]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/sparc/mm/init_64.c
76d11d1c5995b4e9e3ccb1b30db2e9d8d05a502f
[karo-tx-linux.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329         struct mm_struct *mm;
330         unsigned long flags;
331         pte_t pte = *ptep;
332
333         if (tlb_type != hypervisor) {
334                 unsigned long pfn = pte_pfn(pte);
335
336                 if (pfn_valid(pfn))
337                         flush_dcache(pfn);
338         }
339
340         mm = vma->vm_mm;
341
342         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343         if (!pte_accessible(mm, pte))
344                 return;
345
346         spin_lock_irqsave(&mm->context.lock, flags);
347
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349         if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
350                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
351                                         address, pte_val(pte));
352         else
353 #endif
354                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
355                                         address, pte_val(pte));
356
357         spin_unlock_irqrestore(&mm->context.lock, flags);
358 }
359
360 void flush_dcache_page(struct page *page)
361 {
362         struct address_space *mapping;
363         int this_cpu;
364
365         if (tlb_type == hypervisor)
366                 return;
367
368         /* Do not bother with the expensive D-cache flush if it
369          * is merely the zero page.  The 'bigcore' testcase in GDB
370          * causes this case to run millions of times.
371          */
372         if (page == ZERO_PAGE(0))
373                 return;
374
375         this_cpu = get_cpu();
376
377         mapping = page_mapping(page);
378         if (mapping && !mapping_mapped(mapping)) {
379                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
380                 if (dirty) {
381                         int dirty_cpu = dcache_dirty_cpu(page);
382
383                         if (dirty_cpu == this_cpu)
384                                 goto out;
385                         smp_flush_dcache_page_impl(page, dirty_cpu);
386                 }
387                 set_dcache_dirty(page, this_cpu);
388         } else {
389                 /* We could delay the flush for the !page_mapping
390                  * case too.  But that case is for exec env/arg
391                  * pages and those are %99 certainly going to get
392                  * faulted into the tlb (and thus flushed) anyways.
393                  */
394                 flush_dcache_page_impl(page);
395         }
396
397 out:
398         put_cpu();
399 }
400 EXPORT_SYMBOL(flush_dcache_page);
401
402 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
403 {
404         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
405         if (tlb_type == spitfire) {
406                 unsigned long kaddr;
407
408                 /* This code only runs on Spitfire cpus so this is
409                  * why we can assume _PAGE_PADDR_4U.
410                  */
411                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
412                         unsigned long paddr, mask = _PAGE_PADDR_4U;
413
414                         if (kaddr >= PAGE_OFFSET)
415                                 paddr = kaddr & mask;
416                         else {
417                                 pgd_t *pgdp = pgd_offset_k(kaddr);
418                                 pud_t *pudp = pud_offset(pgdp, kaddr);
419                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
420                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
421
422                                 paddr = pte_val(*ptep) & mask;
423                         }
424                         __flush_icache_page(paddr);
425                 }
426         }
427 }
428 EXPORT_SYMBOL(flush_icache_range);
429
430 void mmu_info(struct seq_file *m)
431 {
432         static const char *pgsz_strings[] = {
433                 "8K", "64K", "512K", "4MB", "32MB",
434                 "256MB", "2GB", "16GB",
435         };
436         int i, printed;
437
438         if (tlb_type == cheetah)
439                 seq_printf(m, "MMU Type\t: Cheetah\n");
440         else if (tlb_type == cheetah_plus)
441                 seq_printf(m, "MMU Type\t: Cheetah+\n");
442         else if (tlb_type == spitfire)
443                 seq_printf(m, "MMU Type\t: Spitfire\n");
444         else if (tlb_type == hypervisor)
445                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
446         else
447                 seq_printf(m, "MMU Type\t: ???\n");
448
449         seq_printf(m, "MMU PGSZs\t: ");
450         printed = 0;
451         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
452                 if (cpu_pgsz_mask & (1UL << i)) {
453                         seq_printf(m, "%s%s",
454                                    printed ? "," : "", pgsz_strings[i]);
455                         printed++;
456                 }
457         }
458         seq_putc(m, '\n');
459
460 #ifdef CONFIG_DEBUG_DCFLUSH
461         seq_printf(m, "DCPageFlushes\t: %d\n",
462                    atomic_read(&dcpage_flushes));
463 #ifdef CONFIG_SMP
464         seq_printf(m, "DCPageFlushesXC\t: %d\n",
465                    atomic_read(&dcpage_flushes_xcall));
466 #endif /* CONFIG_SMP */
467 #endif /* CONFIG_DEBUG_DCFLUSH */
468 }
469
470 struct linux_prom_translation prom_trans[512] __read_mostly;
471 unsigned int prom_trans_ents __read_mostly;
472
473 unsigned long kern_locked_tte_data;
474
475 /* The obp translations are saved based on 8k pagesize, since obp can
476  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
477  * HI_OBP_ADDRESS range are handled in ktlb.S.
478  */
479 static inline int in_obp_range(unsigned long vaddr)
480 {
481         return (vaddr >= LOW_OBP_ADDRESS &&
482                 vaddr < HI_OBP_ADDRESS);
483 }
484
485 static int cmp_ptrans(const void *a, const void *b)
486 {
487         const struct linux_prom_translation *x = a, *y = b;
488
489         if (x->virt > y->virt)
490                 return 1;
491         if (x->virt < y->virt)
492                 return -1;
493         return 0;
494 }
495
496 /* Read OBP translations property into 'prom_trans[]'.  */
497 static void __init read_obp_translations(void)
498 {
499         int n, node, ents, first, last, i;
500
501         node = prom_finddevice("/virtual-memory");
502         n = prom_getproplen(node, "translations");
503         if (unlikely(n == 0 || n == -1)) {
504                 prom_printf("prom_mappings: Couldn't get size.\n");
505                 prom_halt();
506         }
507         if (unlikely(n > sizeof(prom_trans))) {
508                 prom_printf("prom_mappings: Size %d is too big.\n", n);
509                 prom_halt();
510         }
511
512         if ((n = prom_getproperty(node, "translations",
513                                   (char *)&prom_trans[0],
514                                   sizeof(prom_trans))) == -1) {
515                 prom_printf("prom_mappings: Couldn't get property.\n");
516                 prom_halt();
517         }
518
519         n = n / sizeof(struct linux_prom_translation);
520
521         ents = n;
522
523         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
524              cmp_ptrans, NULL);
525
526         /* Now kick out all the non-OBP entries.  */
527         for (i = 0; i < ents; i++) {
528                 if (in_obp_range(prom_trans[i].virt))
529                         break;
530         }
531         first = i;
532         for (; i < ents; i++) {
533                 if (!in_obp_range(prom_trans[i].virt))
534                         break;
535         }
536         last = i;
537
538         for (i = 0; i < (last - first); i++) {
539                 struct linux_prom_translation *src = &prom_trans[i + first];
540                 struct linux_prom_translation *dest = &prom_trans[i];
541
542                 *dest = *src;
543         }
544         for (; i < ents; i++) {
545                 struct linux_prom_translation *dest = &prom_trans[i];
546                 dest->virt = dest->size = dest->data = 0x0UL;
547         }
548
549         prom_trans_ents = last - first;
550
551         if (tlb_type == spitfire) {
552                 /* Clear diag TTE bits. */
553                 for (i = 0; i < prom_trans_ents; i++)
554                         prom_trans[i].data &= ~0x0003fe0000000000UL;
555         }
556
557         /* Force execute bit on.  */
558         for (i = 0; i < prom_trans_ents; i++)
559                 prom_trans[i].data |= (tlb_type == hypervisor ?
560                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
561 }
562
563 static void __init hypervisor_tlb_lock(unsigned long vaddr,
564                                        unsigned long pte,
565                                        unsigned long mmu)
566 {
567         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
568
569         if (ret != 0) {
570                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
571                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
572                 prom_halt();
573         }
574 }
575
576 static unsigned long kern_large_tte(unsigned long paddr);
577
578 static void __init remap_kernel(void)
579 {
580         unsigned long phys_page, tte_vaddr, tte_data;
581         int i, tlb_ent = sparc64_highest_locked_tlbent();
582
583         tte_vaddr = (unsigned long) KERNBASE;
584         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
585         tte_data = kern_large_tte(phys_page);
586
587         kern_locked_tte_data = tte_data;
588
589         /* Now lock us into the TLBs via Hypervisor or OBP. */
590         if (tlb_type == hypervisor) {
591                 for (i = 0; i < num_kernel_image_mappings; i++) {
592                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
593                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
594                         tte_vaddr += 0x400000;
595                         tte_data += 0x400000;
596                 }
597         } else {
598                 for (i = 0; i < num_kernel_image_mappings; i++) {
599                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
600                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
601                         tte_vaddr += 0x400000;
602                         tte_data += 0x400000;
603                 }
604                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
605         }
606         if (tlb_type == cheetah_plus) {
607                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
608                                             CTX_CHEETAH_PLUS_NUC);
609                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
610                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
611         }
612 }
613
614
615 static void __init inherit_prom_mappings(void)
616 {
617         /* Now fixup OBP's idea about where we really are mapped. */
618         printk("Remapping the kernel... ");
619         remap_kernel();
620         printk("done.\n");
621 }
622
623 void prom_world(int enter)
624 {
625         if (!enter)
626                 set_fs(get_fs());
627
628         __asm__ __volatile__("flushw");
629 }
630
631 void __flush_dcache_range(unsigned long start, unsigned long end)
632 {
633         unsigned long va;
634
635         if (tlb_type == spitfire) {
636                 int n = 0;
637
638                 for (va = start; va < end; va += 32) {
639                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
640                         if (++n >= 512)
641                                 break;
642                 }
643         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
644                 start = __pa(start);
645                 end = __pa(end);
646                 for (va = start; va < end; va += 32)
647                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
648                                              "membar #Sync"
649                                              : /* no outputs */
650                                              : "r" (va),
651                                                "i" (ASI_DCACHE_INVALIDATE));
652         }
653 }
654 EXPORT_SYMBOL(__flush_dcache_range);
655
656 /* get_new_mmu_context() uses "cache + 1".  */
657 DEFINE_SPINLOCK(ctx_alloc_lock);
658 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
659 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
660 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
661 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
662
663 /* Caller does TLB context flushing on local CPU if necessary.
