]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Linux 3.8-rc3
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75                         int, int, intel_clock_t *, intel_clock_t *);
76 };
77
78 /* FDI */
79 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
80
81 int
82 intel_pch_rawclk(struct drm_device *dev)
83 {
84         struct drm_i915_private *dev_priv = dev->dev_private;
85
86         WARN_ON(!HAS_PCH_SPLIT(dev));
87
88         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89 }
90
91 static bool
92 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93                     int target, int refclk, intel_clock_t *match_clock,
94                     intel_clock_t *best_clock);
95 static bool
96 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                         int target, int refclk, intel_clock_t *match_clock,
98                         intel_clock_t *best_clock);
99
100 static bool
101 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102                       int target, int refclk, intel_clock_t *match_clock,
103                       intel_clock_t *best_clock);
104 static bool
105 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106                            int target, int refclk, intel_clock_t *match_clock,
107                            intel_clock_t *best_clock);
108
109 static bool
110 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111                         int target, int refclk, intel_clock_t *match_clock,
112                         intel_clock_t *best_clock);
113
114 static inline u32 /* units of 100MHz */
115 intel_fdi_link_freq(struct drm_device *dev)
116 {
117         if (IS_GEN5(dev)) {
118                 struct drm_i915_private *dev_priv = dev->dev_private;
119                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120         } else
121                 return 27;
122 }
123
124 static const intel_limit_t intel_limits_i8xx_dvo = {
125         .dot = { .min = 25000, .max = 350000 },
126         .vco = { .min = 930000, .max = 1400000 },
127         .n = { .min = 3, .max = 16 },
128         .m = { .min = 96, .max = 140 },
129         .m1 = { .min = 18, .max = 26 },
130         .m2 = { .min = 6, .max = 16 },
131         .p = { .min = 4, .max = 128 },
132         .p1 = { .min = 2, .max = 33 },
133         .p2 = { .dot_limit = 165000,
134                 .p2_slow = 4, .p2_fast = 2 },
135         .find_pll = intel_find_best_PLL,
136 };
137
138 static const intel_limit_t intel_limits_i8xx_lvds = {
139         .dot = { .min = 25000, .max = 350000 },
140         .vco = { .min = 930000, .max = 1400000 },
141         .n = { .min = 3, .max = 16 },
142         .m = { .min = 96, .max = 140 },
143         .m1 = { .min = 18, .max = 26 },
144         .m2 = { .min = 6, .max = 16 },
145         .p = { .min = 4, .max = 128 },
146         .p1 = { .min = 1, .max = 6 },
147         .p2 = { .dot_limit = 165000,
148                 .p2_slow = 14, .p2_fast = 7 },
149         .find_pll = intel_find_best_PLL,
150 };
151
152 static const intel_limit_t intel_limits_i9xx_sdvo = {
153         .dot = { .min = 20000, .max = 400000 },
154         .vco = { .min = 1400000, .max = 2800000 },
155         .n = { .min = 1, .max = 6 },
156         .m = { .min = 70, .max = 120 },
157         .m1 = { .min = 10, .max = 22 },
158         .m2 = { .min = 5, .max = 9 },
159         .p = { .min = 5, .max = 80 },
160         .p1 = { .min = 1, .max = 8 },
161         .p2 = { .dot_limit = 200000,
162                 .p2_slow = 10, .p2_fast = 5 },
163         .find_pll = intel_find_best_PLL,
164 };
165
166 static const intel_limit_t intel_limits_i9xx_lvds = {
167         .dot = { .min = 20000, .max = 400000 },
168         .vco = { .min = 1400000, .max = 2800000 },
169         .n = { .min = 1, .max = 6 },
170         .m = { .min = 70, .max = 120 },
171         .m1 = { .min = 10, .max = 22 },
172         .m2 = { .min = 5, .max = 9 },
173         .p = { .min = 7, .max = 98 },
174         .p1 = { .min = 1, .max = 8 },
175         .p2 = { .dot_limit = 112000,
176                 .p2_slow = 14, .p2_fast = 7 },
177         .find_pll = intel_find_best_PLL,
178 };
179
180
181 static const intel_limit_t intel_limits_g4x_sdvo = {
182         .dot = { .min = 25000, .max = 270000 },
183         .vco = { .min = 1750000, .max = 3500000},
184         .n = { .min = 1, .max = 4 },
185         .m = { .min = 104, .max = 138 },
186         .m1 = { .min = 17, .max = 23 },
187         .m2 = { .min = 5, .max = 11 },
188         .p = { .min = 10, .max = 30 },
189         .p1 = { .min = 1, .max = 3},
190         .p2 = { .dot_limit = 270000,
191                 .p2_slow = 10,
192                 .p2_fast = 10
193         },
194         .find_pll = intel_g4x_find_best_PLL,
195 };
196
197 static const intel_limit_t intel_limits_g4x_hdmi = {
198         .dot = { .min = 22000, .max = 400000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 16, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 5, .max = 80 },
205         .p1 = { .min = 1, .max = 8},
206         .p2 = { .dot_limit = 165000,
207                 .p2_slow = 10, .p2_fast = 5 },
208         .find_pll = intel_g4x_find_best_PLL,
209 };
210
211 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212         .dot = { .min = 20000, .max = 115000 },
213         .vco = { .min = 1750000, .max = 3500000 },
214         .n = { .min = 1, .max = 3 },
215         .m = { .min = 104, .max = 138 },
216         .m1 = { .min = 17, .max = 23 },
217         .m2 = { .min = 5, .max = 11 },
218         .p = { .min = 28, .max = 112 },
219         .p1 = { .min = 2, .max = 8 },
220         .p2 = { .dot_limit = 0,
221                 .p2_slow = 14, .p2_fast = 14
222         },
223         .find_pll = intel_g4x_find_best_PLL,
224 };
225
226 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227         .dot = { .min = 80000, .max = 224000 },
228         .vco = { .min = 1750000, .max = 3500000 },
229         .n = { .min = 1, .max = 3 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 14, .max = 42 },
234         .p1 = { .min = 2, .max = 6 },
235         .p2 = { .dot_limit = 0,
236                 .p2_slow = 7, .p2_fast = 7
237         },
238         .find_pll = intel_g4x_find_best_PLL,
239 };
240
241 static const intel_limit_t intel_limits_g4x_display_port = {
242         .dot = { .min = 161670, .max = 227000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 2 },
245         .m = { .min = 97, .max = 108 },
246         .m1 = { .min = 0x10, .max = 0x12 },
247         .m2 = { .min = 0x05, .max = 0x06 },
248         .p = { .min = 10, .max = 20 },
249         .p1 = { .min = 1, .max = 2},
250         .p2 = { .dot_limit = 0,
251                 .p2_slow = 10, .p2_fast = 10 },
252         .find_pll = intel_find_pll_g4x_dp,
253 };
254
255 static const intel_limit_t intel_limits_pineview_sdvo = {
256         .dot = { .min = 20000, .max = 400000},
257         .vco = { .min = 1700000, .max = 3500000 },
258         /* Pineview's Ncounter is a ring counter */
259         .n = { .min = 3, .max = 6 },
260         .m = { .min = 2, .max = 256 },
261         /* Pineview only has one combined m divider, which we treat as m2. */
262         .m1 = { .min = 0, .max = 0 },
263         .m2 = { .min = 0, .max = 254 },
264         .p = { .min = 5, .max = 80 },
265         .p1 = { .min = 1, .max = 8 },
266         .p2 = { .dot_limit = 200000,
267                 .p2_slow = 10, .p2_fast = 5 },
268         .find_pll = intel_find_best_PLL,
269 };
270
271 static const intel_limit_t intel_limits_pineview_lvds = {
272         .dot = { .min = 20000, .max = 400000 },
273         .vco = { .min = 1700000, .max = 3500000 },
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         .m1 = { .min = 0, .max = 0 },
277         .m2 = { .min = 0, .max = 254 },
278         .p = { .min = 7, .max = 112 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 112000,
281                 .p2_slow = 14, .p2_fast = 14 },
282         .find_pll = intel_find_best_PLL,
283 };
284
285 /* Ironlake / Sandybridge
286  *
287  * We calculate clock using (register_value + 2) for N/M1/M2, so here
288  * the range value for them is (actual_value - 2).
289  */
290 static const intel_limit_t intel_limits_ironlake_dac = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 5 },
294         .m = { .min = 79, .max = 127 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 5, .max = 80 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 10, .p2_fast = 5 },
301         .find_pll = intel_g4x_find_best_PLL,
302 };
303
304 static const intel_limit_t intel_limits_ironlake_single_lvds = {
305         .dot = { .min = 25000, .max = 350000 },
306         .vco = { .min = 1760000, .max = 3510000 },
307         .n = { .min = 1, .max = 3 },
308         .m = { .min = 79, .max = 118 },
309         .m1 = { .min = 12, .max = 22 },
310         .m2 = { .min = 5, .max = 9 },
311         .p = { .min = 28, .max = 112 },
312         .p1 = { .min = 2, .max = 8 },
313         .p2 = { .dot_limit = 225000,
314                 .p2_slow = 14, .p2_fast = 14 },
315         .find_pll = intel_g4x_find_best_PLL,
316 };
317
318 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319         .dot = { .min = 25000, .max = 350000 },
320         .vco = { .min = 1760000, .max = 3510000 },
321         .n = { .min = 1, .max = 3 },
322         .m = { .min = 79, .max = 127 },
323         .m1 = { .min = 12, .max = 22 },
324         .m2 = { .min = 5, .max = 9 },
325         .p = { .min = 14, .max = 56 },
326         .p1 = { .min = 2, .max = 8 },
327         .p2 = { .dot_limit = 225000,
328                 .p2_slow = 7, .p2_fast = 7 },
329         .find_pll = intel_g4x_find_best_PLL,
330 };
331
332 /* LVDS 100mhz refclk limits. */
333 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334         .dot = { .min = 25000, .max = 350000 },
335         .vco = { .min = 1760000, .max = 3510000 },
336         .n = { .min = 1, .max = 2 },
337         .m = { .min = 79, .max = 126 },
338         .m1 = { .min = 12, .max = 22 },
339         .m2 = { .min = 5, .max = 9 },
340         .p = { .min = 28, .max = 112 },
341         .p1 = { .min = 2, .max = 8 },
342         .p2 = { .dot_limit = 225000,
343                 .p2_slow = 14, .p2_fast = 14 },
344         .find_pll = intel_g4x_find_best_PLL,
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348         .dot = { .min = 25000, .max = 350000 },
349         .vco = { .min = 1760000, .max = 3510000 },
350         .n = { .min = 1, .max = 3 },
351         .m = { .min = 79, .max = 126 },
352         .m1 = { .min = 12, .max = 22 },
353         .m2 = { .min = 5, .max = 9 },
354         .p = { .min = 14, .max = 42 },
355         .p1 = { .min = 2, .max = 6 },
356         .p2 = { .dot_limit = 225000,
357                 .p2_slow = 7, .p2_fast = 7 },
358         .find_pll = intel_g4x_find_best_PLL,
359 };
360
361 static const intel_limit_t intel_limits_ironlake_display_port = {
362         .dot = { .min = 25000, .max = 350000 },
363         .vco = { .min = 1760000, .max = 3510000},
364         .n = { .min = 1, .max = 2 },
365         .m = { .min = 81, .max = 90 },
366         .m1 = { .min = 12, .max = 22 },
367         .m2 = { .min = 5, .max = 9 },
368         .p = { .min = 10, .max = 20 },
369         .p1 = { .min = 1, .max = 2},
370         .p2 = { .dot_limit = 0,
371                 .p2_slow = 10, .p2_fast = 10 },
372         .find_pll = intel_find_pll_ironlake_dp,
373 };
374
375 static const intel_limit_t intel_limits_vlv_dac = {
376         .dot = { .min = 25000, .max = 270000 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m = { .min = 22, .max = 450 }, /* guess */
380         .m1 = { .min = 2, .max = 3 },
381         .m2 = { .min = 11, .max = 156 },
382         .p = { .min = 10, .max = 30 },
383         .p1 = { .min = 2, .max = 3 },
384         .p2 = { .dot_limit = 270000,
385                 .p2_slow = 2, .p2_fast = 20 },
386         .find_pll = intel_vlv_find_best_pll,
387 };
388
389 static const intel_limit_t intel_limits_vlv_hdmi = {
390         .dot = { .min = 20000, .max = 165000 },
391         .vco = { .min = 4000000, .max = 5994000},
392         .n = { .min = 1, .max = 7 },
393         .m = { .min = 60, .max = 300 }, /* guess */
394         .m1 = { .min = 2, .max = 3 },
395         .m2 = { .min = 11, .max = 156 },
396         .p = { .min = 10, .max = 30 },
397         .p1 = { .min = 2, .max = 3 },
398         .p2 = { .dot_limit = 270000,
399                 .p2_slow = 2, .p2_fast = 20 },
400         .find_pll = intel_vlv_find_best_pll,
401 };
402
403 static const intel_limit_t intel_limits_vlv_dp = {
404         .dot = { .min = 25000, .max = 270000 },
405         .vco = { .min = 4000000, .max = 6000000 },
406         .n = { .min = 1, .max = 7 },
407         .m = { .min = 22, .max = 450 },
408         .m1 = { .min = 2, .max = 3 },
409         .m2 = { .min = 11, .max = 156 },
410         .p = { .min = 10, .max = 30 },
411         .p1 = { .min = 2, .max = 3 },
412         .p2 = { .dot_limit = 270000,
413                 .p2_slow = 2, .p2_fast = 20 },
414         .find_pll = intel_vlv_find_best_pll,
415 };
416
417 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418 {
419         unsigned long flags;
420         u32 val = 0;
421
422         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424                 DRM_ERROR("DPIO idle wait timed out\n");
425                 goto out_unlock;
426         }
427
428         I915_WRITE(DPIO_REG, reg);
429         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430                    DPIO_BYTE);
431         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432                 DRM_ERROR("DPIO read wait timed out\n");
433                 goto out_unlock;
434         }
435         val = I915_READ(DPIO_DATA);
436
437 out_unlock:
438         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439         return val;
440 }
441
442 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443                              u32 val)
444 {
445         unsigned long flags;
446
447         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449                 DRM_ERROR("DPIO idle wait timed out\n");
450                 goto out_unlock;
451         }
452
453         I915_WRITE(DPIO_DATA, val);
454         I915_WRITE(DPIO_REG, reg);
455         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456                    DPIO_BYTE);
457         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458                 DRM_ERROR("DPIO write wait timed out\n");
459
460 out_unlock:
461        spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462 }
463
464 static void vlv_init_dpio(struct drm_device *dev)
465 {
466         struct drm_i915_private *dev_priv = dev->dev_private;
467
468         /* Reset the DPIO config */
469         I915_WRITE(DPIO_CTL, 0);
470         POSTING_READ(DPIO_CTL);
471         I915_WRITE(DPIO_CTL, 1);
472         POSTING_READ(DPIO_CTL);
473 }
474
475 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476 {
477         DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478         return 1;
479 }
480
481 static const struct dmi_system_id intel_dual_link_lvds[] = {
482         {
483                 .callback = intel_dual_link_lvds_callback,
484                 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485                 .matches = {
486                         DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487                         DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488                 },
489         },
490         { }     /* terminating entry */
491 };
492
493 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494                               unsigned int reg)
495 {
496         unsigned int val;
497
498         /* use the module option value if specified */
499         if (i915_lvds_channel_mode > 0)
500                 return i915_lvds_channel_mode == 2;
501
502         if (dmi_check_system(intel_dual_link_lvds))
503                 return true;
504
505         if (dev_priv->lvds_val)
506                 val = dev_priv->lvds_val;
507         else {
508                 /* BIOS should set the proper LVDS register value at boot, but
509                  * in reality, it doesn't set the value when the lid is closed;
510                  * we need to check "the value to be set" in VBT when LVDS
511                  * register is uninitialized.
512                  */
513                 val = I915_READ(reg);
514                 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
515                         val = dev_priv->bios_lvds_val;
516                 dev_priv->lvds_val = val;
517         }
518         return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519 }
520
521 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522                                                 int refclk)
523 {
524         struct drm_device *dev = crtc->dev;
525         struct drm_i915_private *dev_priv = dev->dev_private;
526         const intel_limit_t *limit;
527
528         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
529                 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
530                         /* LVDS dual channel */
531                         if (refclk == 100000)
532                                 limit = &intel_limits_ironlake_dual_lvds_100m;
533                         else
534                                 limit = &intel_limits_ironlake_dual_lvds;
535                 } else {
536                         if (refclk == 100000)
537                                 limit = &intel_limits_ironlake_single_lvds_100m;
538                         else
539                                 limit = &intel_limits_ironlake_single_lvds;
540                 }
541         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
542                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
543                 limit = &intel_limits_ironlake_display_port;
544         else
545                 limit = &intel_limits_ironlake_dac;
546
547         return limit;
548 }
549
550 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551 {
552         struct drm_device *dev = crtc->dev;
553         struct drm_i915_private *dev_priv = dev->dev_private;
554         const intel_limit_t *limit;
555
556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
557                 if (is_dual_link_lvds(dev_priv, LVDS))
558                         /* LVDS with dual channel */
559                         limit = &intel_limits_g4x_dual_channel_lvds;
560                 else
561                         /* LVDS with dual channel */
562                         limit = &intel_limits_g4x_single_channel_lvds;
563         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
565                 limit = &intel_limits_g4x_hdmi;
566         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
567                 limit = &intel_limits_g4x_sdvo;
568         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
569                 limit = &intel_limits_g4x_display_port;
570         } else /* The option is for other outputs */
571                 limit = &intel_limits_i9xx_sdvo;
572
573         return limit;
574 }
575
576 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
577 {
578         struct drm_device *dev = crtc->dev;
579         const intel_limit_t *limit;
580
581         if (HAS_PCH_SPLIT(dev))
582                 limit = intel_ironlake_limit(crtc, refclk);
583         else if (IS_G4X(dev)) {
584                 limit = intel_g4x_limit(crtc);
585         } else if (IS_PINEVIEW(dev)) {
586                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
587                         limit = &intel_limits_pineview_lvds;
588                 else
589                         limit = &intel_limits_pineview_sdvo;
590         } else if (IS_VALLEYVIEW(dev)) {
591                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592                         limit = &intel_limits_vlv_dac;
593                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594                         limit = &intel_limits_vlv_hdmi;
595                 else
596                         limit = &intel_limits_vlv_dp;
597         } else if (!IS_GEN2(dev)) {
598                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599                         limit = &intel_limits_i9xx_lvds;
600                 else
601                         limit = &intel_limits_i9xx_sdvo;
602         } else {
603                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
604                         limit = &intel_limits_i8xx_lvds;
605                 else
606                         limit = &intel_limits_i8xx_dvo;
607         }
608         return limit;
609 }
610
611 /* m1 is reserved as 0 in Pineview, n is a ring counter */
612 static void pineview_clock(int refclk, intel_clock_t *clock)
613 {
614         clock->m = clock->m2 + 2;
615         clock->p = clock->p1 * clock->p2;
616         clock->vco = refclk * clock->m / clock->n;
617         clock->dot = clock->vco / clock->p;
618 }
619
620 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621 {
622         if (IS_PINEVIEW(dev)) {
623                 pineview_clock(refclk, clock);
624                 return;
625         }
626         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627         clock->p = clock->p1 * clock->p2;
628         clock->vco = refclk * clock->m / (clock->n + 2);
629         clock->dot = clock->vco / clock->p;
630 }
631
632 /**
633  * Returns whether any output on the specified pipe is of the specified type
634  */
635 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
636 {
637         struct drm_device *dev = crtc->dev;
638         struct intel_encoder *encoder;
639
640         for_each_encoder_on_crtc(dev, crtc, encoder)
641                 if (encoder->type == type)
642                         return true;
643
644         return false;
645 }
646
647 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
648 /**
649  * Returns whether the given set of divisors are valid for a given refclk with
650  * the given connectors.
651  */
652
653 static bool intel_PLL_is_valid(struct drm_device *dev,
654                                const intel_limit_t *limit,
655                                const intel_clock_t *clock)
656 {
657         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
658                 INTELPllInvalid("p1 out of range\n");
659         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
660                 INTELPllInvalid("p out of range\n");
661         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
662                 INTELPllInvalid("m2 out of range\n");
663         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
664                 INTELPllInvalid("m1 out of range\n");
665         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
666                 INTELPllInvalid("m1 <= m2\n");
667         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
668                 INTELPllInvalid("m out of range\n");
669         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
670                 INTELPllInvalid("n out of range\n");
671         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
672                 INTELPllInvalid("vco out of range\n");
673         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674          * connector, etc., rather than just a single range.
675          */
676         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
677                 INTELPllInvalid("dot out of range\n");
678
679         return true;
680 }
681
682 static bool
683 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
684                     int target, int refclk, intel_clock_t *match_clock,
685                     intel_clock_t *best_clock)
686
687 {
688         struct drm_device *dev = crtc->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         intel_clock_t clock;
691         int err = target;
692
693         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
694             (I915_READ(LVDS)) != 0) {
695                 /*
696                  * For LVDS, if the panel is on, just rely on its current
697                  * settings for dual-channel.  We haven't figured out how to
698                  * reliably set up different single/dual channel state, if we
699                  * even can.
700                  */
701                 if (is_dual_link_lvds(dev_priv, LVDS))
702                         clock.p2 = limit->p2.p2_fast;
703                 else
704                         clock.p2 = limit->p2.p2_slow;
705         } else {
706                 if (target < limit->p2.dot_limit)
707                         clock.p2 = limit->p2.p2_slow;
708                 else
709                         clock.p2 = limit->p2.p2_fast;
710         }
711
712         memset(best_clock, 0, sizeof(*best_clock));
713
714         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715              clock.m1++) {
716                 for (clock.m2 = limit->m2.min;
717                      clock.m2 <= limit->m2.max; clock.m2++) {
718                         /* m1 is always 0 in Pineview */
719                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
720                                 break;
721                         for (clock.n = limit->n.min;
722                              clock.n <= limit->n.max; clock.n++) {
723                                 for (clock.p1 = limit->p1.min;
724                                         clock.p1 <= limit->p1.max; clock.p1++) {
725                                         int this_err;
726
727                                         intel_clock(dev, refclk, &clock);
728                                         if (!intel_PLL_is_valid(dev, limit,
729                                                                 &clock))
730                                                 continue;
731                                         if (match_clock &&
732                                             clock.p != match_clock->p)
733                                                 continue;
734
735                                         this_err = abs(clock.dot - target);
736                                         if (this_err < err) {
737                                                 *best_clock = clock;
738                                                 err = this_err;
739                                         }
740                                 }
741                         }
742                 }
743         }
744
745         return (err != target);
746 }
747
748 static bool
749 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
750                         int target, int refclk, intel_clock_t *match_clock,
751                         intel_clock_t *best_clock)
752 {
753         struct drm_device *dev = crtc->dev;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         intel_clock_t clock;
756         int max_n;
757         bool found;
758         /* approximately equals target * 0.00585 */
759         int err_most = (target >> 8) + (target >> 9);
760         found = false;
761
762         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
763                 int lvds_reg;
764
765                 if (HAS_PCH_SPLIT(dev))
766                         lvds_reg = PCH_LVDS;
767                 else
768                         lvds_reg = LVDS;
769                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
770                     LVDS_CLKB_POWER_UP)
771                         clock.p2 = limit->p2.p2_fast;
772                 else
773                         clock.p2 = limit->p2.p2_slow;
774         } else {
775                 if (target < limit->p2.dot_limit)
776                         clock.p2 = limit->p2.p2_slow;
777                 else
778                         clock.p2 = limit->p2.p2_fast;
779         }
780
781         memset(best_clock, 0, sizeof(*best_clock));
782         max_n = limit->n.max;
783         /* based on hardware requirement, prefer smaller n to precision */
784         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
785                 /* based on hardware requirement, prefere larger m1,m2 */
786                 for (clock.m1 = limit->m1.max;
787                      clock.m1 >= limit->m1.min; clock.m1--) {
788                         for (clock.m2 = limit->m2.max;
789                              clock.m2 >= limit->m2.min; clock.m2--) {
790                                 for (clock.p1 = limit->p1.max;
791                                      clock.p1 >= limit->p1.min; clock.p1--) {
792                                         int this_err;
793
794                                         intel_clock(dev, refclk, &clock);
795                                         if (!intel_PLL_is_valid(dev, limit,
796                                                                 &clock))
797                                                 continue;
798                                         if (match_clock &&
799                                             clock.p != match_clock->p)
800                                                 continue;
801
802                                         this_err = abs(clock.dot - target);
803                                         if (this_err < err_most) {
804                                                 *best_clock = clock;
805                                                 err_most = this_err;
806                                                 max_n = clock.n;
807                                                 found = true;
808                                         }
809                                 }
810                         }
811                 }
812         }
813         return found;
814 }
815
816 static bool
817 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
818                            int target, int refclk, intel_clock_t *match_clock,
819                            intel_clock_t *best_clock)
820 {
821         struct drm_device *dev = crtc->dev;
822         intel_clock_t clock;
823
824         if (target < 200000) {
825                 clock.n = 1;
826                 clock.p1 = 2;
827                 clock.p2 = 10;
828                 clock.m1 = 12;
829                 clock.m2 = 9;
830         } else {
831                 clock.n = 2;
832                 clock.p1 = 1;
833                 clock.p2 = 10;
834                 clock.m1 = 14;
835                 clock.m2 = 8;
836         }
837         intel_clock(dev, refclk, &clock);
838         memcpy(best_clock, &clock, sizeof(intel_clock_t));
839         return true;
840 }
841
842 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
843 static bool
844 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
845                       int target, int refclk, intel_clock_t *match_clock,
846                       intel_clock_t *best_clock)
847 {
848         intel_clock_t clock;
849         if (target < 200000) {
850                 clock.p1 = 2;
851                 clock.p2 = 10;
852                 clock.n = 2;
853                 clock.m1 = 23;
854                 clock.m2 = 8;
855         } else {
856                 clock.p1 = 1;
857                 clock.p2 = 10;
858                 clock.n = 1;
859                 clock.m1 = 14;
860                 clock.m2 = 2;
861         }
862         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863         clock.p = (clock.p1 * clock.p2);
864         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865         clock.vco = 0;
866         memcpy(best_clock, &clock, sizeof(intel_clock_t));
867         return true;
868 }
869 static bool
870 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871                         int target, int refclk, intel_clock_t *match_clock,
872                         intel_clock_t *best_clock)
873 {
874         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875         u32 m, n, fastclk;
876         u32 updrate, minupdate, fracbits, p;
877         unsigned long bestppm, ppm, absppm;
878         int dotclk, flag;
879
880         flag = 0;
881         dotclk = target * 1000;
882         bestppm = 1000000;
883         ppm = absppm = 0;
884         fastclk = dotclk / (2*100);
885         updrate = 0;
886         minupdate = 19200;
887         fracbits = 1;
888         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889         bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891         /* based on hardware requirement, prefer smaller n to precision */
892         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893                 updrate = refclk / n;
894                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896                                 if (p2 > 10)
897                                         p2 = p2 - 1;
898                                 p = p1 * p2;
899                                 /* based on hardware requirement, prefer bigger m1,m2 values */
900                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901                                         m2 = (((2*(fastclk * p * n / m1 )) +
902                                                refclk) / (2*refclk));
903                                         m = m1 * m2;
904                                         vco = updrate * m;
905                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
906                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907                                                 absppm = (ppm > 0) ? ppm : (-ppm);
908                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909                                                         bestppm = 0;
910                                                         flag = 1;
911                                                 }
912                                                 if (absppm < bestppm - 10) {
913                                                         bestppm = absppm;
914                                                         flag = 1;
915                                                 }
916                                                 if (flag) {
917                                                         bestn = n;
918                                                         bestm1 = m1;
919                                                         bestm2 = m2;
920                                                         bestp1 = p1;
921                                                         bestp2 = p2;
922                                                         flag = 0;
923                                                 }
924                                         }
925                                 }
926                         }
927                 }
928         }
929         best_clock->n = bestn;
930         best_clock->m1 = bestm1;
931         best_clock->m2 = bestm2;
932         best_clock->p1 = bestp1;
933         best_clock->p2 = bestp2;
934
935         return true;
936 }
937
938 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939                                              enum pipe pipe)
940 {
941         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944         return intel_crtc->cpu_transcoder;
945 }
946
947 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948 {
949         struct drm_i915_private *dev_priv = dev->dev_private;
950         u32 frame, frame_reg = PIPEFRAME(pipe);
951
952         frame = I915_READ(frame_reg);
953
954         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955                 DRM_DEBUG_KMS("vblank wait timed out\n");
956 }
957
958 /**
959  * intel_wait_for_vblank - wait for vblank on a given pipe
960  * @dev: drm device
961  * @pipe: pipe to wait for
962  *
963  * Wait for vblank to occur on a given pipe.  Needed for various bits of
964  * mode setting code.
