = mtd->writesize / 32;
3067 busw = type->options & NAND_BUSWIDTH_16;
3070 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3071 * some Spansion chips have erasesize that conflicts with size
3072 * listed in nand_ids table.
3073 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3075 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3076 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3077 id_data[7] == 0x00 && mtd->writesize == 512) {
3078 mtd->erasesize = 128 * 1024;
3079 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3082 /* Get chip options */
3083 chip->options |= type->options;
3086 * Check if chip is not a Samsung device. Do not clear the
3087 * options for chips which do not have an extended id.
3089 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3090 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3093 /* Try to identify manufacturer */
3094 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3095 if (nand_manuf_ids[maf_idx].id == *maf_id)
3100 * Check, if buswidth is correct. Hardware drivers should set
3103 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3104 pr_info("NAND device: Manufacturer ID:"
3105 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3106 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3107 pr_warn("NAND bus width %d instead %d bit\n",
3108 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3110 return ERR_PTR(-EINVAL);
3113 /* Calculate the address shift from the page size */
3114 chip->page_shift = ffs(mtd->writesize) - 1;
3115 /* Convert chipsize to number of pages per chip -1 */
3116 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3118 chip->bbt_erase_shift = chip->phys_erase_shift =
3119 ffs(mtd->erasesize) - 1;
3120 if (chip->chipsize & 0xffffffff)
3121 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3123 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3124 chip->chip_shift += 32 - 1;
3127 chip->badblockbits = 8;
3129 /* Set the bad block position */
3130 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3131 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3133 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3136 * Bad block marker is stored in the last page of each block
3137 * on Samsung and Hynix MLC devices; stored in first two pages
3138 * of each block on Micron devices with 2KiB pages and on
3139 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3140 * All others scan only the first page.
3142 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143 (*maf_id == NAND_MFR_SAMSUNG ||
3144 *maf_id == NAND_MFR_HYNIX))
3145 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3146 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3147 (*maf_id == NAND_MFR_SAMSUNG ||
3148 *maf_id == NAND_MFR_HYNIX ||
3149 *maf_id == NAND_MFR_TOSHIBA ||
3150 *maf_id == NAND_MFR_AMD ||
3151 *maf_id == NAND_MFR_MACRONIX)) ||
3152 (mtd->writesize == 2048 &&
3153 *maf_id == NAND_MFR_MICRON))
3154 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3156 /* Check for AND chips with 4 page planes */
3157 if (chip->options & NAND_4PAGE_ARRAY)
3158 chip->erase_cmd = multi_erase_cmd;
3160 chip->erase_cmd = single_erase_cmd;
3162 /* Do not replace user supplied command function! */
3163 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3164 chip->cmdfunc = nand_command_lp;
3166 pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3167 " page size: %d, OOB size: %d\n",
3168 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3169 chip->onfi_version ? chip->onfi_params.model : type->name,
3170 mtd->writesize, mtd->oobsize);
3176 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3177 * @mtd: MTD device structure
3178 * @maxchips: number of chips to scan for
3179 * @table: alternative NAND ID table
3181 * This is the first phase of the normal nand_scan() function. It reads the
3182 * flash ID and sets up MTD fields accordingly.
3184 * The mtd->owner field must be set to the module of the caller.