664  * The caller also ensures that CTX_VALID(mm->context) is false.
665  *
666  * We must be careful about boundary cases so that we never
667  * let the user have CTX 0 (nucleus) or we ever use a CTX
668  * version of zero (and thus NO_CONTEXT would not be caught
669  * by version mis-match tests in mmu_context.h).
670  *
671  * Always invoked with interrupts disabled.
672  */
673 void get_new_mmu_context(struct mm_struct *mm)
674 {
675         unsigned long ctx, new_ctx;
676         unsigned long orig_pgsz_bits;
677         int new_version;
678
679         spin_lock(&ctx_alloc_lock);
680         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
681         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
682         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
683         new_version = 0;
684         if (new_ctx >= (1 << CTX_NR_BITS)) {
685                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
686                 if (new_ctx >= ctx) {
687                         int i;
688                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
689                                 CTX_FIRST_VERSION;
690                         if (new_ctx == 1)
691                                 new_ctx = CTX_FIRST_VERSION;
692
693                         /* Don't call memset, for 16 entries that's just
694                          * plain silly...
695                          */
696                         mmu_context_bmap[0] = 3;
697                         mmu_context_bmap[1] = 0;
698                         mmu_context_bmap[2] = 0;
699                         mmu_context_bmap[3] = 0;
700                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
701                                 mmu_context_bmap[i + 0] = 0;
702                                 mmu_context_bmap[i + 1] = 0;
703                                 mmu_context_bmap[i + 2] = 0;
704                                 mmu_context_bmap[i + 3] = 0;
705                         }
706                         new_version = 1;
707                         goto out;
708                 }
709         }
710         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
711         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
712 out:
713         tlb_context_cache = new_ctx;
714         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
715         spin_unlock(&ctx_alloc_lock);
716
717         if (unlikely(new_version))
718                 smp_new_mmu_context_version();
719 }
720
721 static int numa_enabled = 1;
722 static int numa_debug;
723
724 static int __init early_numa(char *p)
725 {
726         if (!p)
727                 return 0;
728
729         if (strstr(p, "off"))
730                 numa_enabled = 0;
731
732         if (strstr(p, "debug"))
733                 numa_debug = 1;
734
735         return 0;
736 }
737 early_param("numa", early_numa);
738
739 #define numadbg(f, a...) \
740 do {    if (numa_debug) \
741                 printk(KERN_INFO f, ## a); \
742 } while (0)
743
744 static void __init find_ramdisk(unsigned long phys_base)
745 {
746 #ifdef CONFIG_BLK_DEV_INITRD
747         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
748                 unsigned long ramdisk_image;
749
750                 /* Older versions of the bootloader only supported a
751                  * 32-bit physical address for the ramdisk image
752                  * location, stored at sparc_ramdisk_image.  Newer
753                  * SILO versions set sparc_ramdisk_image to zero and
754                  * provide a full 64-bit physical address at
755                  * sparc_ramdisk_image64.
756                  */
757                 ramdisk_image = sparc_ramdisk_image;
758                 if (!ramdisk_image)
759                         ramdisk_image = sparc_ramdisk_image64;
760
761                 /* Another bootloader quirk.  The bootloader normalizes
762                  * the physical address to KERNBASE, so we have to
763                  * factor that back out and add in the lowest valid
764                  * physical page address to get the true physical address.
765                  */
766                 ramdisk_image -= KERNBASE;
767                 ramdisk_image += phys_base;
768
769                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
770                         ramdisk_image, sparc_ramdisk_size);
771
772                 initrd_start = ramdisk_image;
773                 initrd_end = ramdisk_image + sparc_ramdisk_size;
774
775                 memblock_reserve(initrd_start, sparc_ramdisk_size);
776
777                 initrd_start += PAGE_OFFSET;
778                 initrd_end += PAGE_OFFSET;
779         }
780 #endif
781 }
782
783 struct node_mem_mask {
784         unsigned long mask;
785         unsigned long val;
786 };
787 static struct node_mem_mask node_masks[MAX_NUMNODES];
788 static int num_node_masks;
789
790 #ifdef CONFIG_NEED_MULTIPLE_NODES
791
792 int numa_cpu_lookup_table[NR_CPUS];
793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794
795 struct mdesc_mblock {
796         u64     base;
797         u64     size;
798         u64     offset; /* RA-to-PA */
799 };
800 static struct mdesc_mblock *mblocks;
801 static int num_mblocks;
802
803 static unsigned long ra_to_pa(unsigned long addr)
804 {
805         int i;
806
807         for (i = 0; i < num_mblocks; i++) {
808                 struct mdesc_mblock *m = &mblocks[i];
809
810                 if (addr >= m->base &&
811                     addr < (m->base + m->size)) {
812                         addr += m->offset;
813                         break;
814                 }
815         }
816         return addr;
817 }
818
819 static int find_node(unsigned long addr)
820 {
821         int i;
822
823         addr = ra_to_pa(addr);
824         for (i = 0; i < num_node_masks; i++) {
825                 struct node_mem_mask *p = &node_masks[i];
826
827                 if ((addr & p->mask) == p->val)
828                         return i;
829         }
830         /* The following condition has been observed on LDOM guests.*/
831         WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
832                 " rule. Some physical memory will be owned by node 0.");
833         return 0;
834 }
835
836 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
837 {
838         *nid = find_node(start);
839         start += PAGE_SIZE;
840         while (start < end) {
841                 int n = find_node(start);
842
843                 if (n != *nid)
844                         break;
845                 start += PAGE_SIZE;
846         }
847
848         if (start > end)
849                 start = end;
850
851         return start;
852 }
853 #endif
854
855 /* This must be invoked after performing all of the necessary
856  * memblock_set_node() calls for 'nid'.  We need to be able to get
857  * correct data from get_pfn_range_for_nid().
858  */
859 static void __init allocate_node_data(int nid)
860 {
861         struct pglist_data *p;
862         unsigned long start_pfn, end_pfn;
863 #ifdef CONFIG_NEED_MULTIPLE_NODES
864         unsigned long paddr;
865
866         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
867         if (!paddr) {
868                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
869                 prom_halt();
870         }
871         NODE_DATA(nid) = __va(paddr);
872         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
873
874         NODE_DATA(nid)->node_id = nid;
875 #endif
876
877         p = NODE_DATA(nid);
878
879         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
880         p->node_start_pfn = start_pfn;
881         p->node_spanned_pages = end_pfn - start_pfn;
882 }
883
884 static void init_node_masks_nonnuma(void)
885 {
886 #ifdef CONFIG_NEED_MULTIPLE_NODES
887         int i;
888 #endif
889
890         numadbg("Initializing tables for non-numa.\n");
891
892         node_masks[0].mask = node_masks[0].val = 0;
893         num_node_masks = 1;
894
895 #ifdef CONFIG_NEED_MULTIPLE_NODES
896         for (i = 0; i < NR_CPUS; i++)
897                 numa_cpu_lookup_table[i] = 0;
898
899         cpumask_setall(&numa_cpumask_lookup_table[0]);
900 #endif
901 }
902
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data *node_data[MAX_NUMNODES];
905
906 EXPORT_SYMBOL(numa_cpu_lookup_table);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table);
908 EXPORT_SYMBOL(node_data);
909
910 struct mdesc_mlgroup {
911         u64     node;
912         u64     latency;
913         u64     match;
914         u64     mask;
915 };
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
918
919 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
920                                    u32 cfg_handle)
921 {
922         u64 arc;
923
924         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
925                 u64 target = mdesc_arc_target(md, arc);
926                 const u64 *val;
927
928                 val = mdesc_get_property(md, target,
929                                          "cfg-handle", NULL);
930                 if (val && *val == cfg_handle)
931                         return 0;
932         }
933         return -ENODEV;
934 }
935
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
937                                     u32 cfg_handle)
938 {
939         u64 arc, candidate, best_latency = ~(u64)0;
940
941         candidate = MDESC_NODE_NULL;
942         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
943                 u64 target = mdesc_arc_target(md, arc);
944                 const char *name = mdesc_node_name(md, target);
945                 const u64 *val;
946
947                 if (strcmp(name, "pio-latency-group"))
948                         continue;
949
950                 val = mdesc_get_property(md, target, "latency", NULL);
951                 if (!val)
952                         continue;
953
954                 if (*val < best_latency) {
955                         candidate = target;
956                         best_latency = *val;
957                 }
958         }
959
960         if (candidate == MDESC_NODE_NULL)
961                 return -ENODEV;
962
963         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
964 }
965
966 int of_node_to_nid(struct device_node *dp)
967 {
968         const struct linux_prom64_registers *regs;
969         struct mdesc_handle *md;
970         u32 cfg_handle;
971         int count, nid;
972         u64 grp;
973
974         /* This is the right thing to do on currently supported
975          * SUN4U NUMA platforms as well, as the PCI controller does
976          * not sit behind any particular memory controller.
