]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/s390/kernel/ptrace.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / arch / s390 / kernel / ptrace.c
1 /*
2  *  Ptrace user space interface.
3  *
4  *    Copyright IBM Corp. 1999, 2010
5  *    Author(s): Denis Joseph Barrow
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 enum s390_regset {
42         REGSET_GENERAL,
43         REGSET_FP,
44         REGSET_LAST_BREAK,
45         REGSET_TDB,
46         REGSET_SYSTEM_CALL,
47         REGSET_GENERAL_EXTENDED,
48 };
49
50 void update_cr_regs(struct task_struct *task)
51 {
52         struct pt_regs *regs = task_pt_regs(task);
53         struct thread_struct *thread = &task->thread;
54         struct per_regs old, new;
55
56 #ifdef CONFIG_64BIT
57         /* Take care of the enable/disable of transactional execution. */
58         if (MACHINE_HAS_TE) {
59                 unsigned long cr[3], cr_new[3];
60
61                 __ctl_store(cr, 0, 2);
62                 cr_new[1] = cr[1];
63                 /* Set or clear transaction execution TXC bit 8. */
64                 if (task->thread.per_flags & PER_FLAG_NO_TE)
65                         cr_new[0] = cr[0] & ~(1UL << 55);
66                 else
67                         cr_new[0] = cr[0] | (1UL << 55);
68                 /* Set or clear transaction execution TDC bits 62 and 63. */
69                 cr_new[2] = cr[2] & ~3UL;
70                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
71                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
72                                 cr_new[2] |= 1UL;
73                         else
74                                 cr_new[2] |= 2UL;
75                 }
76                 if (memcmp(&cr_new, &cr, sizeof(cr)))
77                         __ctl_load(cr_new, 0, 2);
78         }
79 #endif
80         /* Copy user specified PER registers */
81         new.control = thread->per_user.control;
82         new.start = thread->per_user.start;
83         new.end = thread->per_user.end;
84
85         /* merge TIF_SINGLE_STEP into user specified PER registers. */
86         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
87                 new.control |= PER_EVENT_IFETCH;
88 #ifdef CONFIG_64BIT
89                 new.control |= PER_CONTROL_SUSPENSION;
90                 new.control |= PER_EVENT_TRANSACTION_END;
91 #endif
92                 new.start = 0;
93                 new.end = PSW_ADDR_INSN;
94         }
95
96         /* Take care of the PER enablement bit in the PSW. */
97         if (!(new.control & PER_EVENT_MASK)) {
98                 regs->psw.mask &= ~PSW_MASK_PER;
99                 return;
100         }
101         regs->psw.mask |= PSW_MASK_PER;
102         __ctl_store(old, 9, 11);
103         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
104                 __ctl_load(new, 9, 11);
105 }
106
107 void user_enable_single_step(struct task_struct *task)
108 {
109         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
110         if (task == current)
111                 update_cr_regs(task);
112 }
113
114 void user_disable_single_step(struct task_struct *task)
115 {
116         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
117         if (task == current)
118                 update_cr_regs(task);
119 }
120
121 /*
122  * Called by kernel/ptrace.c when detaching..
123  *
124  * Clear all debugging related fields.
125  */
126 void ptrace_disable(struct task_struct *task)
127 {
128         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
129         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
130         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
131         clear_tsk_thread_flag(task, TIF_PER_TRAP);
132         task->thread.per_flags = 0;
133 }
134
135 #ifndef CONFIG_64BIT
136 # define __ADDR_MASK 3
137 #else
138 # define __ADDR_MASK 7
139 #endif
140
141 static inline unsigned long __peek_user_per(struct task_struct *child,
142                                             addr_t addr)
143 {
144         struct per_struct_kernel *dummy = NULL;
145
146         if (addr == (addr_t) &dummy->cr9)
147                 /* Control bits of the active per set. */
148                 return test_thread_flag(TIF_SINGLE_STEP) ?
149                         PER_EVENT_IFETCH : child->thread.per_user.control;
150         else if (addr == (addr_t) &dummy->cr10)
151                 /* Start address of the active per set. */
152                 return test_thread_flag(TIF_SINGLE_STEP) ?
153                         0 : child->thread.per_user.start;
154         else if (addr == (addr_t) &dummy->cr11)
155                 /* End address of the active per set. */
156                 return test_thread_flag(TIF_SINGLE_STEP) ?
157                         PSW_ADDR_INSN : child->thread.per_user.end;
158         else if (addr == (addr_t) &dummy->bits)
159                 /* Single-step bit. */
160                 return test_thread_flag(TIF_SINGLE_STEP) ?
161                         (1UL << (BITS_PER_LONG - 1)) : 0;
162         else if (addr == (addr_t) &dummy->starting_addr)
163                 /* Start address of the user specified per set. */
164                 return child->thread.per_user.start;
165         else if (addr == (addr_t) &dummy->ending_addr)
166                 /* End address of the user specified per set. */
167                 return child->thread.per_user.end;
168         else if (addr == (addr_t) &dummy->perc_atmid)
169                 /* PER code, ATMID and AI of the last PER trap */
170                 return (unsigned long)
171                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
172         else if (addr == (addr_t) &dummy->address)
173                 /* Address of the last PER trap */
174                 return child->thread.per_event.address;
175         else if (addr == (addr_t) &dummy->access_id)
176                 /* Access id of the last PER trap */
177                 return (unsigned long)
178                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
179         return 0;
180 }
181
182 /*
183  * Read the word at offset addr from the user area of a process. The
184  * trouble here is that the information is littered over different
185  * locations. The process registers are found on the kernel stack,
186  * the floating point stuff and the trace settings are stored in
187  * the task structure. In addition the different structures in
188  * struct user contain pad bytes that should be read as zeroes.
