]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
75a914914c412c3d828df3ecb7cb0d690481a042
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static DEFINE_SPINLOCK(dev_list_lock);
76 static LIST_HEAD(dev_list);
77 static struct task_struct *nvme_thread;
78 static struct workqueue_struct *nvme_workq;
79 static wait_queue_head_t nvme_kthread_wait;
80
81 static struct class *nvme_class;
82
83 static void nvme_reset_failed_dev(struct work_struct *ws);
84 static int nvme_reset(struct nvme_dev *dev);
85 static int nvme_process_cq(struct nvme_queue *nvmeq);
86
87 struct async_cmd_info {
88         struct kthread_work work;
89         struct kthread_worker *worker;
90         struct request *req;
91         u32 result;
92         int status;
93         void *ctx;
94 };
95
96 /*
97  * An NVM Express queue.  Each device has at least two (one for admin
98  * commands and one for I/O commands).
99  */
100 struct nvme_queue {
101         struct device *q_dmadev;
102         struct nvme_dev *dev;
103         char irqname[24];       /* nvme4294967295-65535\0 */
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         struct blk_mq_tags **tags;
108         dma_addr_t sq_dma_addr;
109         dma_addr_t cq_dma_addr;
110         u32 __iomem *q_db;
111         u16 q_depth;
112         s16 cq_vector;
113         u16 sq_head;
114         u16 sq_tail;
115         u16 cq_head;
116         u16 qid;
117         u8 cq_phase;
118         u8 cqe_seen;
119         struct async_cmd_info cmdinfo;
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
139 }
140
141 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
142                                                 struct nvme_completion *);
143
144 struct nvme_cmd_info {
145         nvme_completion_fn fn;
146         void *ctx;
147         int aborted;
148         struct nvme_queue *nvmeq;
149         struct nvme_iod iod[0];
150 };
151
152 /*
153  * Max size of iod being embedded in the request payload
154  */
155 #define NVME_INT_PAGES          2
156 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
157 #define NVME_INT_MASK           0x01
158
159 /*
160  * Will slightly overestimate the number of pages needed.  This is OK
161  * as it only leads to a small amount of wasted memory for the lifetime of
162  * the I/O.
163  */
164 static int nvme_npages(unsigned size, struct nvme_dev *dev)
165 {
166         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
167         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
168 }
169
170 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
171 {
172         unsigned int ret = sizeof(struct nvme_cmd_info);
173
174         ret += sizeof(struct nvme_iod);
175         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
176         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
177
178         return ret;
179 }
180
181 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
182                                 unsigned int hctx_idx)
183 {
184         struct nvme_dev *dev = data;
185         struct nvme_queue *nvmeq = dev->queues[0];
186
187         WARN_ON(hctx_idx != 0);
188         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
189         WARN_ON(nvmeq->tags);
190
191         hctx->driver_data = nvmeq;
192         nvmeq->tags = &dev->admin_tagset.tags[0];
193         return 0;
194 }
195
196 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
197 {
198         struct nvme_queue *nvmeq = hctx->driver_data;
199
200         nvmeq->tags = NULL;
201 }
202
203 static int nvme_admin_init_request(void *data, struct request *req,
204                                 unsigned int hctx_idx, unsigned int rq_idx,
205                                 unsigned int numa_node)
206 {
207         struct nvme_dev *dev = data;
208         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
209         struct nvme_queue *nvmeq = dev->queues[0];
210
211         BUG_ON(!nvmeq);
212         cmd->nvmeq = nvmeq;
213         return 0;
214 }
215
216 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
217                           unsigned int hctx_idx)
218 {
219         struct nvme_dev *dev = data;
220         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
221
222         if (!nvmeq->tags)
223                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
224
225         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
226         hctx->driver_data = nvmeq;
227         return 0;
228 }
229
230 static int nvme_init_request(void *data, struct request *req,
231                                 unsigned int hctx_idx, unsigned int rq_idx,
232                                 unsigned int numa_node)
233 {
234         struct nvme_dev *dev = data;
235         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
236         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
237
238         BUG_ON(!nvmeq);
239         cmd->nvmeq = nvmeq;
240         return 0;
241 }
242
243 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
244                                 nvme_completion_fn handler)
245 {
246         cmd->fn = handler;
247         cmd->ctx = ctx;
248         cmd->aborted = 0;
249         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
250 }
251
252 static void *iod_get_private(struct nvme_iod *iod)
253 {
254         return (void *) (iod->private & ~0x1UL);
255 }
256
257 /*
258  * If bit 0 is set, the iod is embedded in the request payload.
259  */
260 static bool iod_should_kfree(struct nvme_iod *iod)
261 {
262         return (iod->private & NVME_INT_MASK) == 0;
263 }
264
265 /* Special values must be less than 0x1000 */
266 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
267 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
268 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
269 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
270
271 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
272                                                 struct nvme_completion *cqe)
273 {
274         if (ctx == CMD_CTX_CANCELLED)
275                 return;
276         if (ctx == CMD_CTX_COMPLETED) {
277                 dev_warn(nvmeq->q_dmadev,
278                                 "completed id %d twice on queue %d\n",
279                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
280                 return;
281         }
282         if (ctx == CMD_CTX_INVALID) {
283                 dev_warn(nvmeq->q_dmadev,
284                                 "invalid id %d completed on queue %d\n",
285                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
286                 return;
287         }
288         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
289 }
290
291 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
292 {
293         void *ctx;
294
295         if (fn)
296                 *fn = cmd->fn;
297         ctx = cmd->ctx;
298         cmd->fn = special_completion;
299         cmd->ctx = CMD_CTX_CANCELLED;
300         return ctx;
301 }
302
303 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
304                                                 struct nvme_completion *cqe)
305 {
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status != NVME_SC_SUCCESS)
312                 return;
313
314         switch (result & 0xff07) {
315         case NVME_AER_NOTICE_NS_CHANGED:
316                 dev_info(nvmeq->q_dmadev, "rescanning\n");
317                 schedule_work(&nvmeq->dev->scan_work);
318         default:
319                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
320         }
321 }
322
323 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
324                                                 struct nvme_completion *cqe)
325 {
326         struct request *req = ctx;
327
328         u16 status = le16_to_cpup(&cqe->status) >> 1;
329         u32 result = le32_to_cpup(&cqe->result);
330
331         blk_mq_free_request(req);
332
333         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
334         ++nvmeq->dev->abort_limit;
335 }
336
337 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
338                                                 struct nvme_completion *cqe)
339 {
340         struct async_cmd_info *cmdinfo = ctx;
341         cmdinfo->result = le32_to_cpup(&cqe->result);
342         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
343         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
344         blk_mq_free_request(cmdinfo->req);
345 }
346
347 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
348                                   unsigned int tag)
349 {
350         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
351
352         return blk_mq_rq_to_pdu(req);
353 }
354
355 /*
356  * Called with local interrupts disabled and the q_lock held.  May not sleep.
357  */
358 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
359                                                 nvme_completion_fn *fn)
360 {
361         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
362         void *ctx;
363         if (tag >= nvmeq->q_depth) {
364                 *fn = special_completion;
365                 return CMD_CTX_INVALID;
366         }
367         if (fn)
368                 *fn = cmd->fn;
369         ctx = cmd->ctx;
370         cmd->fn = special_completion;
371         cmd->ctx = CMD_CTX_COMPLETED;
372         return ctx;
373 }
374
375 /**
376  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
377  * @nvmeq: The queue to use
378  * @cmd: The command to send
379  *
380  * Safe to use from interrupt context
381  */
382 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
383 {
384         u16 tail = nvmeq->sq_tail;
385
386         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
387         if (++tail == nvmeq->q_depth)
388                 tail = 0;
389         writel(tail, nvmeq->q_db);
390         nvmeq->sq_tail = tail;
391
392         return 0;
393 }
394
395 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
396 {
397         unsigned long flags;
398         int ret;
399         spin_lock_irqsave(&nvmeq->q_lock, flags);
400         ret = __nvme_submit_cmd(nvmeq, cmd);
401         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
402         return ret;
403 }
404
405 static __le64 **iod_list(struct nvme_iod *iod)
406 {
407         return ((void *)iod) + iod->offset;
408 }
409
410 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
411                             unsigned nseg, unsigned long private)
412 {
413         iod->private = private;
414         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
415         iod->npages = -1;
416         iod->length = nbytes;
417         iod->nents = 0;
418 }
419
420 static struct nvme_iod *
421 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
422                  unsigned long priv, gfp_t gfp)
423 {
424         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
425                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
426                                 sizeof(struct scatterlist) * nseg, gfp);
427
428         if (iod)
429                 iod_init(iod, bytes, nseg, priv);
430
431         return iod;
432 }
433
434 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
435                                        gfp_t gfp)
436 {
437         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
438                                                 sizeof(struct nvme_dsm_range);
439         struct nvme_iod *iod;
440
441         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
442             size <= NVME_INT_BYTES(dev)) {
443                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
444
445                 iod = cmd->iod;
446                 iod_init(iod, size, rq->nr_phys_segments,
447                                 (unsigned long) rq | NVME_INT_MASK);
448                 return iod;
449         }
450
451         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
452                                 (unsigned long) rq, gfp);
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
456 {
457         const int last_prp = dev->page_size / 8 - 1;
458         int i;
459         __le64 **list = iod_list(iod);
460         dma_addr_t prp_dma = iod->first_dma;
461
462         if (iod->npages == 0)
463                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464         for (i = 0; i < iod->npages; i++) {
465                 __le64 *prp_list = list[i];
466                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468                 prp_dma = next_prp_dma;
469         }
470
471         if (iod_should_kfree(iod))
472                 kfree(iod);
473 }
474
475 static int nvme_error_status(u16 status)
476 {
477         switch (status & 0x7ff) {
478         case NVME_SC_SUCCESS:
479                 return 0;
480         case NVME_SC_CAP_EXCEEDED:
481                 return -ENOSPC;
482         default:
483                 return -EIO;
484         }
485 }
486
487 #ifdef CONFIG_BLK_DEV_INTEGRITY
488 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
489 {
490         if (be32_to_cpu(pi->ref_tag) == v)
491                 pi->ref_tag = cpu_to_be32(p);
492 }
493
494 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496         if (be32_to_cpu(pi->ref_tag) == p)
497                 pi->ref_tag = cpu_to_be32(v);
498 }
499
500 /**
501  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
502  *
503  * The virtual start sector is the one that was originally submitted by the
504  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
505  * start sector may be different. Remap protection information to match the
506  * physical LBA on writes, and back to the original seed on reads.
507  *
508  * Type 0 and 3 do not have a ref tag, so no remapping required.
