]> git.karo-electronics.de Git - mv-sheeva.git/blobdiff - drivers/net/wireless/ath/key.c
Merge branch 'master' into tk71
[mv-sheeva.git] / drivers / net / wireless / ath / key.c
diff --git a/drivers/net/wireless/ath/key.c b/drivers/net/wireless/ath/key.c
new file mode 100644 (file)
index 0000000..5d465e5
--- /dev/null
@@ -0,0 +1,565 @@
+/*
+ * Copyright (c) 2009 Atheros Communications Inc.
+ * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <asm/unaligned.h>
+#include <net/mac80211.h>
+
+#include "ath.h"
+#include "reg.h"
+
+#define REG_READ                       (common->ops->read)
+#define REG_WRITE(_ah, _reg, _val)     (common->ops->write)(_ah, _val, _reg)
+
+#define IEEE80211_WEP_NKID      4       /* number of key ids */
+
+/************************/
+/* Key Cache Management */
+/************************/
+
+bool ath_hw_keyreset(struct ath_common *common, u16 entry)
+{
+       u32 keyType;
+       void *ah = common->ah;
+
+       if (entry >= common->keymax) {
+               ath_err(common, "keycache entry %u out of range\n", entry);
+               return false;
+       }
+
+       keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
+
+       REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
+       REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
+       REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
+
+       if (keyType == AR_KEYTABLE_TYPE_TKIP) {
+               u16 micentry = entry + 64;
+
+               REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
+               if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)
+                       REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
+
+       }
+
+       return true;
+}
+EXPORT_SYMBOL(ath_hw_keyreset);
+
+static bool ath_hw_keysetmac(struct ath_common *common,
+                            u16 entry, const u8 *mac)
+{
+       u32 macHi, macLo;
+       u32 unicast_flag = AR_KEYTABLE_VALID;
+       void *ah = common->ah;
+
+       if (entry >= common->keymax) {
+               ath_err(common, "keycache entry %u out of range\n", entry);
+               return false;
+       }
+
+       if (mac != NULL) {
+               /*
+                * AR_KEYTABLE_VALID indicates that the address is a unicast
+                * address, which must match the transmitter address for
+                * decrypting frames.
+                * Not setting this bit allows the hardware to use the key
+                * for multicast frame decryption.
+                */
+               if (mac[0] & 0x01)
+                       unicast_flag = 0;
+
+               macHi = (mac[5] << 8) | mac[4];
+               macLo = (mac[3] << 24) |
+                       (mac[2] << 16) |
+                       (mac[1] << 8) |
+                       mac[0];
+               macLo >>= 1;
+               macLo |= (macHi & 1) << 31;
+               macHi >>= 1;
+       } else {
+               macLo = macHi = 0;
+       }
+       REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
+       REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
+
+       return true;
+}
+
+static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
+                                     const struct ath_keyval *k,
+                                     const u8 *mac)
+{
+       void *ah = common->ah;
+       u32 key0, key1, key2, key3, key4;
+       u32 keyType;
+
+       if (entry >= common->keymax) {
+               ath_err(common, "keycache entry %u out of range\n", entry);
+               return false;
+       }
+
+       switch (k->kv_type) {
+       case ATH_CIPHER_AES_OCB:
+               keyType = AR_KEYTABLE_TYPE_AES;
+               break;
+       case ATH_CIPHER_AES_CCM:
+               if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
+                       ath_dbg(common, ATH_DBG_ANY,
+                               "AES-CCM not supported by this mac rev\n");
+                       return false;
+               }
+               keyType = AR_KEYTABLE_TYPE_CCM;
+               break;
+       case ATH_CIPHER_TKIP:
+               keyType = AR_KEYTABLE_TYPE_TKIP;
+               if (entry + 64 >= common->keymax) {
+                       ath_dbg(common, ATH_DBG_ANY,
+                               "entry %u inappropriate for TKIP\n", entry);
+                       return false;
+               }
+               break;
+       case ATH_CIPHER_WEP:
+               if (k->kv_len < WLAN_KEY_LEN_WEP40) {
+                       ath_dbg(common, ATH_DBG_ANY,
+                               "WEP key length %u too small\n", k->kv_len);
+                       return false;
+               }
+               if (k->kv_len <= WLAN_KEY_LEN_WEP40)
+                       keyType = AR_KEYTABLE_TYPE_40;
+               else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
+                       keyType = AR_KEYTABLE_TYPE_104;
+               else
+                       keyType = AR_KEYTABLE_TYPE_128;
+               break;
+       case ATH_CIPHER_CLR:
+               keyType = AR_KEYTABLE_TYPE_CLR;
+               break;
+       default:
+               ath_err(common, "cipher %u not supported\n", k->kv_type);
+               return false;
+       }
+
+       key0 = get_unaligned_le32(k->kv_val + 0);
+       key1 = get_unaligned_le16(k->kv_val + 4);
+       key2 = get_unaligned_le32(k->kv_val + 6);
+       key3 = get_unaligned_le16(k->kv_val + 10);
+       key4 = get_unaligned_le32(k->kv_val + 12);
+       if (k->kv_len <= WLAN_KEY_LEN_WEP104)
+               key4 &= 0xff;
+
+       /*
+        * Note: Key cache registers access special memory area that requires
+        * two 32-bit writes to actually update the values in the internal
+        * memory. Consequently, the exact order and pairs used here must be
+        * maintained.
