]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/crypto/atmel-sha.c
crypto: keys - Revert "convert public key to akcipher api"
[karo-tx-linux.git] / drivers / crypto / atmel-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53
54 #define SHA_FLAGS_FINUP         BIT(16)
55 #define SHA_FLAGS_SG            BIT(17)
56 #define SHA_FLAGS_ALGO_MASK     GENMASK(22, 18)
57 #define SHA_FLAGS_SHA1          BIT(18)
58 #define SHA_FLAGS_SHA224        BIT(19)
59 #define SHA_FLAGS_SHA256        BIT(20)
60 #define SHA_FLAGS_SHA384        BIT(21)
61 #define SHA_FLAGS_SHA512        BIT(22)
62 #define SHA_FLAGS_ERROR         BIT(23)
63 #define SHA_FLAGS_PAD           BIT(24)
64 #define SHA_FLAGS_RESTORE       BIT(25)
65
66 #define SHA_OP_UPDATE   1
67 #define SHA_OP_FINAL    2
68
69 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
70
71 #define ATMEL_SHA_DMA_THRESHOLD         56
72
73 struct atmel_sha_caps {
74         bool    has_dma;
75         bool    has_dualbuff;
76         bool    has_sha224;
77         bool    has_sha_384_512;
78         bool    has_uihv;
79 };
80
81 struct atmel_sha_dev;
82
83 /*
84  * .statesize = sizeof(struct atmel_sha_state) must be <= PAGE_SIZE / 8 as
85  * tested by the ahash_prepare_alg() function.
86  */
87 struct atmel_sha_state {
88         u8      digest[SHA512_DIGEST_SIZE];
89         u8      buffer[SHA_BUFFER_LEN];
90         u64     digcnt[2];
91         size_t  bufcnt;
92 };
93
94 struct atmel_sha_reqctx {
95         struct atmel_sha_dev    *dd;
96         unsigned long   flags;
97         unsigned long   op;
98
99         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
100         u64     digcnt[2];
101         size_t  bufcnt;
102         size_t  buflen;
103         dma_addr_t      dma_addr;
104
105         /* walk state */
106         struct scatterlist      *sg;
107         unsigned int    offset; /* offset in current sg */
108         unsigned int    total;  /* total request */
109
110         size_t block_size;
111
112         u8      buffer[0] __aligned(sizeof(u32));
113 };
114
115 struct atmel_sha_ctx {
116         struct atmel_sha_dev    *dd;
117
118         unsigned long           flags;
119 };
120
121 #define ATMEL_SHA_QUEUE_LENGTH  50
122
123 struct atmel_sha_dma {
124         struct dma_chan                 *chan;
125         struct dma_slave_config dma_conf;
126 };
127
128 struct atmel_sha_dev {
129         struct list_head        list;
130         unsigned long           phys_base;
131         struct device           *dev;
132         struct clk                      *iclk;
133         int                                     irq;
134         void __iomem            *io_base;
135
136         spinlock_t              lock;
137         int                     err;
138         struct tasklet_struct   done_task;
139         struct tasklet_struct   queue_task;
140
141         unsigned long           flags;
142         struct crypto_queue     queue;
143         struct ahash_request    *req;
144
145         struct atmel_sha_dma    dma_lch_in;
146
147         struct atmel_sha_caps   caps;
148
149         u32     hw_version;
150 };
151
152 struct atmel_sha_drv {
153         struct list_head        dev_list;
154         spinlock_t              lock;
155 };
156
157 static struct atmel_sha_drv atmel_sha = {
158         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
159         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
160 };
161
162 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
163 {
164         return readl_relaxed(dd->io_base + offset);
165 }
166
167 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
168                                         u32 offset, u32 value)
169 {
170         writel_relaxed(value, dd->io_base + offset);
171 }
172
173 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
174 {
175         size_t count;
176
177         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
178                 count = min(ctx->sg->length - ctx->offset, ctx->total);
179                 count = min(count, ctx->buflen - ctx->bufcnt);
180
181                 if (count <= 0) {
182                         /*
183                         * Check if count <= 0 because the buffer is full or
184                         * because the sg length is 0. In the latest case,
185                         * check if there is another sg in the list, a 0 length
186                         * sg doesn't necessarily mean the end of the sg list.
187                         */
188                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
189                                 ctx->sg = sg_next(ctx->sg);
190                                 continue;
191                         } else {
192                                 break;
193                         }
194                 }
195
196                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
197                         ctx->offset, count, 0);
198
199                 ctx->bufcnt += count;
200                 ctx->offset += count;
201                 ctx->total -= count;
202
203                 if (ctx->offset == ctx->sg->length) {
204                         ctx->sg = sg_next(ctx->sg);
205                         if (ctx->sg)
206                                 ctx->offset = 0;
207                         else
208                                 ctx->total = 0;
209                 }
210         }
211
212         return 0;
213 }
214
215 /*
216  * The purpose of this padding is to ensure that the padded message is a
217  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
218  * The bit "1" is appended at the end of the message followed by
219  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
220  * 128 bits block (SHA384/SHA512) equals to the message length in bits
221  * is appended.
