]> git.karo-electronics.de Git - karo-tx-linux.git/blob
c429abd
[karo-tx-linux.git] /
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ECC support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *      BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54         .eccbytes = 3,
55         .eccpos = {0, 1, 2},
56         .oobfree = {
57                 {.offset = 3,
58                  .length = 2},
59                 {.offset = 6,
60                  .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64         .eccbytes = 6,
65         .eccpos = {0, 1, 2, 3, 6, 7},
66         .oobfree = {
67                 {.offset = 8,
68                  . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72         .eccbytes = 24,
73         .eccpos = {
74                    40, 41, 42, 43, 44, 45, 46, 47,
75                    48, 49, 50, 51, 52, 53, 54, 55,
76                    56, 57, 58, 59, 60, 61, 62, 63},
77         .oobfree = {
78                 {.offset = 2,
79                  .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83         .eccbytes = 48,
84         .eccpos = {
85                    80, 81, 82, 83, 84, 85, 86, 87,
86                    88, 89, 90, 91, 92, 93, 94, 95,
87                    96, 97, 98, 99, 100, 101, 102, 103,
88                    104, 105, 106, 107, 108, 109, 110, 111,
89                    112, 113, 114, 115, 116, 117, 118, 119,
90                    120, 121, 122, 123, 124, 125, 126, 127},
91         .oobfree = {
92                 {.offset = 2,
93                  .length = 78} }
94 };
95
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97                            int new_state);
98
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100                              struct mtd_oob_ops *ops);
101
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107
108 static int check_offs_len(struct mtd_info *mtd,
109                                         loff_t ofs, uint64_t len)
110 {
111         struct nand_chip *chip = mtd->priv;
112         int ret = 0;
113
114         /* Start address must align on block boundary */
115         if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116                 pr_debug("%s: unaligned address\n", __func__);
117                 ret = -EINVAL;
118         }
119
120         /* Length must align on block boundary */
121         if (len & ((1 << chip->phys_erase_shift) - 1)) {
122                 pr_debug("%s: length not block aligned\n", __func__);
123                 ret = -EINVAL;
124         }
125
126         return ret;
127 }
128
129 /**
130  * nand_release_device - [GENERIC] release chip
131  * @mtd: MTD device structure
132  *
133  * Deselect, release chip lock and wake up anyone waiting on the device.
134  */
135 static void nand_release_device(struct mtd_info *mtd)
136 {
137         struct nand_chip *chip = mtd->priv;
138
139         /* De-select the NAND device */
140         chip->select_chip(mtd, -1);
141
142         /* Release the controller and the chip */
143         spin_lock(&chip->controller->lock);
144         chip->controller->active = NULL;
145         chip->state = FL_READY;
146         wake_up(&chip->controller->wq);
147         spin_unlock(&chip->controller->lock);
148 }
149
150 /**
151  * nand_read_byte - [DEFAULT] read one byte from the chip
152  * @mtd: MTD device structure
153  *
154  * Default read function for 8bit buswidth
155  */
156 static uint8_t nand_read_byte(struct mtd_info *mtd)
157 {
158         struct nand_chip *chip = mtd->priv;
159         return readb(chip->IO_ADDR_R);
160 }
161
162 /**
163  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
164  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
165  * @mtd: MTD device structure
166  *
167  * Default read function for 16bit buswidth with endianness conversion.
168  *
169  */
170 static uint8_t nand_read_byte16(struct mtd_info *mtd)
171 {
172         struct nand_chip *chip = mtd->priv;
173         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
174 }
175
176 /**
177  * nand_read_word - [DEFAULT] read one word from the chip
178  * @mtd: MTD device structure
179  *
180  * Default read function for 16bit buswidth without endianness conversion.
181  */
182 static u16 nand_read_word(struct mtd_info *mtd)
183 {
184         struct nand_chip *chip = mtd->priv;
185         return readw(chip->IO_ADDR_R);
186 }
187
188 /**
189  * nand_select_chip - [DEFAULT] control CE line
190  * @mtd: MTD device structure
191  * @chipnr: chipnumber to select, -1 for deselect
192  *
193  * Default select function for 1 chip devices.
194  */
195 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
196 {
197         struct nand_chip *chip = mtd->priv;
198
199         switch (chipnr) {
200         case -1:
201                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
202                 break;
203         case 0:
204                 break;
205
206         default:
207                 BUG();
208         }
209 }
210
211 /**
212  * nand_write_buf - [DEFAULT] write buffer to chip
213  * @mtd: MTD device structure
214  * @buf: data buffer
215  * @len: number of bytes to write
216  *
217  * Default write function for 8bit buswidth.
218  */
219 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
220 {
221         int i;
222         struct nand_chip *chip = mtd->priv;
223
224         for (i = 0; i < len; i++)
225                 writeb(buf[i], chip->IO_ADDR_W);
226 }
227
228 /**
229  * nand_read_buf - [DEFAULT] read chip data into buffer
230  * @mtd: MTD device structure
231  * @buf: buffer to store date
232  * @len: number of bytes to read
233  *
234  * Default read function for 8bit buswidth.
235  */
236 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
237 {
238         int i;
239         struct nand_chip *chip = mtd->priv;
240
241         for (i = 0; i < len; i++)
242                 buf[i] = readb(chip->IO_ADDR_R);
243 }
244
245 /**
246  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
247  * @mtd: MTD device structure
248  * @buf: buffer containing the data to compare
249  * @len: number of bytes to compare
250  *
251  * Default verify function for 8bit buswidth.
252  */
253 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255         int i;
256         struct nand_chip *chip = mtd->priv;
257
258         for (i = 0; i < len; i++)
259                 if (buf[i] != readb(chip->IO_ADDR_R))
260                         return -EFAULT;
261         return 0;
262 }
263
264 /**
265  * nand_write_buf16 - [DEFAULT] write buffer to chip
266  * @mtd: MTD device structure
267  * @buf: data buffer
268  * @len: number of bytes to write
269  *
270  * Default write function for 16bit buswidth.
271  */
272 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
273 {
274         int i;
275         struct nand_chip *chip = mtd->priv;
276         u16 *p = (u16 *) buf;
277         len >>= 1;
278
279         for (i = 0; i < len; i++)
280                 writew(p[i], chip->IO_ADDR_W);
281
282 }
283
284 /**
285  * nand_read_buf16 - [DEFAULT] read chip data into buffer
286  * @mtd: MTD device structure
287  * @buf: buffer to store date
288  * @len: number of bytes to read
289  *
290  * Default read function for 16bit buswidth.
291  */
292 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
293 {
294         int i;
295         struct nand_chip *chip = mtd->priv;
296         u16 *p = (u16 *) buf;
297         len >>= 1;
298
299         for (i = 0; i < len; i++)
300                 p[i] = readw(chip->IO_ADDR_R);
301 }
302
303 /**
304  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
305  * @mtd: MTD device structure
306  * @buf: buffer containing the data to compare
307  * @len: number of bytes to compare
308  *
309  * Default verify function for 16bit buswidth.
310  */
311 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
312 {
313         int i;
314         struct nand_chip *chip = mtd->priv;
315         u16 *p = (u16 *) buf;
316         len >>= 1;
317
318         for (i = 0; i < len; i++)
319                 if (p[i] != readw(chip->IO_ADDR_R))
320                         return -EFAULT;
321
322         return 0;
323 }
324
325 /**
326  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
327  * @mtd: MTD device structure
328  * @ofs: offset from device start
329  * @getchip: 0, if the chip is already selected
330  *
331  * Check, if the block is bad.
332  */
333 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
334 {
335         int page, chipnr, res = 0, i = 0;
336         struct nand_chip *chip = mtd->priv;
337         u16 bad;
338
339         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
340                 ofs += mtd->erasesize - mtd->writesize;
341
342         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
343
344         if (getchip) {
345                 chipnr = (int)(ofs >> chip->chip_shift);
346
347                 nand_get_device(chip, mtd, FL_READING);
348
349                 /* Select the NAND device */
350                 chip->select_chip(mtd, chipnr);
351         }
352
353         do {
354                 if (chip->options & NAND_BUSWIDTH_16) {
355                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
356                                         chip->badblockpos & 0xFE, page);
357                         bad = cpu_to_le16(chip->read_word(mtd));
358                         if (chip->badblockpos & 0x1)
359                                 bad >>= 8;
360                         else
361                                 bad &= 0xFF;
362                 } else {
363                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
364                                         page);
365                         bad = chip->read_byte(mtd);
366                 }
367
368                 if (likely(chip->badblockbits == 8))
369                         res = bad != 0xFF;
370                 else
371                         res = hweight8(bad) < chip->badblockbits;
372                 ofs += mtd->writesize;
373                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374                 i++;
375         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
376
377         if (getchip)
378                 nand_release_device(mtd);
379
380         return res;
381 }
382
383 /**
384  * nand_default_block_markbad - [DEFAULT] mark a block bad
385  * @mtd: MTD device structure
386  * @ofs: offset from device start
387  *
388  * This is the default implementation, which can be overridden by a hardware
389  * specific driver. We try operations in the following order, according to our
390  * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
391  *  (1) erase the affected block, to allow OOB marker to be written cleanly
392  *  (2) update in-memory BBT
393  *  (3) write bad block marker to OOB area of affected block
394  *  (4) update flash-based BBT
395  * Note that we retain the first error encountered in (3) or (4), finish the
396  * procedures, and dump the error in the end.
397 */
398 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
399 {
400         struct nand_chip *chip = mtd->priv;
401         uint8_t buf[2] = { 0, 0 };
402         int block, res, ret = 0, i = 0;
403         int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
404
405         if (write_oob) {
406                 struct erase_info einfo;
407
408                 /* Attempt erase before marking OOB */
409                 memset(&einfo, 0, sizeof(einfo));
410                 einfo.mtd = mtd;
411                 einfo.addr = ofs;
412                 einfo.len = 1 << chip->phys_erase_shift;
413                 nand_erase_nand(mtd, &einfo, 0);
414         }
415
416         /* Get block number */
417         block = (int)(ofs >> chip->bbt_erase_shift);
418         /* Mark block bad in memory-based BBT */
419         if (chip->bbt)
420                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
421
422         /* Write bad block marker to OOB */
423         if (write_oob) {
424                 struct mtd_oob_ops ops;
425                 loff_t wr_ofs = ofs;
426
427                 nand_get_device(chip, mtd, FL_WRITING);
428
429                 ops.datbuf = NULL;
430                 ops.oobbuf = buf;
431                 ops.ooboffs = chip->badblockpos;
432                 if (chip->options & NAND_BUSWIDTH_16) {
433                         ops.ooboffs &= ~0x01;
434                         ops.len = ops.ooblen = 2;
435                 } else {
436                         ops.len = ops.ooblen = 1;
437                 }
438                 ops.mode = MTD_OPS_PLACE_OOB;
439
440                 /* Write to first/last page(s) if necessary */
441                 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
442                         wr_ofs += mtd->erasesize - mtd->writesize;
443                 do {
444                         res = nand_do_write_oob(mtd, wr_ofs, &ops);
445                         if (!ret)
446                                 ret = res;
447
448                         i++;
449                         wr_ofs += mtd->writesize;
450                 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
451
452                 nand_release_device(mtd);
453         }
454
455         /* Update flash-based bad block table */
456         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
457                 res = nand_update_bbt(mtd, ofs);
458                 if (!ret)
459                         ret = res;
460         }
461
462         if (!ret)
463                 mtd->ecc_stats.badblocks++;
464
465         return ret;
466 }
467
468 /**
469  * nand_check_wp - [GENERIC] check if the chip is write protected
470  * @mtd: MTD device structure
471  *
472  * Check, if the device is write protected. The function expects, that the
473  * device is already selected.
474  */
475 static int nand_check_wp(struct mtd_info *mtd)
476 {
477         struct nand_chip *chip = mtd->priv;
478
479         /* Broken xD cards report WP despite being writable */
480         if (chip->options & NAND_BROKEN_XD)
481                 return 0;
482
483         /* Check the WP bit */
484         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
485         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
486 }
487
488 /**
489  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
490  * @mtd: MTD device structure
491  * @ofs: offset from device start
492  * @getchip: 0, if the chip is already selected
493  * @allowbbt: 1, if its allowed to access the bbt area
494  *
495  * Check, if the block is bad. Either by reading the bad block table or
496  * calling of the scan function.
497  */
498 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
499                                int allowbbt)
500 {
501         struct nand_chip *chip = mtd->priv;
502
503         if (!chip->bbt)
504                 return chip->block_bad(mtd, ofs, getchip);
505
506         /* Return info from the table */
507         return nand_isbad_bbt(mtd, ofs, allowbbt);
508 }
509
510 /**
511  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
512  * @mtd: MTD device structure
513  * @timeo: Timeout
514  *
515  * Helper function for nand_wait_ready used when needing to wait in interrupt
516  * context.