977          */
978         if (!mlgroups)
979                 return -1;
980
981         regs = of_get_property(dp, "reg", NULL);
982         if (!regs)
983                 return -1;
984
985         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
986
987         md = mdesc_grab();
988
989         count = 0;
990         nid = -1;
991         mdesc_for_each_node_by_name(md, grp, "group") {
992                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
993                         nid = count;
994                         break;
995                 }
996                 count++;
997         }
998
999         mdesc_release(md);
1000
1001         return nid;
1002 }
1003
1004 static void __init add_node_ranges(void)
1005 {
1006         struct memblock_region *reg;
1007
1008         for_each_memblock(memory, reg) {
1009                 unsigned long size = reg->size;
1010                 unsigned long start, end;
1011
1012                 start = reg->base;
1013                 end = start + size;
1014                 while (start < end) {
1015                         unsigned long this_end;
1016                         int nid;
1017
1018                         this_end = memblock_nid_range(start, end, &nid);
1019
1020                         numadbg("Setting memblock NUMA node nid[%d] "
1021                                 "start[%lx] end[%lx]\n",
1022                                 nid, start, this_end);
1023
1024                         memblock_set_node(start, this_end - start,
1025                                           &memblock.memory, nid);
1026                         start = this_end;
1027                 }
1028         }
1029 }
1030
1031 static int __init grab_mlgroups(struct mdesc_handle *md)
1032 {
1033         unsigned long paddr;
1034         int count = 0;
1035         u64 node;
1036
1037         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038                 count++;
1039         if (!count)
1040                 return -ENOENT;
1041
1042         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043                           SMP_CACHE_BYTES);
1044         if (!paddr)
1045                 return -ENOMEM;
1046
1047         mlgroups = __va(paddr);
1048         num_mlgroups = count;
1049
1050         count = 0;
1051         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052                 struct mdesc_mlgroup *m = &mlgroups[count++];
1053                 const u64 *val;
1054
1055                 m->node = node;
1056
1057                 val = mdesc_get_property(md, node, "latency", NULL);
1058                 m->latency = *val;
1059                 val = mdesc_get_property(md, node, "address-match", NULL);
1060                 m->match = *val;
1061                 val = mdesc_get_property(md, node, "address-mask", NULL);
1062                 m->mask = *val;
1063
1064                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065                         "match[%llx] mask[%llx]\n",
1066                         count - 1, m->node, m->latency, m->match, m->mask);
1067         }
1068
1069         return 0;
1070 }
1071
1072 static int __init grab_mblocks(struct mdesc_handle *md)
1073 {
1074         unsigned long paddr;
1075         int count = 0;
1076         u64 node;
1077
1078         mdesc_for_each_node_by_name(md, node, "mblock")
1079                 count++;
1080         if (!count)
1081                 return -ENOENT;
1082
1083         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084                           SMP_CACHE_BYTES);
1085         if (!paddr)
1086                 return -ENOMEM;
1087
1088         mblocks = __va(paddr);
1089         num_mblocks = count;
1090
1091         count = 0;
1092         mdesc_for_each_node_by_name(md, node, "mblock") {
1093                 struct mdesc_mblock *m = &mblocks[count++];
1094                 const u64 *val;
1095
1096                 val = mdesc_get_property(md, node, "base", NULL);
1097                 m->base = *val;
1098                 val = mdesc_get_property(md, node, "size", NULL);
1099                 m->size = *val;
1100                 val = mdesc_get_property(md, node,
1101                                          "address-congruence-offset", NULL);
1102
1103                 /* The address-congruence-offset property is optional.
1104                  * Explicity zero it be identifty this.
1105                  */
1106                 if (val)
1107                         m->offset = *val;
1108                 else
1109                         m->offset = 0UL;
1110
1111                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112                         count - 1, m->base, m->size, m->offset);
1113         }
1114
1115         return 0;
1116 }
1117
1118 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119                                                u64 grp, cpumask_t *mask)
1120 {
1121         u64 arc;
1122
1123         cpumask_clear(mask);
1124
1125         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126                 u64 target = mdesc_arc_target(md, arc);
1127                 const char *name = mdesc_node_name(md, target);
1128                 const u64 *id;
1129
1130                 if (strcmp(name, "cpu"))
1131                         continue;
1132                 id = mdesc_get_property(md, target, "id", NULL);
1133                 if (*id < nr_cpu_ids)
1134                         cpumask_set_cpu(*id, mask);
1135         }
1136 }
1137
1138 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139 {
1140         int i;
1141
1142         for (i = 0; i < num_mlgroups; i++) {
1143                 struct mdesc_mlgroup *m = &mlgroups[i];
1144                 if (m->node == node)
1145                         return m;
1146         }
1147         return NULL;
1148 }
1149
1150 int __node_distance(int from, int to)
1151 {
1152         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1153                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1154                         from, to);
1155                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1156         }
1157         return numa_latency[from][to];
1158 }
1159
1160 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1161 {
1162         int i;
1163
1164         for (i = 0; i < MAX_NUMNODES; i++) {
1165                 struct node_mem_mask *n = &node_masks[i];
1166
1167                 if ((grp->mask == n->mask) && (grp->match == n->val))
1168                         break;
1169         }
1170         return i;
1171 }
1172
1173 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1174                                           int index)
1175 {
1176         u64 arc;
1177
1178         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1179                 int tnode;
1180                 u64 target = mdesc_arc_target(md, arc);
1181                 struct mdesc_mlgroup *m = find_mlgroup(target);
1182
1183                 if (!m)
1184                         continue;
1185                 tnode = find_best_numa_node_for_mlgroup(m);
1186                 if (tnode == MAX_NUMNODES)
1187                         continue;
1188                 numa_latency[index][tnode] = m->latency;
1189         }
1190 }
1191
1192 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1193                                       int index)
1194 {
1195         struct mdesc_mlgroup *candidate = NULL;
1196         u64 arc, best_latency = ~(u64)0;
1197         struct node_mem_mask *n;
1198
1199         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1200                 u64 target = mdesc_arc_target(md, arc);
1201                 struct mdesc_mlgroup *m = find_mlgroup(target);
1202                 if (!m)
1203                         continue;
1204                 if (m->latency < best_latency) {
1205                         candidate = m;
1206                         best_latency = m->latency;
1207                 }
1208         }
1209         if (!candidate)
1210                 return -ENOENT;
1211
1212         if (num_node_masks != index) {
1213                 printk(KERN_ERR "Inconsistent NUMA state, "
1214                        "index[%d] != num_node_masks[%d]\n",
1215                        index, num_node_masks);
1216                 return -EINVAL;
1217         }
1218
1219         n = &node_masks[num_node_masks++];
1220
1221         n->mask = candidate->mask;
1222         n->val = candidate->match;
1223
1224         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1225                 index, n->mask, n->val, candidate->latency);
1226
1227         return 0;
1228 }
1229
1230 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1231                                          int index)
1232 {
1233         cpumask_t mask;
1234         int cpu;
1235
1236         numa_parse_mdesc_group_cpus(md, grp, &mask);
1237
1238         for_each_cpu(cpu, &mask)
1239                 numa_cpu_lookup_table[cpu] = index;
1240         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1241
1242         if (numa_debug) {
1243                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1244                 for_each_cpu(cpu, &mask)
1245                         printk("%d ", cpu);
1246                 printk("]\n");
1247         }
1248
1249         return numa_attach_mlgroup(md, grp, index);
1250 }
1251
1252 static int __init numa_parse_mdesc(void)
1253 {
1254         struct mdesc_handle *md = mdesc_grab();
1255         int i, j, err, count;
1256         u64 node;
1257
1258         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1259         if (node == MDESC_NODE_NULL) {
1260                 mdesc_release(md);
1261                 return -ENOENT;
1262         }
1263
1264         err = grab_mblocks(md);
1265         if (err < 0)
1266                 goto out;
1267
1268         err = grab_mlgroups(md);
1269         if (err < 0)
1270                 goto out;
1271
1272         count = 0;
1273         mdesc_for_each_node_by_name(md, node, "group") {
1274                 err = numa_parse_mdesc_group(md, node, count);
1275                 if (err < 0)
1276                         break;
1277                 count++;
1278         }
1279
1280         count = 0;
1281         mdesc_for_each_node_by_name(md, node, "group") {
1282                 find_numa_latencies_for_group(md, node, count);
1283                 count++;
1284         }
1285
1286         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1287         for (i = 0; i < MAX_NUMNODES; i++) {
1288                 u64 self_latency = numa_latency[i][i];
1289
1290                 for (j = 0; j < MAX_NUMNODES; j++) {
1291                         numa_latency[i][j] =
1292                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1293                                 self_latency;
1294                 }
1295         }
1296
1297         add_node_ranges();
1298
1299         for (i = 0; i < num_node_masks; i++) {
1300                 allocate_node_data(i);
1301                 node_set_online(i);
1302         }
1303
1304         err = 0;
1305 out:
1306         mdesc_release(md);
1307         return err;
1308 }
1309
1310 static int __init numa_parse_jbus(void)
1311 {
1312         unsigned long cpu, index;
1313
1314         /* NUMA node id is encoded in bits 36 and higher, and there is
1315          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1316          */
1317         index = 0;
1318         for_each_present_cpu(cpu) {
1319                 numa_cpu_lookup_table[cpu] = index;
1320                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1321                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1322                 node_masks[index].val = cpu << 36UL;
1323
1324                 index++;
1325         }
1326         num_node_masks = index;
1327
1328         add_node_ranges();
1329
1330         for (index = 0; index < num_node_masks; index++) {
1331                 allocate_node_data(index);
1332                 node_set_online(index);
1333         }
1334
1335         return 0;
1336 }
1337
1338 static int __init numa_parse_sun4u(void)
1339 {
1340         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1341                 unsigned long ver;
1342
1343                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1344                 if ((ver >> 32UL) == __JALAPENO_ID ||
1345                     (ver >> 32UL) == __SERRANO_ID)
1346                         return numa_parse_jbus();
1347         }
1348         return -1;
1349 }
1350
1351 static int __init bootmem_init_numa(void)
1352 {
1353         int i, j;
1354         int err = -1;
1355
1356         numadbg("bootmem_init_numa()\n");
1357
1358         /* Some sane defaults for numa latency values */
1359         for (i = 0; i < MAX_NUMNODES; i++) {
1360                 for (j = 0; j < MAX_NUMNODES; j++)
1361                         numa_latency[i][j] = (i == j) ?
