]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/cpufreq/exynos-cpufreq.c
Merge tag 'v3.12-rc4' into next
[karo-tx-linux.git] / drivers / cpufreq / exynos-cpufreq.c
1 /*
2  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * EXYNOS - CPU frequency scaling support for EXYNOS series
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/err.h>
14 #include <linux/clk.h>
15 #include <linux/io.h>
16 #include <linux/slab.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/cpufreq.h>
19 #include <linux/suspend.h>
20
21 #include <plat/cpu.h>
22
23 #include "exynos-cpufreq.h"
24
25 static struct exynos_dvfs_info *exynos_info;
26
27 static struct regulator *arm_regulator;
28 static struct cpufreq_freqs freqs;
29
30 static unsigned int locking_frequency;
31 static bool frequency_locked;
32 static DEFINE_MUTEX(cpufreq_lock);
33
34 static int exynos_verify_speed(struct cpufreq_policy *policy)
35 {
36         return cpufreq_frequency_table_verify(policy,
37                                               exynos_info->freq_table);
38 }
39
40 static unsigned int exynos_getspeed(unsigned int cpu)
41 {
42         return clk_get_rate(exynos_info->cpu_clk) / 1000;
43 }
44
45 static int exynos_cpufreq_get_index(unsigned int freq)
46 {
47         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
48         int index;
49
50         for (index = 0;
51                 freq_table[index].frequency != CPUFREQ_TABLE_END; index++)
52                 if (freq_table[index].frequency == freq)
53                         break;
54
55         if (freq_table[index].frequency == CPUFREQ_TABLE_END)
56                 return -EINVAL;
57
58         return index;
59 }
60
61 static int exynos_cpufreq_scale(unsigned int target_freq)
62 {
63         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
64         unsigned int *volt_table = exynos_info->volt_table;
65         struct cpufreq_policy *policy = cpufreq_cpu_get(0);
66         unsigned int arm_volt, safe_arm_volt = 0;
67         unsigned int mpll_freq_khz = exynos_info->mpll_freq_khz;
68         int index, old_index;
69         int ret = 0;
70
71         freqs.old = policy->cur;
72         freqs.new = target_freq;
73
74         if (freqs.new == freqs.old)
75                 goto out;
76
77         /*
78          * The policy max have been changed so that we cannot get proper
79          * old_index with cpufreq_frequency_table_target(). Thus, ignore
80          * policy and get the index from the raw freqeuncy table.
81          */
82         old_index = exynos_cpufreq_get_index(freqs.old);
83         if (old_index < 0) {
84                 ret = old_index;
85                 goto out;
86         }
87
88         index = exynos_cpufreq_get_index(target_freq);
89         if (index < 0) {
90                 ret = index;
91                 goto out;
92         }
93
94         /*
95          * ARM clock source will be changed APLL to MPLL temporary
96          * To support this level, need to control regulator for
97          * required voltage level
98          */
99         if (exynos_info->need_apll_change != NULL) {
100                 if (exynos_info->need_apll_change(old_index, index) &&
101                    (freq_table[index].frequency < mpll_freq_khz) &&
102                    (freq_table[old_index].frequency < mpll_freq_khz))
103                         safe_arm_volt = volt_table[exynos_info->pll_safe_idx];
104         }
105         arm_volt = volt_table[index];
106
107         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
108
109         /* When the new frequency is higher than current frequency */
110         if ((freqs.new > freqs.old) && !safe_arm_volt) {
111                 /* Firstly, voltage up to increase frequency */
112                 ret = regulator_set_voltage(arm_regulator, arm_volt, arm_volt);
113                 if (ret) {
114                         pr_err("%s: failed to set cpu voltage to %d\n",
115                                 __func__, arm_volt);
116                         freqs.new = freqs.old;
117                         goto post_notify;
118                 }
119         }
120
121         if (safe_arm_volt) {
122                 ret = regulator_set_voltage(arm_regulator, safe_arm_volt,
123                                       safe_arm_volt);
124                 if (ret) {
125                         pr_err("%s: failed to set cpu voltage to %d\n",
126                                 __func__, safe_arm_volt);
127                         freqs.new = freqs.old;
128                         goto post_notify;
129                 }
130         }
131
132         exynos_info->set_freq(old_index, index);
133
134 post_notify:
135         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
136
137         if (ret)
138                 goto out;
139
140         /* When the new frequency is lower than current frequency */
141         if ((freqs.new < freqs.old) ||
142            ((freqs.new > freqs.old) && safe_arm_volt)) {
143                 /* down the voltage after frequency change */
144                 regulator_set_voltage(arm_regulator, arm_volt,
145                                 arm_volt);
146                 if (ret) {
147                         pr_err("%s: failed to set cpu voltage to %d\n",
148                                 __func__, arm_volt);
149                         goto out;
150                 }
151         }
152
153 out:
154
155         cpufreq_cpu_put(policy);
156
157         return ret;
158 }
159
160 static int exynos_target(struct cpufreq_policy *policy,
161                           unsigned int target_freq,
162                           unsigned int relation)
163 {
164         struct cpufreq_frequency_table *freq_table = exynos_info->freq_table;
165         unsigned int index;
166         unsigned int new_freq;
167         int ret = 0;
168
169         mutex_lock(&cpufreq_lock);
170
171         if (frequency_locked)
172                 goto out;
173
174         if (cpufreq_frequency_table_target(policy, freq_table,
175                                            target_freq, relation, &index)) {
176                 ret = -EINVAL;
177                 goto out;
178         }
179
180         new_freq = freq_table[index].frequency;
181
182         ret = exynos_cpufreq_scale(new_freq);
183
184 out:
185         mutex_unlock(&cpufreq_lock);
186
187         return ret;
188 }
189
190 #ifdef CONFIG_PM
191 static int exynos_cpufreq_suspend(struct cpufreq_policy *policy)
192 {
193         return 0;
194 }
195
196 static int exynos_cpufreq_resume(struct cpufreq_policy *policy)
197 {
198         return 0;
199 }
200 #endif
201
202 /**
203  * exynos_cpufreq_pm_notifier - block CPUFREQ's activities in suspend-resume
204  *                      context
205  * @notifier
206  * @pm_event
207  * @v
208  *
209  * While frequency_locked == true, target() ignores every frequency but
210  * locking_frequency. The locking_frequency value is the initial frequency,
211  * which is set by the bootloader. In order to eliminate possible
212  * inconsistency in clock values, we save and restore frequencies during
213  * suspend and resume and block CPUFREQ activities. Note that the standard
214  * suspend/resume cannot be used as they are too deep (syscore_ops) for
215  * regulator actions.