509  */
510 static void nvme_dif_remap(struct request *req,
511                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512 {
513         struct nvme_ns *ns = req->rq_disk->private_data;
514         struct bio_integrity_payload *bip;
515         struct t10_pi_tuple *pi;
516         void *p, *pmap;
517         u32 i, nlb, ts, phys, virt;
518
519         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
520                 return;
521
522         bip = bio_integrity(req->bio);
523         if (!bip)
524                 return;
525
526         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
527
528         p = pmap;
529         virt = bip_get_seed(bip);
530         phys = nvme_block_nr(ns, blk_rq_pos(req));
531         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532         ts = ns->disk->integrity->tuple_size;
533
534         for (i = 0; i < nlb; i++, virt++, phys++) {
535                 pi = (struct t10_pi_tuple *)p;
536                 dif_swap(phys, virt, pi);
537                 p += ts;
538         }
539         kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544         return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549         return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553         .name                   = "NVME_META_NOOP",
554         .generate_fn            = nvme_noop_generate,
555         .verify_fn              = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560         struct blk_integrity integrity;
561
562         switch (ns->pi_type) {
563         case NVME_NS_DPS_PI_TYPE3:
564                 integrity = t10_pi_type3_crc;
565                 break;
566         case NVME_NS_DPS_PI_TYPE1:
567         case NVME_NS_DPS_PI_TYPE2:
568                 integrity = t10_pi_type1_crc;
569                 break;
570         default:
571                 integrity = nvme_meta_noop;
572                 break;
573         }
574         integrity.tuple_size = ns->ms;
575         blk_integrity_register(ns->disk, &integrity);
576         blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595                                                 struct nvme_completion *cqe)
596 {
597         struct nvme_iod *iod = ctx;
598         struct request *req = iod_get_private(iod);
599         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601         u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603         if (unlikely(status)) {
604                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605                     && (jiffies - req->start_time) < req->timeout) {
606                         unsigned long flags;
607
608                         blk_mq_requeue_request(req);
609                         spin_lock_irqsave(req->q->queue_lock, flags);
610                         if (!blk_queue_stopped(req->q))
611                                 blk_mq_kick_requeue_list(req->q);
612                         spin_unlock_irqrestore(req->q->queue_lock, flags);
613                         return;
614                 }
615                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
617                                 req->errors = -EINTR;
618                         else
619                                 req->errors = status;
620                 } else {
621                         req->errors = nvme_error_status(status);
622                 }
623         } else
624                 req->errors = 0;
625         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626                 u32 result = le32_to_cpup(&cqe->result);
627                 req->special = (void *)(uintptr_t)result;
628         }
629
630         if (cmd_rq->aborted)
631                 dev_warn(nvmeq->dev->dev,
632                         "completing aborted command with status:%04x\n",
633                         status);
634
635         if (iod->nents) {
636                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
637                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
638                 if (blk_integrity_rq(req)) {
639                         if (!rq_data_dir(req))
640                                 nvme_dif_remap(req, nvme_dif_complete);
641                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
642                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
643                 }
644         }
645         nvme_free_iod(nvmeq->dev, iod);
646
647         blk_mq_complete_request(req);
648 }
649
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652                 int total_len, gfp_t gfp)
653 {
654         struct dma_pool *pool;
655         int length = total_len;
656         struct scatterlist *sg = iod->sg;
657         int dma_len = sg_dma_len(sg);
658         u64 dma_addr = sg_dma_address(sg);
659         u32 page_size = dev->page_size;
660         int offset = dma_addr & (page_size - 1);
661         __le64 *prp_list;
662         __le64 **list = iod_list(iod);
663         dma_addr_t prp_dma;
664         int nprps, i;
665
666         length -= (page_size - offset);
667         if (length <= 0)
668                 return total_len;
669
670         dma_len -= (page_size - offset);
671         if (dma_len) {
672                 dma_addr += (page_size - offset);
673         } else {
674                 sg = sg_next(sg);
675                 dma_addr = sg_dma_address(sg);
676                 dma_len = sg_dma_len(sg);
677         }
678
679         if (length <= page_size) {
680                 iod->first_dma = dma_addr;
681                 return total_len;
682         }
683
684         nprps = DIV_ROUND_UP(length, page_size);
685         if (nprps <= (256 / 8)) {
686                 pool = dev->prp_small_pool;
687                 iod->npages = 0;
688         } else {
689                 pool = dev->prp_page_pool;
690                 iod->npages = 1;
691         }
692
693         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694         if (!prp_list) {
695                 iod->first_dma = dma_addr;
696                 iod->npages = -1;
697                 return (total_len - length) + page_size;
698         }
699         list[0] = prp_list;
700         iod->first_dma = prp_dma;
701         i = 0;
702         for (;;) {
703                 if (i == page_size >> 3) {
704                         __le64 *old_prp_list = prp_list;
705                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706                         if (!prp_list)
707                                 return total_len - length;
708                         list[iod->npages++] = prp_list;
709                         prp_list[0] = old_prp_list[i - 1];
710                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711                         i = 1;
712                 }
713                 prp_list[i++] = cpu_to_le64(dma_addr);
714                 dma_len -= page_size;
715                 dma_addr += page_size;
716                 length -= page_size;
717                 if (length <= 0)
718                         break;
719                 if (dma_len > 0)
720                         continue;
721                 BUG_ON(dma_len < 0);
722                 sg = sg_next(sg);
723                 dma_addr = sg_dma_address(sg);
724                 dma_len = sg_dma_len(sg);
725         }
726
727         return total_len;
728 }
729
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731                 struct nvme_iod *iod)
732 {
733         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
734
735         memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
736         cmnd->rw.command_id = req->tag;
737         if (req->nr_phys_segments) {
738                 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739                 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
740         }
741
742         if (++nvmeq->sq_tail == nvmeq->q_depth)
743                 nvmeq->sq_tail = 0;
744         writel(nvmeq->sq_tail, nvmeq->q_db);
745 }
746
747 /*
748  * We reuse the small pool to allocate the 16-byte range here as it is not
749  * worth having a special pool for these or additional cases to handle freeing
750  * the iod.
751  */
752 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
753                 struct request *req, struct nvme_iod *iod)
754 {
755         struct nvme_dsm_range *range =
756                                 (struct nvme_dsm_range *)iod_list(iod)[0];
757         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
758
759         range->cattr = cpu_to_le32(0);
760         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
761         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
762
763         memset(cmnd, 0, sizeof(*cmnd));
764         cmnd->dsm.opcode = nvme_cmd_dsm;
765         cmnd->dsm.command_id = req->tag;
766         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
767         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
768         cmnd->dsm.nr = 0;
769         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
770
771         if (++nvmeq->sq_tail == nvmeq->q_depth)
772                 nvmeq->sq_tail = 0;
773         writel(nvmeq->sq_tail, nvmeq->q_db);
774 }
775
776 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
777                                                                 int cmdid)
778 {
779         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
780
781         memset(cmnd, 0, sizeof(*cmnd));
782         cmnd->common.opcode = nvme_cmd_flush;
783         cmnd->common.command_id = cmdid;
784         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
785
786         if (++nvmeq->sq_tail == nvmeq->q_depth)
787                 nvmeq->sq_tail = 0;
788         writel(nvmeq->sq_tail, nvmeq->q_db);
789 }
790
791 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
792                                                         struct nvme_ns *ns)
793 {
794         struct request *req = iod_get_private(iod);
795         struct nvme_command *cmnd;
796         u16 control = 0;
797         u32 dsmgmt = 0;
798
799         if (req->cmd_flags & REQ_FUA)
800                 control |= NVME_RW_FUA;
801         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
802                 control |= NVME_RW_LR;
803
804         if (req->cmd_flags & REQ_RAHEAD)
805                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
806
807         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
808         memset(cmnd, 0, sizeof(*cmnd));
809
810         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
811         cmnd->rw.command_id = req->tag;
812         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
813         cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
814         cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
815         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
816         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
817
818         if (blk_integrity_rq(req)) {
819                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
820                 switch (ns->pi_type) {
821                 case NVME_NS_DPS_PI_TYPE3:
822                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
823                         break;
824                 case NVME_NS_DPS_PI_TYPE1:
825                 case NVME_NS_DPS_PI_TYPE2:
826                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
827                                         NVME_RW_PRINFO_PRCHK_REF;
828                         cmnd->rw.reftag = cpu_to_le32(
829                                         nvme_block_nr(ns, blk_rq_pos(req)));
830                         break;
831                 }
832         } else if (ns->ms)
833                 control |= NVME_RW_PRINFO_PRACT;
834
835         cmnd->rw.control = cpu_to_le16(control);
836         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
837
838         if (++nvmeq->sq_tail == nvmeq->q_depth)
839                 nvmeq->sq_tail = 0;
840         writel(nvmeq->sq_tail, nvmeq->q_db);
841
842         return 0;
843 }
844
845 /*
846  * NOTE: ns is NULL when called on the admin queue.
847  */
848 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
849                          const struct blk_mq_queue_data *bd)
850 {
851         struct nvme_ns *ns = hctx->queue->queuedata;
852         struct nvme_queue *nvmeq = hctx->driver_data;
853         struct nvme_dev *dev = nvmeq->dev;
854         struct request *req = bd->rq;
855         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
856         struct nvme_iod *iod;
857         enum dma_data_direction dma_dir;
858
859         /*
860          * If formated with metadata, require the block layer provide a buffer
861          * unless this namespace is formated such that the metadata can be
862          * stripped/generated by the controller with PRACT=1.
863          */
864         if (ns && ns->ms && !blk_integrity_rq(req)) {
865                 if (!(ns->pi_type && ns->ms == 8) &&
866                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
867                         req->errors = -EFAULT;
868                         blk_mq_complete_request(req);
869                         return BLK_MQ_RQ_QUEUE_OK;
870                 }
871         }
872
873         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
874         if (!iod)
875                 return BLK_MQ_RQ_QUEUE_BUSY;
876
877         if (req->cmd_flags & REQ_DISCARD) {
878                 void *range;
879                 /*
880                  * We reuse the small pool to allocate the 16-byte range here
881                  * as it is not worth having a special pool for these or
882                  * additional cases to handle freeing the iod.
883                  */
884                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
885                                                 &iod->first_dma);
886                 if (!range)
887                         goto retry_cmd;
888                 iod_list(iod)[0] = (__le64 *)range;
889                 iod->npages = 0;
890         } else if (req->nr_phys_segments) {
891                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
892
893                 sg_init_table(iod->sg, req->nr_phys_segments);
894                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
895                 if (!iod->nents)
896                         goto error_cmd;
897
898                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
899                         goto retry_cmd;
900
901                 if (blk_rq_bytes(req) !=
902                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
903                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
904                         goto retry_cmd;
905                 }
906                 if (blk_integrity_rq(req)) {
907                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
908                                 goto error_cmd;
909
910                         sg_init_table(iod->meta_sg, 1);
911                         if (blk_rq_map_integrity_sg(
912                                         req->q, req->bio, iod->meta_sg) != 1)
913                                 goto error_cmd;
914
915                         if (rq_data_dir(req))
916                                 nvme_dif_remap(req, nvme_dif_prep);
917
918                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
919                                 goto error_cmd;
920                 }
921         }
922
923         nvme_set_info(cmd, iod, req_completion);
924         spin_lock_irq(&nvmeq->q_lock);
925         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
926                 nvme_submit_priv(nvmeq, req, iod);
927         else if (req->cmd_flags & REQ_DISCARD)
928                 nvme_submit_discard(nvmeq, ns, req, iod);
929         else if (req->cmd_flags & REQ_FLUSH)
930                 nvme_submit_flush(nvmeq, ns, req->tag);
931         else
932                 nvme_submit_iod(nvmeq, iod, ns);
933
934         nvme_process_cq(nvmeq);
935         spin_unlock_irq(&nvmeq->q_lock);
936         return BLK_MQ_RQ_QUEUE_OK;
937
938  error_cmd:
939         nvme_free_iod(dev, iod);
940         return BLK_MQ_RQ_QUEUE_ERROR;
941  retry_cmd:
942         nvme_free_iod(dev, iod);
943         return BLK_MQ_RQ_QUEUE_BUSY;
944 }
945
946 static int nvme_process_cq(struct nvme_queue *nvmeq)
947 {
948         u16 head, phase;
949
950         head = nvmeq->cq_head;
951         phase = nvmeq->cq_phase;
952
953         for (;;) {
954                 void *ctx;
955                 nvme_completion_fn fn;
956                 struct nvme_completion cqe = nvmeq->cqes[head];
957                 if ((le16_to_cpu(cqe.status) & 1) != phase)
958                         break;
959                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
960                 if (++head == nvmeq->q_depth) {
961                         head = 0;
962                         phase = !phase;
963                 }
964                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
965                 fn(nvmeq, ctx, &cqe);
966         }
967
968         /* If the controller ignores the cq head doorbell and continuously
969          * writes to the queue, it is theoretically possible to wrap around
970          * the queue twice and mistakenly return IRQ_NONE.  Linux only
971          * requires that 0.1% of your interrupts are handled, so this isn't
972          * a big problem.