965  */
966 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
967 {
968         struct drm_i915_private *dev_priv = dev->dev_private;
969         int pipestat_reg = PIPESTAT(pipe);
970
971         if (INTEL_INFO(dev)->gen >= 5) {
972                 ironlake_wait_for_vblank(dev, pipe);
973                 return;
974         }
975
976         /* Clear existing vblank status. Note this will clear any other
977          * sticky status fields as well.
978          *
979          * This races with i915_driver_irq_handler() with the result
980          * that either function could miss a vblank event.  Here it is not
981          * fatal, as we will either wait upon the next vblank interrupt or
982          * timeout.  Generally speaking intel_wait_for_vblank() is only
983          * called during modeset at which time the GPU should be idle and
984          * should *not* be performing page flips and thus not waiting on
985          * vblanks...
986          * Currently, the result of us stealing a vblank from the irq
987          * handler is that a single frame will be skipped during swapbuffers.
988          */
989         I915_WRITE(pipestat_reg,
990                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
992         /* Wait for vblank interrupt bit to set */
993         if (wait_for(I915_READ(pipestat_reg) &
994                      PIPE_VBLANK_INTERRUPT_STATUS,
995                      50))
996                 DRM_DEBUG_KMS("vblank wait timed out\n");
997 }
998
999 /*
1000  * intel_wait_for_pipe_off - wait for pipe to turn off
1001  * @dev: drm device
1002  * @pipe: pipe to wait for
1003  *
1004  * After disabling a pipe, we can't wait for vblank in the usual way,
1005  * spinning on the vblank interrupt status bit, since we won't actually
1006  * see an interrupt when the pipe is disabled.
1007  *
1008  * On Gen4 and above:
1009  *   wait for the pipe register state bit to turn off
1010  *
1011  * Otherwise:
1012  *   wait for the display line value to settle (it usually
1013  *   ends up stopping at the start of the next frame).
1014  *
1015  */
1016 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020                                                                       pipe);
1021
1022         if (INTEL_INFO(dev)->gen >= 4) {
1023                 int reg = PIPECONF(cpu_transcoder);
1024
1025                 /* Wait for the Pipe State to go off */
1026                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027                              100))
1028                         WARN(1, "pipe_off wait timed out\n");
1029         } else {
1030                 u32 last_line, line_mask;
1031                 int reg = PIPEDSL(pipe);
1032                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
1034                 if (IS_GEN2(dev))
1035                         line_mask = DSL_LINEMASK_GEN2;
1036                 else
1037                         line_mask = DSL_LINEMASK_GEN3;
1038
1039                 /* Wait for the display line to settle */
1040                 do {
1041                         last_line = I915_READ(reg) & line_mask;
1042                         mdelay(5);
1043                 } while (((I915_READ(reg) & line_mask) != last_line) &&
1044                          time_after(timeout, jiffies));
1045                 if (time_after(jiffies, timeout))
1046                         WARN(1, "pipe_off wait timed out\n");
1047         }
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052         return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 static void assert_pll(struct drm_i915_private *dev_priv,
1057                        enum pipe pipe, bool state)
1058 {
1059         int reg;
1060         u32 val;
1061         bool cur_state;
1062
1063         reg = DPLL(pipe);
1064         val = I915_READ(reg);
1065         cur_state = !!(val & DPLL_VCO_ENABLE);
1066         WARN(cur_state != state,
1067              "PLL state assertion failure (expected %s, current %s)\n",
1068              state_string(state), state_string(cur_state));
1069 }
1070 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
1073 /* For ILK+ */
1074 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1075                            struct intel_pch_pll *pll,
1076                            struct intel_crtc *crtc,
1077                            bool state)
1078 {
1079         u32 val;
1080         bool cur_state;
1081
1082         if (HAS_PCH_LPT(dev_priv->dev)) {
1083                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084                 return;
1085         }
1086
1087         if (WARN (!pll,
1088                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1089                 return;
1090
1091         val = I915_READ(pll->pll_reg);
1092         cur_state = !!(val & DPLL_VCO_ENABLE);
1093         WARN(cur_state != state,
1094              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095              pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097         /* Make sure the selected PLL is correctly attached to the transcoder */
1098         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1099                 u32 pch_dpll;
1100
1101                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1102                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1105                           cur_state, crtc->pipe, pch_dpll)) {
1106                         cur_state = !!(val >> (4*crtc->pipe + 3));
1107                         WARN(cur_state != state,
1108                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1109                              pll->pll_reg == _PCH_DPLL_B,
1110                              state_string(state),
1111                              crtc->pipe,
1112                              val);
1113                 }
1114         }
1115 }
1116 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1118
1119 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120                           enum pipe pipe, bool state)
1121 {
1122         int reg;
1123         u32 val;
1124         bool cur_state;
1125         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126                                                                       pipe);
1127
1128         if (IS_HASWELL(dev_priv->dev)) {
1129                 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1130                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1133         } else {
1134                 reg = FDI_TX_CTL(pipe);
1135                 val = I915_READ(reg);
1136                 cur_state = !!(val & FDI_TX_ENABLE);
1137         }
1138         WARN(cur_state != state,
1139              "FDI TX state assertion failure (expected %s, current %s)\n",
1140              state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146                           enum pipe pipe, bool state)
1147 {
1148         int reg;
1149         u32 val;
1150         bool cur_state;
1151
1152         reg = FDI_RX_CTL(pipe);
1153         val = I915_READ(reg);
1154         cur_state = !!(val & FDI_RX_ENABLE);
1155         WARN(cur_state != state,
1156              "FDI RX state assertion failure (expected %s, current %s)\n",
1157              state_string(state), state_string(cur_state));
1158 }
1159 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1160 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161
1162 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1163                                       enum pipe pipe)
1164 {
1165         int reg;
1166         u32 val;
1167
1168         /* ILK FDI PLL is always enabled */
1169         if (dev_priv->info->gen == 5)
1170                 return;
1171
1172         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1173         if (IS_HASWELL(dev_priv->dev))
1174                 return;
1175
1176         reg = FDI_TX_CTL(pipe);
1177         val = I915_READ(reg);
1178         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1179 }
1180
1181 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1182                                       enum pipe pipe)
1183 {
1184         int reg;
1185         u32 val;
1186
1187         reg = FDI_RX_CTL(pipe);
1188         val = I915_READ(reg);
1189         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1190 }
1191
1192 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193                                   enum pipe pipe)
1194 {
1195         int pp_reg, lvds_reg;
1196         u32 val;
1197         enum pipe panel_pipe = PIPE_A;
1198         bool locked = true;
1199
1200         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201                 pp_reg = PCH_PP_CONTROL;
1202                 lvds_reg = PCH_LVDS;
1203         } else {
1204                 pp_reg = PP_CONTROL;
1205                 lvds_reg = LVDS;
1206         }
1207
1208         val = I915_READ(pp_reg);
1209         if (!(val & PANEL_POWER_ON) ||
1210             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211                 locked = false;
1212
1213         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214                 panel_pipe = PIPE_B;
1215
1216         WARN(panel_pipe == pipe && locked,
1217              "panel assertion failure, pipe %c regs locked\n",
1218              pipe_name(pipe));
1219 }
1220
1221 void assert_pipe(struct drm_i915_private *dev_priv,
1222                  enum pipe pipe, bool state)
1223 {
1224         int reg;
1225         u32 val;
1226         bool cur_state;
1227         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1228                                                                       pipe);
1229
1230         /* if we need the pipe A quirk it must be always on */
1231         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1232                 state = true;
1233
1234         reg = PIPECONF(cpu_transcoder);
1235         val = I915_READ(reg);
1236         cur_state = !!(val & PIPECONF_ENABLE);
1237         WARN(cur_state != state,
1238              "pipe %c assertion failure (expected %s, current %s)\n",
1239              pipe_name(pipe), state_string(state), state_string(cur_state));
1240 }
1241
1242 static void assert_plane(struct drm_i915_private *dev_priv,
1243                          enum plane plane, bool state)
1244 {
1245         int reg;
1246         u32 val;
1247         bool cur_state;
1248
1249         reg = DSPCNTR(plane);
1250         val = I915_READ(reg);
1251         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1252         WARN(cur_state != state,
1253              "plane %c assertion failure (expected %s, current %s)\n",
1254              plane_name(plane), state_string(state), state_string(cur_state));
1255 }
1256
1257 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1258 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1259
1260 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1261                                    enum pipe pipe)
1262 {
1263         int reg, i;
1264         u32 val;
1265         int cur_pipe;
1266
1267         /* Planes are fixed to pipes on ILK+ */
1268         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1269                 reg = DSPCNTR(pipe);
1270                 val = I915_READ(reg);
1271                 WARN((val & DISPLAY_PLANE_ENABLE),
1272                      "plane %c assertion failure, should be disabled but not\n",
1273                      plane_name(pipe));
1274                 return;
1275         }
1276
1277         /* Need to check both planes against the pipe */
1278         for (i = 0; i < 2; i++) {
1279                 reg = DSPCNTR(i);
1280                 val = I915_READ(reg);
1281                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1282                         DISPPLANE_SEL_PIPE_SHIFT;
1283                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1284                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1285                      plane_name(i), pipe_name(pipe));
1286         }
1287 }
1288
1289 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1290 {
1291         u32 val;
1292         bool enabled;
1293
1294         if (HAS_PCH_LPT(dev_priv->dev)) {
1295                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1296                 return;
1297         }
1298
1299         val = I915_READ(PCH_DREF_CONTROL);
1300         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1301                             DREF_SUPERSPREAD_SOURCE_MASK));
1302         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1303 }
1304
1305 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1306                                        enum pipe pipe)
1307 {
1308         int reg;
1309         u32 val;
1310         bool enabled;
1311
1312         reg = TRANSCONF(pipe);
1313         val = I915_READ(reg);
1314         enabled = !!(val & TRANS_ENABLE);
1315         WARN(enabled,
1316              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1317              pipe_name(pipe));
1318 }
1319
1320 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1321                             enum pipe pipe, u32 port_sel, u32 val)
1322 {
1323         if ((val & DP_PORT_EN) == 0)
1324                 return false;
1325
1326         if (HAS_PCH_CPT(dev_priv->dev)) {
1327                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1328                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1329                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1330                         return false;
1331         } else {
1332                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1333                         return false;
1334         }
1335         return true;
1336 }
1337
1338 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1339                               enum pipe pipe, u32 val)
1340 {
1341         if ((val & PORT_ENABLE) == 0)
1342                 return false;
1343
1344         if (HAS_PCH_CPT(dev_priv->dev)) {
1345                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1346                         return false;
1347         } else {
1348                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1349                         return false;
1350         }
1351         return true;
1352 }
1353
1354 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1355                               enum pipe pipe, u32 val)
1356 {
1357         if ((val & LVDS_PORT_EN) == 0)
1358                 return false;
1359
1360         if (HAS_PCH_CPT(dev_priv->dev)) {
1361                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362                         return false;
1363         } else {
1364                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1365                         return false;
1366         }
1367         return true;
1368 }
1369
1370 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1371                               enum pipe pipe, u32 val)
1372 {
1373         if ((val & ADPA_DAC_ENABLE) == 0)
1374                 return false;
1375         if (HAS_PCH_CPT(dev_priv->dev)) {
1376                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377                         return false;
1378         } else {
1379                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1380                         return false;
1381         }
1382         return true;
1383 }
1384
1385 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe, int reg, u32 port_sel)
1387 {
1388         u32 val = I915_READ(reg);
1389         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1390              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1391              reg, pipe_name(pipe));
1392
1393         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1394              && (val & DP_PIPEB_SELECT),
1395              "IBX PCH dp port still using transcoder B\n");
1396 }
1397
1398 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1399                                      enum pipe pipe, int reg)
1400 {
1401         u32 val = I915_READ(reg);
1402         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1403              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1404              reg, pipe_name(pipe));
1405
1406         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1407              && (val & SDVO_PIPE_B_SELECT),
1408              "IBX PCH hdmi port still using transcoder B\n");
1409 }
1410
1411 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1412                                       enum pipe pipe)
1413 {
1414         int reg;
1415         u32 val;
1416
1417         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1418         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1419         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1420
1421         reg = PCH_ADPA;
1422         val = I915_READ(reg);
1423         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1424              "PCH VGA enabled on transcoder %c, should be disabled\n",
1425              pipe_name(pipe));
1426
1427         reg = PCH_LVDS;
1428         val = I915_READ(reg);
1429         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1430              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1431              pipe_name(pipe));
1432
1433         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1434         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1435         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1436 }
1437
1438 /**
1439  * intel_enable_pll - enable a PLL
1440  * @dev_priv: i915 private structure
1441  * @pipe: pipe PLL to enable
1442  *
1443  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1444  * make sure the PLL reg is writable first though, since the panel write
1445  * protect mechanism may be enabled.
1446  *
1447  * Note!  This is for pre-ILK only.
1448  *
1449  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1450  */
1451 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1452 {
1453         int reg;
1454         u32 val;
1455
1456         /* No really, not for ILK+ */
1457         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1458
1459         /* PLL is protected by panel, make sure we can write it */
1460         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1461                 assert_panel_unlocked(dev_priv, pipe);
1462
1463         reg = DPLL(pipe);
1464         val = I915_READ(reg);
1465         val |= DPLL_VCO_ENABLE;
1466
1467         /* We do this three times for luck */
1468         I915_WRITE(reg, val);
1469         POSTING_READ(reg);
1470         udelay(150); /* wait for warmup */
1471         I915_WRITE(reg, val);
1472         POSTING_READ(reg);
1473         udelay(150); /* wait for warmup */
1474         I915_WRITE(reg, val);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477 }
1478
1479 /**
1480  * intel_disable_pll - disable a PLL
1481  * @dev_priv: i915 private structure
1482  * @pipe: pipe PLL to disable
1483  *
1484  * Disable the PLL for @pipe, making sure the pipe is off first.
1485  *
1486  * Note!  This is for pre-ILK only.
1487  */
1488 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1489 {
1490         int reg;
1491         u32 val;
1492
1493         /* Don't disable pipe A or pipe A PLLs if needed */
1494         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495                 return;
1496
1497         /* Make sure the pipe isn't still relying on us */
1498         assert_pipe_disabled(dev_priv, pipe);
1499
1500         reg = DPLL(pipe);
1501         val = I915_READ(reg);
1502         val &= ~DPLL_VCO_ENABLE;
1503         I915_WRITE(reg, val);
1504         POSTING_READ(reg);
1505 }
1506
1507 /* SBI access */
1508 static void
1509 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1510                 enum intel_sbi_destination destination)
1511 {
1512         unsigned long flags;
1513         u32 tmp;
1514
1515         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1516         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1517                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1518                 goto out_unlock;
1519         }
1520
1521         I915_WRITE(SBI_ADDR, (reg << 16));
1522         I915_WRITE(SBI_DATA, value);
1523
1524         if (destination == SBI_ICLK)
1525                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1526         else
1527                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1528         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1529
1530         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1531                                 100)) {
1532                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1533                 goto out_unlock;
1534         }
1535
1536 out_unlock:
1537         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542                enum intel_sbi_destination destination)
1543 {
1544         unsigned long flags;
1545         u32 value = 0;
1546
1547         spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1548         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
1549                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550                 goto out_unlock;
1551         }
1552
1553         I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555         if (destination == SBI_ICLK)
1556                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557         else
1558                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562                                 100)) {
1563                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564                 goto out_unlock;
1565         }
1566
1567         value = I915_READ(SBI_DATA);
1568
1569 out_unlock:
1570         spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1571         return value;
1572 }
1573
1574 /**
1575  * ironlake_enable_pch_pll - enable PCH PLL
1576  * @dev_priv: i915 private structure
1577  * @pipe: pipe PLL to enable
1578  *
1579  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1580  * drives the transcoder clock.
1581  */
1582 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1583 {
1584         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1585         struct intel_pch_pll *pll;
1586         int reg;
1587         u32 val;
1588
1589         /* PCH PLLs only available on ILK, SNB and IVB */
1590         BUG_ON(dev_priv->info->gen < 5);
1591         pll = intel_crtc->pch_pll;
1592         if (pll == NULL)
1593                 return;
1594
1595         if (WARN_ON(pll->refcount == 0))
1596                 return;
1597
1598         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1599                       pll->pll_reg, pll->active, pll->on,
1600                       intel_crtc->base.base.id);
1601
1602         /* PCH refclock must be enabled first */
1603         assert_pch_refclk_enabled(dev_priv);
1604
1605         if (pll->active++ && pll->on) {
1606                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1607                 return;
1608         }
1609
1610         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1611
1612         reg = pll->pll_reg;
1613         val = I915_READ(reg);
1614         val |= DPLL_VCO_ENABLE;
1615         I915_WRITE(reg, val);
1616         POSTING_READ(reg);
1617         udelay(200);
1618
1619         pll->on = true;
1620 }
1621
1622 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1623 {
1624         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1625         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1626         int reg;
1627         u32 val;
1628
1629         /* PCH only available on ILK+ */
1630         BUG_ON(dev_priv->info->gen < 5);
1631         if (pll == NULL)
1632                return;
1633
1634         if (WARN_ON(pll->refcount == 0))
1635                 return;
1636
1637         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1638                       pll->pll_reg, pll->active, pll->on,
1639                       intel_crtc->base.base.id);
1640
1641         if (WARN_ON(pll->active == 0)) {
1642                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1643                 return;
1644         }
1645
1646         if (--pll->active) {
1647                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1648                 return;
1649         }
1650
1651         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1652
1653         /* Make sure transcoder isn't still depending on us */
1654         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1655
1656         reg = pll->pll_reg;
1657         val = I915_READ(reg);
1658         val &= ~DPLL_VCO_ENABLE;
1659         I915_WRITE(reg, val);
1660         POSTING_READ(reg);
1661         udelay(200);
1662
1663         pll->on = false;
1664 }
1665
1666 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1667                                            enum pipe pipe)
1668 {
1669         struct drm_device *dev = dev_priv->dev;
1670         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1671         uint32_t reg, val, pipeconf_val;
1672
1673         /* PCH only available on ILK+ */
1674         BUG_ON(dev_priv->info->gen < 5);
1675
1676         /* Make sure PCH DPLL is enabled */
1677         assert_pch_pll_enabled(dev_priv,
1678                                to_intel_crtc(crtc)->pch_pll,
1679                                to_intel_crtc(crtc));
1680
1681         /* FDI must be feeding us bits for PCH ports */
1682         assert_fdi_tx_enabled(dev_priv, pipe);
1683         assert_fdi_rx_enabled(dev_priv, pipe);
1684
1685         if (HAS_PCH_CPT(dev)) {
1686                 /* Workaround: Set the timing override bit before enabling the
1687                  * pch transcoder. */
1688                 reg = TRANS_CHICKEN2(pipe);
1689                 val = I915_READ(reg);
1690                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1691                 I915_WRITE(reg, val);
1692         }
1693
1694         reg = TRANSCONF(pipe);
1695         val = I915_READ(reg);
1696         pipeconf_val = I915_READ(PIPECONF(pipe));
1697
1698         if (HAS_PCH_IBX(dev_priv->dev)) {
1699                 /*
1700                  * make the BPC in transcoder be consistent with
1701                  * that in pipeconf reg.
1702                  */
1703                 val &= ~PIPE_BPC_MASK;
1704                 val |= pipeconf_val & PIPE_BPC_MASK;
1705         }
1706
1707         val &= ~TRANS_INTERLACE_MASK;
1708         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1709                 if (HAS_PCH_IBX(dev_priv->dev) &&
1710                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1711                         val |= TRANS_LEGACY_INTERLACED_ILK;
1712                 else
1713                         val |= TRANS_INTERLACED;
1714         else
1715                 val |= TRANS_PROGRESSIVE;
1716
1717         I915_WRITE(reg, val | TRANS_ENABLE);
1718         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1719                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1720 }
1721
1722 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1723                                       enum transcoder cpu_transcoder)
1724 {
1725         u32 val, pipeconf_val;
1726
1727         /* PCH only available on ILK+ */
1728         BUG_ON(dev_priv->info->gen < 5);
1729
1730         /* FDI must be feeding us bits for PCH ports */
1731         assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1732         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1733
1734         /* Workaround: set timing override bit. */
1735         val = I915_READ(_TRANSA_CHICKEN2);
1736         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1737         I915_WRITE(_TRANSA_CHICKEN2, val);
1738
1739         val = TRANS_ENABLE;
1740         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1741
1742         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1743             PIPECONF_INTERLACED_ILK)
1744                 val |= TRANS_INTERLACED;
1745         else
1746                 val |= TRANS_PROGRESSIVE;
1747
1748         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1749         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1750                 DRM_ERROR("Failed to enable PCH transcoder\n");
1751 }
1752
1753 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1754                                             enum pipe pipe)
1755 {
1756         struct drm_device *dev = dev_priv->dev;
1757         uint32_t reg, val;
1758
1759         /* FDI relies on the transcoder */
1760         assert_fdi_tx_disabled(dev_priv, pipe);
1761         assert_fdi_rx_disabled(dev_priv, pipe);
1762
1763         /* Ports must be off as well */
1764         assert_pch_ports_disabled(dev_priv, pipe);
1765
1766         reg = TRANSCONF(pipe);
1767         val = I915_READ(reg);
1768         val &= ~TRANS_ENABLE;
1769         I915_WRITE(reg, val);
1770         /* wait for PCH transcoder off, transcoder state */
1771         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1772                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1773
1774         if (!HAS_PCH_IBX(dev)) {
1775                 /* Workaround: Clear the timing override chicken bit again. */
1776                 reg = TRANS_CHICKEN2(pipe);
1777                 val = I915_READ(reg);
1778                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1779                 I915_WRITE(reg, val);
1780         }
1781 }
1782
1783 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1784 {
1785         u32 val;
1786
1787         val = I915_READ(_TRANSACONF);
1788         val &= ~TRANS_ENABLE;
1789         I915_WRITE(_TRANSACONF, val);
1790         /* wait for PCH transcoder off, transcoder state */
1791         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1792                 DRM_ERROR("Failed to disable PCH transcoder\n");
1793
1794         /* Workaround: clear timing override bit. */
1795         val = I915_READ(_TRANSA_CHICKEN2);
1796         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1797         I915_WRITE(_TRANSA_CHICKEN2, val);
1798 }
1799
1800 /**
1801  * intel_enable_pipe - enable a pipe, asserting requirements
1802  * @dev_priv: i915 private structure
1803  * @pipe: pipe to enable
1804  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1805  *
1806  * Enable @pipe, making sure that various hardware specific requirements
1807  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1808  *
1809  * @pipe should be %PIPE_A or %PIPE_B.
1810  *
1811  * Will wait until the pipe is actually running (i.e. first vblank) before
1812  * returning.
1813  */
1814 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1815                               bool pch_port)
1816 {
1817         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1818                                                                       pipe);
1819         enum transcoder pch_transcoder;
1820         int reg;
1821         u32 val;
1822
1823         if (IS_HASWELL(dev_priv->dev))
1824                 pch_transcoder = TRANSCODER_A;
1825         else
1826                 pch_transcoder = pipe;
1827
1828         /*
1829          * A pipe without a PLL won't actually be able to drive bits from
1830          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1831          * need the check.
1832          */
1833         if (!HAS_PCH_SPLIT(dev_priv->dev))
1834                 assert_pll_enabled(dev_priv, pipe);
1835         else {
1836                 if (pch_port) {
1837                         /* if driving the PCH, we need FDI enabled */
1838                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1839                         assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
1840                 }
1841                 /* FIXME: assert CPU port conditions for SNB+ */
1842         }
1843
1844         reg = PIPECONF(cpu_transcoder);
1845         val = I915_READ(reg);
1846         if (val & PIPECONF_ENABLE)
1847                 return;
1848
1849         I915_WRITE(reg, val | PIPECONF_ENABLE);
1850         intel_wait_for_vblank(dev_priv->dev, pipe);
1851 }
1852
1853 /**
1854  * intel_disable_pipe - disable a pipe, asserting requirements
1855  * @dev_priv: i915 private structure
1856  * @pipe: pipe to disable
1857  *
1858  * Disable @pipe, making sure that various hardware specific requirements
1859  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1860  *
1861  * @pipe should be %PIPE_A or %PIPE_B.
1862  *
1863  * Will wait until the pipe has shut down before returning.
1864  */
1865 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1866                                enum pipe pipe)
1867 {
1868         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1869                                                                       pipe);
1870         int reg;
1871         u32 val;
1872
1873         /*
1874          * Make sure planes won't keep trying to pump pixels to us,
1875          * or we might hang the display.
1876          */
1877         assert_planes_disabled(dev_priv, pipe);
1878
1879         /* Don't disable pipe A or pipe A PLLs if needed */
1880         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1881                 return;
1882
1883         reg = PIPECONF(cpu_transcoder);
1884         val = I915_READ(reg);
1885         if ((val & PIPECONF_ENABLE) == 0)
1886                 return;
1887
1888         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1889         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1890 }
1891
1892 /*
1893  * Plane regs are double buffered, going from enabled->disabled needs a
1894  * trigger in order to latch.  The display address reg provides this.
1895  */
1896 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1897                                       enum plane plane)
1898 {
1899         if (dev_priv->info->gen >= 4)
1900                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1901         else
1902                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1903 }
1904
1905 /**
1906  * intel_enable_plane - enable a display plane on a given pipe
1907  * @dev_priv: i915 private structure
1908  * @plane: plane to enable
1909  * @pipe: pipe being fed
1910  *
1911  * Enable @plane on @pipe, making sure that @pipe is running first.
1912  */
1913 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1914                                enum plane plane, enum pipe pipe)
1915 {
1916         int reg;
1917         u32 val;
1918
1919         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1920         assert_pipe_enabled(dev_priv, pipe);
1921
1922         reg = DSPCNTR(plane);
1923         val = I915_READ(reg);
1924         if (val & DISPLAY_PLANE_ENABLE)
1925                 return;
1926
1927         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1928         intel_flush_display_plane(dev_priv, plane);
1929         intel_wait_for_vblank(dev_priv->dev, pipe);
1930 }
1931
1932 /**
1933  * intel_disable_plane - disable a display plane
1934  * @dev_priv: i915 private structure
1935  * @plane: plane to disable
1936  * @pipe: pipe consuming the data
1937  *
1938  * Disable @plane; should be an independent operation.
