]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/edac/edac_mc_sysfs.c
ARM: kill Hynix h720x platform
[karo-tx-linux.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = strict_strtol(val, 0, &l);
62         if (ret == -EINVAL || ((int)l != l))
63                 return -EINVAL;
64         *((int *)kp->arg) = l;
65
66         /* notify edac_mc engine to reset the poll period */
67         edac_mc_reset_delay_period(l);
68
69         return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77                  "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80                  "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82                   &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88  * various constants for Memory Controllers
89  */
90 static const char *mem_types[] = {
91         [MEM_EMPTY] = "Empty",
92         [MEM_RESERVED] = "Reserved",
93         [MEM_UNKNOWN] = "Unknown",
94         [MEM_FPM] = "FPM",
95         [MEM_EDO] = "EDO",
96         [MEM_BEDO] = "BEDO",
97         [MEM_SDR] = "Unbuffered-SDR",
98         [MEM_RDR] = "Registered-SDR",
99         [MEM_DDR] = "Unbuffered-DDR",
100         [MEM_RDDR] = "Registered-DDR",
101         [MEM_RMBS] = "RMBS",
102         [MEM_DDR2] = "Unbuffered-DDR2",
103         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104         [MEM_RDDR2] = "Registered-DDR2",
105         [MEM_XDR] = "XDR",
106         [MEM_DDR3] = "Unbuffered-DDR3",
107         [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111         [DEV_UNKNOWN] = "Unknown",
112         [DEV_X1] = "x1",
113         [DEV_X2] = "x2",
114         [DEV_X4] = "x4",
115         [DEV_X8] = "x8",
116         [DEV_X16] = "x16",
117         [DEV_X32] = "x32",
118         [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122         [EDAC_UNKNOWN] = "Unknown",
123         [EDAC_NONE] = "None",
124         [EDAC_RESERVED] = "Reserved",
125         [EDAC_PARITY] = "PARITY",
126         [EDAC_EC] = "EC",
127         [EDAC_SECDED] = "SECDED",
128         [EDAC_S2ECD2ED] = "S2ECD2ED",
129         [EDAC_S4ECD4ED] = "S4ECD4ED",
130         [EDAC_S8ECD8ED] = "S8ECD8ED",
131         [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136  * EDAC sysfs CSROW data structures and methods
137  */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142  * We need it to avoid namespace conflicts between the legacy API
143  * and the per-dimm/per-rank one
144  */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146         struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149         struct device_attribute attr;
150         int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154         struct dev_ch_attribute dev_attr_legacy_##_name = \
155                 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161                                    struct device_attribute *mattr, char *data)
162 {
163         struct csrow_info *csrow = to_csrow(dev);
164
165         return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169                                    struct device_attribute *mattr, char *data)
170 {
171         struct csrow_info *csrow = to_csrow(dev);
172
173         return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177                                struct device_attribute *mattr, char *data)
178 {
179         struct csrow_info *csrow = to_csrow(dev);
180         int i;
181         u32 nr_pages = 0;
182
183         if (csrow->mci->csbased)
184                 return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages));
185
186         for (i = 0; i < csrow->nr_channels; i++)
187                 nr_pages += csrow->channels[i]->dimm->nr_pages;
188         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
189 }
190
191 static ssize_t csrow_mem_type_show(struct device *dev,
192                                    struct device_attribute *mattr, char *data)
193 {
194         struct csrow_info *csrow = to_csrow(dev);
195
196         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
197 }
198
199 static ssize_t csrow_dev_type_show(struct device *dev,
200                                    struct device_attribute *mattr, char *data)
201 {
202         struct csrow_info *csrow = to_csrow(dev);
203
204         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
205 }
206
207 static ssize_t csrow_edac_mode_show(struct device *dev,
208                                     struct device_attribute *mattr,
209                                     char *data)
210 {
211         struct csrow_info *csrow = to_csrow(dev);
212
213         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
214 }
215
216 /* show/store functions for DIMM Label attributes */
217 static ssize_t channel_dimm_label_show(struct device *dev,
218                                        struct device_attribute *mattr,
219                                        char *data)