973          */
974         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
975                 return 0;
976
977         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
978         nvmeq->cq_head = head;
979         nvmeq->cq_phase = phase;
980
981         nvmeq->cqe_seen = 1;
982         return 1;
983 }
984
985 static irqreturn_t nvme_irq(int irq, void *data)
986 {
987         irqreturn_t result;
988         struct nvme_queue *nvmeq = data;
989         spin_lock(&nvmeq->q_lock);
990         nvme_process_cq(nvmeq);
991         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
992         nvmeq->cqe_seen = 0;
993         spin_unlock(&nvmeq->q_lock);
994         return result;
995 }
996
997 static irqreturn_t nvme_irq_check(int irq, void *data)
998 {
999         struct nvme_queue *nvmeq = data;
1000         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1001         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1002                 return IRQ_NONE;
1003         return IRQ_WAKE_THREAD;
1004 }
1005
1006 /*
1007  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1008  * if the result is positive, it's an NVM Express status code
1009  */
1010 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1011                 void *buffer, void __user *ubuffer, unsigned bufflen,
1012                 u32 *result, unsigned timeout)
1013 {
1014         bool write = cmd->common.opcode & 1;
1015         struct bio *bio = NULL;
1016         struct request *req;
1017         int ret;
1018
1019         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1020         if (IS_ERR(req))
1021                 return PTR_ERR(req);
1022
1023         req->cmd_type = REQ_TYPE_DRV_PRIV;
1024         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1025         req->__data_len = 0;
1026         req->__sector = (sector_t) -1;
1027         req->bio = req->biotail = NULL;
1028
1029         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1030
1031         req->cmd = (unsigned char *)cmd;
1032         req->cmd_len = sizeof(struct nvme_command);
1033         req->special = (void *)0;
1034
1035         if (buffer && bufflen) {
1036                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1037                 if (ret)
1038                         goto out;
1039         } else if (ubuffer && bufflen) {
1040                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1041                 if (ret)
1042                         goto out;
1043                 bio = req->bio;
1044         }
1045
1046         blk_execute_rq(req->q, NULL, req, 0);
1047         if (bio)
1048                 blk_rq_unmap_user(bio);
1049         if (result)
1050                 *result = (u32)(uintptr_t)req->special;
1051         ret = req->errors;
1052  out:
1053         blk_mq_free_request(req);
1054         return ret;
1055 }
1056
1057 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1058                 void *buffer, unsigned bufflen)
1059 {
1060         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1061 }
1062
1063 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1064 {
1065         struct nvme_queue *nvmeq = dev->queues[0];
1066         struct nvme_command c;
1067         struct nvme_cmd_info *cmd_info;
1068         struct request *req;
1069
1070         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1071         if (IS_ERR(req))
1072                 return PTR_ERR(req);
1073
1074         req->cmd_flags |= REQ_NO_TIMEOUT;
1075         cmd_info = blk_mq_rq_to_pdu(req);
1076         nvme_set_info(cmd_info, NULL, async_req_completion);
1077
1078         memset(&c, 0, sizeof(c));
1079         c.common.opcode = nvme_admin_async_event;
1080         c.common.command_id = req->tag;
1081
1082         blk_mq_free_request(req);
1083         return __nvme_submit_cmd(nvmeq, &c);
1084 }
1085
1086 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1087                         struct nvme_command *cmd,
1088                         struct async_cmd_info *cmdinfo, unsigned timeout)
1089 {
1090         struct nvme_queue *nvmeq = dev->queues[0];
1091         struct request *req;
1092         struct nvme_cmd_info *cmd_rq;
1093
1094         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1095         if (IS_ERR(req))
1096                 return PTR_ERR(req);
1097
1098         req->timeout = timeout;
1099         cmd_rq = blk_mq_rq_to_pdu(req);
1100         cmdinfo->req = req;
1101         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1102         cmdinfo->status = -EINTR;
1103
1104         cmd->common.command_id = req->tag;
1105
1106         return nvme_submit_cmd(nvmeq, cmd);
1107 }
1108
1109 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1110 {
1111         struct nvme_command c;
1112
1113         memset(&c, 0, sizeof(c));
1114         c.delete_queue.opcode = opcode;
1115         c.delete_queue.qid = cpu_to_le16(id);
1116
1117         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1118 }
1119
1120 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1121                                                 struct nvme_queue *nvmeq)
1122 {
1123         struct nvme_command c;
1124         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1125
1126         /*
1127          * Note: we (ab)use the fact the the prp fields survive if no data
1128          * is attached to the request.
1129          */
1130         memset(&c, 0, sizeof(c));
1131         c.create_cq.opcode = nvme_admin_create_cq;
1132         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133         c.create_cq.cqid = cpu_to_le16(qid);
1134         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135         c.create_cq.cq_flags = cpu_to_le16(flags);
1136         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1137
1138         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1139 }
1140
1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142                                                 struct nvme_queue *nvmeq)
1143 {
1144         struct nvme_command c;
1145         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1146
1147         /*
1148          * Note: we (ab)use the fact the the prp fields survive if no data
1149          * is attached to the request.
1150          */
1151         memset(&c, 0, sizeof(c));
1152         c.create_sq.opcode = nvme_admin_create_sq;
1153         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1154         c.create_sq.sqid = cpu_to_le16(qid);
1155         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1156         c.create_sq.sq_flags = cpu_to_le16(flags);
1157         c.create_sq.cqid = cpu_to_le16(qid);
1158
1159         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1160 }
1161
1162 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1163 {
1164         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1165 }
1166
1167 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1168 {
1169         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1170 }
1171
1172 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1173 {
1174         struct nvme_command c = {
1175                 .identify.opcode = nvme_admin_identify,
1176                 .identify.cns = cpu_to_le32(1),
1177         };
1178         int error;
1179
1180         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1181         if (!*id)
1182                 return -ENOMEM;
1183
1184         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1185                         sizeof(struct nvme_id_ctrl));
1186         if (error)
1187                 kfree(*id);
1188         return error;
1189 }
1190
1191 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1192                 struct nvme_id_ns **id)
1193 {
1194         struct nvme_command c = {
1195                 .identify.opcode = nvme_admin_identify,
1196                 .identify.nsid = cpu_to_le32(nsid),
1197         };
1198         int error;
1199
1200         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1201         if (!*id)
1202                 return -ENOMEM;
1203
1204         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1205                         sizeof(struct nvme_id_ns));
1206         if (error)
1207                 kfree(*id);
1208         return error;
1209 }
1210
1211 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1212                                         dma_addr_t dma_addr, u32 *result)
1213 {
1214         struct nvme_command c;
1215
1216         memset(&c, 0, sizeof(c));
1217         c.features.opcode = nvme_admin_get_features;
1218         c.features.nsid = cpu_to_le32(nsid);
1219         c.features.prp1 = cpu_to_le64(dma_addr);
1220         c.features.fid = cpu_to_le32(fid);
1221
1222         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1223                         result, 0);
1224 }
1225
1226 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1227                                         dma_addr_t dma_addr, u32 *result)
1228 {
1229         struct nvme_command c;
1230
1231         memset(&c, 0, sizeof(c));
1232         c.features.opcode = nvme_admin_set_features;
1233         c.features.prp1 = cpu_to_le64(dma_addr);
1234         c.features.fid = cpu_to_le32(fid);
1235         c.features.dword11 = cpu_to_le32(dword11);
1236
1237         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1238                         result, 0);
1239 }
1240
1241 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1242 {
1243         struct nvme_command c = {
1244                 .common.opcode = nvme_admin_get_log_page,
1245                 .common.nsid = cpu_to_le32(0xFFFFFFFF),
1246                 .common.cdw10[0] = cpu_to_le32(
1247                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1248                          NVME_LOG_SMART),
1249         };
1250         int error;
1251
1252         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1253         if (!*log)
1254                 return -ENOMEM;
1255
1256         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1257                         sizeof(struct nvme_smart_log));
1258         if (error)
1259                 kfree(*log);
1260         return error;
1261 }
1262
1263 /**
1264  * nvme_abort_req - Attempt aborting a request
1265  *
1266  * Schedule controller reset if the command was already aborted once before and
1267  * still hasn't been returned to the driver, or if this is the admin queue.
1268  */
1269 static void nvme_abort_req(struct request *req)
1270 {
1271         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1272         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1273         struct nvme_dev *dev = nvmeq->dev;
1274         struct request *abort_req;
1275         struct nvme_cmd_info *abort_cmd;
1276         struct nvme_command cmd;
1277
1278         if (!nvmeq->qid || cmd_rq->aborted) {
1279                 unsigned long flags;
1280
1281                 spin_lock_irqsave(&dev_list_lock, flags);
1282                 if (work_busy(&dev->reset_work))
1283                         goto out;
1284                 list_del_init(&dev->node);
1285                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1286                                                         req->tag, nvmeq->qid);
1287                 dev->reset_workfn = nvme_reset_failed_dev;
1288                 queue_work(nvme_workq, &dev->reset_work);
1289  out:
1290                 spin_unlock_irqrestore(&dev_list_lock, flags);
1291                 return;
1292         }
1293
1294         if (!dev->abort_limit)
1295                 return;
1296
1297         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1298                                                                         false);
1299         if (IS_ERR(abort_req))
1300                 return;
1301
1302         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1303         nvme_set_info(abort_cmd, abort_req, abort_completion);
1304
1305         memset(&cmd, 0, sizeof(cmd));
1306         cmd.abort.opcode = nvme_admin_abort_cmd;
1307         cmd.abort.cid = req->tag;
1308         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1309         cmd.abort.command_id = abort_req->tag;
1310
1311         --dev->abort_limit;
1312         cmd_rq->aborted = 1;
1313
1314         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1315                                                         nvmeq->qid);
1316         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1317                 dev_warn(nvmeq->q_dmadev,
1318                                 "Could not abort I/O %d QID %d",
1319                                 req->tag, nvmeq->qid);
1320                 blk_mq_free_request(abort_req);
1321         }
1322 }
1323
1324 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1325 {
1326         struct nvme_queue *nvmeq = data;
1327         void *ctx;
1328         nvme_completion_fn fn;
1329         struct nvme_cmd_info *cmd;
1330         struct nvme_completion cqe;
1331
1332         if (!blk_mq_request_started(req))
1333                 return;
1334
1335         cmd = blk_mq_rq_to_pdu(req);
1336
1337         if (cmd->ctx == CMD_CTX_CANCELLED)
1338                 return;
1339
1340         if (blk_queue_dying(req->q))
1341                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1342         else
1343                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1344
1345
1346         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1347                                                 req->tag, nvmeq->qid);
1348         ctx = cancel_cmd_info(cmd, &fn);
1349         fn(nvmeq, ctx, &cqe);
1350 }
1351
1352 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1353 {
1354         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1355         struct nvme_queue *nvmeq = cmd->nvmeq;
1356
1357         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1358                                                         nvmeq->qid);
1359         spin_lock_irq(&nvmeq->q_lock);
1360         nvme_abort_req(req);
1361         spin_unlock_irq(&nvmeq->q_lock);
1362
1363         /*
1364          * The aborted req will be completed on receiving the abort req.