1362                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1363         }
1364
1365         if (numa_enabled) {
1366                 if (tlb_type == hypervisor)
1367                         err = numa_parse_mdesc();
1368                 else
1369                         err = numa_parse_sun4u();
1370         }
1371         return err;
1372 }
1373
1374 #else
1375
1376 static int bootmem_init_numa(void)
1377 {
1378         return -1;
1379 }
1380
1381 #endif
1382
1383 static void __init bootmem_init_nonnuma(void)
1384 {
1385         unsigned long top_of_ram = memblock_end_of_DRAM();
1386         unsigned long total_ram = memblock_phys_mem_size();
1387
1388         numadbg("bootmem_init_nonnuma()\n");
1389
1390         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1391                top_of_ram, total_ram);
1392         printk(KERN_INFO "Memory hole size: %ldMB\n",
1393                (top_of_ram - total_ram) >> 20);
1394
1395         init_node_masks_nonnuma();
1396         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1397         allocate_node_data(0);
1398         node_set_online(0);
1399 }
1400
1401 static unsigned long __init bootmem_init(unsigned long phys_base)
1402 {
1403         unsigned long end_pfn;
1404
1405         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1406         max_pfn = max_low_pfn = end_pfn;
1407         min_low_pfn = (phys_base >> PAGE_SHIFT);
1408
1409         if (bootmem_init_numa() < 0)
1410                 bootmem_init_nonnuma();
1411
1412         /* Dump memblock with node info. */
1413         memblock_dump_all();
1414
1415         /* XXX cpu notifier XXX */
1416
1417         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1418         sparse_init();
1419
1420         return end_pfn;
1421 }
1422
1423 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1424 static int pall_ents __initdata;
1425
1426 static unsigned long max_phys_bits = 40;
1427
1428 bool kern_addr_valid(unsigned long addr)
1429 {
1430         pgd_t *pgd;
1431         pud_t *pud;
1432         pmd_t *pmd;
1433         pte_t *pte;
1434
1435         if ((long)addr < 0L) {
1436                 unsigned long pa = __pa(addr);
1437
1438                 if ((addr >> max_phys_bits) != 0UL)
1439                         return false;
1440
1441                 return pfn_valid(pa >> PAGE_SHIFT);
1442         }
1443
1444         if (addr >= (unsigned long) KERNBASE &&
1445             addr < (unsigned long)&_end)
1446                 return true;
1447
1448         pgd = pgd_offset_k(addr);
1449         if (pgd_none(*pgd))
1450                 return 0;
1451
1452         pud = pud_offset(pgd, addr);
1453         if (pud_none(*pud))
1454                 return 0;
1455
1456         if (pud_large(*pud))
1457                 return pfn_valid(pud_pfn(*pud));
1458
1459         pmd = pmd_offset(pud, addr);
1460         if (pmd_none(*pmd))
1461                 return 0;
1462
1463         if (pmd_large(*pmd))
1464                 return pfn_valid(pmd_pfn(*pmd));
1465
1466         pte = pte_offset_kernel(pmd, addr);
1467         if (pte_none(*pte))
1468                 return 0;
1469
1470         return pfn_valid(pte_pfn(*pte));
1471 }
1472 EXPORT_SYMBOL(kern_addr_valid);
1473
1474 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1475                                               unsigned long vend,
1476                                               pud_t *pud)
1477 {
1478         const unsigned long mask16gb = (1UL << 34) - 1UL;
1479         u64 pte_val = vstart;
1480
1481         /* Each PUD is 8GB */
1482         if ((vstart & mask16gb) ||
1483             (vend - vstart <= mask16gb)) {
1484                 pte_val ^= kern_linear_pte_xor[2];
1485                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1486
1487                 return vstart + PUD_SIZE;
1488         }
1489
1490         pte_val ^= kern_linear_pte_xor[3];
1491         pte_val |= _PAGE_PUD_HUGE;
1492
1493         vend = vstart + mask16gb + 1UL;
1494         while (vstart < vend) {
1495                 pud_val(*pud) = pte_val;
1496
1497                 pte_val += PUD_SIZE;
1498                 vstart += PUD_SIZE;
1499                 pud++;
1500         }
1501         return vstart;
1502 }
1503
1504 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1505                                    bool guard)
1506 {
1507         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1508                 return true;
1509
1510         return false;
1511 }
1512
1513 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1514                                               unsigned long vend,
1515                                               pmd_t *pmd)
1516 {
1517         const unsigned long mask256mb = (1UL << 28) - 1UL;
1518         const unsigned long mask2gb = (1UL << 31) - 1UL;
1519         u64 pte_val = vstart;
1520
1521         /* Each PMD is 8MB */
1522         if ((vstart & mask256mb) ||
1523             (vend - vstart <= mask256mb)) {
1524                 pte_val ^= kern_linear_pte_xor[0];
1525                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1526
1527                 return vstart + PMD_SIZE;
1528         }
1529
1530         if ((vstart & mask2gb) ||
1531             (vend - vstart <= mask2gb)) {
1532                 pte_val ^= kern_linear_pte_xor[1];
1533                 pte_val |= _PAGE_PMD_HUGE;
1534                 vend = vstart + mask256mb + 1UL;
1535         } else {
1536                 pte_val ^= kern_linear_pte_xor[2];
1537                 pte_val |= _PAGE_PMD_HUGE;
1538                 vend = vstart + mask2gb + 1UL;
1539         }
1540
1541         while (vstart < vend) {
1542                 pmd_val(*pmd) = pte_val;
1543
1544                 pte_val += PMD_SIZE;
1545                 vstart += PMD_SIZE;
1546                 pmd++;
1547         }
1548
1549         return vstart;
1550 }
1551
1552 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1553                                    bool guard)
1554 {
1555         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1556                 return true;
1557
1558         return false;
1559 }
1560
1561 static unsigned long __ref kernel_map_range(unsigned long pstart,
1562                                             unsigned long pend, pgprot_t prot,
1563                                             bool use_huge)
1564 {
1565         unsigned long vstart = PAGE_OFFSET + pstart;
1566         unsigned long vend = PAGE_OFFSET + pend;
1567         unsigned long alloc_bytes = 0UL;
1568
1569         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1570                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1571                             vstart, vend);
1572                 prom_halt();
1573         }
1574
1575         while (vstart < vend) {
1576                 unsigned long this_end, paddr = __pa(vstart);
1577                 pgd_t *pgd = pgd_offset_k(vstart);
1578                 pud_t *pud;
1579                 pmd_t *pmd;
1580                 pte_t *pte;
1581
1582                 if (pgd_none(*pgd)) {
1583                         pud_t *new;
1584
1585                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1586                         alloc_bytes += PAGE_SIZE;
1587                         pgd_populate(&init_mm, pgd, new);
1588                 }
1589                 pud = pud_offset(pgd, vstart);
1590                 if (pud_none(*pud)) {
1591                         pmd_t *new;
1592
1593                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1594                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1595                                 continue;
1596                         }
1597                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1598                         alloc_bytes += PAGE_SIZE;
1599                         pud_populate(&init_mm, pud, new);
1600                 }
1601
1602                 pmd = pmd_offset(pud, vstart);
1603                 if (pmd_none(*pmd)) {
1604                         pte_t *new;
1605
1606                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1607                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1608                                 continue;
1609                         }
1610                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1611                         alloc_bytes += PAGE_SIZE;
1612                         pmd_populate_kernel(&init_mm, pmd, new);
1613                 }
1614
1615                 pte = pte_offset_kernel(pmd, vstart);
1616                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1617                 if (this_end > vend)
1618                         this_end = vend;
1619
1620                 while (vstart < this_end) {
1621                         pte_val(*pte) = (paddr | pgprot_val(prot));
1622
1623                         vstart += PAGE_SIZE;
1624                         paddr += PAGE_SIZE;
1625                         pte++;
1626                 }
1627         }
1628
1629         return alloc_bytes;
1630 }
1631
1632 static void __init flush_all_kernel_tsbs(void)
1633 {
1634         int i;
1635
1636         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1637                 struct tsb *ent = &swapper_tsb[i];
1638
1639                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1640         }
1641 #ifndef CONFIG_DEBUG_PAGEALLOC
1642         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1643                 struct tsb *ent = &swapper_4m_tsb[i];
1644
1645                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1646         }
1647 #endif
1648 }
1649
1650 extern unsigned int kvmap_linear_patch[1];
1651
1652 static void __init kernel_physical_mapping_init(void)
1653 {
1654         unsigned long i, mem_alloced = 0UL;
1655         bool use_huge = true;
1656
1657 #ifdef CONFIG_DEBUG_PAGEALLOC
1658         use_huge = false;
1659 #endif
1660         for (i = 0; i < pall_ents; i++) {
1661                 unsigned long phys_start, phys_end;
1662
1663                 phys_start = pall[i].phys_addr;
1664                 phys_end = phys_start + pall[i].reg_size;
1665
1666                 mem_alloced += kernel_map_range(phys_start, phys_end,
1667                                                 PAGE_KERNEL, use_huge);
1668         }
1669
1670         printk("Allocated %ld bytes for kernel page tables.\n",
1671                mem_alloced);
1672
1673         kvmap_linear_patch[0] = 0x01000000; /* nop */
1674         flushi(&kvmap_linear_patch[0]);
1675
1676         flush_all_kernel_tsbs();
1677
1678         __flush_tlb_all();
1679 }
1680
1681 #ifdef CONFIG_DEBUG_PAGEALLOC
1682 void __kernel_map_pages(struct page *page, int numpages, int enable)
1683 {
1684         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1685         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1686
1687         kernel_map_range(phys_start, phys_end,
1688                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1689
1690         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1691                                PAGE_OFFSET + phys_end);
1692
1693         /* we should perform an IPI and flush all tlbs,
1694          * but that can deadlock->flush only current cpu.