220 {
221         struct csrow_info *csrow = to_csrow(dev);
222         unsigned chan = to_channel(mattr);
223         struct rank_info *rank = csrow->channels[chan];
224
225         /* if field has not been initialized, there is nothing to send */
226         if (!rank->dimm->label[0])
227                 return 0;
228
229         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
230                         rank->dimm->label);
231 }
232
233 static ssize_t channel_dimm_label_store(struct device *dev,
234                                         struct device_attribute *mattr,
235                                         const char *data, size_t count)
236 {
237         struct csrow_info *csrow = to_csrow(dev);
238         unsigned chan = to_channel(mattr);
239         struct rank_info *rank = csrow->channels[chan];
240
241         ssize_t max_size = 0;
242
243         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
244         strncpy(rank->dimm->label, data, max_size);
245         rank->dimm->label[max_size] = '\0';
246
247         return max_size;
248 }
249
250 /* show function for dynamic chX_ce_count attribute */
251 static ssize_t channel_ce_count_show(struct device *dev,
252                                      struct device_attribute *mattr, char *data)
253 {
254         struct csrow_info *csrow = to_csrow(dev);
255         unsigned chan = to_channel(mattr);
256         struct rank_info *rank = csrow->channels[chan];
257
258         return sprintf(data, "%u\n", rank->ce_count);
259 }
260
261 /* cwrow<id>/attribute files */
262 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
263 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
264 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
265 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
266 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
267 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
268
269 /* default attributes of the CSROW<id> object */
270 static struct attribute *csrow_attrs[] = {
271         &dev_attr_legacy_dev_type.attr,
272         &dev_attr_legacy_mem_type.attr,
273         &dev_attr_legacy_edac_mode.attr,
274         &dev_attr_legacy_size_mb.attr,
275         &dev_attr_legacy_ue_count.attr,
276         &dev_attr_legacy_ce_count.attr,
277         NULL,
278 };
279
280 static struct attribute_group csrow_attr_grp = {
281         .attrs  = csrow_attrs,
282 };
283
284 static const struct attribute_group *csrow_attr_groups[] = {
285         &csrow_attr_grp,
286         NULL
287 };
288
289 static void csrow_attr_release(struct device *dev)
290 {
291         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
292
293         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
294         kfree(csrow);
295 }
296
297 static struct device_type csrow_attr_type = {
298         .groups         = csrow_attr_groups,
299         .release        = csrow_attr_release,
300 };
301
302 /*
303  * possible dynamic channel DIMM Label attribute files
304  *
305  */
306
307 #define EDAC_NR_CHANNELS        6
308
309 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
310         channel_dimm_label_show, channel_dimm_label_store, 0);
311 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
312         channel_dimm_label_show, channel_dimm_label_store, 1);
313 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
314         channel_dimm_label_show, channel_dimm_label_store, 2);
315 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
316         channel_dimm_label_show, channel_dimm_label_store, 3);
317 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
318         channel_dimm_label_show, channel_dimm_label_store, 4);
319 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
320         channel_dimm_label_show, channel_dimm_label_store, 5);
321
322 /* Total possible dynamic DIMM Label attribute file table */
323 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
324         &dev_attr_legacy_ch0_dimm_label.attr,
325         &dev_attr_legacy_ch1_dimm_label.attr,
326         &dev_attr_legacy_ch2_dimm_label.attr,
327         &dev_attr_legacy_ch3_dimm_label.attr,
328         &dev_attr_legacy_ch4_dimm_label.attr,
329         &dev_attr_legacy_ch5_dimm_label.attr
330 };
331
332 /* possible dynamic channel ce_count attribute files */
333 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
334                    channel_ce_count_show, NULL, 0);
335 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
336                    channel_ce_count_show, NULL, 1);
337 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
338                    channel_ce_count_show, NULL, 2);
339 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
340                    channel_ce_count_show, NULL, 3);
341 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
342                    channel_ce_count_show, NULL, 4);
