]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
ARM: dts: tx6: add enet_out clock for FEC
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37  * Check if any of the ctx's have pending work in this hardware queue
38  */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41         unsigned int i;
42
43         for (i = 0; i < hctx->ctx_map.map_size; i++)
44                 if (hctx->ctx_map.map[i].word)
45                         return true;
46
47         return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51                                               struct blk_mq_ctx *ctx)
52 {
53         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx)   \
57         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60  * Mark this ctx as having pending work in this hardware queue
61  */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63                                      struct blk_mq_ctx *ctx)
64 {
65         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72                                       struct blk_mq_ctx *ctx)
73 {
74         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81         int ret;
82
83         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
84         smp_wmb();
85
86         /* we have problems freezing the queue if it's initializing */
87         if (!blk_queue_dying(q) &&
88             (!blk_queue_bypass(q) || !blk_queue_init_done(q)))
89                 return 0;
90
91         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
92
93         spin_lock_irq(q->queue_lock);
94         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
95                 !blk_queue_bypass(q) || blk_queue_dying(q),
96                 *q->queue_lock);
97         /* inc usage with lock hold to avoid freeze_queue runs here */
98         if (!ret && !blk_queue_dying(q))
99                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100         else if (blk_queue_dying(q))
101                 ret = -ENODEV;
102         spin_unlock_irq(q->queue_lock);
103
104         return ret;
105 }
106
107 static void blk_mq_queue_exit(struct request_queue *q)
108 {
109         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
110 }
111
112 void blk_mq_drain_queue(struct request_queue *q)
113 {
114         while (true) {
115                 s64 count;
116
117                 spin_lock_irq(q->queue_lock);
118                 count = percpu_counter_sum(&q->mq_usage_counter);
119                 spin_unlock_irq(q->queue_lock);
120
121                 if (count == 0)
122                         break;
123                 blk_mq_start_hw_queues(q);
124                 msleep(10);
125         }
126 }
127
128 /*
129  * Guarantee no request is in use, so we can change any data structure of
130  * the queue afterward.
131  */
132 static void blk_mq_freeze_queue(struct request_queue *q)
133 {
134         bool drain;
135
136         spin_lock_irq(q->queue_lock);
137         drain = !q->bypass_depth++;
138         queue_flag_set(QUEUE_FLAG_BYPASS, q);
139         spin_unlock_irq(q->queue_lock);
140
141         if (drain)
142                 blk_mq_drain_queue(q);
143 }
144
145 static void blk_mq_unfreeze_queue(struct request_queue *q)
146 {
147         bool wake = false;
148
149         spin_lock_irq(q->queue_lock);
150         if (!--q->bypass_depth) {
151                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
152                 wake = true;
153         }
154         WARN_ON_ONCE(q->bypass_depth < 0);
155         spin_unlock_irq(q->queue_lock);
156         if (wake)
157                 wake_up_all(&q->mq_freeze_wq);
158 }
159
160 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
161 {
162         return blk_mq_has_free_tags(hctx->tags);
163 }
164 EXPORT_SYMBOL(blk_mq_can_queue);
165
166 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
167                                struct request *rq, unsigned int rw_flags)
168 {
169         if (blk_queue_io_stat(q))
170                 rw_flags |= REQ_IO_STAT;
171
172         INIT_LIST_HEAD(&rq->queuelist);
173         /* csd/requeue_work/fifo_time is initialized before use */
174         rq->q = q;
175         rq->mq_ctx = ctx;
176         rq->cmd_flags |= rw_flags;
177         /* do not touch atomic flags, it needs atomic ops against the timer */
178         rq->cpu = -1;
179         INIT_HLIST_NODE(&rq->hash);
180         RB_CLEAR_NODE(&rq->rb_node);
181         rq->rq_disk = NULL;
182         rq->part = NULL;
183         rq->start_time = jiffies;
184 #ifdef CONFIG_BLK_CGROUP
185         rq->rl = NULL;
186         set_start_time_ns(rq);
187         rq->io_start_time_ns = 0;
188 #endif
189         rq->nr_phys_segments = 0;
190 #if defined(CONFIG_BLK_DEV_INTEGRITY)
191         rq->nr_integrity_segments = 0;
192 #endif
193         rq->special = NULL;
194         /* tag was already set */
195         rq->errors = 0;
196
197         rq->extra_len = 0;
198         rq->sense_len = 0;
199         rq->resid_len = 0;
200         rq->sense = NULL;
201
202         INIT_LIST_HEAD(&rq->timeout_list);
203         rq->timeout = 0;
204
205         rq->end_io = NULL;
206         rq->end_io_data = NULL;
207         rq->next_rq = NULL;
208
209         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
210 }
211
212 static struct request *
213 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
214 {
215         struct request *rq;
216         unsigned int tag;
217
218         tag = blk_mq_get_tag(data);
219         if (tag != BLK_MQ_TAG_FAIL) {
220                 rq = data->hctx->tags->rqs[tag];
221
222                 rq->cmd_flags = 0;
223                 if (blk_mq_tag_busy(data->hctx)) {
224                         rq->cmd_flags = REQ_MQ_INFLIGHT;
225                         atomic_inc(&data->hctx->nr_active);
226                 }
227
228                 rq->tag = tag;
229                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
230                 return rq;
231         }
232
233         return NULL;
234 }
235
236 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
237                 bool reserved)
238 {
239         struct blk_mq_ctx *ctx;
240         struct blk_mq_hw_ctx *hctx;
241         struct request *rq;
242         struct blk_mq_alloc_data alloc_data;
243
244         if (blk_mq_queue_enter(q))
245                 return NULL;
246
247         ctx = blk_mq_get_ctx(q);
248         hctx = q->mq_ops->map_queue(q, ctx->cpu);
249         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
250                         reserved, ctx, hctx);
251
252         rq = __blk_mq_alloc_request(&alloc_data, rw);
253         if (!rq && (gfp & __GFP_WAIT)) {
254                 __blk_mq_run_hw_queue(hctx);
255                 blk_mq_put_ctx(ctx);
256
257                 ctx = blk_mq_get_ctx(q);
258                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
259                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
260                                 hctx);
261                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
262                 ctx = alloc_data.ctx;
263         }
264         blk_mq_put_ctx(ctx);
265         return rq;
266 }
267 EXPORT_SYMBOL(blk_mq_alloc_request);
268
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270                                   struct blk_mq_ctx *ctx, struct request *rq)
271 {
272         const int tag = rq->tag;
273         struct request_queue *q = rq->q;
274
275         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276                 atomic_dec(&hctx->nr_active);
277
278         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
279         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
280         blk_mq_queue_exit(q);
281 }
282
283 void blk_mq_free_request(struct request *rq)
284 {
285         struct blk_mq_ctx *ctx = rq->mq_ctx;
286         struct blk_mq_hw_ctx *hctx;
287         struct request_queue *q = rq->q;
288
289         ctx->rq_completed[rq_is_sync(rq)]++;
290
291         hctx = q->mq_ops->map_queue(q, ctx->cpu);
292         __blk_mq_free_request(hctx, ctx, rq);
293 }
294
295 /*
296  * Clone all relevant state from a request that has been put on hold in
297  * the flush state machine into the preallocated flush request that hangs
298  * off the request queue.
299  *
300  * For a driver the flush request should be invisible, that's why we are
301  * impersonating the original request here.