222  *
223  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
224  *  - if message length < 56 bytes then padlen = 56 - message length
225  *  - else padlen = 64 + 56 - message length
226  *
227  * For SHA384/SHA512, padlen is calculated as followed:
228  *  - if message length < 112 bytes then padlen = 112 - message length
229  *  - else padlen = 128 + 112 - message length
230  */
231 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
232 {
233         unsigned int index, padlen;
234         u64 bits[2];
235         u64 size[2];
236
237         size[0] = ctx->digcnt[0];
238         size[1] = ctx->digcnt[1];
239
240         size[0] += ctx->bufcnt;
241         if (size[0] < ctx->bufcnt)
242                 size[1]++;
243
244         size[0] += length;
245         if (size[0]  < length)
246                 size[1]++;
247
248         bits[1] = cpu_to_be64(size[0] << 3);
249         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
250
251         if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
252                 index = ctx->bufcnt & 0x7f;
253                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
254                 *(ctx->buffer + ctx->bufcnt) = 0x80;
255                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
256                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
257                 ctx->bufcnt += padlen + 16;
258                 ctx->flags |= SHA_FLAGS_PAD;
259         } else {
260                 index = ctx->bufcnt & 0x3f;
261                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
262                 *(ctx->buffer + ctx->bufcnt) = 0x80;
263                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
264                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
265                 ctx->bufcnt += padlen + 8;
266                 ctx->flags |= SHA_FLAGS_PAD;
267         }
268 }
269
270 static int atmel_sha_init(struct ahash_request *req)
271 {
272         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
273         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
274         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
275         struct atmel_sha_dev *dd = NULL;
276         struct atmel_sha_dev *tmp;
277
278         spin_lock_bh(&atmel_sha.lock);
279         if (!tctx->dd) {
280                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
281                         dd = tmp;
282                         break;
283                 }
284                 tctx->dd = dd;
285         } else {
286                 dd = tctx->dd;
287         }
288
289         spin_unlock_bh(&atmel_sha.lock);
290
291         ctx->dd = dd;
292
293         ctx->flags = 0;
294
295         dev_dbg(dd->dev, "init: digest size: %d\n",
296                 crypto_ahash_digestsize(tfm));
297
298         switch (crypto_ahash_digestsize(tfm)) {
299         case SHA1_DIGEST_SIZE:
300                 ctx->flags |= SHA_FLAGS_SHA1;
301                 ctx->block_size = SHA1_BLOCK_SIZE;
302                 break;
303         case SHA224_DIGEST_SIZE:
304                 ctx->flags |= SHA_FLAGS_SHA224;
305                 ctx->block_size = SHA224_BLOCK_SIZE;
306                 break;
307         case SHA256_DIGEST_SIZE:
308                 ctx->flags |= SHA_FLAGS_SHA256;
309                 ctx->block_size = SHA256_BLOCK_SIZE;
310                 break;
311         case SHA384_DIGEST_SIZE:
312                 ctx->flags |= SHA_FLAGS_SHA384;
313                 ctx->block_size = SHA384_BLOCK_SIZE;
314                 break;
315         case SHA512_DIGEST_SIZE:
316                 ctx->flags |= SHA_FLAGS_SHA512;
317                 ctx->block_size = SHA512_BLOCK_SIZE;
318                 break;
319         default:
320                 return -EINVAL;
321                 break;
322         }
323
324         ctx->bufcnt = 0;
325         ctx->digcnt[0] = 0;
326         ctx->digcnt[1] = 0;
327         ctx->buflen = SHA_BUFFER_LEN;
328
329         return 0;
330 }
331
332 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
333 {
334         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
335         u32 valmr = SHA_MR_MODE_AUTO;
336         unsigned int i, hashsize = 0;
337
338         if (likely(dma)) {
339                 if (!dd->caps.has_dma)
340                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
341                 valmr = SHA_MR_MODE_PDC;
342                 if (dd->caps.has_dualbuff)
343                         valmr |= SHA_MR_DUALBUFF;
344         } else {
345                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
346         }
347
348         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
349         case SHA_FLAGS_SHA1:
350                 valmr |= SHA_MR_ALGO_SHA1;
351                 hashsize = SHA1_DIGEST_SIZE;
352                 break;
353
354         case SHA_FLAGS_SHA224:
355                 valmr |= SHA_MR_ALGO_SHA224;
356                 hashsize = SHA256_DIGEST_SIZE;
357                 break;
358
359         case SHA_FLAGS_SHA256:
360                 valmr |= SHA_MR_ALGO_SHA256;
361                 hashsize = SHA256_DIGEST_SIZE;
362                 break;
363
364         case SHA_FLAGS_SHA384:
365                 valmr |= SHA_MR_ALGO_SHA384;
366                 hashsize = SHA512_DIGEST_SIZE;
367                 break;
368
369         case SHA_FLAGS_SHA512:
370                 valmr |= SHA_MR_ALGO_SHA512;
371                 hashsize = SHA512_DIGEST_SIZE;
372                 break;
373
374         default:
375                 break;
376         }
377
378         /* Setting CR_FIRST only for the first iteration */
379         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
380                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
381         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
382                 const u32 *hash = (const u32 *)ctx->digest;
383
384                 /*
385                  * Restore the hardware context: update the User Initialize
386                  * Hash Value (UIHV) with the value saved when the latest
387                  * 'update' operation completed on this very same crypto
388                  * request.
389                  */
390                 ctx->flags &= ~SHA_FLAGS_RESTORE;
391                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
392                 for (i = 0; i < hashsize / sizeof(u32); ++i)
393                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
394                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
395                 valmr |= SHA_MR_UIHV;
396         }
397         /*
398          * WARNING: If the UIHV feature is not available, the hardware CANNOT
399          * process concurrent requests: the internal registers used to store
400          * the hash/digest are still set to the partial digest output values
401          * computed during the latest round.
