]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/acpi-cpufreq.c
Merge remote-tracking branch 'md/for-next'
[karo-tx-linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52
53 #define PFX "acpi-cpufreq: "
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         struct acpi_processor_performance *acpi_data;
69         struct cpufreq_frequency_table *freq_table;
70         unsigned int resume;
71         unsigned int cpu_feature;
72         cpumask_var_t freqdomain_cpus;
73 };
74
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
76
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79
80 static struct cpufreq_driver acpi_cpufreq_driver;
81
82 static unsigned int acpi_pstate_strict;
83 static bool boost_enabled, boost_supported;
84 static struct msr __percpu *msrs;
85
86 static bool boost_state(unsigned int cpu)
87 {
88         u32 lo, hi;
89         u64 msr;
90
91         switch (boot_cpu_data.x86_vendor) {
92         case X86_VENDOR_INTEL:
93                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
94                 msr = lo | ((u64)hi << 32);
95                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
96         case X86_VENDOR_AMD:
97                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
98                 msr = lo | ((u64)hi << 32);
99                 return !(msr & MSR_K7_HWCR_CPB_DIS);
100         }
101         return false;
102 }
103
104 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
105 {
106         u32 cpu;
107         u32 msr_addr;
108         u64 msr_mask;
109
110         switch (boot_cpu_data.x86_vendor) {
111         case X86_VENDOR_INTEL:
112                 msr_addr = MSR_IA32_MISC_ENABLE;
113                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
114                 break;
115         case X86_VENDOR_AMD:
116                 msr_addr = MSR_K7_HWCR;
117                 msr_mask = MSR_K7_HWCR_CPB_DIS;
118                 break;
119         default:
120                 return;
121         }
122
123         rdmsr_on_cpus(cpumask, msr_addr, msrs);
124
125         for_each_cpu(cpu, cpumask) {
126                 struct msr *reg = per_cpu_ptr(msrs, cpu);
127                 if (enable)
128                         reg->q &= ~msr_mask;
129                 else
130                         reg->q |= msr_mask;
131         }
132
133         wrmsr_on_cpus(cpumask, msr_addr, msrs);
134 }
135
136 static ssize_t _store_boost(const char *buf, size_t count)
137 {
138         int ret;
139         unsigned long val = 0;
140
141         if (!boost_supported)
142                 return -EINVAL;
143
144         ret = kstrtoul(buf, 10, &val);
145         if (ret || (val > 1))
146                 return -EINVAL;
147
148         if ((val && boost_enabled) || (!val && !boost_enabled))
149                 return count;
150
151         get_online_cpus();
152
153         boost_set_msrs(val, cpu_online_mask);
154
155         put_online_cpus();
156
157         boost_enabled = val;
158         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
159
160         return count;
161 }
162
163 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
164                                   const char *buf, size_t count)
165 {
166         return _store_boost(buf, count);
167 }
168
169 static ssize_t show_global_boost(struct kobject *kobj,
170                                  struct attribute *attr, char *buf)
171 {
172         return sprintf(buf, "%u\n", boost_enabled);
173 }
174
175 static struct global_attr global_boost = __ATTR(boost, 0644,
176                                                 show_global_boost,
177                                                 store_global_boost);
178
179 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
180 {
181         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
182
183         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
184 }
185
186 cpufreq_freq_attr_ro(freqdomain_cpus);
187
188 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
189 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
190                          size_t count)
191 {
192         return _store_boost(buf, count);
193 }
194
195 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
196 {
197         return sprintf(buf, "%u\n", boost_enabled);
198 }
199
200 cpufreq_freq_attr_rw(cpb);
201 #endif
202
203 static int check_est_cpu(unsigned int cpuid)
204 {
205         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
206
207         return cpu_has(cpu, X86_FEATURE_EST);
208 }
209
210 static int check_amd_hwpstate_cpu(unsigned int cpuid)
211 {
212         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
213
214         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
215 }
216
217 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
218 {
219         struct acpi_processor_performance *perf;
220         int i;
221
222         perf = data->acpi_data;
223
224         for (i = 0; i < perf->state_count; i++) {
225                 if (value == perf->states[i].status)
226                         return data->freq_table[i].frequency;
227         }
228         return 0;
229 }
230
231 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
232 {
233         int i;
234         struct acpi_processor_performance *perf;
235
236         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
237                 msr &= AMD_MSR_RANGE;
