]> git.karo-electronics.de Git - karo-tx-linux.git/blob - arch/x86/mm/pageattr.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
105 }
106
107 #endif
108
109 static inline int
110 within(unsigned long addr, unsigned long start, unsigned long end)
111 {
112         return addr >= start && addr < end;
113 }
114
115 /*
116  * Flushing functions
117  */
118
119 /**
120  * clflush_cache_range - flush a cache range with clflush
121  * @vaddr:      virtual start address
122  * @size:       number of bytes to flush
123  *
124  * clflushopt is an unordered instruction which needs fencing with mfence or
125  * sfence to avoid ordering issues.
126  */
127 void clflush_cache_range(void *vaddr, unsigned int size)
128 {
129         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
130         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
131         void *vend = vaddr + size;
132
133         if (p >= vend)
134                 return;
135
136         mb();
137
138         for (; p < vend; p += clflush_size)
139                 clflushopt(p);
140
141         mb();
142 }
143 EXPORT_SYMBOL_GPL(clflush_cache_range);
144
145 static void __cpa_flush_all(void *arg)
146 {
147         unsigned long cache = (unsigned long)arg;
148
149         /*
150          * Flush all to work around Errata in early athlons regarding
151          * large page flushing.
152          */
153         __flush_tlb_all();
154
155         if (cache && boot_cpu_data.x86 >= 4)
156                 wbinvd();
157 }
158
159 static void cpa_flush_all(unsigned long cache)
160 {
161         BUG_ON(irqs_disabled());
162
163         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
164 }
165
166 static void __cpa_flush_range(void *arg)
167 {
168         /*
169          * We could optimize that further and do individual per page
170          * tlb invalidates for a low number of pages. Caveat: we must
171          * flush the high aliases on 64bit as well.
172          */
173         __flush_tlb_all();
174 }
175
176 static void cpa_flush_range(unsigned long start, int numpages, int cache)
177 {
178         unsigned int i, level;
179         unsigned long addr;
180
181         BUG_ON(irqs_disabled());
182         WARN_ON(PAGE_ALIGN(start) != start);
183
184         on_each_cpu(__cpa_flush_range, NULL, 1);
185
186         if (!cache)
187                 return;
188
189         /*
190          * We only need to flush on one CPU,
191          * clflush is a MESI-coherent instruction that
192          * will cause all other CPUs to flush the same
193          * cachelines:
194          */
195         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
196                 pte_t *pte = lookup_address(addr, &level);
197
198                 /*
199                  * Only flush present addresses:
200                  */
201                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
202                         clflush_cache_range((void *) addr, PAGE_SIZE);
203         }
204 }
205
206 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
207                             int in_flags, struct page **pages)
208 {
209         unsigned int i, level;
210         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
211
212         BUG_ON(irqs_disabled());
213
214         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
215
216         if (!cache || do_wbinvd)
217                 return;
218
219         /*
220          * We only need to flush on one CPU,
221          * clflush is a MESI-coherent instruction that
222          * will cause all other CPUs to flush the same
223          * cachelines:
224          */
225         for (i = 0; i < numpages; i++) {
226                 unsigned long addr;
227                 pte_t *pte;
228
229                 if (in_flags & CPA_PAGES_ARRAY)
230                         addr = (unsigned long)page_address(pages[i]);
231                 else
232                         addr = start[i];
233
234                 pte = lookup_address(addr, &level);
235
236                 /*
237                  * Only flush present addresses:
238                  */
239                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
240                         clflush_cache_range((void *)addr, PAGE_SIZE);
241         }
242 }
243
244 /*
245  * Certain areas of memory on x86 require very specific protection flags,
246  * for example the BIOS area or kernel text. Callers don't always get this
247  * right (again, ioremap() on BIOS memory is not uncommon) so this function
248  * checks and fixes these known static required protection bits.
249  */
250 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
251                                    unsigned long pfn)
252 {
253         pgprot_t forbidden = __pgprot(0);
254
255         /*
256          * The BIOS area between 640k and 1Mb needs to be executable for
257          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
258          */
259 #ifdef CONFIG_PCI_BIOS
260         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
261                 pgprot_val(forbidden) |= _PAGE_NX;
262 #endif
263
264         /*
265          * The kernel text needs to be executable for obvious reasons
266          * Does not cover __inittext since that is gone later on. On
267          * 64bit we do not enforce !NX on the low mapping
268          */
269         if (within(address, (unsigned long)_text, (unsigned long)_etext))
270                 pgprot_val(forbidden) |= _PAGE_NX;
271
272         /*
273          * The .rodata section needs to be read-only. Using the pfn
274          * catches all aliases.
275          */
276         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
277                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
278                 pgprot_val(forbidden) |= _PAGE_RW;
279
280 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
281         /*
282          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
283          * kernel text mappings for the large page aligned text, rodata sections
284          * will be always read-only. For the kernel identity mappings covering
285          * the holes caused by this alignment can be anything that user asks.
286          *
287          * This will preserve the large page mappings for kernel text/data
288          * at no extra cost.
289          */
290         if (kernel_set_to_readonly &&
291             within(address, (unsigned long)_text,
292                    (unsigned long)__end_rodata_hpage_align)) {
293                 unsigned int level;
294
295                 /*
296                  * Don't enforce the !RW mapping for the kernel text mapping,
297                  * if the current mapping is already using small page mapping.
298                  * No need to work hard to preserve large page mappings in this
299                  * case.
300                  *
301                  * This also fixes the Linux Xen paravirt guest boot failure
302                  * (because of unexpected read-only mappings for kernel identity
303                  * mappings). In this paravirt guest case, the kernel text
304                  * mapping and the kernel identity mapping share the same
305                  * page-table pages. Thus we can't really use different
306                  * protections for the kernel text and identity mappings. Also,
307                  * these shared mappings are made of small page mappings.
308                  * Thus this don't enforce !RW mapping for small page kernel
309                  * text mapping logic will help Linux Xen parvirt guest boot
310                  * as well.
311                  */
312                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
313                         pgprot_val(forbidden) |= _PAGE_RW;
314         }
315 #endif
316
317         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
318
319         return prot;
320 }
321
322 /*
323  * Lookup the page table entry for a virtual address in a specific pgd.
324  * Return a pointer to the entry and the level of the mapping.