402          */
403
404         atmel_sha_write(dd, SHA_MR, valmr);
405 }
406
407 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
408                               size_t length, int final)
409 {
410         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
411         int count, len32;
412         const u32 *buffer = (const u32 *)buf;
413
414         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
415                 ctx->digcnt[1], ctx->digcnt[0], length, final);
416
417         atmel_sha_write_ctrl(dd, 0);
418
419         /* should be non-zero before next lines to disable clocks later */
420         ctx->digcnt[0] += length;
421         if (ctx->digcnt[0] < length)
422                 ctx->digcnt[1]++;
423
424         if (final)
425                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
426
427         len32 = DIV_ROUND_UP(length, sizeof(u32));
428
429         dd->flags |= SHA_FLAGS_CPU;
430
431         for (count = 0; count < len32; count++)
432                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
433
434         return -EINPROGRESS;
435 }
436
437 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
438                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
439 {
440         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
441         int len32;
442
443         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
444                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
445
446         len32 = DIV_ROUND_UP(length1, sizeof(u32));
447         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
448         atmel_sha_write(dd, SHA_TPR, dma_addr1);
449         atmel_sha_write(dd, SHA_TCR, len32);
450
451         len32 = DIV_ROUND_UP(length2, sizeof(u32));
452         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
453         atmel_sha_write(dd, SHA_TNCR, len32);
454
455         atmel_sha_write_ctrl(dd, 1);
456
457         /* should be non-zero before next lines to disable clocks later */
458         ctx->digcnt[0] += length1;
459         if (ctx->digcnt[0] < length1)
460                 ctx->digcnt[1]++;
461
462         if (final)
463                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
464
465         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
466
467         /* Start DMA transfer */
468         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
469
470         return -EINPROGRESS;
471 }
472
473 static void atmel_sha_dma_callback(void *data)
474 {
475         struct atmel_sha_dev *dd = data;
476
477         /* dma_lch_in - completed - wait DATRDY */
478         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
479 }
480
481 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
482                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
483 {
484         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
485         struct dma_async_tx_descriptor  *in_desc;
486         struct scatterlist sg[2];
487
488         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
489                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
490
491         dd->dma_lch_in.dma_conf.src_maxburst = 16;
492         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
493
494         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
495
496         if (length2) {
497                 sg_init_table(sg, 2);
498                 sg_dma_address(&sg[0]) = dma_addr1;
499                 sg_dma_len(&sg[0]) = length1;
500                 sg_dma_address(&sg[1]) = dma_addr2;
501                 sg_dma_len(&sg[1]) = length2;
502                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
503                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
504         } else {
505                 sg_init_table(sg, 1);
506                 sg_dma_address(&sg[0]) = dma_addr1;
507                 sg_dma_len(&sg[0]) = length1;
508                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
509                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
510         }
511         if (!in_desc)
512                 return -EINVAL;
513
514         in_desc->callback = atmel_sha_dma_callback;
515         in_desc->callback_param = dd;
516
517         atmel_sha_write_ctrl(dd, 1);
518
519         /* should be non-zero before next lines to disable clocks later */
520         ctx->digcnt[0] += length1;
521         if (ctx->digcnt[0] < length1)
522                 ctx->digcnt[1]++;
523
524         if (final)
525                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
526
527         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
528
529         /* Start DMA transfer */
530         dmaengine_submit(in_desc);
531         dma_async_issue_pending(dd->dma_lch_in.chan);
532
533         return -EINPROGRESS;
534 }
535
536 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
537                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
538 {
539         if (dd->caps.has_dma)
540                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
541                                 dma_addr2, length2, final);
542         else
543                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
544                                 dma_addr2, length2, final);
545 }
546
547 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
548 {
549         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
550         int bufcnt;
551
552         atmel_sha_append_sg(ctx);
553         atmel_sha_fill_padding(ctx, 0);
554         bufcnt = ctx->bufcnt;
555         ctx->bufcnt = 0;
556
557         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
558 }
559
560 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
561                                         struct atmel_sha_reqctx *ctx,
562                                         size_t length, int final)
563 {
564         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
565                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
566         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
567                 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
568                                 ctx->block_size);
569                 return -EINVAL;
570         }
571
572         ctx->flags &= ~SHA_FLAGS_SG;
573
574         /* next call does not fail... so no unmap in the case of error */
575         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
576 }
577
578 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
579 {
580         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
581         unsigned int final;
582         size_t count;
583
584         atmel_sha_append_sg(ctx);
585
586         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
587
588         dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
589                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
590
591         if (final)
592                 atmel_sha_fill_padding(ctx, 0);
593
594         if (final || (ctx->bufcnt == ctx->buflen)) {
595                 count = ctx->bufcnt;
596                 ctx->bufcnt = 0;
597                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
598         }
599
600         return 0;
601 }
602
603 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
604 {
605         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
606         unsigned int length, final, tail;
607         struct scatterlist *sg;
608         unsigned int count;
609
610         if (!ctx->total)
611                 return 0;
612
613         if (ctx->bufcnt || ctx->offset)
