]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/powerpc/sysdev/mpic_timer.c
Merge remote-tracking branch 'devicetree/devicetree/next'
[karo-tx-linux.git] / arch / powerpc / sysdev / mpic_timer.c
1 /*
2  * MPIC timer driver
3  *
4  * Copyright 2013 Freescale Semiconductor, Inc.
5  * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
6  *         Li Yang <leoli@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the
10  * Free Software Foundation; either version 2 of the License, or (at your
11  * option) any later version.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/syscore_ops.h>
24 #include <sysdev/fsl_soc.h>
25 #include <asm/io.h>
26
27 #include <asm/mpic_timer.h>
28
29 #define FSL_GLOBAL_TIMER                0x1
30
31 /* Clock Ratio
32  * Divide by 64 0x00000300
33  * Divide by 32 0x00000200
34  * Divide by 16 0x00000100
35  * Divide by  8 0x00000000 (Hardware default div)
36  */
37 #define MPIC_TIMER_TCR_CLKDIV           0x00000300
38
39 #define MPIC_TIMER_TCR_ROVR_OFFSET      24
40
41 #define TIMER_STOP                      0x80000000
42 #define TIMERS_PER_GROUP                4
43 #define MAX_TICKS                       (~0U >> 1)
44 #define MAX_TICKS_CASCADE               (~0U)
45 #define TIMER_OFFSET(num)               (1 << (TIMERS_PER_GROUP - 1 - num))
46
47 /* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */
48 #define ONE_SECOND                      1000000
49
50 struct timer_regs {
51         u32     gtccr;
52         u32     res0[3];
53         u32     gtbcr;
54         u32     res1[3];
55         u32     gtvpr;
56         u32     res2[3];
57         u32     gtdr;
58         u32     res3[3];
59 };
60
61 struct cascade_priv {
62         u32 tcr_value;                  /* TCR register: CASC & ROVR value */
63         unsigned int cascade_map;       /* cascade map */
64         unsigned int timer_num;         /* cascade control timer */
65 };
66
67 struct timer_group_priv {
68         struct timer_regs __iomem       *regs;
69         struct mpic_timer               timer[TIMERS_PER_GROUP];
70         struct list_head                node;
71         unsigned int                    timerfreq;
72         unsigned int                    idle;
73         unsigned int                    flags;
74         spinlock_t                      lock;
75         void __iomem                    *group_tcr;
76 };
77
78 static struct cascade_priv cascade_timer[] = {
79         /* cascade timer 0 and 1 */
80         {0x1, 0xc, 0x1},
81         /* cascade timer 1 and 2 */
82         {0x2, 0x6, 0x2},
83         /* cascade timer 2 and 3 */
84         {0x4, 0x3, 0x3}
85 };
86
87 static LIST_HEAD(timer_group_list);
88
89 static void convert_ticks_to_time(struct timer_group_priv *priv,
90                 const u64 ticks, struct timeval *time)
91 {
92         u64 tmp_sec;
93
94         time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq);
95         tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
96
97         time->tv_usec = (__kernel_suseconds_t)
98                 div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq);
99
100         return;
101 }
102
103 /* the time set by the user is converted to "ticks" */
104 static int convert_time_to_ticks(struct timer_group_priv *priv,
105                 const struct timeval *time, u64 *ticks)
106 {
107         u64 max_value;          /* prevent u64 overflow */
108         u64 tmp = 0;
109
110         u64 tmp_sec;
111         u64 tmp_ms;
112         u64 tmp_us;
113
114         max_value = div_u64(ULLONG_MAX, priv->timerfreq);
115
116         if (time->tv_sec > max_value ||
117                         (time->tv_sec == max_value && time->tv_usec > 0))
118                 return -EINVAL;
119
120         tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
121         tmp += tmp_sec;
122
123         tmp_ms = time->tv_usec / 1000;
124         tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000);
125         tmp += tmp_ms;
126
127         tmp_us = time->tv_usec % 1000;
128         tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000);
129         tmp += tmp_us;
130
131         *ticks = tmp;
132
133         return 0;
134 }
135
136 /* detect whether there is a cascade timer available */
137 static struct mpic_timer *detect_idle_cascade_timer(
138                                         struct timer_group_priv *priv)
139 {
140         struct cascade_priv *casc_priv;
141         unsigned int map;
142         unsigned int array_size = ARRAY_SIZE(cascade_timer);
143         unsigned int num;
144         unsigned int i;
145         unsigned long flags;
146
147         casc_priv = cascade_timer;
148         for (i = 0; i < array_size; i++) {
149                 spin_lock_irqsave(&priv->lock, flags);
150                 map = casc_priv->cascade_map & priv->idle;
151                 if (map == casc_priv->cascade_map) {
152                         num = casc_priv->timer_num;