1695          */
1696         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1697                                  PAGE_OFFSET + phys_end);
1698 }
1699 #endif
1700
1701 unsigned long __init find_ecache_flush_span(unsigned long size)
1702 {
1703         int i;
1704
1705         for (i = 0; i < pavail_ents; i++) {
1706                 if (pavail[i].reg_size >= size)
1707                         return pavail[i].phys_addr;
1708         }
1709
1710         return ~0UL;
1711 }
1712
1713 unsigned long PAGE_OFFSET;
1714 EXPORT_SYMBOL(PAGE_OFFSET);
1715
1716 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1717 EXPORT_SYMBOL(VMALLOC_END);
1718
1719 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1720 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1721
1722 static void __init setup_page_offset(void)
1723 {
1724         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1725                 /* Cheetah/Panther support a full 64-bit virtual
1726                  * address, so we can use all that our page tables
1727                  * support.
1728                  */
1729                 sparc64_va_hole_top =    0xfff0000000000000UL;
1730                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1731
1732                 max_phys_bits = 42;
1733         } else if (tlb_type == hypervisor) {
1734                 switch (sun4v_chip_type) {
1735                 case SUN4V_CHIP_NIAGARA1:
1736                 case SUN4V_CHIP_NIAGARA2:
1737                         /* T1 and T2 support 48-bit virtual addresses.  */
1738                         sparc64_va_hole_top =    0xffff800000000000UL;
1739                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1740
1741                         max_phys_bits = 39;
1742                         break;
1743                 case SUN4V_CHIP_NIAGARA3:
1744                         /* T3 supports 48-bit virtual addresses.  */
1745                         sparc64_va_hole_top =    0xffff800000000000UL;
1746                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1747
1748                         max_phys_bits = 43;
1749                         break;
1750                 case SUN4V_CHIP_NIAGARA4:
1751                 case SUN4V_CHIP_NIAGARA5:
1752                 case SUN4V_CHIP_SPARC64X:
1753                 case SUN4V_CHIP_SPARC_M6:
1754                         /* T4 and later support 52-bit virtual addresses.  */
1755                         sparc64_va_hole_top =    0xfff8000000000000UL;
1756                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1757                         max_phys_bits = 47;
1758                         break;
1759                 case SUN4V_CHIP_SPARC_M7:
1760                 default:
1761                         /* M7 and later support 52-bit virtual addresses.  */
1762                         sparc64_va_hole_top =    0xfff8000000000000UL;
1763                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1764                         max_phys_bits = 49;
1765                         break;
1766                 }
1767         }
1768
1769         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1770                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1771                             max_phys_bits);
1772                 prom_halt();
1773         }
1774
1775         PAGE_OFFSET = sparc64_va_hole_top;
1776         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1777                        (sparc64_va_hole_bottom >> 2));
1778
1779         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1780                 PAGE_OFFSET, max_phys_bits);
1781         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1782                 VMALLOC_START, VMALLOC_END);
1783         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1784                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1785 }
1786
1787 static void __init tsb_phys_patch(void)
1788 {
1789         struct tsb_ldquad_phys_patch_entry *pquad;
1790         struct tsb_phys_patch_entry *p;
1791
1792         pquad = &__tsb_ldquad_phys_patch;
1793         while (pquad < &__tsb_ldquad_phys_patch_end) {
1794                 unsigned long addr = pquad->addr;
1795
1796                 if (tlb_type == hypervisor)
1797                         *(unsigned int *) addr = pquad->sun4v_insn;
1798                 else
1799                         *(unsigned int *) addr = pquad->sun4u_insn;
1800                 wmb();
1801                 __asm__ __volatile__("flush     %0"
1802                                      : /* no outputs */
1803                                      : "r" (addr));
1804
1805                 pquad++;
1806         }
1807
1808         p = &__tsb_phys_patch;
1809         while (p < &__tsb_phys_patch_end) {
1810                 unsigned long addr = p->addr;
1811
1812                 *(unsigned int *) addr = p->insn;
1813                 wmb();
1814                 __asm__ __volatile__("flush     %0"
1815                                      : /* no outputs */
1816                                      : "r" (addr));
1817
1818                 p++;
1819         }
1820 }
1821
1822 /* Don't mark as init, we give this to the Hypervisor.  */
1823 #ifndef CONFIG_DEBUG_PAGEALLOC
1824 #define NUM_KTSB_DESCR  2
1825 #else
1826 #define NUM_KTSB_DESCR  1
1827 #endif
1828 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1829
1830 /* The swapper TSBs are loaded with a base sequence of:
1831  *
1832  *      sethi   %uhi(SYMBOL), REG1
1833  *      sethi   %hi(SYMBOL), REG2
1834  *      or      REG1, %ulo(SYMBOL), REG1
1835  *      or      REG2, %lo(SYMBOL), REG2
1836  *      sllx    REG1, 32, REG1
1837  *      or      REG1, REG2, REG1
1838  *
1839  * When we use physical addressing for the TSB accesses, we patch the
1840  * first four instructions in the above sequence.
1841  */
1842
1843 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1844 {
1845         unsigned long high_bits, low_bits;
1846
1847         high_bits = (pa >> 32) & 0xffffffff;
1848         low_bits = (pa >> 0) & 0xffffffff;
1849
1850         while (start < end) {
1851                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1852
1853                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1854                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1855
1856                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1857                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1858
1859                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1860                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
1861
1862                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1863                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
1864
1865                 start++;
1866         }
1867 }
1868
1869 static void ktsb_phys_patch(void)
1870 {
1871         extern unsigned int __swapper_tsb_phys_patch;
1872         extern unsigned int __swapper_tsb_phys_patch_end;
1873         unsigned long ktsb_pa;
1874
1875         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1876         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1877                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1878 #ifndef CONFIG_DEBUG_PAGEALLOC
1879         {
1880         extern unsigned int __swapper_4m_tsb_phys_patch;
1881         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1882         ktsb_pa = (kern_base +
1883                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1884         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1885                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1886         }
1887 #endif
1888 }
1889
1890 static void __init sun4v_ktsb_init(void)
1891 {
1892         unsigned long ktsb_pa;
1893
1894         /* First KTSB for PAGE_SIZE mappings.  */
1895         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1896
1897         switch (PAGE_SIZE) {
1898         case 8 * 1024:
1899         default:
1900                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1901                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1902                 break;
1903
1904         case 64 * 1024:
1905                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1906                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1907                 break;
1908
1909         case 512 * 1024:
1910                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1911                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1912                 break;
1913
1914         case 4 * 1024 * 1024:
1915                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1916                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1917                 break;
1918         }
1919
1920         ktsb_descr[0].assoc = 1;
1921         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1922         ktsb_descr[0].ctx_idx = 0;
1923         ktsb_descr[0].tsb_base = ktsb_pa;
1924         ktsb_descr[0].resv = 0;
1925
1926 #ifndef CONFIG_DEBUG_PAGEALLOC
1927         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1928         ktsb_pa = (kern_base +
1929                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1930
1931         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1932         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1933                                     HV_PGSZ_MASK_256MB |
1934                                     HV_PGSZ_MASK_2GB |
1935                                     HV_PGSZ_MASK_16GB) &
1936                                    cpu_pgsz_mask);
1937         ktsb_descr[1].assoc = 1;
1938         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1939         ktsb_descr[1].ctx_idx = 0;
1940         ktsb_descr[1].tsb_base = ktsb_pa;
1941         ktsb_descr[1].resv = 0;
1942 #endif
1943 }
1944
1945 void sun4v_ktsb_register(void)
1946 {
1947         unsigned long pa, ret;
1948
1949         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1950
1951         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1952         if (ret != 0) {
1953                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1954                             "errors with %lx\n", pa, ret);
1955                 prom_halt();
1956         }
1957 }
1958
1959 static void __init sun4u_linear_pte_xor_finalize(void)
1960 {
1961 #ifndef CONFIG_DEBUG_PAGEALLOC
1962         /* This is where we would add Panther support for
1963          * 32MB and 256MB pages.