302  */
303 void blk_mq_clone_flush_request(struct request *flush_rq,
304                 struct request *orig_rq)
305 {
306         struct blk_mq_hw_ctx *hctx =
307                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
308
309         flush_rq->mq_ctx = orig_rq->mq_ctx;
310         flush_rq->tag = orig_rq->tag;
311         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
312                 hctx->cmd_size);
313 }
314
315 inline void __blk_mq_end_io(struct request *rq, int error)
316 {
317         blk_account_io_done(rq);
318
319         if (rq->end_io) {
320                 rq->end_io(rq, error);
321         } else {
322                 if (unlikely(blk_bidi_rq(rq)))
323                         blk_mq_free_request(rq->next_rq);
324                 blk_mq_free_request(rq);
325         }
326 }
327 EXPORT_SYMBOL(__blk_mq_end_io);
328
329 void blk_mq_end_io(struct request *rq, int error)
330 {
331         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
332                 BUG();
333         __blk_mq_end_io(rq, error);
334 }
335 EXPORT_SYMBOL(blk_mq_end_io);
336
337 static void __blk_mq_complete_request_remote(void *data)
338 {
339         struct request *rq = data;
340
341         rq->q->softirq_done_fn(rq);
342 }
343
344 static void blk_mq_ipi_complete_request(struct request *rq)
345 {
346         struct blk_mq_ctx *ctx = rq->mq_ctx;
347         bool shared = false;
348         int cpu;
349
350         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
351                 rq->q->softirq_done_fn(rq);
352                 return;
353         }
354
355         cpu = get_cpu();
356         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
357                 shared = cpus_share_cache(cpu, ctx->cpu);
358
359         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
360                 rq->csd.func = __blk_mq_complete_request_remote;
361                 rq->csd.info = rq;
362                 rq->csd.flags = 0;
363                 smp_call_function_single_async(ctx->cpu, &rq->csd);
364         } else {
365                 rq->q->softirq_done_fn(rq);
366         }
367         put_cpu();
368 }
369
370 void __blk_mq_complete_request(struct request *rq)
371 {
372         struct request_queue *q = rq->q;
373
374         if (!q->softirq_done_fn)
375                 blk_mq_end_io(rq, rq->errors);
376         else
377                 blk_mq_ipi_complete_request(rq);
378 }
379
380 /**
381  * blk_mq_complete_request - end I/O on a request
382  * @rq:         the request being processed
383  *
384  * Description:
385  *      Ends all I/O on a request. It does not handle partial completions.
386  *      The actual completion happens out-of-order, through a IPI handler.
387  **/
388 void blk_mq_complete_request(struct request *rq)
389 {
390         struct request_queue *q = rq->q;
391
392         if (unlikely(blk_should_fake_timeout(q)))
393                 return;
394         if (!blk_mark_rq_complete(rq))
395                 __blk_mq_complete_request(rq);
396 }
397 EXPORT_SYMBOL(blk_mq_complete_request);
398
399 static void blk_mq_start_request(struct request *rq, bool last)
400 {
401         struct request_queue *q = rq->q;
402
403         trace_block_rq_issue(q, rq);
404
405         rq->resid_len = blk_rq_bytes(rq);
406         if (unlikely(blk_bidi_rq(rq)))
407                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
408
409         blk_add_timer(rq);
410
411         /*
412          * Mark us as started and clear complete. Complete might have been
413          * set if requeue raced with timeout, which then marked it as
414          * complete. So be sure to clear complete again when we start
415          * the request, otherwise we'll ignore the completion event.
416          */
417         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
418                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
419         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
420                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
421
422         if (q->dma_drain_size && blk_rq_bytes(rq)) {
423                 /*
424                  * Make sure space for the drain appears.  We know we can do
425                  * this because max_hw_segments has been adjusted to be one
426                  * fewer than the device can handle.
427                  */
428                 rq->nr_phys_segments++;
429         }
430
431         /*
432          * Flag the last request in the series so that drivers know when IO
433          * should be kicked off, if they don't do it on a per-request basis.
434          *
435          * Note: the flag isn't the only condition drivers should do kick off.
436          * If drive is busy, the last request might not have the bit set.
437          */
438         if (last)
439                 rq->cmd_flags |= REQ_END;
440 }
441
442 static void __blk_mq_requeue_request(struct request *rq)
443 {
444         struct request_queue *q = rq->q;
445
446         trace_block_rq_requeue(q, rq);
447         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
448
449         rq->cmd_flags &= ~REQ_END;
450
451         if (q->dma_drain_size && blk_rq_bytes(rq))
452                 rq->nr_phys_segments--;
453 }
454
455 void blk_mq_requeue_request(struct request *rq)
456 {
457         __blk_mq_requeue_request(rq);
458         blk_clear_rq_complete(rq);
459
460         BUG_ON(blk_queued_rq(rq));
461         blk_mq_add_to_requeue_list(rq, true);
462 }
463 EXPORT_SYMBOL(blk_mq_requeue_request);
464
465 static void blk_mq_requeue_work(struct work_struct *work)
466 {
467         struct request_queue *q =
468                 container_of(work, struct request_queue, requeue_work);
469         LIST_HEAD(rq_list);
470         struct request *rq, *next;
471         unsigned long flags;
472
473         spin_lock_irqsave(&q->requeue_lock, flags);
474         list_splice_init(&q->requeue_list, &rq_list);
475         spin_unlock_irqrestore(&q->requeue_lock, flags);
476
477         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
478                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
479                         continue;
480
481                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
482                 list_del_init(&rq->queuelist);
483                 blk_mq_insert_request(rq, true, false, false);
484         }
485
486         while (!list_empty(&rq_list)) {
487                 rq = list_entry(rq_list.next, struct request, queuelist);
488                 list_del_init(&rq->queuelist);
489                 blk_mq_insert_request(rq, false, false, false);
490         }
491
492         blk_mq_run_queues(q, false);
493 }
494
495 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
496 {
497         struct request_queue *q = rq->q;
498         unsigned long flags;
499
500         /*
501          * We abuse this flag that is otherwise used by the I/O scheduler to
502          * request head insertation from the workqueue.
503          */
504         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
505
506         spin_lock_irqsave(&q->requeue_lock, flags);
507         if (at_head) {
508                 rq->cmd_flags |= REQ_SOFTBARRIER;
509                 list_add(&rq->queuelist, &q->requeue_list);
510         } else {
511                 list_add_tail(&rq->queuelist, &q->requeue_list);
512         }
513         spin_unlock_irqrestore(&q->requeue_lock, flags);
514 }
515 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
516
517 void blk_mq_kick_requeue_list(struct request_queue *q)
518 {
519         kblockd_schedule_work(&q->requeue_work);
520 }
521 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
522
523 static inline bool is_flush_request(struct request *rq, unsigned int tag)
524 {
525         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
526                         rq->q->flush_rq->tag == tag);
527 }
528
529 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
530 {
531         struct request *rq = tags->rqs[tag];
532
533         if (!is_flush_request(rq, tag))
534                 return rq;
535
536         return rq->q->flush_rq;
537 }
538 EXPORT_SYMBOL(blk_mq_tag_to_rq);
539
540 struct blk_mq_timeout_data {
541         struct blk_mq_hw_ctx *hctx;
542         unsigned long *next;
543         unsigned int *next_set;
544 };
545
546 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
547 {
548         struct blk_mq_timeout_data *data = __data;
549         struct blk_mq_hw_ctx *hctx = data->hctx;
550         unsigned int tag;
551
552          /* It may not be in flight yet (this is where
553          * the REQ_ATOMIC_STARTED flag comes in). The requests are
554          * statically allocated, so we know it's always safe to access the
555          * memory associated with a bit offset into ->rqs[].