614                 return atmel_sha_update_dma_slow(dd);
615
616         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
617                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
618
619         sg = ctx->sg;
620
621         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
622                 return atmel_sha_update_dma_slow(dd);
623
624         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
625                 /* size is not ctx->block_size aligned */
626                 return atmel_sha_update_dma_slow(dd);
627
628         length = min(ctx->total, sg->length);
629
630         if (sg_is_last(sg)) {
631                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
632                         /* not last sg must be ctx->block_size aligned */
633                         tail = length & (ctx->block_size - 1);
634                         length -= tail;
635                 }
636         }
637
638         ctx->total -= length;
639         ctx->offset = length; /* offset where to start slow */
640
641         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
642
643         /* Add padding */
644         if (final) {
645                 tail = length & (ctx->block_size - 1);
646                 length -= tail;
647                 ctx->total += tail;
648                 ctx->offset = length; /* offset where to start slow */
649
650                 sg = ctx->sg;
651                 atmel_sha_append_sg(ctx);
652
653                 atmel_sha_fill_padding(ctx, length);
654
655                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
656                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
657                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
658                         dev_err(dd->dev, "dma %u bytes error\n",
659                                 ctx->buflen + ctx->block_size);
660                         return -EINVAL;
661                 }
662
663                 if (length == 0) {
664                         ctx->flags &= ~SHA_FLAGS_SG;
665                         count = ctx->bufcnt;
666                         ctx->bufcnt = 0;
667                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
668                                         0, final);
669                 } else {
670                         ctx->sg = sg;
671                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
672                                 DMA_TO_DEVICE)) {
673                                         dev_err(dd->dev, "dma_map_sg  error\n");
674                                         return -EINVAL;
675                         }
676
677                         ctx->flags |= SHA_FLAGS_SG;
678
679                         count = ctx->bufcnt;
680                         ctx->bufcnt = 0;
681                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
682                                         length, ctx->dma_addr, count, final);
683                 }
684         }
685
686         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
687                 dev_err(dd->dev, "dma_map_sg  error\n");
688                 return -EINVAL;
689         }
690
691         ctx->flags |= SHA_FLAGS_SG;
692
693         /* next call does not fail... so no unmap in the case of error */
694         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
695                                                                 0, final);
696 }
697
698 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
699 {
700         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
701
702         if (ctx->flags & SHA_FLAGS_SG) {
703                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
704                 if (ctx->sg->length == ctx->offset) {
705                         ctx->sg = sg_next(ctx->sg);
706                         if (ctx->sg)
707                                 ctx->offset = 0;
708                 }
709                 if (ctx->flags & SHA_FLAGS_PAD) {
710                         dma_unmap_single(dd->dev, ctx->dma_addr,
711                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
712                 }
713         } else {
714                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
715                                                 ctx->block_size, DMA_TO_DEVICE);
716         }
717
718         return 0;
719 }
720
721 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
722 {
723         struct ahash_request *req = dd->req;
724         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
725         int err;
726
727         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
728                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
729
730         if (ctx->flags & SHA_FLAGS_CPU)
731                 err = atmel_sha_update_cpu(dd);
732         else
733                 err = atmel_sha_update_dma_start(dd);
734
735         /* wait for dma completion before can take more data */
736         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
737                         err, ctx->digcnt[1], ctx->digcnt[0]);
738
739         return err;
740 }
741
742 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
743 {
744         struct ahash_request *req = dd->req;
745         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
746         int err = 0;
747         int count;
748
749         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
750                 atmel_sha_fill_padding(ctx, 0);
751                 count = ctx->bufcnt;
752                 ctx->bufcnt = 0;
753                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
754         }
755         /* faster to handle last block with cpu */
756         else {
757                 atmel_sha_fill_padding(ctx, 0);
758                 count = ctx->bufcnt;
759                 ctx->bufcnt = 0;
760                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
761         }
762
763         dev_dbg(dd->dev, "final_req: err: %d\n", err);
764
765         return err;
766 }
767
768 static void atmel_sha_copy_hash(struct ahash_request *req)
769 {
770         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
771         u32 *hash = (u32 *)ctx->digest;
772         unsigned int i, hashsize;
773
774         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
775         case SHA_FLAGS_SHA1:
776                 hashsize = SHA1_DIGEST_SIZE;
777                 break;
778
779         case SHA_FLAGS_SHA224:
780         case SHA_FLAGS_SHA256:
781                 hashsize = SHA256_DIGEST_SIZE;
782                 break;
783
784         case SHA_FLAGS_SHA384:
785         case SHA_FLAGS_SHA512:
786                 hashsize = SHA512_DIGEST_SIZE;
787                 break;
788
789         default:
790                 /* Should not happen... */
791                 return;
792         }
793
794         for (i = 0; i < hashsize / sizeof(u32); ++i)
795                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
796         ctx->flags |= SHA_FLAGS_RESTORE;
797 }
798
799 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
800 {
801         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
802
803         if (!req->result)
804                 return;
805
806         if (ctx->flags & SHA_FLAGS_SHA1)
807                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
808         else if (ctx->flags & SHA_FLAGS_SHA224)
809                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
810         else if (ctx->flags & SHA_FLAGS_SHA256)
811                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