343 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
344                    channel_ce_count_show, NULL, 5);
345
346 /* Total possible dynamic ce_count attribute file table */
347 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
348         &dev_attr_legacy_ch0_ce_count.attr,
349         &dev_attr_legacy_ch1_ce_count.attr,
350         &dev_attr_legacy_ch2_ce_count.attr,
351         &dev_attr_legacy_ch3_ce_count.attr,
352         &dev_attr_legacy_ch4_ce_count.attr,
353         &dev_attr_legacy_ch5_ce_count.attr
354 };
355
356 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
357 {
358         int chan, nr_pages = 0;
359
360         for (chan = 0; chan < csrow->nr_channels; chan++)
361                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
362
363         return nr_pages;
364 }
365
366 /* Create a CSROW object under specifed edac_mc_device */
367 static int edac_create_csrow_object(struct mem_ctl_info *mci,
368                                     struct csrow_info *csrow, int index)
369 {
370         int err, chan;
371
372         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
373                 return -ENODEV;
374
375         csrow->dev.type = &csrow_attr_type;
376         csrow->dev.bus = &mci->bus;
377         device_initialize(&csrow->dev);
378         csrow->dev.parent = &mci->dev;
379         csrow->mci = mci;
380         dev_set_name(&csrow->dev, "csrow%d", index);
381         dev_set_drvdata(&csrow->dev, csrow);
382
383         edac_dbg(0, "creating (virtual) csrow node %s\n",
384                  dev_name(&csrow->dev));
385
386         err = device_add(&csrow->dev);
387         if (err < 0)
388                 return err;
389
390         for (chan = 0; chan < csrow->nr_channels; chan++) {
391                 /* Only expose populated DIMMs */
392                 if (!csrow->channels[chan]->dimm->nr_pages)
393                         continue;
394                 err = device_create_file(&csrow->dev,
395                                          dynamic_csrow_dimm_attr[chan]);
396                 if (err < 0)
397                         goto error;
398                 err = device_create_file(&csrow->dev,
399                                          dynamic_csrow_ce_count_attr[chan]);
400                 if (err < 0) {
401                         device_remove_file(&csrow->dev,
402                                            dynamic_csrow_dimm_attr[chan]);
403                         goto error;
404                 }
405         }
406
407         return 0;
408
409 error:
410         for (--chan; chan >= 0; chan--) {
411                 device_remove_file(&csrow->dev,
412                                         dynamic_csrow_dimm_attr[chan]);
413                 device_remove_file(&csrow->dev,
414                                            dynamic_csrow_ce_count_attr[chan]);
415         }
416         put_device(&csrow->dev);
417
418         return err;
419 }
420
421 /* Create a CSROW object under specifed edac_mc_device */
422 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
423 {
424         int err, i, chan;
425         struct csrow_info *csrow;
426
427         for (i = 0; i < mci->nr_csrows; i++) {
428                 csrow = mci->csrows[i];
429                 if (!nr_pages_per_csrow(csrow))
430                         continue;
431                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
432                 if (err < 0) {
433                         edac_dbg(1,
434                                  "failure: create csrow objects for csrow %d\n",
435                                  i);
436                         goto error;
437                 }
438         }
439         return 0;
440
441 error:
442         for (--i; i >= 0; i--) {
443                 csrow = mci->csrows[i];
444                 if (!nr_pages_per_csrow(csrow))
445                         continue;
446                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
447                         if (!csrow->channels[chan]->dimm->nr_pages)
448                                 continue;
449                         device_remove_file(&csrow->dev,
450                                                 dynamic_csrow_dimm_attr[chan]);
451                         device_remove_file(&csrow->dev,
452                                                 dynamic_csrow_ce_count_attr[chan]);
453                 }
454                 put_device(&mci->csrows[i]->dev);
455         }
456
457         return err;
458 }
459
460 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
461 {
462         int i, chan;
463         struct csrow_info *csrow;
464
465         for (i = mci->nr_csrows - 1; i >= 0; i--) {
466                 csrow = mci->csrows[i];
467                 if (!nr_pages_per_csrow(csrow))
468                         continue;
469                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