556          */
557         tag = 0;
558         do {
559                 struct request *rq;
560
561                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
562                 if (tag >= hctx->tags->nr_tags)
563                         break;
564
565                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
566                 if (rq->q != hctx->queue)
567                         continue;
568                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
569                         continue;
570
571                 blk_rq_check_expired(rq, data->next, data->next_set);
572         } while (1);
573 }
574
575 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
576                                         unsigned long *next,
577                                         unsigned int *next_set)
578 {
579         struct blk_mq_timeout_data data = {
580                 .hctx           = hctx,
581                 .next           = next,
582                 .next_set       = next_set,
583         };
584
585         /*
586          * Ask the tagging code to iterate busy requests, so we can
587          * check them for timeout.
588          */
589         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
590 }
591
592 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
593 {
594         struct request_queue *q = rq->q;
595
596         /*
597          * We know that complete is set at this point. If STARTED isn't set
598          * anymore, then the request isn't active and the "timeout" should
599          * just be ignored. This can happen due to the bitflag ordering.
600          * Timeout first checks if STARTED is set, and if it is, assumes
601          * the request is active. But if we race with completion, then
602          * we both flags will get cleared. So check here again, and ignore
603          * a timeout event with a request that isn't active.
604          */
605         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
606                 return BLK_EH_NOT_HANDLED;
607
608         if (!q->mq_ops->timeout)
609                 return BLK_EH_RESET_TIMER;
610
611         return q->mq_ops->timeout(rq);
612 }
613
614 static void blk_mq_rq_timer(unsigned long data)
615 {
616         struct request_queue *q = (struct request_queue *) data;
617         struct blk_mq_hw_ctx *hctx;
618         unsigned long next = 0;
619         int i, next_set = 0;
620
621         queue_for_each_hw_ctx(q, hctx, i) {
622                 /*
623                  * If not software queues are currently mapped to this
624                  * hardware queue, there's nothing to check
625                  */
626                 if (!hctx->nr_ctx || !hctx->tags)
627                         continue;
628
629                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
630         }
631
632         if (next_set) {
633                 next = blk_rq_timeout(round_jiffies_up(next));
634                 mod_timer(&q->timeout, next);
635         } else {
636                 queue_for_each_hw_ctx(q, hctx, i)
637                         blk_mq_tag_idle(hctx);
638         }
639 }
640
641 /*
642  * Reverse check our software queue for entries that we could potentially
643  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
644  * too much time checking for merges.
645  */
646 static bool blk_mq_attempt_merge(struct request_queue *q,
647                                  struct blk_mq_ctx *ctx, struct bio *bio)
648 {
649         struct request *rq;
650         int checked = 8;
651
652         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
653                 int el_ret;
654
655                 if (!checked--)
656                         break;
657
658                 if (!blk_rq_merge_ok(rq, bio))
659                         continue;
660
661                 el_ret = blk_try_merge(rq, bio);
662                 if (el_ret == ELEVATOR_BACK_MERGE) {
663                         if (bio_attempt_back_merge(q, rq, bio)) {
664                                 ctx->rq_merged++;
665                                 return true;
666                         }
667                         break;
668                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
669                         if (bio_attempt_front_merge(q, rq, bio)) {
670                                 ctx->rq_merged++;
671                                 return true;
672                         }
673                         break;
674                 }
675         }
676
677         return false;
678 }
679
680 /*
681  * Process software queues that have been marked busy, splicing them
682  * to the for-dispatch
683  */
684 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
685 {
686         struct blk_mq_ctx *ctx;
687         int i;
688
689         for (i = 0; i < hctx->ctx_map.map_size; i++) {
690                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
691                 unsigned int off, bit;
692
693                 if (!bm->word)
694                         continue;
695
696                 bit = 0;
697                 off = i * hctx->ctx_map.bits_per_word;
698                 do {
699                         bit = find_next_bit(&bm->word, bm->depth, bit);
700                         if (bit >= bm->depth)
701                                 break;
702
703                         ctx = hctx->ctxs[bit + off];
704                         clear_bit(bit, &bm->word);
705                         spin_lock(&ctx->lock);
706                         list_splice_tail_init(&ctx->rq_list, list);
707                         spin_unlock(&ctx->lock);
708
709                         bit++;
710                 } while (1);
711         }
712 }
713
714 /*
715  * Run this hardware queue, pulling any software queues mapped to it in.
716  * Note that this function currently has various problems around ordering
717  * of IO. In particular, we'd like FIFO behaviour on handling existing
718  * items on the hctx->dispatch list. Ignore that for now.
719  */
720 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
721 {
722         struct request_queue *q = hctx->queue;
723         struct request *rq;
724         LIST_HEAD(rq_list);
725         int queued;
726
727         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
728
729         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
730                 return;
731
732         hctx->run++;
733
734         /*
735          * Touch any software queue that has pending entries.
736          */
737         flush_busy_ctxs(hctx, &rq_list);
738
739         /*
740          * If we have previous entries on our dispatch list, grab them
741          * and stuff them at the front for more fair dispatch.
742          */
743         if (!list_empty_careful(&hctx->dispatch)) {
744                 spin_lock(&hctx->lock);
745                 if (!list_empty(&hctx->dispatch))
746                         list_splice_init(&hctx->dispatch, &rq_list);
747                 spin_unlock(&hctx->lock);
748         }
749
750         /*
751          * Now process all the entries, sending them to the driver.
752          */
753         queued = 0;
754         while (!list_empty(&rq_list)) {
755                 int ret;
756
757                 rq = list_first_entry(&rq_list, struct request, queuelist);
758                 list_del_init(&rq->queuelist);
759
760                 blk_mq_start_request(rq, list_empty(&rq_list));
761
762                 ret = q->mq_ops->queue_rq(hctx, rq);
763                 switch (ret) {
764                 case BLK_MQ_RQ_QUEUE_OK:
765                         queued++;
766                         continue;
767                 case BLK_MQ_RQ_QUEUE_BUSY:
768                         list_add(&rq->queuelist, &rq_list);
769                         __blk_mq_requeue_request(rq);
770                         break;
771                 default:
772                         pr_err("blk-mq: bad return on queue: %d\n", ret);
773                 case BLK_MQ_RQ_QUEUE_ERROR:
774                         rq->errors = -EIO;
775                         blk_mq_end_io(rq, rq->errors);
776                         break;
777                 }
778
779                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
780                         break;
781         }
782
783         if (!queued)
784                 hctx->dispatched[0]++;
785         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
786                 hctx->dispatched[ilog2(queued) + 1]++;
787
788         /*
789          * Any items that need requeuing? Stuff them into hctx->dispatch,
790          * that is where we will continue on next queue run.
791          */
792         if (!list_empty(&rq_list)) {
793                 spin_lock(&hctx->lock);
794                 list_splice(&rq_list, &hctx->dispatch);
795                 spin_unlock(&hctx->lock);
796         }
797 }
798
799 /*
800  * It'd be great if the workqueue API had a way to pass
801  * in a mask and had some smarts for more clever placement.
802  * For now we just round-robin here, switching for every
803  * BLK_MQ_CPU_WORK_BATCH queued items.