1964          */
1965 #endif
1966 }
1967
1968 static void __init sun4v_linear_pte_xor_finalize(void)
1969 {
1970         unsigned long pagecv_flag;
1971
1972         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1973          * enables MCD error. Do not set bit 9 on M7 processor.
1974          */
1975         switch (sun4v_chip_type) {
1976         case SUN4V_CHIP_SPARC_M7:
1977                 pagecv_flag = 0x00;
1978                 break;
1979         default:
1980                 pagecv_flag = _PAGE_CV_4V;
1981                 break;
1982         }
1983 #ifndef CONFIG_DEBUG_PAGEALLOC
1984         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1985                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1986                         PAGE_OFFSET;
1987                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1988                                            _PAGE_P_4V | _PAGE_W_4V);
1989         } else {
1990                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1991         }
1992
1993         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1994                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1995                         PAGE_OFFSET;
1996                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
1997                                            _PAGE_P_4V | _PAGE_W_4V);
1998         } else {
1999                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2000         }
2001
2002         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2003                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2004                         PAGE_OFFSET;
2005                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2006                                            _PAGE_P_4V | _PAGE_W_4V);
2007         } else {
2008                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2009         }
2010 #endif
2011 }
2012
2013 /* paging_init() sets up the page tables */
2014
2015 static unsigned long last_valid_pfn;
2016
2017 static void sun4u_pgprot_init(void);
2018 static void sun4v_pgprot_init(void);
2019
2020 static phys_addr_t __init available_memory(void)
2021 {
2022         phys_addr_t available = 0ULL;
2023         phys_addr_t pa_start, pa_end;
2024         u64 i;
2025
2026         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2027                                 &pa_end, NULL)
2028                 available = available + (pa_end  - pa_start);
2029
2030         return available;
2031 }
2032
2033 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2034 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2035 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2036 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2037 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2038 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2039
2040 /* We need to exclude reserved regions. This exclusion will include
2041  * vmlinux and initrd. To be more precise the initrd size could be used to
2042  * compute a new lower limit because it is freed later during initialization.
2043  */
2044 static void __init reduce_memory(phys_addr_t limit_ram)
2045 {
2046         phys_addr_t avail_ram = available_memory();
2047         phys_addr_t pa_start, pa_end;
2048         u64 i;
2049
2050         if (limit_ram >= avail_ram)
2051                 return;
2052
2053         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2054                                 &pa_end, NULL) {
2055                 phys_addr_t region_size = pa_end - pa_start;
2056                 phys_addr_t clip_start = pa_start;
2057
2058                 avail_ram = avail_ram - region_size;
2059                 /* Are we consuming too much? */
2060                 if (avail_ram < limit_ram) {
2061                         phys_addr_t give_back = limit_ram - avail_ram;
2062
2063                         region_size = region_size - give_back;
2064                         clip_start = clip_start + give_back;
2065                 }
2066
2067                 memblock_remove(clip_start, region_size);
2068
2069                 if (avail_ram <= limit_ram)
2070                         break;
2071                 i = 0UL;
2072         }
2073 }
2074
2075 void __init paging_init(void)
2076 {
2077         unsigned long end_pfn, shift, phys_base;
2078         unsigned long real_end, i;
2079         int node;
2080
2081         setup_page_offset();
2082
2083         /* These build time checkes make sure that the dcache_dirty_cpu()
2084          * page->flags usage will work.
2085          *
2086          * When a page gets marked as dcache-dirty, we store the
2087          * cpu number starting at bit 32 in the page->flags.  Also,
2088          * functions like clear_dcache_dirty_cpu use the cpu mask
2089          * in 13-bit signed-immediate instruction fields.
2090          */
2091
2092         /*
2093          * Page flags must not reach into upper 32 bits that are used
2094          * for the cpu number
2095          */
2096         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2097
2098         /*
2099          * The bit fields placed in the high range must not reach below
2100          * the 32 bit boundary. Otherwise we cannot place the cpu field
2101          * at the 32 bit boundary.
2102          */
2103         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2104                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2105
2106         BUILD_BUG_ON(NR_CPUS > 4096);
2107
2108         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2109         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2110
2111         /* Invalidate both kernel TSBs.  */
2112         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2113 #ifndef CONFIG_DEBUG_PAGEALLOC
2114         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2115 #endif
2116
2117         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2118          * bit on M7 processor. This is a conflicting usage of the same
2119          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2120          * Detection error on all pages and this will lead to problems
2121          * later. Kernel does not run with MCD enabled and hence rest
2122          * of the required steps to fully configure memory corruption
2123          * detection are not taken. We need to ensure TTE.mcde is not
2124          * set on M7 processor. Compute the value of cacheability
2125          * flag for use later taking this into consideration.
2126          */
2127         switch (sun4v_chip_type) {
2128         case SUN4V_CHIP_SPARC_M7:
2129                 page_cache4v_flag = _PAGE_CP_4V;
2130                 break;
2131         default:
2132                 page_cache4v_flag = _PAGE_CACHE_4V;
2133                 break;
2134         }
2135
2136         if (tlb_type == hypervisor)
2137                 sun4v_pgprot_init();
2138         else
2139                 sun4u_pgprot_init();
2140
2141         if (tlb_type == cheetah_plus ||
2142             tlb_type == hypervisor) {
2143                 tsb_phys_patch();
2144                 ktsb_phys_patch();
2145         }
2146
2147         if (tlb_type == hypervisor)
2148                 sun4v_patch_tlb_handlers();
2149
2150         /* Find available physical memory...
2151          *
2152          * Read it twice in order to work around a bug in openfirmware.
2153          * The call to grab this table itself can cause openfirmware to
2154          * allocate memory, which in turn can take away some space from
2155          * the list of available memory.  Reading it twice makes sure
2156          * we really do get the final value.
2157          */
2158         read_obp_translations();
2159         read_obp_memory("reg", &pall[0], &pall_ents);
2160         read_obp_memory("available", &pavail[0], &pavail_ents);
2161         read_obp_memory("available", &pavail[0], &pavail_ents);
2162
2163         phys_base = 0xffffffffffffffffUL;
2164         for (i = 0; i < pavail_ents; i++) {
2165                 phys_base = min(phys_base, pavail[i].phys_addr);
2166                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2167         }
2168
2169         memblock_reserve(kern_base, kern_size);
2170
2171         find_ramdisk(phys_base);
2172
2173         if (cmdline_memory_size)
2174                 reduce_memory(cmdline_memory_size);
2175
2176         memblock_allow_resize();
2177         memblock_dump_all();
2178
2179         set_bit(0, mmu_context_bmap);
2180
2181         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2182
2183         real_end = (unsigned long)_end;
2184         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2185         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2186                num_kernel_image_mappings);
2187
2188         /* Set kernel pgd to upper alias so physical page computations
2189          * work.
2190          */
2191         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2192         
2193         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2194
2195         inherit_prom_mappings();
2196         
2197         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2198         setup_tba();
2199
2200         __flush_tlb_all();
2201
2202         prom_build_devicetree();
2203         of_populate_present_mask();
2204 #ifndef CONFIG_SMP
2205         of_fill_in_cpu_data();
2206 #endif
2207
2208         if (tlb_type == hypervisor) {
2209                 sun4v_mdesc_init();
2210                 mdesc_populate_present_mask(cpu_all_mask);
2211 #ifndef CONFIG_SMP
2212                 mdesc_fill_in_cpu_data(cpu_all_mask);
2213 #endif
2214                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2215
2216                 sun4v_linear_pte_xor_finalize();
2217
2218                 sun4v_ktsb_init();
2219                 sun4v_ktsb_register();
2220         } else {
2221                 unsigned long impl, ver;
2222
2223                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2224                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2225
2226                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2227                 impl = ((ver >> 32) & 0xffff);
2228                 if (impl == PANTHER_IMPL)
2229                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2230                                           HV_PGSZ_MASK_256MB);
2231
2232                 sun4u_linear_pte_xor_finalize();
2233         }
2234
2235         /* Flush the TLBs and the 4M TSB so that the updated linear
2236          * pte XOR settings are realized for all mappings.
2237          */
2238         __flush_tlb_all();
2239 #ifndef CONFIG_DEBUG_PAGEALLOC
2240         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2241 #endif
2242         __flush_tlb_all();
2243
2244         /* Setup bootmem... */
2245         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2246
2247         /* Once the OF device tree and MDESC have been setup, we know
2248          * the list of possible cpus.  Therefore we can allocate the
2249          * IRQ stacks.