1365          * We enable the timer again. If hit twice, it'll cause a device reset,
1366          * as the device then is in a faulty state.
1367          */
1368         return BLK_EH_RESET_TIMER;
1369 }
1370
1371 static void nvme_free_queue(struct nvme_queue *nvmeq)
1372 {
1373         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1374                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1375         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1376                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1377         kfree(nvmeq);
1378 }
1379
1380 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1381 {
1382         int i;
1383
1384         for (i = dev->queue_count - 1; i >= lowest; i--) {
1385                 struct nvme_queue *nvmeq = dev->queues[i];
1386                 dev->queue_count--;
1387                 dev->queues[i] = NULL;
1388                 nvme_free_queue(nvmeq);
1389         }
1390 }
1391
1392 /**
1393  * nvme_suspend_queue - put queue into suspended state
1394  * @nvmeq - queue to suspend
1395  */
1396 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1397 {
1398         int vector;
1399
1400         spin_lock_irq(&nvmeq->q_lock);
1401         if (nvmeq->cq_vector == -1) {
1402                 spin_unlock_irq(&nvmeq->q_lock);
1403                 return 1;
1404         }
1405         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1406         nvmeq->dev->online_queues--;
1407         nvmeq->cq_vector = -1;
1408         spin_unlock_irq(&nvmeq->q_lock);
1409
1410         if (!nvmeq->qid && nvmeq->dev->admin_q)
1411                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1412
1413         irq_set_affinity_hint(vector, NULL);
1414         free_irq(vector, nvmeq);
1415
1416         return 0;
1417 }
1418
1419 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1420 {
1421         spin_lock_irq(&nvmeq->q_lock);
1422         if (nvmeq->tags && *nvmeq->tags)
1423                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1424         spin_unlock_irq(&nvmeq->q_lock);
1425 }
1426
1427 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1428 {
1429         struct nvme_queue *nvmeq = dev->queues[qid];
1430
1431         if (!nvmeq)
1432                 return;
1433         if (nvme_suspend_queue(nvmeq))
1434                 return;
1435
1436         /* Don't tell the adapter to delete the admin queue.
1437          * Don't tell a removed adapter to delete IO queues. */
1438         if (qid && readl(&dev->bar->csts) != -1) {
1439                 adapter_delete_sq(dev, qid);
1440                 adapter_delete_cq(dev, qid);
1441         }
1442
1443         spin_lock_irq(&nvmeq->q_lock);
1444         nvme_process_cq(nvmeq);
1445         spin_unlock_irq(&nvmeq->q_lock);
1446 }
1447
1448 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1449                                                         int depth)
1450 {
1451         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1452         if (!nvmeq)
1453                 return NULL;
1454
1455         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1456                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1457         if (!nvmeq->cqes)
1458                 goto free_nvmeq;
1459
1460         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1461                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1462         if (!nvmeq->sq_cmds)
1463                 goto free_cqdma;
1464
1465         nvmeq->q_dmadev = dev->dev;
1466         nvmeq->dev = dev;
1467         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1468                         dev->instance, qid);
1469         spin_lock_init(&nvmeq->q_lock);
1470         nvmeq->cq_head = 0;
1471         nvmeq->cq_phase = 1;
1472         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1473         nvmeq->q_depth = depth;
1474         nvmeq->qid = qid;
1475         dev->queues[qid] = nvmeq;
1476
1477         /* make sure queue descriptor is set before queue count, for kthread */
1478         mb();
1479         dev->queue_count++;
1480
1481         return nvmeq;
1482
1483  free_cqdma:
1484         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1485                                                         nvmeq->cq_dma_addr);
1486  free_nvmeq:
1487         kfree(nvmeq);
1488         return NULL;
1489 }
1490
1491 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1492                                                         const char *name)
1493 {
1494         if (use_threaded_interrupts)
1495                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1496                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1497                                         name, nvmeq);
1498         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1499                                 IRQF_SHARED, name, nvmeq);
1500 }
1501
1502 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1503 {
1504         struct nvme_dev *dev = nvmeq->dev;
1505
1506         spin_lock_irq(&nvmeq->q_lock);
1507         nvmeq->sq_tail = 0;
1508         nvmeq->cq_head = 0;
1509         nvmeq->cq_phase = 1;
1510         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1511         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1512         dev->online_queues++;
1513         spin_unlock_irq(&nvmeq->q_lock);
1514 }
1515
1516 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1517 {
1518         struct nvme_dev *dev = nvmeq->dev;
1519         int result;
1520
1521         nvmeq->cq_vector = qid - 1;
1522         result = adapter_alloc_cq(dev, qid, nvmeq);
1523         if (result < 0)
1524                 return result;
1525
1526         result = adapter_alloc_sq(dev, qid, nvmeq);
1527         if (result < 0)
1528                 goto release_cq;
1529
1530         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1531         if (result < 0)
1532                 goto release_sq;
1533
1534         nvme_init_queue(nvmeq, qid);
1535         return result;
1536
1537  release_sq:
1538         adapter_delete_sq(dev, qid);
1539  release_cq:
1540         adapter_delete_cq(dev, qid);
1541         return result;
1542 }
1543
1544 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1545 {
1546         unsigned long timeout;
1547         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1548
1549         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1550
1551         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1552                 msleep(100);
1553                 if (fatal_signal_pending(current))
1554                         return -EINTR;
1555                 if (time_after(jiffies, timeout)) {
1556                         dev_err(dev->dev,
1557                                 "Device not ready; aborting %s\n", enabled ?
1558                                                 "initialisation" : "reset");
1559                         return -ENODEV;
1560                 }
1561         }
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * If the device has been passed off to us in an enabled state, just clear
1568  * the enabled bit.  The spec says we should set the 'shutdown notification
1569  * bits', but doing so may cause the device to complete commands to the
1570  * admin queue ... and we don't know what memory that might be pointing at!
1571  */
1572 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1573 {
1574         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1575         dev->ctrl_config &= ~NVME_CC_ENABLE;
1576         writel(dev->ctrl_config, &dev->bar->cc);
1577
1578         return nvme_wait_ready(dev, cap, false);
1579 }
1580
1581 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1582 {
1583         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1584         dev->ctrl_config |= NVME_CC_ENABLE;
1585         writel(dev->ctrl_config, &dev->bar->cc);
1586
1587         return nvme_wait_ready(dev, cap, true);
1588 }
1589
1590 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1591 {
1592         unsigned long timeout;
1593
1594         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1595         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1596
1597         writel(dev->ctrl_config, &dev->bar->cc);
1598
1599         timeout = SHUTDOWN_TIMEOUT + jiffies;
1600         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1601                                                         NVME_CSTS_SHST_CMPLT) {
1602                 msleep(100);
1603                 if (fatal_signal_pending(current))
1604                         return -EINTR;
1605                 if (time_after(jiffies, timeout)) {
1606                         dev_err(dev->dev,
1607                                 "Device shutdown incomplete; abort shutdown\n");
1608                         return -ENODEV;
1609                 }
1610         }
1611
1612         return 0;
1613 }
1614
1615 static struct blk_mq_ops nvme_mq_admin_ops = {
1616         .queue_rq       = nvme_queue_rq,
1617         .map_queue      = blk_mq_map_queue,
1618         .init_hctx      = nvme_admin_init_hctx,
1619         .exit_hctx      = nvme_admin_exit_hctx,
1620         .init_request   = nvme_admin_init_request,
1621         .timeout        = nvme_timeout,
1622 };
1623
1624 static struct blk_mq_ops nvme_mq_ops = {
1625         .queue_rq       = nvme_queue_rq,
1626         .map_queue      = blk_mq_map_queue,
1627         .init_hctx      = nvme_init_hctx,
1628         .init_request   = nvme_init_request,
1629         .timeout        = nvme_timeout,
1630 };
1631
1632 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1633 {
1634         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1635                 blk_cleanup_queue(dev->admin_q);
1636                 blk_mq_free_tag_set(&dev->admin_tagset);
1637         }
1638 }
1639
1640 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1641 {
1642         if (!dev->admin_q) {
1643                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1644                 dev->admin_tagset.nr_hw_queues = 1;
1645                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1646                 dev->admin_tagset.reserved_tags = 1;
1647                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1648                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1649                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1650                 dev->admin_tagset.driver_data = dev;
1651
1652                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1653                         return -ENOMEM;
1654
1655                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1656                 if (IS_ERR(dev->admin_q)) {
1657                         blk_mq_free_tag_set(&dev->admin_tagset);
1658                         return -ENOMEM;
1659                 }
1660                 if (!blk_get_queue(dev->admin_q)) {
1661                         nvme_dev_remove_admin(dev);
1662                         dev->admin_q = NULL;
1663                         return -ENODEV;
1664                 }
1665         } else
1666                 blk_mq_unfreeze_queue(dev->admin_q);
1667
1668         return 0;
1669 }
1670
1671 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1672 {
1673         int result;
1674         u32 aqa;
1675         u64 cap = readq(&dev->bar->cap);
1676         struct nvme_queue *nvmeq;
1677         unsigned page_shift = PAGE_SHIFT;
1678         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1679         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1680
1681         if (page_shift < dev_page_min) {
1682                 dev_err(dev->dev,
1683                                 "Minimum device page size (%u) too large for "
1684                                 "host (%u)\n", 1 << dev_page_min,
1685                                 1 << page_shift);
1686                 return -ENODEV;
1687         }
1688         if (page_shift > dev_page_max) {
1689                 dev_info(dev->dev,
1690                                 "Device maximum page size (%u) smaller than "
1691                                 "host (%u); enabling work-around\n",
1692                                 1 << dev_page_max, 1 << page_shift);
1693                 page_shift = dev_page_max;
1694         }
1695
1696         result = nvme_disable_ctrl(dev, cap);
1697         if (result < 0)
1698                 return result;
1699
1700         nvmeq = dev->queues[0];
1701         if (!nvmeq) {
1702                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1703                 if (!nvmeq)
1704                         return -ENOMEM;
1705         }
1706
1707         aqa = nvmeq->q_depth - 1;
1708         aqa |= aqa << 16;
1709
1710         dev->page_size = 1 << page_shift;
1711
1712         dev->ctrl_config = NVME_CC_CSS_NVM;
1713         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1714         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1715         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1716
1717         writel(aqa, &dev->bar->aqa);
1718         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1719         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1720
1721         result = nvme_enable_ctrl(dev, cap);
1722         if (result)
1723                 goto free_nvmeq;
1724
1725         nvmeq->cq_vector = 0;
1726         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1727         if (result)
1728                 goto free_nvmeq;
1729
1730         return result;
1731
1732  free_nvmeq:
1733         nvme_free_queues(dev, 0);
1734         return result;
1735 }
1736
1737 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1738 {
1739         struct nvme_dev *dev = ns->dev;
1740         struct nvme_user_io io;
1741         struct nvme_command c;
1742         unsigned length, meta_len;
1743         int status, write;
1744         dma_addr_t meta_dma = 0;
1745         void *meta = NULL;
1746         void __user *metadata;
1747
1748         if (copy_from_user(&io, uio, sizeof(io)))