238         else
239                 msr &= INTEL_MSR_RANGE;
240
241         perf = data->acpi_data;
242
243         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
244                 if (msr == perf->states[data->freq_table[i].driver_data].status)
245                         return data->freq_table[i].frequency;
246         }
247         return data->freq_table[0].frequency;
248 }
249
250 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
251 {
252         switch (data->cpu_feature) {
253         case SYSTEM_INTEL_MSR_CAPABLE:
254         case SYSTEM_AMD_MSR_CAPABLE:
255                 return extract_msr(val, data);
256         case SYSTEM_IO_CAPABLE:
257                 return extract_io(val, data);
258         default:
259                 return 0;
260         }
261 }
262
263 struct msr_addr {
264         u32 reg;
265 };
266
267 struct io_addr {
268         u16 port;
269         u8 bit_width;
270 };
271
272 struct drv_cmd {
273         unsigned int type;
274         const struct cpumask *mask;
275         union {
276                 struct msr_addr msr;
277                 struct io_addr io;
278         } addr;
279         u32 val;
280 };
281
282 /* Called via smp_call_function_single(), on the target CPU */
283 static void do_drv_read(void *_cmd)
284 {
285         struct drv_cmd *cmd = _cmd;
286         u32 h;
287
288         switch (cmd->type) {
289         case SYSTEM_INTEL_MSR_CAPABLE:
290         case SYSTEM_AMD_MSR_CAPABLE:
291                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
292                 break;
293         case SYSTEM_IO_CAPABLE:
294                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
295                                 &cmd->val,
296                                 (u32)cmd->addr.io.bit_width);
297                 break;
298         default:
299                 break;
300         }
301 }
302
303 /* Called via smp_call_function_many(), on the target CPUs */
304 static void do_drv_write(void *_cmd)
305 {
306         struct drv_cmd *cmd = _cmd;
307         u32 lo, hi;
308
309         switch (cmd->type) {
310         case SYSTEM_INTEL_MSR_CAPABLE:
311                 rdmsr(cmd->addr.msr.reg, lo, hi);
312                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
313                 wrmsr(cmd->addr.msr.reg, lo, hi);
314                 break;
315         case SYSTEM_AMD_MSR_CAPABLE:
316                 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
317                 break;
318         case SYSTEM_IO_CAPABLE:
319                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
320                                 cmd->val,
321                                 (u32)cmd->addr.io.bit_width);
322                 break;
323         default:
324                 break;
325         }
326 }
327
328 static void drv_read(struct drv_cmd *cmd)
329 {
330         int err;
331         cmd->val = 0;
332
333         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
334         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
335 }
336
337 static void drv_write(struct drv_cmd *cmd)
338 {
339         int this_cpu;
340
341         this_cpu = get_cpu();
342         if (cpumask_test_cpu(this_cpu, cmd->mask))
343                 do_drv_write(cmd);
344         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
345         put_cpu();
346 }
347
348 static u32 get_cur_val(const struct cpumask *mask)
349 {
350         struct acpi_processor_performance *perf;
351         struct drv_cmd cmd;
352
353         if (unlikely(cpumask_empty(mask)))
354                 return 0;
355
356         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
357         case SYSTEM_INTEL_MSR_CAPABLE:
358                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
359                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
360                 break;
361         case SYSTEM_AMD_MSR_CAPABLE:
362                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
363                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
364                 break;
365         case SYSTEM_IO_CAPABLE:
366                 cmd.type = SYSTEM_IO_CAPABLE;
367                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
368                 cmd.addr.io.port = perf->control_register.address;
369                 cmd.addr.io.bit_width = perf->control_register.bit_width;
370                 break;
371         default:
372                 return 0;
373         }
374
375         cmd.mask = mask;
376         drv_read(&cmd);
377
378         pr_debug("get_cur_val = %u\n", cmd.val);
379
380         return cmd.val;
381 }
382
383 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
384 {
385         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
386         unsigned int freq;
387         unsigned int cached_freq;
388
389         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
390
391         if (unlikely(data == NULL ||
392                      data->acpi_data == NULL || data->freq_table == NULL)) {
393                 return 0;
394         }
395
396         cached_freq = data->freq_table[data->acpi_data->state].frequency;
397         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
398         if (freq != cached_freq) {
399                 /*
400                  * The dreaded BIOS frequency change behind our back.