804  */
805 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
806 {
807         int cpu = hctx->next_cpu;
808
809         if (--hctx->next_cpu_batch <= 0) {
810                 int next_cpu;
811
812                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
813                 if (next_cpu >= nr_cpu_ids)
814                         next_cpu = cpumask_first(hctx->cpumask);
815
816                 hctx->next_cpu = next_cpu;
817                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
818         }
819
820         return cpu;
821 }
822
823 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
824 {
825         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
826                 return;
827
828         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
829                 __blk_mq_run_hw_queue(hctx);
830         else if (hctx->queue->nr_hw_queues == 1)
831                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
832         else {
833                 unsigned int cpu;
834
835                 cpu = blk_mq_hctx_next_cpu(hctx);
836                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
837         }
838 }
839
840 void blk_mq_run_queues(struct request_queue *q, bool async)
841 {
842         struct blk_mq_hw_ctx *hctx;
843         int i;
844
845         queue_for_each_hw_ctx(q, hctx, i) {
846                 if ((!blk_mq_hctx_has_pending(hctx) &&
847                     list_empty_careful(&hctx->dispatch)) ||
848                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
849                         continue;
850
851                 preempt_disable();
852                 blk_mq_run_hw_queue(hctx, async);
853                 preempt_enable();
854         }
855 }
856 EXPORT_SYMBOL(blk_mq_run_queues);
857
858 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
859 {
860         cancel_delayed_work(&hctx->run_work);
861         cancel_delayed_work(&hctx->delay_work);
862         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
863 }
864 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
865
866 void blk_mq_stop_hw_queues(struct request_queue *q)
867 {
868         struct blk_mq_hw_ctx *hctx;
869         int i;
870
871         queue_for_each_hw_ctx(q, hctx, i)
872                 blk_mq_stop_hw_queue(hctx);
873 }
874 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
875
876 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
877 {
878         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
879
880         preempt_disable();
881         blk_mq_run_hw_queue(hctx, false);
882         preempt_enable();
883 }
884 EXPORT_SYMBOL(blk_mq_start_hw_queue);
885
886 void blk_mq_start_hw_queues(struct request_queue *q)
887 {
888         struct blk_mq_hw_ctx *hctx;
889         int i;
890
891         queue_for_each_hw_ctx(q, hctx, i)
892                 blk_mq_start_hw_queue(hctx);
893 }
894 EXPORT_SYMBOL(blk_mq_start_hw_queues);
895
896
897 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
898 {
899         struct blk_mq_hw_ctx *hctx;
900         int i;
901
902         queue_for_each_hw_ctx(q, hctx, i) {
903                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
904                         continue;
905
906                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
907                 preempt_disable();
908                 blk_mq_run_hw_queue(hctx, async);
909                 preempt_enable();
910         }
911 }
912 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
913
914 static void blk_mq_run_work_fn(struct work_struct *work)
915 {
916         struct blk_mq_hw_ctx *hctx;
917
918         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
919
920         __blk_mq_run_hw_queue(hctx);
921 }
922
923 static void blk_mq_delay_work_fn(struct work_struct *work)
924 {
925         struct blk_mq_hw_ctx *hctx;
926
927         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
928
929         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
930                 __blk_mq_run_hw_queue(hctx);
931 }
932
933 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
934 {
935         unsigned long tmo = msecs_to_jiffies(msecs);
936
937         if (hctx->queue->nr_hw_queues == 1)
938                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
939         else {
940                 unsigned int cpu;
941
942                 cpu = blk_mq_hctx_next_cpu(hctx);
943                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
944         }
945 }
946 EXPORT_SYMBOL(blk_mq_delay_queue);
947
948 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
949                                     struct request *rq, bool at_head)
950 {
951         struct blk_mq_ctx *ctx = rq->mq_ctx;
952
953         trace_block_rq_insert(hctx->queue, rq);
954
955         if (at_head)
956                 list_add(&rq->queuelist, &ctx->rq_list);
957         else
958                 list_add_tail(&rq->queuelist, &ctx->rq_list);
959
960         blk_mq_hctx_mark_pending(hctx, ctx);
961 }
962
963 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
964                 bool async)
965 {
966         struct request_queue *q = rq->q;
967         struct blk_mq_hw_ctx *hctx;
968         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
969
970         current_ctx = blk_mq_get_ctx(q);
971         if (!cpu_online(ctx->cpu))
972                 rq->mq_ctx = ctx = current_ctx;
973
974         hctx = q->mq_ops->map_queue(q, ctx->cpu);
975
976         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
977             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
978                 blk_insert_flush(rq);
979         } else {
980                 spin_lock(&ctx->lock);
981                 __blk_mq_insert_request(hctx, rq, at_head);
982                 spin_unlock(&ctx->lock);
983         }
984
985         if (run_queue)
986                 blk_mq_run_hw_queue(hctx, async);
987
988         blk_mq_put_ctx(current_ctx);
989 }
990
991 static void blk_mq_insert_requests(struct request_queue *q,
992                                      struct blk_mq_ctx *ctx,
993                                      struct list_head *list,
994                                      int depth,
995                                      bool from_schedule)
996
997 {
998         struct blk_mq_hw_ctx *hctx;
999         struct blk_mq_ctx *current_ctx;
1000
1001         trace_block_unplug(q, depth, !from_schedule);
1002
1003         current_ctx = blk_mq_get_ctx(q);
1004
1005         if (!cpu_online(ctx->cpu))
1006                 ctx = current_ctx;
1007         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1008
1009         /*
1010          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1011          * offline now
1012          */
1013         spin_lock(&ctx->lock);
1014         while (!list_empty(list)) {
1015                 struct request *rq;
1016
1017                 rq = list_first_entry(list, struct request, queuelist);
1018                 list_del_init(&rq->queuelist);
1019                 rq->mq_ctx = ctx;
1020                 __blk_mq_insert_request(hctx, rq, false);
1021         }
1022         spin_unlock(&ctx->lock);
1023
1024         blk_mq_run_hw_queue(hctx, from_schedule);
1025         blk_mq_put_ctx(current_ctx);
1026 }
1027
1028 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1029 {
1030         struct request *rqa = container_of(a, struct request, queuelist);
1031         struct request *rqb = container_of(b, struct request, queuelist);
1032
1033         return !(rqa->mq_ctx < rqb->mq_ctx ||
1034                  (rqa->mq_ctx == rqb->mq_ctx &&
1035                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1036 }
1037
1038 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1039 {
1040         struct blk_mq_ctx *this_ctx;
1041         struct request_queue *this_q;
1042         struct request *rq;
1043         LIST_HEAD(list);
1044         LIST_HEAD(ctx_list);
1045         unsigned int depth;
1046
1047         list_splice_init(&plug->mq_list, &list);
1048
1049         list_sort(NULL, &list, plug_ctx_cmp);
1050
1051         this_q = NULL;
1052         this_ctx = NULL;
1053         depth = 0;
1054
1055         while (!list_empty(&list)) {
1056                 rq = list_entry_rq(list.next);
1057                 list_del_init(&rq->queuelist);
1058                 BUG_ON(!rq->q);
1059                 if (rq->mq_ctx != this_ctx) {
1060                         if (this_ctx) {
1061                                 blk_mq_insert_requests(this_q, this_ctx,
1062                                                         &ctx_list, depth,
1063                                                         from_schedule);
1064                         }
1065
1066                         this_ctx = rq->mq_ctx;
1067                         this_q = rq->q;
1068                         depth = 0;
1069                 }
1070
1071                 depth++;
1072                 list_add_tail(&rq->queuelist, &ctx_list);
1073         }
1074
1075         /*
1076          * If 'this_ctx' is set, we know we have entries to complete
1077          * on 'ctx_list'. Do those.
