]> git.karo-electronics.de Git - mv-sheeva.git/blobdiff - drivers/rtc/interface.c
Merge tag 'v2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mv-sheeva.git] / drivers / rtc / interface.c
index a0c816238aa9bd0966c78a67262141fa25c2ab02..cb2f0728fd70dc187bcc80be8fa7d21bd35fbe7c 100644 (file)
 #include <linux/rtc.h>
 #include <linux/sched.h>
 #include <linux/log2.h>
+#include <linux/workqueue.h>
 
-int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
+static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
+static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
+
+static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 {
        int err;
-
-       err = mutex_lock_interruptible(&rtc->ops_lock);
-       if (err)
-               return err;
-
        if (!rtc->ops)
                err = -ENODEV;
        else if (!rtc->ops->read_time)
@@ -31,7 +30,18 @@ int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
                memset(tm, 0, sizeof(struct rtc_time));
                err = rtc->ops->read_time(rtc->dev.parent, tm);
        }
+       return err;
+}
 
+int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
+{
+       int err;
+
+       err = mutex_lock_interruptible(&rtc->ops_lock);
+       if (err)
+               return err;
+
+       err = __rtc_read_time(rtc, tm);
        mutex_unlock(&rtc->ops_lock);
        return err;
 }
@@ -106,188 +116,60 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
 }
 EXPORT_SYMBOL_GPL(rtc_set_mmss);
 
-static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 {
        int err;
 
        err = mutex_lock_interruptible(&rtc->ops_lock);
        if (err)
                return err;
-
        if (rtc->ops == NULL)
                err = -ENODEV;
        else if (!rtc->ops->read_alarm)
                err = -EINVAL;
        else {
                memset(alarm, 0, sizeof(struct rtc_wkalrm));
-               err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
+               alarm->enabled = rtc->aie_timer.enabled;
+               alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
        }
-
        mutex_unlock(&rtc->ops_lock);
+
        return err;
 }
+EXPORT_SYMBOL_GPL(rtc_read_alarm);
 
-int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 {
+       struct rtc_time tm;
+       long now, scheduled;
        int err;
-       struct rtc_time before, now;
-       int first_time = 1;
-       unsigned long t_now, t_alm;
-       enum { none, day, month, year } missing = none;
-       unsigned days;
-
-       /* The lower level RTC driver may return -1 in some fields,
-        * creating invalid alarm->time values, for reasons like:
-        *
-        *   - The hardware may not be capable of filling them in;
-        *     many alarms match only on time-of-day fields, not
-        *     day/month/year calendar data.
-        *
-        *   - Some hardware uses illegal values as "wildcard" match
-        *     values, which non-Linux firmware (like a BIOS) may try
-        *     to set up as e.g. "alarm 15 minutes after each hour".
-        *     Linux uses only oneshot alarms.
-        *
-        * When we see that here, we deal with it by using values from
-        * a current RTC timestamp for any missing (-1) values.  The
-        * RTC driver prevents "periodic alarm" modes.
-        *
-        * But this can be racey, because some fields of the RTC timestamp
-        * may have wrapped in the interval since we read the RTC alarm,
-        * which would lead to us inserting inconsistent values in place
-        * of the -1 fields.
-        *
-        * Reading the alarm and timestamp in the reverse sequence
-        * would have the same race condition, and not solve the issue.
-        *
-        * So, we must first read the RTC timestamp,
-        * then read the RTC alarm value,
-        * and then read a second RTC timestamp.
-        *
-        * If any fields of the second timestamp have changed
-        * when compared with the first timestamp, then we know
-        * our timestamp may be inconsistent with that used by
-        * the low-level rtc_read_alarm_internal() function.
-        *
-        * So, when the two timestamps disagree, we just loop and do
-        * the process again to get a fully consistent set of values.
-        *
-        * This could all instead be done in the lower level driver,
-        * but since more than one lower level RTC implementation needs it,
-        * then it's probably best best to do it here instead of there..
-        */
 