189  * Lovely...
190  */
191 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
192 {
193         struct user *dummy = NULL;
194         addr_t offset, tmp;
195
196         if (addr < (addr_t) &dummy->regs.acrs) {
197                 /*
198                  * psw and gprs are stored on the stack
199                  */
200                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
201                 if (addr == (addr_t) &dummy->regs.psw.mask) {
202                         /* Return a clean psw mask. */
203                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
204                         tmp |= PSW_USER_BITS;
205                 }
206
207         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
208                 /*
209                  * access registers are stored in the thread structure
210                  */
211                 offset = addr - (addr_t) &dummy->regs.acrs;
212 #ifdef CONFIG_64BIT
213                 /*
214                  * Very special case: old & broken 64 bit gdb reading
215                  * from acrs[15]. Result is a 64 bit value. Read the
216                  * 32 bit acrs[15] value and shift it by 32. Sick...
217                  */
218                 if (addr == (addr_t) &dummy->regs.acrs[15])
219                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
220                 else
221 #endif
222                 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
223
224         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
225                 /*
226                  * orig_gpr2 is stored on the kernel stack
227                  */
228                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
229
230         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
231                 /*
232                  * prevent reads of padding hole between
233                  * orig_gpr2 and fp_regs on s390.
234                  */
235                 tmp = 0;
236
237         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
238                 /* 
239                  * floating point regs. are stored in the thread structure
240                  */
241                 offset = addr - (addr_t) &dummy->regs.fp_regs;
242                 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
243                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
244                         tmp <<= BITS_PER_LONG - 32;
245
246         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
247                 /*
248                  * Handle access to the per_info structure.
249                  */
250                 addr -= (addr_t) &dummy->regs.per_info;
251                 tmp = __peek_user_per(child, addr);
252
253         } else
254                 tmp = 0;
255
256         return tmp;
257 }
258
259 static int
260 peek_user(struct task_struct *child, addr_t addr, addr_t data)
261 {
262         addr_t tmp, mask;
263
264         /*
265          * Stupid gdb peeks/pokes the access registers in 64 bit with
266          * an alignment of 4. Programmers from hell...
267          */
268         mask = __ADDR_MASK;
269 #ifdef CONFIG_64BIT
270         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
271             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
272                 mask = 3;
273 #endif
274         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
275                 return -EIO;
276
277         tmp = __peek_user(child, addr);
278         return put_user(tmp, (addr_t __user *) data);
279 }
280
281 static inline void __poke_user_per(struct task_struct *child,
282                                    addr_t addr, addr_t data)
283 {
284         struct per_struct_kernel *dummy = NULL;
285
286         /*
287          * There are only three fields in the per_info struct that the
288          * debugger user can write to.
289          * 1) cr9: the debugger wants to set a new PER event mask
290          * 2) starting_addr: the debugger wants to set a new starting
291          *    address to use with the PER event mask.
292          * 3) ending_addr: the debugger wants to set a new ending
293          *    address to use with the PER event mask.
294          * The user specified PER event mask and the start and end
295          * addresses are used only if single stepping is not in effect.
296          * Writes to any other field in per_info are ignored.
297          */
298         if (addr == (addr_t) &dummy->cr9)
299                 /* PER event mask of the user specified per set. */
300                 child->thread.per_user.control =
301                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
302         else if (addr == (addr_t) &dummy->starting_addr)
303                 /* Starting address of the user specified per set. */
304                 child->thread.per_user.start = data;
305         else if (addr == (addr_t) &dummy->ending_addr)
306                 /* Ending address of the user specified per set. */
307                 child->thread.per_user.end = data;
308 }
309
310 /*
311  * Write a word to the user area of a process at location addr. This
312  * operation does have an additional problem compared to peek_user.
313  * Stores to the program status word and on the floating point
314  * control register needs to get checked for validity.
315  */
316 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
317 {
318         struct user *dummy = NULL;
319         addr_t offset;
320
321         if (addr < (addr_t) &dummy->regs.acrs) {
322                 /*
323                  * psw and gprs are stored on the stack
324                  */
325                 if (addr == (addr_t) &dummy->regs.psw.mask) {
326                         unsigned long mask = PSW_MASK_USER;
327
328                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
329                         if ((data & ~mask) != PSW_USER_BITS)
330                                 return -EINVAL;
331                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
332                                 return -EINVAL;
333                 }
334                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
335
336         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
337                 /*
338                  * access registers are stored in the thread structure
339                  */
340                 offset = addr - (addr_t) &dummy->regs.acrs;
341 #ifdef CONFIG_64BIT
342                 /*
343                  * Very special case: old & broken 64 bit gdb writing
344                  * to acrs[15] with a 64 bit value. Ignore the lower
345                  * half of the value and write the upper 32 bit to
346                  * acrs[15]. Sick...