325  */
326 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
327                              unsigned int *level)
328 {
329         pud_t *pud;
330         pmd_t *pmd;
331
332         *level = PG_LEVEL_NONE;
333
334         if (pgd_none(*pgd))
335                 return NULL;
336
337         pud = pud_offset(pgd, address);
338         if (pud_none(*pud))
339                 return NULL;
340
341         *level = PG_LEVEL_1G;
342         if (pud_large(*pud) || !pud_present(*pud))
343                 return (pte_t *)pud;
344
345         pmd = pmd_offset(pud, address);
346         if (pmd_none(*pmd))
347                 return NULL;
348
349         *level = PG_LEVEL_2M;
350         if (pmd_large(*pmd) || !pmd_present(*pmd))
351                 return (pte_t *)pmd;
352
353         *level = PG_LEVEL_4K;
354
355         return pte_offset_kernel(pmd, address);
356 }
357
358 /*
359  * Lookup the page table entry for a virtual address. Return a pointer
360  * to the entry and the level of the mapping.
361  *
362  * Note: We return pud and pmd either when the entry is marked large
363  * or when the present bit is not set. Otherwise we would return a
364  * pointer to a nonexisting mapping.
365  */
366 pte_t *lookup_address(unsigned long address, unsigned int *level)
367 {
368         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
369 }
370 EXPORT_SYMBOL_GPL(lookup_address);
371
372 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
373                                   unsigned int *level)
374 {
375         if (cpa->pgd)
376                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
377                                                address, level);
378
379         return lookup_address(address, level);
380 }
381
382 /*
383  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
384  * or NULL if not present.
385  */
386 pmd_t *lookup_pmd_address(unsigned long address)
387 {
388         pgd_t *pgd;
389         pud_t *pud;
390
391         pgd = pgd_offset_k(address);
392         if (pgd_none(*pgd))
393                 return NULL;
394
395         pud = pud_offset(pgd, address);
396         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
397                 return NULL;
398
399         return pmd_offset(pud, address);
400 }
401
402 /*
403  * This is necessary because __pa() does not work on some
404  * kinds of memory, like vmalloc() or the alloc_remap()
405  * areas on 32-bit NUMA systems.  The percpu areas can
406  * end up in this kind of memory, for instance.
407  *
408  * This could be optimized, but it is only intended to be
409  * used at inititalization time, and keeping it
410  * unoptimized should increase the testing coverage for
411  * the more obscure platforms.
412  */
413 phys_addr_t slow_virt_to_phys(void *__virt_addr)
414 {
415         unsigned long virt_addr = (unsigned long)__virt_addr;
416         unsigned long phys_addr, offset;
417         enum pg_level level;
418         pte_t *pte;
419
420         pte = lookup_address(virt_addr, &level);
421         BUG_ON(!pte);
422
423         switch (level) {
424         case PG_LEVEL_1G:
425                 phys_addr = pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
426                 offset = virt_addr & ~PUD_PAGE_MASK;
427                 break;
428         case PG_LEVEL_2M:
429                 phys_addr = pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
430                 offset = virt_addr & ~PMD_PAGE_MASK;
431                 break;
432         default:
433                 phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
434                 offset = virt_addr & ~PAGE_MASK;
435         }
436
437         return (phys_addr_t)(phys_addr | offset);
438 }
439 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
440
441 /*
442  * Set the new pmd in all the pgds we know about:
443  */
444 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
445 {
446         /* change init_mm */
447         set_pte_atomic(kpte, pte);
448 #ifdef CONFIG_X86_32
449         if (!SHARED_KERNEL_PMD) {
450                 struct page *page;
451
452                 list_for_each_entry(page, &pgd_list, lru) {
453                         pgd_t *pgd;
454                         pud_t *pud;
455                         pmd_t *pmd;
456
457                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
458                         pud = pud_offset(pgd, address);
459                         pmd = pmd_offset(pud, address);
460                         set_pte_atomic((pte_t *)pmd, pte);
461                 }
462         }
463 #endif
464 }
465
466 static int
467 try_preserve_large_page(pte_t *kpte, unsigned long address,
468                         struct cpa_data *cpa)
469 {
470         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
471         pte_t new_pte, old_pte, *tmp;
472         pgprot_t old_prot, new_prot, req_prot;
473         int i, do_split = 1;
474         enum pg_level level;
475
476         if (cpa->force_split)
477                 return 1;
478
479         spin_lock(&pgd_lock);
480         /*
481          * Check for races, another CPU might have split this page
482          * up already:
483          */
484         tmp = _lookup_address_cpa(cpa, address, &level);
485         if (tmp != kpte)
486                 goto out_unlock;
487
488         switch (level) {
489         case PG_LEVEL_2M:
490                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
491                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
492                 break;
493         case PG_LEVEL_1G:
494                 old_prot = pud_pgprot(*(pud_t *)kpte);
495                 old_pfn = pud_pfn(*(pud_t *)kpte);
496                 break;
497         default:
498                 do_split = -EINVAL;
499                 goto out_unlock;
500         }
501
502         psize = page_level_size(level);
503         pmask = page_level_mask(level);
504
505         /*
506          * Calculate the number of pages, which fit into this large
507          * page starting at address:
508          */
509         nextpage_addr = (address + psize) & pmask;
510         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
511         if (numpages < cpa->numpages)
512                 cpa->numpages = numpages;
513
514         /*
515          * We are safe now. Check whether the new pgprot is the same:
516          * Convert protection attributes to 4k-format, as cpa->mask* are set
517          * up accordingly.
518          */
519         old_pte = *kpte;
520         req_prot = pgprot_large_2_4k(old_prot);
521
522         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
523         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
524
525         /*
526          * req_prot is in format of 4k pages. It must be converted to large
527          * page format: the caching mode includes the PAT bit located at
528          * different bit positions in the two formats.
529          */
530         req_prot = pgprot_4k_2_large(req_prot);
531
532         /*
533          * Set the PSE and GLOBAL flags only if the PRESENT flag is
534          * set otherwise pmd_present/pmd_huge will return true even on
535          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
536          * for the ancient hardware that doesn't support it.
537          */
538         if (pgprot_val(req_prot) & _PAGE_PRESENT)
539                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
540         else
541                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
542
543         req_prot = canon_pgprot(req_prot);
544
545         /*
546          * old_pfn points to the large page base pfn. So we need
547          * to add the offset of the virtual address:
548          */
549         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
550         cpa->pfn = pfn;
551
552         new_prot = static_protections(req_prot, address, pfn);
553
554         /*
555          * We need to check the full range, whether
556          * static_protection() requires a different pgprot for one of
557          * the pages in the range we try to preserve:
558          */
559         addr = address & pmask;
560         pfn = old_pfn;
561         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
562                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
563
564                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
565                         goto out_unlock;
566         }
567
568         /*
569          * If there are no changes, return. maxpages has been updated
570          * above:
571          */
572         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
573                 do_split = 0;
574                 goto out_unlock;
575         }
576
577         /*
578          * We need to change the attributes. Check, whether we can
579          * change the large page in one go. We request a split, when
580          * the address is not aligned and the number of pages is
581          * smaller than the number of pages in the large page. Note
582          * that we limited the number of possible pages already to
583          * the number of pages in the large page.