1939  */
1940 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1941                                 enum plane plane, enum pipe pipe)
1942 {
1943         int reg;
1944         u32 val;
1945
1946         reg = DSPCNTR(plane);
1947         val = I915_READ(reg);
1948         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1949                 return;
1950
1951         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1952         intel_flush_display_plane(dev_priv, plane);
1953         intel_wait_for_vblank(dev_priv->dev, pipe);
1954 }
1955
1956 int
1957 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1958                            struct drm_i915_gem_object *obj,
1959                            struct intel_ring_buffer *pipelined)
1960 {
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         u32 alignment;
1963         int ret;
1964
1965         switch (obj->tiling_mode) {
1966         case I915_TILING_NONE:
1967                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1968                         alignment = 128 * 1024;
1969                 else if (INTEL_INFO(dev)->gen >= 4)
1970                         alignment = 4 * 1024;
1971                 else
1972                         alignment = 64 * 1024;
1973                 break;
1974         case I915_TILING_X:
1975                 /* pin() will align the object as required by fence */
1976                 alignment = 0;
1977                 break;
1978         case I915_TILING_Y:
1979                 /* FIXME: Is this true? */
1980                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1981                 return -EINVAL;
1982         default:
1983                 BUG();
1984         }
1985
1986         dev_priv->mm.interruptible = false;
1987         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1988         if (ret)
1989                 goto err_interruptible;
1990
1991         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1992          * fence, whereas 965+ only requires a fence if using
1993          * framebuffer compression.  For simplicity, we always install
1994          * a fence as the cost is not that onerous.
1995          */
1996         ret = i915_gem_object_get_fence(obj);
1997         if (ret)
1998                 goto err_unpin;
1999
2000         i915_gem_object_pin_fence(obj);
2001
2002         dev_priv->mm.interruptible = true;
2003         return 0;
2004
2005 err_unpin:
2006         i915_gem_object_unpin(obj);
2007 err_interruptible:
2008         dev_priv->mm.interruptible = true;
2009         return ret;
2010 }
2011
2012 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2013 {
2014         i915_gem_object_unpin_fence(obj);
2015         i915_gem_object_unpin(obj);
2016 }
2017
2018 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2019  * is assumed to be a power-of-two. */
2020 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2021                                                unsigned int bpp,
2022                                                unsigned int pitch)
2023 {
2024         int tile_rows, tiles;
2025
2026         tile_rows = *y / 8;
2027         *y %= 8;
2028         tiles = *x / (512/bpp);
2029         *x %= 512/bpp;
2030
2031         return tile_rows * pitch * 8 + tiles * 4096;
2032 }
2033
2034 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2035                              int x, int y)
2036 {
2037         struct drm_device *dev = crtc->dev;
2038         struct drm_i915_private *dev_priv = dev->dev_private;
2039         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2040         struct intel_framebuffer *intel_fb;
2041         struct drm_i915_gem_object *obj;
2042         int plane = intel_crtc->plane;
2043         unsigned long linear_offset;
2044         u32 dspcntr;
2045         u32 reg;
2046
2047         switch (plane) {
2048         case 0:
2049         case 1:
2050                 break;
2051         default:
2052                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2053                 return -EINVAL;
2054         }
2055
2056         intel_fb = to_intel_framebuffer(fb);
2057         obj = intel_fb->obj;
2058
2059         reg = DSPCNTR(plane);
2060         dspcntr = I915_READ(reg);
2061         /* Mask out pixel format bits in case we change it */
2062         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2063         switch (fb->pixel_format) {
2064         case DRM_FORMAT_C8:
2065                 dspcntr |= DISPPLANE_8BPP;
2066                 break;
2067         case DRM_FORMAT_XRGB1555:
2068         case DRM_FORMAT_ARGB1555:
2069                 dspcntr |= DISPPLANE_BGRX555;
2070                 break;
2071         case DRM_FORMAT_RGB565:
2072                 dspcntr |= DISPPLANE_BGRX565;
2073                 break;
2074         case DRM_FORMAT_XRGB8888:
2075         case DRM_FORMAT_ARGB8888:
2076                 dspcntr |= DISPPLANE_BGRX888;
2077                 break;
2078         case DRM_FORMAT_XBGR8888:
2079         case DRM_FORMAT_ABGR8888:
2080                 dspcntr |= DISPPLANE_RGBX888;
2081                 break;
2082         case DRM_FORMAT_XRGB2101010:
2083         case DRM_FORMAT_ARGB2101010:
2084                 dspcntr |= DISPPLANE_BGRX101010;
2085                 break;
2086         case DRM_FORMAT_XBGR2101010:
2087         case DRM_FORMAT_ABGR2101010:
2088                 dspcntr |= DISPPLANE_RGBX101010;
2089                 break;
2090         default:
2091                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2092                 return -EINVAL;
2093         }
2094
2095         if (INTEL_INFO(dev)->gen >= 4) {
2096                 if (obj->tiling_mode != I915_TILING_NONE)
2097                         dspcntr |= DISPPLANE_TILED;
2098                 else
2099                         dspcntr &= ~DISPPLANE_TILED;
2100         }
2101
2102         I915_WRITE(reg, dspcntr);
2103
2104         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2105
2106         if (INTEL_INFO(dev)->gen >= 4) {
2107                 intel_crtc->dspaddr_offset =
2108                         intel_gen4_compute_offset_xtiled(&x, &y,
2109                                                          fb->bits_per_pixel / 8,
2110                                                          fb->pitches[0]);
2111                 linear_offset -= intel_crtc->dspaddr_offset;
2112         } else {
2113                 intel_crtc->dspaddr_offset = linear_offset;
2114         }
2115
2116         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2117                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2118         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2119         if (INTEL_INFO(dev)->gen >= 4) {
2120                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2121                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2122                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2123                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2124         } else
2125                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2126         POSTING_READ(reg);
2127
2128         return 0;
2129 }
2130
2131 static int ironlake_update_plane(struct drm_crtc *crtc,
2132                                  struct drm_framebuffer *fb, int x, int y)
2133 {
2134         struct drm_device *dev = crtc->dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137         struct intel_framebuffer *intel_fb;
2138         struct drm_i915_gem_object *obj;
2139         int plane = intel_crtc->plane;
2140         unsigned long linear_offset;
2141         u32 dspcntr;
2142         u32 reg;
2143
2144         switch (plane) {
2145         case 0:
2146         case 1:
2147         case 2:
2148                 break;
2149         default:
2150                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2151                 return -EINVAL;
2152         }
2153
2154         intel_fb = to_intel_framebuffer(fb);
2155         obj = intel_fb->obj;
2156
2157         reg = DSPCNTR(plane);
2158         dspcntr = I915_READ(reg);
2159         /* Mask out pixel format bits in case we change it */
2160         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2161         switch (fb->pixel_format) {
2162         case DRM_FORMAT_C8:
2163                 dspcntr |= DISPPLANE_8BPP;
2164                 break;
2165         case DRM_FORMAT_RGB565:
2166                 dspcntr |= DISPPLANE_BGRX565;
2167                 break;
2168         case DRM_FORMAT_XRGB8888:
2169         case DRM_FORMAT_ARGB8888:
2170                 dspcntr |= DISPPLANE_BGRX888;
2171                 break;
2172         case DRM_FORMAT_XBGR8888:
2173         case DRM_FORMAT_ABGR8888:
2174                 dspcntr |= DISPPLANE_RGBX888;
2175                 break;
2176         case DRM_FORMAT_XRGB2101010:
2177         case DRM_FORMAT_ARGB2101010:
2178                 dspcntr |= DISPPLANE_BGRX101010;
2179                 break;
2180         case DRM_FORMAT_XBGR2101010:
2181         case DRM_FORMAT_ABGR2101010:
2182                 dspcntr |= DISPPLANE_RGBX101010;
2183                 break;
2184         default:
2185                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2186                 return -EINVAL;
2187         }
2188
2189         if (obj->tiling_mode != I915_TILING_NONE)
2190                 dspcntr |= DISPPLANE_TILED;
2191         else
2192                 dspcntr &= ~DISPPLANE_TILED;
2193
2194         /* must disable */
2195         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2196
2197         I915_WRITE(reg, dspcntr);
2198
2199         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2200         intel_crtc->dspaddr_offset =
2201                 intel_gen4_compute_offset_xtiled(&x, &y,
2202                                                  fb->bits_per_pixel / 8,
2203                                                  fb->pitches[0]);
2204         linear_offset -= intel_crtc->dspaddr_offset;
2205
2206         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2207                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2208         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2209         I915_MODIFY_DISPBASE(DSPSURF(plane),
2210                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2211         if (IS_HASWELL(dev)) {
2212                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2213         } else {
2214                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2215                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2216         }
2217         POSTING_READ(reg);
2218
2219         return 0;
2220 }
2221
2222 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2223 static int
2224 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2225                            int x, int y, enum mode_set_atomic state)
2226 {
2227         struct drm_device *dev = crtc->dev;
2228         struct drm_i915_private *dev_priv = dev->dev_private;
2229
2230         if (dev_priv->display.disable_fbc)
2231                 dev_priv->display.disable_fbc(dev);
2232         intel_increase_pllclock(crtc);
2233
2234         return dev_priv->display.update_plane(crtc, fb, x, y);
2235 }
2236
2237 static int
2238 intel_finish_fb(struct drm_framebuffer *old_fb)
2239 {
2240         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2241         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242         bool was_interruptible = dev_priv->mm.interruptible;
2243         int ret;
2244
2245         wait_event(dev_priv->pending_flip_queue,
2246                    atomic_read(&dev_priv->mm.wedged) ||
2247                    atomic_read(&obj->pending_flip) == 0);
2248
2249         /* Big Hammer, we also need to ensure that any pending
2250          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2251          * current scanout is retired before unpinning the old
2252          * framebuffer.
2253          *
2254          * This should only fail upon a hung GPU, in which case we
2255          * can safely continue.
2256          */
2257         dev_priv->mm.interruptible = false;
2258         ret = i915_gem_object_finish_gpu(obj);
2259         dev_priv->mm.interruptible = was_interruptible;
2260
2261         return ret;
2262 }
2263
2264 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2265 {
2266         struct drm_device *dev = crtc->dev;
2267         struct drm_i915_master_private *master_priv;
2268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269
2270         if (!dev->primary->master)
2271                 return;
2272
2273         master_priv = dev->primary->master->driver_priv;
2274         if (!master_priv->sarea_priv)
2275                 return;
2276
2277         switch (intel_crtc->pipe) {
2278         case 0:
2279                 master_priv->sarea_priv->pipeA_x = x;
2280                 master_priv->sarea_priv->pipeA_y = y;
2281                 break;
2282         case 1:
2283                 master_priv->sarea_priv->pipeB_x = x;
2284                 master_priv->sarea_priv->pipeB_y = y;
2285                 break;
2286         default:
2287                 break;
2288         }
2289 }
2290
2291 static int
2292 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2293                     struct drm_framebuffer *fb)
2294 {
2295         struct drm_device *dev = crtc->dev;
2296         struct drm_i915_private *dev_priv = dev->dev_private;
2297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298         struct drm_framebuffer *old_fb;
2299         int ret;
2300
2301         /* no fb bound */
2302         if (!fb) {
2303                 DRM_ERROR("No FB bound\n");
2304                 return 0;
2305         }
2306
2307         if(intel_crtc->plane > dev_priv->num_pipe) {
2308                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2309                                 intel_crtc->plane,
2310                                 dev_priv->num_pipe);
2311                 return -EINVAL;
2312         }
2313
2314         mutex_lock(&dev->struct_mutex);
2315         ret = intel_pin_and_fence_fb_obj(dev,
2316                                          to_intel_framebuffer(fb)->obj,
2317                                          NULL);
2318         if (ret != 0) {
2319                 mutex_unlock(&dev->struct_mutex);
2320                 DRM_ERROR("pin & fence failed\n");
2321                 return ret;
2322         }
2323
2324         if (crtc->fb)
2325                 intel_finish_fb(crtc->fb);
2326
2327         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2328         if (ret) {
2329                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2330                 mutex_unlock(&dev->struct_mutex);
2331                 DRM_ERROR("failed to update base address\n");
2332                 return ret;
2333         }
2334
2335         old_fb = crtc->fb;
2336         crtc->fb = fb;
2337         crtc->x = x;
2338         crtc->y = y;
2339
2340         if (old_fb) {
2341                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2342                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2343         }
2344
2345         intel_update_fbc(dev);
2346         mutex_unlock(&dev->struct_mutex);
2347
2348         intel_crtc_update_sarea_pos(crtc, x, y);
2349
2350         return 0;
2351 }
2352
2353 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2354 {
2355         struct drm_device *dev = crtc->dev;
2356         struct drm_i915_private *dev_priv = dev->dev_private;
2357         u32 dpa_ctl;
2358
2359         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2360         dpa_ctl = I915_READ(DP_A);
2361         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2362
2363         if (clock < 200000) {
2364                 u32 temp;
2365                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2366                 /* workaround for 160Mhz:
2367                    1) program 0x4600c bits 15:0 = 0x8124
2368                    2) program 0x46010 bit 0 = 1
2369                    3) program 0x46034 bit 24 = 1
2370                    4) program 0x64000 bit 14 = 1
2371                    */
2372                 temp = I915_READ(0x4600c);
2373                 temp &= 0xffff0000;
2374                 I915_WRITE(0x4600c, temp | 0x8124);
2375
2376                 temp = I915_READ(0x46010);
2377                 I915_WRITE(0x46010, temp | 1);
2378
2379                 temp = I915_READ(0x46034);
2380                 I915_WRITE(0x46034, temp | (1 << 24));
2381         } else {
2382                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2383         }
2384         I915_WRITE(DP_A, dpa_ctl);
2385
2386         POSTING_READ(DP_A);
2387         udelay(500);
2388 }
2389
2390 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2391 {
2392         struct drm_device *dev = crtc->dev;
2393         struct drm_i915_private *dev_priv = dev->dev_private;
2394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2395         int pipe = intel_crtc->pipe;
2396         u32 reg, temp;
2397
2398         /* enable normal train */
2399         reg = FDI_TX_CTL(pipe);
2400         temp = I915_READ(reg);
2401         if (IS_IVYBRIDGE(dev)) {
2402                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2403                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2404         } else {
2405                 temp &= ~FDI_LINK_TRAIN_NONE;
2406                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2407         }
2408         I915_WRITE(reg, temp);
2409
2410         reg = FDI_RX_CTL(pipe);
2411         temp = I915_READ(reg);
2412         if (HAS_PCH_CPT(dev)) {
2413                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2414                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2415         } else {
2416                 temp &= ~FDI_LINK_TRAIN_NONE;
2417                 temp |= FDI_LINK_TRAIN_NONE;
2418         }
2419         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2420
2421         /* wait one idle pattern time */
2422         POSTING_READ(reg);
2423         udelay(1000);
2424
2425         /* IVB wants error correction enabled */
2426         if (IS_IVYBRIDGE(dev))
2427                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2428                            FDI_FE_ERRC_ENABLE);
2429 }
2430
2431 static void ivb_modeset_global_resources(struct drm_device *dev)
2432 {
2433         struct drm_i915_private *dev_priv = dev->dev_private;
2434         struct intel_crtc *pipe_B_crtc =
2435                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2436         struct intel_crtc *pipe_C_crtc =
2437                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2438         uint32_t temp;
2439
2440         /* When everything is off disable fdi C so that we could enable fdi B
2441          * with all lanes. XXX: This misses the case where a pipe is not using
2442          * any pch resources and so doesn't need any fdi lanes. */
2443         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2444                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2445                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2446
2447                 temp = I915_READ(SOUTH_CHICKEN1);
2448                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2449                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2450                 I915_WRITE(SOUTH_CHICKEN1, temp);
2451         }
2452 }
2453
2454 /* The FDI link training functions for ILK/Ibexpeak. */
2455 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2456 {
2457         struct drm_device *dev = crtc->dev;
2458         struct drm_i915_private *dev_priv = dev->dev_private;
2459         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2460         int pipe = intel_crtc->pipe;
2461         int plane = intel_crtc->plane;
2462         u32 reg, temp, tries;
2463
2464         /* FDI needs bits from pipe & plane first */
2465         assert_pipe_enabled(dev_priv, pipe);
2466         assert_plane_enabled(dev_priv, plane);
2467
2468         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2469            for train result */
2470         reg = FDI_RX_IMR(pipe);
2471         temp = I915_READ(reg);
2472         temp &= ~FDI_RX_SYMBOL_LOCK;
2473         temp &= ~FDI_RX_BIT_LOCK;
2474         I915_WRITE(reg, temp);
2475         I915_READ(reg);
2476         udelay(150);
2477
2478         /* enable CPU FDI TX and PCH FDI RX */
2479         reg = FDI_TX_CTL(pipe);
2480         temp = I915_READ(reg);
2481         temp &= ~(7 << 19);
2482         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2483         temp &= ~FDI_LINK_TRAIN_NONE;
2484         temp |= FDI_LINK_TRAIN_PATTERN_1;
2485         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2486
2487         reg = FDI_RX_CTL(pipe);
2488         temp = I915_READ(reg);
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493         POSTING_READ(reg);
2494         udelay(150);
2495
2496         /* Ironlake workaround, enable clock pointer after FDI enable*/
2497         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2498         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2499                    FDI_RX_PHASE_SYNC_POINTER_EN);
2500
2501         reg = FDI_RX_IIR(pipe);
2502         for (tries = 0; tries < 5; tries++) {
2503                 temp = I915_READ(reg);
2504                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2505
2506                 if ((temp & FDI_RX_BIT_LOCK)) {
2507                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2508                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2509                         break;
2510                 }
2511         }
2512         if (tries == 5)
2513                 DRM_ERROR("FDI train 1 fail!\n");
2514
2515         /* Train 2 */
2516         reg = FDI_TX_CTL(pipe);
2517         temp = I915_READ(reg);
2518         temp &= ~FDI_LINK_TRAIN_NONE;
2519         temp |= FDI_LINK_TRAIN_PATTERN_2;
2520         I915_WRITE(reg, temp);
2521
2522         reg = FDI_RX_CTL(pipe);
2523         temp = I915_READ(reg);
2524         temp &= ~FDI_LINK_TRAIN_NONE;
2525         temp |= FDI_LINK_TRAIN_PATTERN_2;
2526         I915_WRITE(reg, temp);
2527
2528         POSTING_READ(reg);
2529         udelay(150);
2530
2531         reg = FDI_RX_IIR(pipe);
2532         for (tries = 0; tries < 5; tries++) {
2533                 temp = I915_READ(reg);
2534                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2535
2536                 if (temp & FDI_RX_SYMBOL_LOCK) {
2537                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2538                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2539                         break;
2540                 }
2541         }
2542         if (tries == 5)
2543                 DRM_ERROR("FDI train 2 fail!\n");
2544
2545         DRM_DEBUG_KMS("FDI train done\n");
2546
2547 }
2548
2549 static const int snb_b_fdi_train_param[] = {
2550         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2551         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2552         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2553         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2554 };
2555
2556 /* The FDI link training functions for SNB/Cougarpoint. */
2557 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2558 {
2559         struct drm_device *dev = crtc->dev;
2560         struct drm_i915_private *dev_priv = dev->dev_private;
2561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2562         int pipe = intel_crtc->pipe;
2563         u32 reg, temp, i, retry;
2564
2565         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2566            for train result */
2567         reg = FDI_RX_IMR(pipe);
2568         temp = I915_READ(reg);
2569         temp &= ~FDI_RX_SYMBOL_LOCK;
2570         temp &= ~FDI_RX_BIT_LOCK;
2571         I915_WRITE(reg, temp);
2572
2573         POSTING_READ(reg);
2574         udelay(150);
2575
2576         /* enable CPU FDI TX and PCH FDI RX */
2577         reg = FDI_TX_CTL(pipe);
2578         temp = I915_READ(reg);
2579         temp &= ~(7 << 19);
2580         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2581         temp &= ~FDI_LINK_TRAIN_NONE;
2582         temp |= FDI_LINK_TRAIN_PATTERN_1;
2583         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2584         /* SNB-B */
2585         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2586         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2587
2588         I915_WRITE(FDI_RX_MISC(pipe),
2589                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2590
2591         reg = FDI_RX_CTL(pipe);
2592         temp = I915_READ(reg);
2593         if (HAS_PCH_CPT(dev)) {
2594                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2595                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2596         } else {
2597                 temp &= ~FDI_LINK_TRAIN_NONE;
2598                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2599         }
2600         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2601
2602         POSTING_READ(reg);
2603         udelay(150);
2604
2605         for (i = 0; i < 4; i++) {
2606                 reg = FDI_TX_CTL(pipe);
2607                 temp = I915_READ(reg);
2608                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2609                 temp |= snb_b_fdi_train_param[i];
2610                 I915_WRITE(reg, temp);
2611
2612                 POSTING_READ(reg);
2613                 udelay(500);
2614
2615                 for (retry = 0; retry < 5; retry++) {
2616                         reg = FDI_RX_IIR(pipe);
2617                         temp = I915_READ(reg);
2618                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619                         if (temp & FDI_RX_BIT_LOCK) {
2620                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2621                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2622                                 break;
2623                         }
2624                         udelay(50);
2625                 }
2626                 if (retry < 5)
2627                         break;
2628         }
2629         if (i == 4)
2630                 DRM_ERROR("FDI train 1 fail!\n");
2631
2632         /* Train 2 */
2633         reg = FDI_TX_CTL(pipe);
2634         temp = I915_READ(reg);
2635         temp &= ~FDI_LINK_TRAIN_NONE;
2636         temp |= FDI_LINK_TRAIN_PATTERN_2;
2637         if (IS_GEN6(dev)) {
2638                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639                 /* SNB-B */
2640                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2641         }
2642         I915_WRITE(reg, temp);
2643
2644         reg = FDI_RX_CTL(pipe);
2645         temp = I915_READ(reg);
2646         if (HAS_PCH_CPT(dev)) {
2647                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2648                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2649         } else {
2650                 temp &= ~FDI_LINK_TRAIN_NONE;
2651                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2652         }
2653         I915_WRITE(reg, temp);
2654
2655         POSTING_READ(reg);
2656         udelay(150);
2657
2658         for (i = 0; i < 4; i++) {
2659                 reg = FDI_TX_CTL(pipe);
2660                 temp = I915_READ(reg);
2661                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662                 temp |= snb_b_fdi_train_param[i];
2663                 I915_WRITE(reg, temp);
2664
2665                 POSTING_READ(reg);
2666                 udelay(500);
2667
2668                 for (retry = 0; retry < 5; retry++) {
2669                         reg = FDI_RX_IIR(pipe);
2670                         temp = I915_READ(reg);
2671                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2672                         if (temp & FDI_RX_SYMBOL_LOCK) {
2673                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2674                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2675                                 break;
2676                         }
2677                         udelay(50);
2678                 }
2679                 if (retry < 5)
2680                         break;
2681         }
2682         if (i == 4)
2683                 DRM_ERROR("FDI train 2 fail!\n");
2684
2685         DRM_DEBUG_KMS("FDI train done.\n");
2686 }
2687
2688 /* Manual link training for Ivy Bridge A0 parts */
2689 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2690 {
2691         struct drm_device *dev = crtc->dev;
2692         struct drm_i915_private *dev_priv = dev->dev_private;
2693         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2694         int pipe = intel_crtc->pipe;
2695         u32 reg, temp, i;
2696
2697         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2698            for train result */
2699         reg = FDI_RX_IMR(pipe);
2700         temp = I915_READ(reg);
2701         temp &= ~FDI_RX_SYMBOL_LOCK;
2702         temp &= ~FDI_RX_BIT_LOCK;
2703         I915_WRITE(reg, temp);
2704
2705         POSTING_READ(reg);
2706         udelay(150);
2707
2708         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2709                       I915_READ(FDI_RX_IIR(pipe)));
2710
2711         /* enable CPU FDI TX and PCH FDI RX */
2712         reg = FDI_TX_CTL(pipe);
2713         temp = I915_READ(reg);
2714         temp &= ~(7 << 19);
2715         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2716         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2717         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2718         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2720         temp |= FDI_COMPOSITE_SYNC;
2721         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2722
2723         I915_WRITE(FDI_RX_MISC(pipe),
2724                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2725
2726         reg = FDI_RX_CTL(pipe);
2727         temp = I915_READ(reg);
2728         temp &= ~FDI_LINK_TRAIN_AUTO;
2729         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2730         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2731         temp |= FDI_COMPOSITE_SYNC;
2732         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2733
2734         POSTING_READ(reg);
2735         udelay(150);
2736
2737         for (i = 0; i < 4; i++) {
2738                 reg = FDI_TX_CTL(pipe);
2739                 temp = I915_READ(reg);
2740                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2741                 temp |= snb_b_fdi_train_param[i];
2742                 I915_WRITE(reg, temp);
2743
2744                 POSTING_READ(reg);
2745                 udelay(500);
2746
2747                 reg = FDI_RX_IIR(pipe);
2748                 temp = I915_READ(reg);
2749                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2750
2751                 if (temp & FDI_RX_BIT_LOCK ||
2752                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2753                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2754                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2755                         break;
2756                 }
2757         }
2758         if (i == 4)
2759                 DRM_ERROR("FDI train 1 fail!\n");
2760
2761         /* Train 2 */
2762         reg = FDI_TX_CTL(pipe);
2763         temp = I915_READ(reg);
2764         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2765         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2766         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2767         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2768         I915_WRITE(reg, temp);
2769
2770         reg = FDI_RX_CTL(pipe);
2771         temp = I915_READ(reg);
2772         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2773         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2774         I915_WRITE(reg, temp);
2775
2776         POSTING_READ(reg);
2777         udelay(150);
2778
2779         for (i = 0; i < 4; i++) {
2780                 reg = FDI_TX_CTL(pipe);
2781                 temp = I915_READ(reg);
2782                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2783                 temp |= snb_b_fdi_train_param[i];
2784                 I915_WRITE(reg, temp);
2785
2786                 POSTING_READ(reg);
2787                 udelay(500);
2788
2789                 reg = FDI_RX_IIR(pipe);
2790                 temp = I915_READ(reg);
2791                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2792
2793                 if (temp & FDI_RX_SYMBOL_LOCK) {
2794                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2796                         break;
2797                 }
2798         }
2799         if (i == 4)
2800                 DRM_ERROR("FDI train 2 fail!\n");
2801
2802         DRM_DEBUG_KMS("FDI train done.\n");
2803 }
2804
2805 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2806 {
2807         struct drm_device *dev = intel_crtc->base.dev;
2808         struct drm_i915_private *dev_priv = dev->dev_private;
2809         int pipe = intel_crtc->pipe;
2810         u32 reg, temp;
2811
2812
2813         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2814         reg = FDI_RX_CTL(pipe);
2815         temp = I915_READ(reg);
2816         temp &= ~((0x7 << 19) | (0x7 << 16));
2817         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2818         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2819         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2820
2821         POSTING_READ(reg);
2822         udelay(200);
2823
2824         /* Switch from Rawclk to PCDclk */
2825         temp = I915_READ(reg);
2826         I915_WRITE(reg, temp | FDI_PCDCLK);
2827
2828         POSTING_READ(reg);
2829         udelay(200);
2830
2831         /* On Haswell, the PLL configuration for ports and pipes is handled
2832          * separately, as part of DDI setup */
2833         if (!IS_HASWELL(dev)) {
2834                 /* Enable CPU FDI TX PLL, always on for Ironlake */
2835                 reg = FDI_TX_CTL(pipe);
2836                 temp = I915_READ(reg);
2837                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2838                         I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2839
2840                         POSTING_READ(reg);
2841                         udelay(100);
2842                 }
2843         }
2844 }
2845
2846 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847 {
2848         struct drm_device *dev = intel_crtc->base.dev;
2849         struct drm_i915_private *dev_priv = dev->dev_private;
2850         int pipe = intel_crtc->pipe;
2851         u32 reg, temp;
2852
2853         /* Switch from PCDclk to Rawclk */
2854         reg = FDI_RX_CTL(pipe);
2855         temp = I915_READ(reg);
2856         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858         /* Disable CPU FDI TX PLL */
2859         reg = FDI_TX_CTL(pipe);
2860         temp = I915_READ(reg);
2861         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(100);
2865
2866         reg = FDI_RX_CTL(pipe);
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870         /* Wait for the clocks to turn off. */
2871         POSTING_READ(reg);
2872         udelay(100);
2873 }
2874
2875 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876 {
2877         struct drm_device *dev = crtc->dev;
2878         struct drm_i915_private *dev_priv = dev->dev_private;
2879         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880         int pipe = intel_crtc->pipe;
2881         u32 reg, temp;
2882
2883         /* disable CPU FDI tx and PCH FDI rx */
2884         reg = FDI_TX_CTL(pipe);
2885         temp = I915_READ(reg);
2886         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887         POSTING_READ(reg);
2888
2889         reg = FDI_RX_CTL(pipe);
2890         temp = I915_READ(reg);
2891         temp &= ~(0x7 << 16);
2892         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2893         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895         POSTING_READ(reg);
2896         udelay(100);
2897
2898         /* Ironlake workaround, disable clock pointer after downing FDI */
2899         if (HAS_PCH_IBX(dev)) {
2900                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901         }
2902
2903         /* still set train pattern 1 */
2904         reg = FDI_TX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~FDI_LINK_TRAIN_NONE;
2907         temp |= FDI_LINK_TRAIN_PATTERN_1;
2908         I915_WRITE(reg, temp);
2909
2910         reg = FDI_RX_CTL(pipe);
2911         temp = I915_READ(reg);
2912         if (HAS_PCH_CPT(dev)) {
2913                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915         } else {
2916                 temp &= ~FDI_LINK_TRAIN_NONE;
2917                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918         }
2919         /* BPC in FDI rx is consistent with that in PIPECONF */
2920         temp &= ~(0x07 << 16);
2921         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2922         I915_WRITE(reg, temp);
2923
2924         POSTING_READ(reg);
2925         udelay(100);
2926 }
2927
2928 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929 {
2930         struct drm_device *dev = crtc->dev;
2931         struct drm_i915_private *dev_priv = dev->dev_private;
2932         unsigned long flags;
2933         bool pending;
2934
2935         if (atomic_read(&dev_priv->mm.wedged))
2936                 return false;
2937
2938         spin_lock_irqsave(&dev->event_lock, flags);
2939         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2940         spin_unlock_irqrestore(&dev->event_lock, flags);
2941
2942         return pending;
2943 }
2944
2945 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2946 {
2947         struct drm_device *dev = crtc->dev;
2948         struct drm_i915_private *dev_priv = dev->dev_private;
2949
2950         if (crtc->fb == NULL)
2951                 return;
2952
2953         wait_event(dev_priv->pending_flip_queue,
2954                    !intel_crtc_has_pending_flip(crtc));
2955
2956         mutex_lock(&dev->struct_mutex);
2957         intel_finish_fb(crtc->fb);
2958         mutex_unlock(&dev->struct_mutex);
2959 }
2960
2961 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2962 {
2963         struct drm_device *dev = crtc->dev;
2964         struct intel_encoder *intel_encoder;
2965
2966         /*
2967          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2968          * must be driven by its own crtc; no sharing is possible.