517  */
518 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
519 {
520         struct nand_chip *chip = mtd->priv;
521         int i;
522
523         /* Wait for the device to get ready */
524         for (i = 0; i < timeo; i++) {
525                 if (chip->dev_ready(mtd))
526                         break;
527                 touch_softlockup_watchdog();
528                 mdelay(1);
529         }
530 }
531
532 /* Wait for the ready pin, after a command. The timeout is caught later. */
533 void nand_wait_ready(struct mtd_info *mtd)
534 {
535         struct nand_chip *chip = mtd->priv;
536         unsigned long timeo = jiffies + 2;
537
538         /* 400ms timeout */
539         if (in_interrupt() || oops_in_progress)
540                 return panic_nand_wait_ready(mtd, 400);
541
542         led_trigger_event(nand_led_trigger, LED_FULL);
543         /* Wait until command is processed or timeout occurs */
544         do {
545                 if (chip->dev_ready(mtd))
546                         break;
547                 touch_softlockup_watchdog();
548         } while (time_before(jiffies, timeo));
549         led_trigger_event(nand_led_trigger, LED_OFF);
550 }
551 EXPORT_SYMBOL_GPL(nand_wait_ready);
552
553 /**
554  * nand_command - [DEFAULT] Send command to NAND device
555  * @mtd: MTD device structure
556  * @command: the command to be sent
557  * @column: the column address for this command, -1 if none
558  * @page_addr: the page address for this command, -1 if none
559  *
560  * Send command to NAND device. This function is used for small page devices
561  * (256/512 Bytes per page).
562  */
563 static void nand_command(struct mtd_info *mtd, unsigned int command,
564                          int column, int page_addr)
565 {
566         register struct nand_chip *chip = mtd->priv;
567         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
568
569         /* Write out the command to the device */
570         if (command == NAND_CMD_SEQIN) {
571                 int readcmd;
572
573                 if (column >= mtd->writesize) {
574                         /* OOB area */
575                         column -= mtd->writesize;
576                         readcmd = NAND_CMD_READOOB;
577                 } else if (column < 256) {
578                         /* First 256 bytes --> READ0 */
579                         readcmd = NAND_CMD_READ0;
580                 } else {
581                         column -= 256;
582                         readcmd = NAND_CMD_READ1;
583                 }
584                 chip->cmd_ctrl(mtd, readcmd, ctrl);
585                 ctrl &= ~NAND_CTRL_CHANGE;
586         }
587         chip->cmd_ctrl(mtd, command, ctrl);
588
589         /* Address cycle, when necessary */
590         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
591         /* Serially input address */
592         if (column != -1) {
593                 /* Adjust columns for 16 bit buswidth */
594                 if (chip->options & NAND_BUSWIDTH_16)
595                         column >>= 1;
596                 chip->cmd_ctrl(mtd, column, ctrl);
597                 ctrl &= ~NAND_CTRL_CHANGE;
598         }
599         if (page_addr != -1) {
600                 chip->cmd_ctrl(mtd, page_addr, ctrl);
601                 ctrl &= ~NAND_CTRL_CHANGE;
602                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
603                 /* One more address cycle for devices > 32MiB */
604                 if (chip->chipsize > (32 << 20))
605                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
606         }
607         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
608
609         /*
610          * Program and erase have their own busy handlers status and sequential
611          * in needs no delay
612          */
613         switch (command) {
614
615         case NAND_CMD_PAGEPROG:
616         case NAND_CMD_ERASE1:
617         case NAND_CMD_ERASE2:
618         case NAND_CMD_SEQIN:
619         case NAND_CMD_STATUS:
620                 return;
621
622         case NAND_CMD_RESET:
623                 if (chip->dev_ready)
624                         break;
625                 udelay(chip->chip_delay);
626                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
627                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
628                 chip->cmd_ctrl(mtd,
629                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
631                                 ;
632                 return;
633
634                 /* This applies to read commands */
635         default:
636                 /*
637                  * If we don't have access to the busy pin, we apply the given
638                  * command delay
639                  */
640                 if (!chip->dev_ready) {
641                         udelay(chip->chip_delay);
642                         return;
643                 }
644         }
645         /*
646          * Apply this short delay always to ensure that we do wait tWB in
647          * any case on any machine.
648          */
649         ndelay(100);
650
651         nand_wait_ready(mtd);
652 }
653
654 /**
655  * nand_command_lp - [DEFAULT] Send command to NAND large page device
656  * @mtd: MTD device structure
657  * @command: the command to be sent
658  * @column: the column address for this command, -1 if none
659  * @page_addr: the page address for this command, -1 if none
660  *
661  * Send command to NAND device. This is the version for the new large page
662  * devices. We don't have the separate regions as we have in the small page
663  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
664  */
665 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
666                             int column, int page_addr)
667 {
668         register struct nand_chip *chip = mtd->priv;
669
670         /* Emulate NAND_CMD_READOOB */
671         if (command == NAND_CMD_READOOB) {
672                 column += mtd->writesize;
673                 command = NAND_CMD_READ0;
674         }
675
676         /* Command latch cycle */
677         chip->cmd_ctrl(mtd, command & 0xff,
678                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
679
680         if (column != -1 || page_addr != -1) {
681                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
682
683                 /* Serially input address */
684                 if (column != -1) {
685                         /* Adjust columns for 16 bit buswidth */
686                         if (chip->options & NAND_BUSWIDTH_16)
687                                 column >>= 1;
688                         chip->cmd_ctrl(mtd, column, ctrl);
689                         ctrl &= ~NAND_CTRL_CHANGE;
690                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
691                 }
692                 if (page_addr != -1) {
693                         chip->cmd_ctrl(mtd, page_addr, ctrl);
694                         chip->cmd_ctrl(mtd, page_addr >> 8,
695                                        NAND_NCE | NAND_ALE);
696                         /* One more address cycle for devices > 128MiB */
697                         if (chip->chipsize > (128 << 20))
698                                 chip->cmd_ctrl(mtd, page_addr >> 16,
699                                                NAND_NCE | NAND_ALE);
700                 }
701         }
702         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
703
704         /*
705          * Program and erase have their own busy handlers status, sequential
706          * in, and deplete1 need no delay.
707          */
708         switch (command) {
709
710         case NAND_CMD_CACHEDPROG:
711         case NAND_CMD_PAGEPROG:
712         case NAND_CMD_ERASE1:
713         case NAND_CMD_ERASE2:
714         case NAND_CMD_SEQIN:
715         case NAND_CMD_RNDIN:
716         case NAND_CMD_STATUS:
717         case NAND_CMD_DEPLETE1:
718                 return;
719
720         case NAND_CMD_STATUS_ERROR:
721         case NAND_CMD_STATUS_ERROR0:
722         case NAND_CMD_STATUS_ERROR1:
723         case NAND_CMD_STATUS_ERROR2:
724         case NAND_CMD_STATUS_ERROR3:
725                 /* Read error status commands require only a short delay */
726                 udelay(chip->chip_delay);
727                 return;
728
729         case NAND_CMD_RESET:
730                 if (chip->dev_ready)
731                         break;
732                 udelay(chip->chip_delay);
733                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
734                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736                                NAND_NCE | NAND_CTRL_CHANGE);
737                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
738                                 ;
739                 return;
740
741         case NAND_CMD_RNDOUT:
742                 /* No ready / busy check necessary */
743                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
744                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
745                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
746                                NAND_NCE | NAND_CTRL_CHANGE);
747                 return;
748
749         case NAND_CMD_READ0:
750                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
751                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753                                NAND_NCE | NAND_CTRL_CHANGE);
754
755                 /* This applies to read commands */
756         default:
757                 /*
758                  * If we don't have access to the busy pin, we apply the given
759                  * command delay.
760                  */
761                 if (!chip->dev_ready) {
762                         udelay(chip->chip_delay);
763                         return;
764                 }
765         }
766
767         /*
768          * Apply this short delay always to ensure that we do wait tWB in
769          * any case on any machine.
770          */
771         ndelay(100);
772
773         nand_wait_ready(mtd);
774 }
775
776 /**
777  * panic_nand_get_device - [GENERIC] Get chip for selected access
778  * @chip: the nand chip descriptor
779  * @mtd: MTD device structure
780  * @new_state: the state which is requested
781  *
782  * Used when in panic, no locks are taken.
783  */
784 static void panic_nand_get_device(struct nand_chip *chip,
785                       struct mtd_info *mtd, int new_state)
786 {
787         /* Hardware controller shared among independent devices */
788         chip->controller->active = chip;
789         chip->state = new_state;
790 }
791
792 /**
793  * nand_get_device - [GENERIC] Get chip for selected access
794  * @chip: the nand chip descriptor
795  * @mtd: MTD device structure
796  * @new_state: the state which is requested
797  *
798  * Get the device and lock it for exclusive access
799  */
800 static int
801 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
802 {
803         spinlock_t *lock = &chip->controller->lock;
804         wait_queue_head_t *wq = &chip->controller->wq;
805         DECLARE_WAITQUEUE(wait, current);
806 retry:
807         spin_lock(lock);
808
809         /* Hardware controller shared among independent devices */
810         if (!chip->controller->active)
811                 chip->controller->active = chip;
812
813         if (chip->controller->active == chip && chip->state == FL_READY) {
814                 chip->state = new_state;
815                 spin_unlock(lock);
816                 return 0;
817         }
818         if (new_state == FL_PM_SUSPENDED) {
819                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
820                         chip->state = FL_PM_SUSPENDED;
821                         spin_unlock(lock);
822                         return 0;
823                 }
824         }
825         set_current_state(TASK_UNINTERRUPTIBLE);
826         add_wait_queue(wq, &wait);
827         spin_unlock(lock);
828         schedule();
829         remove_wait_queue(wq, &wait);
830         goto retry;
831 }
832
833 /**
834  * panic_nand_wait - [GENERIC] wait until the command is done
835  * @mtd: MTD device structure
836  * @chip: NAND chip structure
837  * @timeo: timeout
838  *
839  * Wait for command done. This is a helper function for nand_wait used when
840  * we are in interrupt context. May happen when in panic and trying to write
841  * an oops through mtdoops.
842  */
843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
844                             unsigned long timeo)
845 {
846         int i;
847         for (i = 0; i < timeo; i++) {
848                 if (chip->dev_ready) {
849                         if (chip->dev_ready(mtd))
850                                 break;
851                 } else {
852                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
853                                 break;
854                 }
855                 mdelay(1);
856         }
857 }
858
859 /**
860  * nand_wait - [DEFAULT] wait until the command is done
861  * @mtd: MTD device structure
862  * @chip: NAND chip structure
863  *
864  * Wait for command done. This applies to erase and program only. Erase can
865  * take up to 400ms and program up to 20ms according to general NAND and
866  * SmartMedia specs.
867  */
868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869 {
870
871         unsigned long timeo = jiffies;
872         int status, state = chip->state;
873
874         if (state == FL_ERASING)
875                 timeo += (HZ * 400) / 1000;
876         else
877                 timeo += (HZ * 20) / 1000;
878
879         led_trigger_event(nand_led_trigger, LED_FULL);
880
881         /*
882          * Apply this short delay always to ensure that we do wait tWB in any
883          * case on any machine.
884          */
885         ndelay(100);
886
887         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
888                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
889         else
890                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
891
892         if (in_interrupt() || oops_in_progress)
893                 panic_nand_wait(mtd, chip, timeo);
894         else {
895                 while (time_before(jiffies, timeo)) {
896                         if (chip->dev_ready) {
897                                 if (chip->dev_ready(mtd))
898                                         break;
899                         } else {
900                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
901                                         break;
902                         }
903                         cond_resched();
904                 }
905         }
906         led_trigger_event(nand_led_trigger, LED_OFF);
907
908         status = (int)chip->read_byte(mtd);
909         return status;
910 }
911
912 /**
913  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
914  * @mtd: mtd info
915  * @ofs: offset to start unlock from
916  * @len: length to unlock
917  * @invert: when = 0, unlock the range of blocks within the lower and
918  *                    upper boundary address
919  *          when = 1, unlock the range of blocks outside the boundaries
920  *                    of the lower and upper boundary address
921  *
922  * Returs unlock status.
923  */
924 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
925                                         uint64_t len, int invert)
926 {
927         int ret = 0;
928         int status, page;
929         struct nand_chip *chip = mtd->priv;
930
931         /* Submit address of first page to unlock */
932         page = ofs >> chip->page_shift;
933         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
934
935         /* Submit address of last page to unlock */
936         page = (ofs + len) >> chip->page_shift;
937         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
938                                 (page | invert) & chip->pagemask);
939
940         /* Call wait ready function */
941         status = chip->waitfunc(mtd, chip);
942         /* See if device thinks it succeeded */
943         if (status & 0x01) {
944                 pr_debug("%s: error status = 0x%08x\n",
945                                         __func__, status);
946                 ret = -EIO;
947         }
948
949         return ret;
950 }
951
952 /**
953  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
954  * @mtd: mtd info
955  * @ofs: offset to start unlock from
956  * @len: length to unlock
957  *
958  * Returns unlock status.
959  */
960 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
961 {
962         int ret = 0;
963         int chipnr;
964         struct nand_chip *chip = mtd->priv;
965
966         pr_debug("%s: start = 0x%012llx, len = %llu\n",
967                         __func__, (unsigned long long)ofs, len);
968
969         if (check_offs_len(mtd, ofs, len))
970                 ret = -EINVAL;
971
972         /* Align to last block address if size addresses end of the device */
973         if (ofs + len == mtd->size)
974                 len -= mtd->erasesize;
975
976         nand_get_device(chip, mtd, FL_UNLOCKING);
977
978         /* Shift to get chip number */
979         chipnr = ofs >> chip->chip_shift;
980
981         chip->select_chip(mtd, chipnr);
982
983         /* Check, if it is write protected */
984         if (nand_check_wp(mtd)) {
985                 pr_debug("%s: device is write protected!\n",
986                                         __func__);
987                 ret = -EIO;
988                 goto out;
989         }
990
991         ret = __nand_unlock(mtd, ofs, len, 0);
992
993 out:
994         nand_release_device(mtd);
995
996         return ret;
997 }
998 EXPORT_SYMBOL(nand_unlock);
999
1000 /**
1001  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1002  * @mtd: mtd info
1003  * @ofs: offset to start unlock from
1004  * @len: length to unlock
1005  *
1006  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1007  * have this feature, but it allows only to lock all blocks, not for specified
1008  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1009  * now.