347                  */
348                 if (addr == (addr_t) &dummy->regs.acrs[15])
349                         child->thread.acrs[15] = (unsigned int) (data >> 32);
350                 else
351 #endif
352                 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
353
354         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
355                 /*
356                  * orig_gpr2 is stored on the kernel stack
357                  */
358                 task_pt_regs(child)->orig_gpr2 = data;
359
360         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
361                 /*
362                  * prevent writes of padding hole between
363                  * orig_gpr2 and fp_regs on s390.
364                  */
365                 return 0;
366
367         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
368                 /*
369                  * floating point regs. are stored in the thread structure
370                  */
371                 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
372                         if ((unsigned int) data != 0 ||
373                             test_fp_ctl(data >> (BITS_PER_LONG - 32)))
374                                 return -EINVAL;
375                 offset = addr - (addr_t) &dummy->regs.fp_regs;
376                 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
377
378         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
379                 /*
380                  * Handle access to the per_info structure.
381                  */
382                 addr -= (addr_t) &dummy->regs.per_info;
383                 __poke_user_per(child, addr, data);
384
385         }
386
387         return 0;
388 }
389
390 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
391 {
392         addr_t mask;
393
394         /*
395          * Stupid gdb peeks/pokes the access registers in 64 bit with
396          * an alignment of 4. Programmers from hell indeed...
397          */
398         mask = __ADDR_MASK;
399 #ifdef CONFIG_64BIT
400         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
401             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
402                 mask = 3;
403 #endif
404         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
405                 return -EIO;
406
407         return __poke_user(child, addr, data);
408 }
409
410 long arch_ptrace(struct task_struct *child, long request,
411                  unsigned long addr, unsigned long data)
412 {
413         ptrace_area parea; 
414         int copied, ret;
415
416         switch (request) {
417         case PTRACE_PEEKUSR:
418                 /* read the word at location addr in the USER area. */
419                 return peek_user(child, addr, data);
420
421         case PTRACE_POKEUSR:
422                 /* write the word at location addr in the USER area */
423                 return poke_user(child, addr, data);
424
425         case PTRACE_PEEKUSR_AREA:
426         case PTRACE_POKEUSR_AREA:
427                 if (copy_from_user(&parea, (void __force __user *) addr,
428                                                         sizeof(parea)))
429                         return -EFAULT;
430                 addr = parea.kernel_addr;
431                 data = parea.process_addr;
432                 copied = 0;
433                 while (copied < parea.len) {
434                         if (request == PTRACE_PEEKUSR_AREA)
435                                 ret = peek_user(child, addr, data);
436                         else {
437                                 addr_t utmp;
438                                 if (get_user(utmp,
439                                              (addr_t __force __user *) data))
440                                         return -EFAULT;
441                                 ret = poke_user(child, addr, utmp);
442                         }
443                         if (ret)
444                                 return ret;
445                         addr += sizeof(unsigned long);
446                         data += sizeof(unsigned long);
447                         copied += sizeof(unsigned long);
448                 }
449                 return 0;
450         case PTRACE_GET_LAST_BREAK:
451                 put_user(task_thread_info(child)->last_break,
452                          (unsigned long __user *) data);
453                 return 0;
454         case PTRACE_ENABLE_TE:
455                 if (!MACHINE_HAS_TE)
456                         return -EIO;
457                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
458                 return 0;
459         case PTRACE_DISABLE_TE:
460                 if (!MACHINE_HAS_TE)
461                         return -EIO;
462                 child->thread.per_flags |= PER_FLAG_NO_TE;
463                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
464                 return 0;
465         case PTRACE_TE_ABORT_RAND:
466                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
467                         return -EIO;
468                 switch (data) {
469                 case 0UL:
470                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
471                         break;
472                 case 1UL:
473                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
474                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
475                         break;
476                 case 2UL:
477                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
478                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
479                         break;
480                 default:
481                         return -EINVAL;
482                 }
483                 return 0;
484         default:
485                 /* Removing high order bit from addr (only for 31 bit). */
486                 addr &= PSW_ADDR_INSN;
487                 return ptrace_request(child, request, addr, data);
488         }
489 }
490
491 #ifdef CONFIG_COMPAT
492 /*
493  * Now the fun part starts... a 31 bit program running in the
494  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
495  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
496  * to handle, the difference to the 64 bit versions of the requests
497  * is that the access is done in multiples of 4 byte instead of
498  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
499  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
500  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
501  * is a 31 bit program too, the content of struct user can be
502  * emulated. A 31 bit program peeking into the struct user of
503  * a 64 bit program is a no-no.
504  */
505
506 /*
507  * Same as peek_user_per but for a 31 bit program.
508  */
509 static inline __u32 __peek_user_per_compat(struct task_struct *child,
510                                            addr_t addr)
511 {
512         struct compat_per_struct_kernel *dummy32 = NULL;
513
514         if (addr == (addr_t) &dummy32->cr9)
515                 /* Control bits of the active per set. */
516                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
517                         PER_EVENT_IFETCH : child->thread.per_user.control;
518         else if (addr == (addr_t) &dummy32->cr10)
519                 /* Start address of the active per set. */
520                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
521                         0 : child->thread.per_user.start;
522         else if (addr == (addr_t) &dummy32->cr11)
523                 /* End address of the active per set. */
524                 return test_thread_flag(TIF_SINGLE_STEP) ?
