]> git.karo-electronics.de Git - karo-tx-uboot.git/blobdiff - fs/ubifs/recovery.c
mtd, ubi, ubifs: resync with Linux-3.14
[karo-tx-uboot.git] / fs / ubifs / recovery.c
index 744465005caf036f52e2347e6214c6d3cb53b999..f54a440cd51d8a66fecb2ba3232eb570e3bd3efe 100644 (file)
@@ -3,18 +3,7 @@
  *
  * Copyright (C) 2006-2008 Nokia Corporation
  *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published by
- * the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc., 51
- * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ * SPDX-License-Identifier:    GPL-2.0+
  *
  * Authors: Adrian Hunter
  *          Artem Bityutskiy (Битюцкий Артём)
 /*
  * This file implements functions needed to recover from unclean un-mounts.
  * When UBIFS is mounted, it checks a flag on the master node to determine if
- * an un-mount was completed sucessfully. If not, the process of mounting
- * incorparates additional checking and fixing of on-flash data structures.
+ * an un-mount was completed successfully. If not, the process of mounting
+ * incorporates additional checking and fixing of on-flash data structures.
  * UBIFS always cleans away all remnants of an unclean un-mount, so that
  * errors do not accumulate. However UBIFS defers recovery if it is mounted
  * read-only, and the flash is not modified in that case.
+ *
+ * The general UBIFS approach to the recovery is that it recovers from
+ * corruptions which could be caused by power cuts, but it refuses to recover
+ * from corruption caused by other reasons. And UBIFS tries to distinguish
+ * between these 2 reasons of corruptions and silently recover in the former
+ * case and loudly complain in the latter case.
+ *
+ * UBIFS writes only to erased LEBs, so it writes only to the flash space
+ * containing only 0xFFs. UBIFS also always writes strictly from the beginning
+ * of the LEB to the end. And UBIFS assumes that the underlying flash media
+ * writes in @c->max_write_size bytes at a time.
+ *
+ * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
+ * I/O unit corresponding to offset X to contain corrupted data, all the
+ * following min. I/O units have to contain empty space (all 0xFFs). If this is
+ * not true, the corruption cannot be the result of a power cut, and UBIFS
+ * refuses to mount.
  */
 
+#define __UBOOT__
+#ifndef __UBOOT__
+#include <linux/crc32.h>
+#include <linux/slab.h>
+#else
+#include <linux/err.h>
+#endif
 #include "ubifs.h"
 
 /**
@@ -51,6 +64,25 @@ static int is_empty(void *buf, int len)
        return 1;
 }
 
+/**
+ * first_non_ff - find offset of the first non-0xff byte.
+ * @buf: buffer to search in
+ * @len: length of buffer
+ *
+ * This function returns offset of the first non-0xff byte in @buf or %-1 if
+ * the buffer contains only 0xff bytes.
+ */
+static int first_non_ff(void *buf, int len)
+{
+       uint8_t *p = buf;
+       int i;
+
+       for (i = 0; i < len; i++)
+               if (*p++ != 0xff)
+                       return i;
+       return -1;
+}
+
 /**
  * get_master_node - get the last valid master node allowing for corruption.
  * @c: UBIFS file-system description object
@@ -79,7 +111,7 @@ static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
        if (!sbuf)
                return -ENOMEM;
 
-       err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
+       err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
        if (err && err != -EBADMSG)
                goto out_free;
 
@@ -175,10 +207,10 @@ static int write_rcvrd_mst_node(struct ubifs_info *c,
        mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
 
        ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
-       err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
+       err = ubifs_leb_change(c, lnum, mst, sz);
        if (err)
                goto out;
-       err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
+       err = ubifs_leb_change(c, lnum + 1, mst, sz);
        if (err)
                goto out;
 out:
@@ -236,7 +268,8 @@ int ubifs_recover_master_node(struct ubifs_info *c)
                                if (cor1)
                                        goto out_err;
                                mst = mst1;
-                       } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
+                       } else if (offs1 == 0 &&
+                                  c->leb_size - offs2 - sz < sz) {
                                /* 1st LEB was unmapped and written, 2nd not */
                                if (cor1)
                                        goto out_err;
@@ -266,12 +299,12 @@ int ubifs_recover_master_node(struct ubifs_info *c)
                mst = mst2;
        }
 