2969          */
2970         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2971                 switch (intel_encoder->type) {
2972                 case INTEL_OUTPUT_EDP:
2973                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2974                                 return false;
2975                         continue;
2976                 }
2977         }
2978
2979         return true;
2980 }
2981
2982 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2983 {
2984         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2985 }
2986
2987 /* Program iCLKIP clock to the desired frequency */
2988 static void lpt_program_iclkip(struct drm_crtc *crtc)
2989 {
2990         struct drm_device *dev = crtc->dev;
2991         struct drm_i915_private *dev_priv = dev->dev_private;
2992         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2993         u32 temp;
2994
2995         /* It is necessary to ungate the pixclk gate prior to programming
2996          * the divisors, and gate it back when it is done.
2997          */
2998         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2999
3000         /* Disable SSCCTL */
3001         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3002                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3003                                 SBI_SSCCTL_DISABLE,
3004                         SBI_ICLK);
3005
3006         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3007         if (crtc->mode.clock == 20000) {
3008                 auxdiv = 1;
3009                 divsel = 0x41;
3010                 phaseinc = 0x20;
3011         } else {
3012                 /* The iCLK virtual clock root frequency is in MHz,
3013                  * but the crtc->mode.clock in in KHz. To get the divisors,
3014                  * it is necessary to divide one by another, so we
3015                  * convert the virtual clock precision to KHz here for higher
3016                  * precision.
3017                  */
3018                 u32 iclk_virtual_root_freq = 172800 * 1000;
3019                 u32 iclk_pi_range = 64;
3020                 u32 desired_divisor, msb_divisor_value, pi_value;
3021
3022                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3023                 msb_divisor_value = desired_divisor / iclk_pi_range;
3024                 pi_value = desired_divisor % iclk_pi_range;
3025
3026                 auxdiv = 0;
3027                 divsel = msb_divisor_value - 2;
3028                 phaseinc = pi_value;
3029         }
3030
3031         /* This should not happen with any sane values */
3032         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3033                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3034         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3035                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3036
3037         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3038                         crtc->mode.clock,
3039                         auxdiv,
3040                         divsel,
3041                         phasedir,
3042                         phaseinc);
3043
3044         /* Program SSCDIVINTPHASE6 */
3045         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3046         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3047         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3048         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3049         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3050         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3051         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3052         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3053
3054         /* Program SSCAUXDIV */
3055         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3056         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3057         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3058         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3059
3060         /* Enable modulator and associated divider */
3061         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3062         temp &= ~SBI_SSCCTL_DISABLE;
3063         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3064
3065         /* Wait for initialization time */
3066         udelay(24);
3067
3068         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3069 }
3070
3071 /*
3072  * Enable PCH resources required for PCH ports:
3073  *   - PCH PLLs
3074  *   - FDI training & RX/TX
3075  *   - update transcoder timings
3076  *   - DP transcoding bits
3077  *   - transcoder
3078  */
3079 static void ironlake_pch_enable(struct drm_crtc *crtc)
3080 {
3081         struct drm_device *dev = crtc->dev;
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3084         int pipe = intel_crtc->pipe;
3085         u32 reg, temp;
3086
3087         assert_transcoder_disabled(dev_priv, pipe);
3088
3089         /* Write the TU size bits before fdi link training, so that error
3090          * detection works. */
3091         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3092                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3093
3094         /* For PCH output, training FDI link */
3095         dev_priv->display.fdi_link_train(crtc);
3096
3097         /* XXX: pch pll's can be enabled any time before we enable the PCH
3098          * transcoder, and we actually should do this to not upset any PCH
3099          * transcoder that already use the clock when we share it.
3100          *
3101          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3102          * unconditionally resets the pll - we need that to have the right LVDS
3103          * enable sequence. */
3104         ironlake_enable_pch_pll(intel_crtc);
3105
3106         if (HAS_PCH_CPT(dev)) {
3107                 u32 sel;
3108
3109                 temp = I915_READ(PCH_DPLL_SEL);
3110                 switch (pipe) {
3111                 default:
3112                 case 0:
3113                         temp |= TRANSA_DPLL_ENABLE;
3114                         sel = TRANSA_DPLLB_SEL;
3115                         break;
3116                 case 1:
3117                         temp |= TRANSB_DPLL_ENABLE;
3118                         sel = TRANSB_DPLLB_SEL;
3119                         break;
3120                 case 2:
3121                         temp |= TRANSC_DPLL_ENABLE;
3122                         sel = TRANSC_DPLLB_SEL;
3123                         break;
3124                 }
3125                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3126                         temp |= sel;
3127                 else
3128                         temp &= ~sel;
3129                 I915_WRITE(PCH_DPLL_SEL, temp);
3130         }
3131
3132         /* set transcoder timing, panel must allow it */
3133         assert_panel_unlocked(dev_priv, pipe);
3134         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3135         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3136         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3137
3138         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3139         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3140         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3141         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3142
3143         intel_fdi_normal_train(crtc);
3144
3145         /* For PCH DP, enable TRANS_DP_CTL */
3146         if (HAS_PCH_CPT(dev) &&
3147             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3148              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3149                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3150                 reg = TRANS_DP_CTL(pipe);
3151                 temp = I915_READ(reg);
3152                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3153                           TRANS_DP_SYNC_MASK |
3154                           TRANS_DP_BPC_MASK);
3155                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3156                          TRANS_DP_ENH_FRAMING);
3157                 temp |= bpc << 9; /* same format but at 11:9 */
3158
3159                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3160                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3161                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3162                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3163
3164                 switch (intel_trans_dp_port_sel(crtc)) {
3165                 case PCH_DP_B:
3166                         temp |= TRANS_DP_PORT_SEL_B;
3167                         break;
3168                 case PCH_DP_C:
3169                         temp |= TRANS_DP_PORT_SEL_C;
3170                         break;
3171                 case PCH_DP_D:
3172                         temp |= TRANS_DP_PORT_SEL_D;
3173                         break;
3174                 default:
3175                         BUG();
3176                 }
3177
3178                 I915_WRITE(reg, temp);
3179         }
3180
3181         ironlake_enable_pch_transcoder(dev_priv, pipe);
3182 }
3183
3184 static void lpt_pch_enable(struct drm_crtc *crtc)
3185 {
3186         struct drm_device *dev = crtc->dev;
3187         struct drm_i915_private *dev_priv = dev->dev_private;
3188         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3189         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3190
3191         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3192
3193         lpt_program_iclkip(crtc);
3194
3195         /* Set transcoder timing. */
3196         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3197         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3198         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3199
3200         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3201         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3202         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3203         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3204
3205         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3206 }
3207
3208 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3209 {
3210         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3211
3212         if (pll == NULL)
3213                 return;
3214
3215         if (pll->refcount == 0) {
3216                 WARN(1, "bad PCH PLL refcount\n");
3217                 return;
3218         }
3219
3220         --pll->refcount;
3221         intel_crtc->pch_pll = NULL;
3222 }
3223
3224 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3225 {
3226         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3227         struct intel_pch_pll *pll;
3228         int i;
3229
3230         pll = intel_crtc->pch_pll;
3231         if (pll) {
3232                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3233                               intel_crtc->base.base.id, pll->pll_reg);
3234                 goto prepare;
3235         }
3236
3237         if (HAS_PCH_IBX(dev_priv->dev)) {
3238                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3239                 i = intel_crtc->pipe;
3240                 pll = &dev_priv->pch_plls[i];
3241
3242                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3243                               intel_crtc->base.base.id, pll->pll_reg);
3244
3245                 goto found;
3246         }
3247
3248         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3249                 pll = &dev_priv->pch_plls[i];
3250
3251                 /* Only want to check enabled timings first */
3252                 if (pll->refcount == 0)
3253                         continue;
3254
3255                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3256                     fp == I915_READ(pll->fp0_reg)) {
3257                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3258                                       intel_crtc->base.base.id,
3259                                       pll->pll_reg, pll->refcount, pll->active);
3260
3261                         goto found;
3262                 }
3263         }
3264
3265         /* Ok no matching timings, maybe there's a free one? */
3266         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3267                 pll = &dev_priv->pch_plls[i];
3268                 if (pll->refcount == 0) {
3269                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3270                                       intel_crtc->base.base.id, pll->pll_reg);
3271                         goto found;
3272                 }
3273         }
3274
3275         return NULL;
3276
3277 found:
3278         intel_crtc->pch_pll = pll;
3279         pll->refcount++;
3280         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3281 prepare: /* separate function? */
3282         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3283
3284         /* Wait for the clocks to stabilize before rewriting the regs */
3285         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3286         POSTING_READ(pll->pll_reg);
3287         udelay(150);
3288
3289         I915_WRITE(pll->fp0_reg, fp);
3290         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3291         pll->on = false;
3292         return pll;
3293 }
3294
3295 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3296 {
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         int dslreg = PIPEDSL(pipe);
3299         u32 temp;
3300
3301         temp = I915_READ(dslreg);
3302         udelay(500);
3303         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3304                 if (wait_for(I915_READ(dslreg) != temp, 5))
3305                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3306         }
3307 }
3308
3309 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3310 {
3311         struct drm_device *dev = crtc->dev;
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3314         struct intel_encoder *encoder;
3315         int pipe = intel_crtc->pipe;
3316         int plane = intel_crtc->plane;
3317         u32 temp;
3318         bool is_pch_port;
3319
3320         WARN_ON(!crtc->enabled);
3321
3322         if (intel_crtc->active)
3323                 return;
3324
3325         intel_crtc->active = true;
3326         intel_update_watermarks(dev);
3327
3328         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3329                 temp = I915_READ(PCH_LVDS);
3330                 if ((temp & LVDS_PORT_EN) == 0)
3331                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3332         }
3333
3334         is_pch_port = ironlake_crtc_driving_pch(crtc);
3335
3336         if (is_pch_port) {
3337                 /* Note: FDI PLL enabling _must_ be done before we enable the
3338                  * cpu pipes, hence this is separate from all the other fdi/pch
3339                  * enabling. */
3340                 ironlake_fdi_pll_enable(intel_crtc);
3341         } else {
3342                 assert_fdi_tx_disabled(dev_priv, pipe);
3343                 assert_fdi_rx_disabled(dev_priv, pipe);
3344         }
3345
3346         for_each_encoder_on_crtc(dev, crtc, encoder)
3347                 if (encoder->pre_enable)
3348                         encoder->pre_enable(encoder);
3349
3350         /* Enable panel fitting for LVDS */
3351         if (dev_priv->pch_pf_size &&
3352             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3353              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3354                 /* Force use of hard-coded filter coefficients
3355                  * as some pre-programmed values are broken,
3356                  * e.g. x201.
3357                  */
3358                 if (IS_IVYBRIDGE(dev))
3359                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3360                                                  PF_PIPE_SEL_IVB(pipe));
3361                 else
3362                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3363                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3364                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3365         }
3366
3367         /*
3368          * On ILK+ LUT must be loaded before the pipe is running but with
3369          * clocks enabled
3370          */
3371         intel_crtc_load_lut(crtc);
3372
3373         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3374         intel_enable_plane(dev_priv, plane, pipe);
3375
3376         if (is_pch_port)
3377                 ironlake_pch_enable(crtc);
3378
3379         mutex_lock(&dev->struct_mutex);
3380         intel_update_fbc(dev);
3381         mutex_unlock(&dev->struct_mutex);
3382
3383         intel_crtc_update_cursor(crtc, true);
3384
3385         for_each_encoder_on_crtc(dev, crtc, encoder)
3386                 encoder->enable(encoder);
3387
3388         if (HAS_PCH_CPT(dev))
3389                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3390
3391         /*
3392          * There seems to be a race in PCH platform hw (at least on some
3393          * outputs) where an enabled pipe still completes any pageflip right
3394          * away (as if the pipe is off) instead of waiting for vblank. As soon
3395          * as the first vblank happend, everything works as expected. Hence just
3396          * wait for one vblank before returning to avoid strange things
3397          * happening.
3398          */
3399         intel_wait_for_vblank(dev, intel_crtc->pipe);
3400 }
3401
3402 static void haswell_crtc_enable(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         struct intel_encoder *encoder;
3408         int pipe = intel_crtc->pipe;
3409         int plane = intel_crtc->plane;
3410         bool is_pch_port;
3411
3412         WARN_ON(!crtc->enabled);
3413
3414         if (intel_crtc->active)
3415                 return;
3416
3417         intel_crtc->active = true;
3418         intel_update_watermarks(dev);
3419
3420         is_pch_port = haswell_crtc_driving_pch(crtc);
3421
3422         if (is_pch_port)
3423                 dev_priv->display.fdi_link_train(crtc);
3424
3425         for_each_encoder_on_crtc(dev, crtc, encoder)
3426                 if (encoder->pre_enable)
3427                         encoder->pre_enable(encoder);
3428
3429         intel_ddi_enable_pipe_clock(intel_crtc);
3430
3431         /* Enable panel fitting for eDP */
3432         if (dev_priv->pch_pf_size &&
3433             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3434                 /* Force use of hard-coded filter coefficients
3435                  * as some pre-programmed values are broken,
3436                  * e.g. x201.
3437                  */
3438                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3439                                          PF_PIPE_SEL_IVB(pipe));
3440                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3441                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3442         }
3443
3444         /*
3445          * On ILK+ LUT must be loaded before the pipe is running but with
3446          * clocks enabled
3447          */
3448         intel_crtc_load_lut(crtc);
3449
3450         intel_ddi_set_pipe_settings(crtc);
3451         intel_ddi_enable_pipe_func(crtc);
3452
3453         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3454         intel_enable_plane(dev_priv, plane, pipe);
3455
3456         if (is_pch_port)
3457                 lpt_pch_enable(crtc);
3458
3459         mutex_lock(&dev->struct_mutex);
3460         intel_update_fbc(dev);
3461         mutex_unlock(&dev->struct_mutex);
3462
3463         intel_crtc_update_cursor(crtc, true);
3464
3465         for_each_encoder_on_crtc(dev, crtc, encoder)
3466                 encoder->enable(encoder);
3467
3468         /*
3469          * There seems to be a race in PCH platform hw (at least on some
3470          * outputs) where an enabled pipe still completes any pageflip right
3471          * away (as if the pipe is off) instead of waiting for vblank. As soon
3472          * as the first vblank happend, everything works as expected. Hence just
3473          * wait for one vblank before returning to avoid strange things
3474          * happening.
3475          */
3476         intel_wait_for_vblank(dev, intel_crtc->pipe);
3477 }
3478
3479 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3480 {
3481         struct drm_device *dev = crtc->dev;
3482         struct drm_i915_private *dev_priv = dev->dev_private;
3483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484         struct intel_encoder *encoder;
3485         int pipe = intel_crtc->pipe;
3486         int plane = intel_crtc->plane;
3487         u32 reg, temp;
3488
3489
3490         if (!intel_crtc->active)
3491                 return;
3492
3493         for_each_encoder_on_crtc(dev, crtc, encoder)
3494                 encoder->disable(encoder);
3495
3496         intel_crtc_wait_for_pending_flips(crtc);
3497         drm_vblank_off(dev, pipe);
3498         intel_crtc_update_cursor(crtc, false);
3499
3500         intel_disable_plane(dev_priv, plane, pipe);
3501
3502         if (dev_priv->cfb_plane == plane)
3503                 intel_disable_fbc(dev);
3504
3505         intel_disable_pipe(dev_priv, pipe);
3506
3507         /* Disable PF */
3508         I915_WRITE(PF_CTL(pipe), 0);
3509         I915_WRITE(PF_WIN_SZ(pipe), 0);
3510
3511         for_each_encoder_on_crtc(dev, crtc, encoder)
3512                 if (encoder->post_disable)
3513                         encoder->post_disable(encoder);
3514
3515         ironlake_fdi_disable(crtc);
3516
3517         ironlake_disable_pch_transcoder(dev_priv, pipe);
3518
3519         if (HAS_PCH_CPT(dev)) {
3520                 /* disable TRANS_DP_CTL */
3521                 reg = TRANS_DP_CTL(pipe);
3522                 temp = I915_READ(reg);
3523                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3524                 temp |= TRANS_DP_PORT_SEL_NONE;
3525                 I915_WRITE(reg, temp);
3526
3527                 /* disable DPLL_SEL */
3528                 temp = I915_READ(PCH_DPLL_SEL);
3529                 switch (pipe) {
3530                 case 0:
3531                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3532                         break;
3533                 case 1:
3534                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3535                         break;
3536                 case 2:
3537                         /* C shares PLL A or B */
3538                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3539                         break;
3540                 default:
3541                         BUG(); /* wtf */
3542                 }
3543                 I915_WRITE(PCH_DPLL_SEL, temp);
3544         }
3545
3546         /* disable PCH DPLL */
3547         intel_disable_pch_pll(intel_crtc);
3548
3549         ironlake_fdi_pll_disable(intel_crtc);
3550
3551         intel_crtc->active = false;
3552         intel_update_watermarks(dev);
3553
3554         mutex_lock(&dev->struct_mutex);
3555         intel_update_fbc(dev);
3556         mutex_unlock(&dev->struct_mutex);
3557 }
3558
3559 static void haswell_crtc_disable(struct drm_crtc *crtc)
3560 {
3561         struct drm_device *dev = crtc->dev;
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3564         struct intel_encoder *encoder;
3565         int pipe = intel_crtc->pipe;
3566         int plane = intel_crtc->plane;
3567         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3568         bool is_pch_port;
3569
3570         if (!intel_crtc->active)
3571                 return;
3572
3573         is_pch_port = haswell_crtc_driving_pch(crtc);
3574
3575         for_each_encoder_on_crtc(dev, crtc, encoder)
3576                 encoder->disable(encoder);
3577
3578         intel_crtc_wait_for_pending_flips(crtc);
3579         drm_vblank_off(dev, pipe);
3580         intel_crtc_update_cursor(crtc, false);
3581
3582         intel_disable_plane(dev_priv, plane, pipe);
3583
3584         if (dev_priv->cfb_plane == plane)
3585                 intel_disable_fbc(dev);
3586
3587         intel_disable_pipe(dev_priv, pipe);
3588
3589         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3590
3591         /* Disable PF */
3592         I915_WRITE(PF_CTL(pipe), 0);
3593         I915_WRITE(PF_WIN_SZ(pipe), 0);
3594
3595         intel_ddi_disable_pipe_clock(intel_crtc);
3596
3597         for_each_encoder_on_crtc(dev, crtc, encoder)
3598                 if (encoder->post_disable)
3599                         encoder->post_disable(encoder);
3600
3601         if (is_pch_port) {
3602                 lpt_disable_pch_transcoder(dev_priv);
3603                 intel_ddi_fdi_disable(crtc);
3604         }
3605
3606         intel_crtc->active = false;
3607         intel_update_watermarks(dev);
3608
3609         mutex_lock(&dev->struct_mutex);
3610         intel_update_fbc(dev);
3611         mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         intel_put_pch_pll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623
3624         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3625          * start using it. */
3626         intel_crtc->cpu_transcoder = intel_crtc->pipe;
3627
3628         intel_ddi_put_crtc_pll(crtc);
3629 }
3630
3631 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3632 {
3633         if (!enable && intel_crtc->overlay) {
3634                 struct drm_device *dev = intel_crtc->base.dev;
3635                 struct drm_i915_private *dev_priv = dev->dev_private;
3636
3637                 mutex_lock(&dev->struct_mutex);
3638                 dev_priv->mm.interruptible = false;
3639                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3640                 dev_priv->mm.interruptible = true;
3641                 mutex_unlock(&dev->struct_mutex);
3642         }
3643
3644         /* Let userspace switch the overlay on again. In most cases userspace
3645          * has to recompute where to put it anyway.
3646          */
3647 }
3648
3649 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3650 {
3651         struct drm_device *dev = crtc->dev;
3652         struct drm_i915_private *dev_priv = dev->dev_private;
3653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3654         struct intel_encoder *encoder;
3655         int pipe = intel_crtc->pipe;
3656         int plane = intel_crtc->plane;
3657
3658         WARN_ON(!crtc->enabled);
3659
3660         if (intel_crtc->active)
3661                 return;
3662
3663         intel_crtc->active = true;
3664         intel_update_watermarks(dev);
3665
3666         intel_enable_pll(dev_priv, pipe);
3667         intel_enable_pipe(dev_priv, pipe, false);
3668         intel_enable_plane(dev_priv, plane, pipe);
3669
3670         intel_crtc_load_lut(crtc);
3671         intel_update_fbc(dev);
3672
3673         /* Give the overlay scaler a chance to enable if it's on this pipe */
3674         intel_crtc_dpms_overlay(intel_crtc, true);
3675         intel_crtc_update_cursor(crtc, true);
3676
3677         for_each_encoder_on_crtc(dev, crtc, encoder)
3678                 encoder->enable(encoder);
3679 }
3680
3681 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3682 {
3683         struct drm_device *dev = crtc->dev;
3684         struct drm_i915_private *dev_priv = dev->dev_private;
3685         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3686         struct intel_encoder *encoder;
3687         int pipe = intel_crtc->pipe;
3688         int plane = intel_crtc->plane;
3689
3690
3691         if (!intel_crtc->active)
3692                 return;
3693
3694         for_each_encoder_on_crtc(dev, crtc, encoder)
3695                 encoder->disable(encoder);
3696
3697         /* Give the overlay scaler a chance to disable if it's on this pipe */
3698         intel_crtc_wait_for_pending_flips(crtc);
3699         drm_vblank_off(dev, pipe);
3700         intel_crtc_dpms_overlay(intel_crtc, false);
3701         intel_crtc_update_cursor(crtc, false);
3702
3703         if (dev_priv->cfb_plane == plane)
3704                 intel_disable_fbc(dev);
3705
3706         intel_disable_plane(dev_priv, plane, pipe);
3707         intel_disable_pipe(dev_priv, pipe);
3708         intel_disable_pll(dev_priv, pipe);
3709
3710         intel_crtc->active = false;
3711         intel_update_fbc(dev);
3712         intel_update_watermarks(dev);
3713 }
3714
3715 static void i9xx_crtc_off(struct drm_crtc *crtc)
3716 {
3717 }
3718
3719 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3720                                     bool enabled)
3721 {
3722         struct drm_device *dev = crtc->dev;
3723         struct drm_i915_master_private *master_priv;
3724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3725         int pipe = intel_crtc->pipe;
3726
3727         if (!dev->primary->master)
3728                 return;
3729
3730         master_priv = dev->primary->master->driver_priv;
3731         if (!master_priv->sarea_priv)
3732                 return;
3733
3734         switch (pipe) {
3735         case 0:
3736                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3737                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3738                 break;
3739         case 1:
3740                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3741                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3742                 break;
3743         default:
3744                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3745                 break;
3746         }
3747 }
3748
3749 /**
3750  * Sets the power management mode of the pipe and plane.