1749                 return -EFAULT;
1750
1751         switch (io.opcode) {
1752         case nvme_cmd_write:
1753         case nvme_cmd_read:
1754         case nvme_cmd_compare:
1755                 break;
1756         default:
1757                 return -EINVAL;
1758         }
1759
1760         length = (io.nblocks + 1) << ns->lba_shift;
1761         meta_len = (io.nblocks + 1) * ns->ms;
1762         metadata = (void __user *)(unsigned long)io.metadata;
1763         write = io.opcode & 1;
1764
1765         if (ns->ext) {
1766                 length += meta_len;
1767                 meta_len = 0;
1768         }
1769         if (meta_len) {
1770                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1771                         return -EINVAL;
1772
1773                 meta = dma_alloc_coherent(dev->dev, meta_len,
1774                                                 &meta_dma, GFP_KERNEL);
1775
1776                 if (!meta) {
1777                         status = -ENOMEM;
1778                         goto unmap;
1779                 }
1780                 if (write) {
1781                         if (copy_from_user(meta, metadata, meta_len)) {
1782                                 status = -EFAULT;
1783                                 goto unmap;
1784                         }
1785                 }
1786         }
1787
1788         memset(&c, 0, sizeof(c));
1789         c.rw.opcode = io.opcode;
1790         c.rw.flags = io.flags;
1791         c.rw.nsid = cpu_to_le32(ns->ns_id);
1792         c.rw.slba = cpu_to_le64(io.slba);
1793         c.rw.length = cpu_to_le16(io.nblocks);
1794         c.rw.control = cpu_to_le16(io.control);
1795         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1796         c.rw.reftag = cpu_to_le32(io.reftag);
1797         c.rw.apptag = cpu_to_le16(io.apptag);
1798         c.rw.appmask = cpu_to_le16(io.appmask);
1799         c.rw.metadata = cpu_to_le64(meta_dma);
1800
1801         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1802                         (void __user *)io.addr, length, NULL, 0);
1803  unmap:
1804         if (meta) {
1805                 if (status == NVME_SC_SUCCESS && !write) {
1806                         if (copy_to_user(metadata, meta, meta_len))
1807                                 status = -EFAULT;
1808                 }
1809                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1810         }
1811         return status;
1812 }
1813
1814 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1815                         struct nvme_passthru_cmd __user *ucmd)
1816 {
1817         struct nvme_passthru_cmd cmd;
1818         struct nvme_command c;
1819         unsigned timeout = 0;
1820         int status;
1821
1822         if (!capable(CAP_SYS_ADMIN))
1823                 return -EACCES;
1824         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1825                 return -EFAULT;
1826
1827         memset(&c, 0, sizeof(c));
1828         c.common.opcode = cmd.opcode;
1829         c.common.flags = cmd.flags;
1830         c.common.nsid = cpu_to_le32(cmd.nsid);
1831         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1832         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1833         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1834         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1835         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1836         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1837         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1838         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1839
1840         if (cmd.timeout_ms)
1841                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1842
1843         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1844                         NULL, (void __user *)cmd.addr, cmd.data_len,
1845                         &cmd.result, timeout);
1846         if (status >= 0) {
1847                 if (put_user(cmd.result, &ucmd->result))
1848                         return -EFAULT;
1849         }
1850
1851         return status;
1852 }
1853
1854 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1855                                                         unsigned long arg)
1856 {
1857         struct nvme_ns *ns = bdev->bd_disk->private_data;
1858
1859         switch (cmd) {
1860         case NVME_IOCTL_ID:
1861                 force_successful_syscall_return();
1862                 return ns->ns_id;
1863         case NVME_IOCTL_ADMIN_CMD:
1864                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1865         case NVME_IOCTL_IO_CMD:
1866                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1867         case NVME_IOCTL_SUBMIT_IO:
1868                 return nvme_submit_io(ns, (void __user *)arg);
1869         case SG_GET_VERSION_NUM:
1870                 return nvme_sg_get_version_num((void __user *)arg);
1871         case SG_IO:
1872                 return nvme_sg_io(ns, (void __user *)arg);
1873         default:
1874                 return -ENOTTY;
1875         }
1876 }
1877
1878 #ifdef CONFIG_COMPAT
1879 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1880                                         unsigned int cmd, unsigned long arg)
1881 {
1882         switch (cmd) {
1883         case SG_IO:
1884                 return -ENOIOCTLCMD;
1885         }
1886         return nvme_ioctl(bdev, mode, cmd, arg);
1887 }
1888 #else
1889 #define nvme_compat_ioctl       NULL
1890 #endif
1891
1892 static int nvme_open(struct block_device *bdev, fmode_t mode)
1893 {
1894         int ret = 0;
1895         struct nvme_ns *ns;
1896
1897         spin_lock(&dev_list_lock);
1898         ns = bdev->bd_disk->private_data;
1899         if (!ns)
1900                 ret = -ENXIO;
1901         else if (!kref_get_unless_zero(&ns->dev->kref))
1902                 ret = -ENXIO;
1903         spin_unlock(&dev_list_lock);
1904
1905         return ret;
1906 }
1907
1908 static void nvme_free_dev(struct kref *kref);
1909
1910 static void nvme_release(struct gendisk *disk, fmode_t mode)
1911 {
1912         struct nvme_ns *ns = disk->private_data;
1913         struct nvme_dev *dev = ns->dev;
1914
1915         kref_put(&dev->kref, nvme_free_dev);
1916 }
1917
1918 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1919 {
1920         /* some standard values */
1921         geo->heads = 1 << 6;
1922         geo->sectors = 1 << 5;
1923         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1924         return 0;
1925 }
1926
1927 static void nvme_config_discard(struct nvme_ns *ns)
1928 {
1929         u32 logical_block_size = queue_logical_block_size(ns->queue);
1930         ns->queue->limits.discard_zeroes_data = 0;
1931         ns->queue->limits.discard_alignment = logical_block_size;
1932         ns->queue->limits.discard_granularity = logical_block_size;
1933         ns->queue->limits.max_discard_sectors = 0xffffffff;
1934         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1935 }
1936
1937 static int nvme_revalidate_disk(struct gendisk *disk)
1938 {
1939         struct nvme_ns *ns = disk->private_data;
1940         struct nvme_dev *dev = ns->dev;
1941         struct nvme_id_ns *id;
1942         u8 lbaf, pi_type;
1943         u16 old_ms;
1944         unsigned short bs;
1945
1946         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1947                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1948                                                 dev->instance, ns->ns_id);
1949                 return -ENODEV;
1950         }
1951         if (id->ncap == 0) {
1952                 kfree(id);
1953                 return -ENODEV;
1954         }
1955
1956         old_ms = ns->ms;
1957         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1958         ns->lba_shift = id->lbaf[lbaf].ds;
1959         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1960         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1961
1962         /*
1963          * If identify namespace failed, use default 512 byte block size so
1964          * block layer can use before failing read/write for 0 capacity.
1965          */
1966         if (ns->lba_shift == 0)
1967                 ns->lba_shift = 9;
1968         bs = 1 << ns->lba_shift;
1969
1970         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1971         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1972                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
1973
1974         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1975                                 ns->ms != old_ms ||
1976                                 bs != queue_logical_block_size(disk->queue) ||
1977                                 (ns->ms && ns->ext)))
1978                 blk_integrity_unregister(disk);
1979
1980         ns->pi_type = pi_type;
1981         blk_queue_logical_block_size(ns->queue, bs);
1982
1983         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
1984                                                                 !ns->ext)
1985                 nvme_init_integrity(ns);
1986
1987         if (ns->ms && !blk_get_integrity(disk))
1988                 set_capacity(disk, 0);
1989         else
1990                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1991
1992         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1993                 nvme_config_discard(ns);
1994
1995         kfree(id);
1996         return 0;
1997 }
1998
1999 static const struct block_device_operations nvme_fops = {
2000         .owner          = THIS_MODULE,
2001         .ioctl          = nvme_ioctl,
2002         .compat_ioctl   = nvme_compat_ioctl,
2003         .open           = nvme_open,
2004         .release        = nvme_release,
2005         .getgeo         = nvme_getgeo,
2006         .revalidate_disk= nvme_revalidate_disk,
2007 };
2008
2009 static int nvme_kthread(void *data)
2010 {
2011         struct nvme_dev *dev, *next;
2012
2013         while (!kthread_should_stop()) {
2014                 set_current_state(TASK_INTERRUPTIBLE);
2015                 spin_lock(&dev_list_lock);
2016                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2017                         int i;
2018                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2019                                 if (work_busy(&dev->reset_work))
2020                                         continue;
2021                                 list_del_init(&dev->node);
2022                                 dev_warn(dev->dev,
2023                                         "Failed status: %x, reset controller\n",
2024                                         readl(&dev->bar->csts));
2025                                 dev->reset_workfn = nvme_reset_failed_dev;
2026                                 queue_work(nvme_workq, &dev->reset_work);
2027                                 continue;
2028                         }
2029                         for (i = 0; i < dev->queue_count; i++) {
2030                                 struct nvme_queue *nvmeq = dev->queues[i];
2031                                 if (!nvmeq)
2032                                         continue;
2033                                 spin_lock_irq(&nvmeq->q_lock);
2034                                 nvme_process_cq(nvmeq);
2035
2036                                 while ((i == 0) && (dev->event_limit > 0)) {
2037                                         if (nvme_submit_async_admin_req(dev))
2038                                                 break;
2039                                         dev->event_limit--;
2040                                 }
2041                                 spin_unlock_irq(&nvmeq->q_lock);
2042                         }
2043                 }
2044                 spin_unlock(&dev_list_lock);
2045                 schedule_timeout(round_jiffies_relative(HZ));
2046         }
2047         return 0;
2048 }
2049
2050 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2051 {
2052         struct nvme_ns *ns;
2053         struct gendisk *disk;
2054         int node = dev_to_node(dev->dev);
2055
2056         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2057         if (!ns)
2058                 return;
2059
2060         ns->queue = blk_mq_init_queue(&dev->tagset);
2061         if (IS_ERR(ns->queue))
2062                 goto out_free_ns;
2063         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2064         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2065         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2066         ns->dev = dev;
2067         ns->queue->queuedata = ns;
2068
2069         disk = alloc_disk_node(0, node);
2070         if (!disk)
2071                 goto out_free_queue;
2072
2073         ns->ns_id = nsid;
2074         ns->disk = disk;
2075         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2076         list_add_tail(&ns->list, &dev->namespaces);
2077
2078         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2079         if (dev->max_hw_sectors)
2080                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2081         if (dev->stripe_size)
2082                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2083         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2084                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2085
2086         disk->major = nvme_major;
2087         disk->first_minor = 0;
2088         disk->fops = &nvme_fops;
2089         disk->private_data = ns;
2090         disk->queue = ns->queue;
2091         disk->driverfs_dev = dev->device;
2092         disk->flags = GENHD_FL_EXT_DEVT;
2093         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2094
2095         /*
2096          * Initialize capacity to 0 until we establish the namespace format and
2097          * setup integrity extentions if necessary. The revalidate_disk after
2098          * add_disk allows the driver to register with integrity if the format
2099          * requires it.