584          */
585         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
586                 /*
587                  * The address is aligned and the number of pages
588                  * covers the full page.
589                  */
590                 new_pte = pfn_pte(old_pfn, new_prot);
591                 __set_pmd_pte(kpte, address, new_pte);
592                 cpa->flags |= CPA_FLUSHTLB;
593                 do_split = 0;
594         }
595
596 out_unlock:
597         spin_unlock(&pgd_lock);
598
599         return do_split;
600 }
601
602 static int
603 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
604                    struct page *base)
605 {
606         pte_t *pbase = (pte_t *)page_address(base);
607         unsigned long ref_pfn, pfn, pfninc = 1;
608         unsigned int i, level;
609         pte_t *tmp;
610         pgprot_t ref_prot;
611
612         spin_lock(&pgd_lock);
613         /*
614          * Check for races, another CPU might have split this page
615          * up for us already:
616          */
617         tmp = _lookup_address_cpa(cpa, address, &level);
618         if (tmp != kpte) {
619                 spin_unlock(&pgd_lock);
620                 return 1;
621         }
622
623         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
624
625         switch (level) {
626         case PG_LEVEL_2M:
627                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
628                 /* clear PSE and promote PAT bit to correct position */
629                 ref_prot = pgprot_large_2_4k(ref_prot);
630                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
631                 break;
632
633         case PG_LEVEL_1G:
634                 ref_prot = pud_pgprot(*(pud_t *)kpte);
635                 ref_pfn = pud_pfn(*(pud_t *)kpte);
636                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
637
638                 /*
639                  * Clear the PSE flags if the PRESENT flag is not set
640                  * otherwise pmd_present/pmd_huge will return true
641                  * even on a non present pmd.
642                  */
643                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
644                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
645                 break;
646
647         default:
648                 spin_unlock(&pgd_lock);
649                 return 1;
650         }
651
652         /*
653          * Set the GLOBAL flags only if the PRESENT flag is set
654          * otherwise pmd/pte_present will return true even on a non
655          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
656          * for the ancient hardware that doesn't support it.
657          */
658         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
659                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
660         else
661                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
662
663         /*
664          * Get the target pfn from the original entry:
665          */
666         pfn = ref_pfn;
667         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
668                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
669
670         if (virt_addr_valid(address)) {
671                 unsigned long pfn = PFN_DOWN(__pa(address));
672
673                 if (pfn_range_is_mapped(pfn, pfn + 1))
674                         split_page_count(level);
675         }
676
677         /*
678          * Install the new, split up pagetable.
679          *
680          * We use the standard kernel pagetable protections for the new
681          * pagetable protections, the actual ptes set above control the
682          * primary protection behavior:
683          */
684         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
685
686         /*
687          * Intel Atom errata AAH41 workaround.
688          *
689          * The real fix should be in hw or in a microcode update, but
690          * we also probabilistically try to reduce the window of having
691          * a large TLB mixed with 4K TLBs while instruction fetches are
692          * going on.
693          */
694         __flush_tlb_all();
695         spin_unlock(&pgd_lock);
696
697         return 0;
698 }
699
700 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
701                             unsigned long address)
702 {
703         struct page *base;
704
705         if (!debug_pagealloc_enabled())
706                 spin_unlock(&cpa_lock);
707         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
708         if (!debug_pagealloc_enabled())
709                 spin_lock(&cpa_lock);
710         if (!base)
711                 return -ENOMEM;
712
713         if (__split_large_page(cpa, kpte, address, base))
714                 __free_page(base);
715
716         return 0;
717 }
718
719 static bool try_to_free_pte_page(pte_t *pte)
720 {
721         int i;
722
723         for (i = 0; i < PTRS_PER_PTE; i++)
724                 if (!pte_none(pte[i]))
725                         return false;
726
727         free_page((unsigned long)pte);
728         return true;
729 }
730
731 static bool try_to_free_pmd_page(pmd_t *pmd)
732 {
733         int i;
734
735         for (i = 0; i < PTRS_PER_PMD; i++)
736                 if (!pmd_none(pmd[i]))
737                         return false;
738
739         free_page((unsigned long)pmd);
740         return true;
741 }
742
743 static bool try_to_free_pud_page(pud_t *pud)
744 {
745         int i;
746
747         for (i = 0; i < PTRS_PER_PUD; i++)
748                 if (!pud_none(pud[i]))
749                         return false;
750
751         free_page((unsigned long)pud);
752         return true;
753 }
754
755 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
756 {
757         pte_t *pte = pte_offset_kernel(pmd, start);
758
759         while (start < end) {
760                 set_pte(pte, __pte(0));
761
762                 start += PAGE_SIZE;
763                 pte++;
764         }
765
766         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
767                 pmd_clear(pmd);
768                 return true;
769         }
770         return false;
771 }
772
773 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
774                               unsigned long start, unsigned long end)
775 {
776         if (unmap_pte_range(pmd, start, end))
777                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
778                         pud_clear(pud);
779 }
780
781 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
782 {
783         pmd_t *pmd = pmd_offset(pud, start);
784
785         /*
786          * Not on a 2MB page boundary?
787          */
788         if (start & (PMD_SIZE - 1)) {
789                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
790                 unsigned long pre_end = min_t(unsigned long, end, next_page);
791
792                 __unmap_pmd_range(pud, pmd, start, pre_end);
793
794                 start = pre_end;
795                 pmd++;
796         }
797
798         /*
799          * Try to unmap in 2M chunks.
800          */
801         while (end - start >= PMD_SIZE) {
802                 if (pmd_large(*pmd))
803                         pmd_clear(pmd);
804                 else
805                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
806
807                 start += PMD_SIZE;
808                 pmd++;
809         }
810
811         /*
812          * 4K leftovers?
813          */
814         if (start < end)
815                 return __unmap_pmd_range(pud, pmd, start, end);
816
817         /*
818          * Try again to free the PMD page if haven't succeeded above.
819          */
820         if (!pud_none(*pud))
821                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
822                         pud_clear(pud);
823 }
824
825 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
826 {
827         pud_t *pud = pud_offset(pgd, start);
828
829         /*
830          * Not on a GB page boundary?