3751  */
3752 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3753 {
3754         struct drm_device *dev = crtc->dev;
3755         struct drm_i915_private *dev_priv = dev->dev_private;
3756         struct intel_encoder *intel_encoder;
3757         bool enable = false;
3758
3759         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3760                 enable |= intel_encoder->connectors_active;
3761
3762         if (enable)
3763                 dev_priv->display.crtc_enable(crtc);
3764         else
3765                 dev_priv->display.crtc_disable(crtc);
3766
3767         intel_crtc_update_sarea(crtc, enable);
3768 }
3769
3770 static void intel_crtc_noop(struct drm_crtc *crtc)
3771 {
3772 }
3773
3774 static void intel_crtc_disable(struct drm_crtc *crtc)
3775 {
3776         struct drm_device *dev = crtc->dev;
3777         struct drm_connector *connector;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780         /* crtc should still be enabled when we disable it. */
3781         WARN_ON(!crtc->enabled);
3782
3783         dev_priv->display.crtc_disable(crtc);
3784         intel_crtc_update_sarea(crtc, false);
3785         dev_priv->display.off(crtc);
3786
3787         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3788         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3789
3790         if (crtc->fb) {
3791                 mutex_lock(&dev->struct_mutex);
3792                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3793                 mutex_unlock(&dev->struct_mutex);
3794                 crtc->fb = NULL;
3795         }
3796
3797         /* Update computed state. */
3798         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3799                 if (!connector->encoder || !connector->encoder->crtc)
3800                         continue;
3801
3802                 if (connector->encoder->crtc != crtc)
3803                         continue;
3804
3805                 connector->dpms = DRM_MODE_DPMS_OFF;
3806                 to_intel_encoder(connector->encoder)->connectors_active = false;
3807         }
3808 }
3809
3810 void intel_modeset_disable(struct drm_device *dev)
3811 {
3812         struct drm_crtc *crtc;
3813
3814         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3815                 if (crtc->enabled)
3816                         intel_crtc_disable(crtc);
3817         }
3818 }
3819
3820 void intel_encoder_noop(struct drm_encoder *encoder)
3821 {
3822 }
3823
3824 void intel_encoder_destroy(struct drm_encoder *encoder)
3825 {
3826         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3827
3828         drm_encoder_cleanup(encoder);
3829         kfree(intel_encoder);
3830 }
3831
3832 /* Simple dpms helper for encodres with just one connector, no cloning and only
3833  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3834  * state of the entire output pipe. */
3835 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3836 {
3837         if (mode == DRM_MODE_DPMS_ON) {
3838                 encoder->connectors_active = true;
3839
3840                 intel_crtc_update_dpms(encoder->base.crtc);
3841         } else {
3842                 encoder->connectors_active = false;
3843
3844                 intel_crtc_update_dpms(encoder->base.crtc);
3845         }
3846 }
3847
3848 /* Cross check the actual hw state with our own modeset state tracking (and it's
3849  * internal consistency). */
3850 static void intel_connector_check_state(struct intel_connector *connector)
3851 {
3852         if (connector->get_hw_state(connector)) {
3853                 struct intel_encoder *encoder = connector->encoder;
3854                 struct drm_crtc *crtc;
3855                 bool encoder_enabled;
3856                 enum pipe pipe;
3857
3858                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3859                               connector->base.base.id,
3860                               drm_get_connector_name(&connector->base));
3861
3862                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3863                      "wrong connector dpms state\n");
3864                 WARN(connector->base.encoder != &encoder->base,
3865                      "active connector not linked to encoder\n");
3866                 WARN(!encoder->connectors_active,
3867                      "encoder->connectors_active not set\n");
3868
3869                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3870                 WARN(!encoder_enabled, "encoder not enabled\n");
3871                 if (WARN_ON(!encoder->base.crtc))
3872                         return;
3873
3874                 crtc = encoder->base.crtc;
3875
3876                 WARN(!crtc->enabled, "crtc not enabled\n");
3877                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3878                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3879                      "encoder active on the wrong pipe\n");
3880         }
3881 }
3882
3883 /* Even simpler default implementation, if there's really no special case to
3884  * consider. */
3885 void intel_connector_dpms(struct drm_connector *connector, int mode)
3886 {
3887         struct intel_encoder *encoder = intel_attached_encoder(connector);
3888
3889         /* All the simple cases only support two dpms states. */
3890         if (mode != DRM_MODE_DPMS_ON)
3891                 mode = DRM_MODE_DPMS_OFF;
3892
3893         if (mode == connector->dpms)
3894                 return;
3895
3896         connector->dpms = mode;
3897
3898         /* Only need to change hw state when actually enabled */
3899         if (encoder->base.crtc)
3900                 intel_encoder_dpms(encoder, mode);
3901         else
3902                 WARN_ON(encoder->connectors_active != false);
3903
3904         intel_modeset_check_state(connector->dev);
3905 }
3906
3907 /* Simple connector->get_hw_state implementation for encoders that support only
3908  * one connector and no cloning and hence the encoder state determines the state
3909  * of the connector. */
3910 bool intel_connector_get_hw_state(struct intel_connector *connector)
3911 {
3912         enum pipe pipe = 0;
3913         struct intel_encoder *encoder = connector->encoder;
3914
3915         return encoder->get_hw_state(encoder, &pipe);
3916 }
3917
3918 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3919                                   const struct drm_display_mode *mode,
3920                                   struct drm_display_mode *adjusted_mode)
3921 {
3922         struct drm_device *dev = crtc->dev;
3923
3924         if (HAS_PCH_SPLIT(dev)) {
3925                 /* FDI link clock is fixed at 2.7G */
3926                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3927                         return false;
3928         }
3929
3930         /* All interlaced capable intel hw wants timings in frames. Note though
3931          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3932          * timings, so we need to be careful not to clobber these.*/
3933         if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3934                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3935
3936         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3937          * with a hsync front porch of 0.
3938          */
3939         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3940                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3941                 return false;
3942
3943         return true;
3944 }
3945
3946 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3947 {
3948         return 400000; /* FIXME */
3949 }
3950
3951 static int i945_get_display_clock_speed(struct drm_device *dev)
3952 {
3953         return 400000;
3954 }
3955
3956 static int i915_get_display_clock_speed(struct drm_device *dev)
3957 {
3958         return 333000;
3959 }
3960
3961 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3962 {
3963         return 200000;
3964 }
3965
3966 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3967 {
3968         u16 gcfgc = 0;
3969
3970         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3971
3972         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3973                 return 133000;
3974         else {
3975                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3976                 case GC_DISPLAY_CLOCK_333_MHZ:
3977                         return 333000;
3978                 default:
3979                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3980                         return 190000;
3981                 }
3982         }
3983 }
3984
3985 static int i865_get_display_clock_speed(struct drm_device *dev)
3986 {
3987         return 266000;
3988 }
3989
3990 static int i855_get_display_clock_speed(struct drm_device *dev)
3991 {
3992         u16 hpllcc = 0;
3993         /* Assume that the hardware is in the high speed state.  This
3994          * should be the default.
3995          */
3996         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3997         case GC_CLOCK_133_200:
3998         case GC_CLOCK_100_200:
3999                 return 200000;
4000         case GC_CLOCK_166_250:
4001                 return 250000;
4002         case GC_CLOCK_100_133:
4003                 return 133000;
4004         }
4005
4006         /* Shouldn't happen */
4007         return 0;
4008 }
4009
4010 static int i830_get_display_clock_speed(struct drm_device *dev)
4011 {
4012         return 133000;
4013 }
4014
4015 struct fdi_m_n {
4016         u32        tu;
4017         u32        gmch_m;
4018         u32        gmch_n;
4019         u32        link_m;
4020         u32        link_n;
4021 };
4022
4023 static void
4024 fdi_reduce_ratio(u32 *num, u32 *den)
4025 {
4026         while (*num > 0xffffff || *den > 0xffffff) {
4027                 *num >>= 1;
4028                 *den >>= 1;
4029         }
4030 }
4031
4032 static void
4033 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4034                      int link_clock, struct fdi_m_n *m_n)
4035 {
4036         m_n->tu = 64; /* default size */
4037
4038         /* BUG_ON(pixel_clock > INT_MAX / 36); */
4039         m_n->gmch_m = bits_per_pixel * pixel_clock;
4040         m_n->gmch_n = link_clock * nlanes * 8;
4041         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4042
4043         m_n->link_m = pixel_clock;
4044         m_n->link_n = link_clock;
4045         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4046 }
4047
4048 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4049 {
4050         if (i915_panel_use_ssc >= 0)
4051                 return i915_panel_use_ssc != 0;
4052         return dev_priv->lvds_use_ssc
4053                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4054 }
4055
4056 /**
4057  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4058  * @crtc: CRTC structure
4059  * @mode: requested mode
4060  *
4061  * A pipe may be connected to one or more outputs.  Based on the depth of the
4062  * attached framebuffer, choose a good color depth to use on the pipe.
4063  *
4064  * If possible, match the pipe depth to the fb depth.  In some cases, this
4065  * isn't ideal, because the connected output supports a lesser or restricted
4066  * set of depths.  Resolve that here:
4067  *    LVDS typically supports only 6bpc, so clamp down in that case
4068  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4069  *    Displays may support a restricted set as well, check EDID and clamp as
4070  *      appropriate.
4071  *    DP may want to dither down to 6bpc to fit larger modes
4072  *
4073  * RETURNS:
4074  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4075  * true if they don't match).
4076  */
4077 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4078                                          struct drm_framebuffer *fb,
4079                                          unsigned int *pipe_bpp,
4080                                          struct drm_display_mode *mode)
4081 {
4082         struct drm_device *dev = crtc->dev;
4083         struct drm_i915_private *dev_priv = dev->dev_private;
4084         struct drm_connector *connector;
4085         struct intel_encoder *intel_encoder;
4086         unsigned int display_bpc = UINT_MAX, bpc;
4087
4088         /* Walk the encoders & connectors on this crtc, get min bpc */
4089         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4090
4091                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4092                         unsigned int lvds_bpc;
4093
4094                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4095                             LVDS_A3_POWER_UP)
4096                                 lvds_bpc = 8;
4097                         else
4098                                 lvds_bpc = 6;
4099
4100                         if (lvds_bpc < display_bpc) {
4101                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4102                                 display_bpc = lvds_bpc;
4103                         }
4104                         continue;
4105                 }
4106
4107                 /* Not one of the known troublemakers, check the EDID */
4108                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4109                                     head) {
4110                         if (connector->encoder != &intel_encoder->base)
4111                                 continue;
4112
4113                         /* Don't use an invalid EDID bpc value */
4114                         if (connector->display_info.bpc &&
4115                             connector->display_info.bpc < display_bpc) {
4116                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4117                                 display_bpc = connector->display_info.bpc;
4118                         }
4119                 }
4120
4121                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4122                         /* Use VBT settings if we have an eDP panel */
4123                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4124
4125                         if (edp_bpc && edp_bpc < display_bpc) {
4126                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4127                                 display_bpc = edp_bpc;
4128                         }
4129                         continue;
4130                 }
4131
4132                 /*
4133                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4134                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4135                  */
4136                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4137                         if (display_bpc > 8 && display_bpc < 12) {
4138                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4139                                 display_bpc = 12;
4140                         } else {
4141                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4142                                 display_bpc = 8;
4143                         }
4144                 }
4145         }
4146
4147         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4148                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4149                 display_bpc = 6;
4150         }
4151
4152         /*
4153          * We could just drive the pipe at the highest bpc all the time and
4154          * enable dithering as needed, but that costs bandwidth.  So choose
4155          * the minimum value that expresses the full color range of the fb but
4156          * also stays within the max display bpc discovered above.
4157          */
4158
4159         switch (fb->depth) {
4160         case 8:
4161                 bpc = 8; /* since we go through a colormap */
4162                 break;
4163         case 15:
4164         case 16:
4165                 bpc = 6; /* min is 18bpp */
4166                 break;
4167         case 24:
4168                 bpc = 8;
4169                 break;
4170         case 30:
4171                 bpc = 10;
4172                 break;
4173         case 48:
4174                 bpc = 12;
4175                 break;
4176         default:
4177                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4178                 bpc = min((unsigned int)8, display_bpc);
4179                 break;
4180         }
4181
4182         display_bpc = min(display_bpc, bpc);
4183
4184         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4185                       bpc, display_bpc);
4186
4187         *pipe_bpp = display_bpc * 3;
4188
4189         return display_bpc != bpc;
4190 }
4191
4192 static int vlv_get_refclk(struct drm_crtc *crtc)
4193 {
4194         struct drm_device *dev = crtc->dev;
4195         struct drm_i915_private *dev_priv = dev->dev_private;
4196         int refclk = 27000; /* for DP & HDMI */
4197
4198         return 100000; /* only one validated so far */
4199
4200         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4201                 refclk = 96000;
4202         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4203                 if (intel_panel_use_ssc(dev_priv))
4204                         refclk = 100000;
4205                 else
4206                         refclk = 96000;
4207         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4208                 refclk = 100000;
4209         }
4210
4211         return refclk;
4212 }
4213
4214 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4215 {
4216         struct drm_device *dev = crtc->dev;
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         int refclk;
4219
4220         if (IS_VALLEYVIEW(dev)) {
4221                 refclk = vlv_get_refclk(crtc);
4222         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4223             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4224                 refclk = dev_priv->lvds_ssc_freq * 1000;
4225                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4226                               refclk / 1000);
4227         } else if (!IS_GEN2(dev)) {
4228                 refclk = 96000;
4229         } else {
4230                 refclk = 48000;
4231         }
4232
4233         return refclk;
4234 }
4235
4236 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4237                                       intel_clock_t *clock)
4238 {
4239         /* SDVO TV has fixed PLL values depend on its clock range,
4240            this mirrors vbios setting. */
4241         if (adjusted_mode->clock >= 100000
4242             && adjusted_mode->clock < 140500) {
4243                 clock->p1 = 2;
4244                 clock->p2 = 10;
4245                 clock->n = 3;
4246                 clock->m1 = 16;
4247                 clock->m2 = 8;
4248         } else if (adjusted_mode->clock >= 140500
4249                    && adjusted_mode->clock <= 200000) {
4250                 clock->p1 = 1;
4251                 clock->p2 = 10;
4252                 clock->n = 6;
4253                 clock->m1 = 12;
4254                 clock->m2 = 8;
4255         }
4256 }
4257
4258 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4259                                      intel_clock_t *clock,
4260                                      intel_clock_t *reduced_clock)
4261 {
4262         struct drm_device *dev = crtc->dev;
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265         int pipe = intel_crtc->pipe;
4266         u32 fp, fp2 = 0;
4267
4268         if (IS_PINEVIEW(dev)) {
4269                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4270                 if (reduced_clock)
4271                         fp2 = (1 << reduced_clock->n) << 16 |
4272                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4273         } else {
4274                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4275                 if (reduced_clock)
4276                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4277                                 reduced_clock->m2;
4278         }
4279
4280         I915_WRITE(FP0(pipe), fp);
4281
4282         intel_crtc->lowfreq_avail = false;
4283         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4284             reduced_clock && i915_powersave) {
4285                 I915_WRITE(FP1(pipe), fp2);
4286                 intel_crtc->lowfreq_avail = true;
4287         } else {
4288                 I915_WRITE(FP1(pipe), fp);
4289         }
4290 }
4291
4292 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4293                               struct drm_display_mode *adjusted_mode)
4294 {
4295         struct drm_device *dev = crtc->dev;
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4298         int pipe = intel_crtc->pipe;
4299         u32 temp;
4300
4301         temp = I915_READ(LVDS);
4302         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4303         if (pipe == 1) {
4304                 temp |= LVDS_PIPEB_SELECT;
4305         } else {
4306                 temp &= ~LVDS_PIPEB_SELECT;
4307         }
4308         /* set the corresponsding LVDS_BORDER bit */
4309         temp |= dev_priv->lvds_border_bits;
4310         /* Set the B0-B3 data pairs corresponding to whether we're going to
4311          * set the DPLLs for dual-channel mode or not.
4312          */
4313         if (clock->p2 == 7)
4314                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4315         else
4316                 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4317
4318         /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4319          * appropriately here, but we need to look more thoroughly into how
4320          * panels behave in the two modes.
4321          */
4322         /* set the dithering flag on LVDS as needed */
4323         if (INTEL_INFO(dev)->gen >= 4) {
4324                 if (dev_priv->lvds_dither)
4325                         temp |= LVDS_ENABLE_DITHER;
4326                 else
4327                         temp &= ~LVDS_ENABLE_DITHER;
4328         }
4329         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4330         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4331                 temp |= LVDS_HSYNC_POLARITY;
4332         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4333                 temp |= LVDS_VSYNC_POLARITY;
4334         I915_WRITE(LVDS, temp);
4335 }
4336
4337 static void vlv_update_pll(struct drm_crtc *crtc,
4338                            struct drm_display_mode *mode,
4339                            struct drm_display_mode *adjusted_mode,
4340                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4341                            int num_connectors)
4342 {
4343         struct drm_device *dev = crtc->dev;
4344         struct drm_i915_private *dev_priv = dev->dev_private;
4345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4346         int pipe = intel_crtc->pipe;
4347         u32 dpll, mdiv, pdiv;
4348         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4349         bool is_sdvo;
4350         u32 temp;
4351
4352         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4353                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4354
4355         dpll = DPLL_VGA_MODE_DIS;
4356         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4357         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4358         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4359
4360         I915_WRITE(DPLL(pipe), dpll);
4361         POSTING_READ(DPLL(pipe));
4362
4363         bestn = clock->n;
4364         bestm1 = clock->m1;
4365         bestm2 = clock->m2;
4366         bestp1 = clock->p1;
4367         bestp2 = clock->p2;
4368
4369         /*
4370          * In Valleyview PLL and program lane counter registers are exposed
4371          * through DPIO interface
4372          */
4373         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4374         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4375         mdiv |= ((bestn << DPIO_N_SHIFT));
4376         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4377         mdiv |= (1 << DPIO_K_SHIFT);
4378         mdiv |= DPIO_ENABLE_CALIBRATION;
4379         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4380
4381         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4382
4383         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4384                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4385                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4386                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4387         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4388
4389         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4390
4391         dpll |= DPLL_VCO_ENABLE;
4392         I915_WRITE(DPLL(pipe), dpll);
4393         POSTING_READ(DPLL(pipe));
4394         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4395                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4396
4397         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4398
4399         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4400                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4401
4402         I915_WRITE(DPLL(pipe), dpll);
4403
4404         /* Wait for the clocks to stabilize. */
4405         POSTING_READ(DPLL(pipe));
4406         udelay(150);
4407
4408         temp = 0;
4409         if (is_sdvo) {
4410                 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4411                 if (temp > 1)
4412                         temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4413                 else
4414                         temp = 0;
4415         }
4416         I915_WRITE(DPLL_MD(pipe), temp);
4417         POSTING_READ(DPLL_MD(pipe));
4418
4419         /* Now program lane control registers */
4420         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4421                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4422         {
4423                 temp = 0x1000C4;
4424                 if(pipe == 1)
4425                         temp |= (1 << 21);
4426                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4427         }
4428         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4429         {
4430                 temp = 0x1000C4;
4431                 if(pipe == 1)
4432                         temp |= (1 << 21);
4433                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4434         }
4435 }
4436
4437 static void i9xx_update_pll(struct drm_crtc *crtc,
4438                             struct drm_display_mode *mode,
4439                             struct drm_display_mode *adjusted_mode,
4440                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4441                             int num_connectors)
4442 {
4443         struct drm_device *dev = crtc->dev;
4444         struct drm_i915_private *dev_priv = dev->dev_private;
4445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4446         int pipe = intel_crtc->pipe;
4447         u32 dpll;
4448         bool is_sdvo;
4449
4450         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4451
4452         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4453                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4454
4455         dpll = DPLL_VGA_MODE_DIS;
4456
4457         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4458                 dpll |= DPLLB_MODE_LVDS;
4459         else
4460                 dpll |= DPLLB_MODE_DAC_SERIAL;
4461         if (is_sdvo) {
4462                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4463                 if (pixel_multiplier > 1) {
4464                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4465                                 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4466                 }
4467                 dpll |= DPLL_DVO_HIGH_SPEED;
4468         }
4469         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4470                 dpll |= DPLL_DVO_HIGH_SPEED;
4471
4472         /* compute bitmask from p1 value */
4473         if (IS_PINEVIEW(dev))
4474                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4475         else {
4476                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4477                 if (IS_G4X(dev) && reduced_clock)
4478                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4479         }
4480         switch (clock->p2) {
4481         case 5:
4482                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4483                 break;
4484         case 7:
4485                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4486                 break;
4487         case 10:
4488                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4489                 break;
4490         case 14:
4491                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4492                 break;
4493         }
4494         if (INTEL_INFO(dev)->gen >= 4)
4495                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4496
4497         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4498                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4499         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4500                 /* XXX: just matching BIOS for now */
4501                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4502                 dpll |= 3;
4503         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4504                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4505                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4506         else
4507                 dpll |= PLL_REF_INPUT_DREFCLK;
4508
4509         dpll |= DPLL_VCO_ENABLE;
4510         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4511         POSTING_READ(DPLL(pipe));
4512         udelay(150);
4513
4514         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4515          * This is an exception to the general rule that mode_set doesn't turn
4516          * things on.
4517          */
4518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4519                 intel_update_lvds(crtc, clock, adjusted_mode);
4520
4521         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4522                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4523
4524         I915_WRITE(DPLL(pipe), dpll);
4525
4526         /* Wait for the clocks to stabilize. */
4527         POSTING_READ(DPLL(pipe));
4528         udelay(150);
4529
4530         if (INTEL_INFO(dev)->gen >= 4) {
4531                 u32 temp = 0;
4532                 if (is_sdvo) {
4533                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4534                         if (temp > 1)
4535                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4536                         else
4537                                 temp = 0;
4538                 }
4539                 I915_WRITE(DPLL_MD(pipe), temp);
4540         } else {
4541                 /* The pixel multiplier can only be updated once the
4542                  * DPLL is enabled and the clocks are stable.
4543                  *
4544                  * So write it again.
4545                  */
4546                 I915_WRITE(DPLL(pipe), dpll);
4547         }
4548 }
4549
4550 static void i8xx_update_pll(struct drm_crtc *crtc,
4551                             struct drm_display_mode *adjusted_mode,
4552                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4553                             int num_connectors)
4554 {
4555         struct drm_device *dev = crtc->dev;
4556         struct drm_i915_private *dev_priv = dev->dev_private;
4557         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4558         int pipe = intel_crtc->pipe;
4559         u32 dpll;
4560
4561         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4562
4563         dpll = DPLL_VGA_MODE_DIS;
4564
4565         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4566                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4567         } else {
4568                 if (clock->p1 == 2)
4569                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4570                 else
4571                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4572                 if (clock->p2 == 4)
4573                         dpll |= PLL_P2_DIVIDE_BY_4;
4574         }
4575
4576         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4577                 /* XXX: just matching BIOS for now */
4578                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4579                 dpll |= 3;
4580         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4581                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4582                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4583         else
4584                 dpll |= PLL_REF_INPUT_DREFCLK;
4585
4586         dpll |= DPLL_VCO_ENABLE;
4587         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4588         POSTING_READ(DPLL(pipe));
4589         udelay(150);
4590
4591         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4592          * This is an exception to the general rule that mode_set doesn't turn
4593          * things on.
4594          */
4595         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4596                 intel_update_lvds(crtc, clock, adjusted_mode);
4597
4598         I915_WRITE(DPLL(pipe), dpll);
4599
4600         /* Wait for the clocks to stabilize. */
4601         POSTING_READ(DPLL(pipe));
4602         udelay(150);
4603
4604         /* The pixel multiplier can only be updated once the
4605          * DPLL is enabled and the clocks are stable.
4606          *
4607          * So write it again.
4608          */
4609         I915_WRITE(DPLL(pipe), dpll);
4610 }
4611
4612 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4613                                    struct drm_display_mode *mode,
4614                                    struct drm_display_mode *adjusted_mode)
4615 {
4616         struct drm_device *dev = intel_crtc->base.dev;
4617         struct drm_i915_private *dev_priv = dev->dev_private;
4618         enum pipe pipe = intel_crtc->pipe;
4619         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4620         uint32_t vsyncshift;
4621
4622         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4623                 /* the chip adds 2 halflines automatically */
4624                 adjusted_mode->crtc_vtotal -= 1;
4625                 adjusted_mode->crtc_vblank_end -= 1;
4626                 vsyncshift = adjusted_mode->crtc_hsync_start
4627                              - adjusted_mode->crtc_htotal / 2;
4628         } else {
4629                 vsyncshift = 0;
4630         }
4631
4632         if (INTEL_INFO(dev)->gen > 3)
4633                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4634
4635         I915_WRITE(HTOTAL(cpu_transcoder),
4636                    (adjusted_mode->crtc_hdisplay - 1) |
4637                    ((adjusted_mode->crtc_htotal - 1) << 16));
4638         I915_WRITE(HBLANK(cpu_transcoder),
4639                    (adjusted_mode->crtc_hblank_start - 1) |
4640                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4641         I915_WRITE(HSYNC(cpu_transcoder),
4642                    (adjusted_mode->crtc_hsync_start - 1) |
4643                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4644
4645         I915_WRITE(VTOTAL(cpu_transcoder),
4646                    (adjusted_mode->crtc_vdisplay - 1) |
4647                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4648         I915_WRITE(VBLANK(cpu_transcoder),
4649                    (adjusted_mode->crtc_vblank_start - 1) |
4650                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4651         I915_WRITE(VSYNC(cpu_transcoder),
4652                    (adjusted_mode->crtc_vsync_start - 1) |
4653                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4654
4655         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4656          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4657          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4658          * bits. */
4659         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4660             (pipe == PIPE_B || pipe == PIPE_C))
4661                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4662
4663         /* pipesrc controls the size that is scaled from, which should
4664          * always be the user's requested size.
4665          */
4666         I915_WRITE(PIPESRC(pipe),
4667                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4668 }
4669
4670 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4671                               struct drm_display_mode *mode,
4672                               struct drm_display_mode *adjusted_mode,
4673                               int x, int y,
4674                               struct drm_framebuffer *fb)
4675 {
4676         struct drm_device *dev = crtc->dev;
4677         struct drm_i915_private *dev_priv = dev->dev_private;
4678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679         int pipe = intel_crtc->pipe;
4680         int plane = intel_crtc->plane;
4681         int refclk, num_connectors = 0;
4682         intel_clock_t clock, reduced_clock;
4683         u32 dspcntr, pipeconf;
4684         bool ok, has_reduced_clock = false, is_sdvo = false;
4685         bool is_lvds = false, is_tv = false, is_dp = false;
4686         struct intel_encoder *encoder;
4687         const intel_limit_t *limit;
4688         int ret;
4689
4690         for_each_encoder_on_crtc(dev, crtc, encoder) {
4691                 switch (encoder->type) {
4692                 case INTEL_OUTPUT_LVDS:
4693                         is_lvds = true;
4694                         break;
4695                 case INTEL_OUTPUT_SDVO:
4696                 case INTEL_OUTPUT_HDMI:
4697                         is_sdvo = true;
4698                         if (encoder->needs_tv_clock)
4699                                 is_tv = true;
4700                         break;
4701                 case INTEL_OUTPUT_TVOUT:
4702                         is_tv = true;
4703                         break;
4704                 case INTEL_OUTPUT_DISPLAYPORT:
4705                         is_dp = true;
4706                         break;
4707                 }
4708
4709                 num_connectors++;
4710         }
4711
4712         refclk = i9xx_get_refclk(crtc, num_connectors);
4713
4714         /*
4715          * Returns a set of divisors for the desired target clock with the given
4716          * refclk, or FALSE.  The returned values represent the clock equation:
4717          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4718          */
4719         limit = intel_limit(crtc, refclk);
4720         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4721                              &clock);
4722         if (!ok) {
4723                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4724                 return -EINVAL;
4725         }
4726
4727         /* Ensure that the cursor is valid for the new mode before changing... */
4728         intel_crtc_update_cursor(crtc, true);
4729
4730         if (is_lvds && dev_priv->lvds_downclock_avail) {
4731                 /*
4732                  * Ensure we match the reduced clock's P to the target clock.
4733                  * If the clocks don't match, we can't switch the display clock
4734                  * by using the FP0/FP1. In such case we will disable the LVDS
4735                  * downclock feature.