2250          */
2251         for_each_possible_cpu(i) {
2252                 node = cpu_to_node(i);
2253
2254                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2255                                                         THREAD_SIZE,
2256                                                         THREAD_SIZE, 0);
2257                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2258                                                         THREAD_SIZE,
2259                                                         THREAD_SIZE, 0);
2260         }
2261
2262         kernel_physical_mapping_init();
2263
2264         {
2265                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2266
2267                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2268
2269                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2270
2271                 free_area_init_nodes(max_zone_pfns);
2272         }
2273
2274         printk("Booting Linux...\n");
2275 }
2276
2277 int page_in_phys_avail(unsigned long paddr)
2278 {
2279         int i;
2280
2281         paddr &= PAGE_MASK;
2282
2283         for (i = 0; i < pavail_ents; i++) {
2284                 unsigned long start, end;
2285
2286                 start = pavail[i].phys_addr;
2287                 end = start + pavail[i].reg_size;
2288
2289                 if (paddr >= start && paddr < end)
2290                         return 1;
2291         }
2292         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2293                 return 1;
2294 #ifdef CONFIG_BLK_DEV_INITRD
2295         if (paddr >= __pa(initrd_start) &&
2296             paddr < __pa(PAGE_ALIGN(initrd_end)))
2297                 return 1;
2298 #endif
2299
2300         return 0;
2301 }
2302
2303 static void __init register_page_bootmem_info(void)
2304 {
2305 #ifdef CONFIG_NEED_MULTIPLE_NODES
2306         int i;
2307
2308         for_each_online_node(i)
2309                 if (NODE_DATA(i)->node_spanned_pages)
2310                         register_page_bootmem_info_node(NODE_DATA(i));
2311 #endif
2312 }
2313 void __init mem_init(void)
2314 {
2315         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2316
2317         register_page_bootmem_info();
2318         free_all_bootmem();
2319
2320         /*
2321          * Set up the zero page, mark it reserved, so that page count
2322          * is not manipulated when freeing the page from user ptes.
2323          */
2324         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2325         if (mem_map_zero == NULL) {
2326                 prom_printf("paging_init: Cannot alloc zero page.\n");
2327                 prom_halt();
2328         }
2329         mark_page_reserved(mem_map_zero);
2330
2331         mem_init_print_info(NULL);
2332
2333         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2334                 cheetah_ecache_flush_init();
2335 }
2336
2337 void free_initmem(void)
2338 {
2339         unsigned long addr, initend;
2340         int do_free = 1;
2341
2342         /* If the physical memory maps were trimmed by kernel command
2343          * line options, don't even try freeing this initmem stuff up.
2344          * The kernel image could have been in the trimmed out region
2345          * and if so the freeing below will free invalid page structs.
2346          */
2347         if (cmdline_memory_size)
2348                 do_free = 0;
2349
2350         /*
2351          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2352          */
2353         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2354         initend = (unsigned long)(__init_end) & PAGE_MASK;
2355         for (; addr < initend; addr += PAGE_SIZE) {
2356                 unsigned long page;
2357
2358                 page = (addr +
2359                         ((unsigned long) __va(kern_base)) -
2360                         ((unsigned long) KERNBASE));
2361                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2362
2363                 if (do_free)
2364                         free_reserved_page(virt_to_page(page));
2365         }
2366 }
2367
2368 #ifdef CONFIG_BLK_DEV_INITRD
2369 void free_initrd_mem(unsigned long start, unsigned long end)
2370 {
2371         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2372                            "initrd");
2373 }
2374 #endif
2375
2376 pgprot_t PAGE_KERNEL __read_mostly;
2377 EXPORT_SYMBOL(PAGE_KERNEL);
2378
2379 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2380 pgprot_t PAGE_COPY __read_mostly;
2381
2382 pgprot_t PAGE_SHARED __read_mostly;
2383 EXPORT_SYMBOL(PAGE_SHARED);
2384
2385 unsigned long pg_iobits __read_mostly;
2386
2387 unsigned long _PAGE_IE __read_mostly;
2388 EXPORT_SYMBOL(_PAGE_IE);
2389
2390 unsigned long _PAGE_E __read_mostly;
2391 EXPORT_SYMBOL(_PAGE_E);
2392
2393 unsigned long _PAGE_CACHE __read_mostly;
2394 EXPORT_SYMBOL(_PAGE_CACHE);
2395
2396 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2397 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2398                                int node)
2399 {
2400         unsigned long pte_base;
2401
2402         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2403                     _PAGE_CP_4U | _PAGE_CV_4U |
2404                     _PAGE_P_4U | _PAGE_W_4U);
2405         if (tlb_type == hypervisor)
2406                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2407                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2408
2409         pte_base |= _PAGE_PMD_HUGE;
2410
2411         vstart = vstart & PMD_MASK;
2412         vend = ALIGN(vend, PMD_SIZE);
2413         for (; vstart < vend; vstart += PMD_SIZE) {
2414                 pgd_t *pgd = pgd_offset_k(vstart);
2415                 unsigned long pte;
2416                 pud_t *pud;
2417                 pmd_t *pmd;
2418
2419                 if (pgd_none(*pgd)) {
2420                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2421
2422                         if (!new)
2423                                 return -ENOMEM;
2424                         pgd_populate(&init_mm, pgd, new);
2425                 }
2426
2427                 pud = pud_offset(pgd, vstart);
2428                 if (pud_none(*pud)) {
2429                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2430
2431                         if (!new)
2432                                 return -ENOMEM;
2433                         pud_populate(&init_mm, pud, new);
2434                 }
2435
2436                 pmd = pmd_offset(pud, vstart);
2437
2438                 pte = pmd_val(*pmd);
2439                 if (!(pte & _PAGE_VALID)) {
2440                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2441
2442                         if (!block)
2443                                 return -ENOMEM;
2444
2445                         pmd_val(*pmd) = pte_base | __pa(block);
2446                 }
2447         }
2448
2449         return 0;
2450 }
2451
2452 void vmemmap_free(unsigned long start, unsigned long end)
2453 {
2454 }
2455 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2456
2457 static void prot_init_common(unsigned long page_none,
2458                              unsigned long page_shared,
2459                              unsigned long page_copy,
2460                              unsigned long page_readonly,
2461                              unsigned long page_exec_bit)
2462 {
2463         PAGE_COPY = __pgprot(page_copy);
2464         PAGE_SHARED = __pgprot(page_shared);
2465
2466         protection_map[0x0] = __pgprot(page_none);
2467         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2468         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2469         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2470         protection_map[0x4] = __pgprot(page_readonly);
2471         protection_map[0x5] = __pgprot(page_readonly);
2472         protection_map[0x6] = __pgprot(page_copy);
2473         protection_map[0x7] = __pgprot(page_copy);
2474         protection_map[0x8] = __pgprot(page_none);
2475         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2476         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2477         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2478         protection_map[0xc] = __pgprot(page_readonly);
2479         protection_map[0xd] = __pgprot(page_readonly);
2480         protection_map[0xe] = __pgprot(page_shared);
2481         protection_map[0xf] = __pgprot(page_shared);
2482 }
2483
2484 static void __init sun4u_pgprot_init(void)
2485 {
2486         unsigned long page_none, page_shared, page_copy, page_readonly;
2487         unsigned long page_exec_bit;
2488         int i;
2489
2490         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2491                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2492                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2493                                 _PAGE_EXEC_4U);
2494         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2495                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2496                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2497                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2498
2499         _PAGE_IE = _PAGE_IE_4U;
2500         _PAGE_E = _PAGE_E_4U;
2501         _PAGE_CACHE = _PAGE_CACHE_4U;
2502
2503         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2504                      __ACCESS_BITS_4U | _PAGE_E_4U);
2505
2506 #ifdef CONFIG_DEBUG_PAGEALLOC
2507         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2508 #else
2509         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2510                 PAGE_OFFSET;
2511 #endif
2512         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2513                                    _PAGE_P_4U | _PAGE_W_4U);
2514
2515         for (i = 1; i < 4; i++)
2516                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2517
2518         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2519                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2520                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2521
2522
2523         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2524         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2525                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2526         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2527                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2528         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2529                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2530
2531         page_exec_bit = _PAGE_EXEC_4U;
2532
2533         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2534                          page_exec_bit);
2535 }
2536
2537 static void __init sun4v_pgprot_init(void)
2538 {
2539         unsigned long page_none, page_shared, page_copy, page_readonly;
2540         unsigned long page_exec_bit;
2541         int i;
2542
2543         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2544                                 page_cache4v_flag | _PAGE_P_4V |
2545                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2546                                 _PAGE_EXEC_4V);
2547         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2548
2549         _PAGE_IE = _PAGE_IE_4V;
2550         _PAGE_E = _PAGE_E_4V;
2551         _PAGE_CACHE = page_cache4v_flag;
2552
2553 #ifdef CONFIG_DEBUG_PAGEALLOC
2554         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2555 #else
2556         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2557                 PAGE_OFFSET;
2558 #endif
2559         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2560                                    _PAGE_W_4V);
2561
2562         for (i = 1; i < 4; i++)
2563                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2564
2565         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2566                      __ACCESS_BITS_4V | _PAGE_E_4V);
2567
2568         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2569                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2570                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2571                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2572
2573         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2574         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2575                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2576         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2577                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2578         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2579                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2580
2581         page_exec_bit = _PAGE_EXEC_4V;
2582
2583         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2584                          page_exec_bit);
2585 }
2586
2587 unsigned long pte_sz_bits(unsigned long sz)
2588 {
2589         if (tlb_type == hypervisor) {
2590                 switch (sz) {
2591                 case 8 * 1024:
2592                 default:
2593                         return _PAGE_SZ8K_4V;
2594                 case 64 * 1024:
2595                         return _PAGE_SZ64K_4V;
2596                 case 512 * 1024:
2597                         return _PAGE_SZ512K_4V;
2598                 case 4 * 1024 * 1024:
2599                         return _PAGE_SZ4MB_4V;
2600                 }
2601         } else {
2602                 switch (sz) {
2603                 case 8 * 1024:
2604                 default:
2605                         return _PAGE_SZ8K_4U;
2606                 case 64 * 1024:
2607                         return _PAGE_SZ64K_4U;
2608                 case 512 * 1024:
2609                         return _PAGE_SZ512K_4U;
2610                 case 4 * 1024 * 1024:
2611                         return _PAGE_SZ4MB_4U;
2612                 }
2613         }
2614 }
2615
2616 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2617 {
2618         pte_t pte;
2619
2620         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2621         pte_val(pte) |= (((unsigned long)space) << 32);
2622         pte_val(pte) |= pte_sz_bits(page_size);
2623
2624         return pte;
2625 }
2626
2627 static unsigned long kern_large_tte(unsigned long paddr)
2628 {
2629         unsigned long val;
2630
2631         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2632                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2633                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2634         if (tlb_type == hypervisor)
2635                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2636                        page_cache4v_flag | _PAGE_P_4V |
2637                        _PAGE_EXEC_4V | _PAGE_W_4V);
2638
2639         return val | paddr;
2640 }
2641
2642 /* If not locked, zap it. */
2643 void __flush_tlb_all(void)
2644 {
2645         unsigned long pstate;
2646         int i;
2647
2648         __asm__ __volatile__("flushw\n\t"
2649                              "rdpr      %%pstate, %0\n\t"
2650                              "wrpr      %0, %1, %%pstate"
2651                              : "=r" (pstate)
2652                              : "i" (PSTATE_IE));
2653         if (tlb_type == hypervisor) {
2654                 sun4v_mmu_demap_all();
2655         } else if (tlb_type == spitfire) {
2656                 for (i = 0; i < 64; i++) {
2657                         /* Spitfire Errata #32 workaround */
2658                         /* NOTE: Always runs on spitfire, so no
2659                          *       cheetah+ page size encodings.