831          */
832         if (start & (PUD_SIZE - 1)) {
833                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
834                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
835
836                 unmap_pmd_range(pud, start, pre_end);
837
838                 start = pre_end;
839                 pud++;
840         }
841
842         /*
843          * Try to unmap in 1G chunks?
844          */
845         while (end - start >= PUD_SIZE) {
846
847                 if (pud_large(*pud))
848                         pud_clear(pud);
849                 else
850                         unmap_pmd_range(pud, start, start + PUD_SIZE);
851
852                 start += PUD_SIZE;
853                 pud++;
854         }
855
856         /*
857          * 2M leftovers?
858          */
859         if (start < end)
860                 unmap_pmd_range(pud, start, end);
861
862         /*
863          * No need to try to free the PUD page because we'll free it in
864          * populate_pgd's error path
865          */
866 }
867
868 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
869 {
870         pgd_t *pgd_entry = root + pgd_index(addr);
871
872         unmap_pud_range(pgd_entry, addr, end);
873
874         if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
875                 pgd_clear(pgd_entry);
876 }
877
878 static int alloc_pte_page(pmd_t *pmd)
879 {
880         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
881         if (!pte)
882                 return -1;
883
884         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
885         return 0;
886 }
887
888 static int alloc_pmd_page(pud_t *pud)
889 {
890         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
891         if (!pmd)
892                 return -1;
893
894         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
895         return 0;
896 }
897
898 static void populate_pte(struct cpa_data *cpa,
899                          unsigned long start, unsigned long end,
900                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
901 {
902         pte_t *pte;
903
904         pte = pte_offset_kernel(pmd, start);
905
906         while (num_pages-- && start < end) {
907                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
908
909                 start    += PAGE_SIZE;
910                 cpa->pfn++;
911                 pte++;
912         }
913 }
914
915 static int populate_pmd(struct cpa_data *cpa,
916                         unsigned long start, unsigned long end,
917                         unsigned num_pages, pud_t *pud, pgprot_t pgprot)
918 {
919         unsigned int cur_pages = 0;
920         pmd_t *pmd;
921         pgprot_t pmd_pgprot;
922
923         /*
924          * Not on a 2M boundary?
925          */
926         if (start & (PMD_SIZE - 1)) {
927                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
928                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
929
930                 pre_end   = min_t(unsigned long, pre_end, next_page);
931                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
932                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
933
934                 /*
935                  * Need a PTE page?
936                  */
937                 pmd = pmd_offset(pud, start);
938                 if (pmd_none(*pmd))
939                         if (alloc_pte_page(pmd))
940                                 return -1;
941
942                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
943
944                 start = pre_end;
945         }
946
947         /*
948          * We mapped them all?
949          */
950         if (num_pages == cur_pages)
951                 return cur_pages;
952
953         pmd_pgprot = pgprot_4k_2_large(pgprot);
954
955         while (end - start >= PMD_SIZE) {
956
957                 /*
958                  * We cannot use a 1G page so allocate a PMD page if needed.
959                  */
960                 if (pud_none(*pud))
961                         if (alloc_pmd_page(pud))
962                                 return -1;
963
964                 pmd = pmd_offset(pud, start);
965
966                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
967                                    massage_pgprot(pmd_pgprot)));
968
969                 start     += PMD_SIZE;
970                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
971                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
972         }
973
974         /*
975          * Map trailing 4K pages.
976          */
977         if (start < end) {
978                 pmd = pmd_offset(pud, start);
979                 if (pmd_none(*pmd))
980                         if (alloc_pte_page(pmd))
981                                 return -1;
982
983                 populate_pte(cpa, start, end, num_pages - cur_pages,
984                              pmd, pgprot);
985         }
986         return num_pages;
987 }
988
989 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
990                         pgprot_t pgprot)
991 {
992         pud_t *pud;
993         unsigned long end;
994         int cur_pages = 0;
995         pgprot_t pud_pgprot;
996
997         end = start + (cpa->numpages << PAGE_SHIFT);
998
999         /*
1000          * Not on a Gb page boundary? => map everything up to it with
1001          * smaller pages.
1002          */
1003         if (start & (PUD_SIZE - 1)) {
1004                 unsigned long pre_end;
1005                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1006
1007                 pre_end   = min_t(unsigned long, end, next_page);
1008                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1009                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1010
1011                 pud = pud_offset(pgd, start);
1012
1013                 /*
1014                  * Need a PMD page?
1015                  */
1016                 if (pud_none(*pud))
1017                         if (alloc_pmd_page(pud))
1018                                 return -1;
1019
1020                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1021                                          pud, pgprot);
1022                 if (cur_pages < 0)
1023                         return cur_pages;
1024
1025                 start = pre_end;
1026         }
1027
1028         /* We mapped them all? */
1029         if (cpa->numpages == cur_pages)
1030                 return cur_pages;
1031
1032         pud = pud_offset(pgd, start);
1033         pud_pgprot = pgprot_4k_2_large(pgprot);
1034
1035         /*
1036          * Map everything starting from the Gb boundary, possibly with 1G pages
1037          */
1038         while (end - start >= PUD_SIZE) {
1039                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1040                                    massage_pgprot(pud_pgprot)));
1041
1042                 start     += PUD_SIZE;
1043                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1044                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1045                 pud++;
1046         }
1047
1048         /* Map trailing leftover */
1049         if (start < end) {
1050                 int tmp;
1051
1052                 pud = pud_offset(pgd, start);
1053                 if (pud_none(*pud))
1054                         if (alloc_pmd_page(pud))
1055                                 return -1;
1056
1057                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1058                                    pud, pgprot);
1059                 if (tmp < 0)
1060                         return cur_pages;
1061
1062                 cur_pages += tmp;
1063         }
1064         return cur_pages;
1065 }
1066
1067 /*
1068  * Restrictions for kernel page table do not necessarily apply when mapping in
1069  * an alternate PGD.
1070  */
1071 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1072 {
1073         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1074         pud_t *pud = NULL;      /* shut up gcc */
1075         pgd_t *pgd_entry;
1076         int ret;
1077
1078         pgd_entry = cpa->pgd + pgd_index(addr);
1079
1080         /*
1081          * Allocate a PUD page and hand it down for mapping.