-       dbg_rcvry("recovered master node from LEB %d",
+       ubifs_msg("recovered master node from LEB %d",
                  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
 
        memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
 
-       if ((c->vfs_sb->s_flags & MS_RDONLY)) {
+       if (c->ro_mount) {
                /* Read-only mode. Keep a copy for switching to rw mode */
                c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
                if (!c->rcvrd_mst_node) {
@@ -279,6 +312,40 @@ int ubifs_recover_master_node(struct ubifs_info *c)
                        goto out_free;
                }
                memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
+
+               /*
+                * We had to recover the master node, which means there was an
+                * unclean reboot. However, it is possible that the master node
+                * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
+                * E.g., consider the following chain of events:
+                *
+                * 1. UBIFS was cleanly unmounted, so the master node is clean
+                * 2. UBIFS is being mounted R/W and starts changing the master
+                *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
+                *    so this LEB ends up with some amount of garbage at the
+                *    end.
+                * 3. UBIFS is being mounted R/O. We reach this place and
+                *    recover the master node from the second LEB
+                *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
+                *    because we are being mounted R/O. We have to defer the
+                *    operation.
+                * 4. However, this master node (@c->mst_node) is marked as
+                *    clean (since the step 1). And if we just return, the
+                *    mount code will be confused and won't recover the master
+                *    node when it is re-mounter R/W later.
+                *
+                *    Thus, to force the recovery by marking the master node as
+                *    dirty.
+                */
+               c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
+#ifndef __UBOOT__
+       } else {
+               /* Write the recovered master node */
+               c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
+               err = write_rcvrd_mst_node(c, c->mst_node);
+               if (err)
+                       goto out_free;
+#endif
        }
 
        vfree(buf2);
@@ -291,12 +358,12 @@ out_err:
 out_free:
        ubifs_err("failed to recover master node");
        if (mst1) {
-               dbg_err("dumping first master node");
-               dbg_dump_node(c, mst1);
+               ubifs_err("dumping first master node");
+               ubifs_dump_node(c, mst1);
        }
        if (mst2) {
-               dbg_err("dumping second master node");
-               dbg_dump_node(c, mst2);
+               ubifs_err("dumping second master node");
+               ubifs_dump_node(c, mst2);
        }
        vfree(buf2);
        vfree(buf1);
@@ -335,44 +402,23 @@ int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
  * @offs: offset to check
  *
  * This function returns %1 if @offs was in the last write to the LEB whose data
- * is in @buf, otherwise %0 is returned.  The determination is made by checking
- * for subsequent empty space starting from the next min_io_size boundary (or a
- * bit less than the common header size if min_io_size is one).
+ * is in @buf, otherwise %0 is returned. The determination is made by checking
+ * for subsequent empty space starting from the next @c->max_write_size
+ * boundary.
  */
 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
 {
-       int empty_offs;
-       int check_len;
+       int empty_offs, check_len;
        uint8_t *p;
 
-       if (c->min_io_size == 1) {
-               check_len = c->leb_size - offs;
-               p = buf + check_len;
-               for (; check_len > 0; check_len--)
-                       if (*--p != 0xff)
-                               break;
-               /*
-                * 'check_len' is the size of the corruption which cannot be
-                * more than the size of 1 node if it was caused by an unclean
-                * unmount.
-                */
-               if (check_len > UBIFS_MAX_NODE_SZ)
-                       return 0;
-               return 1;
-       }
-
        /*
-        * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
-        * last wbuf written. After that should be empty space.
+        * Round up to the next @c->max_write_size boundary i.e. @offs is in
+        * the last wbuf written. After that should be empty space.
         */
-       empty_offs = ALIGN(offs + 1, c->min_io_size);
+       empty_offs = ALIGN(offs + 1, c->max_write_size);
        check_len = c->leb_size - empty_offs;
        p = buf + empty_offs - offs;
-
-       for (; check_len > 0; check_len--)
-               if (*p++ != 0xff)
-                       return 0;
-       return 1;
+       return is_empty(p, check_len);
 }
 
 /**
@@ -385,7 +431,7 @@ static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
  *
  * This function pads up to the next min_io_size boundary (if there is one) and
  * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
- * min_io_size boundary (if there is one).
+ * @c->min_io_size boundary.
  */
 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
                      int *offs, int *len)
@@ -395,11 +441,6 @@ static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
        lnum = lnum;
        dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
 
-       if (c->min_io_size == 1) {
-               memset(*buf, 0xff, c->leb_size - *offs);
-               return;
-       }
-
        ubifs_assert(!(*offs & 7));
        empty_offs = ALIGN(*offs, c->min_io_size);
        pad_len = empty_offs - *offs;
@@ -429,7 +470,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
        int skip, dlen = le32_to_cpu(ch->len);
 