4736                 */
4737                 has_reduced_clock = limit->find_pll(limit, crtc,
4738                                                     dev_priv->lvds_downclock,
4739                                                     refclk,
4740                                                     &clock,
4741                                                     &reduced_clock);
4742         }
4743
4744         if (is_sdvo && is_tv)
4745                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4746
4747         if (IS_GEN2(dev))
4748                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4749                                 has_reduced_clock ? &reduced_clock : NULL,
4750                                 num_connectors);
4751         else if (IS_VALLEYVIEW(dev))
4752                 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4753                                 has_reduced_clock ? &reduced_clock : NULL,
4754                                 num_connectors);
4755         else
4756                 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4757                                 has_reduced_clock ? &reduced_clock : NULL,
4758                                 num_connectors);
4759
4760         /* setup pipeconf */
4761         pipeconf = I915_READ(PIPECONF(pipe));
4762
4763         /* Set up the display plane register */
4764         dspcntr = DISPPLANE_GAMMA_ENABLE;
4765
4766         if (pipe == 0)
4767                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4768         else
4769                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4770
4771         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4772                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4773                  * core speed.
4774                  *
4775                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4776                  * pipe == 0 check?
4777                  */
4778                 if (mode->clock >
4779                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4780                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4781                 else
4782                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4783         }
4784
4785         /* default to 8bpc */
4786         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4787         if (is_dp) {
4788                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4789                         pipeconf |= PIPECONF_BPP_6 |
4790                                     PIPECONF_DITHER_EN |
4791                                     PIPECONF_DITHER_TYPE_SP;
4792                 }
4793         }
4794
4795         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4796                 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4797                         pipeconf |= PIPECONF_BPP_6 |
4798                                         PIPECONF_ENABLE |
4799                                         I965_PIPECONF_ACTIVE;
4800                 }
4801         }
4802
4803         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4804         drm_mode_debug_printmodeline(mode);
4805
4806         if (HAS_PIPE_CXSR(dev)) {
4807                 if (intel_crtc->lowfreq_avail) {
4808                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4809                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4810                 } else {
4811                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4812                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4813                 }
4814         }
4815
4816         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4817         if (!IS_GEN2(dev) &&
4818             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4819                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4820         else
4821                 pipeconf |= PIPECONF_PROGRESSIVE;
4822
4823         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4824
4825         /* pipesrc and dspsize control the size that is scaled from,
4826          * which should always be the user's requested size.
4827          */
4828         I915_WRITE(DSPSIZE(plane),
4829                    ((mode->vdisplay - 1) << 16) |
4830                    (mode->hdisplay - 1));
4831         I915_WRITE(DSPPOS(plane), 0);
4832
4833         I915_WRITE(PIPECONF(pipe), pipeconf);
4834         POSTING_READ(PIPECONF(pipe));
4835         intel_enable_pipe(dev_priv, pipe, false);
4836
4837         intel_wait_for_vblank(dev, pipe);
4838
4839         I915_WRITE(DSPCNTR(plane), dspcntr);
4840         POSTING_READ(DSPCNTR(plane));
4841
4842         ret = intel_pipe_set_base(crtc, x, y, fb);
4843
4844         intel_update_watermarks(dev);
4845
4846         return ret;
4847 }
4848
4849 static void ironlake_init_pch_refclk(struct drm_device *dev)
4850 {
4851         struct drm_i915_private *dev_priv = dev->dev_private;
4852         struct drm_mode_config *mode_config = &dev->mode_config;
4853         struct intel_encoder *encoder;
4854         u32 temp;
4855         bool has_lvds = false;
4856         bool has_cpu_edp = false;
4857         bool has_pch_edp = false;
4858         bool has_panel = false;
4859         bool has_ck505 = false;
4860         bool can_ssc = false;
4861
4862         /* We need to take the global config into account */
4863         list_for_each_entry(encoder, &mode_config->encoder_list,
4864                             base.head) {
4865                 switch (encoder->type) {
4866                 case INTEL_OUTPUT_LVDS:
4867                         has_panel = true;
4868                         has_lvds = true;
4869                         break;
4870                 case INTEL_OUTPUT_EDP:
4871                         has_panel = true;
4872                         if (intel_encoder_is_pch_edp(&encoder->base))
4873                                 has_pch_edp = true;
4874                         else
4875                                 has_cpu_edp = true;
4876                         break;
4877                 }
4878         }
4879
4880         if (HAS_PCH_IBX(dev)) {
4881                 has_ck505 = dev_priv->display_clock_mode;
4882                 can_ssc = has_ck505;
4883         } else {
4884                 has_ck505 = false;
4885                 can_ssc = true;
4886         }
4887
4888         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4889                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4890                       has_ck505);
4891
4892         /* Ironlake: try to setup display ref clock before DPLL
4893          * enabling. This is only under driver's control after
4894          * PCH B stepping, previous chipset stepping should be
4895          * ignoring this setting.
4896          */
4897         temp = I915_READ(PCH_DREF_CONTROL);
4898         /* Always enable nonspread source */
4899         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4900
4901         if (has_ck505)
4902                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4903         else
4904                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4905
4906         if (has_panel) {
4907                 temp &= ~DREF_SSC_SOURCE_MASK;
4908                 temp |= DREF_SSC_SOURCE_ENABLE;
4909
4910                 /* SSC must be turned on before enabling the CPU output  */
4911                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4912                         DRM_DEBUG_KMS("Using SSC on panel\n");
4913                         temp |= DREF_SSC1_ENABLE;
4914                 } else
4915                         temp &= ~DREF_SSC1_ENABLE;
4916
4917                 /* Get SSC going before enabling the outputs */
4918                 I915_WRITE(PCH_DREF_CONTROL, temp);
4919                 POSTING_READ(PCH_DREF_CONTROL);
4920                 udelay(200);
4921
4922                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4923
4924                 /* Enable CPU source on CPU attached eDP */
4925                 if (has_cpu_edp) {
4926                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4927                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4928                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4929                         }
4930                         else
4931                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4932                 } else
4933                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4934
4935                 I915_WRITE(PCH_DREF_CONTROL, temp);
4936                 POSTING_READ(PCH_DREF_CONTROL);
4937                 udelay(200);
4938         } else {
4939                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4940
4941                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4942
4943                 /* Turn off CPU output */
4944                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4945
4946                 I915_WRITE(PCH_DREF_CONTROL, temp);
4947                 POSTING_READ(PCH_DREF_CONTROL);
4948                 udelay(200);
4949
4950                 /* Turn off the SSC source */
4951                 temp &= ~DREF_SSC_SOURCE_MASK;
4952                 temp |= DREF_SSC_SOURCE_DISABLE;
4953
4954                 /* Turn off SSC1 */
4955                 temp &= ~ DREF_SSC1_ENABLE;
4956
4957                 I915_WRITE(PCH_DREF_CONTROL, temp);
4958                 POSTING_READ(PCH_DREF_CONTROL);
4959                 udelay(200);
4960         }
4961 }
4962
4963 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4964 static void lpt_init_pch_refclk(struct drm_device *dev)
4965 {
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         struct drm_mode_config *mode_config = &dev->mode_config;
4968         struct intel_encoder *encoder;
4969         bool has_vga = false;
4970         bool is_sdv = false;
4971         u32 tmp;
4972
4973         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4974                 switch (encoder->type) {
4975                 case INTEL_OUTPUT_ANALOG:
4976                         has_vga = true;
4977                         break;
4978                 }
4979         }
4980
4981         if (!has_vga)
4982                 return;
4983
4984         /* XXX: Rip out SDV support once Haswell ships for real. */
4985         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4986                 is_sdv = true;
4987
4988         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4989         tmp &= ~SBI_SSCCTL_DISABLE;
4990         tmp |= SBI_SSCCTL_PATHALT;
4991         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4992
4993         udelay(24);
4994
4995         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4996         tmp &= ~SBI_SSCCTL_PATHALT;
4997         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4998
4999         if (!is_sdv) {
5000                 tmp = I915_READ(SOUTH_CHICKEN2);
5001                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5002                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5003
5004                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5005                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5006                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5007
5008                 tmp = I915_READ(SOUTH_CHICKEN2);
5009                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5010                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5011
5012                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5013                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5014                                        100))
5015                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5016         }
5017
5018         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5019         tmp &= ~(0xFF << 24);
5020         tmp |= (0x12 << 24);
5021         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5022
5023         if (!is_sdv) {
5024                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
5025                 tmp &= ~(0x3 << 6);
5026                 tmp |= (1 << 6) | (1 << 0);
5027                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
5028         }
5029
5030         if (is_sdv) {
5031                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5032                 tmp |= 0x7FFF;
5033                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5034         }
5035
5036         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5037         tmp |= (1 << 11);
5038         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5039
5040         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5041         tmp |= (1 << 11);
5042         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5043
5044         if (is_sdv) {
5045                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5046                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5047                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5048
5049                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5050                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5051                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5052
5053                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5054                 tmp |= (0x3F << 8);
5055                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5056
5057                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5058                 tmp |= (0x3F << 8);
5059                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5060         }
5061
5062         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5063         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5064         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5065
5066         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5067         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5068         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5069
5070         if (!is_sdv) {
5071                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5072                 tmp &= ~(7 << 13);
5073                 tmp |= (5 << 13);
5074                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5075
5076                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5077                 tmp &= ~(7 << 13);
5078                 tmp |= (5 << 13);
5079                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5080         }
5081
5082         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5083         tmp &= ~0xFF;
5084         tmp |= 0x1C;
5085         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5086
5087         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5088         tmp &= ~0xFF;
5089         tmp |= 0x1C;
5090         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5091
5092         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5093         tmp &= ~(0xFF << 16);
5094         tmp |= (0x1C << 16);
5095         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5096
5097         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5098         tmp &= ~(0xFF << 16);
5099         tmp |= (0x1C << 16);
5100         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5101
5102         if (!is_sdv) {
5103                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5104                 tmp |= (1 << 27);
5105                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5106
5107                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5108                 tmp |= (1 << 27);
5109                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5110
5111                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5112                 tmp &= ~(0xF << 28);
5113                 tmp |= (4 << 28);
5114                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5115
5116                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5117                 tmp &= ~(0xF << 28);
5118                 tmp |= (4 << 28);
5119                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5120         }
5121
5122         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5123         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5124         tmp |= SBI_DBUFF0_ENABLE;
5125         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5126 }
5127
5128 /*
5129  * Initialize reference clocks when the driver loads
5130  */
5131 void intel_init_pch_refclk(struct drm_device *dev)
5132 {
5133         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5134                 ironlake_init_pch_refclk(dev);
5135         else if (HAS_PCH_LPT(dev))
5136                 lpt_init_pch_refclk(dev);
5137 }
5138
5139 static int ironlake_get_refclk(struct drm_crtc *crtc)
5140 {
5141         struct drm_device *dev = crtc->dev;
5142         struct drm_i915_private *dev_priv = dev->dev_private;
5143         struct intel_encoder *encoder;
5144         struct intel_encoder *edp_encoder = NULL;
5145         int num_connectors = 0;
5146         bool is_lvds = false;
5147
5148         for_each_encoder_on_crtc(dev, crtc, encoder) {
5149                 switch (encoder->type) {
5150                 case INTEL_OUTPUT_LVDS:
5151                         is_lvds = true;
5152                         break;
5153                 case INTEL_OUTPUT_EDP:
5154                         edp_encoder = encoder;
5155                         break;
5156                 }
5157                 num_connectors++;
5158         }
5159
5160         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5161                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5162                               dev_priv->lvds_ssc_freq);
5163                 return dev_priv->lvds_ssc_freq * 1000;
5164         }
5165
5166         return 120000;
5167 }
5168
5169 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5170                                   struct drm_display_mode *adjusted_mode,
5171                                   bool dither)
5172 {
5173         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5175         int pipe = intel_crtc->pipe;
5176         uint32_t val;
5177
5178         val = I915_READ(PIPECONF(pipe));
5179
5180         val &= ~PIPE_BPC_MASK;
5181         switch (intel_crtc->bpp) {
5182         case 18:
5183                 val |= PIPE_6BPC;
5184                 break;
5185         case 24:
5186                 val |= PIPE_8BPC;
5187                 break;
5188         case 30:
5189                 val |= PIPE_10BPC;
5190                 break;
5191         case 36:
5192                 val |= PIPE_12BPC;
5193                 break;
5194         default:
5195                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5196                 BUG();
5197         }
5198
5199         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5200         if (dither)
5201                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5202
5203         val &= ~PIPECONF_INTERLACE_MASK;
5204         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5205                 val |= PIPECONF_INTERLACED_ILK;
5206         else
5207                 val |= PIPECONF_PROGRESSIVE;
5208
5209         I915_WRITE(PIPECONF(pipe), val);
5210         POSTING_READ(PIPECONF(pipe));
5211 }
5212
5213 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5214                                  struct drm_display_mode *adjusted_mode,
5215                                  bool dither)
5216 {
5217         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5218         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5219         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5220         uint32_t val;
5221
5222         val = I915_READ(PIPECONF(cpu_transcoder));
5223
5224         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5225         if (dither)
5226                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5227
5228         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5229         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5230                 val |= PIPECONF_INTERLACED_ILK;
5231         else
5232                 val |= PIPECONF_PROGRESSIVE;
5233
5234         I915_WRITE(PIPECONF(cpu_transcoder), val);
5235         POSTING_READ(PIPECONF(cpu_transcoder));
5236 }
5237
5238 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5239                                     struct drm_display_mode *adjusted_mode,
5240                                     intel_clock_t *clock,
5241                                     bool *has_reduced_clock,
5242                                     intel_clock_t *reduced_clock)
5243 {
5244         struct drm_device *dev = crtc->dev;
5245         struct drm_i915_private *dev_priv = dev->dev_private;
5246         struct intel_encoder *intel_encoder;
5247         int refclk;
5248         const intel_limit_t *limit;
5249         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5250
5251         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5252                 switch (intel_encoder->type) {
5253                 case INTEL_OUTPUT_LVDS:
5254                         is_lvds = true;
5255                         break;
5256                 case INTEL_OUTPUT_SDVO:
5257                 case INTEL_OUTPUT_HDMI:
5258                         is_sdvo = true;
5259                         if (intel_encoder->needs_tv_clock)
5260                                 is_tv = true;
5261                         break;
5262                 case INTEL_OUTPUT_TVOUT:
5263                         is_tv = true;
5264                         break;
5265                 }
5266         }
5267
5268         refclk = ironlake_get_refclk(crtc);
5269
5270         /*
5271          * Returns a set of divisors for the desired target clock with the given
5272          * refclk, or FALSE.  The returned values represent the clock equation:
5273          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5274          */
5275         limit = intel_limit(crtc, refclk);
5276         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5277                               clock);
5278         if (!ret)
5279                 return false;
5280
5281         if (is_lvds && dev_priv->lvds_downclock_avail) {
5282                 /*
5283                  * Ensure we match the reduced clock's P to the target clock.
5284                  * If the clocks don't match, we can't switch the display clock
5285                  * by using the FP0/FP1. In such case we will disable the LVDS
5286                  * downclock feature.
5287                 */
5288                 *has_reduced_clock = limit->find_pll(limit, crtc,
5289                                                      dev_priv->lvds_downclock,
5290                                                      refclk,
5291                                                      clock,
5292                                                      reduced_clock);
5293         }
5294
5295         if (is_sdvo && is_tv)
5296                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5297
5298         return true;
5299 }
5300
5301 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5302 {
5303         struct drm_i915_private *dev_priv = dev->dev_private;
5304         uint32_t temp;
5305
5306         temp = I915_READ(SOUTH_CHICKEN1);
5307         if (temp & FDI_BC_BIFURCATION_SELECT)
5308                 return;
5309
5310         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5311         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5312
5313         temp |= FDI_BC_BIFURCATION_SELECT;
5314         DRM_DEBUG_KMS("enabling fdi C rx\n");
5315         I915_WRITE(SOUTH_CHICKEN1, temp);
5316         POSTING_READ(SOUTH_CHICKEN1);
5317 }
5318
5319 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5320 {
5321         struct drm_device *dev = intel_crtc->base.dev;
5322         struct drm_i915_private *dev_priv = dev->dev_private;
5323         struct intel_crtc *pipe_B_crtc =
5324                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5325
5326         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5327                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5328         if (intel_crtc->fdi_lanes > 4) {
5329                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5330                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5331                 /* Clamp lanes to avoid programming the hw with bogus values. */
5332                 intel_crtc->fdi_lanes = 4;
5333
5334                 return false;
5335         }
5336
5337         if (dev_priv->num_pipe == 2)
5338                 return true;
5339
5340         switch (intel_crtc->pipe) {
5341         case PIPE_A:
5342                 return true;
5343         case PIPE_B:
5344                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5345                     intel_crtc->fdi_lanes > 2) {
5346                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5347                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5348                         /* Clamp lanes to avoid programming the hw with bogus values. */
5349                         intel_crtc->fdi_lanes = 2;
5350
5351                         return false;
5352                 }
5353
5354                 if (intel_crtc->fdi_lanes > 2)
5355                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5356                 else
5357                         cpt_enable_fdi_bc_bifurcation(dev);
5358
5359                 return true;
5360         case PIPE_C:
5361                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5362                         if (intel_crtc->fdi_lanes > 2) {
5363                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5364                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5365                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5366                                 intel_crtc->fdi_lanes = 2;
5367
5368                                 return false;
5369                         }
5370                 } else {
5371                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5372                         return false;
5373                 }
5374
5375                 cpt_enable_fdi_bc_bifurcation(dev);
5376
5377                 return true;
5378         default:
5379                 BUG();
5380         }
5381 }
5382
5383 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5384 {
5385         /*
5386          * Account for spread spectrum to avoid
5387          * oversubscribing the link. Max center spread
5388          * is 2.5%; use 5% for safety's sake.
5389          */
5390         u32 bps = target_clock * bpp * 21 / 20;
5391         return bps / (link_bw * 8) + 1;
5392 }
5393
5394 static void ironlake_set_m_n(struct drm_crtc *crtc,
5395                              struct drm_display_mode *mode,
5396                              struct drm_display_mode *adjusted_mode)
5397 {
5398         struct drm_device *dev = crtc->dev;
5399         struct drm_i915_private *dev_priv = dev->dev_private;
5400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5402         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5403         struct fdi_m_n m_n = {0};
5404         int target_clock, pixel_multiplier, lane, link_bw;
5405         bool is_dp = false, is_cpu_edp = false;
5406
5407         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5408                 switch (intel_encoder->type) {
5409                 case INTEL_OUTPUT_DISPLAYPORT:
5410                         is_dp = true;
5411                         break;
5412                 case INTEL_OUTPUT_EDP:
5413                         is_dp = true;
5414                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5415                                 is_cpu_edp = true;
5416                         edp_encoder = intel_encoder;
5417                         break;
5418                 }
5419         }
5420
5421         /* FDI link */
5422         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5423         lane = 0;
5424         /* CPU eDP doesn't require FDI link, so just set DP M/N
5425            according to current link config */
5426         if (is_cpu_edp) {
5427                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5428         } else {
5429                 /* FDI is a binary signal running at ~2.7GHz, encoding
5430                  * each output octet as 10 bits. The actual frequency
5431                  * is stored as a divider into a 100MHz clock, and the
5432                  * mode pixel clock is stored in units of 1KHz.
5433                  * Hence the bw of each lane in terms of the mode signal
5434                  * is:
5435                  */
5436                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5437         }
5438
5439         /* [e]DP over FDI requires target mode clock instead of link clock. */
5440         if (edp_encoder)
5441                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5442         else if (is_dp)
5443                 target_clock = mode->clock;
5444         else
5445                 target_clock = adjusted_mode->clock;
5446
5447         if (!lane)
5448                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5449                                                    intel_crtc->bpp);
5450
5451         intel_crtc->fdi_lanes = lane;
5452
5453         if (pixel_multiplier > 1)
5454                 link_bw *= pixel_multiplier;
5455         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5456                              &m_n);
5457
5458         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5459         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5460         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5461         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5462 }
5463
5464 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5465                                       struct drm_display_mode *adjusted_mode,
5466                                       intel_clock_t *clock, u32 fp)
5467 {
5468         struct drm_crtc *crtc = &intel_crtc->base;
5469         struct drm_device *dev = crtc->dev;
5470         struct drm_i915_private *dev_priv = dev->dev_private;
5471         struct intel_encoder *intel_encoder;
5472         uint32_t dpll;
5473         int factor, pixel_multiplier, num_connectors = 0;
5474         bool is_lvds = false, is_sdvo = false, is_tv = false;
5475         bool is_dp = false, is_cpu_edp = false;
5476
5477         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5478                 switch (intel_encoder->type) {
5479                 case INTEL_OUTPUT_LVDS:
5480                         is_lvds = true;
5481                         break;
5482                 case INTEL_OUTPUT_SDVO:
5483                 case INTEL_OUTPUT_HDMI:
5484                         is_sdvo = true;
5485                         if (intel_encoder->needs_tv_clock)
5486                                 is_tv = true;
5487                         break;
5488                 case INTEL_OUTPUT_TVOUT:
5489                         is_tv = true;
5490                         break;
5491                 case INTEL_OUTPUT_DISPLAYPORT:
5492                         is_dp = true;
5493                         break;
5494                 case INTEL_OUTPUT_EDP:
5495                         is_dp = true;
5496                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5497                                 is_cpu_edp = true;
5498                         break;
5499                 }
5500
5501                 num_connectors++;
5502         }
5503
5504         /* Enable autotuning of the PLL clock (if permissible) */
5505         factor = 21;
5506         if (is_lvds) {
5507                 if ((intel_panel_use_ssc(dev_priv) &&
5508                      dev_priv->lvds_ssc_freq == 100) ||
5509                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5510                         factor = 25;
5511         } else if (is_sdvo && is_tv)
5512                 factor = 20;
5513
5514         if (clock->m < factor * clock->n)
5515                 fp |= FP_CB_TUNE;
5516
5517         dpll = 0;
5518
5519         if (is_lvds)
5520                 dpll |= DPLLB_MODE_LVDS;
5521         else
5522                 dpll |= DPLLB_MODE_DAC_SERIAL;
5523         if (is_sdvo) {
5524                 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5525                 if (pixel_multiplier > 1) {
5526                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5527                 }
5528                 dpll |= DPLL_DVO_HIGH_SPEED;
5529         }
5530         if (is_dp && !is_cpu_edp)
5531                 dpll |= DPLL_DVO_HIGH_SPEED;
5532
5533         /* compute bitmask from p1 value */
5534         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5535         /* also FPA1 */
5536         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5537
5538         switch (clock->p2) {
5539         case 5:
5540                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5541                 break;
5542         case 7:
5543                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5544                 break;
5545         case 10:
5546                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5547                 break;
5548         case 14:
5549                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5550                 break;
5551         }
5552
5553         if (is_sdvo && is_tv)
5554                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5555         else if (is_tv)
5556                 /* XXX: just matching BIOS for now */
5557                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5558                 dpll |= 3;
5559         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5560                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5561         else
5562                 dpll |= PLL_REF_INPUT_DREFCLK;
5563
5564         return dpll;
5565 }
5566
5567 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5568                                   struct drm_display_mode *mode,
5569                                   struct drm_display_mode *adjusted_mode,
5570                                   int x, int y,
5571                                   struct drm_framebuffer *fb)
5572 {
5573         struct drm_device *dev = crtc->dev;
5574         struct drm_i915_private *dev_priv = dev->dev_private;
5575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5576         int pipe = intel_crtc->pipe;
5577         int plane = intel_crtc->plane;
5578         int num_connectors = 0;
5579         intel_clock_t clock, reduced_clock;
5580         u32 dpll, fp = 0, fp2 = 0;
5581         bool ok, has_reduced_clock = false;
5582         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5583         struct intel_encoder *encoder;
5584         u32 temp;
5585         int ret;
5586         bool dither, fdi_config_ok;
5587
5588         for_each_encoder_on_crtc(dev, crtc, encoder) {
5589                 switch (encoder->type) {
5590                 case INTEL_OUTPUT_LVDS:
5591                         is_lvds = true;
5592                         break;
5593                 case INTEL_OUTPUT_DISPLAYPORT:
5594                         is_dp = true;
5595                         break;
5596                 case INTEL_OUTPUT_EDP:
5597                         is_dp = true;
5598                         if (!intel_encoder_is_pch_edp(&encoder->base))
5599                                 is_cpu_edp = true;
5600                         break;
5601                 }
5602
5603                 num_connectors++;
5604         }
5605
5606         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5607              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5608
5609         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5610                                      &has_reduced_clock, &reduced_clock);
5611         if (!ok) {
5612                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5613                 return -EINVAL;
5614         }
5615
5616         /* Ensure that the cursor is valid for the new mode before changing... */
5617         intel_crtc_update_cursor(crtc, true);
5618
5619         /* determine panel color depth */
5620         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5621                                               adjusted_mode);
5622         if (is_lvds && dev_priv->lvds_dither)
5623                 dither = true;
5624
5625         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5626         if (has_reduced_clock)
5627                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5628                         reduced_clock.m2;
5629
5630         dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5631
5632         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5633         drm_mode_debug_printmodeline(mode);
5634
5635         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5636         if (!is_cpu_edp) {
5637                 struct intel_pch_pll *pll;
5638
5639                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5640                 if (pll == NULL) {
5641                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5642                                          pipe);
5643                         return -EINVAL;
5644                 }
5645         } else
5646                 intel_put_pch_pll(intel_crtc);
5647
5648         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5649          * This is an exception to the general rule that mode_set doesn't turn
5650          * things on.
5651          */
5652         if (is_lvds) {
5653                 temp = I915_READ(PCH_LVDS);
5654                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5655                 if (HAS_PCH_CPT(dev)) {
5656                         temp &= ~PORT_TRANS_SEL_MASK;
5657                         temp |= PORT_TRANS_SEL_CPT(pipe);
5658                 } else {
5659                         if (pipe == 1)
5660                                 temp |= LVDS_PIPEB_SELECT;
5661                         else
5662                                 temp &= ~LVDS_PIPEB_SELECT;
5663                 }
5664
5665                 /* set the corresponsding LVDS_BORDER bit */
5666                 temp |= dev_priv->lvds_border_bits;
5667                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5668                  * set the DPLLs for dual-channel mode or not.
5669                  */
5670                 if (clock.p2 == 7)
5671                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5672                 else
5673                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5674
5675                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5676                  * appropriately here, but we need to look more thoroughly into how
5677                  * panels behave in the two modes.
5678                  */
5679                 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5680                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5681                         temp |= LVDS_HSYNC_POLARITY;
5682                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5683                         temp |= LVDS_VSYNC_POLARITY;
5684                 I915_WRITE(PCH_LVDS, temp);
5685         }
5686
5687         if (is_dp && !is_cpu_edp) {
5688                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5689         } else {
5690                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5691                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5692                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5693                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5694                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5695         }
5696
5697         if (intel_crtc->pch_pll) {
5698                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5699
5700                 /* Wait for the clocks to stabilize. */
5701                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5702                 udelay(150);
5703
5704                 /* The pixel multiplier can only be updated once the
5705                  * DPLL is enabled and the clocks are stable.
5706                  *
5707                  * So write it again.