+        */
+
+       if (keyType == AR_KEYTABLE_TYPE_TKIP) {
+               u16 micentry = entry + 64;
+
+               /*
+                * Write inverted key[47:0] first to avoid Michael MIC errors
+                * on frames that could be sent or received at the same time.
+                * The correct key will be written in the end once everything
+                * else is ready.
+                */
+               REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
+
+               /* Write key[95:48] */
+               REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
+               REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
+
+               /* Write key[127:96] and key type */
+               REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
+               REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
+
+               /* Write MAC address for the entry */
+               (void) ath_hw_keysetmac(common, entry, mac);
+
+               if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
+                       /*
+                        * TKIP uses two key cache entries:
+                        * Michael MIC TX/RX keys in the same key cache entry
+                        * (idx = main index + 64):
+                        * key0 [31:0] = RX key [31:0]
+                        * key1 [15:0] = TX key [31:16]
+                        * key1 [31:16] = reserved
+                        * key2 [31:0] = RX key [63:32]
+                        * key3 [15:0] = TX key [15:0]
+                        * key3 [31:16] = reserved
+                        * key4 [31:0] = TX key [63:32]
+                        */
+                       u32 mic0, mic1, mic2, mic3, mic4;
+
+                       mic0 = get_unaligned_le32(k->kv_mic + 0);
+                       mic2 = get_unaligned_le32(k->kv_mic + 4);
+                       mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
+                       mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
+                       mic4 = get_unaligned_le32(k->kv_txmic + 4);
+
+                       /* Write RX[31:0] and TX[31:16] */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
+                       REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
+
+                       /* Write RX[63:32] and TX[15:0] */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
+                       REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
+
+                       /* Write TX[63:32] and keyType(reserved) */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
+                       REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
+                                 AR_KEYTABLE_TYPE_CLR);
+
+               } else {
+                       /*
+                        * TKIP uses four key cache entries (two for group
+                        * keys):
+                        * Michael MIC TX/RX keys are in different key cache
+                        * entries (idx = main index + 64 for TX and
+                        * main index + 32 + 96 for RX):
+                        * key0 [31:0] = TX/RX MIC key [31:0]
+                        * key1 [31:0] = reserved
+                        * key2 [31:0] = TX/RX MIC key [63:32]
+                        * key3 [31:0] = reserved
+                        * key4 [31:0] = reserved
+                        *
+                        * Upper layer code will call this function separately
+                        * for TX and RX keys when these registers offsets are
+                        * used.
+                        */
+                       u32 mic0, mic2;
+
+                       mic0 = get_unaligned_le32(k->kv_mic + 0);
+                       mic2 = get_unaligned_le32(k->kv_mic + 4);
+
+                       /* Write MIC key[31:0] */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
+                       REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
+
+                       /* Write MIC key[63:32] */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
+                       REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
+
+                       /* Write TX[63:32] and keyType(reserved) */
+                       REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
+                       REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
+                                 AR_KEYTABLE_TYPE_CLR);
+               }
+
+               /* MAC address registers are reserved for the MIC entry */
+               REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
+               REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
+
+               /*
+                * Write the correct (un-inverted) key[47:0] last to enable
+                * TKIP now that all other registers are set with correct
+                * values.