1082          */
1083         if (pgd_none(*pgd_entry)) {
1084                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1085                 if (!pud)
1086                         return -1;
1087
1088                 set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1089         }
1090
1091         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1092         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1093
1094         ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1095         if (ret < 0) {
1096                 unmap_pgd_range(cpa->pgd, addr,
1097                                 addr + (cpa->numpages << PAGE_SHIFT));
1098                 return ret;
1099         }
1100
1101         cpa->numpages = ret;
1102         return 0;
1103 }
1104
1105 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1106                                int primary)
1107 {
1108         if (cpa->pgd)
1109                 return populate_pgd(cpa, vaddr);
1110
1111         /*
1112          * Ignore all non primary paths.
1113          */
1114         if (!primary)
1115                 return 0;
1116
1117         /*
1118          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1119          * to have holes.
1120          * Also set numpages to '1' indicating that we processed cpa req for
1121          * one virtual address page and its pfn. TBD: numpages can be set based
1122          * on the initial value and the level returned by lookup_address().
1123          */
1124         if (within(vaddr, PAGE_OFFSET,
1125                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1126                 cpa->numpages = 1;
1127                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1128                 return 0;
1129         } else {
1130                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1131                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1132                         *cpa->vaddr);
1133
1134                 return -EFAULT;
1135         }
1136 }
1137
1138 static int __change_page_attr(struct cpa_data *cpa, int primary)
1139 {
1140         unsigned long address;
1141         int do_split, err;
1142         unsigned int level;
1143         pte_t *kpte, old_pte;
1144
1145         if (cpa->flags & CPA_PAGES_ARRAY) {
1146                 struct page *page = cpa->pages[cpa->curpage];
1147                 if (unlikely(PageHighMem(page)))
1148                         return 0;
1149                 address = (unsigned long)page_address(page);
1150         } else if (cpa->flags & CPA_ARRAY)
1151                 address = cpa->vaddr[cpa->curpage];
1152         else
1153                 address = *cpa->vaddr;
1154 repeat:
1155         kpte = _lookup_address_cpa(cpa, address, &level);
1156         if (!kpte)
1157                 return __cpa_process_fault(cpa, address, primary);
1158
1159         old_pte = *kpte;
1160         if (!pte_val(old_pte))
1161                 return __cpa_process_fault(cpa, address, primary);
1162
1163         if (level == PG_LEVEL_4K) {
1164                 pte_t new_pte;
1165                 pgprot_t new_prot = pte_pgprot(old_pte);
1166                 unsigned long pfn = pte_pfn(old_pte);
1167
1168                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1169                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1170
1171                 new_prot = static_protections(new_prot, address, pfn);
1172
1173                 /*
1174                  * Set the GLOBAL flags only if the PRESENT flag is
1175                  * set otherwise pte_present will return true even on
1176                  * a non present pte. The canon_pgprot will clear
1177                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1178                  * support it.
1179                  */
1180                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1181                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1182                 else
1183                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1184
1185                 /*
1186                  * We need to keep the pfn from the existing PTE,
1187                  * after all we're only going to change it's attributes
1188                  * not the memory it points to
1189                  */
1190                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1191                 cpa->pfn = pfn;
1192                 /*
1193                  * Do we really change anything ?
1194                  */
1195                 if (pte_val(old_pte) != pte_val(new_pte)) {
1196                         set_pte_atomic(kpte, new_pte);
1197                         cpa->flags |= CPA_FLUSHTLB;
1198                 }
1199                 cpa->numpages = 1;
1200                 return 0;
1201         }
1202
1203         /*
1204          * Check, whether we can keep the large page intact
1205          * and just change the pte:
1206          */
1207         do_split = try_preserve_large_page(kpte, address, cpa);
1208         /*
1209          * When the range fits into the existing large page,
1210          * return. cp->numpages and cpa->tlbflush have been updated in
1211          * try_large_page:
1212          */
1213         if (do_split <= 0)
1214                 return do_split;
1215
1216         /*
1217          * We have to split the large page:
1218          */
1219         err = split_large_page(cpa, kpte, address);
1220         if (!err) {
1221                 /*
1222                  * Do a global flush tlb after splitting the large page
1223                  * and before we do the actual change page attribute in the PTE.
1224                  *
1225                  * With out this, we violate the TLB application note, that says
1226                  * "The TLBs may contain both ordinary and large-page
1227                  *  translations for a 4-KByte range of linear addresses. This
1228                  *  may occur if software modifies the paging structures so that
1229                  *  the page size used for the address range changes. If the two
1230                  *  translations differ with respect to page frame or attributes
1231                  *  (e.g., permissions), processor behavior is undefined and may
1232                  *  be implementation-specific."
1233                  *
1234                  * We do this global tlb flush inside the cpa_lock, so that we
1235                  * don't allow any other cpu, with stale tlb entries change the
1236                  * page attribute in parallel, that also falls into the
1237                  * just split large page entry.
1238                  */
1239                 flush_tlb_all();
1240                 goto repeat;
1241         }
1242
1243         return err;
1244 }
1245
1246 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1247
1248 static int cpa_process_alias(struct cpa_data *cpa)
1249 {
1250         struct cpa_data alias_cpa;
1251         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1252         unsigned long vaddr;
1253         int ret;
1254
1255         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1256                 return 0;
1257
1258         /*
1259          * No need to redo, when the primary call touched the direct
1260          * mapping already:
1261          */
1262         if (cpa->flags & CPA_PAGES_ARRAY) {
1263                 struct page *page = cpa->pages[cpa->curpage];
1264                 if (unlikely(PageHighMem(page)))
1265                         return 0;
1266                 vaddr = (unsigned long)page_address(page);
1267         } else if (cpa->flags & CPA_ARRAY)
1268                 vaddr = cpa->vaddr[cpa->curpage];
1269         else
1270                 vaddr = *cpa->vaddr;
1271
1272         if (!(within(vaddr, PAGE_OFFSET,
1273                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1274
1275                 alias_cpa = *cpa;
1276                 alias_cpa.vaddr = &laddr;
1277                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1278
1279                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1280                 if (ret)
1281                         return ret;
1282         }
1283
1284 #ifdef CONFIG_X86_64
1285         /*
1286          * If the primary call didn't touch the high mapping already
1287          * and the physical address is inside the kernel map, we need
1288          * to touch the high mapped kernel as well:
1289          */
1290         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1291             within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1292                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1293                                                __START_KERNEL_map - phys_base;
1294                 alias_cpa = *cpa;
1295                 alias_cpa.vaddr = &temp_cpa_vaddr;
1296                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1297
1298                 /*
1299                  * The high mapping range is imprecise, so ignore the
1300                  * return value.