1078          */
1079         if (this_ctx) {
1080                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1081                                        from_schedule);
1082         }
1083 }
1084
1085 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1086 {
1087         init_request_from_bio(rq, bio);
1088
1089         if (blk_do_io_stat(rq))
1090                 blk_account_io_start(rq, 1);
1091 }
1092
1093 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1094                                          struct blk_mq_ctx *ctx,
1095                                          struct request *rq, struct bio *bio)
1096 {
1097         struct request_queue *q = hctx->queue;
1098
1099         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1100                 blk_mq_bio_to_request(rq, bio);
1101                 spin_lock(&ctx->lock);
1102 insert_rq:
1103                 __blk_mq_insert_request(hctx, rq, false);
1104                 spin_unlock(&ctx->lock);
1105                 return false;
1106         } else {
1107                 spin_lock(&ctx->lock);
1108                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1109                         blk_mq_bio_to_request(rq, bio);
1110                         goto insert_rq;
1111                 }
1112
1113                 spin_unlock(&ctx->lock);
1114                 __blk_mq_free_request(hctx, ctx, rq);
1115                 return true;
1116         }
1117 }
1118
1119 struct blk_map_ctx {
1120         struct blk_mq_hw_ctx *hctx;
1121         struct blk_mq_ctx *ctx;
1122 };
1123
1124 static struct request *blk_mq_map_request(struct request_queue *q,
1125                                           struct bio *bio,
1126                                           struct blk_map_ctx *data)
1127 {
1128         struct blk_mq_hw_ctx *hctx;
1129         struct blk_mq_ctx *ctx;
1130         struct request *rq;
1131         int rw = bio_data_dir(bio);
1132         struct blk_mq_alloc_data alloc_data;
1133
1134         if (unlikely(blk_mq_queue_enter(q))) {
1135                 bio_endio(bio, -EIO);
1136                 return NULL;
1137         }
1138
1139         ctx = blk_mq_get_ctx(q);
1140         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1141
1142         if (rw_is_sync(bio->bi_rw))
1143                 rw |= REQ_SYNC;
1144
1145         trace_block_getrq(q, bio, rw);
1146         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1147                         hctx);
1148         rq = __blk_mq_alloc_request(&alloc_data, rw);
1149         if (unlikely(!rq)) {
1150                 __blk_mq_run_hw_queue(hctx);
1151                 blk_mq_put_ctx(ctx);
1152                 trace_block_sleeprq(q, bio, rw);
1153
1154                 ctx = blk_mq_get_ctx(q);
1155                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1156                 blk_mq_set_alloc_data(&alloc_data, q,
1157                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1158                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1159                 ctx = alloc_data.ctx;
1160                 hctx = alloc_data.hctx;
1161         }
1162
1163         hctx->queued++;
1164         data->hctx = hctx;
1165         data->ctx = ctx;
1166         return rq;
1167 }
1168
1169 /*
1170  * Multiple hardware queue variant. This will not use per-process plugs,
1171  * but will attempt to bypass the hctx queueing if we can go straight to
1172  * hardware for SYNC IO.
1173  */
1174 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1175 {
1176         const int is_sync = rw_is_sync(bio->bi_rw);
1177         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1178         struct blk_map_ctx data;
1179         struct request *rq;
1180
1181         blk_queue_bounce(q, &bio);
1182
1183         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1184                 bio_endio(bio, -EIO);
1185                 return;
1186         }
1187
1188         rq = blk_mq_map_request(q, bio, &data);
1189         if (unlikely(!rq))
1190                 return;
1191
1192         if (unlikely(is_flush_fua)) {
1193                 blk_mq_bio_to_request(rq, bio);
1194                 blk_insert_flush(rq);
1195                 goto run_queue;
1196         }
1197
1198         if (is_sync) {
1199                 int ret;
1200
1201                 blk_mq_bio_to_request(rq, bio);
1202                 blk_mq_start_request(rq, true);
1203
1204                 /*
1205                  * For OK queue, we are done. For error, kill it. Any other
1206                  * error (busy), just add it to our list as we previously
1207                  * would have done
1208                  */
1209                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1210                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1211                         goto done;
1212                 else {
1213                         __blk_mq_requeue_request(rq);
1214
1215                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1216                                 rq->errors = -EIO;
1217                                 blk_mq_end_io(rq, rq->errors);
1218                                 goto done;
1219                         }
1220                 }
1221         }
1222
1223         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1224                 /*
1225                  * For a SYNC request, send it to the hardware immediately. For
1226                  * an ASYNC request, just ensure that we run it later on. The
1227                  * latter allows for merging opportunities and more efficient
1228                  * dispatching.
1229                  */
1230 run_queue:
1231                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1232         }
1233 done:
1234         blk_mq_put_ctx(data.ctx);
1235 }
1236
1237 /*
1238  * Single hardware queue variant. This will attempt to use any per-process
1239  * plug for merging and IO deferral.
1240  */
1241 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1242 {
1243         const int is_sync = rw_is_sync(bio->bi_rw);
1244         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1245         unsigned int use_plug, request_count = 0;
1246         struct blk_map_ctx data;
1247         struct request *rq;
1248
1249         /*
1250          * If we have multiple hardware queues, just go directly to
1251          * one of those for sync IO.
1252          */
1253         use_plug = !is_flush_fua && !is_sync;
1254
1255         blk_queue_bounce(q, &bio);
1256
1257         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1258                 bio_endio(bio, -EIO);
1259                 return;
1260         }
1261
1262         if (use_plug && !blk_queue_nomerges(q) &&
1263             blk_attempt_plug_merge(q, bio, &request_count))
1264                 return;
1265
1266         rq = blk_mq_map_request(q, bio, &data);
1267         if (unlikely(!rq))
1268                 return;
1269
1270         if (unlikely(is_flush_fua)) {
1271                 blk_mq_bio_to_request(rq, bio);
1272                 blk_insert_flush(rq);
1273                 goto run_queue;
1274         }
1275
1276         /*
1277          * A task plug currently exists. Since this is completely lockless,
1278          * utilize that to temporarily store requests until the task is
1279          * either done or scheduled away.
1280          */
1281         if (use_plug) {
1282                 struct blk_plug *plug = current->plug;
1283
1284                 if (plug) {
1285                         blk_mq_bio_to_request(rq, bio);
1286                         if (list_empty(&plug->mq_list))
1287                                 trace_block_plug(q);
1288                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1289                                 blk_flush_plug_list(plug, false);
1290                                 trace_block_plug(q);
1291                         }
1292                         list_add_tail(&rq->queuelist, &plug->mq_list);
1293                         blk_mq_put_ctx(data.ctx);
1294                         return;
1295                 }
1296         }
1297
1298         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1299                 /*
1300                  * For a SYNC request, send it to the hardware immediately. For
1301                  * an ASYNC request, just ensure that we run it later on. The
1302                  * latter allows for merging opportunities and more efficient
1303                  * dispatching.
1304                  */
1305 run_queue:
1306                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1307         }
1308
1309         blk_mq_put_ctx(data.ctx);
1310 }
1311
1312 /*
1313  * Default mapping to a software queue, since we use one per CPU.
