]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/acpi/processor_idle.c
Merge branch 'x86/mm'
[karo-tx-linux.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/module.h>
32 #include <linux/acpi.h>
33 #include <linux/dmi.h>
34 #include <linux/sched.h>       /* need_resched() */
35 #include <linux/clockchips.h>
36 #include <linux/cpuidle.h>
37 #include <linux/syscore_ops.h>
38
39 /*
40  * Include the apic definitions for x86 to have the APIC timer related defines
41  * available also for UP (on SMP it gets magically included via linux/smp.h).
42  * asm/acpi.h is not an option, as it would require more include magic. Also
43  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
44  */
45 #ifdef CONFIG_X86
46 #include <asm/apic.h>
47 #endif
48
49 #include <acpi/acpi_bus.h>
50 #include <acpi/processor.h>
51
52 #define PREFIX "ACPI: "
53
54 #define ACPI_PROCESSOR_CLASS            "processor"
55 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
56 ACPI_MODULE_NAME("processor_idle");
57
58 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
59 module_param(max_cstate, uint, 0000);
60 static unsigned int nocst __read_mostly;
61 module_param(nocst, uint, 0000);
62 static int bm_check_disable __read_mostly;
63 module_param(bm_check_disable, uint, 0000);
64
65 static unsigned int latency_factor __read_mostly = 2;
66 module_param(latency_factor, uint, 0644);
67
68 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
69
70 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
71                                                                 acpi_cstate);
72
73 static int disabled_by_idle_boot_param(void)
74 {
75         return boot_option_idle_override == IDLE_POLL ||
76                 boot_option_idle_override == IDLE_HALT;
77 }
78
79 /*
80  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
81  * For now disable this. Probably a bug somewhere else.
82  *
83  * To skip this limit, boot/load with a large max_cstate limit.
84  */
85 static int set_max_cstate(const struct dmi_system_id *id)
86 {
87         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
88                 return 0;
89
90         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
91                " Override with \"processor.max_cstate=%d\"\n", id->ident,
92                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93
94         max_cstate = (long)id->driver_data;
95
96         return 0;
97 }
98
99 static struct dmi_system_id processor_power_dmi_table[] = {
100         { set_max_cstate, "Clevo 5600D", {
101           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
102           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
103          (void *)2},
104         { set_max_cstate, "Pavilion zv5000", {
105           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
106           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
107          (void *)1},
108         { set_max_cstate, "Asus L8400B", {
109           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
110           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
111          (void *)1},
112         {},
113 };
114
115
116 /*
117  * Callers should disable interrupts before the call and enable
118  * interrupts after return.
119  */
120 static void acpi_safe_halt(void)
121 {
122         if (!tif_need_resched()) {
123                 safe_halt();
124                 local_irq_disable();
125         }
126 }
127
128 #ifdef ARCH_APICTIMER_STOPS_ON_C3
129
130 /*
131  * Some BIOS implementations switch to C3 in the published C2 state.
132  * This seems to be a common problem on AMD boxen, but other vendors
133  * are affected too. We pick the most conservative approach: we assume
134  * that the local APIC stops in both C2 and C3.
