]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/dma/edma.c
Merge remote-tracking branch 'hwmon-staging/hwmon-next'
[karo-tx-linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /* Max of 16 segments per channel to conserve PaRAM slots */
50 #define MAX_NR_SG               16
51 #define EDMA_MAX_SLOTS          MAX_NR_SG
52 #define EDMA_DESCRIPTORS        16
53
54 struct edma_desc {
55         struct virt_dma_desc            vdesc;
56         struct list_head                node;
57         int                             absync;
58         int                             pset_nr;
59         int                             processed;
60         struct edmacc_param             pset[0];
61 };
62
63 struct edma_cc;
64
65 struct edma_chan {
66         struct virt_dma_chan            vchan;
67         struct list_head                node;
68         struct edma_desc                *edesc;
69         struct edma_cc                  *ecc;
70         int                             ch_num;
71         bool                            alloced;
72         int                             slot[EDMA_MAX_SLOTS];
73         int                             missed;
74         struct dma_slave_config         cfg;
75 };
76
77 struct edma_cc {
78         int                             ctlr;
79         struct dma_device               dma_slave;
80         struct edma_chan                slave_chans[EDMA_CHANS];
81         int                             num_slave_chans;
82         int                             dummy_slot;
83 };
84
85 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
86 {
87         return container_of(d, struct edma_cc, dma_slave);
88 }
89
90 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
91 {
92         return container_of(c, struct edma_chan, vchan.chan);
93 }
94
95 static inline struct edma_desc
96 *to_edma_desc(struct dma_async_tx_descriptor *tx)
97 {
98         return container_of(tx, struct edma_desc, vdesc.tx);
99 }
100
101 static void edma_desc_free(struct virt_dma_desc *vdesc)
102 {
103         kfree(container_of(vdesc, struct edma_desc, vdesc));
104 }
105
106 /* Dispatch a queued descriptor to the controller (caller holds lock) */
107 static void edma_execute(struct edma_chan *echan)
108 {
109         struct virt_dma_desc *vdesc;
110         struct edma_desc *edesc;
111         struct device *dev = echan->vchan.chan.device->dev;
112         int i, j, left, nslots;
113
114         /* If either we processed all psets or we're still not started */
115         if (!echan->edesc ||
116             echan->edesc->pset_nr == echan->edesc->processed) {
117                 /* Get next vdesc */
118                 vdesc = vchan_next_desc(&echan->vchan);
119                 if (!vdesc) {
120                         echan->edesc = NULL;
121                         return;
122                 }
123                 list_del(&vdesc->node);
124                 echan->edesc = to_edma_desc(&vdesc->tx);
125         }
126
127         edesc = echan->edesc;
128
129         /* Find out how many left */
130         left = edesc->pset_nr - edesc->processed;
131         nslots = min(MAX_NR_SG, left);
132
133         /* Write descriptor PaRAM set(s) */
134         for (i = 0; i < nslots; i++) {
135                 j = i + edesc->processed;
136                 edma_write_slot(echan->slot[i], &edesc->pset[j]);
137                 dev_dbg(echan->vchan.chan.device->dev,
138                         "\n pset[%d]:\n"
139                         "  chnum\t%d\n"
140                         "  slot\t%d\n"
141                         "  opt\t%08x\n"
142                         "  src\t%08x\n"
143                         "  dst\t%08x\n"
144                         "  abcnt\t%08x\n"
145                         "  ccnt\t%08x\n"
146                         "  bidx\t%08x\n"
147                         "  cidx\t%08x\n"
148                         "  lkrld\t%08x\n",
149                         j, echan->ch_num, echan->slot[i],
150                         edesc->pset[j].opt,
151                         edesc->pset[j].src,
152                         edesc->pset[j].dst,
153                         edesc->pset[j].a_b_cnt,
154                         edesc->pset[j].ccnt,
155                         edesc->pset[j].src_dst_bidx,
156                         edesc->pset[j].src_dst_cidx,
157                         edesc->pset[j].link_bcntrld);
158                 /* Link to the previous slot if not the last set */
159                 if (i != (nslots - 1))
160                         edma_link(echan->slot[i], echan->slot[i+1]);
161         }
162
163         edesc->processed += nslots;
164
165         /*
166          * If this is either the last set in a set of SG-list transactions
167          * then setup a link to the dummy slot, this results in all future
168          * events being absorbed and that's OK because we're done
169          */
170         if (edesc->processed == edesc->pset_nr)
171                 edma_link(echan->slot[nslots-1], echan->ecc->dummy_slot);
172
173         edma_resume(echan->ch_num);
174
175         if (edesc->processed <= MAX_NR_SG) {
176                 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
177                 edma_start(echan->ch_num);
178         }
179
180         /*
181          * This happens due to setup times between intermediate transfers
182          * in long SG lists which have to be broken up into transfers of
183          * MAX_NR_SG
184          */
185         if (echan->missed) {
186                 dev_dbg(dev, "missed event in execute detected\n");
187                 edma_clean_channel(echan->ch_num);
188                 edma_stop(echan->ch_num);
189                 edma_start(echan->ch_num);
190                 edma_trigger_channel(echan->ch_num);
191                 echan->missed = 0;
192         }
193 }
194
195 static int edma_terminate_all(struct edma_chan *echan)
196 {
197         unsigned long flags;
198         LIST_HEAD(head);
199
200         spin_lock_irqsave(&echan->vchan.lock, flags);
201
202         /*
203          * Stop DMA activity: we assume the callback will not be called
204          * after edma_dma() returns (even if it does, it will see
205          * echan->edesc is NULL and exit.)