1314  */
1315 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1316 {
1317         return q->queue_hw_ctx[q->mq_map[cpu]];
1318 }
1319 EXPORT_SYMBOL(blk_mq_map_queue);
1320
1321 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1322                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1323 {
1324         struct page *page;
1325
1326         if (tags->rqs && set->ops->exit_request) {
1327                 int i;
1328
1329                 for (i = 0; i < tags->nr_tags; i++) {
1330                         if (!tags->rqs[i])
1331                                 continue;
1332                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1333                                                 hctx_idx, i);
1334                 }
1335         }
1336
1337         while (!list_empty(&tags->page_list)) {
1338                 page = list_first_entry(&tags->page_list, struct page, lru);
1339                 list_del_init(&page->lru);
1340                 __free_pages(page, page->private);
1341         }
1342
1343         kfree(tags->rqs);
1344
1345         blk_mq_free_tags(tags);
1346 }
1347
1348 static size_t order_to_size(unsigned int order)
1349 {
1350         return (size_t)PAGE_SIZE << order;
1351 }
1352
1353 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1354                 unsigned int hctx_idx)
1355 {
1356         struct blk_mq_tags *tags;
1357         unsigned int i, j, entries_per_page, max_order = 4;
1358         size_t rq_size, left;
1359
1360         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1361                                 set->numa_node);
1362         if (!tags)
1363                 return NULL;
1364
1365         INIT_LIST_HEAD(&tags->page_list);
1366
1367         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1368                                         GFP_KERNEL, set->numa_node);
1369         if (!tags->rqs) {
1370                 blk_mq_free_tags(tags);
1371                 return NULL;
1372         }
1373
1374         /*
1375          * rq_size is the size of the request plus driver payload, rounded
1376          * to the cacheline size
1377          */
1378         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1379                                 cache_line_size());
1380         left = rq_size * set->queue_depth;
1381
1382         for (i = 0; i < set->queue_depth; ) {
1383                 int this_order = max_order;
1384                 struct page *page;
1385                 int to_do;
1386                 void *p;
1387
1388                 while (left < order_to_size(this_order - 1) && this_order)
1389                         this_order--;
1390
1391                 do {
1392                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1393                                                 this_order);
1394                         if (page)
1395                                 break;
1396                         if (!this_order--)
1397                                 break;
1398                         if (order_to_size(this_order) < rq_size)
1399                                 break;
1400                 } while (1);
1401
1402                 if (!page)
1403                         goto fail;
1404
1405                 page->private = this_order;
1406                 list_add_tail(&page->lru, &tags->page_list);
1407
1408                 p = page_address(page);
1409                 entries_per_page = order_to_size(this_order) / rq_size;
1410                 to_do = min(entries_per_page, set->queue_depth - i);
1411                 left -= to_do * rq_size;
1412                 for (j = 0; j < to_do; j++) {
1413                         tags->rqs[i] = p;
1414                         if (set->ops->init_request) {
1415                                 if (set->ops->init_request(set->driver_data,
1416                                                 tags->rqs[i], hctx_idx, i,
1417                                                 set->numa_node))
1418                                         goto fail;
1419                         }
1420
1421                         p += rq_size;
1422                         i++;
1423                 }
1424         }
1425
1426         return tags;
1427
1428 fail:
1429         pr_warn("%s: failed to allocate requests\n", __func__);
1430         blk_mq_free_rq_map(set, tags, hctx_idx);
1431         return NULL;
1432 }
1433
1434 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1435 {
1436         kfree(bitmap->map);
1437 }
1438
1439 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1440 {
1441         unsigned int bpw = 8, total, num_maps, i;
1442
1443         bitmap->bits_per_word = bpw;
1444
1445         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1446         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1447                                         GFP_KERNEL, node);
1448         if (!bitmap->map)
1449                 return -ENOMEM;
1450
1451         bitmap->map_size = num_maps;
1452
1453         total = nr_cpu_ids;
1454         for (i = 0; i < num_maps; i++) {
1455                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1456                 total -= bitmap->map[i].depth;
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1463 {
1464         struct request_queue *q = hctx->queue;
1465         struct blk_mq_ctx *ctx;
1466         LIST_HEAD(tmp);
1467
1468         /*
1469          * Move ctx entries to new CPU, if this one is going away.
1470          */
1471         ctx = __blk_mq_get_ctx(q, cpu);
1472
1473         spin_lock(&ctx->lock);
1474         if (!list_empty(&ctx->rq_list)) {
1475                 list_splice_init(&ctx->rq_list, &tmp);
1476                 blk_mq_hctx_clear_pending(hctx, ctx);
1477         }
1478         spin_unlock(&ctx->lock);
1479
1480         if (list_empty(&tmp))
1481                 return NOTIFY_OK;
1482
1483         ctx = blk_mq_get_ctx(q);
1484         spin_lock(&ctx->lock);
1485
1486         while (!list_empty(&tmp)) {
1487                 struct request *rq;
1488
1489                 rq = list_first_entry(&tmp, struct request, queuelist);
1490                 rq->mq_ctx = ctx;
1491                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1492         }
1493
1494         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1495         blk_mq_hctx_mark_pending(hctx, ctx);
1496
1497         spin_unlock(&ctx->lock);
1498
1499         blk_mq_run_hw_queue(hctx, true);
1500         blk_mq_put_ctx(ctx);
1501         return NOTIFY_OK;
1502 }
1503
1504 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1505 {
1506         struct request_queue *q = hctx->queue;
1507         struct blk_mq_tag_set *set = q->tag_set;
1508
1509         if (set->tags[hctx->queue_num])
1510                 return NOTIFY_OK;
1511
1512         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1513         if (!set->tags[hctx->queue_num])
1514                 return NOTIFY_STOP;
1515
1516         hctx->tags = set->tags[hctx->queue_num];
1517         return NOTIFY_OK;
1518 }
1519
1520 static int blk_mq_hctx_notify(void *data, unsigned long action,
1521                               unsigned int cpu)
1522 {
1523         struct blk_mq_hw_ctx *hctx = data;
1524
1525         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1526                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1527         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1528                 return blk_mq_hctx_cpu_online(hctx, cpu);
1529
1530         return NOTIFY_OK;
1531 }
1532
1533 static void blk_mq_exit_hw_queues(struct request_queue *q,
1534                 struct blk_mq_tag_set *set, int nr_queue)
1535 {
1536         struct blk_mq_hw_ctx *hctx;
1537         unsigned int i;
1538
1539         queue_for_each_hw_ctx(q, hctx, i) {
1540                 if (i == nr_queue)
1541                         break;
1542
1543                 blk_mq_tag_idle(hctx);
1544
1545                 if (set->ops->exit_hctx)
1546                         set->ops->exit_hctx(hctx, i);
1547
1548                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1549                 kfree(hctx->ctxs);
1550                 blk_mq_free_bitmap(&hctx->ctx_map);
1551         }
1552
1553 }
1554
1555 static void blk_mq_free_hw_queues(struct request_queue *q,
1556                 struct blk_mq_tag_set *set)
1557 {
1558         struct blk_mq_hw_ctx *hctx;
1559         unsigned int i;
1560
1561         queue_for_each_hw_ctx(q, hctx, i) {
1562                 free_cpumask_var(hctx->cpumask);
1563                 kfree(hctx);
1564         }
1565 }
1566
1567 static int blk_mq_init_hw_queues(struct request_queue *q,
1568                 struct blk_mq_tag_set *set)
1569 {
1570         struct blk_mq_hw_ctx *hctx;
1571         unsigned int i;
1572
1573         /*
1574          * Initialize hardware queues
1575          */
1576         queue_for_each_hw_ctx(q, hctx, i) {
1577                 int node;
1578
1579                 node = hctx->numa_node;
1580                 if (node == NUMA_NO_NODE)
1581                         node = hctx->numa_node = set->numa_node;
1582