5708                  */
5709                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5710         }
5711
5712         intel_crtc->lowfreq_avail = false;
5713         if (intel_crtc->pch_pll) {
5714                 if (is_lvds && has_reduced_clock && i915_powersave) {
5715                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5716                         intel_crtc->lowfreq_avail = true;
5717                 } else {
5718                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5719                 }
5720         }
5721
5722         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5723
5724         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5725          * ironlake_check_fdi_lanes. */
5726         ironlake_set_m_n(crtc, mode, adjusted_mode);
5727
5728         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5729
5730         if (is_cpu_edp)
5731                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5732
5733         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5734
5735         intel_wait_for_vblank(dev, pipe);
5736
5737         /* Set up the display plane register */
5738         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5739         POSTING_READ(DSPCNTR(plane));
5740
5741         ret = intel_pipe_set_base(crtc, x, y, fb);
5742
5743         intel_update_watermarks(dev);
5744
5745         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5746
5747         return fdi_config_ok ? ret : -EINVAL;
5748 }
5749
5750 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5751                                  struct drm_display_mode *mode,
5752                                  struct drm_display_mode *adjusted_mode,
5753                                  int x, int y,
5754                                  struct drm_framebuffer *fb)
5755 {
5756         struct drm_device *dev = crtc->dev;
5757         struct drm_i915_private *dev_priv = dev->dev_private;
5758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759         int pipe = intel_crtc->pipe;
5760         int plane = intel_crtc->plane;
5761         int num_connectors = 0;
5762         intel_clock_t clock, reduced_clock;
5763         u32 dpll = 0, fp = 0, fp2 = 0;
5764         bool ok, has_reduced_clock = false;
5765         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5766         struct intel_encoder *encoder;
5767         u32 temp;
5768         int ret;
5769         bool dither;
5770
5771         for_each_encoder_on_crtc(dev, crtc, encoder) {
5772                 switch (encoder->type) {
5773                 case INTEL_OUTPUT_LVDS:
5774                         is_lvds = true;
5775                         break;
5776                 case INTEL_OUTPUT_DISPLAYPORT:
5777                         is_dp = true;
5778                         break;
5779                 case INTEL_OUTPUT_EDP:
5780                         is_dp = true;
5781                         if (!intel_encoder_is_pch_edp(&encoder->base))
5782                                 is_cpu_edp = true;
5783                         break;
5784                 }
5785
5786                 num_connectors++;
5787         }
5788
5789         if (is_cpu_edp)
5790                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5791         else
5792                 intel_crtc->cpu_transcoder = pipe;
5793
5794         /* We are not sure yet this won't happen. */
5795         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5796              INTEL_PCH_TYPE(dev));
5797
5798         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5799              num_connectors, pipe_name(pipe));
5800
5801         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5802                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5803
5804         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5805
5806         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5807                 return -EINVAL;
5808
5809         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5810                 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5811                                              &has_reduced_clock,
5812                                              &reduced_clock);
5813                 if (!ok) {
5814                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5815                         return -EINVAL;
5816                 }
5817         }
5818
5819         /* Ensure that the cursor is valid for the new mode before changing... */
5820         intel_crtc_update_cursor(crtc, true);
5821
5822         /* determine panel color depth */
5823         dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5824                                               adjusted_mode);
5825         if (is_lvds && dev_priv->lvds_dither)
5826                 dither = true;
5827
5828         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5829         drm_mode_debug_printmodeline(mode);
5830
5831         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5832                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5833                 if (has_reduced_clock)
5834                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5835                               reduced_clock.m2;
5836
5837                 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5838                                              fp);
5839
5840                 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5841                  * own on pre-Haswell/LPT generation */
5842                 if (!is_cpu_edp) {
5843                         struct intel_pch_pll *pll;
5844
5845                         pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5846                         if (pll == NULL) {
5847                                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5848                                                  pipe);
5849                                 return -EINVAL;
5850                         }
5851                 } else
5852                         intel_put_pch_pll(intel_crtc);
5853
5854                 /* The LVDS pin pair needs to be on before the DPLLs are
5855                  * enabled.  This is an exception to the general rule that
5856                  * mode_set doesn't turn things on.
5857                  */
5858                 if (is_lvds) {
5859                         temp = I915_READ(PCH_LVDS);
5860                         temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5861                         if (HAS_PCH_CPT(dev)) {
5862                                 temp &= ~PORT_TRANS_SEL_MASK;
5863                                 temp |= PORT_TRANS_SEL_CPT(pipe);
5864                         } else {
5865                                 if (pipe == 1)
5866                                         temp |= LVDS_PIPEB_SELECT;
5867                                 else
5868                                         temp &= ~LVDS_PIPEB_SELECT;
5869                         }
5870
5871                         /* set the corresponsding LVDS_BORDER bit */
5872                         temp |= dev_priv->lvds_border_bits;
5873                         /* Set the B0-B3 data pairs corresponding to whether
5874                          * we're going to set the DPLLs for dual-channel mode or
5875                          * not.
5876                          */
5877                         if (clock.p2 == 7)
5878                                 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5879                         else
5880                                 temp &= ~(LVDS_B0B3_POWER_UP |
5881                                           LVDS_CLKB_POWER_UP);
5882
5883                         /* It would be nice to set 24 vs 18-bit mode
5884                          * (LVDS_A3_POWER_UP) appropriately here, but we need to
5885                          * look more thoroughly into how panels behave in the
5886                          * two modes.
5887                          */
5888                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5889                         if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5890                                 temp |= LVDS_HSYNC_POLARITY;
5891                         if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5892                                 temp |= LVDS_VSYNC_POLARITY;
5893                         I915_WRITE(PCH_LVDS, temp);
5894                 }
5895         }
5896
5897         if (is_dp && !is_cpu_edp) {
5898                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5899         } else {
5900                 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5901                         /* For non-DP output, clear any trans DP clock recovery
5902                          * setting.*/
5903                         I915_WRITE(TRANSDATA_M1(pipe), 0);
5904                         I915_WRITE(TRANSDATA_N1(pipe), 0);
5905                         I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5906                         I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5907                 }
5908         }
5909
5910         intel_crtc->lowfreq_avail = false;
5911         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5912                 if (intel_crtc->pch_pll) {
5913                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5914
5915                         /* Wait for the clocks to stabilize. */
5916                         POSTING_READ(intel_crtc->pch_pll->pll_reg);
5917                         udelay(150);
5918
5919                         /* The pixel multiplier can only be updated once the
5920                          * DPLL is enabled and the clocks are stable.
5921                          *
5922                          * So write it again.
5923                          */
5924                         I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5925                 }
5926
5927                 if (intel_crtc->pch_pll) {
5928                         if (is_lvds && has_reduced_clock && i915_powersave) {
5929                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5930                                 intel_crtc->lowfreq_avail = true;
5931                         } else {
5932                                 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5933                         }
5934                 }
5935         }
5936
5937         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5938
5939         if (!is_dp || is_cpu_edp)
5940                 ironlake_set_m_n(crtc, mode, adjusted_mode);
5941
5942         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5943                 if (is_cpu_edp)
5944                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5945
5946         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5947
5948         /* Set up the display plane register */
5949         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5950         POSTING_READ(DSPCNTR(plane));
5951
5952         ret = intel_pipe_set_base(crtc, x, y, fb);
5953
5954         intel_update_watermarks(dev);
5955
5956         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5957
5958         return ret;
5959 }
5960
5961 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5962                                struct drm_display_mode *mode,
5963                                struct drm_display_mode *adjusted_mode,
5964                                int x, int y,
5965                                struct drm_framebuffer *fb)
5966 {
5967         struct drm_device *dev = crtc->dev;
5968         struct drm_i915_private *dev_priv = dev->dev_private;
5969         struct drm_encoder_helper_funcs *encoder_funcs;
5970         struct intel_encoder *encoder;
5971         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5972         int pipe = intel_crtc->pipe;
5973         int ret;
5974
5975         drm_vblank_pre_modeset(dev, pipe);
5976
5977         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5978                                               x, y, fb);
5979         drm_vblank_post_modeset(dev, pipe);
5980
5981         if (ret != 0)
5982                 return ret;
5983
5984         for_each_encoder_on_crtc(dev, crtc, encoder) {
5985                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5986                         encoder->base.base.id,
5987                         drm_get_encoder_name(&encoder->base),
5988                         mode->base.id, mode->name);
5989                 encoder_funcs = encoder->base.helper_private;
5990                 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5991         }
5992
5993         return 0;
5994 }
5995
5996 static bool intel_eld_uptodate(struct drm_connector *connector,
5997                                int reg_eldv, uint32_t bits_eldv,
5998                                int reg_elda, uint32_t bits_elda,
5999                                int reg_edid)
6000 {
6001         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6002         uint8_t *eld = connector->eld;
6003         uint32_t i;
6004
6005         i = I915_READ(reg_eldv);
6006         i &= bits_eldv;
6007
6008         if (!eld[0])
6009                 return !i;
6010
6011         if (!i)
6012                 return false;
6013
6014         i = I915_READ(reg_elda);
6015         i &= ~bits_elda;
6016         I915_WRITE(reg_elda, i);
6017
6018         for (i = 0; i < eld[2]; i++)
6019                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6020                         return false;
6021
6022         return true;
6023 }
6024
6025 static void g4x_write_eld(struct drm_connector *connector,
6026                           struct drm_crtc *crtc)
6027 {
6028         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6029         uint8_t *eld = connector->eld;
6030         uint32_t eldv;
6031         uint32_t len;
6032         uint32_t i;
6033
6034         i = I915_READ(G4X_AUD_VID_DID);
6035
6036         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6037                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6038         else
6039                 eldv = G4X_ELDV_DEVCTG;
6040
6041         if (intel_eld_uptodate(connector,
6042                                G4X_AUD_CNTL_ST, eldv,
6043                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6044                                G4X_HDMIW_HDMIEDID))
6045                 return;
6046
6047         i = I915_READ(G4X_AUD_CNTL_ST);
6048         i &= ~(eldv | G4X_ELD_ADDR);
6049         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6050         I915_WRITE(G4X_AUD_CNTL_ST, i);
6051
6052         if (!eld[0])
6053                 return;
6054
6055         len = min_t(uint8_t, eld[2], len);
6056         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6057         for (i = 0; i < len; i++)
6058                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6059
6060         i = I915_READ(G4X_AUD_CNTL_ST);
6061         i |= eldv;
6062         I915_WRITE(G4X_AUD_CNTL_ST, i);
6063 }
6064
6065 static void haswell_write_eld(struct drm_connector *connector,
6066                                      struct drm_crtc *crtc)
6067 {
6068         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6069         uint8_t *eld = connector->eld;
6070         struct drm_device *dev = crtc->dev;
6071         uint32_t eldv;
6072         uint32_t i;
6073         int len;
6074         int pipe = to_intel_crtc(crtc)->pipe;
6075         int tmp;
6076
6077         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6078         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6079         int aud_config = HSW_AUD_CFG(pipe);
6080         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6081
6082
6083         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6084
6085         /* Audio output enable */
6086         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6087         tmp = I915_READ(aud_cntrl_st2);
6088         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6089         I915_WRITE(aud_cntrl_st2, tmp);
6090
6091         /* Wait for 1 vertical blank */
6092         intel_wait_for_vblank(dev, pipe);
6093
6094         /* Set ELD valid state */
6095         tmp = I915_READ(aud_cntrl_st2);
6096         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6097         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6098         I915_WRITE(aud_cntrl_st2, tmp);
6099         tmp = I915_READ(aud_cntrl_st2);
6100         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6101
6102         /* Enable HDMI mode */
6103         tmp = I915_READ(aud_config);
6104         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6105         /* clear N_programing_enable and N_value_index */
6106         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6107         I915_WRITE(aud_config, tmp);
6108
6109         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6110
6111         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6112
6113         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6114                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6115                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6116                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6117         } else
6118                 I915_WRITE(aud_config, 0);
6119
6120         if (intel_eld_uptodate(connector,
6121                                aud_cntrl_st2, eldv,
6122                                aud_cntl_st, IBX_ELD_ADDRESS,
6123                                hdmiw_hdmiedid))
6124                 return;
6125
6126         i = I915_READ(aud_cntrl_st2);
6127         i &= ~eldv;
6128         I915_WRITE(aud_cntrl_st2, i);
6129
6130         if (!eld[0])
6131                 return;
6132
6133         i = I915_READ(aud_cntl_st);
6134         i &= ~IBX_ELD_ADDRESS;
6135         I915_WRITE(aud_cntl_st, i);
6136         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6137         DRM_DEBUG_DRIVER("port num:%d\n", i);
6138
6139         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6140         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6141         for (i = 0; i < len; i++)
6142                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6143
6144         i = I915_READ(aud_cntrl_st2);
6145         i |= eldv;
6146         I915_WRITE(aud_cntrl_st2, i);
6147
6148 }
6149
6150 static void ironlake_write_eld(struct drm_connector *connector,
6151                                      struct drm_crtc *crtc)
6152 {
6153         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6154         uint8_t *eld = connector->eld;
6155         uint32_t eldv;
6156         uint32_t i;
6157         int len;
6158         int hdmiw_hdmiedid;
6159         int aud_config;
6160         int aud_cntl_st;
6161         int aud_cntrl_st2;
6162         int pipe = to_intel_crtc(crtc)->pipe;
6163
6164         if (HAS_PCH_IBX(connector->dev)) {
6165                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6166                 aud_config = IBX_AUD_CFG(pipe);
6167                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6168                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6169         } else {
6170                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6171                 aud_config = CPT_AUD_CFG(pipe);
6172                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6173                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6174         }
6175
6176         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6177
6178         i = I915_READ(aud_cntl_st);
6179         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6180         if (!i) {
6181                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6182                 /* operate blindly on all ports */
6183                 eldv = IBX_ELD_VALIDB;
6184                 eldv |= IBX_ELD_VALIDB << 4;
6185                 eldv |= IBX_ELD_VALIDB << 8;
6186         } else {
6187                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6188                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6189         }
6190
6191         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6192                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6193                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6194                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6195         } else
6196                 I915_WRITE(aud_config, 0);
6197
6198         if (intel_eld_uptodate(connector,
6199                                aud_cntrl_st2, eldv,
6200                                aud_cntl_st, IBX_ELD_ADDRESS,
6201                                hdmiw_hdmiedid))
6202                 return;
6203
6204         i = I915_READ(aud_cntrl_st2);
6205         i &= ~eldv;
6206         I915_WRITE(aud_cntrl_st2, i);
6207
6208         if (!eld[0])
6209                 return;
6210
6211         i = I915_READ(aud_cntl_st);
6212         i &= ~IBX_ELD_ADDRESS;
6213         I915_WRITE(aud_cntl_st, i);
6214
6215         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6216         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6217         for (i = 0; i < len; i++)
6218                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6219
6220         i = I915_READ(aud_cntrl_st2);
6221         i |= eldv;
6222         I915_WRITE(aud_cntrl_st2, i);
6223 }
6224
6225 void intel_write_eld(struct drm_encoder *encoder,
6226                      struct drm_display_mode *mode)
6227 {
6228         struct drm_crtc *crtc = encoder->crtc;
6229         struct drm_connector *connector;
6230         struct drm_device *dev = encoder->dev;
6231         struct drm_i915_private *dev_priv = dev->dev_private;
6232
6233         connector = drm_select_eld(encoder, mode);
6234         if (!connector)
6235                 return;
6236
6237         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6238                          connector->base.id,
6239                          drm_get_connector_name(connector),
6240                          connector->encoder->base.id,
6241                          drm_get_encoder_name(connector->encoder));
6242
6243         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6244
6245         if (dev_priv->display.write_eld)
6246                 dev_priv->display.write_eld(connector, crtc);
6247 }
6248
6249 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6250 void intel_crtc_load_lut(struct drm_crtc *crtc)
6251 {
6252         struct drm_device *dev = crtc->dev;
6253         struct drm_i915_private *dev_priv = dev->dev_private;
6254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6255         int palreg = PALETTE(intel_crtc->pipe);
6256         int i;
6257
6258         /* The clocks have to be on to load the palette. */
6259         if (!crtc->enabled || !intel_crtc->active)
6260                 return;
6261
6262         /* use legacy palette for Ironlake */
6263         if (HAS_PCH_SPLIT(dev))
6264                 palreg = LGC_PALETTE(intel_crtc->pipe);
6265
6266         for (i = 0; i < 256; i++) {
6267                 I915_WRITE(palreg + 4 * i,
6268                            (intel_crtc->lut_r[i] << 16) |
6269                            (intel_crtc->lut_g[i] << 8) |
6270                            intel_crtc->lut_b[i]);
6271         }
6272 }
6273
6274 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6275 {
6276         struct drm_device *dev = crtc->dev;
6277         struct drm_i915_private *dev_priv = dev->dev_private;
6278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6279         bool visible = base != 0;
6280         u32 cntl;
6281
6282         if (intel_crtc->cursor_visible == visible)
6283                 return;
6284
6285         cntl = I915_READ(_CURACNTR);
6286         if (visible) {
6287                 /* On these chipsets we can only modify the base whilst
6288                  * the cursor is disabled.
6289                  */
6290                 I915_WRITE(_CURABASE, base);
6291
6292                 cntl &= ~(CURSOR_FORMAT_MASK);
6293                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6294                 cntl |= CURSOR_ENABLE |
6295                         CURSOR_GAMMA_ENABLE |
6296                         CURSOR_FORMAT_ARGB;
6297         } else
6298                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6299         I915_WRITE(_CURACNTR, cntl);
6300
6301         intel_crtc->cursor_visible = visible;
6302 }
6303
6304 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6305 {
6306         struct drm_device *dev = crtc->dev;
6307         struct drm_i915_private *dev_priv = dev->dev_private;
6308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6309         int pipe = intel_crtc->pipe;
6310         bool visible = base != 0;
6311
6312         if (intel_crtc->cursor_visible != visible) {
6313                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6314                 if (base) {
6315                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6316                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6317                         cntl |= pipe << 28; /* Connect to correct pipe */
6318                 } else {
6319                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6320                         cntl |= CURSOR_MODE_DISABLE;
6321                 }
6322                 I915_WRITE(CURCNTR(pipe), cntl);
6323
6324                 intel_crtc->cursor_visible = visible;
6325         }
6326         /* and commit changes on next vblank */
6327         I915_WRITE(CURBASE(pipe), base);
6328 }
6329
6330 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6331 {
6332         struct drm_device *dev = crtc->dev;
6333         struct drm_i915_private *dev_priv = dev->dev_private;
6334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6335         int pipe = intel_crtc->pipe;
6336         bool visible = base != 0;
6337
6338         if (intel_crtc->cursor_visible != visible) {
6339                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6340                 if (base) {
6341                         cntl &= ~CURSOR_MODE;
6342                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6343                 } else {
6344                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6345                         cntl |= CURSOR_MODE_DISABLE;
6346                 }
6347                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6348
6349                 intel_crtc->cursor_visible = visible;
6350         }
6351         /* and commit changes on next vblank */
6352         I915_WRITE(CURBASE_IVB(pipe), base);
6353 }
6354
6355 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6356 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6357                                      bool on)
6358 {
6359         struct drm_device *dev = crtc->dev;
6360         struct drm_i915_private *dev_priv = dev->dev_private;
6361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6362         int pipe = intel_crtc->pipe;
6363         int x = intel_crtc->cursor_x;
6364         int y = intel_crtc->cursor_y;
6365         u32 base, pos;
6366         bool visible;
6367
6368         pos = 0;
6369
6370         if (on && crtc->enabled && crtc->fb) {
6371                 base = intel_crtc->cursor_addr;
6372                 if (x > (int) crtc->fb->width)
6373                         base = 0;
6374
6375                 if (y > (int) crtc->fb->height)
6376                         base = 0;
6377         } else
6378                 base = 0;
6379
6380         if (x < 0) {
6381                 if (x + intel_crtc->cursor_width < 0)
6382                         base = 0;
6383
6384                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6385                 x = -x;
6386         }
6387         pos |= x << CURSOR_X_SHIFT;
6388
6389         if (y < 0) {
6390                 if (y + intel_crtc->cursor_height < 0)
6391                         base = 0;
6392
6393                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6394                 y = -y;
6395         }
6396         pos |= y << CURSOR_Y_SHIFT;
6397
6398         visible = base != 0;
6399         if (!visible && !intel_crtc->cursor_visible)
6400                 return;
6401
6402         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6403                 I915_WRITE(CURPOS_IVB(pipe), pos);
6404                 ivb_update_cursor(crtc, base);
6405         } else {
6406                 I915_WRITE(CURPOS(pipe), pos);
6407                 if (IS_845G(dev) || IS_I865G(dev))
6408                         i845_update_cursor(crtc, base);
6409                 else
6410                         i9xx_update_cursor(crtc, base);
6411         }
6412 }
6413
6414 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6415                                  struct drm_file *file,
6416                                  uint32_t handle,
6417                                  uint32_t width, uint32_t height)
6418 {
6419         struct drm_device *dev = crtc->dev;
6420         struct drm_i915_private *dev_priv = dev->dev_private;
6421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6422         struct drm_i915_gem_object *obj;
6423         uint32_t addr;
6424         int ret;
6425
6426         /* if we want to turn off the cursor ignore width and height */
6427         if (!handle) {
6428                 DRM_DEBUG_KMS("cursor off\n");
6429                 addr = 0;
6430                 obj = NULL;
6431                 mutex_lock(&dev->struct_mutex);
6432                 goto finish;
6433         }
6434
6435         /* Currently we only support 64x64 cursors */
6436         if (width != 64 || height != 64) {
6437                 DRM_ERROR("we currently only support 64x64 cursors\n");
6438                 return -EINVAL;
6439         }
6440
6441         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6442         if (&obj->base == NULL)
6443                 return -ENOENT;
6444
6445         if (obj->base.size < width * height * 4) {
6446                 DRM_ERROR("buffer is to small\n");
6447                 ret = -ENOMEM;
6448                 goto fail;
6449         }
6450
6451         /* we only need to pin inside GTT if cursor is non-phy */
6452         mutex_lock(&dev->struct_mutex);
6453         if (!dev_priv->info->cursor_needs_physical) {
6454                 if (obj->tiling_mode) {
6455                         DRM_ERROR("cursor cannot be tiled\n");
6456                         ret = -EINVAL;
6457                         goto fail_locked;
6458                 }
6459
6460                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6461                 if (ret) {
6462                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6463                         goto fail_locked;
6464                 }
6465
6466                 ret = i915_gem_object_put_fence(obj);
6467                 if (ret) {
6468                         DRM_ERROR("failed to release fence for cursor");
6469                         goto fail_unpin;
6470                 }
6471
6472                 addr = obj->gtt_offset;
6473         } else {
6474                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6475                 ret = i915_gem_attach_phys_object(dev, obj,
6476                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6477                                                   align);
6478                 if (ret) {
6479                         DRM_ERROR("failed to attach phys object\n");
6480                         goto fail_locked;
6481                 }
6482                 addr = obj->phys_obj->handle->busaddr;
6483         }
6484
6485         if (IS_GEN2(dev))
6486                 I915_WRITE(CURSIZE, (height << 12) | width);
6487
6488  finish:
6489         if (intel_crtc->cursor_bo) {
6490                 if (dev_priv->info->cursor_needs_physical) {
6491                         if (intel_crtc->cursor_bo != obj)
6492                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6493                 } else
6494                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6495                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6496         }
6497
6498         mutex_unlock(&dev->struct_mutex);
6499
6500         intel_crtc->cursor_addr = addr;
6501         intel_crtc->cursor_bo = obj;
6502         intel_crtc->cursor_width = width;
6503         intel_crtc->cursor_height = height;
6504
6505         intel_crtc_update_cursor(crtc, true);
6506
6507         return 0;
6508 fail_unpin:
6509         i915_gem_object_unpin(obj);
6510 fail_locked:
6511         mutex_unlock(&dev->struct_mutex);
6512 fail:
6513         drm_gem_object_unreference_unlocked(&obj->base);
6514         return ret;
6515 }
6516
6517 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6518 {
6519         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6520
6521         intel_crtc->cursor_x = x;
6522         intel_crtc->cursor_y = y;
6523
6524         intel_crtc_update_cursor(crtc, true);
6525
6526         return 0;
6527 }
6528
6529 /** Sets the color ramps on behalf of RandR */
6530 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6531                                  u16 blue, int regno)
6532 {
6533         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6534
6535         intel_crtc->lut_r[regno] = red >> 8;
6536         intel_crtc->lut_g[regno] = green >> 8;
6537         intel_crtc->lut_b[regno] = blue >> 8;
6538 }
6539
6540 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6541                              u16 *blue, int regno)
6542 {
6543         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6544
6545         *red = intel_crtc->lut_r[regno] << 8;
6546         *green = intel_crtc->lut_g[regno] << 8;
6547         *blue = intel_crtc->lut_b[regno] << 8;
6548 }
6549
6550 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6551                                  u16 *blue, uint32_t start, uint32_t size)
6552 {
6553         int end = (start + size > 256) ? 256 : start + size, i;
6554         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6555
6556         for (i = start; i < end; i++) {
6557                 intel_crtc->lut_r[i] = red[i] >> 8;
6558                 intel_crtc->lut_g[i] = green[i] >> 8;
6559                 intel_crtc->lut_b[i] = blue[i] >> 8;
6560         }
6561
6562         intel_crtc_load_lut(crtc);
6563 }
6564
6565 /**
6566  * Get a pipe with a simple mode set on it for doing load-based monitor
6567  * detection.
6568  *
6569  * It will be up to the load-detect code to adjust the pipe as appropriate for
6570  * its requirements.  The pipe will be connected to no other encoders.
6571  *
6572  * Currently this code will only succeed if there is a pipe with no encoders
6573  * configured for it.  In the future, it could choose to temporarily disable
6574  * some outputs to free up a pipe for its use.
6575  *
6576  * \return crtc, or NULL if no pipes are available.
6577  */
6578
6579 /* VESA 640x480x72Hz mode to set on the pipe */
6580 static struct drm_display_mode load_detect_mode = {
6581         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6582                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6583 };
6584
6585 static struct drm_framebuffer *
6586 intel_framebuffer_create(struct drm_device *dev,
6587                          struct drm_mode_fb_cmd2 *mode_cmd,
6588                          struct drm_i915_gem_object *obj)
6589 {
6590         struct intel_framebuffer *intel_fb;
6591         int ret;
6592
6593         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6594         if (!intel_fb) {
6595                 drm_gem_object_unreference_unlocked(&obj->base);
6596                 return ERR_PTR(-ENOMEM);
6597         }
6598
6599         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6600         if (ret) {
6601                 drm_gem_object_unreference_unlocked(&obj->base);
6602                 kfree(intel_fb);
6603                 return ERR_PTR(ret);
6604         }
6605
6606         return &intel_fb->base;
6607 }
6608
6609 static u32
6610 intel_framebuffer_pitch_for_width(int width, int bpp)
6611 {
6612         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6613         return ALIGN(pitch, 64);
6614 }
6615
6616 static u32
6617 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6618 {
6619         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6620         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6621 }
6622
6623 static struct drm_framebuffer *
6624 intel_framebuffer_create_for_mode(struct drm_device *dev,
6625                                   struct drm_display_mode *mode,
6626                                   int depth, int bpp)
6627 {
6628         struct drm_i915_gem_object *obj;
6629         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6630
6631         obj = i915_gem_alloc_object(dev,
6632                                     intel_framebuffer_size_for_mode(mode, bpp));
6633         if (obj == NULL)
6634                 return ERR_PTR(-ENOMEM);
6635
6636         mode_cmd.width = mode->hdisplay;
6637         mode_cmd.height = mode->vdisplay;
6638         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6639                                                                 bpp);
6640         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6641
6642         return intel_framebuffer_create(dev, &mode_cmd, obj);
6643 }
6644
6645 static struct drm_framebuffer *
6646 mode_fits_in_fbdev(struct drm_device *dev,
6647                    struct drm_display_mode *mode)
6648 {
6649         struct drm_i915_private *dev_priv = dev->dev_private;
6650         struct drm_i915_gem_object *obj;
6651         struct drm_framebuffer *fb;
6652
6653         if (dev_priv->fbdev == NULL)
6654                 return NULL;
6655
6656         obj = dev_priv->fbdev->ifb.obj;
6657         if (obj == NULL)
6658                 return NULL;
6659
6660         fb = &dev_priv->fbdev->ifb.base;
6661         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6662                                                                fb->bits_per_pixel))
6663                 return NULL;
6664
6665         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6666                 return NULL;
6667
6668         return fb;
6669 }
6670
6671 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6672                                 struct drm_display_mode *mode,
6673                                 struct intel_load_detect_pipe *old)
6674 {
6675         struct intel_crtc *intel_crtc;
6676         struct intel_encoder *intel_encoder =
6677                 intel_attached_encoder(connector);
6678         struct drm_crtc *possible_crtc;
6679         struct drm_encoder *encoder = &intel_encoder->base;
6680         struct drm_crtc *crtc = NULL;
6681         struct drm_device *dev = encoder->dev;
6682         struct drm_framebuffer *fb;
6683         int i = -1;
6684
6685         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6686                       connector->base.id, drm_get_connector_name(connector),
6687                       encoder->base.id, drm_get_encoder_name(encoder));
6688
6689         /*
6690          * Algorithm gets a little messy:
6691          *
6692          *   - if the connector already has an assigned crtc, use it (but make
6693          *     sure it's on first)
6694          *
6695          *   - try to find the first unused crtc that can drive this connector,
6696          *     and use that if we find one
6697          */
6698
6699         /* See if we already have a CRTC for this connector */
6700         if (encoder->crtc) {
6701                 crtc = encoder->crtc;
6702
6703                 old->dpms_mode = connector->dpms;
6704                 old->load_detect_temp = false;
6705
6706                 /* Make sure the crtc and connector are running */
6707                 if (connector->dpms != DRM_MODE_DPMS_ON)
6708                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6709
6710                 return true;
6711         }
6712
6713         /* Find an unused one (if possible) */
6714         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6715                 i++;
6716                 if (!(encoder->possible_crtcs & (1 << i)))
6717                         continue;
6718                 if (!possible_crtc->enabled) {
6719                         crtc = possible_crtc;
6720                         break;
6721                 }
6722         }
6723
6724         /*
6725          * If we didn't find an unused CRTC, don't use any.