2100          */
2101         set_capacity(disk, 0);
2102         if (nvme_revalidate_disk(ns->disk))
2103                 goto out_free_disk;
2104
2105         add_disk(ns->disk);
2106         if (ns->ms)
2107                 revalidate_disk(ns->disk);
2108         return;
2109  out_free_disk:
2110         kfree(disk);
2111         list_del(&ns->list);
2112  out_free_queue:
2113         blk_cleanup_queue(ns->queue);
2114  out_free_ns:
2115         kfree(ns);
2116 }
2117
2118 static void nvme_create_io_queues(struct nvme_dev *dev)
2119 {
2120         unsigned i;
2121
2122         for (i = dev->queue_count; i <= dev->max_qid; i++)
2123                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2124                         break;
2125
2126         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2127                 if (nvme_create_queue(dev->queues[i], i))
2128                         break;
2129 }
2130
2131 static int set_queue_count(struct nvme_dev *dev, int count)
2132 {
2133         int status;
2134         u32 result;
2135         u32 q_count = (count - 1) | ((count - 1) << 16);
2136
2137         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2138                                                                 &result);
2139         if (status < 0)
2140                 return status;
2141         if (status > 0) {
2142                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2143                 return 0;
2144         }
2145         return min(result & 0xffff, result >> 16) + 1;
2146 }
2147
2148 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2149 {
2150         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2151 }
2152
2153 static int nvme_setup_io_queues(struct nvme_dev *dev)
2154 {
2155         struct nvme_queue *adminq = dev->queues[0];
2156         struct pci_dev *pdev = to_pci_dev(dev->dev);
2157         int result, i, vecs, nr_io_queues, size;
2158
2159         nr_io_queues = num_possible_cpus();
2160         result = set_queue_count(dev, nr_io_queues);
2161         if (result <= 0)
2162                 return result;
2163         if (result < nr_io_queues)
2164                 nr_io_queues = result;
2165
2166         size = db_bar_size(dev, nr_io_queues);
2167         if (size > 8192) {
2168                 iounmap(dev->bar);
2169                 do {
2170                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2171                         if (dev->bar)
2172                                 break;
2173                         if (!--nr_io_queues)
2174                                 return -ENOMEM;
2175                         size = db_bar_size(dev, nr_io_queues);
2176                 } while (1);
2177                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2178                 adminq->q_db = dev->dbs;
2179         }
2180
2181         /* Deregister the admin queue's interrupt */
2182         free_irq(dev->entry[0].vector, adminq);
2183
2184         /*
2185          * If we enable msix early due to not intx, disable it again before
2186          * setting up the full range we need.
2187          */
2188         if (!pdev->irq)
2189                 pci_disable_msix(pdev);
2190
2191         for (i = 0; i < nr_io_queues; i++)
2192                 dev->entry[i].entry = i;
2193         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2194         if (vecs < 0) {
2195                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2196                 if (vecs < 0) {
2197                         vecs = 1;
2198                 } else {
2199                         for (i = 0; i < vecs; i++)
2200                                 dev->entry[i].vector = i + pdev->irq;
2201                 }
2202         }
2203
2204         /*
2205          * Should investigate if there's a performance win from allocating
2206          * more queues than interrupt vectors; it might allow the submission
2207          * path to scale better, even if the receive path is limited by the
2208          * number of interrupts.
2209          */
2210         nr_io_queues = vecs;
2211         dev->max_qid = nr_io_queues;
2212
2213         result = queue_request_irq(dev, adminq, adminq->irqname);
2214         if (result)
2215                 goto free_queues;
2216
2217         /* Free previously allocated queues that are no longer usable */
2218         nvme_free_queues(dev, nr_io_queues + 1);
2219         nvme_create_io_queues(dev);
2220
2221         return 0;
2222
2223  free_queues:
2224         nvme_free_queues(dev, 1);
2225         return result;
2226 }
2227
2228 static void nvme_free_namespace(struct nvme_ns *ns)
2229 {
2230         list_del(&ns->list);
2231
2232         spin_lock(&dev_list_lock);
2233         ns->disk->private_data = NULL;
2234         spin_unlock(&dev_list_lock);
2235
2236         put_disk(ns->disk);
2237         kfree(ns);
2238 }
2239
2240 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2241 {
2242         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2243         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2244
2245         return nsa->ns_id - nsb->ns_id;
2246 }
2247
2248 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2249 {
2250         struct nvme_ns *ns;
2251
2252         list_for_each_entry(ns, &dev->namespaces, list) {
2253                 if (ns->ns_id == nsid)
2254                         return ns;
2255                 if (ns->ns_id > nsid)
2256                         break;
2257         }
2258         return NULL;
2259 }
2260
2261 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2262 {
2263         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2264                                                         dev->online_queues < 2);
2265 }
2266
2267 static void nvme_ns_remove(struct nvme_ns *ns)
2268 {
2269         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2270
2271         if (kill)
2272                 blk_set_queue_dying(ns->queue);
2273         if (ns->disk->flags & GENHD_FL_UP) {
2274                 if (blk_get_integrity(ns->disk))
2275                         blk_integrity_unregister(ns->disk);
2276                 del_gendisk(ns->disk);
2277         }
2278         if (kill || !blk_queue_dying(ns->queue)) {
2279                 blk_mq_abort_requeue_list(ns->queue);
2280                 blk_cleanup_queue(ns->queue);
2281         }
2282 }
2283
2284 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2285 {
2286         struct nvme_ns *ns, *next;
2287         unsigned i;
2288
2289         for (i = 1; i <= nn; i++) {
2290                 ns = nvme_find_ns(dev, i);
2291                 if (ns) {
2292                         if (revalidate_disk(ns->disk)) {
2293                                 nvme_ns_remove(ns);
2294                                 nvme_free_namespace(ns);
2295                         }
2296                 } else
2297                         nvme_alloc_ns(dev, i);
2298         }
2299         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2300                 if (ns->ns_id > nn) {
2301                         nvme_ns_remove(ns);
2302                         nvme_free_namespace(ns);
2303                 }
2304         }
2305         list_sort(NULL, &dev->namespaces, ns_cmp);
2306 }
2307
2308 static void nvme_dev_scan(struct work_struct *work)
2309 {
2310         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2311         struct nvme_id_ctrl *ctrl;
2312
2313         if (!dev->tagset.tags)
2314                 return;
2315         if (nvme_identify_ctrl(dev, &ctrl))
2316                 return;
2317         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2318         kfree(ctrl);
2319 }
2320
2321 /*
2322  * Return: error value if an error occurred setting up the queues or calling
2323  * Identify Device.  0 if these succeeded, even if adding some of the
2324  * namespaces failed.  At the moment, these failures are silent.  TBD which
2325  * failures should be reported.
2326  */
2327 static int nvme_dev_add(struct nvme_dev *dev)
2328 {
2329         struct pci_dev *pdev = to_pci_dev(dev->dev);
2330         int res;
2331         unsigned nn;
2332         struct nvme_id_ctrl *ctrl;
2333         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2334
2335         res = nvme_identify_ctrl(dev, &ctrl);
2336         if (res) {
2337                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2338                 return -EIO;
2339         }
2340
2341         nn = le32_to_cpup(&ctrl->nn);
2342         dev->oncs = le16_to_cpup(&ctrl->oncs);
2343         dev->abort_limit = ctrl->acl + 1;
2344         dev->vwc = ctrl->vwc;
2345         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2346         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2347         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2348         if (ctrl->mdts)
2349                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2350         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2351                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2352                 unsigned int max_hw_sectors;
2353
2354                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2355                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2356                 if (dev->max_hw_sectors) {
2357                         dev->max_hw_sectors = min(max_hw_sectors,
2358                                                         dev->max_hw_sectors);
2359                 } else
2360                         dev->max_hw_sectors = max_hw_sectors;
2361         }
2362         kfree(ctrl);
2363
2364         if (!dev->tagset.tags) {
2365                 dev->tagset.ops = &nvme_mq_ops;
2366                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2367                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2368                 dev->tagset.numa_node = dev_to_node(dev->dev);
2369                 dev->tagset.queue_depth =
2370                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2371                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2372                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2373                 dev->tagset.driver_data = dev;
2374
2375                 if (blk_mq_alloc_tag_set(&dev->tagset))
2376                         return 0;
2377         }
2378         schedule_work(&dev->scan_work);
2379         return 0;
2380 }
2381
2382 static int nvme_dev_map(struct nvme_dev *dev)
2383 {
2384         u64 cap;
2385         int bars, result = -ENOMEM;
2386         struct pci_dev *pdev = to_pci_dev(dev->dev);
2387
2388         if (pci_enable_device_mem(pdev))
2389                 return result;
2390
2391         dev->entry[0].vector = pdev->irq;
2392         pci_set_master(pdev);
2393         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2394         if (!bars)
2395                 goto disable_pci;
2396
2397         if (pci_request_selected_regions(pdev, bars, "nvme"))
2398                 goto disable_pci;
2399
2400         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2401             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2402                 goto disable;
2403
2404         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2405         if (!dev->bar)
2406                 goto disable;
2407
2408         if (readl(&dev->bar->csts) == -1) {
2409                 result = -ENODEV;
2410                 goto unmap;
2411         }
2412
2413         /*
2414          * Some devices don't advertse INTx interrupts, pre-enable a single
2415          * MSIX vec for setup. We'll adjust this later.
2416          */
2417         if (!pdev->irq) {
2418                 result = pci_enable_msix(pdev, dev->entry, 1);
2419                 if (result < 0)
2420                         goto unmap;
2421         }
2422
2423         cap = readq(&dev->bar->cap);
2424         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2425         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2426         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2427
2428         return 0;
2429
2430  unmap:
2431         iounmap(dev->bar);
2432         dev->bar = NULL;
2433  disable:
2434         pci_release_regions(pdev);
2435  disable_pci:
2436         pci_disable_device(pdev);
2437         return result;
2438 }
2439
2440 static void nvme_dev_unmap(struct nvme_dev *dev)
2441 {
2442         struct pci_dev *pdev = to_pci_dev(dev->dev);
2443
2444         if (pdev->msi_enabled)
2445                 pci_disable_msi(pdev);
2446         else if (pdev->msix_enabled)
2447                 pci_disable_msix(pdev);
2448
2449         if (dev->bar) {
2450                 iounmap(dev->bar);
2451                 dev->bar = NULL;
2452                 pci_release_regions(pdev);
2453         }
2454
2455         if (pci_is_enabled(pdev))
2456                 pci_disable_device(pdev);
2457 }
2458
2459 struct nvme_delq_ctx {
2460         struct task_struct *waiter;
2461         struct kthread_worker *worker;
2462         atomic_t refcount;
2463 };
2464
2465 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2466 {
2467         dq->waiter = current;
2468         mb();
2469
2470         for (;;) {
2471                 set_current_state(TASK_KILLABLE);
2472                 if (!atomic_read(&dq->refcount))
2473                         break;
2474                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2475                                         fatal_signal_pending(current)) {
2476                         /*
2477                          * Disable the controller first since we can't trust it
2478                          * at this point, but leave the admin queue enabled
2479                          * until all queue deletion requests are flushed.
2480                          * FIXME: This may take a while if there are more h/w
2481                          * queues than admin tags.