525                         PSW32_ADDR_INSN : child->thread.per_user.end;
526         else if (addr == (addr_t) &dummy32->bits)
527                 /* Single-step bit. */
528                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
529                         0x80000000 : 0;
530         else if (addr == (addr_t) &dummy32->starting_addr)
531                 /* Start address of the user specified per set. */
532                 return (__u32) child->thread.per_user.start;
533         else if (addr == (addr_t) &dummy32->ending_addr)
534                 /* End address of the user specified per set. */
535                 return (__u32) child->thread.per_user.end;
536         else if (addr == (addr_t) &dummy32->perc_atmid)
537                 /* PER code, ATMID and AI of the last PER trap */
538                 return (__u32) child->thread.per_event.cause << 16;
539         else if (addr == (addr_t) &dummy32->address)
540                 /* Address of the last PER trap */
541                 return (__u32) child->thread.per_event.address;
542         else if (addr == (addr_t) &dummy32->access_id)
543                 /* Access id of the last PER trap */
544                 return (__u32) child->thread.per_event.paid << 24;
545         return 0;
546 }
547
548 /*
549  * Same as peek_user but for a 31 bit program.
550  */
551 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
552 {
553         struct compat_user *dummy32 = NULL;
554         addr_t offset;
555         __u32 tmp;
556
557         if (addr < (addr_t) &dummy32->regs.acrs) {
558                 struct pt_regs *regs = task_pt_regs(child);
559                 /*
560                  * psw and gprs are stored on the stack
561                  */
562                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
563                         /* Fake a 31 bit psw mask. */
564                         tmp = (__u32)(regs->psw.mask >> 32);
565                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
566                         tmp |= PSW32_USER_BITS;
567                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
568                         /* Fake a 31 bit psw address. */
569                         tmp = (__u32) regs->psw.addr |
570                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
571                 } else {
572                         /* gpr 0-15 */
573                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
574                 }
575         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
576                 /*
577                  * access registers are stored in the thread structure
578                  */
579                 offset = addr - (addr_t) &dummy32->regs.acrs;
580                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
581
582         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
583                 /*
584                  * orig_gpr2 is stored on the kernel stack
585                  */
586                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
587
588         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
589                 /*
590                  * prevent reads of padding hole between
591                  * orig_gpr2 and fp_regs on s390.
592                  */
593                 tmp = 0;
594
595         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
596                 /*
597                  * floating point regs. are stored in the thread structure 
598                  */
599                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
600                 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
601
602         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
603                 /*
604                  * Handle access to the per_info structure.
605                  */
606                 addr -= (addr_t) &dummy32->regs.per_info;
607                 tmp = __peek_user_per_compat(child, addr);
608
609         } else
610                 tmp = 0;
611
612         return tmp;
613 }
614
615 static int peek_user_compat(struct task_struct *child,
616                             addr_t addr, addr_t data)
617 {
618         __u32 tmp;
619
620         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
621                 return -EIO;
622
623         tmp = __peek_user_compat(child, addr);
624         return put_user(tmp, (__u32 __user *) data);
625 }
626
627 /*
628  * Same as poke_user_per but for a 31 bit program.
629  */
630 static inline void __poke_user_per_compat(struct task_struct *child,
631                                           addr_t addr, __u32 data)
632 {
633         struct compat_per_struct_kernel *dummy32 = NULL;
634
635         if (addr == (addr_t) &dummy32->cr9)
636                 /* PER event mask of the user specified per set. */
637                 child->thread.per_user.control =
638                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
639         else if (addr == (addr_t) &dummy32->starting_addr)
640                 /* Starting address of the user specified per set. */
641                 child->thread.per_user.start = data;
642         else if (addr == (addr_t) &dummy32->ending_addr)
643                 /* Ending address of the user specified per set. */
644                 child->thread.per_user.end = data;
645 }
646
647 /*
648  * Same as poke_user but for a 31 bit program.
649  */
650 static int __poke_user_compat(struct task_struct *child,
651                               addr_t addr, addr_t data)
652 {
653         struct compat_user *dummy32 = NULL;
654         __u32 tmp = (__u32) data;
655         addr_t offset;
656
657         if (addr < (addr_t) &dummy32->regs.acrs) {
658                 struct pt_regs *regs = task_pt_regs(child);
659                 /*
660                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
661                  */
662                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
663                         __u32 mask = PSW32_MASK_USER;
664
665                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
666                         /* Build a 64 bit psw mask from 31 bit mask. */
667                         if ((tmp & ~mask) != PSW32_USER_BITS)
668                                 /* Invalid psw mask. */
669                                 return -EINVAL;
670                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
671                                 (regs->psw.mask & PSW_MASK_BA) |
672                                 (__u64)(tmp & mask) << 32;
673                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
674                         /* Build a 64 bit psw address from 31 bit address. */
675                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
676                         /* Transfer 31 bit amode bit to psw mask. */
677                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
678                                 (__u64)(tmp & PSW32_ADDR_AMODE);
679                 } else {
680                         /* gpr 0-15 */
681                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
682                 }
683         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
684                 /*
685                  * access registers are stored in the thread structure
686                  */
687                 offset = addr - (addr_t) &dummy32->regs.acrs;
688                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
689
690         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
691                 /*
692                  * orig_gpr2 is stored on the kernel stack
693                  */
694                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
695
696         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
697                 /*
698                  * prevent writess of padding hole between
699                  * orig_gpr2 and fp_regs on s390.