153                         priv->timer[num].cascade_handle = casc_priv;
154
155                         /* set timer busy */
156                         priv->idle &= ~casc_priv->cascade_map;
157                         spin_unlock_irqrestore(&priv->lock, flags);
158                         return &priv->timer[num];
159                 }
160                 spin_unlock_irqrestore(&priv->lock, flags);
161                 casc_priv++;
162         }
163
164         return NULL;
165 }
166
167 static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
168                 unsigned int num)
169 {
170         struct cascade_priv *casc_priv;
171         u32 tcr;
172         u32 tmp_ticks;
173         u32 rem_ticks;
174
175         /* set group tcr reg for cascade */
176         casc_priv = priv->timer[num].cascade_handle;
177         if (!casc_priv)
178                 return -EINVAL;
179
180         tcr = casc_priv->tcr_value |
181                 (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
182         setbits32(priv->group_tcr, tcr);
183
184         tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
185
186         out_be32(&priv->regs[num].gtccr, 0);
187         out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
188
189         out_be32(&priv->regs[num - 1].gtccr, 0);
190         out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
191
192         return 0;
193 }
194
195 static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
196                                         u64 ticks)
197 {
198         struct mpic_timer *allocated_timer;
199
200         /* Two cascade timers: Support the maximum time */
201         const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
202         int ret;
203
204         if (ticks > max_ticks)
205                 return NULL;
206
207         /* detect idle timer */
208         allocated_timer = detect_idle_cascade_timer(priv);
209         if (!allocated_timer)
210                 return NULL;
211
212         /* set ticks to timer */
213         ret = set_cascade_timer(priv, ticks, allocated_timer->num);
214         if (ret < 0)
215                 return NULL;
216
217         return allocated_timer;
218 }
219
220 static struct mpic_timer *get_timer(const struct timeval *time)
221 {
222         struct timer_group_priv *priv;
223         struct mpic_timer *timer;
224
225         u64 ticks;
226         unsigned int num;
227         unsigned int i;
228         unsigned long flags;
229         int ret;
230
231         list_for_each_entry(priv, &timer_group_list, node) {
232                 ret = convert_time_to_ticks(priv, time, &ticks);
233                 if (ret < 0)
234                         return NULL;
235
236                 if (ticks > MAX_TICKS) {
237                         if (!(priv->flags & FSL_GLOBAL_TIMER))
238                                 return NULL;
239
240                         timer = get_cascade_timer(priv, ticks);
241                         if (!timer)
242                                 continue;
243
244                         return timer;
245                 }
246
247                 for (i = 0; i < TIMERS_PER_GROUP; i++) {
248                         /* one timer: Reverse allocation */
249                         num = TIMERS_PER_GROUP - 1 - i;
250                         spin_lock_irqsave(&priv->lock, flags);
251                         if (priv->idle & (1 << i)) {
252                                 /* set timer busy */
253                                 priv->idle &= ~(1 << i);
254                                 /* set ticks & stop timer */
255                                 out_be32(&priv->regs[num].gtbcr,
256                                         ticks | TIMER_STOP);
257                                 out_be32(&priv->regs[num].gtccr, 0);
258                                 priv->timer[num].cascade_handle = NULL;
259                                 spin_unlock_irqrestore(&priv->lock, flags);
260                                 return &priv->timer[num];
261                         }
262                         spin_unlock_irqrestore(&priv->lock, flags);
263                 }
264         }
265
266         return NULL;
267 }
268
269 /**
270  * mpic_start_timer - start hardware timer
271  * @handle: the timer to be started.
272  *
273  * It will do ->fn(->dev) callback from the hardware interrupt at
274  * the ->timeval point in the future.
275  */
276 void mpic_start_timer(struct mpic_timer *handle)
277 {
278         struct timer_group_priv *priv = container_of(handle,
279                         struct timer_group_priv, timer[handle->num]);
280
281         clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
282 }
283 EXPORT_SYMBOL(mpic_start_timer);
284
285 /**
286  * mpic_stop_timer - stop hardware timer
287  * @handle: the timer to be stoped
288  *
289  * The timer periodically generates an interrupt. Unless user stops the timer.