206          */
207         if (echan->edesc) {
208                 echan->edesc = NULL;
209                 edma_stop(echan->ch_num);
210         }
211
212         vchan_get_all_descriptors(&echan->vchan, &head);
213         spin_unlock_irqrestore(&echan->vchan.lock, flags);
214         vchan_dma_desc_free_list(&echan->vchan, &head);
215
216         return 0;
217 }
218
219 static int edma_slave_config(struct edma_chan *echan,
220         struct dma_slave_config *cfg)
221 {
222         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
223             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
224                 return -EINVAL;
225
226         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
227
228         return 0;
229 }
230
231 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
232                         unsigned long arg)
233 {
234         int ret = 0;
235         struct dma_slave_config *config;
236         struct edma_chan *echan = to_edma_chan(chan);
237
238         switch (cmd) {
239         case DMA_TERMINATE_ALL:
240                 edma_terminate_all(echan);
241                 break;
242         case DMA_SLAVE_CONFIG:
243                 config = (struct dma_slave_config *)arg;
244                 ret = edma_slave_config(echan, config);
245                 break;
246         default:
247                 ret = -ENOSYS;
248         }
249
250         return ret;
251 }
252
253 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
254         struct dma_chan *chan, struct scatterlist *sgl,
255         unsigned int sg_len, enum dma_transfer_direction direction,
256         unsigned long tx_flags, void *context)
257 {
258         struct edma_chan *echan = to_edma_chan(chan);
259         struct device *dev = chan->device->dev;
260         struct edma_desc *edesc;
261         dma_addr_t dev_addr;
262         enum dma_slave_buswidth dev_width;
263         u32 burst;
264         struct scatterlist *sg;
265         int acnt, bcnt, ccnt, src, dst, cidx;
266         int src_bidx, dst_bidx, src_cidx, dst_cidx;
267         int i, nslots;
268
269         if (unlikely(!echan || !sgl || !sg_len))
270                 return NULL;
271
272         if (direction == DMA_DEV_TO_MEM) {
273                 dev_addr = echan->cfg.src_addr;
274                 dev_width = echan->cfg.src_addr_width;
275                 burst = echan->cfg.src_maxburst;
276         } else if (direction == DMA_MEM_TO_DEV) {
277                 dev_addr = echan->cfg.dst_addr;
278                 dev_width = echan->cfg.dst_addr_width;
279                 burst = echan->cfg.dst_maxburst;
280         } else {
281                 dev_err(dev, "%s: bad direction?\n", __func__);
282                 return NULL;
283         }
284
285         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
286                 dev_err(dev, "Undefined slave buswidth\n");
287                 return NULL;
288         }
289
290         edesc = kzalloc(sizeof(*edesc) + sg_len *
291                 sizeof(edesc->pset[0]), GFP_ATOMIC);
292         if (!edesc) {
293                 dev_dbg(dev, "Failed to allocate a descriptor\n");
294                 return NULL;
295         }
296
297         edesc->pset_nr = sg_len;
298
299         /* Allocate a PaRAM slot, if needed */
300         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
301
302         for (i = 0; i < nslots; i++) {
303                 if (echan->slot[i] < 0) {
304                         echan->slot[i] =
305                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
306                                                 EDMA_SLOT_ANY);
307                         if (echan->slot[i] < 0) {
308                                 dev_err(dev, "Failed to allocate slot\n");
309                                 kfree(edesc);
310                                 return NULL;
311                         }
312                 }
313         }
314
315         /* Configure PaRAM sets for each SG */
316         for_each_sg(sgl, sg, sg_len, i) {
317
318                 acnt = dev_width;
319
320                 /*
321                  * If the maxburst is equal to the fifo width, use
322                  * A-synced transfers. This allows for large contiguous
323                  * buffer transfers using only one PaRAM set.