3186 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3187 struct nand_flash_dev *table)
3189 int i, busw, nand_maf_id, nand_dev_id;
3190 struct nand_chip *chip = mtd->priv;
3191 struct nand_flash_dev *type;
3193 /* Get buswidth to select the correct functions */
3194 busw = chip->options & NAND_BUSWIDTH_16;
3195 /* Set the default functions */
3196 nand_set_defaults(chip, busw);
3198 /* Read the flash type */
3199 type = nand_get_flash_type(mtd, chip, busw,
3200 &nand_maf_id, &nand_dev_id, table);
3203 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3204 pr_warn("No NAND device found\n");
3205 chip->select_chip(mtd, -1);
3206 return PTR_ERR(type);
3209 /* Check for a chip array */
3210 for (i = 1; i < maxchips; i++) {
3211 chip->select_chip(mtd, i);
3212 /* See comment in nand_get_flash_type for reset */
3213 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3214 /* Send the command for reading device ID */
3215 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3216 /* Read manufacturer and device IDs */
3217 if (nand_maf_id != chip->read_byte(mtd) ||
3218 nand_dev_id != chip->read_byte(mtd))
3222 pr_info("%d NAND chips detected\n", i);
3224 /* Store the number of chips and calc total size for mtd */
3226 mtd->size = i * chip->chipsize;
3230 EXPORT_SYMBOL(nand_scan_ident);
3234 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3235 * @mtd: MTD device structure
3237 * This is the second phase of the normal nand_scan() function. It fills out
3238 * all the uninitialized function pointers with the defaults and scans for a
3239 * bad block table if appropriate.
3241 int nand_scan_tail(struct mtd_info *mtd)
3244 struct nand_chip *chip = mtd->priv;
3246 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3247 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3248 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3250 if (!(chip->options & NAND_OWN_BUFFERS))
3251 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3255 /* Set the internal oob buffer location, just after the page data */
3256 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3259 * If no default placement scheme is given, select an appropriate one.
3261 if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3262 switch (mtd->oobsize) {
3264 chip->ecc.layout = &nand_oob_8;
3267 chip->ecc.layout = &nand_oob_16;
3270 chip->ecc.layout = &nand_oob_64;
3273 chip->ecc.layout = &nand_oob_128;
3276 pr_warn("No oob scheme defined for oobsize %d\n",
3282 if (!chip->write_page)
3283 chip->write_page = nand_write_page;
3286 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3287 * selected and we have 256 byte pagesize fallback to software ECC
3290 switch (chip->ecc.mode) {
3291 case NAND_ECC_HW_OOB_FIRST:
3292 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3293 if (!chip->ecc.calculate || !chip->ecc.correct ||
3295 pr_warn("No ECC functions supplied; "
3296 "hardware ECC not possible\n");
3299 if (!chip->ecc.read_page)
3300 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3303 /* Use standard hwecc read page function? */
3304 if (!chip->ecc.read_page)
3305 chip->ecc.read_page = nand_read_page_hwecc;
3306 if (!chip->ecc.write_page)
3307 chip->ecc.write_page = nand_write_page_hwecc;
3308 if (!chip->ecc.read_page_raw)
3309 chip->ecc.read_page_raw = nand_read_page_raw;
3310 if (!chip->ecc.write_page_raw)
3311 chip->ecc.write_page_raw = nand_write_page_raw;
3312 if (!chip->ecc.read_oob)
3313 chip->ecc.read_oob = nand_read_oob_std;
3314 if (!chip->ecc.write_oob)
3315 chip->ecc.write_oob = nand_write_oob_std;
3317 case NAND_ECC_HW_SYNDROME:
3318 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3319 !chip->ecc.hwctl) &&