470                         if (!csrow->channels[chan]->dimm->nr_pages)
471                                 continue;
472                         edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
473                                  i, chan);
474                         device_remove_file(&csrow->dev,
475                                                 dynamic_csrow_dimm_attr[chan]);
476                         device_remove_file(&csrow->dev,
477                                                 dynamic_csrow_ce_count_attr[chan]);
478                 }
479                 device_unregister(&mci->csrows[i]->dev);
480         }
481 }
482 #endif
483
484 /*
485  * Per-dimm (or per-rank) devices
486  */
487
488 #define to_dimm(k) container_of(k, struct dimm_info, dev)
489
490 /* show/store functions for DIMM Label attributes */
491 static ssize_t dimmdev_location_show(struct device *dev,
492                                      struct device_attribute *mattr, char *data)
493 {
494         struct dimm_info *dimm = to_dimm(dev);
495
496         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
497 }
498
499 static ssize_t dimmdev_label_show(struct device *dev,
500                                   struct device_attribute *mattr, char *data)
501 {
502         struct dimm_info *dimm = to_dimm(dev);
503
504         /* if field has not been initialized, there is nothing to send */
505         if (!dimm->label[0])
506                 return 0;
507
508         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
509 }
510
511 static ssize_t dimmdev_label_store(struct device *dev,
512                                    struct device_attribute *mattr,
513                                    const char *data,
514                                    size_t count)
515 {
516         struct dimm_info *dimm = to_dimm(dev);
517
518         ssize_t max_size = 0;
519
520         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
521         strncpy(dimm->label, data, max_size);
522         dimm->label[max_size] = '\0';
523
524         return max_size;
525 }
526
527 static ssize_t dimmdev_size_show(struct device *dev,
528                                  struct device_attribute *mattr, char *data)
529 {
530         struct dimm_info *dimm = to_dimm(dev);
531
532         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
533 }
534
535 static ssize_t dimmdev_mem_type_show(struct device *dev,
536                                      struct device_attribute *mattr, char *data)
537 {
538         struct dimm_info *dimm = to_dimm(dev);
539
540         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
541 }
542
543 static ssize_t dimmdev_dev_type_show(struct device *dev,
544                                      struct device_attribute *mattr, char *data)
545 {
546         struct dimm_info *dimm = to_dimm(dev);
547
548         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
549 }
550
551 static ssize_t dimmdev_edac_mode_show(struct device *dev,
552                                       struct device_attribute *mattr,
553                                       char *data)
554 {
555         struct dimm_info *dimm = to_dimm(dev);
556
557         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
558 }
559
560 /* dimm/rank attribute files */
561 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
562                    dimmdev_label_show, dimmdev_label_store);
563 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
564 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
565 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
566 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
567 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
568
569 /* attributes of the dimm<id>/rank<id> object */
570 static struct attribute *dimm_attrs[] = {
571         &dev_attr_dimm_label.attr,
572         &dev_attr_dimm_location.attr,
573         &dev_attr_size.attr,
574         &dev_attr_dimm_mem_type.attr,
575         &dev_attr_dimm_dev_type.attr,
576         &dev_attr_dimm_edac_mode.attr,
577         NULL,
578 };
579
580 static struct attribute_group dimm_attr_grp = {
581         .attrs  = dimm_attrs,
582 };
583
584 static const struct attribute_group *dimm_attr_groups[] = {
585         &dimm_attr_grp,
586         NULL
587 };
588
589 static void dimm_attr_release(struct device *dev)
590 {
591         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
592
593         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
594         kfree(dimm);
595 }
596
597 static struct device_type dimm_attr_type = {
598         .groups         = dimm_attr_groups,
599         .release        = dimm_attr_release,
600 };
601
602 /* Create a DIMM object under specifed memory controller device */
603 static int edac_create_dimm_object(struct mem_ctl_info *mci,
604                                    struct dimm_info *dimm,