2482                          */
2483                         set_current_state(TASK_RUNNING);
2484                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2485                         nvme_clear_queue(dev->queues[0]);
2486                         flush_kthread_worker(dq->worker);
2487                         nvme_disable_queue(dev, 0);
2488                         return;
2489                 }
2490         }
2491         set_current_state(TASK_RUNNING);
2492 }
2493
2494 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2495 {
2496         atomic_dec(&dq->refcount);
2497         if (dq->waiter)
2498                 wake_up_process(dq->waiter);
2499 }
2500
2501 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2502 {
2503         atomic_inc(&dq->refcount);
2504         return dq;
2505 }
2506
2507 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2508 {
2509         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2510         nvme_put_dq(dq);
2511 }
2512
2513 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2514                                                 kthread_work_func_t fn)
2515 {
2516         struct nvme_command c;
2517
2518         memset(&c, 0, sizeof(c));
2519         c.delete_queue.opcode = opcode;
2520         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2521
2522         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2523         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2524                                                                 ADMIN_TIMEOUT);
2525 }
2526
2527 static void nvme_del_cq_work_handler(struct kthread_work *work)
2528 {
2529         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2530                                                         cmdinfo.work);
2531         nvme_del_queue_end(nvmeq);
2532 }
2533
2534 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2535 {
2536         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2537                                                 nvme_del_cq_work_handler);
2538 }
2539
2540 static void nvme_del_sq_work_handler(struct kthread_work *work)
2541 {
2542         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2543                                                         cmdinfo.work);
2544         int status = nvmeq->cmdinfo.status;
2545
2546         if (!status)
2547                 status = nvme_delete_cq(nvmeq);
2548         if (status)
2549                 nvme_del_queue_end(nvmeq);
2550 }
2551
2552 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2553 {
2554         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2555                                                 nvme_del_sq_work_handler);
2556 }
2557
2558 static void nvme_del_queue_start(struct kthread_work *work)
2559 {
2560         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2561                                                         cmdinfo.work);
2562         if (nvme_delete_sq(nvmeq))
2563                 nvme_del_queue_end(nvmeq);
2564 }
2565
2566 static void nvme_disable_io_queues(struct nvme_dev *dev)
2567 {
2568         int i;
2569         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2570         struct nvme_delq_ctx dq;
2571         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2572                                         &worker, "nvme%d", dev->instance);
2573
2574         if (IS_ERR(kworker_task)) {
2575                 dev_err(dev->dev,
2576                         "Failed to create queue del task\n");
2577                 for (i = dev->queue_count - 1; i > 0; i--)
2578                         nvme_disable_queue(dev, i);
2579                 return;
2580         }
2581
2582         dq.waiter = NULL;
2583         atomic_set(&dq.refcount, 0);
2584         dq.worker = &worker;
2585         for (i = dev->queue_count - 1; i > 0; i--) {
2586                 struct nvme_queue *nvmeq = dev->queues[i];
2587
2588                 if (nvme_suspend_queue(nvmeq))
2589                         continue;
2590                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2591                 nvmeq->cmdinfo.worker = dq.worker;
2592                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2593                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2594         }
2595         nvme_wait_dq(&dq, dev);
2596         kthread_stop(kworker_task);
2597 }
2598
2599 /*
2600 * Remove the node from the device list and check
2601 * for whether or not we need to stop the nvme_thread.
2602 */
2603 static void nvme_dev_list_remove(struct nvme_dev *dev)
2604 {
2605         struct task_struct *tmp = NULL;
2606
2607         spin_lock(&dev_list_lock);
2608         list_del_init(&dev->node);
2609         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2610                 tmp = nvme_thread;
2611                 nvme_thread = NULL;
2612         }
2613         spin_unlock(&dev_list_lock);
2614
2615         if (tmp)
2616                 kthread_stop(tmp);
2617 }
2618
2619 static void nvme_freeze_queues(struct nvme_dev *dev)
2620 {
2621         struct nvme_ns *ns;
2622
2623         list_for_each_entry(ns, &dev->namespaces, list) {
2624                 blk_mq_freeze_queue_start(ns->queue);
2625
2626                 spin_lock_irq(ns->queue->queue_lock);
2627                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2628                 spin_unlock_irq(ns->queue->queue_lock);
2629
2630                 blk_mq_cancel_requeue_work(ns->queue);
2631                 blk_mq_stop_hw_queues(ns->queue);
2632         }
2633 }
2634
2635 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2636 {
2637         struct nvme_ns *ns;
2638
2639         list_for_each_entry(ns, &dev->namespaces, list) {
2640                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2641                 blk_mq_unfreeze_queue(ns->queue);
2642                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2643                 blk_mq_kick_requeue_list(ns->queue);
2644         }
2645 }
2646
2647 static void nvme_dev_shutdown(struct nvme_dev *dev)
2648 {
2649         int i;
2650         u32 csts = -1;
2651
2652         nvme_dev_list_remove(dev);
2653
2654         if (dev->bar) {
2655                 nvme_freeze_queues(dev);
2656                 csts = readl(&dev->bar->csts);
2657         }
2658         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2659                 for (i = dev->queue_count - 1; i >= 0; i--) {
2660                         struct nvme_queue *nvmeq = dev->queues[i];
2661                         nvme_suspend_queue(nvmeq);
2662                 }
2663         } else {
2664                 nvme_disable_io_queues(dev);
2665                 nvme_shutdown_ctrl(dev);
2666                 nvme_disable_queue(dev, 0);
2667         }
2668         nvme_dev_unmap(dev);
2669
2670         for (i = dev->queue_count - 1; i >= 0; i--)
2671                 nvme_clear_queue(dev->queues[i]);
2672 }
2673
2674 static void nvme_dev_remove(struct nvme_dev *dev)
2675 {
2676         struct nvme_ns *ns;
2677
2678         list_for_each_entry(ns, &dev->namespaces, list)
2679                 nvme_ns_remove(ns);
2680 }
2681
2682 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2683 {
2684         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2685                                                 PAGE_SIZE, PAGE_SIZE, 0);
2686         if (!dev->prp_page_pool)
2687                 return -ENOMEM;
2688
2689         /* Optimisation for I/Os between 4k and 128k */
2690         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2691                                                 256, 256, 0);
2692         if (!dev->prp_small_pool) {
2693                 dma_pool_destroy(dev->prp_page_pool);
2694                 return -ENOMEM;
2695         }
2696         return 0;
2697 }
2698
2699 static void nvme_release_prp_pools(struct nvme_dev *dev)
2700 {
2701         dma_pool_destroy(dev->prp_page_pool);
2702         dma_pool_destroy(dev->prp_small_pool);
2703 }
2704
2705 static DEFINE_IDA(nvme_instance_ida);
2706
2707 static int nvme_set_instance(struct nvme_dev *dev)
2708 {
2709         int instance, error;
2710
2711         do {
2712                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2713                         return -ENODEV;
2714
2715                 spin_lock(&dev_list_lock);
2716                 error = ida_get_new(&nvme_instance_ida, &instance);
2717                 spin_unlock(&dev_list_lock);
2718         } while (error == -EAGAIN);
2719
2720         if (error)
2721                 return -ENODEV;
2722
2723         dev->instance = instance;
2724         return 0;
2725 }
2726
2727 static void nvme_release_instance(struct nvme_dev *dev)
2728 {
2729         spin_lock(&dev_list_lock);
2730         ida_remove(&nvme_instance_ida, dev->instance);
2731         spin_unlock(&dev_list_lock);
2732 }
2733
2734 static void nvme_free_namespaces(struct nvme_dev *dev)
2735 {
2736         struct nvme_ns *ns, *next;
2737
2738         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2739                 nvme_free_namespace(ns);
2740 }
2741
2742 static void nvme_free_dev(struct kref *kref)
2743 {
2744         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2745
2746         put_device(dev->dev);
2747         put_device(dev->device);
2748         nvme_free_namespaces(dev);
2749         nvme_release_instance(dev);
2750         if (dev->tagset.tags)
2751                 blk_mq_free_tag_set(&dev->tagset);
2752         if (dev->admin_q)
2753                 blk_put_queue(dev->admin_q);
2754         kfree(dev->queues);
2755         kfree(dev->entry);
2756         kfree(dev);
2757 }
2758
2759 static int nvme_dev_open(struct inode *inode, struct file *f)
2760 {
2761         struct nvme_dev *dev;
2762         int instance = iminor(inode);
2763         int ret = -ENODEV;
2764
2765         spin_lock(&dev_list_lock);
2766         list_for_each_entry(dev, &dev_list, node) {
2767                 if (dev->instance == instance) {
2768                         if (!dev->admin_q) {
2769                                 ret = -EWOULDBLOCK;
2770                                 break;
2771                         }
2772                         if (!kref_get_unless_zero(&dev->kref))
2773                                 break;
2774                         f->private_data = dev;
2775                         ret = 0;
2776                         break;
2777                 }
2778         }
2779         spin_unlock(&dev_list_lock);
2780
2781         return ret;
2782 }
2783
2784 static int nvme_dev_release(struct inode *inode, struct file *f)
2785 {
2786         struct nvme_dev *dev = f->private_data;
2787         kref_put(&dev->kref, nvme_free_dev);
2788         return 0;
2789 }
2790
2791 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2792 {
2793         struct nvme_dev *dev = f->private_data;
2794         struct nvme_ns *ns;
2795
2796         switch (cmd) {
2797         case NVME_IOCTL_ADMIN_CMD:
2798                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2799         case NVME_IOCTL_IO_CMD:
2800                 if (list_empty(&dev->namespaces))
2801                         return -ENOTTY;
2802                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2803                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2804         case NVME_IOCTL_RESET:
2805                 dev_warn(dev->dev, "resetting controller\n");
2806                 return nvme_reset(dev);
2807         default:
2808                 return -ENOTTY;
2809         }
2810 }
2811
2812 static const struct file_operations nvme_dev_fops = {
2813         .owner          = THIS_MODULE,
2814         .open           = nvme_dev_open,
2815         .release        = nvme_dev_release,
2816         .unlocked_ioctl = nvme_dev_ioctl,
2817         .compat_ioctl   = nvme_dev_ioctl,
2818 };
2819
2820 static void nvme_set_irq_hints(struct nvme_dev *dev)
2821 {
2822         struct nvme_queue *nvmeq;
2823         int i;
2824
2825         for (i = 0; i < dev->online_queues; i++) {
2826                 nvmeq = dev->queues[i];
2827
2828                 if (!nvmeq->tags || !(*nvmeq->tags))
2829                         continue;
2830
2831                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2832                                         blk_mq_tags_cpumask(*nvmeq->tags));
2833         }
2834 }
2835
2836 static int nvme_dev_start(struct nvme_dev *dev)
2837 {
2838         int result;
2839         bool start_thread = false;
2840
2841         result = nvme_dev_map(dev);
2842         if (result)
2843                 return result;
2844
2845         result = nvme_configure_admin_queue(dev);
2846         if (result)
2847                 goto unmap;
2848
2849         spin_lock(&dev_list_lock);
2850         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2851                 start_thread = true;
2852                 nvme_thread = NULL;
2853         }
2854         list_add(&dev->node, &dev_list);
2855         spin_unlock(&dev_list_lock);
2856
2857         if (start_thread) {
2858                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2859                 wake_up_all(&nvme_kthread_wait);
2860         } else
2861                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2862
2863         if (IS_ERR_OR_NULL(nvme_thread)) {