812         else if (ctx->flags & SHA_FLAGS_SHA384)
813                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
814         else
815                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
816 }
817
818 static int atmel_sha_finish(struct ahash_request *req)
819 {
820         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
821         struct atmel_sha_dev *dd = ctx->dd;
822
823         if (ctx->digcnt[0] || ctx->digcnt[1])
824                 atmel_sha_copy_ready_hash(req);
825
826         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
827                 ctx->digcnt[0], ctx->bufcnt);
828
829         return 0;
830 }
831
832 static void atmel_sha_finish_req(struct ahash_request *req, int err)
833 {
834         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
835         struct atmel_sha_dev *dd = ctx->dd;
836
837         if (!err) {
838                 atmel_sha_copy_hash(req);
839                 if (SHA_FLAGS_FINAL & dd->flags)
840                         err = atmel_sha_finish(req);
841         } else {
842                 ctx->flags |= SHA_FLAGS_ERROR;
843         }
844
845         /* atomic operation is not needed here */
846         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
847                         SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
848
849         clk_disable_unprepare(dd->iclk);
850
851         if (req->base.complete)
852                 req->base.complete(&req->base, err);
853
854         /* handle new request */
855         tasklet_schedule(&dd->queue_task);
856 }
857
858 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
859 {
860         int err;
861
862         err = clk_prepare_enable(dd->iclk);
863         if (err)
864                 return err;
865
866         if (!(SHA_FLAGS_INIT & dd->flags)) {
867                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
868                 dd->flags |= SHA_FLAGS_INIT;
869                 dd->err = 0;
870         }
871
872         return 0;
873 }
874
875 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
876 {
877         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
878 }
879
880 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
881 {
882         atmel_sha_hw_init(dd);
883
884         dd->hw_version = atmel_sha_get_version(dd);
885
886         dev_info(dd->dev,
887                         "version: 0x%x\n", dd->hw_version);
888
889         clk_disable_unprepare(dd->iclk);
890 }
891
892 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
893                                   struct ahash_request *req)
894 {
895         struct crypto_async_request *async_req, *backlog;
896         struct atmel_sha_reqctx *ctx;
897         unsigned long flags;
898         int err = 0, ret = 0;
899
900         spin_lock_irqsave(&dd->lock, flags);
901         if (req)
902                 ret = ahash_enqueue_request(&dd->queue, req);
903
904         if (SHA_FLAGS_BUSY & dd->flags) {
905                 spin_unlock_irqrestore(&dd->lock, flags);
906                 return ret;
907         }
908
909         backlog = crypto_get_backlog(&dd->queue);
910         async_req = crypto_dequeue_request(&dd->queue);
911         if (async_req)
912                 dd->flags |= SHA_FLAGS_BUSY;
913
914         spin_unlock_irqrestore(&dd->lock, flags);
915
916         if (!async_req)
917                 return ret;
918
919         if (backlog)
920                 backlog->complete(backlog, -EINPROGRESS);
921
922         req = ahash_request_cast(async_req);
923         dd->req = req;
924         ctx = ahash_request_ctx(req);
925
926         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
927                                                 ctx->op, req->nbytes);
928
929         err = atmel_sha_hw_init(dd);
930
931         if (err)
932                 goto err1;
933
934         if (ctx->op == SHA_OP_UPDATE) {
935                 err = atmel_sha_update_req(dd);
936                 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
937                         /* no final() after finup() */
938                         err = atmel_sha_final_req(dd);
939         } else if (ctx->op == SHA_OP_FINAL) {
940                 err = atmel_sha_final_req(dd);
941         }
942
943 err1:
944         if (err != -EINPROGRESS)
945                 /* done_task will not finish it, so do it here */
946                 atmel_sha_finish_req(req, err);
947
948         dev_dbg(dd->dev, "exit, err: %d\n", err);
949
950         return ret;
951 }
952
953 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
954 {
955         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
957         struct atmel_sha_dev *dd = tctx->dd;
958
959         ctx->op = op;
960
961         return atmel_sha_handle_queue(dd, req);
962 }
963
964 static int atmel_sha_update(struct ahash_request *req)
965 {
966         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
967
968         if (!req->nbytes)
969                 return 0;
970
971         ctx->total = req->nbytes;
972         ctx->sg = req->src;
973         ctx->offset = 0;
974
975         if (ctx->flags & SHA_FLAGS_FINUP) {
976                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
977                         /* faster to use CPU for short transfers */
978                         ctx->flags |= SHA_FLAGS_CPU;
979         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
980                 atmel_sha_append_sg(ctx);
981                 return 0;
982         }
983         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
984 }
985
986 static int atmel_sha_final(struct ahash_request *req)
987 {
988         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
989         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
990         struct atmel_sha_dev *dd = tctx->dd;
991
992         int err = 0;
993
994         ctx->flags |= SHA_FLAGS_FINUP;
995
996         if (ctx->flags & SHA_FLAGS_ERROR)
997                 return 0; /* uncompleted hash is not needed */
998
999         if (ctx->bufcnt) {
1000                 return atmel_sha_enqueue(req, SHA_OP_FINAL);
1001         } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
1002                 err = atmel_sha_hw_init(dd);
1003                 if (err)
1004                         goto err1;
1005
1006                 dd->req = req;
1007                 dd->flags |= SHA_FLAGS_BUSY;
1008                 err = atmel_sha_final_req(dd);
1009         } else {
1010                 /* copy ready hash (+ finalize hmac) */
1011                 return atmel_sha_finish(req);
1012         }
1013
1014 err1:
1015         if (err != -EINPROGRESS)
1016                 /* done_task will not finish it, so do it here */
1017                 atmel_sha_finish_req(req, err);
1018
1019         return err;
1020 }
1021
1022 static int atmel_sha_finup(struct ahash_request *req)
1023 {
1024         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1025         int err1, err2;
1026
1027         ctx->flags |= SHA_FLAGS_FINUP;
1028
1029         err1 = atmel_sha_update(req);
1030         if (err1 == -EINPROGRESS || err1 == -EBUSY)
1031                 return err1;
1032
1033         /*
1034          * final() has to be always called to cleanup resources
1035          * even if udpate() failed, except EINPROGRESS
1036          */
1037         err2 = atmel_sha_final(req);
1038
1039         return err1 ?: err2;
1040 }
1041
1042 static int atmel_sha_digest(struct ahash_request *req)
1043 {
1044         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1045 }
1046
1047
1048 static int atmel_sha_export(struct ahash_request *req, void *out)