1010  *
1011  * Returns lock status.
1012  */
1013 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1014 {
1015         int ret = 0;
1016         int chipnr, status, page;
1017         struct nand_chip *chip = mtd->priv;
1018
1019         pr_debug("%s: start = 0x%012llx, len = %llu\n",
1020                         __func__, (unsigned long long)ofs, len);
1021
1022         if (check_offs_len(mtd, ofs, len))
1023                 ret = -EINVAL;
1024
1025         nand_get_device(chip, mtd, FL_LOCKING);
1026
1027         /* Shift to get chip number */
1028         chipnr = ofs >> chip->chip_shift;
1029
1030         chip->select_chip(mtd, chipnr);
1031
1032         /* Check, if it is write protected */
1033         if (nand_check_wp(mtd)) {
1034                 pr_debug("%s: device is write protected!\n",
1035                                         __func__);
1036                 status = MTD_ERASE_FAILED;
1037                 ret = -EIO;
1038                 goto out;
1039         }
1040
1041         /* Submit address of first page to lock */
1042         page = ofs >> chip->page_shift;
1043         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1044
1045         /* Call wait ready function */
1046         status = chip->waitfunc(mtd, chip);
1047         /* See if device thinks it succeeded */
1048         if (status & 0x01) {
1049                 pr_debug("%s: error status = 0x%08x\n",
1050                                         __func__, status);
1051                 ret = -EIO;
1052                 goto out;
1053         }
1054
1055         ret = __nand_unlock(mtd, ofs, len, 0x1);
1056
1057 out:
1058         nand_release_device(mtd);
1059
1060         return ret;
1061 }
1062 EXPORT_SYMBOL(nand_lock);
1063
1064 /**
1065  * nand_read_page_raw - [INTERN] read raw page data without ecc
1066  * @mtd: mtd info structure
1067  * @chip: nand chip info structure
1068  * @buf: buffer to store read data
1069  * @oob_required: caller requires OOB data read to chip->oob_poi
1070  * @page: page number to read
1071  *
1072  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1073  */
1074 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1075                               uint8_t *buf, int oob_required, int page)
1076 {
1077         chip->read_buf(mtd, buf, mtd->writesize);
1078         if (oob_required)
1079                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1080         return 0;
1081 }
1082
1083 /**
1084  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1085  * @mtd: mtd info structure
1086  * @chip: nand chip info structure
1087  * @buf: buffer to store read data
1088  * @oob_required: caller requires OOB data read to chip->oob_poi
1089  * @page: page number to read
1090  *
1091  * We need a special oob layout and handling even when OOB isn't used.
1092  */
1093 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1094                                        struct nand_chip *chip, uint8_t *buf,
1095                                        int oob_required, int page)
1096 {
1097         int eccsize = chip->ecc.size;
1098         int eccbytes = chip->ecc.bytes;
1099         uint8_t *oob = chip->oob_poi;
1100         int steps, size;
1101
1102         for (steps = chip->ecc.steps; steps > 0; steps--) {
1103                 chip->read_buf(mtd, buf, eccsize);
1104                 buf += eccsize;
1105
1106                 if (chip->ecc.prepad) {
1107                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1108                         oob += chip->ecc.prepad;
1109                 }
1110
1111                 chip->read_buf(mtd, oob, eccbytes);
1112                 oob += eccbytes;
1113
1114                 if (chip->ecc.postpad) {
1115                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1116                         oob += chip->ecc.postpad;
1117                 }
1118         }
1119
1120         size = mtd->oobsize - (oob - chip->oob_poi);
1121         if (size)
1122                 chip->read_buf(mtd, oob, size);
1123
1124         return 0;
1125 }
1126
1127 /**
1128  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1129  * @mtd: mtd info structure
1130  * @chip: nand chip info structure
1131  * @buf: buffer to store read data
1132  * @oob_required: caller requires OOB data read to chip->oob_poi
1133  * @page: page number to read
1134  */
1135 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1136                                 uint8_t *buf, int oob_required, int page)
1137 {
1138         int i, eccsize = chip->ecc.size;
1139         int eccbytes = chip->ecc.bytes;
1140         int eccsteps = chip->ecc.steps;
1141         uint8_t *p = buf;
1142         uint8_t *ecc_calc = chip->buffers->ecccalc;
1143         uint8_t *ecc_code = chip->buffers->ecccode;
1144         uint32_t *eccpos = chip->ecc.layout->eccpos;
1145         unsigned int max_bitflips = 0;
1146
1147         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1148
1149         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1150                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1151
1152         for (i = 0; i < chip->ecc.total; i++)
1153                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1154
1155         eccsteps = chip->ecc.steps;
1156         p = buf;
1157
1158         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1159                 int stat;
1160
1161                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1162                 if (stat < 0) {
1163                         mtd->ecc_stats.failed++;
1164                 } else {
1165                         mtd->ecc_stats.corrected += stat;
1166                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1167                 }
1168         }
1169         return max_bitflips;
1170 }
1171
1172 /**
1173  * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1174  * @mtd: mtd info structure
1175  * @chip: nand chip info structure
1176  * @data_offs: offset of requested data within the page
1177  * @readlen: data length
1178  * @bufpoi: buffer to store read data
1179  */
1180 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1181                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1182 {
1183         int start_step, end_step, num_steps;
1184         uint32_t *eccpos = chip->ecc.layout->eccpos;
1185         uint8_t *p;
1186         int data_col_addr, i, gaps = 0;
1187         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1188         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1189         int index = 0;
1190         unsigned int max_bitflips = 0;
1191
1192         /* Column address within the page aligned to ECC size (256bytes) */
1193         start_step = data_offs / chip->ecc.size;
1194         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1195         num_steps = end_step - start_step + 1;
1196
1197         /* Data size aligned to ECC ecc.size */
1198         datafrag_len = num_steps * chip->ecc.size;
1199         eccfrag_len = num_steps * chip->ecc.bytes;
1200
1201         data_col_addr = start_step * chip->ecc.size;
1202         /* If we read not a page aligned data */
1203         if (data_col_addr != 0)
1204                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1205
1206         p = bufpoi + data_col_addr;
1207         chip->read_buf(mtd, p, datafrag_len);
1208
1209         /* Calculate ECC */
1210         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1211                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1212
1213         /*
1214          * The performance is faster if we position offsets according to
1215          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1216          */
1217         for (i = 0; i < eccfrag_len - 1; i++) {
1218                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1219                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1220                         gaps = 1;
1221                         break;
1222                 }
1223         }
1224         if (gaps) {
1225                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1226                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1227         } else {
1228                 /*
1229                  * Send the command to read the particular ECC bytes take care
1230                  * about buswidth alignment in read_buf.
1231                  */
1232                 index = start_step * chip->ecc.bytes;
1233
1234                 aligned_pos = eccpos[index] & ~(busw - 1);
1235                 aligned_len = eccfrag_len;
1236                 if (eccpos[index] & (busw - 1))
1237                         aligned_len++;
1238                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1239                         aligned_len++;
1240
1241                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1242                                         mtd->writesize + aligned_pos, -1);
1243                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1244         }
1245
1246         for (i = 0; i < eccfrag_len; i++)
1247                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1248
1249         p = bufpoi + data_col_addr;
1250         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1251                 int stat;
1252
1253                 stat = chip->ecc.correct(mtd, p,
1254                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1255                 if (stat < 0) {
1256                         mtd->ecc_stats.failed++;
1257                 } else {
1258                         mtd->ecc_stats.corrected += stat;
1259                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1260                 }
1261         }
1262         return max_bitflips;
1263 }
1264
1265 /**
1266  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1267  * @mtd: mtd info structure
1268  * @chip: nand chip info structure
1269  * @buf: buffer to store read data
1270  * @oob_required: caller requires OOB data read to chip->oob_poi
1271  * @page: page number to read
1272  *
1273  * Not for syndrome calculating ECC controllers which need a special oob layout.
1274  */
1275 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1276                                 uint8_t *buf, int oob_required, int page)
1277 {
1278         int i, eccsize = chip->ecc.size;
1279         int eccbytes = chip->ecc.bytes;
1280         int eccsteps = chip->ecc.steps;
1281         uint8_t *p = buf;
1282         uint8_t *ecc_calc = chip->buffers->ecccalc;
1283         uint8_t *ecc_code = chip->buffers->ecccode;
1284         uint32_t *eccpos = chip->ecc.layout->eccpos;
1285         unsigned int max_bitflips = 0;
1286
1287         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1288                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1289                 chip->read_buf(mtd, p, eccsize);
1290                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1291         }
1292         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1293
1294         for (i = 0; i < chip->ecc.total; i++)
1295                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1296
1297         eccsteps = chip->ecc.steps;
1298         p = buf;
1299
1300         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1301                 int stat;
1302
1303                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1304                 if (stat < 0) {
1305                         mtd->ecc_stats.failed++;
1306                 } else {
1307                         mtd->ecc_stats.corrected += stat;
1308                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1309                 }
1310         }
1311         return max_bitflips;
1312 }
1313
1314 /**
1315  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1316  * @mtd: mtd info structure
1317  * @chip: nand chip info structure
1318  * @buf: buffer to store read data
1319  * @oob_required: caller requires OOB data read to chip->oob_poi
1320  * @page: page number to read
1321  *
1322  * Hardware ECC for large page chips, require OOB to be read first. For this
1323  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1324  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1325  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1326  * the data area, by overwriting the NAND manufacturer bad block markings.
1327  */
1328 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1329         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1330 {
1331         int i, eccsize = chip->ecc.size;
1332         int eccbytes = chip->ecc.bytes;
1333         int eccsteps = chip->ecc.steps;
1334         uint8_t *p = buf;
1335         uint8_t *ecc_code = chip->buffers->ecccode;
1336         uint32_t *eccpos = chip->ecc.layout->eccpos;
1337         uint8_t *ecc_calc = chip->buffers->ecccalc;
1338         unsigned int max_bitflips = 0;
1339
1340         /* Read the OOB area first */
1341         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1342         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1343         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1344
1345         for (i = 0; i < chip->ecc.total; i++)
1346                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1347
1348         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1349                 int stat;
1350
1351                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1352                 chip->read_buf(mtd, p, eccsize);
1353                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1354
1355                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1356                 if (stat < 0) {
1357                         mtd->ecc_stats.failed++;
1358                 } else {
1359                         mtd->ecc_stats.corrected += stat;
1360                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1361                 }
1362         }
1363         return max_bitflips;
1364 }
1365
1366 /**
1367  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1368  * @mtd: mtd info structure
1369  * @chip: nand chip info structure
1370  * @buf: buffer to store read data
1371  * @oob_required: caller requires OOB data read to chip->oob_poi
1372  * @page: page number to read
1373  *
1374  * The hw generator calculates the error syndrome automatically. Therefore we
1375  * need a special oob layout and handling.
1376  */
1377 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1378                                    uint8_t *buf, int oob_required, int page)
1379 {
1380         int i, eccsize = chip->ecc.size;
1381         int eccbytes = chip->ecc.bytes;
1382         int eccsteps = chip->ecc.steps;
1383         uint8_t *p = buf;
1384         uint8_t *oob = chip->oob_poi;
1385         unsigned int max_bitflips = 0;
1386
1387         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1388                 int stat;
1389
1390                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1391                 chip->read_buf(mtd, p, eccsize);
1392
1393                 if (chip->ecc.prepad) {
1394                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1395                         oob += chip->ecc.prepad;
1396                 }
1397
1398                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1399                 chip->read_buf(mtd, oob, eccbytes);
1400                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1401
1402                 if (stat < 0) {
1403                         mtd->ecc_stats.failed++;
1404                 } else {
1405                         mtd->ecc_stats.corrected += stat;
1406                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1407                 }
1408
1409                 oob += eccbytes;
1410
1411                 if (chip->ecc.postpad) {
1412                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1413                         oob += chip->ecc.postpad;
1414                 }
1415         }
1416
1417         /* Calculate remaining oob bytes */
1418         i = mtd->oobsize - (oob - chip->oob_poi);
1419         if (i)
1420                 chip->read_buf(mtd, oob, i);
1421
1422         return max_bitflips;
1423 }
1424
1425 /**
1426  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1427  * @chip: nand chip structure
1428  * @oob: oob destination address
1429  * @ops: oob ops structure
1430  * @len: size of oob to transfer
1431  */
1432 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1433                                   struct mtd_oob_ops *ops, size_t len)
1434 {
1435         switch (ops->mode) {
1436
1437         case MTD_OPS_PLACE_OOB:
1438         case MTD_OPS_RAW:
1439                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1440                 return oob + len;
1441
1442         case MTD_OPS_AUTO_OOB: {
1443                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1444                 uint32_t boffs = 0, roffs = ops->ooboffs;
1445                 size_t bytes = 0;
1446
1447                 for (; free->length && len; free++, len -= bytes) {
1448                         /* Read request not from offset 0? */
1449                         if (unlikely(roffs)) {
1450                                 if (roffs >= free->length) {
1451                                         roffs -= free->length;
1452                                         continue;
1453                                 }
1454                                 boffs = free->offset + roffs;
1455                                 bytes = min_t(size_t, len,
1456                                               (free->length - roffs));
1457                                 roffs = 0;
1458                         } else {
1459                                 bytes = min_t(size_t, len, free->length);
1460                                 boffs = free->offset;
1461                         }
1462                         memcpy(oob, chip->oob_poi + boffs, bytes);
1463                         oob += bytes;
1464                 }
1465                 return oob;
1466         }
1467         default:
1468                 BUG();
1469         }
1470         return NULL;
1471 }
1472
1473 /**
1474  * nand_do_read_ops - [INTERN] Read data with ECC
1475  * @mtd: MTD device structure
1476  * @from: offset to read from
1477  * @ops: oob ops structure
1478  *
1479  * Internal function. Called with chip held.