401                  * Force set the frequency on next target call.
402                  */
403                 data->resume = 1;
404         }
405
406         pr_debug("cur freq = %u\n", freq);
407
408         return freq;
409 }
410
411 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
412                                 struct acpi_cpufreq_data *data)
413 {
414         unsigned int cur_freq;
415         unsigned int i;
416
417         for (i = 0; i < 100; i++) {
418                 cur_freq = extract_freq(get_cur_val(mask), data);
419                 if (cur_freq == freq)
420                         return 1;
421                 udelay(10);
422         }
423         return 0;
424 }
425
426 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
427                                unsigned int target_freq, unsigned int relation)
428 {
429         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
430         struct acpi_processor_performance *perf;
431         struct cpufreq_freqs freqs;
432         struct drv_cmd cmd;
433         unsigned int next_state = 0; /* Index into freq_table */
434         unsigned int next_perf_state = 0; /* Index into perf table */
435         int result = 0;
436
437         pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
438
439         if (unlikely(data == NULL ||
440              data->acpi_data == NULL || data->freq_table == NULL)) {
441                 return -ENODEV;
442         }
443
444         perf = data->acpi_data;
445         result = cpufreq_frequency_table_target(policy,
446                                                 data->freq_table,
447                                                 target_freq,
448                                                 relation, &next_state);
449         if (unlikely(result)) {
450                 result = -ENODEV;
451                 goto out;
452         }
453
454         next_perf_state = data->freq_table[next_state].driver_data;
455         if (perf->state == next_perf_state) {
456                 if (unlikely(data->resume)) {
457                         pr_debug("Called after resume, resetting to P%d\n",
458                                 next_perf_state);
459                         data->resume = 0;
460                 } else {
461                         pr_debug("Already at target state (P%d)\n",
462                                 next_perf_state);
463                         goto out;
464                 }
465         }
466
467         switch (data->cpu_feature) {
468         case SYSTEM_INTEL_MSR_CAPABLE:
469                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
470                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
471                 cmd.val = (u32) perf->states[next_perf_state].control;
472                 break;
473         case SYSTEM_AMD_MSR_CAPABLE:
474                 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
475                 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
476                 cmd.val = (u32) perf->states[next_perf_state].control;
477                 break;
478         case SYSTEM_IO_CAPABLE:
479                 cmd.type = SYSTEM_IO_CAPABLE;
480                 cmd.addr.io.port = perf->control_register.address;
481                 cmd.addr.io.bit_width = perf->control_register.bit_width;
482                 cmd.val = (u32) perf->states[next_perf_state].control;
483                 break;
484         default:
485                 result = -ENODEV;
486                 goto out;
487         }
488
489         /* cpufreq holds the hotplug lock, so we are safe from here on */
490         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
491                 cmd.mask = policy->cpus;
492         else
493                 cmd.mask = cpumask_of(policy->cpu);
494
495         freqs.old = perf->states[perf->state].core_frequency * 1000;
496         freqs.new = data->freq_table[next_state].frequency;
497         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
498
499         drv_write(&cmd);
500
501         if (acpi_pstate_strict) {
502                 if (!check_freqs(cmd.mask, freqs.new, data)) {
503                         pr_debug("acpi_cpufreq_target failed (%d)\n",
504                                 policy->cpu);
505                         result = -EAGAIN;
506                         freqs.new = freqs.old;
507                 }
508         }