290  */
291 void mpic_stop_timer(struct mpic_timer *handle)
292 {
293         struct timer_group_priv *priv = container_of(handle,
294                         struct timer_group_priv, timer[handle->num]);
295         struct cascade_priv *casc_priv;
296
297         setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
298
299         casc_priv = priv->timer[handle->num].cascade_handle;
300         if (casc_priv) {
301                 out_be32(&priv->regs[handle->num].gtccr, 0);
302                 out_be32(&priv->regs[handle->num - 1].gtccr, 0);
303         } else {
304                 out_be32(&priv->regs[handle->num].gtccr, 0);
305         }
306 }
307 EXPORT_SYMBOL(mpic_stop_timer);
308
309 /**
310  * mpic_get_remain_time - get timer time
311  * @handle: the timer to be selected.
312  * @time: time for timer
313  *
314  * Query timer remaining time.
315  */
316 void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time)
317 {
318         struct timer_group_priv *priv = container_of(handle,
319                         struct timer_group_priv, timer[handle->num]);
320         struct cascade_priv *casc_priv;
321
322         u64 ticks;
323         u32 tmp_ticks;
324
325         casc_priv = priv->timer[handle->num].cascade_handle;
326         if (casc_priv) {
327                 tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
328                 ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
329                 tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
330                 ticks += tmp_ticks;
331         } else {
332                 ticks = in_be32(&priv->regs[handle->num].gtccr);
333         }
334
335         convert_ticks_to_time(priv, ticks, time);
336 }
337 EXPORT_SYMBOL(mpic_get_remain_time);
338
339 /**
340  * mpic_free_timer - free hardware timer
341  * @handle: the timer to be removed.
342  *
343  * Free the timer.
344  *
345  * Note: can not be used in interrupt context.
346  */
347 void mpic_free_timer(struct mpic_timer *handle)
348 {
349         struct timer_group_priv *priv = container_of(handle,
350                         struct timer_group_priv, timer[handle->num]);
351
352         struct cascade_priv *casc_priv;
353         unsigned long flags;
354
355         mpic_stop_timer(handle);
356
357         casc_priv = priv->timer[handle->num].cascade_handle;
358
359         free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
360
361         spin_lock_irqsave(&priv->lock, flags);
362         if (casc_priv) {
363                 u32 tcr;
364                 tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
365                                         MPIC_TIMER_TCR_ROVR_OFFSET);
366                 clrbits32(priv->group_tcr, tcr);
367                 priv->idle |= casc_priv->cascade_map;
368                 priv->timer[handle->num].cascade_handle = NULL;
369         } else {
370                 priv->idle |= TIMER_OFFSET(handle->num);
371         }
372         spin_unlock_irqrestore(&priv->lock, flags);
373 }
374 EXPORT_SYMBOL(mpic_free_timer);
375
376 /**
377  * mpic_request_timer - get a hardware timer
378  * @fn: interrupt handler function
379  * @dev: callback function of the data
380  * @time: time for timer
381  *
382  * This executes the "request_irq", returning NULL
383  * else "handle" on success.
384  */
385 struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
386                                         const struct timeval *time)
387 {
388         struct mpic_timer *allocated_timer;
389         int ret;
390
391         if (list_empty(&timer_group_list))
392                 return NULL;
393
394         if (!(time->tv_sec + time->tv_usec) ||
395                         time->tv_sec < 0 || time->tv_usec < 0)
396                 return NULL;
397
398         if (time->tv_usec > ONE_SECOND)
399                 return NULL;
400
401         allocated_timer = get_timer(time);
402         if (!allocated_timer)
403                 return NULL;
404
405         ret = request_irq(allocated_timer->irq, fn,
406                         IRQF_TRIGGER_LOW, "global-timer", dev);
407         if (ret) {
408                 mpic_free_timer(allocated_timer);
409                 return NULL;
410         }
411
412         allocated_timer->dev = dev;
413
414         return allocated_timer;
415 }
416 EXPORT_SYMBOL(mpic_request_timer);
417
418 static int timer_group_get_freq(struct device_node *np,
419                         struct timer_group_priv *priv)
420 {
421         u32 div;
422
423         if (priv->flags & FSL_GLOBAL_TIMER) {
424                 struct device_node *dn;
425
426                 dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
427                 if (dn) {
428                         of_property_read_u32(dn, "clock-frequency",
429                                         &priv->timerfreq);
430                         of_node_put(dn);
431                 }
432         }
433
434         if (priv->timerfreq <= 0)
435                 return -EINVAL;
436
437         if (priv->flags & FSL_GLOBAL_TIMER) {