700                  */
701                 return 0;
702
703         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
704                 /*
705                  * floating point regs. are stored in the thread structure 
706                  */
707                 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
708                     test_fp_ctl(tmp))
709                         return -EINVAL;
710                 offset = addr - (addr_t) &dummy32->regs.fp_regs;
711                 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
712
713         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
714                 /*
715                  * Handle access to the per_info structure.
716                  */
717                 addr -= (addr_t) &dummy32->regs.per_info;
718                 __poke_user_per_compat(child, addr, data);
719         }
720
721         return 0;
722 }
723
724 static int poke_user_compat(struct task_struct *child,
725                             addr_t addr, addr_t data)
726 {
727         if (!is_compat_task() || (addr & 3) ||
728             addr > sizeof(struct compat_user) - 3)
729                 return -EIO;
730
731         return __poke_user_compat(child, addr, data);
732 }
733
734 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
735                         compat_ulong_t caddr, compat_ulong_t cdata)
736 {
737         unsigned long addr = caddr;
738         unsigned long data = cdata;
739         compat_ptrace_area parea;
740         int copied, ret;
741
742         switch (request) {
743         case PTRACE_PEEKUSR:
744                 /* read the word at location addr in the USER area. */
745                 return peek_user_compat(child, addr, data);
746
747         case PTRACE_POKEUSR:
748                 /* write the word at location addr in the USER area */
749                 return poke_user_compat(child, addr, data);
750
751         case PTRACE_PEEKUSR_AREA:
752         case PTRACE_POKEUSR_AREA:
753                 if (copy_from_user(&parea, (void __force __user *) addr,
754                                                         sizeof(parea)))
755                         return -EFAULT;
756                 addr = parea.kernel_addr;
757                 data = parea.process_addr;
758                 copied = 0;
759                 while (copied < parea.len) {
760                         if (request == PTRACE_PEEKUSR_AREA)
761                                 ret = peek_user_compat(child, addr, data);
762                         else {
763                                 __u32 utmp;
764                                 if (get_user(utmp,
765                                              (__u32 __force __user *) data))
766                                         return -EFAULT;
767                                 ret = poke_user_compat(child, addr, utmp);
768                         }
769                         if (ret)
770                                 return ret;
771                         addr += sizeof(unsigned int);
772                         data += sizeof(unsigned int);
773                         copied += sizeof(unsigned int);
774                 }
775                 return 0;
776         case PTRACE_GET_LAST_BREAK:
777                 put_user(task_thread_info(child)->last_break,
778                          (unsigned int __user *) data);
779                 return 0;
780         }
781         return compat_ptrace_request(child, request, addr, data);
782 }
783 #endif
784
785 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
786 {
787         long ret = 0;
788
789         /* Do the secure computing check first. */
790         if (secure_computing(regs->gprs[2])) {
791                 /* seccomp failures shouldn't expose any additional code. */
792                 ret = -1;
793                 goto out;
794         }
795
796         /*
797          * The sysc_tracesys code in entry.S stored the system
798          * call number to gprs[2].
799          */
800         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
801             (tracehook_report_syscall_entry(regs) ||
802              regs->gprs[2] >= NR_syscalls)) {
803                 /*
804                  * Tracing decided this syscall should not happen or the
805                  * debugger stored an invalid system call number. Skip
806                  * the system call and the system call restart handling.
807                  */
808                 clear_thread_flag(TIF_SYSCALL);
809                 ret = -1;
810         }
811
812         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
813                 trace_sys_enter(regs, regs->gprs[2]);
814
815         audit_syscall_entry(is_compat_task() ?
816                                 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
817                             regs->gprs[2], regs->orig_gpr2,
818                             regs->gprs[3], regs->gprs[4],
819                             regs->gprs[5]);
820 out:
821         return ret ?: regs->gprs[2];
822 }
823
824 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
825 {
826         audit_syscall_exit(regs);
827
828         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
829                 trace_sys_exit(regs, regs->gprs[2]);
830
831         if (test_thread_flag(TIF_SYSCALL_TRACE))
832                 tracehook_report_syscall_exit(regs, 0);
833 }
834
835 /*
836  * user_regset definitions.