605                                    int index)
606 {
607         int err;
608         dimm->mci = mci;
609
610         dimm->dev.type = &dimm_attr_type;
611         dimm->dev.bus = &mci->bus;
612         device_initialize(&dimm->dev);
613
614         dimm->dev.parent = &mci->dev;
615         if (mci->mem_is_per_rank)
616                 dev_set_name(&dimm->dev, "rank%d", index);
617         else
618                 dev_set_name(&dimm->dev, "dimm%d", index);
619         dev_set_drvdata(&dimm->dev, dimm);
620         pm_runtime_forbid(&mci->dev);
621
622         err =  device_add(&dimm->dev);
623
624         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
625
626         return err;
627 }
628
629 /*
630  * Memory controller device
631  */
632
633 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
634
635 static ssize_t mci_reset_counters_store(struct device *dev,
636                                         struct device_attribute *mattr,
637                                         const char *data, size_t count)
638 {
639         struct mem_ctl_info *mci = to_mci(dev);
640         int cnt, row, chan, i;
641         mci->ue_mc = 0;
642         mci->ce_mc = 0;
643         mci->ue_noinfo_count = 0;
644         mci->ce_noinfo_count = 0;
645
646         for (row = 0; row < mci->nr_csrows; row++) {
647                 struct csrow_info *ri = mci->csrows[row];
648
649                 ri->ue_count = 0;
650                 ri->ce_count = 0;
651
652                 for (chan = 0; chan < ri->nr_channels; chan++)
653                         ri->channels[chan]->ce_count = 0;
654         }
655
656         cnt = 1;
657         for (i = 0; i < mci->n_layers; i++) {
658                 cnt *= mci->layers[i].size;
659                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
660                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
661         }
662
663         mci->start_time = jiffies;
664         return count;
665 }
666
667 /* Memory scrubbing interface:
668  *
669  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
670  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
671  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
672  *
673  * Negative value still means that an error has occurred while setting
674  * the scrub rate.
675  */
676 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
677                                           struct device_attribute *mattr,
678                                           const char *data, size_t count)
679 {
680         struct mem_ctl_info *mci = to_mci(dev);
681         unsigned long bandwidth = 0;
682         int new_bw = 0;
683
684         if (strict_strtoul(data, 10, &bandwidth) < 0)
685                 return -EINVAL;
686
687         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
688         if (new_bw < 0) {
689                 edac_printk(KERN_WARNING, EDAC_MC,
690                             "Error setting scrub rate to: %lu\n", bandwidth);
691                 return -EINVAL;
692         }
693
694         return count;
695 }
696
697 /*
698  * ->get_sdram_scrub_rate() return value semantics same as above.
699  */
700 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
701                                          struct device_attribute *mattr,
702                                          char *data)
703 {
704         struct mem_ctl_info *mci = to_mci(dev);
705         int bandwidth = 0;
706
707         bandwidth = mci->get_sdram_scrub_rate(mci);
708         if (bandwidth < 0) {
709                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
710                 return bandwidth;
711         }
712
713         return sprintf(data, "%d\n", bandwidth);
714 }
715
716 /* default attribute files for the MCI object */
717 static ssize_t mci_ue_count_show(struct device *dev,
718                                  struct device_attribute *mattr,
719                                  char *data)
720 {
721         struct mem_ctl_info *mci = to_mci(dev);
722
723         return sprintf(data, "%d\n", mci->ue_mc);
724 }
725
726 static ssize_t mci_ce_count_show(struct device *dev,
727                                  struct device_attribute *mattr,
728                                  char *data)
729 {
730         struct mem_ctl_info *mci = to_mci(dev);
731
732         return sprintf(data, "%d\n", mci->ce_mc);
733 }
734
735 static ssize_t mci_ce_noinfo_show(struct device *dev,
736                                   struct device_attribute *mattr,
737                                   char *data)
738 {
739         struct mem_ctl_info *mci = to_mci(dev);
740
741         return sprintf(data, "%d\n", mci->ce_noinfo_count);
742 }
743
744 static ssize_t mci_ue_noinfo_show(struct device *dev,
745                                   struct device_attribute *mattr,
746                                   char *data)
747 {
748         struct mem_ctl_info *mci = to_mci(dev);