1301                  */
1302                 __change_page_attr_set_clr(&alias_cpa, 0);
1303         }
1304 #endif
1305
1306         return 0;
1307 }
1308
1309 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1310 {
1311         int ret, numpages = cpa->numpages;
1312
1313         while (numpages) {
1314                 /*
1315                  * Store the remaining nr of pages for the large page
1316                  * preservation check.
1317                  */
1318                 cpa->numpages = numpages;
1319                 /* for array changes, we can't use large page */
1320                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1321                         cpa->numpages = 1;
1322
1323                 if (!debug_pagealloc_enabled())
1324                         spin_lock(&cpa_lock);
1325                 ret = __change_page_attr(cpa, checkalias);
1326                 if (!debug_pagealloc_enabled())
1327                         spin_unlock(&cpa_lock);
1328                 if (ret)
1329                         return ret;
1330
1331                 if (checkalias) {
1332                         ret = cpa_process_alias(cpa);
1333                         if (ret)
1334                                 return ret;
1335                 }
1336
1337                 /*
1338                  * Adjust the number of pages with the result of the
1339                  * CPA operation. Either a large page has been
1340                  * preserved or a single page update happened.
1341                  */
1342                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1343                 numpages -= cpa->numpages;
1344                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1345                         cpa->curpage++;
1346                 else
1347                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1348
1349         }
1350         return 0;
1351 }
1352
1353 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1354                                     pgprot_t mask_set, pgprot_t mask_clr,
1355                                     int force_split, int in_flag,
1356                                     struct page **pages)
1357 {
1358         struct cpa_data cpa;
1359         int ret, cache, checkalias;
1360         unsigned long baddr = 0;
1361
1362         memset(&cpa, 0, sizeof(cpa));
1363
1364         /*
1365          * Check, if we are requested to change a not supported
1366          * feature:
1367          */
1368         mask_set = canon_pgprot(mask_set);
1369         mask_clr = canon_pgprot(mask_clr);
1370         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1371                 return 0;
1372
1373         /* Ensure we are PAGE_SIZE aligned */
1374         if (in_flag & CPA_ARRAY) {
1375                 int i;
1376                 for (i = 0; i < numpages; i++) {
1377                         if (addr[i] & ~PAGE_MASK) {
1378                                 addr[i] &= PAGE_MASK;
1379                                 WARN_ON_ONCE(1);
1380                         }
1381                 }
1382         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1383                 /*
1384                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1385                  * No need to cehck in that case
1386                  */
1387                 if (*addr & ~PAGE_MASK) {
1388                         *addr &= PAGE_MASK;
1389                         /*
1390                          * People should not be passing in unaligned addresses:
1391                          */
1392                         WARN_ON_ONCE(1);
1393                 }
1394                 /*
1395                  * Save address for cache flush. *addr is modified in the call
1396                  * to __change_page_attr_set_clr() below.
1397                  */
1398                 baddr = *addr;
1399         }
1400
1401         /* Must avoid aliasing mappings in the highmem code */
1402         kmap_flush_unused();
1403
1404         vm_unmap_aliases();
1405
1406         cpa.vaddr = addr;
1407         cpa.pages = pages;
1408         cpa.numpages = numpages;
1409         cpa.mask_set = mask_set;
1410         cpa.mask_clr = mask_clr;
1411         cpa.flags = 0;
1412         cpa.curpage = 0;
1413         cpa.force_split = force_split;
1414
1415         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1416                 cpa.flags |= in_flag;
1417
1418         /* No alias checking for _NX bit modifications */
1419         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1420
1421         ret = __change_page_attr_set_clr(&cpa, checkalias);
1422
1423         /*
1424          * Check whether we really changed something:
1425          */
1426         if (!(cpa.flags & CPA_FLUSHTLB))
1427                 goto out;
1428
1429         /*
1430          * No need to flush, when we did not set any of the caching
1431          * attributes:
1432          */
1433         cache = !!pgprot2cachemode(mask_set);
1434
1435         /*
1436          * On success we use CLFLUSH, when the CPU supports it to
1437          * avoid the WBINVD. If the CPU does not support it and in the
1438          * error case we fall back to cpa_flush_all (which uses
1439          * WBINVD):
1440          */
1441         if (!ret && cpu_has_clflush) {
1442                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1443                         cpa_flush_array(addr, numpages, cache,
1444                                         cpa.flags, pages);
1445                 } else
1446                         cpa_flush_range(baddr, numpages, cache);
1447         } else
1448                 cpa_flush_all(cache);
1449
1450 out:
1451         return ret;
1452 }
1453
1454 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1455                                        pgprot_t mask, int array)
1456 {
1457         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1458                 (array ? CPA_ARRAY : 0), NULL);
1459 }
1460
1461 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1462                                          pgprot_t mask, int array)
1463 {
1464         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1465                 (array ? CPA_ARRAY : 0), NULL);
1466 }
1467
1468 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1469                                        pgprot_t mask)
1470 {
1471         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1472                 CPA_PAGES_ARRAY, pages);
1473 }
1474
1475 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1476                                          pgprot_t mask)
1477 {
1478         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1479                 CPA_PAGES_ARRAY, pages);
1480 }
1481
1482 int _set_memory_uc(unsigned long addr, int numpages)
1483 {
1484         /*
1485          * for now UC MINUS. see comments in ioremap_nocache()
1486          * If you really need strong UC use ioremap_uc(), but note
1487          * that you cannot override IO areas with set_memory_*() as
1488          * these helpers cannot work with IO memory.