        /* Check for empty space after the corrupt node's common header */
-       skip = ALIGN(offs + UBIFS_CH_SZ, c->min_io_size) - offs;
+       skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
        if (is_empty(buf + skip, len - skip))
                return 1;
        /*
@@ -441,7 +482,7 @@ static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
                return 0;
        }
        /* Now we know the corrupt node's length we can skip over it */
-       skip = ALIGN(offs + dlen, c->min_io_size) - offs;
+       skip = ALIGN(offs + dlen, c->max_write_size) - offs;
        /* After which there should be empty space */
        if (is_empty(buf + skip, len - skip))
                return 1;
@@ -469,7 +510,7 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
                endpt = snod->offs + snod->len;
        }
 
-       if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
+       if (c->ro_mount && !c->remounting_rw) {
                /* Add to recovery list */
                struct ubifs_unclean_leb *ucleb;
 
@@ -481,21 +522,55 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
                ucleb->lnum = lnum;
                ucleb->endpt = endpt;
                list_add_tail(&ucleb->list, &c->unclean_leb_list);
+#ifndef __UBOOT__
+       } else {
+               /* Write the fixed LEB back to flash */
+               int err;
+
+               dbg_rcvry("fixing LEB %d start %d endpt %d",
+                         lnum, start, sleb->endpt);
+               if (endpt == 0) {
+                       err = ubifs_leb_unmap(c, lnum);
+                       if (err)
+                               return err;
+               } else {
+                       int len = ALIGN(endpt, c->min_io_size);
+
+                       if (start) {
+                               err = ubifs_leb_read(c, lnum, sleb->buf, 0,
+                                                    start, 1);
+                               if (err)
+                                       return err;
+                       }
+                       /* Pad to min_io_size */
+                       if (len > endpt) {
+                               int pad_len = len - ALIGN(endpt, 8);
+
+                               if (pad_len > 0) {
+                                       void *buf = sleb->buf + len - pad_len;
+
+                                       ubifs_pad(c, buf, pad_len);
+                               }
+                       }
+                       err = ubifs_leb_change(c, lnum, sleb->buf, len);
+                       if (err)
+                               return err;
+               }
+#endif
        }
        return 0;
 }
 
 /**
- * drop_incomplete_group - drop nodes from an incomplete group.
+ * drop_last_group - drop the last group of nodes.
  * @sleb: scanned LEB information
  * @offs: offset of dropped nodes is returned here
  *
- * This function returns %1 if nodes are dropped and %0 otherwise.
+ * This is a helper function for 'ubifs_recover_leb()' which drops the last
+ * group of nodes of the scanned LEB.
  */
-static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
+static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
 {
-       int dropped = 0;
-
        while (!list_empty(&sleb->nodes)) {
                struct ubifs_scan_node *snod;
                struct ubifs_ch *ch;
@@ -504,15 +579,41 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
                                  list);
                ch = snod->node;
                if (ch->group_type != UBIFS_IN_NODE_GROUP)
-                       return dropped;
-               dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
+                       break;
+
+               dbg_rcvry("dropping grouped node at %d:%d",
+                         sleb->lnum, snod->offs);
+               *offs = snod->offs;
+               list_del(&snod->list);
+               kfree(snod);
+               sleb->nodes_cnt -= 1;
+       }
+}
+
+/**
+ * drop_last_node - drop the last node.
+ * @sleb: scanned LEB information
+ * @offs: offset of dropped nodes is returned here
+ * @grouped: non-zero if whole group of nodes have to be dropped
+ *
+ * This is a helper function for 'ubifs_recover_leb()' which drops the last
+ * node of the scanned LEB.
+ */
+static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
+{
+       struct ubifs_scan_node *snod;
+
+       if (!list_empty(&sleb->nodes)) {
+               snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
+                                 list);
+
+               dbg_rcvry("dropping last node at %d:%d",
+                         sleb->lnum, snod->offs);
                *offs = snod->offs;
                list_del(&snod->list);
                kfree(snod);
                sleb->nodes_cnt -= 1;
-               dropped = 1;
        }
-       return dropped;
 }
 