+                */
+               REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
+       } else {
+               /* Write key[47:0] */
+               REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
+               REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
+
+               /* Write key[95:48] */
+               REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
+               REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
+
+               /* Write key[127:96] and key type */
+               REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
+               REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
+
+               /* Write MAC address for the entry */
+               (void) ath_hw_keysetmac(common, entry, mac);
+       }
+
+       return true;
+}
+
+static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
+                          struct ath_keyval *hk, const u8 *addr,
+                          bool authenticator)
+{
+       const u8 *key_rxmic;
+       const u8 *key_txmic;
+
+       key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
+       key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
+
+       if (addr == NULL) {
+               /*
+                * Group key installation - only two key cache entries are used
+                * regardless of splitmic capability since group key is only
+                * used either for TX or RX.
+                */
+               if (authenticator) {
+                       memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
+                       memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
+               } else {
+                       memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
+                       memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
+               }
+               return ath_hw_set_keycache_entry(common, keyix, hk, addr);
+       }
+       if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
+               /* TX and RX keys share the same key cache entry. */
+               memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
+               memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
+               return ath_hw_set_keycache_entry(common, keyix, hk, addr);
+       }
+
+       /* Separate key cache entries for TX and RX */
+
+       /* TX key goes at first index, RX key at +32. */
+       memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
+       if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
+               /* TX MIC entry failed. No need to proceed further */
+               ath_err(common, "Setting TX MIC Key Failed\n");
+               return 0;
+       }
+
+       memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
+       /* XXX delete tx key on failure? */
+       return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
+}
+
+static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
+{
+       int i;
+
+       for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
+               if (test_bit(i, common->keymap) ||
+                   test_bit(i + 64, common->keymap))
+                       continue; /* At least one part of TKIP key allocated */
+               if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
+                   (test_bit(i + 32, common->keymap) ||
+                    test_bit(i + 64 + 32, common->keymap)))
+                       continue; /* At least one part of TKIP key allocated */
+
+               /* Found a free slot for a TKIP key */
+               return i;
+       }
+       return -1;
+}
+
+static int ath_reserve_key_cache_slot(struct ath_common *common,
+                                     u32 cipher)
+{
+       int i;
+
+       if (cipher == WLAN_CIPHER_SUITE_TKIP)
+               return ath_reserve_key_cache_slot_tkip(common);
+
+       /* First, try to find slots that would not be available for TKIP. */
+       if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
+               for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
+                       if (!test_bit(i, common->keymap) &&
+                           (test_bit(i + 32, common->keymap) ||
+                            test_bit(i + 64, common->keymap) ||
+                            test_bit(i + 64 + 32, common->keymap)))
+                               return i;
+                       if (!test_bit(i + 32, common->keymap) &&
+                           (test_bit(i, common->keymap) ||
+                            test_bit(i + 64, common->keymap) ||
+                            test_bit(i + 64 + 32, common->keymap)))
+                               return i + 32;
+                       if (!test_bit(i + 64, common->keymap) &&
+                           (test_bit(i , common->keymap) ||
+                            test_bit(i + 32, common->keymap) ||
+                            test_bit(i + 64 + 32, common->keymap)))
+                               return i + 64;
+                       if (!test_bit(i + 64 + 32, common->keymap) &&
+                           (test_bit(i, common->keymap) ||
+                            test_bit(i + 32, common->keymap) ||
+                            test_bit(i + 64, common->keymap)))
+                               return i + 64 + 32;
+               }
+       } else {
+               for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
+                       if (!test_bit(i, common->keymap) &&
+                           test_bit(i + 64, common->keymap))
+                               return i;
+                       if (test_bit(i, common->keymap) &&
+                           !test_bit(i + 64, common->keymap))
+                               return i + 64;
+               }
+       }
+
+       /* No partially used TKIP slots, pick any available slot */
+       for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
+               /* Do not allow slots that could be needed for TKIP group keys
+                * to be used. This limitation could be removed if we know that
+                * TKIP will not be used. */
+               if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
+                       continue;
+               if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
+                       if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
+                               continue;
+                       if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
+                               continue;
+               }
+
+               if (!test_bit(i, common->keymap))
+                       return i; /* Found a free slot for a key */
+       }
+
+       /* No free slot found */
+       return -1;
+}
+
+/*
+ * Configure encryption in the HW.