324                  */
325                 if (burst == 1) {
326                         edesc->absync = false;
327                         ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1);
328                         bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1);
329                         if (bcnt)
330                                 ccnt++;
331                         else
332                                 bcnt = SZ_64K - 1;
333                         cidx = acnt;
334                 /*
335                  * If maxburst is greater than the fifo address_width,
336                  * use AB-synced transfers where A count is the fifo
337                  * address_width and B count is the maxburst. In this
338                  * case, we are limited to transfers of C count frames
339                  * of (address_width * maxburst) where C count is limited
340                  * to SZ_64K-1. This places an upper bound on the length
341                  * of an SG segment that can be handled.
342                  */
343                 } else {
344                         edesc->absync = true;
345                         bcnt = burst;
346                         ccnt = sg_dma_len(sg) / (acnt * bcnt);
347                         if (ccnt > (SZ_64K - 1)) {
348                                 dev_err(dev, "Exceeded max SG segment size\n");
349                                 return NULL;
350                         }
351                         cidx = acnt * bcnt;
352                 }
353
354                 if (direction == DMA_MEM_TO_DEV) {
355                         src = sg_dma_address(sg);
356                         dst = dev_addr;
357                         src_bidx = acnt;
358                         src_cidx = cidx;
359                         dst_bidx = 0;
360                         dst_cidx = 0;
361                 } else {
362                         src = dev_addr;
363                         dst = sg_dma_address(sg);
364                         src_bidx = 0;
365                         src_cidx = 0;
366                         dst_bidx = acnt;
367                         dst_cidx = cidx;
368                 }
369
370                 edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
371                 /* Configure A or AB synchronized transfers */
372                 if (edesc->absync)
373                         edesc->pset[i].opt |= SYNCDIM;
374
375                 /* If this is the last in a current SG set of transactions,
376                    enable interrupts so that next set is processed */
377                 if (!((i+1) % MAX_NR_SG))
378                         edesc->pset[i].opt |= TCINTEN;
379
380                 /* If this is the last set, enable completion interrupt flag */
381                 if (i == sg_len - 1)
382                         edesc->pset[i].opt |= TCINTEN;
383
384                 edesc->pset[i].src = src;
385                 edesc->pset[i].dst = dst;
386
387                 edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx;
388                 edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx;
389
390                 edesc->pset[i].a_b_cnt = bcnt << 16 | acnt;
391                 edesc->pset[i].ccnt = ccnt;
392                 edesc->pset[i].link_bcntrld = 0xffffffff;
393
394         }
395
396         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
397 }
398
399 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
400 {
401         struct edma_chan *echan = data;
402         struct device *dev = echan->vchan.chan.device->dev;
403         struct edma_desc *edesc;
404         unsigned long flags;
405         struct edmacc_param p;
406
407         /* Pause the channel */
408         edma_pause(echan->ch_num);
409
410         switch (ch_status) {
411         case DMA_COMPLETE:
412                 spin_lock_irqsave(&echan->vchan.lock, flags);
413
414                 edesc = echan->edesc;
415                 if (edesc) {
416                         if (edesc->processed == edesc->pset_nr) {
417                                 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
418                                 edma_stop(echan->ch_num);
419                                 vchan_cookie_complete(&edesc->vdesc);
420                         } else {
421                                 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
422                         }
423
424                         edma_execute(echan);
425                 }
426
427                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
428
429                 break;
430         case DMA_CC_ERROR:
431                 spin_lock_irqsave(&echan->vchan.lock, flags);
432
433                 edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p);
434
435                 /*
436                  * Issue later based on missed flag which will be sure
437                  * to happen as:
438                  * (1) we finished transmitting an intermediate slot and
439                  *     edma_execute is coming up.
440                  * (2) or we finished current transfer and issue will
441                  *     call edma_execute.
442                  *
443                  * Important note: issuing can be dangerous here and
444                  * lead to some nasty recursion when we are in a NULL
445                  * slot. So we avoid doing so and set the missed flag.
446                  */
447                 if (p.a_b_cnt == 0 && p.ccnt == 0) {
448                         dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n");
449                         echan->missed = 1;
450                 } else {
451                         /*
452                          * The slot is already programmed but the event got
453                          * missed, so its safe to issue it here.