216  */
217 static int exynos_cpufreq_pm_notifier(struct notifier_block *notifier,
218                                        unsigned long pm_event, void *v)
219 {
220         int ret;
221
222         switch (pm_event) {
223         case PM_SUSPEND_PREPARE:
224                 mutex_lock(&cpufreq_lock);
225                 frequency_locked = true;
226                 mutex_unlock(&cpufreq_lock);
227
228                 ret = exynos_cpufreq_scale(locking_frequency);
229                 if (ret < 0)
230                         return NOTIFY_BAD;
231
232                 break;
233
234         case PM_POST_SUSPEND:
235                 mutex_lock(&cpufreq_lock);
236                 frequency_locked = false;
237                 mutex_unlock(&cpufreq_lock);
238                 break;
239         }
240
241         return NOTIFY_OK;
242 }
243
244 static struct notifier_block exynos_cpufreq_nb = {
245         .notifier_call = exynos_cpufreq_pm_notifier,
246 };
247
248 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
249 {
250         policy->cur = policy->min = policy->max = exynos_getspeed(policy->cpu);
251
252         cpufreq_frequency_table_get_attr(exynos_info->freq_table, policy->cpu);
253
254         /* set the transition latency value */
255         policy->cpuinfo.transition_latency = 100000;
256
257         cpumask_setall(policy->cpus);
258
259         return cpufreq_frequency_table_cpuinfo(policy, exynos_info->freq_table);
260 }
261
262 static int exynos_cpufreq_cpu_exit(struct cpufreq_policy *policy)
263 {
264         cpufreq_frequency_table_put_attr(policy->cpu);
265         return 0;
266 }
267
268 static struct freq_attr *exynos_cpufreq_attr[] = {
269         &cpufreq_freq_attr_scaling_available_freqs,
270         NULL,
271 };
272
273 static struct cpufreq_driver exynos_driver = {
274         .flags          = CPUFREQ_STICKY,
275         .verify         = exynos_verify_speed,
276         .target         = exynos_target,
277         .get            = exynos_getspeed,
278         .init           = exynos_cpufreq_cpu_init,
279         .exit           = exynos_cpufreq_cpu_exit,
280         .name           = "exynos_cpufreq",
281         .attr           = exynos_cpufreq_attr,
282 #ifdef CONFIG_PM
283         .suspend        = exynos_cpufreq_suspend,
284         .resume         = exynos_cpufreq_resume,
285 #endif
286 };
287
288 static int __init exynos_cpufreq_init(void)
289 {
290         int ret = -EINVAL;
291
292         exynos_info = kzalloc(sizeof(*exynos_info), GFP_KERNEL);
293         if (!exynos_info)
294                 return -ENOMEM;
295
296         if (soc_is_exynos4210())
297                 ret = exynos4210_cpufreq_init(exynos_info);
298         else if (soc_is_exynos4212() || soc_is_exynos4412())
299                 ret = exynos4x12_cpufreq_init(exynos_info);
300         else if (soc_is_exynos5250())
301                 ret = exynos5250_cpufreq_init(exynos_info);
302         else
303                 return 0;
304
305         if (ret)
306                 goto err_vdd_arm;
307
308         if (exynos_info->set_freq == NULL) {
309                 pr_err("%s: No set_freq function (ERR)\n", __func__);
310                 goto err_vdd_arm;
311         }
312
313         arm_regulator = regulator_get(NULL, "vdd_arm");
314         if (IS_ERR(arm_regulator)) {
315                 pr_err("%s: failed to get resource vdd_arm\n", __func__);
316                 goto err_vdd_arm;
317         }
318
319         locking_frequency = exynos_getspeed(0);
320
321         register_pm_notifier(&exynos_cpufreq_nb);
322
323         if (cpufreq_register_driver(&exynos_driver)) {
324                 pr_err("%s: failed to register cpufreq driver\n", __func__);
325                 goto err_cpufreq;
326         }
327
328         return 0;
329 err_cpufreq:
330         unregister_pm_notifier(&exynos_cpufreq_nb);
331
332         regulator_put(arm_regulator);
333 err_vdd_arm:
334         kfree(exynos_info);
335         return -EINVAL;
336 }
337 late_initcall(exynos_cpufreq_init);