509
510         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
511
512         if (!result)
513                 perf->state = next_perf_state;
514
515 out:
516         return result;
517 }
518
519 static unsigned long
520 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
521 {
522         struct acpi_processor_performance *perf = data->acpi_data;
523
524         if (cpu_khz) {
525                 /* search the closest match to cpu_khz */
526                 unsigned int i;
527                 unsigned long freq;
528                 unsigned long freqn = perf->states[0].core_frequency * 1000;
529
530                 for (i = 0; i < (perf->state_count-1); i++) {
531                         freq = freqn;
532                         freqn = perf->states[i+1].core_frequency * 1000;
533                         if ((2 * cpu_khz) > (freqn + freq)) {
534                                 perf->state = i;
535                                 return freq;
536                         }
537                 }
538                 perf->state = perf->state_count-1;
539                 return freqn;
540         } else {
541                 /* assume CPU is at P0... */
542                 perf->state = 0;
543                 return perf->states[0].core_frequency * 1000;
544         }
545 }
546
547 static void free_acpi_perf_data(void)
548 {
549         unsigned int i;
550
551         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
552         for_each_possible_cpu(i)
553                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
554                                  ->shared_cpu_map);
555         free_percpu(acpi_perf_data);
556 }
557
558 static int boost_notify(struct notifier_block *nb, unsigned long action,
559                       void *hcpu)
560 {
561         unsigned cpu = (long)hcpu;
562         const struct cpumask *cpumask;
563
564         cpumask = get_cpu_mask(cpu);
565
566         /*
567          * Clear the boost-disable bit on the CPU_DOWN path so that
568          * this cpu cannot block the remaining ones from boosting. On
569          * the CPU_UP path we simply keep the boost-disable flag in
570          * sync with the current global state.
571          */
572
573         switch (action) {
574         case CPU_UP_PREPARE:
575         case CPU_UP_PREPARE_FROZEN:
576                 boost_set_msrs(boost_enabled, cpumask);
577                 break;
578
579         case CPU_DOWN_PREPARE:
580         case CPU_DOWN_PREPARE_FROZEN:
581                 boost_set_msrs(1, cpumask);
582                 break;
583
584         default:
585                 break;
586         }
587
588         return NOTIFY_OK;
589 }
590
591
592 static struct notifier_block boost_nb = {
593         .notifier_call          = boost_notify,
594 };
595
596 /*
597  * acpi_cpufreq_early_init - initialize ACPI P-States library
598  *
599  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
600  * in order to determine correct frequency and voltage pairings. We can
601  * do _PDC and _PSD and find out the processor dependency for the
602  * actual init that will happen later...
603  */
604 static int __init acpi_cpufreq_early_init(void)
605 {
606         unsigned int i;
607         pr_debug("acpi_cpufreq_early_init\n");
608
609         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
610         if (!acpi_perf_data) {
611                 pr_debug("Memory allocation error for acpi_perf_data.\n");
612                 return -ENOMEM;
613         }
614         for_each_possible_cpu(i) {
615                 if (!zalloc_cpumask_var_node(
616                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
617                         GFP_KERNEL, cpu_to_node(i))) {
618
619                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
620                         free_acpi_perf_data();
621                         return -ENOMEM;
622                 }
623         }
624
625         /* Do initialization in ACPI core */
626         acpi_processor_preregister_performance(acpi_perf_data);
627         return 0;
628 }
629
630 #ifdef CONFIG_SMP
631 /*
632  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
633  * or do it in BIOS firmware and won't inform about it to OS. If not
634  * detected, this has a side effect of making CPU run at a different speed
635  * than OS intended it to run at. Detect it and handle it cleanly.