454                          */
455                         dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n");
456                         edma_clean_channel(echan->ch_num);
457                         edma_stop(echan->ch_num);
458                         edma_start(echan->ch_num);
459                         edma_trigger_channel(echan->ch_num);
460                 }
461
462                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
463
464                 break;
465         default:
466                 break;
467         }
468 }
469
470 /* Alloc channel resources */
471 static int edma_alloc_chan_resources(struct dma_chan *chan)
472 {
473         struct edma_chan *echan = to_edma_chan(chan);
474         struct device *dev = chan->device->dev;
475         int ret;
476         int a_ch_num;
477         LIST_HEAD(descs);
478
479         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
480                                         chan, EVENTQ_DEFAULT);
481
482         if (a_ch_num < 0) {
483                 ret = -ENODEV;
484                 goto err_no_chan;
485         }
486
487         if (a_ch_num != echan->ch_num) {
488                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
489                         EDMA_CTLR(echan->ch_num),
490                         EDMA_CHAN_SLOT(echan->ch_num));
491                 ret = -ENODEV;
492                 goto err_wrong_chan;
493         }
494
495         echan->alloced = true;
496         echan->slot[0] = echan->ch_num;
497
498         dev_info(dev, "allocated channel for %u:%u\n",
499                  EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
500
501         return 0;
502
503 err_wrong_chan:
504         edma_free_channel(a_ch_num);
505 err_no_chan:
506         return ret;
507 }
508
509 /* Free channel resources */
510 static void edma_free_chan_resources(struct dma_chan *chan)
511 {
512         struct edma_chan *echan = to_edma_chan(chan);
513         struct device *dev = chan->device->dev;
514         int i;
515
516         /* Terminate transfers */
517         edma_stop(echan->ch_num);
518
519         vchan_free_chan_resources(&echan->vchan);
520
521         /* Free EDMA PaRAM slots */
522         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
523                 if (echan->slot[i] >= 0) {
524                         edma_free_slot(echan->slot[i]);
525                         echan->slot[i] = -1;
526                 }
527         }
528
529         /* Free EDMA channel */
530         if (echan->alloced) {
531                 edma_free_channel(echan->ch_num);
532                 echan->alloced = false;
533         }
534
535         dev_info(dev, "freeing channel for %u\n", echan->ch_num);
536 }
537
538 /* Send pending descriptor to hardware */
539 static void edma_issue_pending(struct dma_chan *chan)
540 {
541         struct edma_chan *echan = to_edma_chan(chan);
542         unsigned long flags;
543
544         spin_lock_irqsave(&echan->vchan.lock, flags);
545         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
546                 edma_execute(echan);
547         spin_unlock_irqrestore(&echan->vchan.lock, flags);
548 }
549
550 static size_t edma_desc_size(struct edma_desc *edesc)
551 {
552         int i;
553         size_t size;
554
555         if (edesc->absync)
556                 for (size = i = 0; i < edesc->pset_nr; i++)
557                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
558                                 (edesc->pset[i].a_b_cnt >> 16) *
559                                  edesc->pset[i].ccnt;
560         else
561                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
562                         (edesc->pset[0].a_b_cnt >> 16) +
563                         (edesc->pset[0].a_b_cnt & 0xffff) *
564                         (SZ_64K - 1) * edesc->pset[0].ccnt;
565
566         return size;
567 }
568
569 /* Check request completion status */
570 static enum dma_status edma_tx_status(struct dma_chan *chan,
571                                       dma_cookie_t cookie,
572                                       struct dma_tx_state *txstate)
573 {
574         struct edma_chan *echan = to_edma_chan(chan);
575         struct virt_dma_desc *vdesc;
576         enum dma_status ret;
577         unsigned long flags;
578
579         ret = dma_cookie_status(chan, cookie, txstate);
580         if (ret == DMA_SUCCESS || !txstate)
581                 return ret;
582
583         spin_lock_irqsave(&echan->vchan.lock, flags);
584         vdesc = vchan_find_desc(&echan->vchan, cookie);
585         if (vdesc) {
586                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
587         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
588                 struct edma_desc *edesc = echan->edesc;
589                 txstate->residue = edma_desc_size(edesc);
590         }
591         spin_unlock_irqrestore(&echan->vchan.lock, flags);
592
593         return ret;
594 }
595
596 static void __init edma_chan_init(struct edma_cc *ecc,
597                                   struct dma_device *dma,
598                                   struct edma_chan *echans)