1583                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1584                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1585                 spin_lock_init(&hctx->lock);
1586                 INIT_LIST_HEAD(&hctx->dispatch);
1587                 hctx->queue = q;
1588                 hctx->queue_num = i;
1589                 hctx->flags = set->flags;
1590                 hctx->cmd_size = set->cmd_size;
1591
1592                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1593                                                 blk_mq_hctx_notify, hctx);
1594                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1595
1596                 hctx->tags = set->tags[i];
1597
1598                 /*
1599                  * Allocate space for all possible cpus to avoid allocation in
1600                  * runtime
1601                  */
1602                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1603                                                 GFP_KERNEL, node);
1604                 if (!hctx->ctxs)
1605                         break;
1606
1607                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1608                         break;
1609
1610                 hctx->nr_ctx = 0;
1611
1612                 if (set->ops->init_hctx &&
1613                     set->ops->init_hctx(hctx, set->driver_data, i))
1614                         break;
1615         }
1616
1617         if (i == q->nr_hw_queues)
1618                 return 0;
1619
1620         /*
1621          * Init failed
1622          */
1623         blk_mq_exit_hw_queues(q, set, i);
1624
1625         return 1;
1626 }
1627
1628 static void blk_mq_init_cpu_queues(struct request_queue *q,
1629                                    unsigned int nr_hw_queues)
1630 {
1631         unsigned int i;
1632
1633         for_each_possible_cpu(i) {
1634                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1635                 struct blk_mq_hw_ctx *hctx;
1636
1637                 memset(__ctx, 0, sizeof(*__ctx));
1638                 __ctx->cpu = i;
1639                 spin_lock_init(&__ctx->lock);
1640                 INIT_LIST_HEAD(&__ctx->rq_list);
1641                 __ctx->queue = q;
1642
1643                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1644                 if (!cpu_online(i))
1645                         continue;
1646
1647                 hctx = q->mq_ops->map_queue(q, i);
1648                 cpumask_set_cpu(i, hctx->cpumask);
1649                 hctx->nr_ctx++;
1650
1651                 /*
1652                  * Set local node, IFF we have more than one hw queue. If
1653                  * not, we remain on the home node of the device
1654                  */
1655                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1656                         hctx->numa_node = cpu_to_node(i);
1657         }
1658 }
1659
1660 static void blk_mq_map_swqueue(struct request_queue *q)
1661 {
1662         unsigned int i;
1663         struct blk_mq_hw_ctx *hctx;
1664         struct blk_mq_ctx *ctx;
1665
1666         queue_for_each_hw_ctx(q, hctx, i) {
1667                 cpumask_clear(hctx->cpumask);
1668                 hctx->nr_ctx = 0;
1669         }
1670
1671         /*
1672          * Map software to hardware queues
1673          */
1674         queue_for_each_ctx(q, ctx, i) {
1675                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1676                 if (!cpu_online(i))
1677                         continue;
1678
1679                 hctx = q->mq_ops->map_queue(q, i);
1680                 cpumask_set_cpu(i, hctx->cpumask);
1681                 ctx->index_hw = hctx->nr_ctx;
1682                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1683         }
1684
1685         queue_for_each_hw_ctx(q, hctx, i) {
1686                 /*
1687                  * If not software queues are mapped to this hardware queue,
1688                  * disable it and free the request entries
1689                  */
1690                 if (!hctx->nr_ctx) {
1691                         struct blk_mq_tag_set *set = q->tag_set;
1692
1693                         if (set->tags[i]) {
1694                                 blk_mq_free_rq_map(set, set->tags[i], i);
1695                                 set->tags[i] = NULL;
1696                                 hctx->tags = NULL;
1697                         }
1698                         continue;
1699                 }
1700
1701                 /*
1702                  * Initialize batch roundrobin counts
1703                  */
1704                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1705                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1706         }
1707 }
1708
1709 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1710 {
1711         struct blk_mq_hw_ctx *hctx;
1712         struct request_queue *q;
1713         bool shared;
1714         int i;
1715
1716         if (set->tag_list.next == set->tag_list.prev)
1717                 shared = false;
1718         else
1719                 shared = true;
1720
1721         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1722                 blk_mq_freeze_queue(q);
1723
1724                 queue_for_each_hw_ctx(q, hctx, i) {
1725                         if (shared)
1726                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1727                         else
1728                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1729                 }
1730                 blk_mq_unfreeze_queue(q);
1731         }
1732 }
1733
1734 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1735 {
1736         struct blk_mq_tag_set *set = q->tag_set;
1737
1738         blk_mq_freeze_queue(q);
1739
1740         mutex_lock(&set->tag_list_lock);
1741         list_del_init(&q->tag_set_list);
1742         blk_mq_update_tag_set_depth(set);
1743         mutex_unlock(&set->tag_list_lock);
1744
1745         blk_mq_unfreeze_queue(q);
1746 }
1747
1748 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1749                                      struct request_queue *q)
1750 {
1751         q->tag_set = set;
1752
1753         mutex_lock(&set->tag_list_lock);
1754         list_add_tail(&q->tag_set_list, &set->tag_list);
1755         blk_mq_update_tag_set_depth(set);
1756         mutex_unlock(&set->tag_list_lock);
1757 }
1758
1759 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1760 {
1761         struct blk_mq_hw_ctx **hctxs;
1762         struct blk_mq_ctx __percpu *ctx;
1763         struct request_queue *q;
1764         unsigned int *map;
1765         int i;
1766
1767         ctx = alloc_percpu(struct blk_mq_ctx);
1768         if (!ctx)
1769                 return ERR_PTR(-ENOMEM);
1770
1771         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1772                         set->numa_node);
1773
1774         if (!hctxs)
1775                 goto err_percpu;
1776
1777         map = blk_mq_make_queue_map(set);
1778         if (!map)
1779                 goto err_map;
1780
1781         for (i = 0; i < set->nr_hw_queues; i++) {
1782                 int node = blk_mq_hw_queue_to_node(map, i);
1783
1784                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1785                                         GFP_KERNEL, node);
1786                 if (!hctxs[i])
1787                         goto err_hctxs;
1788
1789                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1790                         goto err_hctxs;
1791
1792                 atomic_set(&hctxs[i]->nr_active, 0);
1793                 hctxs[i]->numa_node = node;
1794                 hctxs[i]->queue_num = i;
1795         }
1796
1797         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1798         if (!q)
1799                 goto err_hctxs;
1800
1801         if (percpu_counter_init(&q->mq_usage_counter, 0))
1802                 goto err_map;
1803
1804         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1805         blk_queue_rq_timeout(q, 30000);
1806
1807         q->nr_queues = nr_cpu_ids;
1808         q->nr_hw_queues = set->nr_hw_queues;
1809         q->mq_map = map;
1810
1811         q->queue_ctx = ctx;
1812         q->queue_hw_ctx = hctxs;
1813
1814         q->mq_ops = set->ops;
1815         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1816
1817         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1818                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1819
1820         q->sg_reserved_size = INT_MAX;
1821
1822         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1823         INIT_LIST_HEAD(&q->requeue_list);
1824         spin_lock_init(&q->requeue_lock);
1825
1826         if (q->nr_hw_queues > 1)
1827                 blk_queue_make_request(q, blk_mq_make_request);
1828         else
1829                 blk_queue_make_request(q, blk_sq_make_request);
1830
1831         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1832         if (set->timeout)
1833                 blk_queue_rq_timeout(q, set->timeout);
1834
1835         /*
1836          * Do this after blk_queue_make_request() overrides it...