-       /* Get the "before" timestamp */
-       err = rtc_read_time(rtc, &before);
-       if (err < 0)
+       err = rtc_valid_tm(&alarm->time);
+       if (err)
                return err;
-       do {
-               if (!first_time)
-                       memcpy(&before, &now, sizeof(struct rtc_time));
-               first_time = 0;
-
-               /* get the RTC alarm values, which may be incomplete */
-               err = rtc_read_alarm_internal(rtc, alarm);
-               if (err)
-                       return err;
-               if (!alarm->enabled)
-                       return 0;
-
-               /* full-function RTCs won't have such missing fields */
-               if (rtc_valid_tm(&alarm->time) == 0)
-                       return 0;
-
-               /* get the "after" timestamp, to detect wrapped fields */
-               err = rtc_read_time(rtc, &now);
-               if (err < 0)
-                       return err;
-
-               /* note that tm_sec is a "don't care" value here: */
-       } while (   before.tm_min   != now.tm_min
-                || before.tm_hour  != now.tm_hour
-                || before.tm_mon   != now.tm_mon
-                || before.tm_year  != now.tm_year);
+       rtc_tm_to_time(&alarm->time, &scheduled);
 
-       /* Fill in the missing alarm fields using the timestamp; we
-        * know there's at least one since alarm->time is invalid.
+       /* Make sure we're not setting alarms in the past */
+       err = __rtc_read_time(rtc, &tm);
+       rtc_tm_to_time(&tm, &now);
+       if (scheduled <= now)
+               return -ETIME;
+       /*
+        * XXX - We just checked to make sure the alarm time is not
+        * in the past, but there is still a race window where if
+        * the is alarm set for the next second and the second ticks
+        * over right here, before we set the alarm.
         */
-       if (alarm->time.tm_sec == -1)
-               alarm->time.tm_sec = now.tm_sec;
-       if (alarm->time.tm_min == -1)
-               alarm->time.tm_min = now.tm_min;
-       if (alarm->time.tm_hour == -1)
-               alarm->time.tm_hour = now.tm_hour;
-
-       /* For simplicity, only support date rollover for now */
-       if (alarm->time.tm_mday == -1) {
-               alarm->time.tm_mday = now.tm_mday;
-               missing = day;
-       }
-       if (alarm->time.tm_mon == -1) {
-               alarm->time.tm_mon = now.tm_mon;
-               if (missing == none)
-                       missing = month;
-       }
-       if (alarm->time.tm_year == -1) {
-               alarm->time.tm_year = now.tm_year;
-               if (missing == none)
-                       missing = year;
-       }
 
-       /* with luck, no rollover is needed */
-       rtc_tm_to_time(&now, &t_now);
-       rtc_tm_to_time(&alarm->time, &t_alm);
-       if (t_now < t_alm)
-               goto done;
-
-       switch (missing) {
-
-       /* 24 hour rollover ... if it's now 10am Monday, an alarm that
-        * that will trigger at 5am will do so at 5am Tuesday, which
-        * could also be in the next month or year.  This is a common
-        * case, especially for PCs.
-        */
-       case day:
-               dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
-               t_alm += 24 * 60 * 60;
-               rtc_time_to_tm(t_alm, &alarm->time);
-               break;
-
-       /* Month rollover ... if it's the 31th, an alarm on the 3rd will
-        * be next month.  An alarm matching on the 30th, 29th, or 28th
-        * may end up in the month after that!  Many newer PCs support
-        * this type of alarm.
-        */
-       case month:
-               dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
-               do {
-                       if (alarm->time.tm_mon < 11)
-                               alarm->time.tm_mon++;
-                       else {
-                               alarm->time.tm_mon = 0;
-                               alarm->time.tm_year++;
-                       }
-                       days = rtc_month_days(alarm->time.tm_mon,
-                                       alarm->time.tm_year);
-               } while (days < alarm->time.tm_mday);
-               break;
-
-       /* Year rollover ... easy except for leap years! */
-       case year:
-               dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
-               do {
-                       alarm->time.tm_year++;
-               } while (rtc_valid_tm(&alarm->time) != 0);
-               break;
-
-       default:
-               dev_warn(&rtc->dev, "alarm rollover not handled\n");
-       }
+       if (!rtc->ops)
+               err = -ENODEV;
+       else if (!rtc->ops->set_alarm)
+               err = -EINVAL;
+       else
+               err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 
-done:
-       return 0;
+       return err;
 }
-EXPORT_SYMBOL_GPL(rtc_read_alarm);
 