1480  */
1481 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1482                             struct mtd_oob_ops *ops)
1483 {
1484         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1485         struct nand_chip *chip = mtd->priv;
1486         struct mtd_ecc_stats stats;
1487         int ret = 0;
1488         uint32_t readlen = ops->len;
1489         uint32_t oobreadlen = ops->ooblen;
1490         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1491                 mtd->oobavail : mtd->oobsize;
1492
1493         uint8_t *bufpoi, *oob, *buf;
1494         unsigned int max_bitflips = 0;
1495
1496         stats = mtd->ecc_stats;
1497
1498         chipnr = (int)(from >> chip->chip_shift);
1499         chip->select_chip(mtd, chipnr);
1500
1501         realpage = (int)(from >> chip->page_shift);
1502         page = realpage & chip->pagemask;
1503
1504         col = (int)(from & (mtd->writesize - 1));
1505
1506         buf = ops->datbuf;
1507         oob = ops->oobbuf;
1508         oob_required = oob ? 1 : 0;
1509
1510         while (1) {
1511                 bytes = min(mtd->writesize - col, readlen);
1512                 aligned = (bytes == mtd->writesize);
1513
1514                 /* Is the current page in the buffer? */
1515                 if (realpage != chip->pagebuf || oob) {
1516                         bufpoi = aligned ? buf : chip->buffers->databuf;
1517
1518                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1519
1520                         /*
1521                          * Now read the page into the buffer.  Absent an error,
1522                          * the read methods return max bitflips per ecc step.
1523                          */
1524                         if (unlikely(ops->mode == MTD_OPS_RAW))
1525                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1526                                                               oob_required,
1527                                                               page);
1528                         else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1529                                 ret = chip->ecc.read_subpage(mtd, chip,
1530                                                         col, bytes, bufpoi);
1531                         else
1532                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1533                                                           oob_required, page);
1534                         if (ret < 0) {
1535                                 if (!aligned)
1536                                         /* Invalidate page cache */
1537                                         chip->pagebuf = -1;
1538                                 break;
1539                         }
1540
1541                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1542
1543                         /* Transfer not aligned data */
1544                         if (!aligned) {
1545                                 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1546                                     !(mtd->ecc_stats.failed - stats.failed) &&
1547                                     (ops->mode != MTD_OPS_RAW)) {
1548                                         chip->pagebuf = realpage;
1549                                         chip->pagebuf_bitflips = ret;
1550                                 } else {
1551                                         /* Invalidate page cache */
1552                                         chip->pagebuf = -1;
1553                                 }
1554                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1555                         }
1556
1557                         buf += bytes;
1558
1559                         if (unlikely(oob)) {
1560                                 int toread = min(oobreadlen, max_oobsize);
1561
1562                                 if (toread) {
1563                                         oob = nand_transfer_oob(chip,
1564                                                 oob, ops, toread);
1565                                         oobreadlen -= toread;
1566                                 }
1567                         }
1568
1569                         if (!(chip->options & NAND_NO_READRDY)) {
1570                                 /* Apply delay or wait for ready/busy pin */
1571                                 if (!chip->dev_ready)
1572                                         udelay(chip->chip_delay);
1573                                 else
1574                                         nand_wait_ready(mtd);
1575                         }
1576                 } else {
1577                         memcpy(buf, chip->buffers->databuf + col, bytes);
1578                         buf += bytes;
1579                         max_bitflips = max_t(unsigned int, max_bitflips,
1580                                              chip->pagebuf_bitflips);
1581                 }
1582
1583                 readlen -= bytes;
1584
1585                 if (!readlen)
1586                         break;
1587
1588                 /* For subsequent reads align to page boundary */
1589                 col = 0;
1590                 /* Increment page address */
1591                 realpage++;
1592
1593                 page = realpage & chip->pagemask;
1594                 /* Check, if we cross a chip boundary */
1595                 if (!page) {
1596                         chipnr++;
1597                         chip->select_chip(mtd, -1);
1598                         chip->select_chip(mtd, chipnr);
1599                 }
1600         }
1601
1602         ops->retlen = ops->len - (size_t) readlen;
1603         if (oob)
1604                 ops->oobretlen = ops->ooblen - oobreadlen;
1605
1606         if (ret < 0)
1607                 return ret;
1608
1609         if (mtd->ecc_stats.failed - stats.failed)
1610                 return -EBADMSG;
1611
1612         return max_bitflips;
1613 }
1614
1615 /**
1616  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1617  * @mtd: MTD device structure
1618  * @from: offset to read from
1619  * @len: number of bytes to read
1620  * @retlen: pointer to variable to store the number of read bytes
1621  * @buf: the databuffer to put data
1622  *
1623  * Get hold of the chip and call nand_do_read.
1624  */
1625 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1626                      size_t *retlen, uint8_t *buf)
1627 {
1628         struct nand_chip *chip = mtd->priv;
1629         struct mtd_oob_ops ops;
1630         int ret;
1631
1632         nand_get_device(chip, mtd, FL_READING);
1633         ops.len = len;
1634         ops.datbuf = buf;
1635         ops.oobbuf = NULL;
1636         ops.mode = 0;
1637         ret = nand_do_read_ops(mtd, from, &ops);
1638         *retlen = ops.retlen;
1639         nand_release_device(mtd);
1640         return ret;
1641 }
1642
1643 /**
1644  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1645  * @mtd: mtd info structure
1646  * @chip: nand chip info structure
1647  * @page: page number to read
1648  */
1649 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1650                              int page)
1651 {
1652         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1653         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1654         return 0;
1655 }
1656
1657 /**
1658  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1659  *                          with syndromes
1660  * @mtd: mtd info structure
1661  * @chip: nand chip info structure
1662  * @page: page number to read
1663  */
1664 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1665                                   int page)
1666 {
1667         uint8_t *buf = chip->oob_poi;
1668         int length = mtd->oobsize;
1669         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1670         int eccsize = chip->ecc.size;
1671         uint8_t *bufpoi = buf;
1672         int i, toread, sndrnd = 0, pos;
1673
1674         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1675         for (i = 0; i < chip->ecc.steps; i++) {
1676                 if (sndrnd) {
1677                         pos = eccsize + i * (eccsize + chunk);
1678                         if (mtd->writesize > 512)
1679                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1680                         else
1681                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1682                 } else
1683                         sndrnd = 1;
1684                 toread = min_t(int, length, chunk);
1685                 chip->read_buf(mtd, bufpoi, toread);
1686                 bufpoi += toread;
1687                 length -= toread;
1688         }
1689         if (length > 0)
1690                 chip->read_buf(mtd, bufpoi, length);
1691
1692         return 0;
1693 }
1694
1695 /**
1696  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1697  * @mtd: mtd info structure
1698  * @chip: nand chip info structure
1699  * @page: page number to write
1700  */
1701 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1702                               int page)
1703 {
1704         int status = 0;
1705         const uint8_t *buf = chip->oob_poi;
1706         int length = mtd->oobsize;
1707
1708         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1709         chip->write_buf(mtd, buf, length);
1710         /* Send command to program the OOB data */
1711         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1712
1713         status = chip->waitfunc(mtd, chip);
1714
1715         return status & NAND_STATUS_FAIL ? -EIO : 0;
1716 }
1717
1718 /**
1719  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1720  *                           with syndrome - only for large page flash
1721  * @mtd: mtd info structure
1722  * @chip: nand chip info structure
1723  * @page: page number to write
1724  */
1725 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1726                                    struct nand_chip *chip, int page)
1727 {
1728         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1729         int eccsize = chip->ecc.size, length = mtd->oobsize;
1730         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1731         const uint8_t *bufpoi = chip->oob_poi;
1732
1733         /*
1734          * data-ecc-data-ecc ... ecc-oob
1735          * or
1736          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1737          */
1738         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1739                 pos = steps * (eccsize + chunk);
1740                 steps = 0;
1741         } else
1742                 pos = eccsize;
1743
1744         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1745         for (i = 0; i < steps; i++) {
1746                 if (sndcmd) {
1747                         if (mtd->writesize <= 512) {
1748                                 uint32_t fill = 0xFFFFFFFF;
1749
1750                                 len = eccsize;
1751                                 while (len > 0) {
1752                                         int num = min_t(int, len, 4);
1753                                         chip->write_buf(mtd, (uint8_t *)&fill,
1754                                                         num);
1755                                         len -= num;
1756                                 }
1757                         } else {
1758                                 pos = eccsize + i * (eccsize + chunk);
1759                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1760                         }
1761                 } else
1762                         sndcmd = 1;
1763                 len = min_t(int, length, chunk);
1764                 chip->write_buf(mtd, bufpoi, len);
1765                 bufpoi += len;
1766                 length -= len;
1767         }
1768         if (length > 0)
1769                 chip->write_buf(mtd, bufpoi, length);
1770
1771         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1772         status = chip->waitfunc(mtd, chip);
1773
1774         return status & NAND_STATUS_FAIL ? -EIO : 0;
1775 }
1776
1777 /**
1778  * nand_do_read_oob - [INTERN] NAND read out-of-band
1779  * @mtd: MTD device structure
1780  * @from: offset to read from
1781  * @ops: oob operations description structure
1782  *
1783  * NAND read out-of-band data from the spare area.
1784  */
1785 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1786                             struct mtd_oob_ops *ops)
1787 {
1788         int page, realpage, chipnr;
1789         struct nand_chip *chip = mtd->priv;
1790         struct mtd_ecc_stats stats;
1791         int readlen = ops->ooblen;
1792         int len;
1793         uint8_t *buf = ops->oobbuf;
1794         int ret = 0;
1795
1796         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1797                         __func__, (unsigned long long)from, readlen);
1798
1799         stats = mtd->ecc_stats;
1800
1801         if (ops->mode == MTD_OPS_AUTO_OOB)
1802                 len = chip->ecc.layout->oobavail;
1803         else
1804                 len = mtd->oobsize;
1805
1806         if (unlikely(ops->ooboffs >= len)) {
1807                 pr_debug("%s: attempt to start read outside oob\n",
1808                                 __func__);
1809                 return -EINVAL;
1810         }
1811
1812         /* Do not allow reads past end of device */
1813         if (unlikely(from >= mtd->size ||
1814                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1815                                         (from >> chip->page_shift)) * len)) {
1816                 pr_debug("%s: attempt to read beyond end of device\n",
1817                                 __func__);
1818                 return -EINVAL;
1819         }
1820
1821         chipnr = (int)(from >> chip->chip_shift);
1822         chip->select_chip(mtd, chipnr);
1823
1824         /* Shift to get page */
1825         realpage = (int)(from >> chip->page_shift);
1826         page = realpage & chip->pagemask;
1827
1828         while (1) {
1829                 if (ops->mode == MTD_OPS_RAW)
1830                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1831                 else
1832                         ret = chip->ecc.read_oob(mtd, chip, page);
1833
1834                 if (ret < 0)
1835                         break;
1836
1837                 len = min(len, readlen);
1838                 buf = nand_transfer_oob(chip, buf, ops, len);
1839
1840                 if (!(chip->options & NAND_NO_READRDY)) {
1841                         /* Apply delay or wait for ready/busy pin */
1842                         if (!chip->dev_ready)
1843                                 udelay(chip->chip_delay);
1844                         else
1845                                 nand_wait_ready(mtd);
1846                 }
1847
1848                 readlen -= len;
1849                 if (!readlen)
1850                         break;
1851
1852                 /* Increment page address */
1853                 realpage++;
1854
1855                 page = realpage & chip->pagemask;
1856                 /* Check, if we cross a chip boundary */
1857                 if (!page) {
1858                         chipnr++;
1859                         chip->select_chip(mtd, -1);
1860                         chip->select_chip(mtd, chipnr);
1861                 }
1862         }
1863
1864         ops->oobretlen = ops->ooblen - readlen;
1865
1866         if (ret < 0)
1867                 return ret;
1868
1869         if (mtd->ecc_stats.failed - stats.failed)
1870                 return -EBADMSG;
1871
1872         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1873 }
1874
1875 /**
1876  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1877  * @mtd: MTD device structure
1878  * @from: offset to read from
1879  * @ops: oob operation description structure
1880  *
1881  * NAND read data and/or out-of-band data.