 /**
@@ -521,33 +622,30 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
  * @lnum: LEB number
  * @offs: offset
  * @sbuf: LEB-sized buffer to use
- * @grouped: nodes may be grouped for recovery
+ * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
+ *         belong to any journal head)
  *
  * This function does a scan of a LEB, but caters for errors that might have
  * been caused by the unclean unmount from which we are attempting to recover.
- *
- * This function returns %0 on success and a negative error code on failure.
+ * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
+ * found, and a negative error code in case of failure.
  */
 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
-                                        int offs, void *sbuf, int grouped)
+                                        int offs, void *sbuf, int jhead)
 {
-       int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
-       int empty_chkd = 0, start = offs;
+       int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
+       int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
        struct ubifs_scan_leb *sleb;
        void *buf = sbuf + offs;
 
-       dbg_rcvry("%d:%d", lnum, offs);
+       dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
 
        sleb = ubifs_start_scan(c, lnum, offs, sbuf);
        if (IS_ERR(sleb))
                return sleb;
 
-       if (sleb->ecc)
-               need_clean = 1;
-
+       ubifs_assert(len >= 8);
        while (len >= 8) {
-               int ret;
-
                dbg_scan("look at LEB %d:%d (%d bytes left)",
                         lnum, offs, len);
 
@@ -557,8 +655,7 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
                 * Scan quietly until there is an error from which we cannot
                 * recover
                 */
-               ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
-
+               ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
                if (ret == SCANNED_A_NODE) {
                        /* A valid node, and not a padding node */
                        struct ubifs_ch *ch = buf;
@@ -571,98 +668,127 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
                        offs += node_len;
                        buf += node_len;
                        len -= node_len;
-                       continue;
-               }
-
-               if (ret > 0) {
+               } else if (ret > 0) {
                        /* Padding bytes or a valid padding node */
                        offs += ret;
                        buf += ret;
                        len -= ret;
-                       continue;
-               }
-
-               if (ret == SCANNED_EMPTY_SPACE) {
-                       if (!is_empty(buf, len)) {
-                               if (!is_last_write(c, buf, offs))
-                                       break;
-                               clean_buf(c, &buf, lnum, &offs, &len);
-                               need_clean = 1;
-                       }
-                       empty_chkd = 1;
+               } else if (ret == SCANNED_EMPTY_SPACE ||
+                          ret == SCANNED_GARBAGE     ||
+                          ret == SCANNED_A_BAD_PAD_NODE ||
+                          ret == SCANNED_A_CORRUPT_NODE) {
+                       dbg_rcvry("found corruption (%d) at %d:%d",
+                                 ret, lnum, offs);
                        break;
+               } else {
+                       ubifs_err("unexpected return value %d", ret);
+                       err = -EINVAL;
+                       goto error;
                }
+       }
 
-               if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
-                       if (is_last_write(c, buf, offs)) {
-                               clean_buf(c, &buf, lnum, &offs, &len);
-                               need_clean = 1;
-                               empty_chkd = 1;
-                               break;
-                       }
-
-               if (ret == SCANNED_A_CORRUPT_NODE)
-                       if (no_more_nodes(c, buf, len, lnum, offs)) {
-                               clean_buf(c, &buf, lnum, &offs, &len);
-                               need_clean = 1;
-                               empty_chkd = 1;
-                               break;
-                       }
-
-               if (quiet) {
-                       /* Redo the last scan but noisily */
-                       quiet = 0;
-                       continue;
-               }
+       if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
+               if (!is_last_write(c, buf, offs))
+                       goto corrupted_rescan;
+       } else if (ret == SCANNED_A_CORRUPT_NODE) {
+               if (!no_more_nodes(c, buf, len, lnum, offs))
+                       goto corrupted_rescan;
+       } else if (!is_empty(buf, len)) {
+               if (!is_last_write(c, buf, offs)) {
+                       int corruption = first_non_ff(buf, len);
 
-               switch (ret) {
-               case SCANNED_GARBAGE:
-                       dbg_err("garbage");
-                       goto corrupted;
-               case SCANNED_A_CORRUPT_NODE:
-               case SCANNED_A_BAD_PAD_NODE:
-                       dbg_err("bad node");
-                       goto corrupted;
-               default:
-                       dbg_err("unknown");
+                       /*
+                        * See header comment for this file for more
+                        * explanations about the reasons we have this check.
+                        */
+                       ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d",
+                                 lnum, offs, corruption);
+                       /* Make sure we dump interesting non-0xFF data */
+                       offs += corruption;
+                       buf += corruption;
                        goto corrupted;
                }
        }
 