837  */
838
839 static int s390_regs_get(struct task_struct *target,
840                          const struct user_regset *regset,
841                          unsigned int pos, unsigned int count,
842                          void *kbuf, void __user *ubuf)
843 {
844         if (target == current)
845                 save_access_regs(target->thread.acrs);
846
847         if (kbuf) {
848                 unsigned long *k = kbuf;
849                 while (count > 0) {
850                         *k++ = __peek_user(target, pos);
851                         count -= sizeof(*k);
852                         pos += sizeof(*k);
853                 }
854         } else {
855                 unsigned long __user *u = ubuf;
856                 while (count > 0) {
857                         if (__put_user(__peek_user(target, pos), u++))
858                                 return -EFAULT;
859                         count -= sizeof(*u);
860                         pos += sizeof(*u);
861                 }
862         }
863         return 0;
864 }
865
866 static int s390_regs_set(struct task_struct *target,
867                          const struct user_regset *regset,
868                          unsigned int pos, unsigned int count,
869                          const void *kbuf, const void __user *ubuf)
870 {
871         int rc = 0;
872
873         if (target == current)
874                 save_access_regs(target->thread.acrs);
875
876         if (kbuf) {
877                 const unsigned long *k = kbuf;
878                 while (count > 0 && !rc) {
879                         rc = __poke_user(target, pos, *k++);
880                         count -= sizeof(*k);
881                         pos += sizeof(*k);
882                 }
883         } else {
884                 const unsigned long  __user *u = ubuf;
885                 while (count > 0 && !rc) {
886                         unsigned long word;
887                         rc = __get_user(word, u++);
888                         if (rc)
889                                 break;
890                         rc = __poke_user(target, pos, word);
891                         count -= sizeof(*u);
892                         pos += sizeof(*u);
893                 }
894         }
895
896         if (rc == 0 && target == current)
897                 restore_access_regs(target->thread.acrs);
898
899         return rc;
900 }
901
902 static int s390_fpregs_get(struct task_struct *target,
903                            const struct user_regset *regset, unsigned int pos,
904                            unsigned int count, void *kbuf, void __user *ubuf)
905 {
906         if (target == current) {
907                 save_fp_ctl(&target->thread.fp_regs.fpc);
908                 save_fp_regs(target->thread.fp_regs.fprs);
909         }
910
911         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
912                                    &target->thread.fp_regs, 0, -1);
913 }
914
915 static int s390_fpregs_set(struct task_struct *target,
916                            const struct user_regset *regset, unsigned int pos,
917                            unsigned int count, const void *kbuf,
918                            const void __user *ubuf)
919 {
920         int rc = 0;
921
922         if (target == current) {
923                 save_fp_ctl(&target->thread.fp_regs.fpc);
924                 save_fp_regs(target->thread.fp_regs.fprs);
925         }
926
927         /* If setting FPC, must validate it first. */
928         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
929                 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
930                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
931                                         0, offsetof(s390_fp_regs, fprs));
932                 if (rc)
933                         return rc;
934                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
935                         return -EINVAL;
936                 target->thread.fp_regs.fpc = ufpc[0];
937         }
938
939         if (rc == 0 && count > 0)
940                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
941                                         target->thread.fp_regs.fprs,
942                                         offsetof(s390_fp_regs, fprs), -1);
943
944         if (rc == 0 && target == current) {
945                 restore_fp_ctl(&target->thread.fp_regs.fpc);
946                 restore_fp_regs(target->thread.fp_regs.fprs);
947         }
948
949         return rc;
950 }
951
952 #ifdef CONFIG_64BIT
953
954 static int s390_last_break_get(struct task_struct *target,
955                                const struct user_regset *regset,
956                                unsigned int pos, unsigned int count,
957                                void *kbuf, void __user *ubuf)
958 {
959         if (count > 0) {
960                 if (kbuf) {
961                         unsigned long *k = kbuf;
962                         *k = task_thread_info(target)->last_break;
963                 } else {
964                         unsigned long  __user *u = ubuf;
965                         if (__put_user(task_thread_info(target)->last_break, u))
966                                 return -EFAULT;
967                 }
968         }
969         return 0;
970 }
971
972 static int s390_last_break_set(struct task_struct *target,
973                                const struct user_regset *regset,
974                                unsigned int pos, unsigned int count,
975                                const void *kbuf, const void __user *ubuf)
976 {
977         return 0;
978 }
979
980 static int s390_tdb_get(struct task_struct *target,
981                         const struct user_regset *regset,
982                         unsigned int pos, unsigned int count,
983                         void *kbuf, void __user *ubuf)
984 {
985         struct pt_regs *regs = task_pt_regs(target);
986         unsigned char *data;
987
988         if (!(regs->int_code & 0x200))
989                 return -ENODATA;
990         data = target->thread.trap_tdb;
991         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
992 }
993
994 static int s390_tdb_set(struct task_struct *target,
995                         const struct user_regset *regset,
996                         unsigned int pos, unsigned int count,
997                         const void *kbuf, const void __user *ubuf)
998 {
999         return 0;
1000 }
1001
1002 #endif
1003
1004 static int s390_system_call_get(struct task_struct *target,
1005                                 const struct user_regset *regset,
1006                                 unsigned int pos, unsigned int count,