1049 {
1050         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1051         struct atmel_sha_state state;
1052
1053         memcpy(state.digest, ctx->digest, SHA512_DIGEST_SIZE);
1054         memcpy(state.buffer, ctx->buffer, ctx->bufcnt);
1055         state.bufcnt = ctx->bufcnt;
1056         state.digcnt[0] = ctx->digcnt[0];
1057         state.digcnt[1] = ctx->digcnt[1];
1058
1059         /* out might be unaligned. */
1060         memcpy(out, &state, sizeof(state));
1061         return 0;
1062 }
1063
1064 static int atmel_sha_import(struct ahash_request *req, const void *in)
1065 {
1066         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1067         struct atmel_sha_state state;
1068
1069         /* in might be unaligned. */
1070         memcpy(&state, in, sizeof(state));
1071
1072         memcpy(ctx->digest, state.digest, SHA512_DIGEST_SIZE);
1073         memcpy(ctx->buffer, state.buffer, state.bufcnt);
1074         ctx->bufcnt = state.bufcnt;
1075         ctx->digcnt[0] = state.digcnt[0];
1076         ctx->digcnt[1] = state.digcnt[1];
1077         return 0;
1078 }
1079
1080 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1081 {
1082         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1083                                  sizeof(struct atmel_sha_reqctx) +
1084                                  SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
1085
1086         return 0;
1087 }
1088
1089 static struct ahash_alg sha_1_256_algs[] = {
1090 {
1091         .init           = atmel_sha_init,
1092         .update         = atmel_sha_update,
1093         .final          = atmel_sha_final,
1094         .finup          = atmel_sha_finup,
1095         .digest         = atmel_sha_digest,
1096         .export         = atmel_sha_export,
1097         .import         = atmel_sha_import,
1098         .halg = {
1099                 .digestsize     = SHA1_DIGEST_SIZE,
1100                 .statesize      = sizeof(struct atmel_sha_state),
1101                 .base   = {
1102                         .cra_name               = "sha1",
1103                         .cra_driver_name        = "atmel-sha1",
1104                         .cra_priority           = 100,
1105                         .cra_flags              = CRYPTO_ALG_ASYNC,
1106                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1107                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1108                         .cra_alignmask          = 0,
1109                         .cra_module             = THIS_MODULE,
1110                         .cra_init               = atmel_sha_cra_init,
1111                 }
1112         }
1113 },
1114 {
1115         .init           = atmel_sha_init,
1116         .update         = atmel_sha_update,
1117         .final          = atmel_sha_final,
1118         .finup          = atmel_sha_finup,
1119         .digest         = atmel_sha_digest,
1120         .export         = atmel_sha_export,
1121         .import         = atmel_sha_import,
1122         .halg = {
1123                 .digestsize     = SHA256_DIGEST_SIZE,
1124                 .statesize      = sizeof(struct atmel_sha_state),
1125                 .base   = {
1126                         .cra_name               = "sha256",
1127                         .cra_driver_name        = "atmel-sha256",
1128                         .cra_priority           = 100,
1129                         .cra_flags              = CRYPTO_ALG_ASYNC,
1130                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1131                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1132                         .cra_alignmask          = 0,
1133                         .cra_module             = THIS_MODULE,
1134                         .cra_init               = atmel_sha_cra_init,
1135                 }
1136         }
1137 },
1138 };
1139
1140 static struct ahash_alg sha_224_alg = {
1141         .init           = atmel_sha_init,
1142         .update         = atmel_sha_update,
1143         .final          = atmel_sha_final,
1144         .finup          = atmel_sha_finup,
1145         .digest         = atmel_sha_digest,
1146         .export         = atmel_sha_export,
1147         .import         = atmel_sha_import,
1148         .halg = {
1149                 .digestsize     = SHA224_DIGEST_SIZE,
1150                 .statesize      = sizeof(struct atmel_sha_state),
1151                 .base   = {
1152                         .cra_name               = "sha224",
1153                         .cra_driver_name        = "atmel-sha224",
1154                         .cra_priority           = 100,
1155                         .cra_flags              = CRYPTO_ALG_ASYNC,
1156                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1157                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1158                         .cra_alignmask          = 0,
1159                         .cra_module             = THIS_MODULE,
1160                         .cra_init               = atmel_sha_cra_init,
1161                 }
1162         }
1163 };
1164
1165 static struct ahash_alg sha_384_512_algs[] = {
1166 {
1167         .init           = atmel_sha_init,
1168         .update         = atmel_sha_update,
1169         .final          = atmel_sha_final,
1170         .finup          = atmel_sha_finup,
1171         .digest         = atmel_sha_digest,
1172         .export         = atmel_sha_export,
1173         .import         = atmel_sha_import,
1174         .halg = {
1175                 .digestsize     = SHA384_DIGEST_SIZE,
1176                 .statesize      = sizeof(struct atmel_sha_state),
1177                 .base   = {
1178                         .cra_name               = "sha384",
1179                         .cra_driver_name        = "atmel-sha384",
1180                         .cra_priority           = 100,
1181                         .cra_flags              = CRYPTO_ALG_ASYNC,
1182                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1183                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1184                         .cra_alignmask          = 0x3,
1185                         .cra_module             = THIS_MODULE,
1186                         .cra_init               = atmel_sha_cra_init,
1187                 }
1188         }
1189 },
1190 {
1191         .init           = atmel_sha_init,
1192         .update         = atmel_sha_update,
1193         .final          = atmel_sha_final,
1194         .finup          = atmel_sha_finup,
1195         .digest         = atmel_sha_digest,
1196         .export         = atmel_sha_export,
1197         .import         = atmel_sha_import,
1198         .halg = {
1199                 .digestsize     = SHA512_DIGEST_SIZE,
1200                 .statesize      = sizeof(struct atmel_sha_state),
1201                 .base   = {
1202                         .cra_name               = "sha512",
1203                         .cra_driver_name        = "atmel-sha512",
1204                         .cra_priority           = 100,
1205                         .cra_flags              = CRYPTO_ALG_ASYNC,
1206                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1207                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1208                         .cra_alignmask          = 0x3,
1209                         .cra_module             = THIS_MODULE,
1210                         .cra_init               = atmel_sha_cra_init,
1211                 }
1212         }
1213 },
1214 };
1215