-       if (!empty_chkd && !is_empty(buf, len)) {
-               if (is_last_write(c, buf, offs)) {
-                       clean_buf(c, &buf, lnum, &offs, &len);
-                       need_clean = 1;
-               } else {
-                       ubifs_err("corrupt empty space at LEB %d:%d",
-                                 lnum, offs);
-                       goto corrupted;
-               }
-       }
+       min_io_unit = round_down(offs, c->min_io_size);
+       if (grouped)
+               /*
+                * If nodes are grouped, always drop the incomplete group at
+                * the end.
+                */
+               drop_last_group(sleb, &offs);
 
-       /* Drop nodes from incomplete group */
-       if (grouped && drop_incomplete_group(sleb, &offs)) {
-               buf = sbuf + offs;
-               len = c->leb_size - offs;
-               clean_buf(c, &buf, lnum, &offs, &len);
-               need_clean = 1;
+       if (jhead == GCHD) {
+               /*
+                * If this LEB belongs to the GC head then while we are in the
+                * middle of the same min. I/O unit keep dropping nodes. So
+                * basically, what we want is to make sure that the last min.
+                * I/O unit where we saw the corruption is dropped completely
+                * with all the uncorrupted nodes which may possibly sit there.
+                *
+                * In other words, let's name the min. I/O unit where the
+                * corruption starts B, and the previous min. I/O unit A. The
+                * below code tries to deal with a situation when half of B
+                * contains valid nodes or the end of a valid node, and the
+                * second half of B contains corrupted data or garbage. This
+                * means that UBIFS had been writing to B just before the power
+                * cut happened. I do not know how realistic is this scenario
+                * that half of the min. I/O unit had been written successfully
+                * and the other half not, but this is possible in our 'failure
+                * mode emulation' infrastructure at least.
+                *
+                * So what is the problem, why we need to drop those nodes? Why
+                * can't we just clean-up the second half of B by putting a
+                * padding node there? We can, and this works fine with one
+                * exception which was reproduced with power cut emulation
+                * testing and happens extremely rarely.
+                *
+                * Imagine the file-system is full, we run GC which starts
+                * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
+                * the current GC head LEB). The @c->gc_lnum is -1, which means
+                * that GC will retain LEB X and will try to continue. Imagine
+                * that LEB X is currently the dirtiest LEB, and the amount of
+                * used space in LEB Y is exactly the same as amount of free
+                * space in LEB X.
+                *
+                * And a power cut happens when nodes are moved from LEB X to
+                * LEB Y. We are here trying to recover LEB Y which is the GC
+                * head LEB. We find the min. I/O unit B as described above.
+                * Then we clean-up LEB Y by padding min. I/O unit. And later
+                * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
+                * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
+                * does not match because the amount of valid nodes there does
+                * not fit the free space in LEB Y any more! And this is
+                * because of the padding node which we added to LEB Y. The
+                * user-visible effect of this which I once observed and
+                * analysed is that we cannot mount the file-system with
+                * -ENOSPC error.
+                *
+                * So obviously, to make sure that situation does not happen we
+                * should free min. I/O unit B in LEB Y completely and the last
+                * used min. I/O unit in LEB Y should be A. This is basically
+                * what the below code tries to do.
+                */
+               while (offs > min_io_unit)
+                       drop_last_node(sleb, &offs);
        }
 
-       if (offs % c->min_io_size) {
-               clean_buf(c, &buf, lnum, &offs, &len);
-               need_clean = 1;
-       }
+       buf = sbuf + offs;
+       len = c->leb_size - offs;
 
+       clean_buf(c, &buf, lnum, &offs, &len);
        ubifs_end_scan(c, sleb, lnum, offs);
 
-       if (need_clean) {
-               err = fix_unclean_leb(c, sleb, start);
-               if (err)
-                       goto error;
-       }
+       err = fix_unclean_leb(c, sleb, start);
+       if (err)
+               goto error;
 
        return sleb;
 