135  */
136 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
137                                    struct acpi_processor_cx *cx)
138 {
139         struct acpi_processor_power *pwr = &pr->power;
140         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
141
142         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
143                 return;
144
145         if (amd_e400_c1e_detected)
146                 type = ACPI_STATE_C1;
147
148         /*
149          * Check, if one of the previous states already marked the lapic
150          * unstable
151          */
152         if (pwr->timer_broadcast_on_state < state)
153                 return;
154
155         if (cx->type >= type)
156                 pr->power.timer_broadcast_on_state = state;
157 }
158
159 static void __lapic_timer_propagate_broadcast(void *arg)
160 {
161         struct acpi_processor *pr = (struct acpi_processor *) arg;
162         unsigned long reason;
163
164         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
165                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
166
167         clockevents_notify(reason, &pr->id);
168 }
169
170 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
171 {
172         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
173                                  (void *)pr, 1);
174 }
175
176 /* Power(C) State timer broadcast control */
177 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
178                                        struct acpi_processor_cx *cx,
179                                        int broadcast)
180 {
181         int state = cx - pr->power.states;
182
183         if (state >= pr->power.timer_broadcast_on_state) {
184                 unsigned long reason;
185
186                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
187                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
188                 clockevents_notify(reason, &pr->id);
189         }
190 }
191
192 #else
193
194 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
195                                    struct acpi_processor_cx *cstate) { }
196 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
197 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
198                                        struct acpi_processor_cx *cx,
199                                        int broadcast)
200 {
201 }
202
203 #endif
204
205 #ifdef CONFIG_PM_SLEEP
206 static u32 saved_bm_rld;
207
208 static int acpi_processor_suspend(void)
209 {
210         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
211         return 0;
212 }
213
214 static void acpi_processor_resume(void)
215 {
216         u32 resumed_bm_rld;
217
218         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
219         if (resumed_bm_rld == saved_bm_rld)
220                 return;
221
222         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
223 }
224
225 static struct syscore_ops acpi_processor_syscore_ops = {
226         .suspend = acpi_processor_suspend,
227         .resume = acpi_processor_resume,
228 };
229
230 void acpi_processor_syscore_init(void)
231 {
232         register_syscore_ops(&acpi_processor_syscore_ops);
233 }
234
235 void acpi_processor_syscore_exit(void)
236 {
237         unregister_syscore_ops(&acpi_processor_syscore_ops);
238 }
239 #endif /* CONFIG_PM_SLEEP */
240
241 #if defined(CONFIG_X86)
242 static void tsc_check_state(int state)
243 {
244         switch (boot_cpu_data.x86_vendor) {
245         case X86_VENDOR_AMD:
246         case X86_VENDOR_INTEL:
247                 /*
248                  * AMD Fam10h TSC will tick in all
249                  * C/P/S0/S1 states when this bit is set.
250                  */
251                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
252                         return;
253
254                 /*FALL THROUGH*/
255         default:
256                 /* TSC could halt in idle, so notify users */
257                 if (state > ACPI_STATE_C1)
258                         mark_tsc_unstable("TSC halts in idle");
259         }
260 }
261 #else
262 static void tsc_check_state(int state) { return; }
263 #endif
264
265 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
266 {
267
268         if (!pr)
269                 return -EINVAL;
270
271         if (!pr->pblk)
272                 return -ENODEV;
273
274         /* if info is obtained from pblk/fadt, type equals state */
275         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
276         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
277
278 #ifndef CONFIG_HOTPLUG_CPU
279         /*
280          * Check for P_LVL2_UP flag before entering C2 and above on
281          * an SMP system.
282          */
283         if ((num_online_cpus() > 1) &&
284             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
285                 return -ENODEV;
286 #endif
287
288         /* determine C2 and C3 address from pblk */
289         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
290         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
291
292         /* determine latencies from FADT */
293         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
294         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
295
296         /*
297          * FADT specified C2 latency must be less than or equal to
298          * 100 microseconds.
299          */
300         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
301                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
302                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
303                 /* invalidate C2 */
304                 pr->power.states[ACPI_STATE_C2].address = 0;
305         }
306
307         /*
308          * FADT supplied C3 latency must be less than or equal to
309          * 1000 microseconds.