1007                                 void *kbuf, void __user *ubuf)
1008 {
1009         unsigned int *data = &task_thread_info(target)->system_call;
1010         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1011                                    data, 0, sizeof(unsigned int));
1012 }
1013
1014 static int s390_system_call_set(struct task_struct *target,
1015                                 const struct user_regset *regset,
1016                                 unsigned int pos, unsigned int count,
1017                                 const void *kbuf, const void __user *ubuf)
1018 {
1019         unsigned int *data = &task_thread_info(target)->system_call;
1020         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1021                                   data, 0, sizeof(unsigned int));
1022 }
1023
1024 static const struct user_regset s390_regsets[] = {
1025         [REGSET_GENERAL] = {
1026                 .core_note_type = NT_PRSTATUS,
1027                 .n = sizeof(s390_regs) / sizeof(long),
1028                 .size = sizeof(long),
1029                 .align = sizeof(long),
1030                 .get = s390_regs_get,
1031                 .set = s390_regs_set,
1032         },
1033         [REGSET_FP] = {
1034                 .core_note_type = NT_PRFPREG,
1035                 .n = sizeof(s390_fp_regs) / sizeof(long),
1036                 .size = sizeof(long),
1037                 .align = sizeof(long),
1038                 .get = s390_fpregs_get,
1039                 .set = s390_fpregs_set,
1040         },
1041 #ifdef CONFIG_64BIT
1042         [REGSET_LAST_BREAK] = {
1043                 .core_note_type = NT_S390_LAST_BREAK,
1044                 .n = 1,
1045                 .size = sizeof(long),
1046                 .align = sizeof(long),
1047                 .get = s390_last_break_get,
1048                 .set = s390_last_break_set,
1049         },
1050         [REGSET_TDB] = {
1051                 .core_note_type = NT_S390_TDB,
1052                 .n = 1,
1053                 .size = 256,
1054                 .align = 1,
1055                 .get = s390_tdb_get,
1056                 .set = s390_tdb_set,
1057         },
1058 #endif
1059         [REGSET_SYSTEM_CALL] = {
1060                 .core_note_type = NT_S390_SYSTEM_CALL,
1061                 .n = 1,
1062                 .size = sizeof(unsigned int),
1063                 .align = sizeof(unsigned int),
1064                 .get = s390_system_call_get,
1065                 .set = s390_system_call_set,
1066         },
1067 };
1068
1069 static const struct user_regset_view user_s390_view = {
1070         .name = UTS_MACHINE,
1071         .e_machine = EM_S390,
1072         .regsets = s390_regsets,
1073         .n = ARRAY_SIZE(s390_regsets)
1074 };
1075
1076 #ifdef CONFIG_COMPAT
1077 static int s390_compat_regs_get(struct task_struct *target,
1078                                 const struct user_regset *regset,
1079                                 unsigned int pos, unsigned int count,
1080                                 void *kbuf, void __user *ubuf)
1081 {
1082         if (target == current)
1083                 save_access_regs(target->thread.acrs);
1084
1085         if (kbuf) {
1086                 compat_ulong_t *k = kbuf;
1087                 while (count > 0) {
1088                         *k++ = __peek_user_compat(target, pos);
1089                         count -= sizeof(*k);
1090                         pos += sizeof(*k);
1091                 }
1092         } else {
1093                 compat_ulong_t __user *u = ubuf;
1094                 while (count > 0) {
1095                         if (__put_user(__peek_user_compat(target, pos), u++))
1096                                 return -EFAULT;
1097                         count -= sizeof(*u);
1098                         pos += sizeof(*u);
1099                 }
1100         }
1101         return 0;
1102 }
1103
1104 static int s390_compat_regs_set(struct task_struct *target,
1105                                 const struct user_regset *regset,
1106                                 unsigned int pos, unsigned int count,
1107                                 const void *kbuf, const void __user *ubuf)
1108 {
1109         int rc = 0;
1110
1111         if (target == current)
1112                 save_access_regs(target->thread.acrs);
1113
1114         if (kbuf) {
1115                 const compat_ulong_t *k = kbuf;
1116                 while (count > 0 && !rc) {
1117                         rc = __poke_user_compat(target, pos, *k++);
1118                         count -= sizeof(*k);
1119                         pos += sizeof(*k);
1120                 }
1121         } else {
1122                 const compat_ulong_t  __user *u = ubuf;
1123                 while (count > 0 && !rc) {
1124                         compat_ulong_t word;
1125                         rc = __get_user(word, u++);
1126                         if (rc)
1127                                 break;
1128                         rc = __poke_user_compat(target, pos, word);
1129                         count -= sizeof(*u);
1130                         pos += sizeof(*u);
1131                 }
1132         }
1133
1134         if (rc == 0 && target == current)
1135                 restore_access_regs(target->thread.acrs);
1136
1137         return rc;
1138 }
1139
1140 static int s390_compat_regs_high_get(struct task_struct *target,
1141                                      const struct user_regset *regset,
1142                                      unsigned int pos, unsigned int count,
1143                                      void *kbuf, void __user *ubuf)
1144 {
1145         compat_ulong_t *gprs_high;
1146
1147         gprs_high = (compat_ulong_t *)
1148                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1149         if (kbuf) {
1150                 compat_ulong_t *k = kbuf;
1151                 while (count > 0) {
1152                         *k++ = *gprs_high;
1153                         gprs_high += 2;
1154                         count -= sizeof(*k);
1155                 }
1156         } else {
1157                 compat_ulong_t __user *u = ubuf;
1158                 while (count > 0) {
1159                         if (__put_user(*gprs_high, u++))
1160                                 return -EFAULT;
1161                         gprs_high += 2;
1162                         count -= sizeof(*u);
1163                 }
1164         }
1165         return 0;
1166 }
1167
1168 static int s390_compat_regs_high_set(struct task_struct *target,
1169                                      const struct user_regset *regset,
1170                                      unsigned int pos, unsigned int count,
1171                                      const void *kbuf, const void __user *ubuf)