749
750         return sprintf(data, "%d\n", mci->ue_noinfo_count);
751 }
752
753 static ssize_t mci_seconds_show(struct device *dev,
754                                 struct device_attribute *mattr,
755                                 char *data)
756 {
757         struct mem_ctl_info *mci = to_mci(dev);
758
759         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
760 }
761
762 static ssize_t mci_ctl_name_show(struct device *dev,
763                                  struct device_attribute *mattr,
764                                  char *data)
765 {
766         struct mem_ctl_info *mci = to_mci(dev);
767
768         return sprintf(data, "%s\n", mci->ctl_name);
769 }
770
771 static ssize_t mci_size_mb_show(struct device *dev,
772                                 struct device_attribute *mattr,
773                                 char *data)
774 {
775         struct mem_ctl_info *mci = to_mci(dev);
776         int total_pages = 0, csrow_idx, j;
777
778         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
779                 struct csrow_info *csrow = mci->csrows[csrow_idx];
780
781                 if (csrow->mci->csbased) {
782                         total_pages += csrow->nr_pages;
783                 } else {
784                         for (j = 0; j < csrow->nr_channels; j++) {
785                                 struct dimm_info *dimm = csrow->channels[j]->dimm;
786
787                                 total_pages += dimm->nr_pages;
788                         }
789                 }
790         }
791
792         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
793 }
794
795 static ssize_t mci_max_location_show(struct device *dev,
796                                      struct device_attribute *mattr,
797                                      char *data)
798 {
799         struct mem_ctl_info *mci = to_mci(dev);
800         int i;
801         char *p = data;
802
803         for (i = 0; i < mci->n_layers; i++) {
804                 p += sprintf(p, "%s %d ",
805                              edac_layer_name[mci->layers[i].type],
806                              mci->layers[i].size - 1);
807         }
808
809         return p - data;
810 }
811
812 #ifdef CONFIG_EDAC_DEBUG
813 static ssize_t edac_fake_inject_write(struct file *file,
814                                       const char __user *data,
815                                       size_t count, loff_t *ppos)
816 {
817         struct device *dev = file->private_data;
818         struct mem_ctl_info *mci = to_mci(dev);
819         static enum hw_event_mc_err_type type;
820         u16 errcount = mci->fake_inject_count;
821
822         if (!errcount)
823                 errcount = 1;
824
825         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
826                                    : HW_EVENT_ERR_CORRECTED;
827
828         printk(KERN_DEBUG
829                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
830                 errcount,
831                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
832                 errcount > 1 ? "s" : "",
833                 mci->fake_inject_layer[0],
834                 mci->fake_inject_layer[1],
835                 mci->fake_inject_layer[2]
836                );
837         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
838                              mci->fake_inject_layer[0],
839                              mci->fake_inject_layer[1],
840                              mci->fake_inject_layer[2],
841                              "FAKE ERROR", "for EDAC testing only");
842
843         return count;
844 }
845
846 static const struct file_operations debug_fake_inject_fops = {
847         .open = simple_open,
848         .write = edac_fake_inject_write,
849         .llseek = generic_file_llseek,
850 };
851 #endif
852
853 /* default Control file */
854 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
855
856 /* default Attribute files */
857 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
858 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
859 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
860 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
861 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
862 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
863 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
864 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
865
866 /* memory scrubber attribute file */
867 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
868
869 static struct attribute *mci_attrs[] = {
870         &dev_attr_reset_counters.attr,
871         &dev_attr_mc_name.attr,
872         &dev_attr_size_mb.attr,
873         &dev_attr_seconds_since_reset.attr,
874         &dev_attr_ue_noinfo_count.attr,
875         &dev_attr_ce_noinfo_count.attr,
876         &dev_attr_ue_count.attr,