2660                          */
2661                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2662                                              "flush     %%g6"
2663                                              : /* No outputs */
2664                                              : "r" (0),
2665                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2666
2667                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2668                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2669                                                      "membar #Sync"
2670                                                      : /* no outputs */
2671                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2672                                 spitfire_put_dtlb_data(i, 0x0UL);
2673                         }
2674
2675                         /* Spitfire Errata #32 workaround */
2676                         /* NOTE: Always runs on spitfire, so no
2677                          *       cheetah+ page size encodings.
2678                          */
2679                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2680                                              "flush     %%g6"
2681                                              : /* No outputs */
2682                                              : "r" (0),
2683                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2684
2685                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2686                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2687                                                      "membar #Sync"
2688                                                      : /* no outputs */
2689                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2690                                 spitfire_put_itlb_data(i, 0x0UL);
2691                         }
2692                 }
2693         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2694                 cheetah_flush_dtlb_all();
2695                 cheetah_flush_itlb_all();
2696         }
2697         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2698                              : : "r" (pstate));
2699 }
2700
2701 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2702                             unsigned long address)
2703 {
2704         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2705                                        __GFP_REPEAT | __GFP_ZERO);
2706         pte_t *pte = NULL;
2707
2708         if (page)
2709                 pte = (pte_t *) page_address(page);
2710
2711         return pte;
2712 }
2713
2714 pgtable_t pte_alloc_one(struct mm_struct *mm,
2715                         unsigned long address)
2716 {
2717         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2718                                        __GFP_REPEAT | __GFP_ZERO);
2719         if (!page)
2720                 return NULL;
2721         if (!pgtable_page_ctor(page)) {
2722                 free_hot_cold_page(page, 0);
2723                 return NULL;
2724         }
2725         return (pte_t *) page_address(page);
2726 }
2727
2728 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2729 {
2730         free_page((unsigned long)pte);
2731 }
2732
2733 static void __pte_free(pgtable_t pte)
2734 {
2735         struct page *page = virt_to_page(pte);
2736
2737         pgtable_page_dtor(page);
2738         __free_page(page);
2739 }
2740
2741 void pte_free(struct mm_struct *mm, pgtable_t pte)
2742 {
2743         __pte_free(pte);
2744 }
2745
2746 void pgtable_free(void *table, bool is_page)
2747 {
2748         if (is_page)
2749                 __pte_free(table);
2750         else
2751                 kmem_cache_free(pgtable_cache, table);
2752 }
2753
2754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2755 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2756                           pmd_t *pmd)
2757 {
2758         unsigned long pte, flags;
2759         struct mm_struct *mm;
2760         pmd_t entry = *pmd;
2761
2762         if (!pmd_large(entry) || !pmd_young(entry))
2763                 return;
2764
2765         pte = pmd_val(entry);
2766
2767         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2768         if (!(pte & _PAGE_VALID))
2769                 return;
2770
2771         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2772         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2773
2774         mm = vma->vm_mm;
2775
2776         spin_lock_irqsave(&mm->context.lock, flags);
2777
2778         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2779                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2780                                         addr, pte);
2781
2782         spin_unlock_irqrestore(&mm->context.lock, flags);
2783 }
2784 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2785
2786 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2787 static void context_reload(void *__data)
2788 {
2789         struct mm_struct *mm = __data;
2790
2791         if (mm == current->mm)
2792                 load_secondary_context(mm);
2793 }
2794
2795 void hugetlb_setup(struct pt_regs *regs)
2796 {
2797         struct mm_struct *mm = current->mm;
2798         struct tsb_config *tp;
2799
2800         if (faulthandler_disabled() || !mm) {
2801                 const struct exception_table_entry *entry;
2802
2803                 entry = search_exception_tables(regs->tpc);
2804                 if (entry) {
2805                         regs->tpc = entry->fixup;
2806                         regs->tnpc = regs->tpc + 4;
2807                         return;
2808                 }
2809                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2810                 die_if_kernel("HugeTSB in atomic", regs);
2811         }
2812
2813         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2814         if (likely(tp->tsb == NULL))
2815                 tsb_grow(mm, MM_TSB_HUGE, 0);
2816
2817         tsb_context_switch(mm);
2818         smp_tsb_sync(mm);
2819
2820         /* On UltraSPARC-III+ and later, configure the second half of
2821          * the Data-TLB for huge pages.
2822          */
2823         if (tlb_type == cheetah_plus) {
2824                 unsigned long ctx;
2825
2826                 spin_lock(&ctx_alloc_lock);
2827                 ctx = mm->context.sparc64_ctx_val;
2828                 ctx &= ~CTX_PGSZ_MASK;
2829                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2830                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2831
2832                 if (ctx != mm->context.sparc64_ctx_val) {
2833                         /* When changing the page size fields, we
2834                          * must perform a context flush so that no
2835                          * stale entries match.  This flush must
2836                          * occur with the original context register
2837                          * settings.
2838                          */
2839                         do_flush_tlb_mm(mm);
2840
2841                         /* Reload the context register of all processors
2842                          * also executing in this address space.
2843                          */
2844                         mm->context.sparc64_ctx_val = ctx;
2845                         on_each_cpu(context_reload, mm, 0);
2846                 }
2847                 spin_unlock(&ctx_alloc_lock);
2848         }
2849 }
2850 #endif
2851
2852 static struct resource code_resource = {
2853         .name   = "Kernel code",
2854         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2855 };
2856
2857 static struct resource data_resource = {
2858         .name   = "Kernel data",
2859         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2860 };
2861
2862 static struct resource bss_resource = {
2863         .name   = "Kernel bss",
2864         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
2865 };
2866
2867 static inline resource_size_t compute_kern_paddr(void *addr)
2868 {
2869         return (resource_size_t) (addr - KERNBASE + kern_base);
2870 }
2871
2872 static void __init kernel_lds_init(void)
2873 {
2874         code_resource.start = compute_kern_paddr(_text);
2875         code_resource.end   = compute_kern_paddr(_etext - 1);
2876         data_resource.start = compute_kern_paddr(_etext);
2877         data_resource.end   = compute_kern_paddr(_edata - 1);
2878         bss_resource.start  = compute_kern_paddr(__bss_start);
2879         bss_resource.end    = compute_kern_paddr(_end - 1);
2880 }
2881
2882 static int __init report_memory(void)
2883 {
2884         int i;
2885         struct resource *res;
2886
2887         kernel_lds_init();
2888
2889         for (i = 0; i < pavail_ents; i++) {
2890                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2891
2892                 if (!res) {
2893                         pr_warn("Failed to allocate source.\n");
2894                         break;
2895                 }
2896
2897                 res->name = "System RAM";
2898                 res->start = pavail[i].phys_addr;
2899                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2900                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2901
2902                 if (insert_resource(&iomem_resource, res) < 0) {
2903                         pr_warn("Resource insertion failed.\n");
2904                         break;
2905                 }
2906
2907                 insert_resource(res, &code_resource);
2908                 insert_resource(res, &data_resource);
2909                 insert_resource(res, &bss_resource);
2910         }
2911
2912         return 0;
2913 }
2914 arch_initcall(report_memory);
2915
2916 #ifdef CONFIG_SMP
2917 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2918 #else
2919 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2920 #endif
2921
2922 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2923 {
2924         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2925                 if (start < LOW_OBP_ADDRESS) {
2926                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2927                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2928                 }
2929                 if (end > HI_OBP_ADDRESS) {
2930                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2931                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2932                 }
2933         } else {
2934                 flush_tsb_kernel_range(start, end);
2935                 do_flush_tlb_kernel_range(start, end);
2936         }
2937 }