2864                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2865                 goto disable;
2866         }
2867
2868         nvme_init_queue(dev->queues[0], 0);
2869         result = nvme_alloc_admin_tags(dev);
2870         if (result)
2871                 goto disable;
2872
2873         result = nvme_setup_io_queues(dev);
2874         if (result)
2875                 goto free_tags;
2876
2877         nvme_set_irq_hints(dev);
2878
2879         dev->event_limit = 1;
2880         return result;
2881
2882  free_tags:
2883         nvme_dev_remove_admin(dev);
2884         blk_put_queue(dev->admin_q);
2885         dev->admin_q = NULL;
2886         dev->queues[0]->tags = NULL;
2887  disable:
2888         nvme_disable_queue(dev, 0);
2889         nvme_dev_list_remove(dev);
2890  unmap:
2891         nvme_dev_unmap(dev);
2892         return result;
2893 }
2894
2895 static int nvme_remove_dead_ctrl(void *arg)
2896 {
2897         struct nvme_dev *dev = (struct nvme_dev *)arg;
2898         struct pci_dev *pdev = to_pci_dev(dev->dev);
2899
2900         if (pci_get_drvdata(pdev))
2901                 pci_stop_and_remove_bus_device_locked(pdev);
2902         kref_put(&dev->kref, nvme_free_dev);
2903         return 0;
2904 }
2905
2906 static void nvme_remove_disks(struct work_struct *ws)
2907 {
2908         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2909
2910         nvme_free_queues(dev, 1);
2911         nvme_dev_remove(dev);
2912 }
2913
2914 static int nvme_dev_resume(struct nvme_dev *dev)
2915 {
2916         int ret;
2917
2918         ret = nvme_dev_start(dev);
2919         if (ret)
2920                 return ret;
2921         if (dev->online_queues < 2) {
2922                 spin_lock(&dev_list_lock);
2923                 dev->reset_workfn = nvme_remove_disks;
2924                 queue_work(nvme_workq, &dev->reset_work);
2925                 spin_unlock(&dev_list_lock);
2926         } else {
2927                 nvme_unfreeze_queues(dev);
2928                 nvme_dev_add(dev);
2929                 nvme_set_irq_hints(dev);
2930         }
2931         return 0;
2932 }
2933
2934 static void nvme_dead_ctrl(struct nvme_dev *dev)
2935 {
2936         dev_warn(dev->dev, "Device failed to resume\n");
2937         kref_get(&dev->kref);
2938         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2939                                                 dev->instance))) {
2940                 dev_err(dev->dev,
2941                         "Failed to start controller remove task\n");
2942                 kref_put(&dev->kref, nvme_free_dev);
2943         }
2944 }
2945
2946 static void nvme_dev_reset(struct nvme_dev *dev)
2947 {
2948         bool in_probe = work_busy(&dev->probe_work);
2949
2950         nvme_dev_shutdown(dev);
2951
2952         /* Synchronize with device probe so that work will see failure status
2953          * and exit gracefully without trying to schedule another reset */
2954         flush_work(&dev->probe_work);
2955
2956         /* Fail this device if reset occured during probe to avoid
2957          * infinite initialization loops. */
2958         if (in_probe) {
2959                 nvme_dead_ctrl(dev);
2960                 return;
2961         }
2962         /* Schedule device resume asynchronously so the reset work is available
2963          * to cleanup errors that may occur during reinitialization */
2964         schedule_work(&dev->probe_work);
2965 }
2966
2967 static void nvme_reset_failed_dev(struct work_struct *ws)
2968 {
2969         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2970         nvme_dev_reset(dev);
2971 }
2972
2973 static void nvme_reset_workfn(struct work_struct *work)
2974 {
2975         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2976         dev->reset_workfn(work);
2977 }
2978
2979 static int nvme_reset(struct nvme_dev *dev)
2980 {
2981         int ret = -EBUSY;
2982
2983         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
2984                 return -ENODEV;
2985
2986         spin_lock(&dev_list_lock);
2987         if (!work_pending(&dev->reset_work)) {
2988                 dev->reset_workfn = nvme_reset_failed_dev;
2989                 queue_work(nvme_workq, &dev->reset_work);
2990                 ret = 0;
2991         }
2992         spin_unlock(&dev_list_lock);
2993
2994         if (!ret) {
2995                 flush_work(&dev->reset_work);
2996                 flush_work(&dev->probe_work);
2997                 return 0;
2998         }
2999
3000         return ret;
3001 }
3002
3003 static ssize_t nvme_sysfs_reset(struct device *dev,
3004                                 struct device_attribute *attr, const char *buf,
3005                                 size_t count)
3006 {
3007         struct nvme_dev *ndev = dev_get_drvdata(dev);
3008         int ret;
3009
3010         ret = nvme_reset(ndev);
3011         if (ret < 0)
3012                 return ret;
3013
3014         return count;
3015 }
3016 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3017
3018 static void nvme_async_probe(struct work_struct *work);
3019 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3020 {
3021         int node, result = -ENOMEM;
3022         struct nvme_dev *dev;
3023
3024         node = dev_to_node(&pdev->dev);
3025         if (node == NUMA_NO_NODE)
3026                 set_dev_node(&pdev->dev, 0);
3027
3028         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3029         if (!dev)
3030                 return -ENOMEM;
3031         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3032                                                         GFP_KERNEL, node);
3033         if (!dev->entry)
3034                 goto free;
3035         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3036                                                         GFP_KERNEL, node);
3037         if (!dev->queues)
3038                 goto free;
3039
3040         INIT_LIST_HEAD(&dev->namespaces);
3041         dev->reset_workfn = nvme_reset_failed_dev;
3042         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3043         dev->dev = get_device(&pdev->dev);
3044         pci_set_drvdata(pdev, dev);
3045         result = nvme_set_instance(dev);
3046         if (result)
3047                 goto put_pci;
3048
3049         result = nvme_setup_prp_pools(dev);
3050         if (result)
3051                 goto release;
3052
3053         kref_init(&dev->kref);
3054         dev->device = device_create(nvme_class, &pdev->dev,
3055                                 MKDEV(nvme_char_major, dev->instance),
3056                                 dev, "nvme%d", dev->instance);
3057         if (IS_ERR(dev->device)) {
3058                 result = PTR_ERR(dev->device);
3059                 goto release_pools;
3060         }
3061         get_device(dev->device);
3062         dev_set_drvdata(dev->device, dev);
3063
3064         result = device_create_file(dev->device, &dev_attr_reset_controller);
3065         if (result)
3066                 goto put_dev;
3067
3068         INIT_LIST_HEAD(&dev->node);
3069         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3070         INIT_WORK(&dev->probe_work, nvme_async_probe);
3071         schedule_work(&dev->probe_work);
3072         return 0;
3073
3074  put_dev:
3075         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3076         put_device(dev->device);
3077  release_pools:
3078         nvme_release_prp_pools(dev);
3079  release:
3080         nvme_release_instance(dev);
3081  put_pci:
3082         put_device(dev->dev);
3083  free:
3084         kfree(dev->queues);
3085         kfree(dev->entry);
3086         kfree(dev);
3087         return result;
3088 }
3089
3090 static void nvme_async_probe(struct work_struct *work)
3091 {
3092         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3093
3094         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3095                 nvme_dead_ctrl(dev);
3096 }
3097
3098 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3099 {
3100         struct nvme_dev *dev = pci_get_drvdata(pdev);
3101
3102         if (prepare)
3103                 nvme_dev_shutdown(dev);
3104         else
3105                 nvme_dev_resume(dev);
3106 }
3107
3108 static void nvme_shutdown(struct pci_dev *pdev)
3109 {
3110         struct nvme_dev *dev = pci_get_drvdata(pdev);
3111         nvme_dev_shutdown(dev);
3112 }
3113
3114 static void nvme_remove(struct pci_dev *pdev)
3115 {
3116         struct nvme_dev *dev = pci_get_drvdata(pdev);
3117
3118         spin_lock(&dev_list_lock);
3119         list_del_init(&dev->node);
3120         spin_unlock(&dev_list_lock);
3121
3122         pci_set_drvdata(pdev, NULL);
3123         flush_work(&dev->probe_work);
3124         flush_work(&dev->reset_work);
3125         flush_work(&dev->scan_work);
3126         device_remove_file(dev->device, &dev_attr_reset_controller);
3127         nvme_dev_remove(dev);
3128         nvme_dev_shutdown(dev);
3129         nvme_dev_remove_admin(dev);
3130         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3131         nvme_free_queues(dev, 0);
3132         nvme_release_prp_pools(dev);
3133         kref_put(&dev->kref, nvme_free_dev);
3134 }
3135
3136 /* These functions are yet to be implemented */
3137 #define nvme_error_detected NULL
3138 #define nvme_dump_registers NULL
3139 #define nvme_link_reset NULL
3140 #define nvme_slot_reset NULL
3141 #define nvme_error_resume NULL
3142
3143 #ifdef CONFIG_PM_SLEEP
3144 static int nvme_suspend(struct device *dev)
3145 {
3146         struct pci_dev *pdev = to_pci_dev(dev);
3147         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3148
3149         nvme_dev_shutdown(ndev);
3150         return 0;
3151 }
3152
3153 static int nvme_resume(struct device *dev)
3154 {
3155         struct pci_dev *pdev = to_pci_dev(dev);
3156         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3157
3158         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3159                 ndev->reset_workfn = nvme_reset_failed_dev;
3160                 queue_work(nvme_workq, &ndev->reset_work);
3161         }
3162         return 0;
3163 }
3164 #endif
3165
3166 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3167
3168 static const struct pci_error_handlers nvme_err_handler = {
3169         .error_detected = nvme_error_detected,
3170         .mmio_enabled   = nvme_dump_registers,
3171         .link_reset     = nvme_link_reset,
3172         .slot_reset     = nvme_slot_reset,
3173         .resume         = nvme_error_resume,
3174         .reset_notify   = nvme_reset_notify,
3175 };
3176
3177 /* Move to pci_ids.h later */
3178 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3179
3180 static const struct pci_device_id nvme_id_table[] = {
3181         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3182         { 0, }
3183 };
3184 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3185
3186 static struct pci_driver nvme_driver = {
3187         .name           = "nvme",
3188         .id_table       = nvme_id_table,
3189         .probe          = nvme_probe,
3190         .remove         = nvme_remove,
3191         .shutdown       = nvme_shutdown,
3192         .driver         = {
3193                 .pm     = &nvme_dev_pm_ops,
3194         },
3195         .err_handler    = &nvme_err_handler,
3196 };
3197
3198 static int __init nvme_init(void)
3199 {
3200         int result;
3201
3202         init_waitqueue_head(&nvme_kthread_wait);
3203
3204         nvme_workq = create_singlethread_workqueue("nvme");
3205         if (!nvme_workq)
3206                 return -ENOMEM;
3207
3208         result = register_blkdev(nvme_major, "nvme");
3209         if (result < 0)
3210                 goto kill_workq;
3211         else if (result > 0)
3212                 nvme_major = result;
3213
3214         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3215                                                         &nvme_dev_fops);
3216         if (result < 0)
3217                 goto unregister_blkdev;
3218         else if (result > 0)
3219                 nvme_char_major = result;
3220
3221         nvme_class = class_create(THIS_MODULE, "nvme");
3222         if (IS_ERR(nvme_class)) {
3223                 result = PTR_ERR(nvme_class);
3224                 goto unregister_chrdev;
3225         }
3226
3227         result = pci_register_driver(&nvme_driver);
3228         if (result)
3229                 goto destroy_class;
3230         return 0;
3231
3232  destroy_class:
3233         class_destroy(nvme_class);
3234  unregister_chrdev:
3235         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3236  unregister_blkdev:
3237         unregister_blkdev(nvme_major, "nvme");
3238  kill_workq:
3239         destroy_workqueue(nvme_workq);
3240         return result;
3241 }
3242
3243 static void __exit nvme_exit(void)
3244 {
3245         pci_unregister_driver(&nvme_driver);
3246         unregister_blkdev(nvme_major, "nvme");
3247         destroy_workqueue(nvme_workq);
3248         class_destroy(nvme_class);
3249         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3250         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3251         _nvme_check_size();
3252 }
3253
3254 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3255 MODULE_LICENSE("GPL");
3256 MODULE_VERSION("1.0");
3257 module_init(nvme_init);
3258 module_exit(nvme_exit);