1882  */
1883 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1884                          struct mtd_oob_ops *ops)
1885 {
1886         struct nand_chip *chip = mtd->priv;
1887         int ret = -ENOTSUPP;
1888
1889         ops->retlen = 0;
1890
1891         /* Do not allow reads past end of device */
1892         if (ops->datbuf && (from + ops->len) > mtd->size) {
1893                 pr_debug("%s: attempt to read beyond end of device\n",
1894                                 __func__);
1895                 return -EINVAL;
1896         }
1897
1898         nand_get_device(chip, mtd, FL_READING);
1899
1900         switch (ops->mode) {
1901         case MTD_OPS_PLACE_OOB:
1902         case MTD_OPS_AUTO_OOB:
1903         case MTD_OPS_RAW:
1904                 break;
1905
1906         default:
1907                 goto out;
1908         }
1909
1910         if (!ops->datbuf)
1911                 ret = nand_do_read_oob(mtd, from, ops);
1912         else
1913                 ret = nand_do_read_ops(mtd, from, ops);
1914
1915 out:
1916         nand_release_device(mtd);
1917         return ret;
1918 }
1919
1920
1921 /**
1922  * nand_write_page_raw - [INTERN] raw page write function
1923  * @mtd: mtd info structure
1924  * @chip: nand chip info structure
1925  * @buf: data buffer
1926  * @oob_required: must write chip->oob_poi to OOB
1927  *
1928  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1929  */
1930 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1931                                 const uint8_t *buf, int oob_required)
1932 {
1933         chip->write_buf(mtd, buf, mtd->writesize);
1934         if (oob_required)
1935                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1936 }
1937
1938 /**
1939  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1940  * @mtd: mtd info structure
1941  * @chip: nand chip info structure
1942  * @buf: data buffer
1943  * @oob_required: must write chip->oob_poi to OOB
1944  *
1945  * We need a special oob layout and handling even when ECC isn't checked.
1946  */
1947 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1948                                         struct nand_chip *chip,
1949                                         const uint8_t *buf, int oob_required)
1950 {
1951         int eccsize = chip->ecc.size;
1952         int eccbytes = chip->ecc.bytes;
1953         uint8_t *oob = chip->oob_poi;
1954         int steps, size;
1955
1956         for (steps = chip->ecc.steps; steps > 0; steps--) {
1957                 chip->write_buf(mtd, buf, eccsize);
1958                 buf += eccsize;
1959
1960                 if (chip->ecc.prepad) {
1961                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1962                         oob += chip->ecc.prepad;
1963                 }
1964
1965                 chip->read_buf(mtd, oob, eccbytes);
1966                 oob += eccbytes;
1967
1968                 if (chip->ecc.postpad) {
1969                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1970                         oob += chip->ecc.postpad;
1971                 }
1972         }
1973
1974         size = mtd->oobsize - (oob - chip->oob_poi);
1975         if (size)
1976                 chip->write_buf(mtd, oob, size);
1977 }
1978 /**
1979  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1980  * @mtd: mtd info structure
1981  * @chip: nand chip info structure
1982  * @buf: data buffer
1983  * @oob_required: must write chip->oob_poi to OOB
1984  */
1985 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1986                                   const uint8_t *buf, int oob_required)
1987 {
1988         int i, eccsize = chip->ecc.size;
1989         int eccbytes = chip->ecc.bytes;
1990         int eccsteps = chip->ecc.steps;
1991         uint8_t *ecc_calc = chip->buffers->ecccalc;
1992         const uint8_t *p = buf;
1993         uint32_t *eccpos = chip->ecc.layout->eccpos;
1994
1995         /* Software ECC calculation */
1996         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1997                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1998
1999         for (i = 0; i < chip->ecc.total; i++)
2000                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2001
2002         chip->ecc.write_page_raw(mtd, chip, buf, 1);
2003 }
2004
2005 /**
2006  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2007  * @mtd: mtd info structure
2008  * @chip: nand chip info structure
2009  * @buf: data buffer
2010  * @oob_required: must write chip->oob_poi to OOB
2011  */
2012 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2013                                   const uint8_t *buf, int oob_required)
2014 {
2015         int i, eccsize = chip->ecc.size;
2016         int eccbytes = chip->ecc.bytes;
2017         int eccsteps = chip->ecc.steps;
2018         uint8_t *ecc_calc = chip->buffers->ecccalc;
2019         const uint8_t *p = buf;
2020         uint32_t *eccpos = chip->ecc.layout->eccpos;
2021
2022         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2023                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2024                 chip->write_buf(mtd, p, eccsize);
2025                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2026         }
2027
2028         for (i = 0; i < chip->ecc.total; i++)
2029                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2030
2031         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2032 }
2033
2034 /**
2035  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2036  * @mtd: mtd info structure
2037  * @chip: nand chip info structure
2038  * @buf: data buffer
2039  * @oob_required: must write chip->oob_poi to OOB
2040  *
2041  * The hw generator calculates the error syndrome automatically. Therefore we
2042  * need a special oob layout and handling.
2043  */
2044 static void nand_write_page_syndrome(struct mtd_info *mtd,
2045                                     struct nand_chip *chip,
2046                                     const uint8_t *buf, int oob_required)
2047 {
2048         int i, eccsize = chip->ecc.size;
2049         int eccbytes = chip->ecc.bytes;
2050         int eccsteps = chip->ecc.steps;
2051         const uint8_t *p = buf;
2052         uint8_t *oob = chip->oob_poi;
2053
2054         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2055
2056                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2057                 chip->write_buf(mtd, p, eccsize);
2058
2059                 if (chip->ecc.prepad) {
2060                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2061                         oob += chip->ecc.prepad;
2062                 }
2063
2064                 chip->ecc.calculate(mtd, p, oob);
2065                 chip->write_buf(mtd, oob, eccbytes);
2066                 oob += eccbytes;
2067
2068                 if (chip->ecc.postpad) {
2069                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2070                         oob += chip->ecc.postpad;
2071                 }
2072         }
2073
2074         /* Calculate remaining oob bytes */
2075         i = mtd->oobsize - (oob - chip->oob_poi);
2076         if (i)
2077                 chip->write_buf(mtd, oob, i);
2078 }
2079
2080 /**
2081  * nand_write_page - [REPLACEABLE] write one page
2082  * @mtd: MTD device structure
2083  * @chip: NAND chip descriptor
2084  * @buf: the data to write
2085  * @oob_required: must write chip->oob_poi to OOB
2086  * @page: page number to write
2087  * @cached: cached programming
2088  * @raw: use _raw version of write_page
2089  */
2090 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2091                            const uint8_t *buf, int oob_required, int page,
2092                            int cached, int raw)
2093 {
2094         int status;
2095
2096         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2097
2098         if (unlikely(raw))
2099                 chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2100         else
2101                 chip->ecc.write_page(mtd, chip, buf, oob_required);
2102
2103         /*
2104          * Cached progamming disabled for now. Not sure if it's worth the
2105          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2106          */
2107         cached = 0;
2108
2109         if (!cached || !(chip->options & NAND_CACHEPRG)) {
2110
2111                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2112                 status = chip->waitfunc(mtd, chip);
2113                 /*
2114                  * See if operation failed and additional status checks are
2115                  * available.
2116                  */
2117                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2118                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2119                                                page);
2120
2121                 if (status & NAND_STATUS_FAIL)
2122                         return -EIO;
2123         } else {
2124                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2125                 status = chip->waitfunc(mtd, chip);
2126         }
2127
2128 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2129         /* Send command to read back the data */
2130         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2131
2132         if (chip->verify_buf(mtd, buf, mtd->writesize))
2133                 return -EIO;
2134
2135         /* Make sure the next page prog is preceded by a status read */
2136         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
2137 #endif
2138         return 0;
2139 }
2140
2141 /**
2142  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2143  * @mtd: MTD device structure
2144  * @oob: oob data buffer
2145  * @len: oob data write length
2146  * @ops: oob ops structure
2147  */
2148 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2149                               struct mtd_oob_ops *ops)
2150 {
2151         struct nand_chip *chip = mtd->priv;
2152
2153         /*
2154          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2155          * data from a previous OOB read.
2156          */
2157         memset(chip->oob_poi, 0xff, mtd->oobsize);
2158
2159         switch (ops->mode) {
2160
2161         case MTD_OPS_PLACE_OOB:
2162         case MTD_OPS_RAW:
2163                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2164                 return oob + len;
2165
2166         case MTD_OPS_AUTO_OOB: {
2167                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2168                 uint32_t boffs = 0, woffs = ops->ooboffs;
2169                 size_t bytes = 0;
2170
2171                 for (; free->length && len; free++, len -= bytes) {
2172                         /* Write request not from offset 0? */
2173                         if (unlikely(woffs)) {
2174                                 if (woffs >= free->length) {
2175                                         woffs -= free->length;
2176                                         continue;
2177                                 }
2178                                 boffs = free->offset + woffs;
2179                                 bytes = min_t(size_t, len,
2180                                               (free->length - woffs));
2181                                 woffs = 0;
2182                         } else {
2183                                 bytes = min_t(size_t, len, free->length);
2184                                 boffs = free->offset;
2185                         }
2186                         memcpy(chip->oob_poi + boffs, oob, bytes);
2187                         oob += bytes;
2188                 }
2189                 return oob;
2190         }
2191         default:
2192                 BUG();
2193         }
2194         return NULL;
2195 }
2196
2197 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2198
2199 /**
2200  * nand_do_write_ops - [INTERN] NAND write with ECC
2201  * @mtd: MTD device structure
2202  * @to: offset to write to
2203  * @ops: oob operations description structure
2204  *
2205  * NAND write with ECC.
2206  */
2207 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2208                              struct mtd_oob_ops *ops)
2209 {
2210         int chipnr, realpage, page, blockmask, column;
2211         struct nand_chip *chip = mtd->priv;
2212         uint32_t writelen = ops->len;
2213
2214         uint32_t oobwritelen = ops->ooblen;
2215         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2216                                 mtd->oobavail : mtd->oobsize;
2217
2218         uint8_t *oob = ops->oobbuf;
2219         uint8_t *buf = ops->datbuf;
2220         int ret, subpage;
2221         int oob_required = oob ? 1 : 0;
2222
2223         ops->retlen = 0;
2224         if (!writelen)
2225                 return 0;
2226
2227         /* Reject writes, which are not page aligned */
2228         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2229                 pr_notice("%s: attempt to write non page aligned data\n",
2230                            __func__);
2231                 return -EINVAL;
2232         }
2233
2234         column = to & (mtd->writesize - 1);
2235         subpage = column || (writelen & (mtd->writesize - 1));
2236
2237         if (subpage && oob)
2238                 return -EINVAL;
2239
2240         chipnr = (int)(to >> chip->chip_shift);
2241         chip->select_chip(mtd, chipnr);
2242
2243         /* Check, if it is write protected */
2244         if (nand_check_wp(mtd))
2245                 return -EIO;
2246
2247         realpage = (int)(to >> chip->page_shift);
2248         page = realpage & chip->pagemask;
2249         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2250
2251         /* Invalidate the page cache, when we write to the cached page */
2252         if (to <= (chip->pagebuf << chip->page_shift) &&
2253             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2254                 chip->pagebuf = -1;
2255
2256         /* Don't allow multipage oob writes with offset */
2257         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2258                 return -EINVAL;
2259
2260         while (1) {
2261                 int bytes = mtd->writesize;
2262                 int cached = writelen > bytes && page != blockmask;
2263                 uint8_t *wbuf = buf;
2264
2265                 /* Partial page write? */
2266                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2267                         cached = 0;
2268                         bytes = min_t(int, bytes - column, (int) writelen);
2269                         chip->pagebuf = -1;
2270                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2271                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2272                         wbuf = chip->buffers->databuf;
2273                 }
2274
2275                 if (unlikely(oob)) {
2276                         size_t len = min(oobwritelen, oobmaxlen);
2277                         oob = nand_fill_oob(mtd, oob, len, ops);
2278                         oobwritelen -= len;
2279                 } else {
2280                         /* We still need to erase leftover OOB data */
2281                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2282                 }
2283
2284                 ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2285                                        cached, (ops->mode == MTD_OPS_RAW));
2286                 if (ret)
2287                         break;
2288
2289                 writelen -= bytes;
2290                 if (!writelen)
2291                         break;
2292
2293                 column = 0;
2294                 buf += bytes;
2295                 realpage++;
2296
2297                 page = realpage & chip->pagemask;
2298                 /* Check, if we cross a chip boundary */
2299                 if (!page) {
2300                         chipnr++;
2301                         chip->select_chip(mtd, -1);
2302                         chip->select_chip(mtd, chipnr);
2303                 }
2304         }
2305
2306         ops->retlen = ops->len - writelen;
2307         if (unlikely(oob))
2308                 ops->oobretlen = ops->ooblen;
2309         return ret;
2310 }
2311
2312 /**
2313  * panic_nand_write - [MTD Interface] NAND write with ECC
2314  * @mtd: MTD device structure
2315  * @to: offset to write to
2316  * @len: number of bytes to write
2317  * @retlen: pointer to variable to store the number of written bytes
2318  * @buf: the data to write
2319  *
2320  * NAND write with ECC. Used when performing writes in interrupt context, this
2321  * may for example be called by mtdoops when writing an oops while in panic.
2322  */
2323 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2324                             size_t *retlen, const uint8_t *buf)
2325 {
2326         struct nand_chip *chip = mtd->priv;
2327         struct mtd_oob_ops ops;
2328         int ret;
2329
2330         /* Wait for the device to get ready */
2331         panic_nand_wait(mtd, chip, 400);
2332
2333         /* Grab the device */
2334         panic_nand_get_device(chip, mtd, FL_WRITING);
2335
2336         ops.len = len;
2337         ops.datbuf = (uint8_t *)buf;
2338         ops.oobbuf = NULL;
2339         ops.mode = 0;
2340
2341         ret = nand_do_write_ops(mtd, to, &ops);
2342
2343         *retlen = ops.retlen;
2344         return ret;
2345 }
2346
2347 /**
2348  * nand_write - [MTD Interface] NAND write with ECC
2349  * @mtd: MTD device structure
2350  * @to: offset to write to
2351  * @len: number of bytes to write
2352  * @retlen: pointer to variable to store the number of written bytes
2353  * @buf: the data to write
2354  *
2355  * NAND write with ECC.
