]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/kernel/unwind_frame.c
82c6d7f1fd73e64debd566d0846f3b9a62ab8959
[karo-tx-linux.git] / arch / x86 / kernel / unwind_frame.c
1 #include <linux/sched.h>
2 #include <linux/sched/task.h>
3 #include <linux/sched/task_stack.h>
4 #include <linux/interrupt.h>
5 #include <asm/sections.h>
6 #include <asm/ptrace.h>
7 #include <asm/bitops.h>
8 #include <asm/stacktrace.h>
9 #include <asm/unwind.h>
10
11 #define FRAME_HEADER_SIZE (sizeof(long) * 2)
12
13 /*
14  * This disables KASAN checking when reading a value from another task's stack,
15  * since the other task could be running on another CPU and could have poisoned
16  * the stack in the meantime.
17  */
18 #define READ_ONCE_TASK_STACK(task, x)                   \
19 ({                                                      \
20         unsigned long val;                              \
21         if (task == current)                            \
22                 val = READ_ONCE(x);                     \
23         else                                            \
24                 val = READ_ONCE_NOCHECK(x);             \
25         val;                                            \
26 })
27
28 static void unwind_dump(struct unwind_state *state)
29 {
30         static bool dumped_before = false;
31         bool prev_zero, zero = false;
32         unsigned long word, *sp;
33         struct stack_info stack_info = {0};
34         unsigned long visit_mask = 0;
35
36         if (dumped_before)
37                 return;
38
39         dumped_before = true;
40
41         printk_deferred("unwind stack type:%d next_sp:%p mask:0x%lx graph_idx:%d\n",
42                         state->stack_info.type, state->stack_info.next_sp,
43                         state->stack_mask, state->graph_idx);
44
45         for (sp = state->orig_sp; sp; sp = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
46                 if (get_stack_info(sp, state->task, &stack_info, &visit_mask))
47                         break;
48
49                 for (; sp < stack_info.end; sp++) {
50
51                         word = READ_ONCE_NOCHECK(*sp);
52
53                         prev_zero = zero;
54                         zero = word == 0;
55
56                         if (zero) {
57                                 if (!prev_zero)
58                                         printk_deferred("%p: %0*x ...\n",
59                                                         sp, BITS_PER_LONG/4, 0);
60                                 continue;
61                         }
62
63                         printk_deferred("%p: %0*lx (%pB)\n",
64                                         sp, BITS_PER_LONG/4, word, (void *)word);
65                 }
66         }
67 }
68
69 unsigned long unwind_get_return_address(struct unwind_state *state)
70 {
71         if (unwind_done(state))
72                 return 0;
73
74         return __kernel_text_address(state->ip) ? state->ip : 0;
75 }
76 EXPORT_SYMBOL_GPL(unwind_get_return_address);
77
78 static size_t regs_size(struct pt_regs *regs)
79 {
80         /* x86_32 regs from kernel mode are two words shorter: */
81         if (IS_ENABLED(CONFIG_X86_32) && !user_mode(regs))
82                 return sizeof(*regs) - 2*sizeof(long);
83
84         return sizeof(*regs);
85 }
86
87 static bool in_entry_code(unsigned long ip)
88 {
89         char *addr = (char *)ip;
90
91         if (addr >= __entry_text_start && addr < __entry_text_end)
92                 return true;
93
94 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
95         if (addr >= __irqentry_text_start && addr < __irqentry_text_end)
96                 return true;
97 #endif
98
99         return false;
100 }
101
102 static inline unsigned long *last_frame(struct unwind_state *state)
103 {
104         return (unsigned long *)task_pt_regs(state->task) - 2;
105 }
106
107 #ifdef CONFIG_X86_32
108 #define GCC_REALIGN_WORDS 3
109 #else
110 #define GCC_REALIGN_WORDS 1
111 #endif
112
113 static inline unsigned long *last_aligned_frame(struct unwind_state *state)
114 {
115         return last_frame(state) - GCC_REALIGN_WORDS;
116 }
117
118 static bool is_last_task_frame(struct unwind_state *state)
119 {
120         unsigned long *last_bp = last_frame(state);
121         unsigned long *aligned_bp = last_aligned_frame(state);
122
123         /*
124          * We have to check for the last task frame at two different locations
125          * because gcc can occasionally decide to realign the stack pointer and
126          * change the offset of the stack frame in the prologue of a function
127          * called by head/entry code.  Examples:
128          *
129          * <start_secondary>:
130          *      push   %edi
131          *      lea    0x8(%esp),%edi
132          *      and    $0xfffffff8,%esp
133          *      pushl  -0x4(%edi)
134          *      push   %ebp
135          *      mov    %esp,%ebp
136          *
137          * <x86_64_start_kernel>:
138          *      lea    0x8(%rsp),%r10
139          *      and    $0xfffffffffffffff0,%rsp
140          *      pushq  -0x8(%r10)
141          *      push   %rbp
142          *      mov    %rsp,%rbp
143          *
144          * Note that after aligning the stack, it pushes a duplicate copy of
145          * the return address before pushing the frame pointer.