1172 {
1173         compat_ulong_t *gprs_high;
1174         int rc = 0;
1175
1176         gprs_high = (compat_ulong_t *)
1177                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1178         if (kbuf) {
1179                 const compat_ulong_t *k = kbuf;
1180                 while (count > 0) {
1181                         *gprs_high = *k++;
1182                         *gprs_high += 2;
1183                         count -= sizeof(*k);
1184                 }
1185         } else {
1186                 const compat_ulong_t  __user *u = ubuf;
1187                 while (count > 0 && !rc) {
1188                         unsigned long word;
1189                         rc = __get_user(word, u++);
1190                         if (rc)
1191                                 break;
1192                         *gprs_high = word;
1193                         *gprs_high += 2;
1194                         count -= sizeof(*u);
1195                 }
1196         }
1197
1198         return rc;
1199 }
1200
1201 static int s390_compat_last_break_get(struct task_struct *target,
1202                                       const struct user_regset *regset,
1203                                       unsigned int pos, unsigned int count,
1204                                       void *kbuf, void __user *ubuf)
1205 {
1206         compat_ulong_t last_break;
1207
1208         if (count > 0) {
1209                 last_break = task_thread_info(target)->last_break;
1210                 if (kbuf) {
1211                         unsigned long *k = kbuf;
1212                         *k = last_break;
1213                 } else {
1214                         unsigned long  __user *u = ubuf;
1215                         if (__put_user(last_break, u))
1216                                 return -EFAULT;
1217                 }
1218         }
1219         return 0;
1220 }
1221
1222 static int s390_compat_last_break_set(struct task_struct *target,
1223                                       const struct user_regset *regset,
1224                                       unsigned int pos, unsigned int count,
1225                                       const void *kbuf, const void __user *ubuf)
1226 {
1227         return 0;
1228 }
1229
1230 static const struct user_regset s390_compat_regsets[] = {
1231         [REGSET_GENERAL] = {
1232                 .core_note_type = NT_PRSTATUS,
1233                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1234                 .size = sizeof(compat_long_t),
1235                 .align = sizeof(compat_long_t),
1236                 .get = s390_compat_regs_get,
1237                 .set = s390_compat_regs_set,
1238         },
1239         [REGSET_FP] = {
1240                 .core_note_type = NT_PRFPREG,
1241                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1242                 .size = sizeof(compat_long_t),
1243                 .align = sizeof(compat_long_t),
1244                 .get = s390_fpregs_get,
1245                 .set = s390_fpregs_set,
1246         },
1247         [REGSET_LAST_BREAK] = {
1248                 .core_note_type = NT_S390_LAST_BREAK,
1249                 .n = 1,
1250                 .size = sizeof(long),
1251                 .align = sizeof(long),
1252                 .get = s390_compat_last_break_get,
1253                 .set = s390_compat_last_break_set,
1254         },
1255         [REGSET_TDB] = {
1256                 .core_note_type = NT_S390_TDB,
1257                 .n = 1,
1258                 .size = 256,
1259                 .align = 1,
1260                 .get = s390_tdb_get,
1261                 .set = s390_tdb_set,
1262         },
1263         [REGSET_SYSTEM_CALL] = {
1264                 .core_note_type = NT_S390_SYSTEM_CALL,
1265                 .n = 1,
1266                 .size = sizeof(compat_uint_t),
1267                 .align = sizeof(compat_uint_t),
1268                 .get = s390_system_call_get,
1269                 .set = s390_system_call_set,
1270         },
1271         [REGSET_GENERAL_EXTENDED] = {
1272                 .core_note_type = NT_S390_HIGH_GPRS,
1273                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1274                 .size = sizeof(compat_long_t),
1275                 .align = sizeof(compat_long_t),
1276                 .get = s390_compat_regs_high_get,
1277                 .set = s390_compat_regs_high_set,
1278         },
1279 };
1280
1281 static const struct user_regset_view user_s390_compat_view = {
1282         .name = "s390",
1283         .e_machine = EM_S390,
1284         .regsets = s390_compat_regsets,
1285         .n = ARRAY_SIZE(s390_compat_regsets)
1286 };
1287 #endif
1288
1289 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1290 {
1291 #ifdef CONFIG_COMPAT
1292         if (test_tsk_thread_flag(task, TIF_31BIT))
1293                 return &user_s390_compat_view;
1294 #endif
1295         return &user_s390_view;
1296 }
1297
1298 static const char *gpr_names[NUM_GPRS] = {
1299         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1300         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1301 };
1302
1303 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1304 {
1305         if (offset >= NUM_GPRS)
1306                 return 0;
1307         return regs->gprs[offset];
1308 }
1309
1310 int regs_query_register_offset(const char *name)
1311 {
1312         unsigned long offset;
1313
1314         if (!name || *name != 'r')
1315                 return -EINVAL;
1316         if (kstrtoul(name + 1, 10, &offset))
1317                 return -EINVAL;
1318         if (offset >= NUM_GPRS)
1319                 return -EINVAL;
1320         return offset;
1321 }
1322
1323 const char *regs_query_register_name(unsigned int offset)
1324 {
1325         if (offset >= NUM_GPRS)
1326                 return NULL;
1327         return gpr_names[offset];
1328 }
1329
1330 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1331 {
1332         unsigned long ksp = kernel_stack_pointer(regs);
1333
1334         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1335 }
1336
1337 /**
1338  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1339  * @regs:pt_regs which contains kernel stack pointer.
1340  * @n:stack entry number.
1341  *
1342  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1343  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1344  * this returns 0.
1345  */
1346 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1347 {
1348         unsigned long addr;
1349
1350         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1351         if (!regs_within_kernel_stack(regs, addr))
1352                 return 0;
1353         return *(unsigned long *)addr;
1354 }