3320 (!chip->ecc.read_page ||
3321 chip->ecc.read_page == nand_read_page_hwecc ||
3322 !chip->ecc.write_page ||
3323 chip->ecc.write_page == nand_write_page_hwecc)) {
3324 pr_warn("No ECC functions supplied; "
3325 "hardware ECC not possible\n");
3328 /* Use standard syndrome read/write page function? */
3329 if (!chip->ecc.read_page)
3330 chip->ecc.read_page = nand_read_page_syndrome;
3331 if (!chip->ecc.write_page)
3332 chip->ecc.write_page = nand_write_page_syndrome;
3333 if (!chip->ecc.read_page_raw)
3334 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3335 if (!chip->ecc.write_page_raw)
3336 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3337 if (!chip->ecc.read_oob)
3338 chip->ecc.read_oob = nand_read_oob_syndrome;
3339 if (!chip->ecc.write_oob)
3340 chip->ecc.write_oob = nand_write_oob_syndrome;
3342 if (mtd->writesize >= chip->ecc.size) {
3343 if (!chip->ecc.strength) {
3344 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3349 pr_warn("%d byte HW ECC not possible on "
3350 "%d byte page size, fallback to SW ECC\n",
3351 chip->ecc.size, mtd->writesize);
3352 chip->ecc.mode = NAND_ECC_SOFT;
3355 chip->ecc.calculate = nand_calculate_ecc;
3356 chip->ecc.correct = nand_correct_data;
3357 chip->ecc.read_page = nand_read_page_swecc;
3358 chip->ecc.read_subpage = nand_read_subpage;
3359 chip->ecc.write_page = nand_write_page_swecc;
3360 chip->ecc.read_page_raw = nand_read_page_raw;
3361 chip->ecc.write_page_raw = nand_write_page_raw;
3362 chip->ecc.read_oob = nand_read_oob_std;
3363 chip->ecc.write_oob = nand_write_oob_std;
3364 if (!chip->ecc.size)
3365 chip->ecc.size = 256;
3366 chip->ecc.bytes = 3;
3367 chip->ecc.strength = 1;
3370 case NAND_ECC_SOFT_BCH:
3371 if (!mtd_nand_has_bch()) {
3372 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3375 chip->ecc.calculate = nand_bch_calculate_ecc;
3376 chip->ecc.correct = nand_bch_correct_data;
3377 chip->ecc.read_page = nand_read_page_swecc;
3378 chip->ecc.read_subpage = nand_read_subpage;
3379 chip->ecc.write_page = nand_write_page_swecc;
3380 chip->ecc.read_page_raw = nand_read_page_raw;
3381 chip->ecc.write_page_raw = nand_write_page_raw;
3382 chip->ecc.read_oob = nand_read_oob_std;
3383 chip->ecc.write_oob = nand_write_oob_std;
3385 * Board driver should supply ecc.size and ecc.bytes values to
3386 * select how many bits are correctable; see nand_bch_init()
3387 * for details. Otherwise, default to 4 bits for large page
3390 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3391 chip->ecc.size = 512;
3392 chip->ecc.bytes = 7;
3394 chip->ecc.priv = nand_bch_init(mtd,
3398 if (!chip->ecc.priv) {
3399 pr_warn("BCH ECC initialization failed!\n");
3402 chip->ecc.strength =
3403 chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3407 pr_warn("NAND_ECC_NONE selected by board driver. "
3408 "This is not recommended!\n");
3409 chip->ecc.read_page = nand_read_page_raw;
3410 chip->ecc.write_page = nand_write_page_raw;
3411 chip->ecc.read_oob = nand_read_oob_std;
3412 chip->ecc.read_page_raw = nand_read_page_raw;
3413 chip->ecc.write_page_raw = nand_write_page_raw;
3414 chip->ecc.write_oob = nand_write_oob_std;
3415 chip->ecc.size = mtd->writesize;
3416 chip->ecc.bytes = 0;
3417 chip->ecc.strength = 0;
3421 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3425 /* For many systems, the standard OOB write also works for raw */
3426 if (!chip->ecc.read_oob_raw)
3427 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3428 if (!chip->ecc.write_oob_raw)
3429 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3432 * The number of bytes available for a client to place data into
3433 * the out of band area.