310          */
311         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
312                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
313                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
314                 /* invalidate C3 */
315                 pr->power.states[ACPI_STATE_C3].address = 0;
316         }
317
318         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
319                           "lvl2[0x%08x] lvl3[0x%08x]\n",
320                           pr->power.states[ACPI_STATE_C2].address,
321                           pr->power.states[ACPI_STATE_C3].address));
322
323         return 0;
324 }
325
326 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
327 {
328         if (!pr->power.states[ACPI_STATE_C1].valid) {
329                 /* set the first C-State to C1 */
330                 /* all processors need to support C1 */
331                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
332                 pr->power.states[ACPI_STATE_C1].valid = 1;
333                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
334         }
335         /* the C0 state only exists as a filler in our array */
336         pr->power.states[ACPI_STATE_C0].valid = 1;
337         return 0;
338 }
339
340 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
341 {
342         acpi_status status = 0;
343         u64 count;
344         int current_count;
345         int i;
346         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
347         union acpi_object *cst;
348
349
350         if (nocst)
351                 return -ENODEV;
352
353         current_count = 0;
354
355         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
356         if (ACPI_FAILURE(status)) {
357                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
358                 return -ENODEV;
359         }
360
361         cst = buffer.pointer;
362
363         /* There must be at least 2 elements */
364         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
365                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
366                 status = -EFAULT;
367                 goto end;
368         }
369
370         count = cst->package.elements[0].integer.value;
371
372         /* Validate number of power states. */
373         if (count < 1 || count != cst->package.count - 1) {
374                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
375                 status = -EFAULT;
376                 goto end;
377         }
378
379         /* Tell driver that at least _CST is supported. */
380         pr->flags.has_cst = 1;
381
382         for (i = 1; i <= count; i++) {
383                 union acpi_object *element;
384                 union acpi_object *obj;
385                 struct acpi_power_register *reg;
386                 struct acpi_processor_cx cx;
387
388                 memset(&cx, 0, sizeof(cx));
389
390                 element = &(cst->package.elements[i]);
391                 if (element->type != ACPI_TYPE_PACKAGE)
392                         continue;
393
394                 if (element->package.count != 4)
395                         continue;
396
397                 obj = &(element->package.elements[0]);
398
399                 if (obj->type != ACPI_TYPE_BUFFER)
400                         continue;
401
402                 reg = (struct acpi_power_register *)obj->buffer.pointer;
403
404                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
405                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
406                         continue;
407
408                 /* There should be an easy way to extract an integer... */
409                 obj = &(element->package.elements[1]);
410                 if (obj->type != ACPI_TYPE_INTEGER)
411                         continue;
412
413                 cx.type = obj->integer.value;
414                 /*
415                  * Some buggy BIOSes won't list C1 in _CST -
416                  * Let acpi_processor_get_power_info_default() handle them later
417                  */
418                 if (i == 1 && cx.type != ACPI_STATE_C1)
419                         current_count++;
420
421                 cx.address = reg->address;
422                 cx.index = current_count + 1;
423
424                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
425                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
426                         if (acpi_processor_ffh_cstate_probe
427                                         (pr->id, &cx, reg) == 0) {
428                                 cx.entry_method = ACPI_CSTATE_FFH;
429                         } else if (cx.type == ACPI_STATE_C1) {
430                                 /*
431                                  * C1 is a special case where FIXED_HARDWARE
432                                  * can be handled in non-MWAIT way as well.
433                                  * In that case, save this _CST entry info.
434                                  * Otherwise, ignore this info and continue.
435                                  */
436                                 cx.entry_method = ACPI_CSTATE_HALT;
437                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
438                         } else {
439                                 continue;
440                         }
441                         if (cx.type == ACPI_STATE_C1 &&
442                             (boot_option_idle_override == IDLE_NOMWAIT)) {
443                                 /*
444                                  * In most cases the C1 space_id obtained from
445                                  * _CST object is FIXED_HARDWARE access mode.
446                                  * But when the option of idle=halt is added,
447                                  * the entry_method type should be changed from
448                                  * CSTATE_FFH to CSTATE_HALT.
449                                  * When the option of idle=nomwait is added,
450                                  * the C1 entry_method type should be
451                                  * CSTATE_HALT.
452                                  */
453                                 cx.entry_method = ACPI_CSTATE_HALT;
454                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
455                         }
456                 } else {
457                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
458                                  cx.address);
459                 }
460
461                 if (cx.type == ACPI_STATE_C1) {
462                         cx.valid = 1;
463                 }
464
465                 obj = &(element->package.elements[2]);
466                 if (obj->type != ACPI_TYPE_INTEGER)
467                         continue;
468
469                 cx.latency = obj->integer.value;
470
471                 obj = &(element->package.elements[3]);
472                 if (obj->type != ACPI_TYPE_INTEGER)
473                         continue;
474
475                 current_count++;
476                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
477
478                 /*
479                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
480                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
481                  */
482                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
483                         printk(KERN_WARNING
484                                "Limiting number of power states to max (%d)\n",
485                                ACPI_PROCESSOR_MAX_POWER);
486                         printk(KERN_WARNING
487                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
488                         break;
489                 }
490         }
491
492         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
493                           current_count));
494
495         /* Validate number of power states discovered */
496         if (current_count < 2)
497                 status = -EFAULT;
498
499       end:
500         kfree(buffer.pointer);
501
502         return status;
503 }
504
505 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
506                                            struct acpi_processor_cx *cx)
507 {
508         static int bm_check_flag = -1;
509         static int bm_control_flag = -1;
510
511
512         if (!cx->address)
513                 return;
514
515         /*
516          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
517          * DMA transfers are used by any ISA device to avoid livelock.