636  */
637 static int bios_with_sw_any_bug;
638
639 static int sw_any_bug_found(const struct dmi_system_id *d)
640 {
641         bios_with_sw_any_bug = 1;
642         return 0;
643 }
644
645 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
646         {
647                 .callback = sw_any_bug_found,
648                 .ident = "Supermicro Server X6DLP",
649                 .matches = {
650                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
651                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
652                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
653                 },
654         },
655         { }
656 };
657
658 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
659 {
660         /* Intel Xeon Processor 7100 Series Specification Update
661          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
662          * AL30: A Machine Check Exception (MCE) Occurring during an
663          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
664          * Both Processor Cores to Lock Up. */
665         if (c->x86_vendor == X86_VENDOR_INTEL) {
666                 if ((c->x86 == 15) &&
667                     (c->x86_model == 6) &&
668                     (c->x86_mask == 8)) {
669                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
670                             "Xeon(R) 7100 Errata AL30, processors may "
671                             "lock up on frequency changes: disabling "
672                             "acpi-cpufreq.\n");
673                         return -ENODEV;
674                     }
675                 }
676         return 0;
677 }
678 #endif
679
680 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
681 {
682         unsigned int i;
683         unsigned int valid_states = 0;
684         unsigned int cpu = policy->cpu;
685         struct acpi_cpufreq_data *data;
686         unsigned int result = 0;
687         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
688         struct acpi_processor_performance *perf;
689 #ifdef CONFIG_SMP
690         static int blacklisted;
691 #endif
692
693         pr_debug("acpi_cpufreq_cpu_init\n");
694
695 #ifdef CONFIG_SMP
696         if (blacklisted)
697                 return blacklisted;
698         blacklisted = acpi_cpufreq_blacklist(c);
699         if (blacklisted)
700                 return blacklisted;
701 #endif
702
703         data = kzalloc(sizeof(*data), GFP_KERNEL);
704         if (!data)
705                 return -ENOMEM;
706
707         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
708                 result = -ENOMEM;
709                 goto err_free;
710         }
711
712         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
713         per_cpu(acfreq_data, cpu) = data;
714
715         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
716                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
717
718         result = acpi_processor_register_performance(data->acpi_data, cpu);
719         if (result)
720                 goto err_free_mask;
721
722         perf = data->acpi_data;
723         policy->shared_type = perf->shared_type;
724
725         /*
726          * Will let policy->cpus know about dependency only when software
727          * coordination is required.
728          */
729         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
730             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
731                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
732         }
733         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
734
735 #ifdef CONFIG_SMP
736         dmi_check_system(sw_any_bug_dmi_table);
737         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
738                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
739                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
740         }
741
742         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
743                 cpumask_clear(policy->cpus);
744                 cpumask_set_cpu(cpu, policy->cpus);
745                 cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
746                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
747                 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
748         }
749 #endif
750
751         /* capability check */
752         if (perf->state_count <= 1) {
753                 pr_debug("No P-States\n");
754                 result = -ENODEV;
755                 goto err_unreg;
756         }
757
758         if (perf->control_register.space_id != perf->status_register.space_id) {
759                 result = -ENODEV;
760                 goto err_unreg;
761         }
762
763         switch (perf->control_register.space_id) {
764         case ACPI_ADR_SPACE_SYSTEM_IO:
765                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
766                     boot_cpu_data.x86 == 0xf) {
767                         pr_debug("AMD K8 systems must use native drivers.\n");
768                         result = -ENODEV;
769                         goto err_unreg;
770                 }
771                 pr_debug("SYSTEM IO addr space\n");
772                 data->cpu_feature = SYSTEM_IO_CAPABLE;
773                 break;
774         case ACPI_ADR_SPACE_FIXED_HARDWARE:
775                 pr_debug("HARDWARE addr space\n");
776                 if (check_est_cpu(cpu)) {
777                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
778                         break;
779                 }
780                 if (check_amd_hwpstate_cpu(cpu)) {
781                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
782                         break;
783                 }
784                 result = -ENODEV;
785                 goto err_unreg;
786         default:
787                 pr_debug("Unknown addr space %d\n",
788                         (u32) (perf->control_register.space_id));
789                 result = -ENODEV;
790                 goto err_unreg;
791         }
792
793         data->freq_table = kmalloc(sizeof(*data->freq_table) *
794                     (perf->state_count+1), GFP_KERNEL);
795         if (!data->freq_table) {