438                 div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
439                 priv->timerfreq /= div;
440         }
441
442         return 0;
443 }
444
445 static int timer_group_get_irq(struct device_node *np,
446                 struct timer_group_priv *priv)
447 {
448         const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
449         const u32 *p;
450         u32 offset;
451         u32 count;
452
453         unsigned int i;
454         unsigned int j;
455         unsigned int irq_index = 0;
456         unsigned int irq;
457         int len;
458
459         p = of_get_property(np, "fsl,available-ranges", &len);
460         if (p && len % (2 * sizeof(u32)) != 0) {
461                 pr_err("%s: malformed available-ranges property.\n",
462                                 np->full_name);
463                 return -EINVAL;
464         }
465
466         if (!p) {
467                 p = all_timer;
468                 len = sizeof(all_timer);
469         }
470
471         len /= 2 * sizeof(u32);
472
473         for (i = 0; i < len; i++) {
474                 offset = p[i * 2];
475                 count = p[i * 2 + 1];
476                 for (j = 0; j < count; j++) {
477                         irq = irq_of_parse_and_map(np, irq_index);
478                         if (!irq) {
479                                 pr_err("%s: irq parse and map failed.\n",
480                                                 np->full_name);
481                                 return -EINVAL;
482                         }
483
484                         /* Set timer idle */
485                         priv->idle |= TIMER_OFFSET((offset + j));
486                         priv->timer[offset + j].irq = irq;
487                         priv->timer[offset + j].num = offset + j;
488                         irq_index++;
489                 }
490         }
491
492         return 0;
493 }
494
495 static void timer_group_init(struct device_node *np)
496 {
497         struct timer_group_priv *priv;
498         unsigned int i = 0;
499         int ret;
500
501         priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
502         if (!priv) {
503                 pr_err("%s: cannot allocate memory for group.\n",
504                                 np->full_name);
505                 return;
506         }
507
508         if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
509                 priv->flags |= FSL_GLOBAL_TIMER;
510
511         priv->regs = of_iomap(np, i++);
512         if (!priv->regs) {
513                 pr_err("%s: cannot ioremap timer register address.\n",
514                                 np->full_name);
515                 goto out;
516         }
517
518         if (priv->flags & FSL_GLOBAL_TIMER) {
519                 priv->group_tcr = of_iomap(np, i++);
520                 if (!priv->group_tcr) {
521                         pr_err("%s: cannot ioremap tcr address.\n",
522                                         np->full_name);
523                         goto out;
524                 }
525         }
526
527         ret = timer_group_get_freq(np, priv);
528         if (ret < 0) {
529                 pr_err("%s: cannot get timer frequency.\n", np->full_name);
530                 goto out;
531         }
532
533         ret = timer_group_get_irq(np, priv);
534         if (ret < 0) {
535                 pr_err("%s: cannot get timer irqs.\n", np->full_name);
536                 goto out;
537         }
538
539         spin_lock_init(&priv->lock);
540
541         /* Init FSL timer hardware */
542         if (priv->flags & FSL_GLOBAL_TIMER)
543                 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
544
545         list_add_tail(&priv->node, &timer_group_list);
546
547         return;
548
549 out:
550         if (priv->regs)
551                 iounmap(priv->regs);
552
553         if (priv->group_tcr)
554                 iounmap(priv->group_tcr);
555
556         kfree(priv);
557 }
558
559 static void mpic_timer_resume(void)
560 {
561         struct timer_group_priv *priv;
562
563         list_for_each_entry(priv, &timer_group_list, node) {
564                 /* Init FSL timer hardware */
565                 if (priv->flags & FSL_GLOBAL_TIMER)
566                         setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
567         }
568 }
569
570 static const struct of_device_id mpic_timer_ids[] = {
571         { .compatible = "fsl,mpic-global-timer", },
572         {},
573 };
574
575 static struct syscore_ops mpic_timer_syscore_ops = {
576         .resume = mpic_timer_resume,
577 };
578
579 static int __init mpic_timer_init(void)
580 {
581         struct device_node *np = NULL;
582
583         for_each_matching_node(np, mpic_timer_ids)
584                 timer_group_init(np);
585
586         register_syscore_ops(&mpic_timer_syscore_ops);
587
588         if (list_empty(&timer_group_list))
589                 return -ENODEV;
590
591         return 0;
592 }
593 subsys_initcall(mpic_timer_init);