3435 chip->ecc.layout->oobavail = 0;
3436 for (i = 0; chip->ecc.layout->oobfree[i].length
3437 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3438 chip->ecc.layout->oobavail +=
3439 chip->ecc.layout->oobfree[i].length;
3440 mtd->oobavail = chip->ecc.layout->oobavail;
3443 * Set the number of read / write steps for one page depending on ECC
3446 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3447 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3448 pr_warn("Invalid ECC parameters\n");
3451 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3453 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3454 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3455 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3456 switch (chip->ecc.steps) {
3458 mtd->subpage_sft = 1;
3463 mtd->subpage_sft = 2;
3467 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3469 /* Initialize state */
3470 chip->state = FL_READY;
3472 /* De-select the device */
3473 chip->select_chip(mtd, -1);
3475 /* Invalidate the pagebuffer reference */
3478 /* Fill in remaining MTD driver data */
3479 mtd->type = MTD_NANDFLASH;
3480 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3482 mtd->_erase = nand_erase;
3484 mtd->_unpoint = NULL;
3485 mtd->_read = nand_read;
3486 mtd->_write = nand_write;
3487 mtd->_panic_write = panic_nand_write;
3488 mtd->_read_oob = nand_read_oob;
3489 mtd->_write_oob = nand_write_oob;
3490 mtd->_sync = nand_sync;
3492 mtd->_unlock = NULL;
3493 mtd->_suspend = nand_suspend;
3494 mtd->_resume = nand_resume;
3495 mtd->_block_isbad = nand_block_isbad;
3496 mtd->_block_markbad = nand_block_markbad;
3497 mtd->writebufsize = mtd->writesize;
3499 /* propagate ecc info to mtd_info */
3500 mtd->ecclayout = chip->ecc.layout;
3501 mtd->ecc_strength = chip->ecc.strength;
3503 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3504 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3507 if (!mtd->bitflip_threshold)
3508 mtd->bitflip_threshold = mtd->ecc_strength;
3510 /* Check, if we should skip the bad block table scan */
3511 if (chip->options & NAND_SKIP_BBTSCAN)
3514 /* Build bad block table */
3515 return chip->scan_bbt(mtd);
3517 EXPORT_SYMBOL(nand_scan_tail);
3520 * is_module_text_address() isn't exported, and it's mostly a pointless
3521 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3522 * to call us from in-kernel code if the core NAND support is modular.
3525 #define caller_is_module() (1)
3527 #define caller_is_module() \
3528 is_module_text_address((unsigned long)__builtin_return_address(0))
3532 * nand_scan - [NAND Interface] Scan for the NAND device
3533 * @mtd: MTD device structure
3534 * @maxchips: number of chips to scan for
3536 * This fills out all the uninitialized function pointers with the defaults.
3537 * The flash ID is read and the mtd/chip structures are filled with the
3538 * appropriate values. The mtd->owner field must be set to the module of the
3541 int nand_scan(struct mtd_info *mtd, int maxchips)
3545 /* Many callers got this wrong, so check for it for a while... */
3546 if (!mtd->owner && caller_is_module()) {
3547 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3551 ret = nand_scan_ident(mtd, maxchips, NULL);
3553 ret = nand_scan_tail(mtd);
3556 EXPORT_SYMBOL(nand_scan);
3559 * nand_release - [NAND Interface] Free resources held by the NAND device
3560 * @mtd: MTD device structure
3562 void nand_release(struct mtd_info *mtd)
3564 struct nand_chip *chip = mtd->priv;
3566 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3567 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3569 mtd_device_unregister(mtd);
3571 /* Free bad block table memory */
3573 if (!(chip->options & NAND_OWN_BUFFERS))
3574 kfree(chip->buffers);
3576 /* Free bad block descriptor memory */
3577 if (chip->badblock_pattern && chip->badblock_pattern->options
3578 & NAND_BBT_DYNAMICSTRUCT)
3579 kfree(chip->badblock_pattern);
3581 EXPORT_SYMBOL_GPL(nand_release);
3583 static int __init nand_base_init(void)
3585 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3589 static void __exit nand_base_exit(void)
3591 led_trigger_unregister_simple(nand_led_trigger);
3594 module_init(nand_base_init);
3595 module_exit(nand_base_exit);
3597 MODULE_LICENSE("GPL");
3598 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3599 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3600 MODULE_DESCRIPTION("Generic NAND flash driver code");