]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/c6x/kernel/setup.c
Merge branch 'nfsd-next' of git://linux-nfs.org/~bfields/linux
[karo-tx-linux.git] / arch / c6x / kernel / setup.c
1 /*
2  *  Port on Texas Instruments TMS320C6x architecture
3  *
4  *  Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5  *  Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
27 #include <linux/fs.h>
28 #include <linux/of.h>
29
30
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
34 #include <asm/dscr.h>
35 #include <asm/clock.h>
36 #include <asm/soc.h>
37 #include <asm/special_insns.h>
38
39 static const char *c6x_soc_name;
40
41 int c6x_num_cores;
42 EXPORT_SYMBOL_GPL(c6x_num_cores);
43
44 unsigned int c6x_silicon_rev;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev);
46
47 /*
48  * Device status register. This holds information
49  * about device configuration needed by some drivers.
50  */
51 unsigned int c6x_devstat;
52 EXPORT_SYMBOL_GPL(c6x_devstat);
53
54 /*
55  * Some SoCs have fuse registers holding a unique MAC
56  * address. This is parsed out of the device tree with
57  * the resulting MAC being held here.
58  */
59 unsigned char c6x_fuse_mac[6];
60
61 unsigned long memory_start;
62 unsigned long memory_end;
63
64 unsigned long ram_start;
65 unsigned long ram_end;
66
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata;
69 static unsigned long dma_size __initdata;
70
71 char c6x_command_line[COMMAND_LINE_SIZE];
72
73 #if defined(CONFIG_CMDLINE_BOOL)
74 static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
75         CONFIG_CMDLINE;
76 #endif
77
78 struct cpuinfo_c6x {
79         const char *cpu_name;
80         const char *cpu_voltage;
81         const char *mmu;
82         const char *fpu;
83         char *cpu_rev;
84         unsigned int core_id;
85         char __cpu_rev[5];
86 };
87
88 static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
89
90 unsigned int ticks_per_ns_scaled;
91 EXPORT_SYMBOL(ticks_per_ns_scaled);
92
93 unsigned int c6x_core_freq;
94
95 static void __init get_cpuinfo(void)
96 {
97         unsigned cpu_id, rev_id, csr;
98         struct clk *coreclk = clk_get_sys(NULL, "core");
99         unsigned long core_khz;
100         u64 tmp;
101         struct cpuinfo_c6x *p;
102         struct device_node *node, *np;
103
104         p = &per_cpu(cpu_data, smp_processor_id());
105
106         if (!IS_ERR(coreclk))
107                 c6x_core_freq = clk_get_rate(coreclk);
108         else {
109                 printk(KERN_WARNING
110                        "Cannot find core clock frequency. Using 700MHz\n");
111                 c6x_core_freq = 700000000;
112         }
113
114         core_khz = c6x_core_freq / 1000;
115
116         tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
117         do_div(tmp, 1000000);
118         ticks_per_ns_scaled = tmp;
119
120         csr = get_creg(CSR);
121         cpu_id = csr >> 24;
122         rev_id = (csr >> 16) & 0xff;
123
124         p->mmu = "none";
125         p->fpu = "none";
126         p->cpu_voltage = "unknown";
127
128         switch (cpu_id) {
129         case 0:
130                 p->cpu_name = "C67x";
131                 p->fpu = "yes";
132                 break;
133         case 2:
134                 p->cpu_name = "C62x";
135                 break;
136         case 8:
137                 p->cpu_name = "C64x";
138                 break;
139         case 12:
140                 p->cpu_name = "C64x";
141                 break;
142         case 16:
143                 p->cpu_name = "C64x+";
144                 p->cpu_voltage = "1.2";
145                 break;
146         case 21:
147                 p->cpu_name = "C66X";
148                 p->cpu_voltage = "1.2";
149                 break;
150         default:
151                 p->cpu_name = "unknown";
152                 break;
153         }
154
155         if (cpu_id < 16) {
156                 switch (rev_id) {
157                 case 0x1:
158                         if (cpu_id > 8) {
159                                 p->cpu_rev = "DM640/DM641/DM642/DM643";
160                                 p->cpu_voltage = "1.2 - 1.4";
161                         } else {
162                                 p->cpu_rev = "C6201";
163                                 p->cpu_voltage = "2.5";
164                         }
165                         break;
166                 case 0x2:
167                         p->cpu_rev = "C6201B/C6202/C6211";
168                         p->cpu_voltage = "1.8";
169                         break;
170                 case 0x3:
171                         p->cpu_rev = "C6202B/C6203/C6204/C6205";
172                         p->cpu_voltage = "1.5";
173                         break;
174                 case 0x201:
175                         p->cpu_rev = "C6701 revision 0 (early CPU)";
176                         p->cpu_voltage = "1.8";
177                         break;
178                 case 0x202:
179                         p->cpu_rev = "C6701/C6711/C6712";
180                         p->cpu_voltage = "1.8";
181                         break;
182                 case 0x801:
183                         p->cpu_rev = "C64x";
184                         p->cpu_voltage = "1.5";