1489          */
1490         return change_page_attr_set(&addr, numpages,
1491                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1492                                     0);
1493 }
1494
1495 int set_memory_uc(unsigned long addr, int numpages)
1496 {
1497         int ret;
1498
1499         /*
1500          * for now UC MINUS. see comments in ioremap_nocache()
1501          */
1502         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1503                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1504         if (ret)
1505                 goto out_err;
1506
1507         ret = _set_memory_uc(addr, numpages);
1508         if (ret)
1509                 goto out_free;
1510
1511         return 0;
1512
1513 out_free:
1514         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1515 out_err:
1516         return ret;
1517 }
1518 EXPORT_SYMBOL(set_memory_uc);
1519
1520 static int _set_memory_array(unsigned long *addr, int addrinarray,
1521                 enum page_cache_mode new_type)
1522 {
1523         enum page_cache_mode set_type;
1524         int i, j;
1525         int ret;
1526
1527         for (i = 0; i < addrinarray; i++) {
1528                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1529                                         new_type, NULL);
1530                 if (ret)
1531                         goto out_free;
1532         }
1533
1534         /* If WC, set to UC- first and then WC */
1535         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1536                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1537
1538         ret = change_page_attr_set(addr, addrinarray,
1539                                    cachemode2pgprot(set_type), 1);
1540
1541         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1542                 ret = change_page_attr_set_clr(addr, addrinarray,
1543                                                cachemode2pgprot(
1544                                                 _PAGE_CACHE_MODE_WC),
1545                                                __pgprot(_PAGE_CACHE_MASK),
1546                                                0, CPA_ARRAY, NULL);
1547         if (ret)
1548                 goto out_free;
1549
1550         return 0;
1551
1552 out_free:
1553         for (j = 0; j < i; j++)
1554                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1555
1556         return ret;
1557 }
1558
1559 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1560 {
1561         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1562 }
1563 EXPORT_SYMBOL(set_memory_array_uc);
1564
1565 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1566 {
1567         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1568 }
1569 EXPORT_SYMBOL(set_memory_array_wc);
1570
1571 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1572 {
1573         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1574 }
1575 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1576
1577 int _set_memory_wc(unsigned long addr, int numpages)
1578 {
1579         int ret;
1580         unsigned long addr_copy = addr;
1581
1582         ret = change_page_attr_set(&addr, numpages,
1583                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1584                                    0);
1585         if (!ret) {
1586                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1587                                                cachemode2pgprot(
1588                                                 _PAGE_CACHE_MODE_WC),
1589                                                __pgprot(_PAGE_CACHE_MASK),
1590                                                0, 0, NULL);
1591         }
1592         return ret;
1593 }
1594
1595 int set_memory_wc(unsigned long addr, int numpages)
1596 {
1597         int ret;
1598
1599         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1600                 _PAGE_CACHE_MODE_WC, NULL);
1601         if (ret)
1602                 return ret;
1603
1604         ret = _set_memory_wc(addr, numpages);
1605         if (ret)
1606                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1607
1608         return ret;
1609 }
1610 EXPORT_SYMBOL(set_memory_wc);
1611
1612 int _set_memory_wt(unsigned long addr, int numpages)
1613 {
1614         return change_page_attr_set(&addr, numpages,
1615                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1616 }
1617
1618 int set_memory_wt(unsigned long addr, int numpages)
1619 {
1620         int ret;
1621
1622         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1623                               _PAGE_CACHE_MODE_WT, NULL);
1624         if (ret)
1625                 return ret;
1626
1627         ret = _set_memory_wt(addr, numpages);
1628         if (ret)
1629                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1630
1631         return ret;
1632 }
1633 EXPORT_SYMBOL_GPL(set_memory_wt);
1634
1635 int _set_memory_wb(unsigned long addr, int numpages)
1636 {
1637         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1638         return change_page_attr_clear(&addr, numpages,
1639                                       __pgprot(_PAGE_CACHE_MASK), 0);
1640 }
1641
1642 int set_memory_wb(unsigned long addr, int numpages)
1643 {
1644         int ret;
1645
1646         ret = _set_memory_wb(addr, numpages);
1647         if (ret)
1648                 return ret;
1649
1650         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1651         return 0;
1652 }
1653 EXPORT_SYMBOL(set_memory_wb);
1654
1655 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1656 {
1657         int i;
1658         int ret;
1659
1660         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1661         ret = change_page_attr_clear(addr, addrinarray,
1662                                       __pgprot(_PAGE_CACHE_MASK), 1);
1663         if (ret)
1664                 return ret;
1665
1666         for (i = 0; i < addrinarray; i++)
1667                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1668
1669         return 0;
1670 }
1671 EXPORT_SYMBOL(set_memory_array_wb);
1672
1673 int set_memory_x(unsigned long addr, int numpages)
1674 {
1675         if (!(__supported_pte_mask & _PAGE_NX))
1676                 return 0;
1677
1678         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1679 }
1680 EXPORT_SYMBOL(set_memory_x);
1681
1682 int set_memory_nx(unsigned long addr, int numpages)
1683 {
1684         if (!(__supported_pte_mask & _PAGE_NX))
1685                 return 0;
1686
1687         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1688 }
1689 EXPORT_SYMBOL(set_memory_nx);
1690
1691 int set_memory_ro(unsigned long addr, int numpages)
1692 {
1693         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1694 }
1695
1696 int set_memory_rw(unsigned long addr, int numpages)
1697 {
1698         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1699 }
1700
1701 int set_memory_np(unsigned long addr, int numpages)
1702 {
1703         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1704 }
1705
1706 int set_memory_4k(unsigned long addr, int numpages)
1707 {
1708         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1709                                         __pgprot(0), 1, 0, NULL);
1710 }
1711
1712 int set_pages_uc(struct page *page, int numpages)
1713 {
1714         unsigned long addr = (unsigned long)page_address(page);
1715
1716         return set_memory_uc(addr, numpages);
1717 }
1718 EXPORT_SYMBOL(set_pages_uc);
1719
1720 static int _set_pages_array(struct page **pages, int addrinarray,
1721                 enum page_cache_mode new_type)
1722 {
1723         unsigned long start;
1724         unsigned long end;
1725         enum page_cache_mode set_type;
1726         int i;
1727         int free_idx;
1728         int ret;
1729
1730         for (i = 0; i < addrinarray; i++) {
1731                 if (PageHighMem(pages[i]))
1732                         continue;
1733                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1734                 end = start + PAGE_SIZE;
1735                 if (reserve_memtype(start, end, new_type, NULL))
1736                         goto err_out;
1737         }
1738
1739         /* If WC, set to UC- first and then WC */