 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 {
@@ -300,14 +182,14 @@ int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
        err = mutex_lock_interruptible(&rtc->ops_lock);
        if (err)
                return err;
-
-       if (!rtc->ops)
-               err = -ENODEV;
-       else if (!rtc->ops->set_alarm)
-               err = -EINVAL;
-       else
-               err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
-
+       if (rtc->aie_timer.enabled) {
+               rtc_timer_remove(rtc, &rtc->aie_timer);
+       }
+       rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
+       rtc->aie_timer.period = ktime_set(0, 0);
+       if (alarm->enabled) {
+               err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
+       }
        mutex_unlock(&rtc->ops_lock);
        return err;
 }
@@ -319,7 +201,16 @@ int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
        if (err)
                return err;
 
-       if (!rtc->ops)
+       if (rtc->aie_timer.enabled != enabled) {
+               if (enabled)
+                       err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
+               else
+                       rtc_timer_remove(rtc, &rtc->aie_timer);
+       }
+
+       if (err)
+               /* nothing */;
+       else if (!rtc->ops)
                err = -ENODEV;
        else if (!rtc->ops->alarm_irq_enable)
                err = -EINVAL;
@@ -340,19 +231,28 @@ int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
        if (enabled == 0 && rtc->uie_irq_active) {
                mutex_unlock(&rtc->ops_lock);
-               return rtc_dev_update_irq_enable_emul(rtc, enabled);
+               return rtc_dev_update_irq_enable_emul(rtc, 0);
        }
 #endif
+       /* make sure we're changing state */
+       if (rtc->uie_rtctimer.enabled == enabled)
+               goto out;
+
+       if (enabled) {
+               struct rtc_time tm;
+               ktime_t now, onesec;
+
+               __rtc_read_time(rtc, &tm);
+               onesec = ktime_set(1, 0);
+               now = rtc_tm_to_ktime(tm);
+               rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
+               rtc->uie_rtctimer.period = ktime_set(1, 0);
+               err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
+       } else
+               rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
-       if (!rtc->ops)
-               err = -ENODEV;
-       else if (!rtc->ops->update_irq_enable)
-               err = -EINVAL;
-       else
-               err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
-
+out:
        mutex_unlock(&rtc->ops_lock);
-
 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
        /*
         * Enable emulation if the driver did not provide
@@ -364,25 +264,30 @@ int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
                err = rtc_dev_update_irq_enable_emul(rtc, enabled);
 #endif
        return err;
+
 }
 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 
+
 /**
- * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
- * @rtc: the rtc device
- * @num: how many irqs are being reported (usually one)
- * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
- * Context: any
+ * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
+ * @rtc: pointer to the rtc device
+ *
+ * This function is called when an AIE, UIE or PIE mode interrupt
+ * has occured (or been emulated).
+ *
+ * Triggers the registered irq_task function callback.
  */
-void rtc_update_irq(struct rtc_device *rtc,
-               unsigned long num, unsigned long events)
+void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 {
        unsigned long flags;
 
+       /* mark one irq of the appropriate mode */
        spin_lock_irqsave(&rtc->irq_lock, flags);
-       rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
+       rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
        spin_unlock_irqrestore(&rtc->irq_lock, flags);
 