1837          */
1838         q->nr_requests = set->queue_depth;
1839
1840         if (set->ops->complete)
1841                 blk_queue_softirq_done(q, set->ops->complete);
1842
1843         blk_mq_init_flush(q);
1844         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1845
1846         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1847                                 set->cmd_size, cache_line_size()),
1848                                 GFP_KERNEL);
1849         if (!q->flush_rq)
1850                 goto err_hw;
1851
1852         if (blk_mq_init_hw_queues(q, set))
1853                 goto err_flush_rq;
1854
1855         mutex_lock(&all_q_mutex);
1856         list_add_tail(&q->all_q_node, &all_q_list);
1857         mutex_unlock(&all_q_mutex);
1858
1859         blk_mq_add_queue_tag_set(set, q);
1860
1861         blk_mq_map_swqueue(q);
1862
1863         return q;
1864
1865 err_flush_rq:
1866         kfree(q->flush_rq);
1867 err_hw:
1868         blk_cleanup_queue(q);
1869 err_hctxs:
1870         kfree(map);
1871         for (i = 0; i < set->nr_hw_queues; i++) {
1872                 if (!hctxs[i])
1873                         break;
1874                 free_cpumask_var(hctxs[i]->cpumask);
1875                 kfree(hctxs[i]);
1876         }
1877 err_map:
1878         kfree(hctxs);
1879 err_percpu:
1880         free_percpu(ctx);
1881         return ERR_PTR(-ENOMEM);
1882 }
1883 EXPORT_SYMBOL(blk_mq_init_queue);
1884
1885 void blk_mq_free_queue(struct request_queue *q)
1886 {
1887         struct blk_mq_tag_set   *set = q->tag_set;
1888
1889         blk_mq_del_queue_tag_set(q);
1890
1891         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1892         blk_mq_free_hw_queues(q, set);
1893
1894         percpu_counter_destroy(&q->mq_usage_counter);
1895
1896         free_percpu(q->queue_ctx);
1897         kfree(q->queue_hw_ctx);
1898         kfree(q->mq_map);
1899
1900         q->queue_ctx = NULL;
1901         q->queue_hw_ctx = NULL;
1902         q->mq_map = NULL;
1903
1904         mutex_lock(&all_q_mutex);
1905         list_del_init(&q->all_q_node);
1906         mutex_unlock(&all_q_mutex);
1907 }
1908
1909 /* Basically redo blk_mq_init_queue with queue frozen */
1910 static void blk_mq_queue_reinit(struct request_queue *q)
1911 {
1912         blk_mq_freeze_queue(q);
1913
1914         blk_mq_sysfs_unregister(q);
1915
1916         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1917
1918         /*
1919          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1920          * we should change hctx numa_node according to new topology (this
1921          * involves free and re-allocate memory, worthy doing?)
1922          */
1923
1924         blk_mq_map_swqueue(q);
1925
1926         blk_mq_sysfs_register(q);
1927
1928         blk_mq_unfreeze_queue(q);
1929 }
1930
1931 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1932                                       unsigned long action, void *hcpu)
1933 {
1934         struct request_queue *q;
1935
1936         /*
1937          * Before new mappings are established, hotadded cpu might already
1938          * start handling requests. This doesn't break anything as we map
1939          * offline CPUs to first hardware queue. We will re-init the queue
1940          * below to get optimal settings.
1941          */
1942         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1943             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1944                 return NOTIFY_OK;
1945
1946         mutex_lock(&all_q_mutex);
1947         list_for_each_entry(q, &all_q_list, all_q_node)
1948                 blk_mq_queue_reinit(q);
1949         mutex_unlock(&all_q_mutex);
1950         return NOTIFY_OK;
1951 }
1952
1953 /*
1954  * Alloc a tag set to be associated with one or more request queues.
1955  * May fail with EINVAL for various error conditions. May adjust the
1956  * requested depth down, if if it too large. In that case, the set
1957  * value will be stored in set->queue_depth.
1958  */
1959 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1960 {
1961         int i;
1962
1963         if (!set->nr_hw_queues)
1964                 return -EINVAL;
1965         if (!set->queue_depth)
1966                 return -EINVAL;
1967         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1968                 return -EINVAL;
1969
1970         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1971                 return -EINVAL;
1972
1973         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1974                 pr_info("blk-mq: reduced tag depth to %u\n",
1975                         BLK_MQ_MAX_DEPTH);
1976                 set->queue_depth = BLK_MQ_MAX_DEPTH;
1977         }
1978
1979         set->tags = kmalloc_node(set->nr_hw_queues *
1980                                  sizeof(struct blk_mq_tags *),
1981                                  GFP_KERNEL, set->numa_node);
1982         if (!set->tags)
1983                 goto out;
1984
1985         for (i = 0; i < set->nr_hw_queues; i++) {
1986                 set->tags[i] = blk_mq_init_rq_map(set, i);
1987                 if (!set->tags[i])
1988                         goto out_unwind;
1989         }
1990
1991         mutex_init(&set->tag_list_lock);
1992         INIT_LIST_HEAD(&set->tag_list);
1993
1994         return 0;
1995
1996 out_unwind:
1997         while (--i >= 0)
1998                 blk_mq_free_rq_map(set, set->tags[i], i);
1999 out:
2000         return -ENOMEM;
2001 }
2002 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2003
2004 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2005 {
2006         int i;
2007
2008         for (i = 0; i < set->nr_hw_queues; i++) {
2009                 if (set->tags[i])
2010                         blk_mq_free_rq_map(set, set->tags[i], i);
2011         }
2012
2013         kfree(set->tags);
2014 }
2015 EXPORT_SYMBOL(blk_mq_free_tag_set);
2016
2017 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2018 {
2019         struct blk_mq_tag_set *set = q->tag_set;
2020         struct blk_mq_hw_ctx *hctx;
2021         int i, ret;
2022
2023         if (!set || nr > set->queue_depth)
2024                 return -EINVAL;
2025
2026         ret = 0;
2027         queue_for_each_hw_ctx(q, hctx, i) {
2028                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2029                 if (ret)
2030                         break;
2031         }
2032
2033         if (!ret)
2034                 q->nr_requests = nr;
2035
2036         return ret;
2037 }
2038
2039 void blk_mq_disable_hotplug(void)
2040 {
2041         mutex_lock(&all_q_mutex);
2042 }
2043
2044 void blk_mq_enable_hotplug(void)
2045 {
2046         mutex_unlock(&all_q_mutex);
2047 }
2048
2049 static int __init blk_mq_init(void)
2050 {
2051         blk_mq_cpu_init();
2052
2053         /* Must be called after percpu_counter_hotcpu_callback() */
2054         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2055
2056         return 0;
2057 }
2058 subsys_initcall(blk_mq_init);