518          * Note that we could disable Type-F DMA (as recommended by
519          * the erratum), but this is known to disrupt certain ISA
520          * devices thus we take the conservative approach.
521          */
522         else if (errata.piix4.fdma) {
523                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
524                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
525                 return;
526         }
527
528         /* All the logic here assumes flags.bm_check is same across all CPUs */
529         if (bm_check_flag == -1) {
530                 /* Determine whether bm_check is needed based on CPU  */
531                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
532                 bm_check_flag = pr->flags.bm_check;
533                 bm_control_flag = pr->flags.bm_control;
534         } else {
535                 pr->flags.bm_check = bm_check_flag;
536                 pr->flags.bm_control = bm_control_flag;
537         }
538
539         if (pr->flags.bm_check) {
540                 if (!pr->flags.bm_control) {
541                         if (pr->flags.has_cst != 1) {
542                                 /* bus mastering control is necessary */
543                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
544                                         "C3 support requires BM control\n"));
545                                 return;
546                         } else {
547                                 /* Here we enter C3 without bus mastering */
548                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
549                                         "C3 support without BM control\n"));
550                         }
551                 }
552         } else {
553                 /*
554                  * WBINVD should be set in fadt, for C3 state to be
555                  * supported on when bm_check is not required.
556                  */
557                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
558                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
559                                           "Cache invalidation should work properly"
560                                           " for C3 to be enabled on SMP systems\n"));
561                         return;
562                 }
563         }
564
565         /*
566          * Otherwise we've met all of our C3 requirements.
567          * Normalize the C3 latency to expidite policy.  Enable
568          * checking of bus mastering status (bm_check) so we can
569          * use this in our C3 policy
570          */
571         cx->valid = 1;
572
573         /*
574          * On older chipsets, BM_RLD needs to be set
575          * in order for Bus Master activity to wake the
576          * system from C3.  Newer chipsets handle DMA
577          * during C3 automatically and BM_RLD is a NOP.
578          * In either case, the proper way to
579          * handle BM_RLD is to set it and leave it set.
580          */
581         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
582
583         return;
584 }
585
586 static int acpi_processor_power_verify(struct acpi_processor *pr)
587 {
588         unsigned int i;
589         unsigned int working = 0;
590
591         pr->power.timer_broadcast_on_state = INT_MAX;
592
593         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
594                 struct acpi_processor_cx *cx = &pr->power.states[i];
595
596                 switch (cx->type) {
597                 case ACPI_STATE_C1:
598                         cx->valid = 1;
599                         break;
600
601                 case ACPI_STATE_C2:
602                         if (!cx->address)
603                                 break;
604                         cx->valid = 1; 
605                         break;
606
607                 case ACPI_STATE_C3:
608                         acpi_processor_power_verify_c3(pr, cx);
609                         break;
610                 }
611                 if (!cx->valid)
612                         continue;
613
614                 lapic_timer_check_state(i, pr, cx);
615                 tsc_check_state(cx->type);
616                 working++;
617         }
618
619         lapic_timer_propagate_broadcast(pr);
620
621         return (working);
622 }
623
624 static int acpi_processor_get_power_info(struct acpi_processor *pr)
625 {
626         unsigned int i;
627         int result;
628
629
630         /* NOTE: the idle thread may not be running while calling
631          * this function */
632
633         /* Zero initialize all the C-states info. */
634         memset(pr->power.states, 0, sizeof(pr->power.states));
635
636         result = acpi_processor_get_power_info_cst(pr);
637         if (result == -ENODEV)
638                 result = acpi_processor_get_power_info_fadt(pr);
639
640         if (result)
641                 return result;
642
643         acpi_processor_get_power_info_default(pr);
644
645         pr->power.count = acpi_processor_power_verify(pr);
646
647         /*
648          * if one state of type C2 or C3 is available, mark this
649          * CPU as being "idle manageable"
650          */
651         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
652                 if (pr->power.states[i].valid) {
653                         pr->power.count = i;
654                         if (pr->power.states[i].type >= ACPI_STATE_C2)
655                                 pr->flags.power = 1;
656                 }
657         }
658
659         return 0;
660 }
661
662 /**
663  * acpi_idle_bm_check - checks if bus master activity was detected
664  */
665 static int acpi_idle_bm_check(void)
666 {
667         u32 bm_status = 0;
668
669         if (bm_check_disable)
670                 return 0;
671
672         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
673         if (bm_status)
674                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
675         /*
676          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
677          * the true state of bus mastering activity; forcing us to
678          * manually check the BMIDEA bit of each IDE channel.