+       /* call the task func */
        spin_lock_irqsave(&rtc->irq_task_lock, flags);
        if (rtc->irq_task)
                rtc->irq_task->func(rtc->irq_task->private_data);
@@ -391,6 +296,69 @@ void rtc_update_irq(struct rtc_device *rtc,
        wake_up_interruptible(&rtc->irq_queue);
        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 }
+
+
+/**
+ * rtc_aie_update_irq - AIE mode rtctimer hook
+ * @private: pointer to the rtc_device
+ *
+ * This functions is called when the aie_timer expires.
+ */
+void rtc_aie_update_irq(void *private)
+{
+       struct rtc_device *rtc = (struct rtc_device *)private;
+       rtc_handle_legacy_irq(rtc, 1, RTC_AF);
+}
+
+
+/**
+ * rtc_uie_update_irq - UIE mode rtctimer hook
+ * @private: pointer to the rtc_device
+ *
+ * This functions is called when the uie_timer expires.
+ */
+void rtc_uie_update_irq(void *private)
+{
+       struct rtc_device *rtc = (struct rtc_device *)private;
+       rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
+}
+
+
+/**
+ * rtc_pie_update_irq - PIE mode hrtimer hook
+ * @timer: pointer to the pie mode hrtimer
+ *
+ * This function is used to emulate PIE mode interrupts
+ * using an hrtimer. This function is called when the periodic
+ * hrtimer expires.
+ */
+enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
+{
+       struct rtc_device *rtc;
+       ktime_t period;
+       int count;
+       rtc = container_of(timer, struct rtc_device, pie_timer);
+
+       period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
+       count = hrtimer_forward_now(timer, period);
+
+       rtc_handle_legacy_irq(rtc, count, RTC_PF);
+
+       return HRTIMER_RESTART;
+}
+
+/**
+ * rtc_update_irq - Triggered when a RTC interrupt occurs.
+ * @rtc: the rtc device
+ * @num: how many irqs are being reported (usually one)
+ * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
+ * Context: any
+ */
+void rtc_update_irq(struct rtc_device *rtc,
+               unsigned long num, unsigned long events)
+{
+       schedule_work(&rtc->irqwork);
+}
 EXPORT_SYMBOL_GPL(rtc_update_irq);
 
 static int __rtc_match(struct device *dev, void *data)
@@ -477,18 +445,20 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
        int err = 0;
        unsigned long flags;
 
-       if (rtc->ops->irq_set_state == NULL)
-               return -ENXIO;
-
        spin_lock_irqsave(&rtc->irq_task_lock, flags);
        if (rtc->irq_task != NULL && task == NULL)
                err = -EBUSY;
        if (rtc->irq_task != task)
                err = -EACCES;
-       spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
-       if (err == 0)
-               err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
+       if (enabled) {
+               ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
+               hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
+       } else {
+               hrtimer_cancel(&rtc->pie_timer);
+       }
+       rtc->pie_enabled = enabled;
+       spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
 
        return err;
 }
@@ -509,21 +479,206 @@ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
        int err = 0;
        unsigned long flags;
 
-       if (rtc->ops->irq_set_freq == NULL)
-               return -ENXIO;
+       if (freq <= 0)
+               return -EINVAL;
 