146          */
147         return (state->bp == last_bp ||
148                 (state->bp == aligned_bp && *(aligned_bp+1) == *(last_bp+1)));
149 }
150
151 /*
152  * This determines if the frame pointer actually contains an encoded pointer to
153  * pt_regs on the stack.  See ENCODE_FRAME_POINTER.
154  */
155 static struct pt_regs *decode_frame_pointer(unsigned long *bp)
156 {
157         unsigned long regs = (unsigned long)bp;
158
159         if (!(regs & 0x1))
160                 return NULL;
161
162         return (struct pt_regs *)(regs & ~0x1);
163 }
164
165 static bool update_stack_state(struct unwind_state *state,
166                                unsigned long *next_bp)
167 {
168         struct stack_info *info = &state->stack_info;
169         enum stack_type prev_type = info->type;
170         struct pt_regs *regs;
171         unsigned long *frame, *prev_frame_end, *addr_p, addr;
172         size_t len;
173
174         if (state->regs)
175                 prev_frame_end = (void *)state->regs + regs_size(state->regs);
176         else
177                 prev_frame_end = (void *)state->bp + FRAME_HEADER_SIZE;
178
179         /* Is the next frame pointer an encoded pointer to pt_regs? */
180         regs = decode_frame_pointer(next_bp);
181         if (regs) {
182                 frame = (unsigned long *)regs;
183                 len = regs_size(regs);
184                 state->got_irq = true;
185         } else {
186                 frame = next_bp;
187                 len = FRAME_HEADER_SIZE;
188         }
189
190         /*
191          * If the next bp isn't on the current stack, switch to the next one.
192          *
193          * We may have to traverse multiple stacks to deal with the possibility
194          * that info->next_sp could point to an empty stack and the next bp
195          * could be on a subsequent stack.
196          */
197         while (!on_stack(info, frame, len))
198                 if (get_stack_info(info->next_sp, state->task, info,
199                                    &state->stack_mask))
200                         return false;
201
202         /* Make sure it only unwinds up and doesn't overlap the prev frame: */
203         if (state->orig_sp && state->stack_info.type == prev_type &&
204             frame < prev_frame_end)
205                 return false;
206
207         /* Move state to the next frame: */
208         if (regs) {
209                 state->regs = regs;
210                 state->bp = NULL;
211         } else {
212                 state->bp = next_bp;
213                 state->regs = NULL;
214         }
215
216         /* Save the return address: */
217         if (state->regs && user_mode(state->regs))
218                 state->ip = 0;
219         else {
220                 addr_p = unwind_get_return_address_ptr(state);
221                 addr = READ_ONCE_TASK_STACK(state->task, *addr_p);
222                 state->ip = ftrace_graph_ret_addr(state->task, &state->graph_idx,
223                                                   addr, addr_p);
224         }
225
226         /* Save the original stack pointer for unwind_dump(): */
227         if (!state->orig_sp)
228                 state->orig_sp = frame;
229
230         return true;
231 }
232
233 bool unwind_next_frame(struct unwind_state *state)
234 {
235         struct pt_regs *regs;
236         unsigned long *next_bp;
237
238         if (unwind_done(state))
239                 return false;
240
241         /* Have we reached the end? */
242         if (state->regs && user_mode(state->regs))
243                 goto the_end;
244
245         if (is_last_task_frame(state)) {
246                 regs = task_pt_regs(state->task);
247
248                 /*
249                  * kthreads (other than the boot CPU's idle thread) have some
250                  * partial regs at the end of their stack which were placed
251                  * there by copy_thread_tls().  But the regs don't have any
252                  * useful information, so we can skip them.