1216 static void atmel_sha_queue_task(unsigned long data)
1217 {
1218         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1219
1220         atmel_sha_handle_queue(dd, NULL);
1221 }
1222
1223 static void atmel_sha_done_task(unsigned long data)
1224 {
1225         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1226         int err = 0;
1227
1228         if (SHA_FLAGS_CPU & dd->flags) {
1229                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1230                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1231                         goto finish;
1232                 }
1233         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1234                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1235                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1236                         atmel_sha_update_dma_stop(dd);
1237                         if (dd->err) {
1238                                 err = dd->err;
1239                                 goto finish;
1240                         }
1241                 }
1242                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1243                         /* hash or semi-hash ready */
1244                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1245                                                 SHA_FLAGS_OUTPUT_READY);
1246                         err = atmel_sha_update_dma_start(dd);
1247                         if (err != -EINPROGRESS)
1248                                 goto finish;
1249                 }
1250         }
1251         return;
1252
1253 finish:
1254         /* finish curent request */
1255         atmel_sha_finish_req(dd->req, err);
1256 }
1257
1258 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1259 {
1260         struct atmel_sha_dev *sha_dd = dev_id;
1261         u32 reg;
1262
1263         reg = atmel_sha_read(sha_dd, SHA_ISR);
1264         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1265                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1266                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1267                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1268                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1269                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1270                         tasklet_schedule(&sha_dd->done_task);
1271                 } else {
1272                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1273                 }
1274                 return IRQ_HANDLED;
1275         }
1276
1277         return IRQ_NONE;
1278 }
1279
1280 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1281 {
1282         int i;
1283
1284         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1285                 crypto_unregister_ahash(&sha_1_256_algs[i]);
1286
1287         if (dd->caps.has_sha224)
1288                 crypto_unregister_ahash(&sha_224_alg);
1289
1290         if (dd->caps.has_sha_384_512) {
1291                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1292                         crypto_unregister_ahash(&sha_384_512_algs[i]);
1293         }
1294 }
1295
1296 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1297 {
1298         int err, i, j;
1299
1300         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1301                 err = crypto_register_ahash(&sha_1_256_algs[i]);
1302                 if (err)
1303                         goto err_sha_1_256_algs;
1304         }
1305
1306         if (dd->caps.has_sha224) {
1307                 err = crypto_register_ahash(&sha_224_alg);
1308                 if (err)
1309                         goto err_sha_224_algs;
1310         }
1311
1312         if (dd->caps.has_sha_384_512) {
1313                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1314                         err = crypto_register_ahash(&sha_384_512_algs[i]);
1315                         if (err)
1316                                 goto err_sha_384_512_algs;
1317                 }
1318         }
1319
1320         return 0;
1321
1322 err_sha_384_512_algs:
1323         for (j = 0; j < i; j++)
1324                 crypto_unregister_ahash(&sha_384_512_algs[j]);
1325         crypto_unregister_ahash(&sha_224_alg);
1326 err_sha_224_algs:
1327         i = ARRAY_SIZE(sha_1_256_algs);
1328 err_sha_1_256_algs:
1329         for (j = 0; j < i; j++)
1330                 crypto_unregister_ahash(&sha_1_256_algs[j]);
1331
1332         return err;
1333 }
1334
1335 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1336 {
1337         struct at_dma_slave     *sl = slave;
1338
1339         if (sl && sl->dma_dev == chan->device->dev) {
1340                 chan->private = sl;
1341                 return true;
1342         } else {
1343                 return false;
1344         }
1345 }
1346
1347 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1348                                 struct crypto_platform_data *pdata)
1349 {
1350         int err = -ENOMEM;
1351         dma_cap_mask_t mask_in;
1352
1353         /* Try to grab DMA channel */
1354         dma_cap_zero(mask_in);
1355         dma_cap_set(DMA_SLAVE, mask_in);
1356
1357         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1358                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1359         if (!dd->dma_lch_in.chan) {
1360                 dev_warn(dd->dev, "no DMA channel available\n");
1361                 return err;
1362         }
1363
1364         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1365         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1366                 SHA_REG_DIN(0);
1367         dd->dma_lch_in.dma_conf.src_maxburst = 1;
1368         dd->dma_lch_in.dma_conf.src_addr_width =
1369                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1370         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1371         dd->dma_lch_in.dma_conf.dst_addr_width =
1372                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1373         dd->dma_lch_in.dma_conf.device_fc = false;
1374
1375         return 0;
1376 }
1377
1378 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1379 {
1380         dma_release_channel(dd->dma_lch_in.chan);
1381 }
1382
1383 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1384 {
1385
1386         dd->caps.has_dma = 0;
1387         dd->caps.has_dualbuff = 0;
1388         dd->caps.has_sha224 = 0;
1389         dd->caps.has_sha_384_512 = 0;
1390         dd->caps.has_uihv = 0;
1391
1392         /* keep only major version number */
1393         switch (dd->hw_version & 0xff0) {
1394         case 0x510:
1395                 dd->caps.has_dma = 1;
1396                 dd->caps.has_dualbuff = 1;
1397                 dd->caps.has_sha224 = 1;
1398                 dd->caps.has_sha_384_512 = 1;
1399                 dd->caps.has_uihv = 1;
1400                 break;
1401         case 0x420:
1402                 dd->caps.has_dma = 1;
1403                 dd->caps.has_dualbuff = 1;
1404                 dd->caps.has_sha224 = 1;
1405                 dd->caps.has_sha_384_512 = 1;
1406                 dd->caps.has_uihv = 1;
1407                 break;
1408         case 0x410:
1409                 dd->caps.has_dma = 1;
1410                 dd->caps.has_dualbuff = 1;
1411                 dd->caps.has_sha224 = 1;
1412                 dd->caps.has_sha_384_512 = 1;
1413                 break;
1414         case 0x400:
1415                 dd->caps.has_dma = 1;
1416                 dd->caps.has_dualbuff = 1;
1417                 dd->caps.has_sha224 = 1;
1418                 break;