2356  */
2357 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2358                           size_t *retlen, const uint8_t *buf)
2359 {
2360         struct nand_chip *chip = mtd->priv;
2361         struct mtd_oob_ops ops;
2362         int ret;
2363
2364         nand_get_device(chip, mtd, FL_WRITING);
2365         ops.len = len;
2366         ops.datbuf = (uint8_t *)buf;
2367         ops.oobbuf = NULL;
2368         ops.mode = 0;
2369         ret = nand_do_write_ops(mtd, to, &ops);
2370         *retlen = ops.retlen;
2371         nand_release_device(mtd);
2372         return ret;
2373 }
2374
2375 /**
2376  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2377  * @mtd: MTD device structure
2378  * @to: offset to write to
2379  * @ops: oob operation description structure
2380  *
2381  * NAND write out-of-band.
2382  */
2383 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2384                              struct mtd_oob_ops *ops)
2385 {
2386         int chipnr, page, status, len;
2387         struct nand_chip *chip = mtd->priv;
2388
2389         pr_debug("%s: to = 0x%08x, len = %i\n",
2390                          __func__, (unsigned int)to, (int)ops->ooblen);
2391
2392         if (ops->mode == MTD_OPS_AUTO_OOB)
2393                 len = chip->ecc.layout->oobavail;
2394         else
2395                 len = mtd->oobsize;
2396
2397         /* Do not allow write past end of page */
2398         if ((ops->ooboffs + ops->ooblen) > len) {
2399                 pr_debug("%s: attempt to write past end of page\n",
2400                                 __func__);
2401                 return -EINVAL;
2402         }
2403
2404         if (unlikely(ops->ooboffs >= len)) {
2405                 pr_debug("%s: attempt to start write outside oob\n",
2406                                 __func__);
2407                 return -EINVAL;
2408         }
2409
2410         /* Do not allow write past end of device */
2411         if (unlikely(to >= mtd->size ||
2412                      ops->ooboffs + ops->ooblen >
2413                         ((mtd->size >> chip->page_shift) -
2414                          (to >> chip->page_shift)) * len)) {
2415                 pr_debug("%s: attempt to write beyond end of device\n",
2416                                 __func__);
2417                 return -EINVAL;
2418         }
2419
2420         chipnr = (int)(to >> chip->chip_shift);
2421         chip->select_chip(mtd, chipnr);
2422
2423         /* Shift to get page */
2424         page = (int)(to >> chip->page_shift);
2425
2426         /*
2427          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2428          * of my DiskOnChip 2000 test units) will clear the whole data page too
2429          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2430          * it in the doc2000 driver in August 1999.  dwmw2.
2431          */
2432         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2433
2434         /* Check, if it is write protected */
2435         if (nand_check_wp(mtd))
2436                 return -EROFS;
2437
2438         /* Invalidate the page cache, if we write to the cached page */
2439         if (page == chip->pagebuf)
2440                 chip->pagebuf = -1;
2441
2442         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2443
2444         if (ops->mode == MTD_OPS_RAW)
2445                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2446         else
2447                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2448
2449         if (status)
2450                 return status;
2451
2452         ops->oobretlen = ops->ooblen;
2453
2454         return 0;
2455 }
2456
2457 /**
2458  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2459  * @mtd: MTD device structure
2460  * @to: offset to write to
2461  * @ops: oob operation description structure
2462  */
2463 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2464                           struct mtd_oob_ops *ops)
2465 {
2466         struct nand_chip *chip = mtd->priv;
2467         int ret = -ENOTSUPP;
2468
2469         ops->retlen = 0;
2470
2471         /* Do not allow writes past end of device */
2472         if (ops->datbuf && (to + ops->len) > mtd->size) {
2473                 pr_debug("%s: attempt to write beyond end of device\n",
2474                                 __func__);
2475                 return -EINVAL;
2476         }
2477
2478         nand_get_device(chip, mtd, FL_WRITING);
2479
2480         switch (ops->mode) {
2481         case MTD_OPS_PLACE_OOB:
2482         case MTD_OPS_AUTO_OOB:
2483         case MTD_OPS_RAW:
2484                 break;
2485
2486         default:
2487                 goto out;
2488         }
2489
2490         if (!ops->datbuf)
2491                 ret = nand_do_write_oob(mtd, to, ops);
2492         else
2493                 ret = nand_do_write_ops(mtd, to, ops);
2494
2495 out:
2496         nand_release_device(mtd);
2497         return ret;
2498 }
2499
2500 /**
2501  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2502  * @mtd: MTD device structure
2503  * @page: the page address of the block which will be erased
2504  *
2505  * Standard erase command for NAND chips.
2506  */
2507 static void single_erase_cmd(struct mtd_info *mtd, int page)
2508 {
2509         struct nand_chip *chip = mtd->priv;
2510         /* Send commands to erase a block */
2511         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2512         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2513 }
2514
2515 /**
2516  * multi_erase_cmd - [GENERIC] AND specific block erase command function
2517  * @mtd: MTD device structure
2518  * @page: the page address of the block which will be erased
2519  *
2520  * AND multi block erase command function. Erase 4 consecutive blocks.
2521  */
2522 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2523 {
2524         struct nand_chip *chip = mtd->priv;
2525         /* Send commands to erase a block */
2526         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2527         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2528         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2529         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2530         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2531 }
2532
2533 /**
2534  * nand_erase - [MTD Interface] erase block(s)
2535  * @mtd: MTD device structure
2536  * @instr: erase instruction
2537  *
2538  * Erase one ore more blocks.
2539  */
2540 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2541 {
2542         return nand_erase_nand(mtd, instr, 0);
2543 }
2544
2545 #define BBT_PAGE_MASK   0xffffff3f
2546 /**
2547  * nand_erase_nand - [INTERN] erase block(s)
2548  * @mtd: MTD device structure
2549  * @instr: erase instruction
2550  * @allowbbt: allow erasing the bbt area
2551  *
2552  * Erase one ore more blocks.
2553  */
2554 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2555                     int allowbbt)
2556 {
2557         int page, status, pages_per_block, ret, chipnr;
2558         struct nand_chip *chip = mtd->priv;
2559         loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2560         unsigned int bbt_masked_page = 0xffffffff;
2561         loff_t len;
2562
2563         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2564                         __func__, (unsigned long long)instr->addr,
2565                         (unsigned long long)instr->len);
2566
2567         if (check_offs_len(mtd, instr->addr, instr->len))
2568                 return -EINVAL;
2569
2570         /* Grab the lock and see if the device is available */
2571         nand_get_device(chip, mtd, FL_ERASING);
2572
2573         /* Shift to get first page */
2574         page = (int)(instr->addr >> chip->page_shift);
2575         chipnr = (int)(instr->addr >> chip->chip_shift);
2576
2577         /* Calculate pages in each block */
2578         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2579
2580         /* Select the NAND device */
2581         chip->select_chip(mtd, chipnr);
2582
2583         /* Check, if it is write protected */
2584         if (nand_check_wp(mtd)) {
2585                 pr_debug("%s: device is write protected!\n",
2586                                 __func__);
2587                 instr->state = MTD_ERASE_FAILED;
2588                 goto erase_exit;
2589         }
2590
2591         /*
2592          * If BBT requires refresh, set the BBT page mask to see if the BBT
2593          * should be rewritten. Otherwise the mask is set to 0xffffffff which
2594          * can not be matched. This is also done when the bbt is actually
2595          * erased to avoid recursive updates.
2596          */
2597         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2598                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2599
2600         /* Loop through the pages */
2601         len = instr->len;
2602
2603         instr->state = MTD_ERASING;
2604
2605         while (len) {
2606                 /* Check if we have a bad block, we do not erase bad blocks! */
2607                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2608                                         chip->page_shift, 0, allowbbt)) {
2609                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2610                                     __func__, page);
2611                         instr->state = MTD_ERASE_FAILED;
2612                         goto erase_exit;
2613                 }
2614
2615                 /*
2616                  * Invalidate the page cache, if we erase the block which
2617                  * contains the current cached page.
2618                  */
2619                 if (page <= chip->pagebuf && chip->pagebuf <
2620                     (page + pages_per_block))
2621                         chip->pagebuf = -1;
2622
2623                 chip->erase_cmd(mtd, page & chip->pagemask);
2624
2625                 status = chip->waitfunc(mtd, chip);
2626
2627                 /*
2628                  * See if operation failed and additional status checks are
2629                  * available
2630                  */
2631                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2632                         status = chip->errstat(mtd, chip, FL_ERASING,
2633                                                status, page);
2634
2635                 /* See if block erase succeeded */
2636                 if (status & NAND_STATUS_FAIL) {
2637                         pr_debug("%s: failed erase, page 0x%08x\n",
2638                                         __func__, page);
2639                         instr->state = MTD_ERASE_FAILED;
2640                         instr->fail_addr =
2641                                 ((loff_t)page << chip->page_shift);
2642                         goto erase_exit;
2643                 }
2644
2645                 /*
2646                  * If BBT requires refresh, set the BBT rewrite flag to the
2647                  * page being erased.
2648                  */
2649                 if (bbt_masked_page != 0xffffffff &&
2650                     (page & BBT_PAGE_MASK) == bbt_masked_page)
2651                             rewrite_bbt[chipnr] =
2652                                         ((loff_t)page << chip->page_shift);
2653
2654                 /* Increment page address and decrement length */
2655                 len -= (1 << chip->phys_erase_shift);
2656                 page += pages_per_block;
2657
2658                 /* Check, if we cross a chip boundary */
2659                 if (len && !(page & chip->pagemask)) {
2660                         chipnr++;
2661                         chip->select_chip(mtd, -1);
2662                         chip->select_chip(mtd, chipnr);
2663
2664                         /*
2665                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
2666                          * page mask to see if this BBT should be rewritten.
2667                          */
2668                         if (bbt_masked_page != 0xffffffff &&
2669                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2670                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2671                                         BBT_PAGE_MASK;
2672                 }
2673         }
2674         instr->state = MTD_ERASE_DONE;
2675
2676 erase_exit:
2677
2678         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2679
2680         /* Deselect and wake up anyone waiting on the device */
2681         nand_release_device(mtd);
2682
2683         /* Do call back function */
2684         if (!ret)
2685                 mtd_erase_callback(instr);
2686
2687         /*
2688          * If BBT requires refresh and erase was successful, rewrite any
2689          * selected bad block tables.
2690          */
2691         if (bbt_masked_page == 0xffffffff || ret)
2692                 return ret;
2693
2694         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2695                 if (!rewrite_bbt[chipnr])
2696                         continue;
2697                 /* Update the BBT for chip */
2698                 pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2699                                 __func__, chipnr, rewrite_bbt[chipnr],
2700                                 chip->bbt_td->pages[chipnr]);
2701                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2702         }
2703
2704         /* Return more or less happy */
2705         return ret;
2706 }
2707
2708 /**
2709  * nand_sync - [MTD Interface] sync
2710  * @mtd: MTD device structure
2711  *
2712  * Sync is actually a wait for chip ready function.