679          */
680         else if (errata.piix4.bmisx) {
681                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
682                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
683                         bm_status = 1;
684         }
685         return bm_status;
686 }
687
688 /**
689  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
690  * @cx: cstate data
691  *
692  * Caller disables interrupt before call and enables interrupt after return.
693  */
694 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
695 {
696         /* Don't trace irqs off for idle */
697         stop_critical_timings();
698         if (cx->entry_method == ACPI_CSTATE_FFH) {
699                 /* Call into architectural FFH based C-state */
700                 acpi_processor_ffh_cstate_enter(cx);
701         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
702                 acpi_safe_halt();
703         } else {
704                 /* IO port based C-state */
705                 inb(cx->address);
706                 /* Dummy wait op - must do something useless after P_LVL2 read
707                    because chipsets cannot guarantee that STPCLK# signal
708                    gets asserted in time to freeze execution properly. */
709                 inl(acpi_gbl_FADT.xpm_timer_block.address);
710         }
711         start_critical_timings();
712 }
713
714 /**
715  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
716  * @dev: the target CPU
717  * @drv: cpuidle driver containing cpuidle state info
718  * @index: index of target state
719  *
720  * This is equivalent to the HALT instruction.
721  */
722 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
723                 struct cpuidle_driver *drv, int index)
724 {
725         struct acpi_processor *pr;
726         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
727
728         pr = __this_cpu_read(processors);
729
730         if (unlikely(!pr))
731                 return -EINVAL;
732
733         if (cx->entry_method == ACPI_CSTATE_FFH) {
734                 if (current_set_polling_and_test())
735                         return -EINVAL;
736         }
737
738         lapic_timer_state_broadcast(pr, cx, 1);
739         acpi_idle_do_entry(cx);
740
741         lapic_timer_state_broadcast(pr, cx, 0);
742
743         return index;
744 }
745
746
747 /**
748  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
749  * @dev: the target CPU
750  * @index: the index of suggested state
751  */
752 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
753 {
754         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
755
756         ACPI_FLUSH_CPU_CACHE();
757
758         while (1) {
759
760                 if (cx->entry_method == ACPI_CSTATE_HALT)
761                         safe_halt();
762                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
763                         inb(cx->address);
764                         /* See comment in acpi_idle_do_entry() */
765                         inl(acpi_gbl_FADT.xpm_timer_block.address);
766                 } else
767                         return -ENODEV;
768         }
769
770         /* Never reached */
771         return 0;
772 }
773
774 /**
775  * acpi_idle_enter_simple - enters an ACPI state without BM handling
776  * @dev: the target CPU
777  * @drv: cpuidle driver with cpuidle state information
778  * @index: the index of suggested state
779  */
780 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
781                 struct cpuidle_driver *drv, int index)
782 {
783         struct acpi_processor *pr;
784         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
785
786         pr = __this_cpu_read(processors);
787
788         if (unlikely(!pr))
789                 return -EINVAL;
790
791         if (cx->entry_method == ACPI_CSTATE_FFH) {
792                 if (current_set_polling_and_test())
793                         return -EINVAL;
794         }
795
796         /*
797          * Must be done before busmaster disable as we might need to
798          * access HPET !