        spin_lock_irqsave(&rtc->irq_task_lock, flags);
        if (rtc->irq_task != NULL && task == NULL)
                err = -EBUSY;
        if (rtc->irq_task != task)
                err = -EACCES;
-       spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
-
        if (err == 0) {
-               err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
-               if (err == 0)
-                       rtc->irq_freq = freq;
+               rtc->irq_freq = freq;
+               if (rtc->pie_enabled) {
+                       ktime_t period;
+                       hrtimer_cancel(&rtc->pie_timer);
+                       period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
+                       hrtimer_start(&rtc->pie_timer, period,
+                                       HRTIMER_MODE_REL);
+               }
        }
+       spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
        return err;
 }
 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
+
+/**
+ * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
+ * @rtc rtc device
+ * @timer timer being added.
+ *
+ * Enqueues a timer onto the rtc devices timerqueue and sets
+ * the next alarm event appropriately.
+ *
+ * Sets the enabled bit on the added timer.
+ *
+ * Must hold ops_lock for proper serialization of timerqueue
+ */
+static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
+{
+       timer->enabled = 1;
+       timerqueue_add(&rtc->timerqueue, &timer->node);
+       if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
+               struct rtc_wkalrm alarm;
+               int err;
+               alarm.time = rtc_ktime_to_tm(timer->node.expires);
+               alarm.enabled = 1;
+               err = __rtc_set_alarm(rtc, &alarm);
+               if (err == -ETIME)
+                       schedule_work(&rtc->irqwork);
+               else if (err) {
+                       timerqueue_del(&rtc->timerqueue, &timer->node);
+                       timer->enabled = 0;
+                       return err;
+               }
+       }
+       return 0;
+}
+
+/**
+ * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
+ * @rtc rtc device
+ * @timer timer being removed.
+ *
+ * Removes a timer onto the rtc devices timerqueue and sets
+ * the next alarm event appropriately.
+ *
+ * Clears the enabled bit on the removed timer.
+ *
+ * Must hold ops_lock for proper serialization of timerqueue
+ */
+static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
+{
+       struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
+       timerqueue_del(&rtc->timerqueue, &timer->node);
+       timer->enabled = 0;
+       if (next == &timer->node) {
+               struct rtc_wkalrm alarm;
+               int err;
+               next = timerqueue_getnext(&rtc->timerqueue);
+               if (!next)
+                       return;
+               alarm.time = rtc_ktime_to_tm(next->expires);
+               alarm.enabled = 1;
+               err = __rtc_set_alarm(rtc, &alarm);
+               if (err == -ETIME)
+                       schedule_work(&rtc->irqwork);
+       }
+}
+
+/**
+ * rtc_timer_do_work - Expires rtc timers
+ * @rtc rtc device
+ * @timer timer being removed.
+ *
+ * Expires rtc timers. Reprograms next alarm event if needed.
+ * Called via worktask.
+ *
+ * Serializes access to timerqueue via ops_lock mutex
+ */
+void rtc_timer_do_work(struct work_struct *work)
+{
+       struct rtc_timer *timer;
+       struct timerqueue_node *next;
+       ktime_t now;
+       struct rtc_time tm;
+
+       struct rtc_device *rtc =
+               container_of(work, struct rtc_device, irqwork);
+
+       mutex_lock(&rtc->ops_lock);
+again:
+       __rtc_read_time(rtc, &tm);
+       now = rtc_tm_to_ktime(tm);
+       while ((next = timerqueue_getnext(&rtc->timerqueue))) {
+               if (next->expires.tv64 > now.tv64)
+                       break;
+
+               /* expire timer */
+               timer = container_of(next, struct rtc_timer, node);
+               timerqueue_del(&rtc->timerqueue, &timer->node);
+               timer->enabled = 0;
+               if (timer->task.func)
+                       timer->task.func(timer->task.private_data);
+
+               /* Re-add/fwd periodic timers */
+               if (ktime_to_ns(timer->period)) {
+                       timer->node.expires = ktime_add(timer->node.expires,
+                                                       timer->period);
+                       timer->enabled = 1;
+                       timerqueue_add(&rtc->timerqueue, &timer->node);
+               }
+       }
+
+       /* Set next alarm */
+       if (next) {
+               struct rtc_wkalrm alarm;
+               int err;
+               alarm.time = rtc_ktime_to_tm(next->expires);
+               alarm.enabled = 1;
+               err = __rtc_set_alarm(rtc, &alarm);
+               if (err == -ETIME)
+                       goto again;
+       }
+
+       mutex_unlock(&rtc->ops_lock);
+}
+
+
+/* rtc_timer_init - Initializes an rtc_timer
+ * @timer: timer to be intiialized
+ * @f: function pointer to be called when timer fires
+ * @data: private data passed to function pointer
+ *
+ * Kernel interface to initializing an rtc_timer.
+ */
+void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
+{
+       timerqueue_init(&timer->node);
+       timer->enabled = 0;
+       timer->task.func = f;
+       timer->task.private_data = data;
+}
+
+/* rtc_timer_start - Sets an rtc_timer to fire in the future
+ * @ rtc: rtc device to be used
+ * @ timer: timer being set
+ * @ expires: time at which to expire the timer
+ * @ period: period that the timer will recur
+ *
+ * Kernel interface to set an rtc_timer
+ */
+int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
+                       ktime_t expires, ktime_t period)
+{
+       int ret = 0;
+       mutex_lock(&rtc->ops_lock);
+       if (timer->enabled)
+               rtc_timer_remove(rtc, timer);
+
+       timer->node.expires = expires;
+       timer->period = period;
+
+       ret = rtc_timer_enqueue(rtc, timer);
+
+       mutex_unlock(&rtc->ops_lock);
+       return ret;
+}
+
+/* rtc_timer_cancel - Stops an rtc_timer
+ * @ rtc: rtc device to be used
+ * @ timer: timer being set
+ *
+ * Kernel interface to cancel an rtc_timer
+ */
+int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
+{
+       int ret = 0;
+       mutex_lock(&rtc->ops_lock);
+       if (timer->enabled)
+               rtc_timer_remove(rtc, timer);
+       mutex_unlock(&rtc->ops_lock);
+       return ret;
+}
+
+