877         &dev_attr_ce_count.attr,
878         &dev_attr_max_location.attr,
879         NULL
880 };
881
882 static struct attribute_group mci_attr_grp = {
883         .attrs  = mci_attrs,
884 };
885
886 static const struct attribute_group *mci_attr_groups[] = {
887         &mci_attr_grp,
888         NULL
889 };
890
891 static void mci_attr_release(struct device *dev)
892 {
893         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
894
895         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
896         kfree(mci);
897 }
898
899 static struct device_type mci_attr_type = {
900         .groups         = mci_attr_groups,
901         .release        = mci_attr_release,
902 };
903
904 #ifdef CONFIG_EDAC_DEBUG
905 static struct dentry *edac_debugfs;
906
907 int __init edac_debugfs_init(void)
908 {
909         edac_debugfs = debugfs_create_dir("edac", NULL);
910         if (IS_ERR(edac_debugfs)) {
911                 edac_debugfs = NULL;
912                 return -ENOMEM;
913         }
914         return 0;
915 }
916
917 void __exit edac_debugfs_exit(void)
918 {
919         debugfs_remove(edac_debugfs);
920 }
921
922 int edac_create_debug_nodes(struct mem_ctl_info *mci)
923 {
924         struct dentry *d, *parent;
925         char name[80];
926         int i;
927
928         if (!edac_debugfs)
929                 return -ENODEV;
930
931         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
932         if (!d)
933                 return -ENOMEM;
934         parent = d;
935
936         for (i = 0; i < mci->n_layers; i++) {
937                 sprintf(name, "fake_inject_%s",
938                              edac_layer_name[mci->layers[i].type]);
939                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
940                                       &mci->fake_inject_layer[i]);
941                 if (!d)
942                         goto nomem;
943         }
944
945         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
946                                 &mci->fake_inject_ue);
947         if (!d)
948                 goto nomem;
949
950         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
951                                 &mci->fake_inject_count);
952         if (!d)
953                 goto nomem;
954
955         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
956                                 &mci->dev,
957                                 &debug_fake_inject_fops);
958         if (!d)
959                 goto nomem;
960
961         mci->debugfs = parent;
962         return 0;
963 nomem:
964         debugfs_remove(mci->debugfs);
965         return -ENOMEM;
966 }
967 #endif
968
969 /*
970  * Create a new Memory Controller kobject instance,
971  *      mc<id> under the 'mc' directory
972  *
973  * Return:
974  *      0       Success
975  *      !0      Failure
976  */
977 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
978 {
979         int i, err;
980
981         /*
982          * The memory controller needs its own bus, in order to avoid
983          * namespace conflicts at /sys/bus/edac.
984          */
985         mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
986         if (!mci->bus.name)
987                 return -ENOMEM;
988         edac_dbg(0, "creating bus %s\n", mci->bus.name);
989         err = bus_register(&mci->bus);
990         if (err < 0)
991                 return err;
992
993         /* get the /sys/devices/system/edac subsys reference */
994         mci->dev.type = &mci_attr_type;
995         device_initialize(&mci->dev);
996
997         mci->dev.parent = mci_pdev;
998         mci->dev.bus = &mci->bus;
999         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1000         dev_set_drvdata(&mci->dev, mci);
1001         pm_runtime_forbid(&mci->dev);
1002
1003         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1004         err = device_add(&mci->dev);
1005         if (err < 0) {
1006                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1007                 bus_unregister(&mci->bus);
1008                 kfree(mci->bus.name);
1009                 return err;
1010         }
1011
1012         if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1013                 if (mci->get_sdram_scrub_rate) {
1014                         dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1015                         dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1016                 }
1017                 if (mci->set_sdram_scrub_rate) {
1018                         dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1019                         dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1020                 }
1021                 err = device_create_file(&mci->dev,
1022                                          &dev_attr_sdram_scrub_rate);
1023                 if (err) {