185                         break;
186                 default:
187                         p->cpu_rev = "unknown";
188                 }
189         } else {
190                 p->cpu_rev = p->__cpu_rev;
191                 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
192         }
193
194         p->core_id = get_coreid();
195
196         node = of_find_node_by_name(NULL, "cpus");
197         if (node) {
198                 for_each_child_of_node(node, np)
199                         if (!strcmp("cpu", np->name))
200                                 ++c6x_num_cores;
201                 of_node_put(node);
202         }
203
204         node = of_find_node_by_name(NULL, "soc");
205         if (node) {
206                 if (of_property_read_string(node, "model", &c6x_soc_name))
207                         c6x_soc_name = "unknown";
208                 of_node_put(node);
209         } else
210                 c6x_soc_name = "unknown";
211
212         printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
213                p->core_id, p->cpu_name, p->cpu_rev,
214                p->cpu_voltage, c6x_core_freq / 1000000);
215 }
216
217 /*
218  * Early parsing of the command line
219  */
220 static u32 mem_size __initdata;
221
222 /* "mem=" parsing. */
223 static int __init early_mem(char *p)
224 {
225         if (!p)
226                 return -EINVAL;
227
228         mem_size = memparse(p, &p);
229         /* don't remove all of memory when handling "mem={invalid}" */
230         if (mem_size == 0)
231                 return -EINVAL;
232
233         return 0;
234 }
235 early_param("mem", early_mem);
236
237 /* "memdma=<size>[@<address>]" parsing. */
238 static int __init early_memdma(char *p)
239 {
240         if (!p)
241                 return -EINVAL;
242
243         dma_size = memparse(p, &p);
244         if (*p == '@')
245                 dma_start = memparse(p, &p);
246
247         return 0;
248 }
249 early_param("memdma", early_memdma);
250
251 int __init c6x_add_memory(phys_addr_t start, unsigned long size)
252 {
253         static int ram_found __initdata;
254
255         /* We only handle one bank (the one with PAGE_OFFSET) for now */
256         if (ram_found)
257                 return -EINVAL;
258
259         if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
260                 return 0;
261
262         ram_start = start;
263         ram_end = start + size;
264
265         ram_found = 1;
266         return 0;
267 }
268
269 /*
270  * Do early machine setup and device tree parsing. This is called very
271  * early on the boot process.
272  */
273 notrace void __init machine_init(unsigned long dt_ptr)
274 {
275         struct boot_param_header *dtb = __va(dt_ptr);
276         struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
277
278         /* interrupts must be masked */
279         set_creg(IER, 2);
280
281         /*
282          * Set the Interrupt Service Table (IST) to the beginning of the
283          * vector table.
284          */
285         set_ist(_vectors_start);
286
287         lockdep_init();
288
289         /*
290          * dtb is passed in from bootloader.
291          * fdt is linked in blob.
292          */
293         if (dtb && dtb != fdt)
294                 fdt = dtb;
295
296         /* Do some early initialization based on the flat device tree */
297         early_init_devtree(fdt);
298
299         /* parse_early_param needs a boot_command_line */
300         strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
301         parse_early_param();
302 }
303
304 void __init setup_arch(char **cmdline_p)
305 {
306         int bootmap_size;
307         struct memblock_region *reg;
308
309         printk(KERN_INFO "Initializing kernel\n");
310
311         /* Initialize command line */
312         *cmdline_p = c6x_command_line;
313
314         memory_end = ram_end;
315         memory_end &= ~(PAGE_SIZE - 1);
316
317         if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
318                 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
319
320         /* add block that this kernel can use */
321         memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
322
323         /* reserve kernel text/data/bss */
324         memblock_reserve(PAGE_OFFSET,
325                          PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
326
327         if (dma_size) {
328                 /* align to cacheability granularity */
329                 dma_size = CACHE_REGION_END(dma_size);
330
331                 if (!dma_start)
332                         dma_start = memory_end - dma_size;
333
334                 /* align to cacheability granularity */
335                 dma_start = CACHE_REGION_START(dma_start);
336
337                 /* reserve DMA memory taken from kernel memory */
338                 if (memblock_is_region_memory(dma_start, dma_size))
339                         memblock_reserve(dma_start, dma_size);
340         }
341
342         memory_start = PAGE_ALIGN((unsigned int) &_end);
343
344         printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
345                memory_start, memory_end);
346
347 #ifdef CONFIG_BLK_DEV_INITRD
348         /*
349          * Reserve initrd memory if in kernel memory.