253                  *
254                  * This user_mode() check is slightly broader than a PF_KTHREAD
255                  * check because it also catches the awkward situation where a
256                  * newly forked kthread transitions into a user task by calling
257                  * do_execve(), which eventually clears PF_KTHREAD.
258                  */
259                 if (!user_mode(regs))
260                         goto the_end;
261
262                 /*
263                  * We're almost at the end, but not quite: there's still the
264                  * syscall regs frame.  Entry code doesn't encode the regs
265                  * pointer for syscalls, so we have to set it manually.
266                  */
267                 state->regs = regs;
268                 state->bp = NULL;
269                 state->ip = 0;
270                 return true;
271         }
272
273         /* Get the next frame pointer: */
274         if (state->regs)
275                 next_bp = (unsigned long *)state->regs->bp;
276         else
277                 next_bp = (unsigned long *)READ_ONCE_TASK_STACK(state->task, *state->bp);
278
279         /* Move to the next frame if it's safe: */
280         if (!update_stack_state(state, next_bp))
281                 goto bad_address;
282
283         return true;
284
285 bad_address:
286         state->error = true;
287
288         /*
289          * When unwinding a non-current task, the task might actually be
290          * running on another CPU, in which case it could be modifying its
291          * stack while we're reading it.  This is generally not a problem and
292          * can be ignored as long as the caller understands that unwinding
293          * another task will not always succeed.
294          */
295         if (state->task != current)
296                 goto the_end;
297
298         /*
299          * Don't warn if the unwinder got lost due to an interrupt in entry
300          * code or in the C handler before the first frame pointer got set up:
301          */
302         if (state->got_irq && in_entry_code(state->ip))
303                 goto the_end;
304         if (state->regs &&
305             state->regs->sp >= (unsigned long)last_aligned_frame(state) &&
306             state->regs->sp < (unsigned long)task_pt_regs(state->task))
307                 goto the_end;
308
309         if (state->regs) {
310                 printk_deferred_once(KERN_WARNING
311                         "WARNING: kernel stack regs at %p in %s:%d has bad 'bp' value %p\n",
312                         state->regs, state->task->comm,
313                         state->task->pid, next_bp);
314                 unwind_dump(state);
315         } else {
316                 printk_deferred_once(KERN_WARNING
317                         "WARNING: kernel stack frame pointer at %p in %s:%d has bad value %p\n",
318                         state->bp, state->task->comm,
319                         state->task->pid, next_bp);
320                 unwind_dump(state);
321         }
322 the_end:
323         state->stack_info.type = STACK_TYPE_UNKNOWN;
324         return false;
325 }
326 EXPORT_SYMBOL_GPL(unwind_next_frame);
327
328 void __unwind_start(struct unwind_state *state, struct task_struct *task,
329                     struct pt_regs *regs, unsigned long *first_frame)
330 {
331         unsigned long *bp;
332
333         memset(state, 0, sizeof(*state));
334         state->task = task;
335         state->got_irq = (regs);
336
337         /* Don't even attempt to start from user mode regs: */
338         if (regs && user_mode(regs)) {
339                 state->stack_info.type = STACK_TYPE_UNKNOWN;
340                 return;
341         }
342
343         bp = get_frame_pointer(task, regs);
344
345         /* Initialize stack info and make sure the frame data is accessible: */
346         get_stack_info(bp, state->task, &state->stack_info,
347                        &state->stack_mask);
348         update_stack_state(state, bp);
349
350         /*
351          * The caller can provide the address of the first frame directly
352          * (first_frame) or indirectly (regs->sp) to indicate which stack frame
353          * to start unwinding at.  Skip ahead until we reach it.
354          */
355         while (!unwind_done(state) &&
356                (!on_stack(&state->stack_info, first_frame, sizeof(long)) ||
357                         state->bp < first_frame))
358                 unwind_next_frame(state);
359 }
360 EXPORT_SYMBOL_GPL(__unwind_start);