+corrupted_rescan:
+       /* Re-scan the corrupted data with verbose messages */
+       ubifs_err("corruption %d", ret);
+       ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
 corrupted:
        ubifs_scanned_corruption(c, lnum, offs, buf);
        err = -EUCLEAN;
@@ -693,22 +819,23 @@ static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
                return -ENOMEM;
        if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
                goto out_err;
-       err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
+       err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
+                            UBIFS_CS_NODE_SZ, 0);
        if (err && err != -EBADMSG)
                goto out_free;
        ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
        if (ret != SCANNED_A_NODE) {
-               dbg_err("Not a valid node");
+               ubifs_err("Not a valid node");
                goto out_err;
        }
        if (cs_node->ch.node_type != UBIFS_CS_NODE) {
-               dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
+               ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type);
                goto out_err;
        }
        if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
-               dbg_err("CS node cmt_no %llu != current cmt_no %llu",
-                       (unsigned long long)le64_to_cpu(cs_node->cmt_no),
-                       c->cmt_no);
+               ubifs_err("CS node cmt_no %llu != current cmt_no %llu",
+                         (unsigned long long)le64_to_cpu(cs_node->cmt_no),
+                         c->cmt_no);
                goto out_err;
        }
        *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
@@ -732,7 +859,8 @@ out_free:
  * @sbuf: LEB-sized buffer to use
  *
  * This function does a scan of a LEB, but caters for errors that might have
- * been caused by the unclean unmount from which we are attempting to recover.
+ * been caused by unclean reboots from which we are attempting to recover
+ * (assume that only the last log LEB can be corrupted by an unclean reboot).
  *
  * This function returns %0 on success and a negative error code on failure.
  */
@@ -751,7 +879,7 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
                 * We can only recover at the end of the log, so check that the
                 * next log LEB is empty or out of date.
                 */
-               sleb = ubifs_scan(c, next_lnum, 0, sbuf);
+               sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
                if (IS_ERR(sleb))
                        return sleb;
                if (sleb->nodes_cnt) {
@@ -770,15 +898,15 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
                                }
                        }
                        if (snod->sqnum > cs_sqnum) {
-                               ubifs_err("unrecoverable log corruption "
-                                         "in LEB %d", lnum);
+                               ubifs_err("unrecoverable log corruption in LEB %d",
+                                         lnum);
                                ubifs_scan_destroy(sleb);
                                return ERR_PTR(-EUCLEAN);
                        }
                }
                ubifs_scan_destroy(sleb);
        }
-       return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
+       return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
 }
 
 /**
@@ -792,15 +920,10 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
  *
  * This function returns %0 on success and a negative error code on failure.
  */
-static int recover_head(const struct ubifs_info *c, int lnum, int offs,
-                       void *sbuf)
+static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
 {
-       int len, err, need_clean = 0;
+       int len = c->max_write_size, err;
 
-       if (c->min_io_size > 1)
-               len = c->min_io_size;
-       else
-               len = 512;
        if (offs + len > c->leb_size)
                len = c->leb_size - offs;
 
@@ -808,27 +931,15 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs,
                return 0;
 
        /* Read at the head location and check it is empty flash */
-       err = ubi_read(c->ubi, lnum, sbuf, offs, len);
-       if (err)
-               need_clean = 1;
-       else {
-               uint8_t *p = sbuf;
-
-               while (len--)
-                       if (*p++ != 0xff) {
-                               need_clean = 1;
-                               break;
-                       }
-       }
-
-       if (need_clean) {
+       err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
+       if (err || !is_empty(sbuf, len)) {
                dbg_rcvry("cleaning head at %d:%d", lnum, offs);
                if (offs == 0)
                        return ubifs_leb_unmap(c, lnum);
-               err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
+               err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
                if (err)
                        return err;
-               return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
+               return ubifs_leb_change(c, lnum, sbuf, offs);
        }
 
        return 0;
@@ -851,11 +962,11 @@ static int recover_head(const struct ubifs_info *c, int lnum, int offs,
  *
  * This function returns %0 on success and a negative error code on failure.
  */
-int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
+int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
 {
        int err;
 
-       ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);
+       ubifs_assert(!c->ro_mount || c->remounting_rw);
 
        dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
        err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
@@ -871,7 +982,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
 }
 
 /**
- *  clean_an_unclean_leb - read and write a LEB to remove corruption.
+ * clean_an_unclean_leb - read and write a LEB to remove corruption.
  * @c: UBIFS file-system description object
  * @ucleb: unclean LEB information
  * @sbuf: LEB-sized buffer to use
@@ -882,7 +993,7 @@ int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
  *
  * This function returns %0 on success and a negative error code on failure.
  */
-static int clean_an_unclean_leb(const struct ubifs_info *c,
+static int clean_an_unclean_leb(struct ubifs_info *c,
                                struct ubifs_unclean_leb *ucleb, void *sbuf)
 {
        int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
@@ -898,7 +1009,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
                return 0;
        }
 
-       err = ubi_read(c->ubi, lnum, buf, offs, len);
+       err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
        if (err && err != -EBADMSG)
                return err;
 
@@ -958,7 +1069,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
        }
 
        /* Write back the LEB atomically */
-       err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
+       err = ubifs_leb_change(c, lnum, sbuf, len);
        if (err)
                return err;
 