599 {
600         int i, j;
601
602         for (i = 0; i < EDMA_CHANS; i++) {
603                 struct edma_chan *echan = &echans[i];
604                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
605                 echan->ecc = ecc;
606                 echan->vchan.desc_free = edma_desc_free;
607
608                 vchan_init(&echan->vchan, dma);
609
610                 INIT_LIST_HEAD(&echan->node);
611                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
612                         echan->slot[j] = -1;
613         }
614 }
615
616 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
617                           struct device *dev)
618 {
619         dma->device_prep_slave_sg = edma_prep_slave_sg;
620         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
621         dma->device_free_chan_resources = edma_free_chan_resources;
622         dma->device_issue_pending = edma_issue_pending;
623         dma->device_tx_status = edma_tx_status;
624         dma->device_control = edma_control;
625         dma->dev = dev;
626
627         INIT_LIST_HEAD(&dma->channels);
628 }
629
630 static int edma_probe(struct platform_device *pdev)
631 {
632         struct edma_cc *ecc;
633         int ret;
634
635         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
636         if (ret)
637                 return ret;
638
639         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
640         if (!ecc) {
641                 dev_err(&pdev->dev, "Can't allocate controller\n");
642                 return -ENOMEM;
643         }
644
645         ecc->ctlr = pdev->id;
646         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
647         if (ecc->dummy_slot < 0) {
648                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
649                 return -EIO;
650         }
651
652         dma_cap_zero(ecc->dma_slave.cap_mask);
653         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
654
655         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
656
657         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
658
659         ret = dma_async_device_register(&ecc->dma_slave);
660         if (ret)
661                 goto err_reg1;
662
663         platform_set_drvdata(pdev, ecc);
664
665         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
666
667         return 0;
668
669 err_reg1:
670         edma_free_slot(ecc->dummy_slot);
671         return ret;
672 }
673
674 static int edma_remove(struct platform_device *pdev)
675 {
676         struct device *dev = &pdev->dev;
677         struct edma_cc *ecc = dev_get_drvdata(dev);
678
679         dma_async_device_unregister(&ecc->dma_slave);
680         edma_free_slot(ecc->dummy_slot);
681
682         return 0;
683 }
684
685 static struct platform_driver edma_driver = {
686         .probe          = edma_probe,
687         .remove         = edma_remove,
688         .driver = {
689                 .name = "edma-dma-engine",
690                 .owner = THIS_MODULE,
691         },
692 };
693
694 bool edma_filter_fn(struct dma_chan *chan, void *param)
695 {
696         if (chan->device->dev->driver == &edma_driver.driver) {
697                 struct edma_chan *echan = to_edma_chan(chan);
698                 unsigned ch_req = *(unsigned *)param;
699                 return ch_req == echan->ch_num;
700         }
701         return false;
702 }
703 EXPORT_SYMBOL(edma_filter_fn);
704
705 static struct platform_device *pdev0, *pdev1;
706
707 static const struct platform_device_info edma_dev_info0 = {
708         .name = "edma-dma-engine",
709         .id = 0,
710         .dma_mask = DMA_BIT_MASK(32),
711 };
712
713 static const struct platform_device_info edma_dev_info1 = {
714         .name = "edma-dma-engine",
715         .id = 1,
716         .dma_mask = DMA_BIT_MASK(32),
717 };
718
719 static int edma_init(void)
720 {
721         int ret = platform_driver_register(&edma_driver);
722
723         if (ret == 0) {
724                 pdev0 = platform_device_register_full(&edma_dev_info0);
725                 if (IS_ERR(pdev0)) {
726                         platform_driver_unregister(&edma_driver);
727                         ret = PTR_ERR(pdev0);
728                         goto out;
729                 }
730         }
731
732         if (EDMA_CTLRS == 2) {
733                 pdev1 = platform_device_register_full(&edma_dev_info1);
734                 if (IS_ERR(pdev1)) {
735                         platform_driver_unregister(&edma_driver);
736                         platform_device_unregister(pdev0);
737                         ret = PTR_ERR(pdev1);
738                 }
739         }
740
741 out:
742         return ret;
743 }
744 subsys_initcall(edma_init);
745
746 static void __exit edma_exit(void)
747 {
748         platform_device_unregister(pdev0);
749         if (pdev1)
750                 platform_device_unregister(pdev1);
751         platform_driver_unregister(&edma_driver);
752 }
753 module_exit(edma_exit);
754
755 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
756 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
757 MODULE_LICENSE("GPL v2");