799          */
800         lapic_timer_state_broadcast(pr, cx, 1);
801
802         if (cx->type == ACPI_STATE_C3)
803                 ACPI_FLUSH_CPU_CACHE();
804
805         /* Tell the scheduler that we are going deep-idle: */
806         sched_clock_idle_sleep_event();
807         acpi_idle_do_entry(cx);
808
809         sched_clock_idle_wakeup_event(0);
810
811         lapic_timer_state_broadcast(pr, cx, 0);
812         return index;
813 }
814
815 static int c3_cpu_count;
816 static DEFINE_RAW_SPINLOCK(c3_lock);
817
818 /**
819  * acpi_idle_enter_bm - enters C3 with proper BM handling
820  * @dev: the target CPU
821  * @drv: cpuidle driver containing state data
822  * @index: the index of suggested state
823  *
824  * If BM is detected, the deepest non-C3 idle state is entered instead.
825  */
826 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
827                 struct cpuidle_driver *drv, int index)
828 {
829         struct acpi_processor *pr;
830         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
831
832         pr = __this_cpu_read(processors);
833
834         if (unlikely(!pr))
835                 return -EINVAL;
836
837         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
838                 if (drv->safe_state_index >= 0) {
839                         return drv->states[drv->safe_state_index].enter(dev,
840                                                 drv, drv->safe_state_index);
841                 } else {
842                         acpi_safe_halt();
843                         return -EBUSY;
844                 }
845         }
846
847         if (cx->entry_method == ACPI_CSTATE_FFH) {
848                 if (current_set_polling_and_test())
849                         return -EINVAL;
850         }
851
852         acpi_unlazy_tlb(smp_processor_id());
853
854         /* Tell the scheduler that we are going deep-idle: */
855         sched_clock_idle_sleep_event();
856         /*
857          * Must be done before busmaster disable as we might need to
858          * access HPET !
859          */
860         lapic_timer_state_broadcast(pr, cx, 1);
861
862         /*
863          * disable bus master
864          * bm_check implies we need ARB_DIS
865          * !bm_check implies we need cache flush
866          * bm_control implies whether we can do ARB_DIS
867          *
868          * That leaves a case where bm_check is set and bm_control is
869          * not set. In that case we cannot do much, we enter C3
870          * without doing anything.
871          */
872         if (pr->flags.bm_check && pr->flags.bm_control) {
873                 raw_spin_lock(&c3_lock);
874                 c3_cpu_count++;
875                 /* Disable bus master arbitration when all CPUs are in C3 */
876                 if (c3_cpu_count == num_online_cpus())
877                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
878                 raw_spin_unlock(&c3_lock);
879         } else if (!pr->flags.bm_check) {
880                 ACPI_FLUSH_CPU_CACHE();
881         }
882
883         acpi_idle_do_entry(cx);
884
885         /* Re-enable bus master arbitration */
886         if (pr->flags.bm_check && pr->flags.bm_control) {
887                 raw_spin_lock(&c3_lock);
888                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
889                 c3_cpu_count--;
890                 raw_spin_unlock(&c3_lock);
891         }
892
893         sched_clock_idle_wakeup_event(0);
894
895         lapic_timer_state_broadcast(pr, cx, 0);
896         return index;
897 }
898
899 struct cpuidle_driver acpi_idle_driver = {
900         .name =         "acpi_idle",
901         .owner =        THIS_MODULE,
902 };
903
904 /**
905  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
906  * device i.e. per-cpu data
907  *
908  * @pr: the ACPI processor
909  * @dev : the cpuidle device
910  */
911 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
912                                            struct cpuidle_device *dev)
913 {
914         int i, count = CPUIDLE_DRIVER_STATE_START;
915         struct acpi_processor_cx *cx;
916
917         if (!pr->flags.power_setup_done)
918                 return -EINVAL;
919
920         if (pr->flags.power == 0) {
921                 return -EINVAL;
922         }
923
924         if (!dev)
925                 return -EINVAL;
926
927         dev->cpu = pr->id;
928
929         if (max_cstate == 0)
930                 max_cstate = 1;
931
932         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
933                 cx = &pr->power.states[i];
934
935                 if (!cx->valid)
936                         continue;
937
938 #ifdef CONFIG_HOTPLUG_CPU
939                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
940                     !pr->flags.has_cst &&
941                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
942                         continue;
943 #endif
944                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
945
946                 count++;