2713  */
2714 static void nand_sync(struct mtd_info *mtd)
2715 {
2716         struct nand_chip *chip = mtd->priv;
2717
2718         pr_debug("%s: called\n", __func__);
2719
2720         /* Grab the lock and see if the device is available */
2721         nand_get_device(chip, mtd, FL_SYNCING);
2722         /* Release it and go back */
2723         nand_release_device(mtd);
2724 }
2725
2726 /**
2727  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2728  * @mtd: MTD device structure
2729  * @offs: offset relative to mtd start
2730  */
2731 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2732 {
2733         return nand_block_checkbad(mtd, offs, 1, 0);
2734 }
2735
2736 /**
2737  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2738  * @mtd: MTD device structure
2739  * @ofs: offset relative to mtd start
2740  */
2741 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2742 {
2743         struct nand_chip *chip = mtd->priv;
2744         int ret;
2745
2746         ret = nand_block_isbad(mtd, ofs);
2747         if (ret) {
2748                 /* If it was bad already, return success and do nothing */
2749                 if (ret > 0)
2750                         return 0;
2751                 return ret;
2752         }
2753
2754         return chip->block_markbad(mtd, ofs);
2755 }
2756
2757 /**
2758  * nand_suspend - [MTD Interface] Suspend the NAND flash
2759  * @mtd: MTD device structure
2760  */
2761 static int nand_suspend(struct mtd_info *mtd)
2762 {
2763         struct nand_chip *chip = mtd->priv;
2764
2765         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2766 }
2767
2768 /**
2769  * nand_resume - [MTD Interface] Resume the NAND flash
2770  * @mtd: MTD device structure
2771  */
2772 static void nand_resume(struct mtd_info *mtd)
2773 {
2774         struct nand_chip *chip = mtd->priv;
2775
2776         if (chip->state == FL_PM_SUSPENDED)
2777                 nand_release_device(mtd);
2778         else
2779                 pr_err("%s called for a chip which is not in suspended state\n",
2780                         __func__);
2781 }
2782
2783 /* Set default functions */
2784 static void nand_set_defaults(struct nand_chip *chip, int busw)
2785 {
2786         /* check for proper chip_delay setup, set 20us if not */
2787         if (!chip->chip_delay)
2788                 chip->chip_delay = 20;
2789
2790         /* check, if a user supplied command function given */
2791         if (chip->cmdfunc == NULL)
2792                 chip->cmdfunc = nand_command;
2793
2794         /* check, if a user supplied wait function given */
2795         if (chip->waitfunc == NULL)
2796                 chip->waitfunc = nand_wait;
2797
2798         if (!chip->select_chip)
2799                 chip->select_chip = nand_select_chip;
2800         if (!chip->read_byte)
2801                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2802         if (!chip->read_word)
2803                 chip->read_word = nand_read_word;
2804         if (!chip->block_bad)
2805                 chip->block_bad = nand_block_bad;
2806         if (!chip->block_markbad)
2807                 chip->block_markbad = nand_default_block_markbad;
2808         if (!chip->write_buf)
2809                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2810         if (!chip->read_buf)
2811                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2812         if (!chip->verify_buf)
2813                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2814         if (!chip->scan_bbt)
2815                 chip->scan_bbt = nand_default_bbt;
2816
2817         if (!chip->controller) {
2818                 chip->controller = &chip->hwcontrol;
2819                 spin_lock_init(&chip->controller->lock);
2820                 init_waitqueue_head(&chip->controller->wq);
2821         }
2822
2823 }
2824
2825 /* Sanitize ONFI strings so we can safely print them */
2826 static void sanitize_string(uint8_t *s, size_t len)
2827 {
2828         ssize_t i;
2829
2830         /* Null terminate */
2831         s[len - 1] = 0;
2832
2833         /* Remove non printable chars */
2834         for (i = 0; i < len - 1; i++) {
2835                 if (s[i] < ' ' || s[i] > 127)
2836                         s[i] = '?';
2837         }
2838
2839         /* Remove trailing spaces */
2840         strim(s);
2841 }
2842
2843 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2844 {
2845         int i;
2846         while (len--) {
2847                 crc ^= *p++ << 8;
2848                 for (i = 0; i < 8; i++)
2849                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2850         }
2851
2852         return crc;
2853 }
2854
2855 /*
2856  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2857  */
2858 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2859                                         int *busw)
2860 {
2861         struct nand_onfi_params *p = &chip->onfi_params;
2862         int i;
2863         int val;
2864
2865         /* Try ONFI for unknown chip or LP */
2866         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2867         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2868                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2869                 return 0;
2870
2871         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2872         for (i = 0; i < 3; i++) {
2873                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2874                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2875                                 le16_to_cpu(p->crc)) {
2876                         pr_info("ONFI param page %d valid\n", i);
2877                         break;
2878                 }
2879         }
2880
2881         if (i == 3)
2882                 return 0;
2883
2884         /* Check version */
2885         val = le16_to_cpu(p->revision);
2886         if (val & (1 << 5))
2887                 chip->onfi_version = 23;
2888         else if (val & (1 << 4))
2889                 chip->onfi_version = 22;
2890         else if (val & (1 << 3))
2891                 chip->onfi_version = 21;
2892         else if (val & (1 << 2))
2893                 chip->onfi_version = 20;
2894         else if (val & (1 << 1))
2895                 chip->onfi_version = 10;
2896         else
2897                 chip->onfi_version = 0;
2898
2899         if (!chip->onfi_version) {
2900                 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2901                 return 0;
2902         }
2903
2904         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2905         sanitize_string(p->model, sizeof(p->model));
2906         if (!mtd->name)
2907                 mtd->name = p->model;
2908         mtd->writesize = le32_to_cpu(p->byte_per_page);
2909         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2910         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2911         chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2912         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2913         *busw = 0;
2914         if (le16_to_cpu(p->features) & 1)
2915                 *busw = NAND_BUSWIDTH_16;
2916
2917         chip->options |= NAND_NO_READRDY;
2918
2919         pr_info("ONFI flash detected\n");
2920         return 1;
2921 }
2922
2923 /*
2924  * Get the flash and manufacturer id and lookup if the type is supported.
2925  */
2926 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2927                                                   struct nand_chip *chip,
2928                                                   int busw,
2929                                                   int *maf_id, int *dev_id,
2930                                                   struct nand_flash_dev *type)
2931 {
2932         int i, maf_idx;
2933         u8 id_data[8];
2934         int ret;
2935
2936         /* Select the device */
2937         chip->select_chip(mtd, 0);
2938
2939         /*
2940          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2941          * after power-up.
2942          */
2943         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2944
2945         /* Send the command for reading device ID */
2946         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2947
2948         /* Read manufacturer and device IDs */
2949         *maf_id = chip->read_byte(mtd);
2950         *dev_id = chip->read_byte(mtd);
2951
2952         /*
2953          * Try again to make sure, as some systems the bus-hold or other
2954          * interface concerns can cause random data which looks like a
2955          * possibly credible NAND flash to appear. If the two results do
2956          * not match, ignore the device completely.
2957          */
2958
2959         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2960
2961         for (i = 0; i < 2; i++)
2962                 id_data[i] = chip->read_byte(mtd);
2963
2964         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2965                 pr_info("%s: second ID read did not match "
2966                         "%02x,%02x against %02x,%02x\n", __func__,
2967                         *maf_id, *dev_id, id_data[0], id_data[1]);
2968                 return ERR_PTR(-ENODEV);
2969         }
2970
2971         if (!type)
2972                 type = nand_flash_ids;
2973
2974         for (; type->name != NULL; type++)
2975                 if (*dev_id == type->id)
2976                         break;
2977
2978         chip->onfi_version = 0;
2979         if (!type->name || !type->pagesize) {
2980                 /* Check is chip is ONFI compliant */
2981                 ret = nand_flash_detect_onfi(mtd, chip, &busw);
2982                 if (ret)
2983                         goto ident_done;
2984         }
2985
2986         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2987
2988         /* Read entire ID string */
2989
2990         for (i = 0; i < 8; i++)
2991                 id_data[i] = chip->read_byte(mtd);
2992
2993         if (!type->name)
2994                 return ERR_PTR(-ENODEV);
2995
2996         if (!mtd->name)
2997                 mtd->name = type->name;
2998
2999         chip->chipsize = (uint64_t)type->chipsize << 20;
3000
3001         if (!type->pagesize && chip->init_size) {
3002                 /* Set the pagesize, oobsize, erasesize by the driver */
3003                 busw = chip->init_size(mtd, chip, id_data);
3004         } else if (!type->pagesize) {
3005                 int extid;
3006                 /* The 3rd id byte holds MLC / multichip data */
3007                 chip->cellinfo = id_data[2];
3008                 /* The 4th id byte is the important one */
3009                 extid = id_data[3];
3010
3011                 /*
3012                  * Field definitions are in the following datasheets:
3013                  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3014                  * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
3015                  *
3016                  * Check for wraparound + Samsung ID + nonzero 6th byte
3017                  * to decide what to do.
3018                  */
3019                 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3020                                 id_data[0] == NAND_MFR_SAMSUNG &&
3021                                 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3022                                 id_data[5] != 0x00) {
3023                         /* Calc pagesize */
3024                         mtd->writesize = 2048 << (extid & 0x03);
3025                         extid >>= 2;
3026                         /* Calc oobsize */
3027                         switch (extid & 0x03) {
3028                         case 1:
3029                                 mtd->oobsize = 128;
3030                                 break;
3031                         case 2:
3032                                 mtd->oobsize = 218;
3033                                 break;
3034                         case 3:
3035                                 mtd->oobsize = 400;
3036                                 break;
3037                         default:
3038                                 mtd->oobsize = 436;
3039                                 break;
3040                         }
3041                         extid >>= 2;
3042                         /* Calc blocksize */
3043                         mtd->erasesize = (128 * 1024) <<
3044                                 (((extid >> 1) & 0x04) | (extid & 0x03));
3045                         busw = 0;
3046                 } else {
3047                         /* Calc pagesize */
3048                         mtd->writesize = 1024 << (extid & 0x03);
3049                         extid >>= 2;
3050                         /* Calc oobsize */
3051                         mtd->oobsize = (8 << (extid & 0x01)) *
3052                                 (mtd->writesize >> 9);
3053                         extid >>= 2;
3054                         /* Calc blocksize. Blocksize is multiples of 64KiB */
3055                         mtd->erasesize = (64 * 1024) << (extid & 0x03);
3056                         extid >>= 2;
3057                         /* Get buswidth information */
3058                         busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3059                 }
3060         } else {
3061                 /*
3062                  * Old devices have chip data hardcoded in the device id table.
3063                  */
3064                 mtd->erasesize = type->erasesize;
3065                 mtd->writesize = type->pagesize;
3066                 mtd->oobsize = mtd->writesize / 32;
3067                 busw = type->options & NAND_BUSWIDTH_16;
3068
3069                 /*
3070                  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3071                  * some Spansion chips have erasesize that conflicts with size
3072                  * listed in nand_ids table.
3073                  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3074                  */
3075                 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3076                                 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3077                                 id_data[7] == 0x00 && mtd->writesize == 512) {
3078                         mtd->erasesize = 128 * 1024;
3079                         mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3080                 }
3081         }
3082         /* Get chip options */
3083         chip->options |= type->options;
3084
3085         /*
3086          * Check if chip is not a Samsung device. Do not clear the
3087          * options for chips which do not have an extended id.
3088          */
3089         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3090                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3091 ident_done:
3092
3093         /* Try to identify manufacturer */
3094         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3095                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3096                         break;
3097         }
3098
3099         /*
3100          * Check, if buswidth is correct. Hardware drivers should set
3101          * chip correct!
3102          */
3103         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3104                 pr_info("NAND device: Manufacturer ID:"
3105                         " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3106                         *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3107                 pr_warn("NAND bus width %d instead %d bit\n",
3108                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3109                            busw ? 16 : 8);
3110                 return ERR_PTR(-EINVAL);
3111         }
3112
3113         /* Calculate the address shift from the page size */
3114         chip->page_shift = ffs(mtd->writesize) - 1;
3115         /* Convert chipsize to number of pages per chip -1 */
3116         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3117
3118         chip->bbt_erase_shift = chip->phys_erase_shift =
3119                 ffs(mtd->erasesize) - 1;
3120         if (chip->chipsize & 0xffffffff)
3121                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3122         else {
3123                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3124                 chip->chip_shift += 32 - 1;
3125         }
3126
3127         chip->badblockbits = 8;
3128
3129         /* Set the bad block position */
3130         if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3131                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3132         else
3133                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3134
3135         /*
3136          * Bad block marker is stored in the last page of each block
3137          * on Samsung and Hynix MLC devices; stored in first two pages
3138          * of each block on Micron devices with 2KiB pages and on
3139          * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3140          * All others scan only the first page.
3141          */
3142         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3143                         (*maf_id == NAND_MFR_SAMSUNG ||
3144                          *maf_id == NAND_MFR_HYNIX))
3145                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3146         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3147                                 (*maf_id == NAND_MFR_SAMSUNG ||
3148                                  *maf_id == NAND_MFR_HYNIX ||
3149                                  *maf_id == NAND_MFR_TOSHIBA ||
3150                                  *maf_id == NAND_MFR_AMD ||
3151                                  *maf_id == NAND_MFR_MACRONIX)) ||
3152                         (mtd->writesize == 2048 &&
3153                          *maf_id == NAND_MFR_MICRON))
3154                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3155
3156         /* Check for AND chips with 4 page planes */
3157         if (chip->options & NAND_4PAGE_ARRAY)
3158                 chip->erase_cmd = multi_erase_cmd;
3159         else
3160                 chip->erase_cmd = single_erase_cmd;
3161
3162         /* Do not replace user supplied command function! */
3163         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3164                 chip->cmdfunc = nand_command_lp;
3165
3166         pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3167                 " page size: %d, OOB size: %d\n",
3168                 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3169                 chip->onfi_version ? chip->onfi_params.model : type->name,
3170                 mtd->writesize, mtd->oobsize);
3171
3172         return type;
3173 }
3174
3175 /**
3176  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3177  * @mtd: MTD device structure
3178  * @maxchips: number of chips to scan for
3179  * @table: alternative NAND ID table
3180  *
3181  * This is the first phase of the normal nand_scan() function. It reads the
3182  * flash ID and sets up MTD fields accordingly.
3183  *
3184  * The mtd->owner field must be set to the module of the caller.
3185  */
3186 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3187                     struct nand_flash_dev *table)
3188 {
3189         int i, busw, nand_maf_id, nand_dev_id;
3190         struct nand_chip *chip = mtd->priv;
3191         struct nand_flash_dev *type;
3192
3193         /* Get buswidth to select the correct functions */
3194         busw = chip->options & NAND_BUSWIDTH_16;
3195         /* Set the default functions */
3196         nand_set_defaults(chip, busw);
3197
3198         /* Read the flash type */
3199         type = nand_get_flash_type(mtd, chip, busw,
3200                                 &nand_maf_id, &nand_dev_id, table);
3201
3202         if (IS_ERR(type)) {
3203                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3204                         pr_warn("No NAND device found\n");
3205                 chip->select_chip(mtd, -1);
3206                 return PTR_ERR(type);
3207         }
3208
3209         /* Check for a chip array */
3210         for (i = 1; i < maxchips; i++) {
3211                 chip->select_chip(mtd, i);
3212                 /* See comment in nand_get_flash_type for reset */
3213                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3214                 /* Send the command for reading device ID */
3215                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3216                 /* Read manufacturer and device IDs */
3217                 if (nand_maf_id != chip->read_byte(mtd) ||
3218                     nand_dev_id != chip->read_byte(mtd))
3219                         break;
3220         }
3221         if (i > 1)
3222                 pr_info("%d NAND chips detected\n", i);
3223
3224         /* Store the number of chips and calc total size for mtd */
3225         chip->numchips = i;
3226         mtd->size = i * chip->chipsize;
3227
3228         return 0;
3229 }
3230 EXPORT_SYMBOL(nand_scan_ident);
3231
3232
3233 /**
3234  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3235  * @mtd: MTD device structure
3236  *
3237  * This is the second phase of the normal nand_scan() function. It fills out
3238  * all the uninitialized function pointers with the defaults and scans for a
3239  * bad block table if appropriate.