796                 result = -ENOMEM;
797                 goto err_unreg;
798         }
799
800         /* detect transition latency */
801         policy->cpuinfo.transition_latency = 0;
802         for (i = 0; i < perf->state_count; i++) {
803                 if ((perf->states[i].transition_latency * 1000) >
804                     policy->cpuinfo.transition_latency)
805                         policy->cpuinfo.transition_latency =
806                             perf->states[i].transition_latency * 1000;
807         }
808
809         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
810         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
811             policy->cpuinfo.transition_latency > 20 * 1000) {
812                 policy->cpuinfo.transition_latency = 20 * 1000;
813                 printk_once(KERN_INFO
814                             "P-state transition latency capped at 20 uS\n");
815         }
816
817         /* table init */
818         for (i = 0; i < perf->state_count; i++) {
819                 if (i > 0 && perf->states[i].core_frequency >=
820                     data->freq_table[valid_states-1].frequency / 1000)
821                         continue;
822
823                 data->freq_table[valid_states].driver_data = i;
824                 data->freq_table[valid_states].frequency =
825                     perf->states[i].core_frequency * 1000;
826                 valid_states++;
827         }
828         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
829         perf->state = 0;
830
831         result = cpufreq_table_validate_and_show(policy, data->freq_table);
832         if (result)
833                 goto err_freqfree;
834
835         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
836                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
837
838         switch (perf->control_register.space_id) {
839         case ACPI_ADR_SPACE_SYSTEM_IO:
840                 /*
841                  * The core will not set policy->cur, because
842                  * cpufreq_driver->get is NULL, so we need to set it here.
843                  * However, we have to guess it, because the current speed is
844                  * unknown and not detectable via IO ports.
845                  */
846                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
847                 break;
848         case ACPI_ADR_SPACE_FIXED_HARDWARE:
849                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
850                 break;
851         default:
852                 break;
853         }
854
855         /* notify BIOS that we exist */
856         acpi_processor_notify_smm(THIS_MODULE);
857
858         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
859         for (i = 0; i < perf->state_count; i++)
860                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
861                         (i == perf->state ? '*' : ' '), i,
862                         (u32) perf->states[i].core_frequency,
863                         (u32) perf->states[i].power,
864                         (u32) perf->states[i].transition_latency);
865
866         /*
867          * the first call to ->target() should result in us actually
868          * writing something to the appropriate registers.
869          */
870         data->resume = 1;
871
872         return result;
873
874 err_freqfree:
875         kfree(data->freq_table);
876 err_unreg:
877         acpi_processor_unregister_performance(perf, cpu);
878 err_free_mask:
879         free_cpumask_var(data->freqdomain_cpus);
880 err_free:
881         kfree(data);
882         per_cpu(acfreq_data, cpu) = NULL;
883
884         return result;
885 }
886
887 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
888 {
889         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
890
891         pr_debug("acpi_cpufreq_cpu_exit\n");
892
893         if (data) {
894                 cpufreq_frequency_table_put_attr(policy->cpu);
895                 per_cpu(acfreq_data, policy->cpu) = NULL;
896                 acpi_processor_unregister_performance(data->acpi_data,
897                                                       policy->cpu);
898                 free_cpumask_var(data->freqdomain_cpus);
899                 kfree(data->freq_table);
900                 kfree(data);
901         }
902
903         return 0;
904 }
905
906 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
907 {
908         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
909
910         pr_debug("acpi_cpufreq_resume\n");
911
912         data->resume = 1;
913
914         return 0;
915 }
916
917 static struct freq_attr *acpi_cpufreq_attr[] = {
918         &cpufreq_freq_attr_scaling_available_freqs,
919         &freqdomain_cpus,
920         NULL,   /* this is a placeholder for cpb, do not remove */
921         NULL,
922 };
923
924 static struct cpufreq_driver acpi_cpufreq_driver = {
925         .verify         = cpufreq_generic_frequency_table_verify,
926         .target         = acpi_cpufreq_target,
927         .bios_limit     = acpi_processor_get_bios_limit,
928         .init           = acpi_cpufreq_cpu_init,
929         .exit           = acpi_cpufreq_cpu_exit,
930         .resume         = acpi_cpufreq_resume,
931         .name           = "acpi-cpufreq",
932         .attr           = acpi_cpufreq_attr,
933 };
934
935 static void __init acpi_cpufreq_boost_init(void)
936 {
937         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
938                 msrs = msrs_alloc();
939
940                 if (!msrs)
941                         return;
942
943                 boost_supported = true;
944                 boost_enabled = boost_state(0);
945
946                 get_online_cpus();
947
948                 /* Force all MSRs to the same value */
949                 boost_set_msrs(boost_enabled, cpu_online_mask);
950
951                 register_cpu_notifier(&boost_nb);
952
953                 put_online_cpus();
954         } else
955                 global_boost.attr.mode = 0444;
956
957         /* We create the boost file in any case, though for systems without
958          * hardware support it will be read-only and hardwired to return 0.