947                 if (count == CPUIDLE_STATE_MAX)
948                         break;
949         }
950
951         dev->state_count = count;
952
953         if (!count)
954                 return -EINVAL;
955
956         return 0;
957 }
958
959 /**
960  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
961  * global state data i.e. idle routines
962  *
963  * @pr: the ACPI processor
964  */
965 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
966 {
967         int i, count = CPUIDLE_DRIVER_STATE_START;
968         struct acpi_processor_cx *cx;
969         struct cpuidle_state *state;
970         struct cpuidle_driver *drv = &acpi_idle_driver;
971
972         if (!pr->flags.power_setup_done)
973                 return -EINVAL;
974
975         if (pr->flags.power == 0)
976                 return -EINVAL;
977
978         drv->safe_state_index = -1;
979         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
980                 drv->states[i].name[0] = '\0';
981                 drv->states[i].desc[0] = '\0';
982         }
983
984         if (max_cstate == 0)
985                 max_cstate = 1;
986
987         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
988                 cx = &pr->power.states[i];
989
990                 if (!cx->valid)
991                         continue;
992
993 #ifdef CONFIG_HOTPLUG_CPU
994                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
995                     !pr->flags.has_cst &&
996                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
997                         continue;
998 #endif
999
1000                 state = &drv->states[count];
1001                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1002                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1003                 state->exit_latency = cx->latency;
1004                 state->target_residency = cx->latency * latency_factor;
1005
1006                 state->flags = 0;
1007                 switch (cx->type) {
1008                         case ACPI_STATE_C1:
1009                         if (cx->entry_method == ACPI_CSTATE_FFH)
1010                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1011
1012                         state->enter = acpi_idle_enter_c1;
1013                         state->enter_dead = acpi_idle_play_dead;
1014                         drv->safe_state_index = count;
1015                         break;
1016
1017                         case ACPI_STATE_C2:
1018                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1019                         state->enter = acpi_idle_enter_simple;
1020                         state->enter_dead = acpi_idle_play_dead;
1021                         drv->safe_state_index = count;
1022                         break;
1023
1024                         case ACPI_STATE_C3:
1025                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1026                         state->enter = pr->flags.bm_check ?
1027                                         acpi_idle_enter_bm :
1028                                         acpi_idle_enter_simple;
1029                         break;
1030                 }
1031
1032                 count++;
1033                 if (count == CPUIDLE_STATE_MAX)
1034                         break;
1035         }
1036
1037         drv->state_count = count;
1038
1039         if (!count)
1040                 return -EINVAL;
1041
1042         return 0;
1043 }
1044
1045 int acpi_processor_hotplug(struct acpi_processor *pr)
1046 {
1047         int ret = 0;
1048         struct cpuidle_device *dev;
1049
1050         if (disabled_by_idle_boot_param())
1051                 return 0;
1052
1053         if (!pr)
1054                 return -EINVAL;
1055
1056         if (nocst) {
1057                 return -ENODEV;
1058         }
1059
1060         if (!pr->flags.power_setup_done)
1061                 return -ENODEV;
1062
1063         dev = per_cpu(acpi_cpuidle_device, pr->id);
1064         cpuidle_pause_and_lock();
1065         cpuidle_disable_device(dev);
1066         acpi_processor_get_power_info(pr);
1067         if (pr->flags.power) {
1068                 acpi_processor_setup_cpuidle_cx(pr, dev);
1069                 ret = cpuidle_enable_device(dev);
1070         }
1071         cpuidle_resume_and_unlock();
1072
1073         return ret;
1074 }
1075
1076 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1077 {
1078         int cpu;
1079         struct acpi_processor *_pr;
1080         struct cpuidle_device *dev;
1081
1082         if (disabled_by_idle_boot_param())
1083                 return 0;
1084
1085         if (!pr)
1086                 return -EINVAL;
1087
1088         if (nocst)
1089                 return -ENODEV;
1090
1091         if (!pr->flags.power_setup_done)
1092                 return -ENODEV;
1093
1094         /*
1095          * FIXME:  Design the ACPI notification to make it once per
1096          * system instead of once per-cpu.  This condition is a hack
1097          * to make the code that updates C-States be called once.