@@ -978,7 +1089,7 @@ static int clean_an_unclean_leb(const struct ubifs_info *c,
  *
  * This function returns %0 on success and a negative error code on failure.
  */
-int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
+int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
 {
        dbg_rcvry("recovery");
        while (!list_empty(&c->unclean_leb_list)) {
@@ -996,6 +1107,140 @@ int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
        return 0;
 }
 
+#ifndef __UBOOT__
+/**
+ * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
+ * @c: UBIFS file-system description object
+ *
+ * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
+ * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
+ * zero in case of success and a negative error code in case of failure.
+ */
+static int grab_empty_leb(struct ubifs_info *c)
+{
+       int lnum, err;
+
+       /*
+        * Note, it is very important to first search for an empty LEB and then
+        * run the commit, not vice-versa. The reason is that there might be
+        * only one empty LEB at the moment, the one which has been the
+        * @c->gc_lnum just before the power cut happened. During the regular
+        * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
+        * one but GC can grab it. But at this moment this single empty LEB is
+        * not marked as taken, so if we run commit - what happens? Right, the
+        * commit will grab it and write the index there. Remember that the
+        * index always expands as long as there is free space, and it only
+        * starts consolidating when we run out of space.
+        *
+        * IOW, if we run commit now, we might not be able to find a free LEB
+        * after this.
+        */
+       lnum = ubifs_find_free_leb_for_idx(c);
+       if (lnum < 0) {
+               ubifs_err("could not find an empty LEB");
+               ubifs_dump_lprops(c);
+               ubifs_dump_budg(c, &c->bi);
+               return lnum;
+       }
+
+       /* Reset the index flag */
+       err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
+                                 LPROPS_INDEX, 0);
+       if (err)
+               return err;
+
+       c->gc_lnum = lnum;
+       dbg_rcvry("found empty LEB %d, run commit", lnum);
+
+       return ubifs_run_commit(c);
+}
+
+/**
+ * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
+ * @c: UBIFS file-system description object
+ *
+ * Out-of-place garbage collection requires always one empty LEB with which to
+ * start garbage collection. The LEB number is recorded in c->gc_lnum and is
+ * written to the master node on unmounting. In the case of an unclean unmount
+ * the value of gc_lnum recorded in the master node is out of date and cannot
+ * be used. Instead, recovery must allocate an empty LEB for this purpose.
+ * However, there may not be enough empty space, in which case it must be
+ * possible to GC the dirtiest LEB into the GC head LEB.
+ *
+ * This function also runs the commit which causes the TNC updates from
+ * size-recovery and orphans to be written to the flash. That is important to
+ * ensure correct replay order for subsequent mounts.
+ *
+ * This function returns %0 on success and a negative error code on failure.
+ */
+int ubifs_rcvry_gc_commit(struct ubifs_info *c)
+{
+       struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
+       struct ubifs_lprops lp;
+       int err;
+
+       dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
+
+       c->gc_lnum = -1;
+       if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
+               return grab_empty_leb(c);
+
+       err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
+       if (err) {
+               if (err != -ENOSPC)
+                       return err;
+
+               dbg_rcvry("could not find a dirty LEB");
+               return grab_empty_leb(c);
+       }
+
+       ubifs_assert(!(lp.flags & LPROPS_INDEX));
+       ubifs_assert(lp.free + lp.dirty >= wbuf->offs);
+
+       /*
+        * We run the commit before garbage collection otherwise subsequent
+        * mounts will see the GC and orphan deletion in a different order.
+        */
+       dbg_rcvry("committing");
+       err = ubifs_run_commit(c);
+       if (err)
+               return err;
+
+       dbg_rcvry("GC'ing LEB %d", lp.lnum);
+       mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
+       err = ubifs_garbage_collect_leb(c, &lp);
+       if (err >= 0) {
+               int err2 = ubifs_wbuf_sync_nolock(wbuf);
+
+               if (err2)
+                       err = err2;
+       }
+       mutex_unlock(&wbuf->io_mutex);
+       if (err < 0) {
+               ubifs_err("GC failed, error %d", err);
+               if (err == -EAGAIN)
+                       err = -EINVAL;
+               return err;
+       }
+
+       ubifs_assert(err == LEB_RETAINED);
+       if (err != LEB_RETAINED)
+               return -EINVAL;
+
+       err = ubifs_leb_unmap(c, c->gc_lnum);
+       if (err)
+               return err;
+
+       dbg_rcvry("allocated LEB %d for GC", lp.lnum);
+       return 0;
+}
+#else
+int ubifs_rcvry_gc_commit(struct ubifs_info *c)
+{
+       return 0;
+}
+#endif
+
 /**
  * struct size_entry - inode size information for recovery.
  * @rb: link in the RB-tree of sizes
@@ -1089,6 +1334,23 @@ static void remove_ino(struct ubifs_info *c, ino_t inum)
        kfree(e);
 }
 