959          */
960         if (cpufreq_sysfs_create_file(&(global_boost.attr)))
961                 pr_warn(PFX "could not register global boost sysfs file\n");
962         else
963                 pr_debug("registered global boost sysfs file\n");
964 }
965
966 static void __exit acpi_cpufreq_boost_exit(void)
967 {
968         cpufreq_sysfs_remove_file(&(global_boost.attr));
969
970         if (msrs) {
971                 unregister_cpu_notifier(&boost_nb);
972
973                 msrs_free(msrs);
974                 msrs = NULL;
975         }
976 }
977
978 static int __init acpi_cpufreq_init(void)
979 {
980         int ret;
981
982         /* don't keep reloading if cpufreq_driver exists */
983         if (cpufreq_get_current_driver())
984                 return 0;
985
986         if (acpi_disabled)
987                 return 0;
988
989         pr_debug("acpi_cpufreq_init\n");
990
991         ret = acpi_cpufreq_early_init();
992         if (ret)
993                 return ret;
994
995 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
996         /* this is a sysfs file with a strange name and an even stranger
997          * semantic - per CPU instantiation, but system global effect.
998          * Lets enable it only on AMD CPUs for compatibility reasons and
999          * only if configured. This is considered legacy code, which
1000          * will probably be removed at some point in the future.
1001          */
1002         if (check_amd_hwpstate_cpu(0)) {
1003                 struct freq_attr **iter;
1004
1005                 pr_debug("adding sysfs entry for cpb\n");
1006
1007                 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
1008                         ;
1009
1010                 /* make sure there is a terminator behind it */
1011                 if (iter[1] == NULL)
1012                         *iter = &cpb;
1013         }
1014 #endif
1015
1016         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1017         if (ret)
1018                 free_acpi_perf_data();
1019         else
1020                 acpi_cpufreq_boost_init();
1021
1022         return ret;
1023 }
1024
1025 static void __exit acpi_cpufreq_exit(void)
1026 {
1027         pr_debug("acpi_cpufreq_exit\n");
1028
1029         acpi_cpufreq_boost_exit();
1030
1031         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1032
1033         free_acpi_perf_data();
1034 }
1035
1036 module_param(acpi_pstate_strict, uint, 0644);
1037 MODULE_PARM_DESC(acpi_pstate_strict,
1038         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1039         "performed during frequency changes.");
1040
1041 late_initcall(acpi_cpufreq_init);
1042 module_exit(acpi_cpufreq_exit);
1043
1044 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1045         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1046         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1047         {}
1048 };
1049 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1050
1051 static const struct acpi_device_id processor_device_ids[] = {
1052         {ACPI_PROCESSOR_OBJECT_HID, },
1053         {ACPI_PROCESSOR_DEVICE_HID, },
1054         {},
1055 };
1056 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1057
1058 MODULE_ALIAS("acpi");