1419         case 0x320:
1420                 break;
1421         default:
1422                 dev_warn(dd->dev,
1423                                 "Unmanaged sha version, set minimum capabilities\n");
1424                 break;
1425         }
1426 }
1427
1428 #if defined(CONFIG_OF)
1429 static const struct of_device_id atmel_sha_dt_ids[] = {
1430         { .compatible = "atmel,at91sam9g46-sha" },
1431         { /* sentinel */ }
1432 };
1433
1434 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1435
1436 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1437 {
1438         struct device_node *np = pdev->dev.of_node;
1439         struct crypto_platform_data *pdata;
1440
1441         if (!np) {
1442                 dev_err(&pdev->dev, "device node not found\n");
1443                 return ERR_PTR(-EINVAL);
1444         }
1445
1446         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1447         if (!pdata) {
1448                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1449                 return ERR_PTR(-ENOMEM);
1450         }
1451
1452         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1453                                         sizeof(*(pdata->dma_slave)),
1454                                         GFP_KERNEL);
1455         if (!pdata->dma_slave) {
1456                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1457                 return ERR_PTR(-ENOMEM);
1458         }
1459
1460         return pdata;
1461 }
1462 #else /* CONFIG_OF */
1463 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1464 {
1465         return ERR_PTR(-EINVAL);
1466 }
1467 #endif
1468
1469 static int atmel_sha_probe(struct platform_device *pdev)
1470 {
1471         struct atmel_sha_dev *sha_dd;
1472         struct crypto_platform_data     *pdata;
1473         struct device *dev = &pdev->dev;
1474         struct resource *sha_res;
1475         int err;
1476
1477         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
1478         if (sha_dd == NULL) {
1479                 dev_err(dev, "unable to alloc data struct.\n");
1480                 err = -ENOMEM;
1481                 goto sha_dd_err;
1482         }
1483
1484         sha_dd->dev = dev;
1485
1486         platform_set_drvdata(pdev, sha_dd);
1487
1488         INIT_LIST_HEAD(&sha_dd->list);
1489         spin_lock_init(&sha_dd->lock);
1490
1491         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1492                                         (unsigned long)sha_dd);
1493         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
1494                                         (unsigned long)sha_dd);
1495
1496         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1497
1498         sha_dd->irq = -1;
1499
1500         /* Get the base address */
1501         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502         if (!sha_res) {
1503                 dev_err(dev, "no MEM resource info\n");
1504                 err = -ENODEV;
1505                 goto res_err;
1506         }
1507         sha_dd->phys_base = sha_res->start;
1508
1509         /* Get the IRQ */
1510         sha_dd->irq = platform_get_irq(pdev,  0);
1511         if (sha_dd->irq < 0) {
1512                 dev_err(dev, "no IRQ resource info\n");
1513                 err = sha_dd->irq;
1514                 goto res_err;
1515         }
1516
1517         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
1518                                IRQF_SHARED, "atmel-sha", sha_dd);
1519         if (err) {
1520                 dev_err(dev, "unable to request sha irq.\n");
1521                 goto res_err;
1522         }
1523
1524         /* Initializing the clock */
1525         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
1526         if (IS_ERR(sha_dd->iclk)) {
1527                 dev_err(dev, "clock initialization failed.\n");
1528                 err = PTR_ERR(sha_dd->iclk);
1529                 goto res_err;
1530         }
1531
1532         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
1533         if (!sha_dd->io_base) {
1534                 dev_err(dev, "can't ioremap\n");
1535                 err = -ENOMEM;
1536                 goto res_err;
1537         }
1538
1539         atmel_sha_hw_version_init(sha_dd);
1540
1541         atmel_sha_get_cap(sha_dd);
1542
1543         if (sha_dd->caps.has_dma) {
1544                 pdata = pdev->dev.platform_data;
1545                 if (!pdata) {
1546                         pdata = atmel_sha_of_init(pdev);
1547                         if (IS_ERR(pdata)) {
1548                                 dev_err(&pdev->dev, "platform data not available\n");
1549                                 err = PTR_ERR(pdata);
1550                                 goto res_err;
1551                         }
1552                 }
1553                 if (!pdata->dma_slave) {
1554                         err = -ENXIO;
1555                         goto res_err;
1556                 }
1557                 err = atmel_sha_dma_init(sha_dd, pdata);
1558                 if (err)
1559                         goto err_sha_dma;
1560
1561                 dev_info(dev, "using %s for DMA transfers\n",
1562                                 dma_chan_name(sha_dd->dma_lch_in.chan));
1563         }
1564
1565         spin_lock(&atmel_sha.lock);
1566         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1567         spin_unlock(&atmel_sha.lock);
1568
1569         err = atmel_sha_register_algs(sha_dd);
1570         if (err)
1571                 goto err_algs;
1572
1573         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1574                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
1575                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1576
1577         return 0;
1578
1579 err_algs:
1580         spin_lock(&atmel_sha.lock);
1581         list_del(&sha_dd->list);
1582         spin_unlock(&atmel_sha.lock);
1583         if (sha_dd->caps.has_dma)
1584                 atmel_sha_dma_cleanup(sha_dd);
1585 err_sha_dma:
1586 res_err:
1587         tasklet_kill(&sha_dd->queue_task);
1588         tasklet_kill(&sha_dd->done_task);
1589 sha_dd_err:
1590         dev_err(dev, "initialization failed.\n");
1591
1592         return err;
1593 }
1594
1595 static int atmel_sha_remove(struct platform_device *pdev)
1596 {
1597         static struct atmel_sha_dev *sha_dd;
1598
1599         sha_dd = platform_get_drvdata(pdev);
1600         if (!sha_dd)
1601                 return -ENODEV;
1602         spin_lock(&atmel_sha.lock);
1603         list_del(&sha_dd->list);
1604         spin_unlock(&atmel_sha.lock);
1605
1606         atmel_sha_unregister_algs(sha_dd);
1607
1608         tasklet_kill(&sha_dd->queue_task);
1609         tasklet_kill(&sha_dd->done_task);
1610
1611         if (sha_dd->caps.has_dma)
1612                 atmel_sha_dma_cleanup(sha_dd);
1613
1614         iounmap(sha_dd->io_base);
1615
1616         clk_put(sha_dd->iclk);
1617
1618         if (sha_dd->irq >= 0)
1619                 free_irq(sha_dd->irq, sha_dd);
1620
1621         return 0;
1622 }
1623
1624 static struct platform_driver atmel_sha_driver = {
1625         .probe          = atmel_sha_probe,
1626         .remove         = atmel_sha_remove,
1627         .driver         = {
1628                 .name   = "atmel_sha",
1629                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1630         },
1631 };
1632
1633 module_platform_driver(atmel_sha_driver);
1634
1635 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1636 MODULE_LICENSE("GPL v2");
1637 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");