+/**
+ * ubifs_destroy_size_tree - free resources related to the size tree.
+ * @c: UBIFS file-system description object
+ */
+void ubifs_destroy_size_tree(struct ubifs_info *c)
+{
+       struct size_entry *e, *n;
+
+       rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
+               if (e->inode)
+                       iput(e->inode);
+               kfree(e);
+       }
+
+       c->size_tree = RB_ROOT;
+}
+
 /**
  * ubifs_recover_size_accum - accumulate inode sizes for recovery.
  * @c: UBIFS file-system description object
@@ -1157,6 +1419,64 @@ int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
        return 0;
 }
 
+#ifndef __UBOOT__
+/**
+ * fix_size_in_place - fix inode size in place on flash.
+ * @c: UBIFS file-system description object
+ * @e: inode size information for recovery
+ */
+static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
+{
+       struct ubifs_ino_node *ino = c->sbuf;
+       unsigned char *p;
+       union ubifs_key key;
+       int err, lnum, offs, len;
+       loff_t i_size;
+       uint32_t crc;
+
+       /* Locate the inode node LEB number and offset */
+       ino_key_init(c, &key, e->inum);
+       err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
+       if (err)
+               goto out;
+       /*
+        * If the size recorded on the inode node is greater than the size that
+        * was calculated from nodes in the journal then don't change the inode.
+        */
+       i_size = le64_to_cpu(ino->size);
+       if (i_size >= e->d_size)
+               return 0;
+       /* Read the LEB */
+       err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
+       if (err)
+               goto out;
+       /* Change the size field and recalculate the CRC */
+       ino = c->sbuf + offs;
+       ino->size = cpu_to_le64(e->d_size);
+       len = le32_to_cpu(ino->ch.len);
+       crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
+       ino->ch.crc = cpu_to_le32(crc);
+       /* Work out where data in the LEB ends and free space begins */
+       p = c->sbuf;
+       len = c->leb_size - 1;
+       while (p[len] == 0xff)
+               len -= 1;
+       len = ALIGN(len + 1, c->min_io_size);
+       /* Atomically write the fixed LEB back again */
+       err = ubifs_leb_change(c, lnum, c->sbuf, len);
+       if (err)
+               goto out;
+       dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
+                 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
+       return 0;
+
+out:
+       ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
+                  (unsigned long)e->inum, e->i_size, e->d_size, err);
+       return err;
+}
+#endif
+
 /**
  * ubifs_recover_size - recover inode size.
  * @c: UBIFS file-system description object
@@ -1196,30 +1516,48 @@ int ubifs_recover_size(struct ubifs_info *c)
                                e->i_size = le64_to_cpu(ino->size);
                        }
                }
+
                if (e->exists && e->i_size < e->d_size) {
-                       if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
+                       if (c->ro_mount) {
                                /* Fix the inode size and pin it in memory */
                                struct inode *inode;
+                               struct ubifs_inode *ui;
+
+                               ubifs_assert(!e->inode);
 
                                inode = ubifs_iget(c->vfs_sb, e->inum);
                                if (IS_ERR(inode))
                                        return PTR_ERR(inode);
+
+                               ui = ubifs_inode(inode);
                                if (inode->i_size < e->d_size) {
                                        dbg_rcvry("ino %lu size %lld -> %lld",
                                                  (unsigned long)e->inum,
-                                                 e->d_size, inode->i_size);
+                                                 inode->i_size, e->d_size);
                                        inode->i_size = e->d_size;
-                                       ubifs_inode(inode)->ui_size = e->d_size;
+                                       ui->ui_size = e->d_size;
+                                       ui->synced_i_size = e->d_size;
                                        e->inode = inode;
                                        this = rb_next(this);
                                        continue;
                                }
                                iput(inode);
+#ifndef __UBOOT__
+                       } else {
+                               /* Fix the size in place */
+                               err = fix_size_in_place(c, e);
+                               if (err)
+                                       return err;
+                               if (e->inode)
+                                       iput(e->inode);
+#endif
                        }
                }
+
                this = rb_next(this);
                rb_erase(&e->rb, &c->size_tree);
                kfree(e);
        }
+
        return 0;
 }