3240  */
3241 int nand_scan_tail(struct mtd_info *mtd)
3242 {
3243         int i;
3244         struct nand_chip *chip = mtd->priv;
3245
3246         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3247         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3248                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3249
3250         if (!(chip->options & NAND_OWN_BUFFERS))
3251                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3252         if (!chip->buffers)
3253                 return -ENOMEM;
3254
3255         /* Set the internal oob buffer location, just after the page data */
3256         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3257
3258         /*
3259          * If no default placement scheme is given, select an appropriate one.
3260          */
3261         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3262                 switch (mtd->oobsize) {
3263                 case 8:
3264                         chip->ecc.layout = &nand_oob_8;
3265                         break;
3266                 case 16:
3267                         chip->ecc.layout = &nand_oob_16;
3268                         break;
3269                 case 64:
3270                         chip->ecc.layout = &nand_oob_64;
3271                         break;
3272                 case 128:
3273                         chip->ecc.layout = &nand_oob_128;
3274                         break;
3275                 default:
3276                         pr_warn("No oob scheme defined for oobsize %d\n",
3277                                    mtd->oobsize);
3278                         BUG();
3279                 }
3280         }
3281
3282         if (!chip->write_page)
3283                 chip->write_page = nand_write_page;
3284
3285         /*
3286          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3287          * selected and we have 256 byte pagesize fallback to software ECC
3288          */
3289
3290         switch (chip->ecc.mode) {
3291         case NAND_ECC_HW_OOB_FIRST:
3292                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3293                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3294                      !chip->ecc.hwctl) {
3295                         pr_warn("No ECC functions supplied; "
3296                                    "hardware ECC not possible\n");
3297                         BUG();
3298                 }
3299                 if (!chip->ecc.read_page)
3300                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3301
3302         case NAND_ECC_HW:
3303                 /* Use standard hwecc read page function? */
3304                 if (!chip->ecc.read_page)
3305                         chip->ecc.read_page = nand_read_page_hwecc;
3306                 if (!chip->ecc.write_page)
3307                         chip->ecc.write_page = nand_write_page_hwecc;
3308                 if (!chip->ecc.read_page_raw)
3309                         chip->ecc.read_page_raw = nand_read_page_raw;
3310                 if (!chip->ecc.write_page_raw)
3311                         chip->ecc.write_page_raw = nand_write_page_raw;
3312                 if (!chip->ecc.read_oob)
3313                         chip->ecc.read_oob = nand_read_oob_std;
3314                 if (!chip->ecc.write_oob)
3315                         chip->ecc.write_oob = nand_write_oob_std;
3316
3317         case NAND_ECC_HW_SYNDROME:
3318                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3319                      !chip->ecc.hwctl) &&
3320                     (!chip->ecc.read_page ||
3321                      chip->ecc.read_page == nand_read_page_hwecc ||
3322                      !chip->ecc.write_page ||
3323                      chip->ecc.write_page == nand_write_page_hwecc)) {
3324                         pr_warn("No ECC functions supplied; "
3325                                    "hardware ECC not possible\n");
3326                         BUG();
3327                 }
3328                 /* Use standard syndrome read/write page function? */
3329                 if (!chip->ecc.read_page)
3330                         chip->ecc.read_page = nand_read_page_syndrome;
3331                 if (!chip->ecc.write_page)
3332                         chip->ecc.write_page = nand_write_page_syndrome;
3333                 if (!chip->ecc.read_page_raw)
3334                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3335                 if (!chip->ecc.write_page_raw)
3336                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3337                 if (!chip->ecc.read_oob)
3338                         chip->ecc.read_oob = nand_read_oob_syndrome;
3339                 if (!chip->ecc.write_oob)
3340                         chip->ecc.write_oob = nand_write_oob_syndrome;
3341
3342                 if (mtd->writesize >= chip->ecc.size) {
3343                         if (!chip->ecc.strength) {
3344                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3345                                 BUG();
3346                         }
3347                         break;
3348                 }
3349                 pr_warn("%d byte HW ECC not possible on "
3350                            "%d byte page size, fallback to SW ECC\n",
3351                            chip->ecc.size, mtd->writesize);
3352                 chip->ecc.mode = NAND_ECC_SOFT;
3353
3354         case NAND_ECC_SOFT:
3355                 chip->ecc.calculate = nand_calculate_ecc;
3356                 chip->ecc.correct = nand_correct_data;
3357                 chip->ecc.read_page = nand_read_page_swecc;
3358                 chip->ecc.read_subpage = nand_read_subpage;
3359                 chip->ecc.write_page = nand_write_page_swecc;
3360                 chip->ecc.read_page_raw = nand_read_page_raw;
3361                 chip->ecc.write_page_raw = nand_write_page_raw;
3362                 chip->ecc.read_oob = nand_read_oob_std;
3363                 chip->ecc.write_oob = nand_write_oob_std;
3364                 if (!chip->ecc.size)
3365                         chip->ecc.size = 256;
3366                 chip->ecc.bytes = 3;
3367                 chip->ecc.strength = 1;
3368                 break;
3369
3370         case NAND_ECC_SOFT_BCH:
3371                 if (!mtd_nand_has_bch()) {
3372                         pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3373                         BUG();
3374                 }
3375                 chip->ecc.calculate = nand_bch_calculate_ecc;
3376                 chip->ecc.correct = nand_bch_correct_data;
3377                 chip->ecc.read_page = nand_read_page_swecc;
3378                 chip->ecc.read_subpage = nand_read_subpage;
3379                 chip->ecc.write_page = nand_write_page_swecc;
3380                 chip->ecc.read_page_raw = nand_read_page_raw;
3381                 chip->ecc.write_page_raw = nand_write_page_raw;
3382                 chip->ecc.read_oob = nand_read_oob_std;
3383                 chip->ecc.write_oob = nand_write_oob_std;
3384                 /*
3385                  * Board driver should supply ecc.size and ecc.bytes values to
3386                  * select how many bits are correctable; see nand_bch_init()
3387                  * for details. Otherwise, default to 4 bits for large page
3388                  * devices.
3389                  */
3390                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3391                         chip->ecc.size = 512;
3392                         chip->ecc.bytes = 7;
3393                 }
3394                 chip->ecc.priv = nand_bch_init(mtd,
3395                                                chip->ecc.size,
3396                                                chip->ecc.bytes,
3397                                                &chip->ecc.layout);
3398                 if (!chip->ecc.priv) {
3399                         pr_warn("BCH ECC initialization failed!\n");
3400                         BUG();
3401                 }
3402                 chip->ecc.strength =
3403                         chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3404                 break;
3405
3406         case NAND_ECC_NONE:
3407                 pr_warn("NAND_ECC_NONE selected by board driver. "
3408                            "This is not recommended!\n");
3409                 chip->ecc.read_page = nand_read_page_raw;
3410                 chip->ecc.write_page = nand_write_page_raw;
3411                 chip->ecc.read_oob = nand_read_oob_std;
3412                 chip->ecc.read_page_raw = nand_read_page_raw;
3413                 chip->ecc.write_page_raw = nand_write_page_raw;
3414                 chip->ecc.write_oob = nand_write_oob_std;
3415                 chip->ecc.size = mtd->writesize;
3416                 chip->ecc.bytes = 0;
3417                 chip->ecc.strength = 0;
3418                 break;
3419
3420         default:
3421                 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3422                 BUG();
3423         }
3424
3425         /* For many systems, the standard OOB write also works for raw */
3426         if (!chip->ecc.read_oob_raw)
3427                 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3428         if (!chip->ecc.write_oob_raw)
3429                 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3430
3431         /*
3432          * The number of bytes available for a client to place data into
3433          * the out of band area.
3434          */
3435         chip->ecc.layout->oobavail = 0;
3436         for (i = 0; chip->ecc.layout->oobfree[i].length
3437                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3438                 chip->ecc.layout->oobavail +=
3439                         chip->ecc.layout->oobfree[i].length;
3440         mtd->oobavail = chip->ecc.layout->oobavail;
3441
3442         /*
3443          * Set the number of read / write steps for one page depending on ECC
3444          * mode.
3445          */
3446         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3447         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3448                 pr_warn("Invalid ECC parameters\n");
3449                 BUG();
3450         }
3451         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3452
3453         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3454         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3455             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3456                 switch (chip->ecc.steps) {
3457                 case 2:
3458                         mtd->subpage_sft = 1;
3459                         break;
3460                 case 4:
3461                 case 8:
3462                 case 16:
3463                         mtd->subpage_sft = 2;
3464                         break;
3465                 }
3466         }
3467         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3468
3469         /* Initialize state */
3470         chip->state = FL_READY;
3471
3472         /* De-select the device */
3473         chip->select_chip(mtd, -1);
3474
3475         /* Invalidate the pagebuffer reference */
3476         chip->pagebuf = -1;
3477
3478         /* Fill in remaining MTD driver data */
3479         mtd->type = MTD_NANDFLASH;
3480         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3481                                                 MTD_CAP_NANDFLASH;
3482         mtd->_erase = nand_erase;
3483         mtd->_point = NULL;
3484         mtd->_unpoint = NULL;
3485         mtd->_read = nand_read;
3486         mtd->_write = nand_write;
3487         mtd->_panic_write = panic_nand_write;
3488         mtd->_read_oob = nand_read_oob;
3489         mtd->_write_oob = nand_write_oob;
3490         mtd->_sync = nand_sync;
3491         mtd->_lock = NULL;
3492         mtd->_unlock = NULL;
3493         mtd->_suspend = nand_suspend;
3494         mtd->_resume = nand_resume;
3495         mtd->_block_isbad = nand_block_isbad;
3496         mtd->_block_markbad = nand_block_markbad;
3497         mtd->writebufsize = mtd->writesize;
3498
3499         /* propagate ecc info to mtd_info */
3500         mtd->ecclayout = chip->ecc.layout;
3501         mtd->ecc_strength = chip->ecc.strength;
3502         /*
3503          * Initialize bitflip_threshold to its default prior scan_bbt() call.
3504          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3505          * properly set.
3506          */
3507         if (!mtd->bitflip_threshold)
3508                 mtd->bitflip_threshold = mtd->ecc_strength;
3509
3510         /* Check, if we should skip the bad block table scan */
3511         if (chip->options & NAND_SKIP_BBTSCAN)
3512                 return 0;
3513
3514         /* Build bad block table */
3515         return chip->scan_bbt(mtd);
3516 }
3517 EXPORT_SYMBOL(nand_scan_tail);
3518
3519 /*
3520  * is_module_text_address() isn't exported, and it's mostly a pointless
3521  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3522  * to call us from in-kernel code if the core NAND support is modular.
3523  */
3524 #ifdef MODULE
3525 #define caller_is_module() (1)
3526 #else
3527 #define caller_is_module() \
3528         is_module_text_address((unsigned long)__builtin_return_address(0))
3529 #endif
3530
3531 /**
3532  * nand_scan - [NAND Interface] Scan for the NAND device
3533  * @mtd: MTD device structure
3534  * @maxchips: number of chips to scan for
3535  *
3536  * This fills out all the uninitialized function pointers with the defaults.
3537  * The flash ID is read and the mtd/chip structures are filled with the
3538  * appropriate values. The mtd->owner field must be set to the module of the
3539  * caller.
3540  */
3541 int nand_scan(struct mtd_info *mtd, int maxchips)
3542 {
3543         int ret;
3544
3545         /* Many callers got this wrong, so check for it for a while... */
3546         if (!mtd->owner && caller_is_module()) {
3547                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3548                 BUG();
3549         }
3550
3551         ret = nand_scan_ident(mtd, maxchips, NULL);
3552         if (!ret)
3553                 ret = nand_scan_tail(mtd);
3554         return ret;
3555 }
3556 EXPORT_SYMBOL(nand_scan);
3557
3558 /**
3559  * nand_release - [NAND Interface] Free resources held by the NAND device
3560  * @mtd: MTD device structure
3561  */
3562 void nand_release(struct mtd_info *mtd)
3563 {
3564         struct nand_chip *chip = mtd->priv;
3565
3566         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3567                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3568
3569         mtd_device_unregister(mtd);
3570
3571         /* Free bad block table memory */
3572         kfree(chip->bbt);
3573         if (!(chip->options & NAND_OWN_BUFFERS))
3574                 kfree(chip->buffers);
3575
3576         /* Free bad block descriptor memory */
3577         if (chip->badblock_pattern && chip->badblock_pattern->options
3578                         & NAND_BBT_DYNAMICSTRUCT)
3579                 kfree(chip->badblock_pattern);
3580 }
3581 EXPORT_SYMBOL_GPL(nand_release);
3582
3583 static int __init nand_base_init(void)
3584 {
3585         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3586         return 0;
3587 }
3588
3589 static void __exit nand_base_exit(void)
3590 {
3591         led_trigger_unregister_simple(nand_led_trigger);
3592 }
3593
3594 module_init(nand_base_init);
3595 module_exit(nand_base_exit);
3596
3597 MODULE_LICENSE("GPL");
3598 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3599 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3600 MODULE_DESCRIPTION("Generic NAND flash driver code");