350          */
351         if (initrd_start < initrd_end)
352                 if (memblock_is_region_memory(initrd_start,
353                                               initrd_end - initrd_start))
354                         memblock_reserve(initrd_start,
355                                          initrd_end - initrd_start);
356 #endif
357
358         init_mm.start_code = (unsigned long) &_stext;
359         init_mm.end_code   = (unsigned long) &_etext;
360         init_mm.end_data   = memory_start;
361         init_mm.brk        = memory_start;
362
363         /*
364          * Give all the memory to the bootmap allocator,  tell it to put the
365          * boot mem_map at the start of memory
366          */
367         bootmap_size = init_bootmem_node(NODE_DATA(0),
368                                          memory_start >> PAGE_SHIFT,
369                                          PAGE_OFFSET >> PAGE_SHIFT,
370                                          memory_end >> PAGE_SHIFT);
371         memblock_reserve(memory_start, bootmap_size);
372
373         unflatten_device_tree();
374
375         c6x_cache_init();
376
377         /* Set the whole external memory as non-cacheable */
378         disable_caching(ram_start, ram_end - 1);
379
380         /* Set caching of external RAM used by Linux */
381         for_each_memblock(memory, reg)
382                 enable_caching(CACHE_REGION_START(reg->base),
383                                CACHE_REGION_START(reg->base + reg->size - 1));
384
385 #ifdef CONFIG_BLK_DEV_INITRD
386         /*
387          * Enable caching for initrd which falls outside kernel memory.
388          */
389         if (initrd_start < initrd_end) {
390                 if (!memblock_is_region_memory(initrd_start,
391                                                initrd_end - initrd_start))
392                         enable_caching(CACHE_REGION_START(initrd_start),
393                                        CACHE_REGION_START(initrd_end - 1));
394         }
395 #endif
396
397         /*
398          * Disable caching for dma coherent memory taken from kernel memory.
399          */
400         if (dma_size && memblock_is_region_memory(dma_start, dma_size))
401                 disable_caching(dma_start,
402                                 CACHE_REGION_START(dma_start + dma_size - 1));
403
404         /* Initialize the coherent memory allocator */
405         coherent_mem_init(dma_start, dma_size);
406
407         /*
408          * Free all memory as a starting point.
409          */
410         free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
411
412         /*
413          * Then reserve memory which is already being used.
414          */
415         for_each_memblock(reserved, reg) {
416                 pr_debug("reserved - 0x%08x-0x%08x\n",
417                          (u32) reg->base, (u32) reg->size);
418                 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
419         }
420
421         max_low_pfn = PFN_DOWN(memory_end);
422         min_low_pfn = PFN_UP(memory_start);
423         max_mapnr = max_low_pfn - min_low_pfn;
424
425         /* Get kmalloc into gear */
426         paging_init();
427
428         /*
429          * Probe for Device State Configuration Registers.
430          * We have to do this early in case timer needs to be enabled
431          * through DSCR.
432          */
433         dscr_probe();
434
435         /* We do this early for timer and core clock frequency */
436         c64x_setup_clocks();
437
438         /* Get CPU info */
439         get_cpuinfo();
440
441 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
442         conswitchp = &dummy_con;
443 #endif
444 }
445
446 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
447 #define ptr_to_cpu(p) ((long)(p) - 1)
448
449 static int show_cpuinfo(struct seq_file *m, void *v)
450 {
451         int n = ptr_to_cpu(v);
452         struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
453
454         if (n == 0) {
455                 seq_printf(m,
456                            "soc\t\t: %s\n"
457                            "soc revision\t: 0x%x\n"
458                            "soc cores\t: %d\n",
459                            c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
460         }
461
462         seq_printf(m,
463                    "\n"
464                    "processor\t: %d\n"
465                    "cpu\t\t: %s\n"
466                    "core revision\t: %s\n"
467                    "core voltage\t: %s\n"
468                    "core id\t\t: %d\n"
469                    "mmu\t\t: %s\n"
470                    "fpu\t\t: %s\n"
471                    "cpu MHz\t\t: %u\n"
472                    "bogomips\t: %lu.%02lu\n\n",
473                    n,
474                    p->cpu_name, p->cpu_rev, p->cpu_voltage,
475                    p->core_id, p->mmu, p->fpu,
476                    (c6x_core_freq + 500000) / 1000000,
477                    (loops_per_jiffy/(500000/HZ)),
478                    (loops_per_jiffy/(5000/HZ))%100);
479
480         return 0;
481 }
482
483 static void *c_start(struct seq_file *m, loff_t *pos)
484 {
485         return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
486 }
487 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
488 {
489         ++*pos;
490         return NULL;
491 }
492 static void c_stop(struct seq_file *m, void *v)
493 {
494 }
495
496 const struct seq_operations cpuinfo_op = {
497         c_start,
498         c_stop,
499         c_next,
500         show_cpuinfo
501 };
502
503 static struct cpu cpu_devices[NR_CPUS];
504
505 static int __init topology_init(void)
506 {
507         int i;
508
509         for_each_present_cpu(i)
510                 register_cpu(&cpu_devices[i], i);
511
512         return 0;
513 }
514
515 subsys_initcall(topology_init);