+ */
+int ath_key_config(struct ath_common *common,
+                         struct ieee80211_vif *vif,
+                         struct ieee80211_sta *sta,
+                         struct ieee80211_key_conf *key)
+{
+       struct ath_keyval hk;
+       const u8 *mac = NULL;
+       u8 gmac[ETH_ALEN];
+       int ret = 0;
+       int idx;
+
+       memset(&hk, 0, sizeof(hk));
+
+       switch (key->cipher) {
+       case WLAN_CIPHER_SUITE_WEP40:
+       case WLAN_CIPHER_SUITE_WEP104:
+               hk.kv_type = ATH_CIPHER_WEP;
+               break;
+       case WLAN_CIPHER_SUITE_TKIP:
+               hk.kv_type = ATH_CIPHER_TKIP;
+               break;
+       case WLAN_CIPHER_SUITE_CCMP:
+               hk.kv_type = ATH_CIPHER_AES_CCM;
+               break;
+       default:
+               return -EOPNOTSUPP;
+       }
+
+       hk.kv_len = key->keylen;
+       memcpy(hk.kv_val, key->key, key->keylen);
+
+       if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
+               switch (vif->type) {
+               case NL80211_IFTYPE_AP:
+                       memcpy(gmac, vif->addr, ETH_ALEN);
+                       gmac[0] |= 0x01;
+                       mac = gmac;
+                       idx = ath_reserve_key_cache_slot(common, key->cipher);
+                       break;
+               case NL80211_IFTYPE_ADHOC:
+                       if (!sta) {
+                               idx = key->keyidx;
+                               break;
+                       }
+                       memcpy(gmac, sta->addr, ETH_ALEN);
+                       gmac[0] |= 0x01;
+                       mac = gmac;
+                       idx = ath_reserve_key_cache_slot(common, key->cipher);
+                       break;
+               default:
+                       idx = key->keyidx;
+                       break;
+               }
+       } else if (key->keyidx) {
+               if (WARN_ON(!sta))
+                       return -EOPNOTSUPP;
+               mac = sta->addr;
+
+               if (vif->type != NL80211_IFTYPE_AP) {
+                       /* Only keyidx 0 should be used with unicast key, but
+                        * allow this for client mode for now. */
+                       idx = key->keyidx;
+               } else
+                       return -EIO;
+       } else {
+               if (WARN_ON(!sta))
+                       return -EOPNOTSUPP;
+               mac = sta->addr;
+
+               idx = ath_reserve_key_cache_slot(common, key->cipher);
+       }
+
+       if (idx < 0)
+               return -ENOSPC; /* no free key cache entries */
+
+       if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
+               ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
+                                     vif->type == NL80211_IFTYPE_AP);
+       else
+               ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
+
+       if (!ret)
+               return -EIO;
+
+       set_bit(idx, common->keymap);
+       if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
+               set_bit(idx + 64, common->keymap);
+               set_bit(idx, common->tkip_keymap);
+               set_bit(idx + 64, common->tkip_keymap);
+               if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
+                       set_bit(idx + 32, common->keymap);
+                       set_bit(idx + 64 + 32, common->keymap);
+                       set_bit(idx + 32, common->tkip_keymap);
+                       set_bit(idx + 64 + 32, common->tkip_keymap);
+               }
+       }
+
+       return idx;
+}
+EXPORT_SYMBOL(ath_key_config);
+
+/*
+ * Delete Key.
+ */
+void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
+{
+       ath_hw_keyreset(common, key->hw_key_idx);
+       if (key->hw_key_idx < IEEE80211_WEP_NKID)
+               return;
+
+       clear_bit(key->hw_key_idx, common->keymap);
+       if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
+               return;
+
+       clear_bit(key->hw_key_idx + 64, common->keymap);
+
+       clear_bit(key->hw_key_idx, common->tkip_keymap);
+       clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
+
+       if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
+               ath_hw_keyreset(common, key->hw_key_idx + 32);
+               clear_bit(key->hw_key_idx + 32, common->keymap);
+               clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
+
+               clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
+               clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
+       }
+}
+EXPORT_SYMBOL(ath_key_delete);