1098          */
1099
1100         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1101
1102                 cpuidle_pause_and_lock();
1103                 /* Protect against cpu-hotplug */
1104                 get_online_cpus();
1105
1106                 /* Disable all cpuidle devices */
1107                 for_each_online_cpu(cpu) {
1108                         _pr = per_cpu(processors, cpu);
1109                         if (!_pr || !_pr->flags.power_setup_done)
1110                                 continue;
1111                         dev = per_cpu(acpi_cpuidle_device, cpu);
1112                         cpuidle_disable_device(dev);
1113                 }
1114
1115                 /* Populate Updated C-state information */
1116                 acpi_processor_get_power_info(pr);
1117                 acpi_processor_setup_cpuidle_states(pr);
1118
1119                 /* Enable all cpuidle devices */
1120                 for_each_online_cpu(cpu) {
1121                         _pr = per_cpu(processors, cpu);
1122                         if (!_pr || !_pr->flags.power_setup_done)
1123                                 continue;
1124                         acpi_processor_get_power_info(_pr);
1125                         if (_pr->flags.power) {
1126                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1127                                 acpi_processor_setup_cpuidle_cx(_pr, dev);
1128                                 cpuidle_enable_device(dev);
1129                         }
1130                 }
1131                 put_online_cpus();
1132                 cpuidle_resume_and_unlock();
1133         }
1134
1135         return 0;
1136 }
1137
1138 static int acpi_processor_registered;
1139
1140 int acpi_processor_power_init(struct acpi_processor *pr)
1141 {
1142         acpi_status status = 0;
1143         int retval;
1144         struct cpuidle_device *dev;
1145         static int first_run;
1146
1147         if (disabled_by_idle_boot_param())
1148                 return 0;
1149
1150         if (!first_run) {
1151                 dmi_check_system(processor_power_dmi_table);
1152                 max_cstate = acpi_processor_cstate_check(max_cstate);
1153                 if (max_cstate < ACPI_C_STATES_MAX)
1154                         printk(KERN_NOTICE
1155                                "ACPI: processor limited to max C-state %d\n",
1156                                max_cstate);
1157                 first_run++;
1158         }
1159
1160         if (!pr)
1161                 return -EINVAL;
1162
1163         if (acpi_gbl_FADT.cst_control && !nocst) {
1164                 status =
1165                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1166                 if (ACPI_FAILURE(status)) {
1167                         ACPI_EXCEPTION((AE_INFO, status,
1168                                         "Notifying BIOS of _CST ability failed"));
1169                 }
1170         }
1171
1172         acpi_processor_get_power_info(pr);
1173         pr->flags.power_setup_done = 1;
1174
1175         /*
1176          * Install the idle handler if processor power management is supported.
1177          * Note that we use previously set idle handler will be used on
1178          * platforms that only support C1.
1179          */
1180         if (pr->flags.power) {
1181                 /* Register acpi_idle_driver if not already registered */
1182                 if (!acpi_processor_registered) {
1183                         acpi_processor_setup_cpuidle_states(pr);
1184                         retval = cpuidle_register_driver(&acpi_idle_driver);
1185                         if (retval)
1186                                 return retval;
1187                         printk(KERN_DEBUG "ACPI: %s registered with cpuidle\n",
1188                                         acpi_idle_driver.name);
1189                 }
1190
1191                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1192                 if (!dev)
1193                         return -ENOMEM;
1194                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1195
1196                 acpi_processor_setup_cpuidle_cx(pr, dev);
1197
1198                 /* Register per-cpu cpuidle_device. Cpuidle driver
1199                  * must already be registered before registering device
1200                  */
1201                 retval = cpuidle_register_device(dev);
1202                 if (retval) {
1203                         if (acpi_processor_registered == 0)
1204                                 cpuidle_unregister_driver(&acpi_idle_driver);
1205                         return retval;
1206                 }
1207                 acpi_processor_registered++;
1208         }
1209         return 0;
1210 }
1211
1212 int acpi_processor_power_exit(struct acpi_processor *pr)
1213 {
1214         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1215
1216         if (disabled_by_idle_boot_param())
1217                 return 0;
1218
1219         if (pr->flags.power) {
1220                 cpuidle_unregister_device(dev);
1221                 acpi_processor_registered--;
1222                 if (acpi_processor_registered == 0)
1223                         cpuidle_unregister_driver(&acpi_idle_driver);
1224         }
1225
1226         pr->flags.power_setup_done = 0;
1227         return 0;
1228 }