1024                         edac_dbg(1, "failure: create sdram_scrub_rate\n");
1025                         goto fail2;
1026                 }
1027         }
1028         /*
1029          * Create the dimm/rank devices
1030          */
1031         for (i = 0; i < mci->tot_dimms; i++) {
1032                 struct dimm_info *dimm = mci->dimms[i];
1033                 /* Only expose populated DIMMs */
1034                 if (dimm->nr_pages == 0)
1035                         continue;
1036 #ifdef CONFIG_EDAC_DEBUG
1037                 edac_dbg(1, "creating dimm%d, located at ", i);
1038                 if (edac_debug_level >= 1) {
1039                         int lay;
1040                         for (lay = 0; lay < mci->n_layers; lay++)
1041                                 printk(KERN_CONT "%s %d ",
1042                                         edac_layer_name[mci->layers[lay].type],
1043                                         dimm->location[lay]);
1044                         printk(KERN_CONT "\n");
1045                 }
1046 #endif
1047                 err = edac_create_dimm_object(mci, dimm, i);
1048                 if (err) {
1049                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1050                         goto fail;
1051                 }
1052         }
1053
1054 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1055         err = edac_create_csrow_objects(mci);
1056         if (err < 0)
1057                 goto fail;
1058 #endif
1059
1060 #ifdef CONFIG_EDAC_DEBUG
1061         edac_create_debug_nodes(mci);
1062 #endif
1063         return 0;
1064
1065 fail:
1066         for (i--; i >= 0; i--) {
1067                 struct dimm_info *dimm = mci->dimms[i];
1068                 if (dimm->nr_pages == 0)
1069                         continue;
1070                 device_unregister(&dimm->dev);
1071         }
1072 fail2:
1073         device_unregister(&mci->dev);
1074         bus_unregister(&mci->bus);
1075         kfree(mci->bus.name);
1076         return err;
1077 }
1078
1079 /*
1080  * remove a Memory Controller instance
1081  */
1082 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1083 {
1084         int i;
1085
1086         edac_dbg(0, "\n");
1087
1088 #ifdef CONFIG_EDAC_DEBUG
1089         debugfs_remove(mci->debugfs);
1090 #endif
1091 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1092         edac_delete_csrow_objects(mci);
1093 #endif
1094
1095         for (i = 0; i < mci->tot_dimms; i++) {
1096                 struct dimm_info *dimm = mci->dimms[i];
1097                 if (dimm->nr_pages == 0)
1098                         continue;
1099                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1100                 device_unregister(&dimm->dev);
1101         }
1102 }
1103
1104 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1105 {
1106         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1107         device_unregister(&mci->dev);
1108         bus_unregister(&mci->bus);
1109         kfree(mci->bus.name);
1110 }
1111
1112 static void mc_attr_release(struct device *dev)
1113 {
1114         /*
1115          * There's no container structure here, as this is just the mci
1116          * parent device, used to create the /sys/devices/mc sysfs node.
1117          * So, there are no attributes on it.
1118          */
1119         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1120         kfree(dev);
1121 }
1122
1123 static struct device_type mc_attr_type = {
1124         .release        = mc_attr_release,
1125 };
1126 /*
1127  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1128  */
1129 int __init edac_mc_sysfs_init(void)
1130 {
1131         struct bus_type *edac_subsys;
1132         int err;
1133
1134         /* get the /sys/devices/system/edac subsys reference */
1135         edac_subsys = edac_get_sysfs_subsys();
1136         if (edac_subsys == NULL) {
1137                 edac_dbg(1, "no edac_subsys\n");
1138                 err = -EINVAL;
1139                 goto out;
1140         }
1141
1142         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1143         if (!mci_pdev) {
1144                 err = -ENOMEM;
1145                 goto out_put_sysfs;
1146         }
1147
1148         mci_pdev->bus = edac_subsys;
1149         mci_pdev->type = &mc_attr_type;
1150         device_initialize(mci_pdev);
1151         dev_set_name(mci_pdev, "mc");
1152
1153         err = device_add(mci_pdev);
1154         if (err < 0)
1155                 goto out_dev_free;
1156
1157         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1158
1159         return 0;
1160
1161  out_dev_free:
1162         kfree(mci_pdev);
1163  out_put_sysfs:
1164         edac_put_sysfs_subsys();
1165  out:
1166         return err;
1167 }
1168
1169 void __exit edac_mc_sysfs_exit(void)
1170 {
1171         device_unregister(mci_pdev);
1172         edac_put_sysfs_subsys();
1173 }