1740         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1741                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1742
1743         ret = cpa_set_pages_array(pages, addrinarray,
1744                                   cachemode2pgprot(set_type));
1745         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1746                 ret = change_page_attr_set_clr(NULL, addrinarray,
1747                                                cachemode2pgprot(
1748                                                 _PAGE_CACHE_MODE_WC),
1749                                                __pgprot(_PAGE_CACHE_MASK),
1750                                                0, CPA_PAGES_ARRAY, pages);
1751         if (ret)
1752                 goto err_out;
1753         return 0; /* Success */
1754 err_out:
1755         free_idx = i;
1756         for (i = 0; i < free_idx; i++) {
1757                 if (PageHighMem(pages[i]))
1758                         continue;
1759                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1760                 end = start + PAGE_SIZE;
1761                 free_memtype(start, end);
1762         }
1763         return -EINVAL;
1764 }
1765
1766 int set_pages_array_uc(struct page **pages, int addrinarray)
1767 {
1768         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1769 }
1770 EXPORT_SYMBOL(set_pages_array_uc);
1771
1772 int set_pages_array_wc(struct page **pages, int addrinarray)
1773 {
1774         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1775 }
1776 EXPORT_SYMBOL(set_pages_array_wc);
1777
1778 int set_pages_array_wt(struct page **pages, int addrinarray)
1779 {
1780         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1781 }
1782 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1783
1784 int set_pages_wb(struct page *page, int numpages)
1785 {
1786         unsigned long addr = (unsigned long)page_address(page);
1787
1788         return set_memory_wb(addr, numpages);
1789 }
1790 EXPORT_SYMBOL(set_pages_wb);
1791
1792 int set_pages_array_wb(struct page **pages, int addrinarray)
1793 {
1794         int retval;
1795         unsigned long start;
1796         unsigned long end;
1797         int i;
1798
1799         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1800         retval = cpa_clear_pages_array(pages, addrinarray,
1801                         __pgprot(_PAGE_CACHE_MASK));
1802         if (retval)
1803                 return retval;
1804
1805         for (i = 0; i < addrinarray; i++) {
1806                 if (PageHighMem(pages[i]))
1807                         continue;
1808                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1809                 end = start + PAGE_SIZE;
1810                 free_memtype(start, end);
1811         }
1812
1813         return 0;
1814 }
1815 EXPORT_SYMBOL(set_pages_array_wb);
1816
1817 int set_pages_x(struct page *page, int numpages)
1818 {
1819         unsigned long addr = (unsigned long)page_address(page);
1820
1821         return set_memory_x(addr, numpages);
1822 }
1823 EXPORT_SYMBOL(set_pages_x);
1824
1825 int set_pages_nx(struct page *page, int numpages)
1826 {
1827         unsigned long addr = (unsigned long)page_address(page);
1828
1829         return set_memory_nx(addr, numpages);
1830 }
1831 EXPORT_SYMBOL(set_pages_nx);
1832
1833 int set_pages_ro(struct page *page, int numpages)
1834 {
1835         unsigned long addr = (unsigned long)page_address(page);
1836
1837         return set_memory_ro(addr, numpages);
1838 }
1839
1840 int set_pages_rw(struct page *page, int numpages)
1841 {
1842         unsigned long addr = (unsigned long)page_address(page);
1843
1844         return set_memory_rw(addr, numpages);
1845 }
1846
1847 #ifdef CONFIG_DEBUG_PAGEALLOC
1848
1849 static int __set_pages_p(struct page *page, int numpages)
1850 {
1851         unsigned long tempaddr = (unsigned long) page_address(page);
1852         struct cpa_data cpa = { .vaddr = &tempaddr,
1853                                 .pgd = NULL,
1854                                 .numpages = numpages,
1855                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1856                                 .mask_clr = __pgprot(0),
1857                                 .flags = 0};
1858
1859         /*
1860          * No alias checking needed for setting present flag. otherwise,
1861          * we may need to break large pages for 64-bit kernel text
1862          * mappings (this adds to complexity if we want to do this from
1863          * atomic context especially). Let's keep it simple!
1864          */
1865         return __change_page_attr_set_clr(&cpa, 0);
1866 }
1867
1868 static int __set_pages_np(struct page *page, int numpages)
1869 {
1870         unsigned long tempaddr = (unsigned long) page_address(page);
1871         struct cpa_data cpa = { .vaddr = &tempaddr,
1872                                 .pgd = NULL,
1873                                 .numpages = numpages,
1874                                 .mask_set = __pgprot(0),
1875                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1876                                 .flags = 0};
1877
1878         /*
1879          * No alias checking needed for setting not present flag. otherwise,
1880          * we may need to break large pages for 64-bit kernel text
1881          * mappings (this adds to complexity if we want to do this from
1882          * atomic context especially). Let's keep it simple!
1883          */
1884         return __change_page_attr_set_clr(&cpa, 0);
1885 }
1886
1887 void __kernel_map_pages(struct page *page, int numpages, int enable)
1888 {
1889         if (PageHighMem(page))
1890                 return;
1891         if (!enable) {
1892                 debug_check_no_locks_freed(page_address(page),
1893                                            numpages * PAGE_SIZE);
1894         }
1895
1896         /*
1897          * The return value is ignored as the calls cannot fail.
1898          * Large pages for identity mappings are not used at boot time
1899          * and hence no memory allocations during large page split.
1900          */
1901         if (enable)
1902                 __set_pages_p(page, numpages);
1903         else
1904                 __set_pages_np(page, numpages);
1905
1906         /*
1907          * We should perform an IPI and flush all tlbs,
1908          * but that can deadlock->flush only current cpu:
1909          */
1910         __flush_tlb_all();
1911
1912         arch_flush_lazy_mmu_mode();
1913 }
1914
1915 #ifdef CONFIG_HIBERNATION
1916
1917 bool kernel_page_present(struct page *page)
1918 {
1919         unsigned int level;
1920         pte_t *pte;
1921
1922         if (PageHighMem(page))
1923                 return false;
1924
1925         pte = lookup_address((unsigned long)page_address(page), &level);
1926         return (pte_val(*pte) & _PAGE_PRESENT);
1927 }
1928
1929 #endif /* CONFIG_HIBERNATION */
1930
1931 #endif /* CONFIG_DEBUG_PAGEALLOC */
1932
1933 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1934                             unsigned numpages, unsigned long page_flags)
1935 {
1936         int retval = -EINVAL;
1937
1938         struct cpa_data cpa = {
1939                 .vaddr = &address,
1940                 .pfn = pfn,
1941                 .pgd = pgd,
1942                 .numpages = numpages,
1943                 .mask_set = __pgprot(0),
1944                 .mask_clr = __pgprot(0),
1945                 .flags = 0,
1946         };
1947
1948         if (!(__supported_pte_mask & _PAGE_NX))
1949                 goto out;
1950
1951         if (!(page_flags & _PAGE_NX))
1952                 cpa.mask_clr = __pgprot(_PAGE_NX);
1953
1954         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1955
1956         retval = __change_page_attr_set_clr(&cpa, 0);
1957         __flush_tlb_all();
1958
1959 out:
1960         return retval;
1961 }
1962
1963 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1964                                unsigned numpages)
1965 {
1966         unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1967 }
1968
1969 /*
1970  * The testcases use internal knowledge of the implementation that shouldn't
1971  * be exposed to the rest of the kernel. Include these directly here.
1972  */
1973 #ifdef CONFIG_CPA_DEBUG
1974 #include "pageattr-test.c"
1975 #endif