6726          */
6727         if (!crtc) {
6728                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6729                 return false;
6730         }
6731
6732         intel_encoder->new_crtc = to_intel_crtc(crtc);
6733         to_intel_connector(connector)->new_encoder = intel_encoder;
6734
6735         intel_crtc = to_intel_crtc(crtc);
6736         old->dpms_mode = connector->dpms;
6737         old->load_detect_temp = true;
6738         old->release_fb = NULL;
6739
6740         if (!mode)
6741                 mode = &load_detect_mode;
6742
6743         /* We need a framebuffer large enough to accommodate all accesses
6744          * that the plane may generate whilst we perform load detection.
6745          * We can not rely on the fbcon either being present (we get called
6746          * during its initialisation to detect all boot displays, or it may
6747          * not even exist) or that it is large enough to satisfy the
6748          * requested mode.
6749          */
6750         fb = mode_fits_in_fbdev(dev, mode);
6751         if (fb == NULL) {
6752                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6753                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6754                 old->release_fb = fb;
6755         } else
6756                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6757         if (IS_ERR(fb)) {
6758                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6759                 return false;
6760         }
6761
6762         if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6763                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6764                 if (old->release_fb)
6765                         old->release_fb->funcs->destroy(old->release_fb);
6766                 return false;
6767         }
6768
6769         /* let the connector get through one full cycle before testing */
6770         intel_wait_for_vblank(dev, intel_crtc->pipe);
6771         return true;
6772 }
6773
6774 void intel_release_load_detect_pipe(struct drm_connector *connector,
6775                                     struct intel_load_detect_pipe *old)
6776 {
6777         struct intel_encoder *intel_encoder =
6778                 intel_attached_encoder(connector);
6779         struct drm_encoder *encoder = &intel_encoder->base;
6780
6781         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6782                       connector->base.id, drm_get_connector_name(connector),
6783                       encoder->base.id, drm_get_encoder_name(encoder));
6784
6785         if (old->load_detect_temp) {
6786                 struct drm_crtc *crtc = encoder->crtc;
6787
6788                 to_intel_connector(connector)->new_encoder = NULL;
6789                 intel_encoder->new_crtc = NULL;
6790                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6791
6792                 if (old->release_fb)
6793                         old->release_fb->funcs->destroy(old->release_fb);
6794
6795                 return;
6796         }
6797
6798         /* Switch crtc and encoder back off if necessary */
6799         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6800                 connector->funcs->dpms(connector, old->dpms_mode);
6801 }
6802
6803 /* Returns the clock of the currently programmed mode of the given pipe. */
6804 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6805 {
6806         struct drm_i915_private *dev_priv = dev->dev_private;
6807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6808         int pipe = intel_crtc->pipe;
6809         u32 dpll = I915_READ(DPLL(pipe));
6810         u32 fp;
6811         intel_clock_t clock;
6812
6813         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6814                 fp = I915_READ(FP0(pipe));
6815         else
6816                 fp = I915_READ(FP1(pipe));
6817
6818         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6819         if (IS_PINEVIEW(dev)) {
6820                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6821                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6822         } else {
6823                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6824                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6825         }
6826
6827         if (!IS_GEN2(dev)) {
6828                 if (IS_PINEVIEW(dev))
6829                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6830                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6831                 else
6832                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6833                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6834
6835                 switch (dpll & DPLL_MODE_MASK) {
6836                 case DPLLB_MODE_DAC_SERIAL:
6837                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6838                                 5 : 10;
6839                         break;
6840                 case DPLLB_MODE_LVDS:
6841                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6842                                 7 : 14;
6843                         break;
6844                 default:
6845                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6846                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6847                         return 0;
6848                 }
6849
6850                 /* XXX: Handle the 100Mhz refclk */
6851                 intel_clock(dev, 96000, &clock);
6852         } else {
6853                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6854
6855                 if (is_lvds) {
6856                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6857                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6858                         clock.p2 = 14;
6859
6860                         if ((dpll & PLL_REF_INPUT_MASK) ==
6861                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6862                                 /* XXX: might not be 66MHz */
6863                                 intel_clock(dev, 66000, &clock);
6864                         } else
6865                                 intel_clock(dev, 48000, &clock);
6866                 } else {
6867                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6868                                 clock.p1 = 2;
6869                         else {
6870                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6871                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6872                         }
6873                         if (dpll & PLL_P2_DIVIDE_BY_4)
6874                                 clock.p2 = 4;
6875                         else
6876                                 clock.p2 = 2;
6877
6878                         intel_clock(dev, 48000, &clock);
6879                 }
6880         }
6881
6882         /* XXX: It would be nice to validate the clocks, but we can't reuse
6883          * i830PllIsValid() because it relies on the xf86_config connector
6884          * configuration being accurate, which it isn't necessarily.
6885          */
6886
6887         return clock.dot;
6888 }
6889
6890 /** Returns the currently programmed mode of the given pipe. */
6891 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6892                                              struct drm_crtc *crtc)
6893 {
6894         struct drm_i915_private *dev_priv = dev->dev_private;
6895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6896         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6897         struct drm_display_mode *mode;
6898         int htot = I915_READ(HTOTAL(cpu_transcoder));
6899         int hsync = I915_READ(HSYNC(cpu_transcoder));
6900         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6901         int vsync = I915_READ(VSYNC(cpu_transcoder));
6902
6903         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6904         if (!mode)
6905                 return NULL;
6906
6907         mode->clock = intel_crtc_clock_get(dev, crtc);
6908         mode->hdisplay = (htot & 0xffff) + 1;
6909         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6910         mode->hsync_start = (hsync & 0xffff) + 1;
6911         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6912         mode->vdisplay = (vtot & 0xffff) + 1;
6913         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6914         mode->vsync_start = (vsync & 0xffff) + 1;
6915         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6916
6917         drm_mode_set_name(mode);
6918
6919         return mode;
6920 }
6921
6922 static void intel_increase_pllclock(struct drm_crtc *crtc)
6923 {
6924         struct drm_device *dev = crtc->dev;
6925         drm_i915_private_t *dev_priv = dev->dev_private;
6926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6927         int pipe = intel_crtc->pipe;
6928         int dpll_reg = DPLL(pipe);
6929         int dpll;
6930
6931         if (HAS_PCH_SPLIT(dev))
6932                 return;
6933
6934         if (!dev_priv->lvds_downclock_avail)
6935                 return;
6936
6937         dpll = I915_READ(dpll_reg);
6938         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6939                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6940
6941                 assert_panel_unlocked(dev_priv, pipe);
6942
6943                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6944                 I915_WRITE(dpll_reg, dpll);
6945                 intel_wait_for_vblank(dev, pipe);
6946
6947                 dpll = I915_READ(dpll_reg);
6948                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6949                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6950         }
6951 }
6952
6953 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6954 {
6955         struct drm_device *dev = crtc->dev;
6956         drm_i915_private_t *dev_priv = dev->dev_private;
6957         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6958
6959         if (HAS_PCH_SPLIT(dev))
6960                 return;
6961
6962         if (!dev_priv->lvds_downclock_avail)
6963                 return;
6964
6965         /*
6966          * Since this is called by a timer, we should never get here in
6967          * the manual case.
6968          */
6969         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6970                 int pipe = intel_crtc->pipe;
6971                 int dpll_reg = DPLL(pipe);
6972                 int dpll;
6973
6974                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6975
6976                 assert_panel_unlocked(dev_priv, pipe);
6977
6978                 dpll = I915_READ(dpll_reg);
6979                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6980                 I915_WRITE(dpll_reg, dpll);
6981                 intel_wait_for_vblank(dev, pipe);
6982                 dpll = I915_READ(dpll_reg);
6983                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6984                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6985         }
6986
6987 }
6988
6989 void intel_mark_busy(struct drm_device *dev)
6990 {
6991         i915_update_gfx_val(dev->dev_private);
6992 }
6993
6994 void intel_mark_idle(struct drm_device *dev)
6995 {
6996 }
6997
6998 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6999 {
7000         struct drm_device *dev = obj->base.dev;
7001         struct drm_crtc *crtc;
7002
7003         if (!i915_powersave)
7004                 return;
7005
7006         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7007                 if (!crtc->fb)
7008                         continue;
7009
7010                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7011                         intel_increase_pllclock(crtc);
7012         }
7013 }
7014
7015 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
7016 {
7017         struct drm_device *dev = obj->base.dev;
7018         struct drm_crtc *crtc;
7019
7020         if (!i915_powersave)
7021                 return;
7022
7023         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7024                 if (!crtc->fb)
7025                         continue;
7026
7027                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7028                         intel_decrease_pllclock(crtc);
7029         }
7030 }
7031
7032 static void intel_crtc_destroy(struct drm_crtc *crtc)
7033 {
7034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7035         struct drm_device *dev = crtc->dev;
7036         struct intel_unpin_work *work;
7037         unsigned long flags;
7038
7039         spin_lock_irqsave(&dev->event_lock, flags);
7040         work = intel_crtc->unpin_work;
7041         intel_crtc->unpin_work = NULL;
7042         spin_unlock_irqrestore(&dev->event_lock, flags);
7043
7044         if (work) {
7045                 cancel_work_sync(&work->work);
7046                 kfree(work);
7047         }
7048
7049         drm_crtc_cleanup(crtc);
7050
7051         kfree(intel_crtc);
7052 }
7053
7054 static void intel_unpin_work_fn(struct work_struct *__work)
7055 {
7056         struct intel_unpin_work *work =
7057                 container_of(__work, struct intel_unpin_work, work);
7058         struct drm_device *dev = work->crtc->dev;
7059
7060         mutex_lock(&dev->struct_mutex);
7061         intel_unpin_fb_obj(work->old_fb_obj);
7062         drm_gem_object_unreference(&work->pending_flip_obj->base);
7063         drm_gem_object_unreference(&work->old_fb_obj->base);
7064
7065         intel_update_fbc(dev);
7066         mutex_unlock(&dev->struct_mutex);
7067
7068         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7069         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7070
7071         kfree(work);
7072 }
7073
7074 static void do_intel_finish_page_flip(struct drm_device *dev,
7075                                       struct drm_crtc *crtc)
7076 {
7077         drm_i915_private_t *dev_priv = dev->dev_private;
7078         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7079         struct intel_unpin_work *work;
7080         struct drm_i915_gem_object *obj;
7081         unsigned long flags;
7082
7083         /* Ignore early vblank irqs */
7084         if (intel_crtc == NULL)
7085                 return;
7086
7087         spin_lock_irqsave(&dev->event_lock, flags);
7088         work = intel_crtc->unpin_work;
7089
7090         /* Ensure we don't miss a work->pending update ... */
7091         smp_rmb();
7092
7093         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7094                 spin_unlock_irqrestore(&dev->event_lock, flags);
7095                 return;
7096         }
7097
7098         /* and that the unpin work is consistent wrt ->pending. */
7099         smp_rmb();
7100
7101         intel_crtc->unpin_work = NULL;
7102
7103         if (work->event)
7104                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7105
7106         drm_vblank_put(dev, intel_crtc->pipe);
7107
7108         spin_unlock_irqrestore(&dev->event_lock, flags);
7109
7110         obj = work->old_fb_obj;
7111
7112         atomic_clear_mask(1 << intel_crtc->plane,
7113                           &obj->pending_flip.counter);
7114         wake_up(&dev_priv->pending_flip_queue);
7115
7116         queue_work(dev_priv->wq, &work->work);
7117
7118         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7119 }
7120
7121 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7122 {
7123         drm_i915_private_t *dev_priv = dev->dev_private;
7124         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7125
7126         do_intel_finish_page_flip(dev, crtc);
7127 }
7128
7129 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7130 {
7131         drm_i915_private_t *dev_priv = dev->dev_private;
7132         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7133
7134         do_intel_finish_page_flip(dev, crtc);
7135 }
7136
7137 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7138 {
7139         drm_i915_private_t *dev_priv = dev->dev_private;
7140         struct intel_crtc *intel_crtc =
7141                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7142         unsigned long flags;
7143
7144         /* NB: An MMIO update of the plane base pointer will also
7145          * generate a page-flip completion irq, i.e. every modeset
7146          * is also accompanied by a spurious intel_prepare_page_flip().
7147          */
7148         spin_lock_irqsave(&dev->event_lock, flags);
7149         if (intel_crtc->unpin_work)
7150                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7151         spin_unlock_irqrestore(&dev->event_lock, flags);
7152 }
7153
7154 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7155 {
7156         /* Ensure that the work item is consistent when activating it ... */
7157         smp_wmb();
7158         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7159         /* and that it is marked active as soon as the irq could fire. */
7160         smp_wmb();
7161 }
7162
7163 static int intel_gen2_queue_flip(struct drm_device *dev,
7164                                  struct drm_crtc *crtc,
7165                                  struct drm_framebuffer *fb,
7166                                  struct drm_i915_gem_object *obj)
7167 {
7168         struct drm_i915_private *dev_priv = dev->dev_private;
7169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7170         u32 flip_mask;
7171         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7172         int ret;
7173
7174         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7175         if (ret)
7176                 goto err;
7177
7178         ret = intel_ring_begin(ring, 6);
7179         if (ret)
7180                 goto err_unpin;
7181
7182         /* Can't queue multiple flips, so wait for the previous
7183          * one to finish before executing the next.
7184          */
7185         if (intel_crtc->plane)
7186                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7187         else
7188                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7189         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7190         intel_ring_emit(ring, MI_NOOP);
7191         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7192                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7193         intel_ring_emit(ring, fb->pitches[0]);
7194         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7195         intel_ring_emit(ring, 0); /* aux display base address, unused */
7196
7197         intel_mark_page_flip_active(intel_crtc);
7198         intel_ring_advance(ring);
7199         return 0;
7200
7201 err_unpin:
7202         intel_unpin_fb_obj(obj);
7203 err:
7204         return ret;
7205 }
7206
7207 static int intel_gen3_queue_flip(struct drm_device *dev,
7208                                  struct drm_crtc *crtc,
7209                                  struct drm_framebuffer *fb,
7210                                  struct drm_i915_gem_object *obj)
7211 {
7212         struct drm_i915_private *dev_priv = dev->dev_private;
7213         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7214         u32 flip_mask;
7215         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7216         int ret;
7217
7218         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7219         if (ret)
7220                 goto err;
7221
7222         ret = intel_ring_begin(ring, 6);
7223         if (ret)
7224                 goto err_unpin;
7225
7226         if (intel_crtc->plane)
7227                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7228         else
7229                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7230         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7231         intel_ring_emit(ring, MI_NOOP);
7232         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7233                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7234         intel_ring_emit(ring, fb->pitches[0]);
7235         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7236         intel_ring_emit(ring, MI_NOOP);
7237
7238         intel_mark_page_flip_active(intel_crtc);
7239         intel_ring_advance(ring);
7240         return 0;
7241
7242 err_unpin:
7243         intel_unpin_fb_obj(obj);
7244 err:
7245         return ret;
7246 }
7247
7248 static int intel_gen4_queue_flip(struct drm_device *dev,
7249                                  struct drm_crtc *crtc,
7250                                  struct drm_framebuffer *fb,
7251                                  struct drm_i915_gem_object *obj)
7252 {
7253         struct drm_i915_private *dev_priv = dev->dev_private;
7254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7255         uint32_t pf, pipesrc;
7256         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7257         int ret;
7258
7259         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7260         if (ret)
7261                 goto err;
7262
7263         ret = intel_ring_begin(ring, 4);
7264         if (ret)
7265                 goto err_unpin;
7266
7267         /* i965+ uses the linear or tiled offsets from the
7268          * Display Registers (which do not change across a page-flip)
7269          * so we need only reprogram the base address.
7270          */
7271         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7272                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7273         intel_ring_emit(ring, fb->pitches[0]);
7274         intel_ring_emit(ring,
7275                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7276                         obj->tiling_mode);
7277
7278         /* XXX Enabling the panel-fitter across page-flip is so far
7279          * untested on non-native modes, so ignore it for now.
7280          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7281          */
7282         pf = 0;
7283         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7284         intel_ring_emit(ring, pf | pipesrc);
7285
7286         intel_mark_page_flip_active(intel_crtc);
7287         intel_ring_advance(ring);
7288         return 0;
7289
7290 err_unpin:
7291         intel_unpin_fb_obj(obj);
7292 err:
7293         return ret;
7294 }
7295
7296 static int intel_gen6_queue_flip(struct drm_device *dev,
7297                                  struct drm_crtc *crtc,
7298                                  struct drm_framebuffer *fb,
7299                                  struct drm_i915_gem_object *obj)
7300 {
7301         struct drm_i915_private *dev_priv = dev->dev_private;
7302         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7303         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7304         uint32_t pf, pipesrc;
7305         int ret;
7306
7307         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7308         if (ret)
7309                 goto err;
7310
7311         ret = intel_ring_begin(ring, 4);
7312         if (ret)
7313                 goto err_unpin;
7314
7315         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7316                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7317         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7318         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7319
7320         /* Contrary to the suggestions in the documentation,
7321          * "Enable Panel Fitter" does not seem to be required when page
7322          * flipping with a non-native mode, and worse causes a normal
7323          * modeset to fail.
7324          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7325          */
7326         pf = 0;
7327         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7328         intel_ring_emit(ring, pf | pipesrc);
7329
7330         intel_mark_page_flip_active(intel_crtc);
7331         intel_ring_advance(ring);
7332         return 0;
7333
7334 err_unpin:
7335         intel_unpin_fb_obj(obj);
7336 err:
7337         return ret;
7338 }
7339
7340 /*
7341  * On gen7 we currently use the blit ring because (in early silicon at least)
7342  * the render ring doesn't give us interrpts for page flip completion, which
7343  * means clients will hang after the first flip is queued.  Fortunately the
7344  * blit ring generates interrupts properly, so use it instead.
7345  */
7346 static int intel_gen7_queue_flip(struct drm_device *dev,
7347                                  struct drm_crtc *crtc,
7348                                  struct drm_framebuffer *fb,
7349                                  struct drm_i915_gem_object *obj)
7350 {
7351         struct drm_i915_private *dev_priv = dev->dev_private;
7352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7353         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7354         uint32_t plane_bit = 0;
7355         int ret;
7356
7357         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7358         if (ret)
7359                 goto err;
7360
7361         switch(intel_crtc->plane) {
7362         case PLANE_A:
7363                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7364                 break;
7365         case PLANE_B:
7366                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7367                 break;
7368         case PLANE_C:
7369                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7370                 break;
7371         default:
7372                 WARN_ONCE(1, "unknown plane in flip command\n");
7373                 ret = -ENODEV;
7374                 goto err_unpin;
7375         }
7376
7377         ret = intel_ring_begin(ring, 4);
7378         if (ret)
7379                 goto err_unpin;
7380
7381         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7382         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7383         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7384         intel_ring_emit(ring, (MI_NOOP));
7385
7386         intel_mark_page_flip_active(intel_crtc);
7387         intel_ring_advance(ring);
7388         return 0;
7389
7390 err_unpin:
7391         intel_unpin_fb_obj(obj);
7392 err:
7393         return ret;
7394 }
7395
7396 static int intel_default_queue_flip(struct drm_device *dev,
7397                                     struct drm_crtc *crtc,
7398                                     struct drm_framebuffer *fb,
7399                                     struct drm_i915_gem_object *obj)
7400 {
7401         return -ENODEV;
7402 }
7403
7404 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7405                                 struct drm_framebuffer *fb,
7406                                 struct drm_pending_vblank_event *event)
7407 {
7408         struct drm_device *dev = crtc->dev;
7409         struct drm_i915_private *dev_priv = dev->dev_private;
7410         struct intel_framebuffer *intel_fb;
7411         struct drm_i915_gem_object *obj;
7412         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7413         struct intel_unpin_work *work;
7414         unsigned long flags;
7415         int ret;
7416
7417         /* Can't change pixel format via MI display flips. */
7418         if (fb->pixel_format != crtc->fb->pixel_format)
7419                 return -EINVAL;
7420
7421         /*
7422          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7423          * Note that pitch changes could also affect these register.
7424          */
7425         if (INTEL_INFO(dev)->gen > 3 &&
7426             (fb->offsets[0] != crtc->fb->offsets[0] ||
7427              fb->pitches[0] != crtc->fb->pitches[0]))
7428                 return -EINVAL;
7429
7430         work = kzalloc(sizeof *work, GFP_KERNEL);
7431         if (work == NULL)
7432                 return -ENOMEM;
7433
7434         work->event = event;
7435         work->crtc = crtc;
7436         intel_fb = to_intel_framebuffer(crtc->fb);
7437         work->old_fb_obj = intel_fb->obj;
7438         INIT_WORK(&work->work, intel_unpin_work_fn);
7439
7440         ret = drm_vblank_get(dev, intel_crtc->pipe);
7441         if (ret)
7442                 goto free_work;
7443
7444         /* We borrow the event spin lock for protecting unpin_work */
7445         spin_lock_irqsave(&dev->event_lock, flags);
7446         if (intel_crtc->unpin_work) {
7447                 spin_unlock_irqrestore(&dev->event_lock, flags);
7448                 kfree(work);
7449                 drm_vblank_put(dev, intel_crtc->pipe);
7450
7451                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7452                 return -EBUSY;
7453         }
7454         intel_crtc->unpin_work = work;
7455         spin_unlock_irqrestore(&dev->event_lock, flags);
7456
7457         intel_fb = to_intel_framebuffer(fb);
7458         obj = intel_fb->obj;
7459
7460         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7461                 flush_workqueue(dev_priv->wq);
7462
7463         ret = i915_mutex_lock_interruptible(dev);
7464         if (ret)
7465                 goto cleanup;
7466
7467         /* Reference the objects for the scheduled work. */
7468         drm_gem_object_reference(&work->old_fb_obj->base);
7469         drm_gem_object_reference(&obj->base);
7470
7471         crtc->fb = fb;
7472
7473         work->pending_flip_obj = obj;
7474
7475         work->enable_stall_check = true;
7476
7477         /* Block clients from rendering to the new back buffer until
7478          * the flip occurs and the object is no longer visible.
7479          */
7480         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7481         atomic_inc(&intel_crtc->unpin_work_count);
7482
7483         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7484         if (ret)
7485                 goto cleanup_pending;
7486
7487         intel_disable_fbc(dev);
7488         intel_mark_fb_busy(obj);
7489         mutex_unlock(&dev->struct_mutex);
7490
7491         trace_i915_flip_request(intel_crtc->plane, obj);
7492
7493         return 0;
7494
7495 cleanup_pending:
7496         atomic_dec(&intel_crtc->unpin_work_count);
7497         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7498         drm_gem_object_unreference(&work->old_fb_obj->base);
7499         drm_gem_object_unreference(&obj->base);
7500         mutex_unlock(&dev->struct_mutex);
7501
7502 cleanup:
7503         spin_lock_irqsave(&dev->event_lock, flags);
7504         intel_crtc->unpin_work = NULL;
7505         spin_unlock_irqrestore(&dev->event_lock, flags);
7506
7507         drm_vblank_put(dev, intel_crtc->pipe);
7508 free_work:
7509         kfree(work);
7510
7511         return ret;
7512 }
7513
7514 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7515         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7516         .load_lut = intel_crtc_load_lut,
7517         .disable = intel_crtc_noop,
7518 };
7519
7520 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7521 {
7522         struct intel_encoder *other_encoder;
7523         struct drm_crtc *crtc = &encoder->new_crtc->base;
7524
7525         if (WARN_ON(!crtc))
7526                 return false;
7527
7528         list_for_each_entry(other_encoder,
7529                             &crtc->dev->mode_config.encoder_list,
7530                             base.head) {
7531
7532                 if (&other_encoder->new_crtc->base != crtc ||
7533                     encoder == other_encoder)
7534                         continue;
7535                 else
7536                         return true;
7537         }
7538
7539         return false;
7540 }
7541
7542 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7543                                   struct drm_crtc *crtc)
7544 {
7545         struct drm_device *dev;
7546         struct drm_crtc *tmp;
7547         int crtc_mask = 1;
7548
7549         WARN(!crtc, "checking null crtc?\n");
7550
7551         dev = crtc->dev;
7552
7553         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7554                 if (tmp == crtc)
7555                         break;
7556                 crtc_mask <<= 1;
7557         }
7558
7559         if (encoder->possible_crtcs & crtc_mask)
7560                 return true;
7561         return false;
7562 }
7563
7564 /**
7565  * intel_modeset_update_staged_output_state
7566  *
7567  * Updates the staged output configuration state, e.g. after we've read out the
7568  * current hw state.
7569  */
7570 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7571 {
7572         struct intel_encoder *encoder;
7573         struct intel_connector *connector;
7574
7575         list_for_each_entry(connector, &dev->mode_config.connector_list,
7576                             base.head) {
7577                 connector->new_encoder =
7578                         to_intel_encoder(connector->base.encoder);
7579         }
7580
7581         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7582                             base.head) {
7583                 encoder->new_crtc =
7584                         to_intel_crtc(encoder->base.crtc);
7585         }
7586 }
7587
7588 /**
7589  * intel_modeset_commit_output_state
7590  *
7591  * This function copies the stage display pipe configuration to the real one.
7592  */
7593 static void intel_modeset_commit_output_state(struct drm_device *dev)
7594 {
7595         struct intel_encoder *encoder;
7596         struct intel_connector *connector;
7597
7598         list_for_each_entry(connector, &dev->mode_config.connector_list,
7599                             base.head) {
7600                 connector->base.encoder = &connector->new_encoder->base;
7601         }
7602
7603         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7604                             base.head) {
7605                 encoder->base.crtc = &encoder->new_crtc->base;
7606         }
7607 }
7608
7609 static struct drm_display_mode *
7610 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7611                             struct drm_display_mode *mode)
7612 {
7613         struct drm_device *dev = crtc->dev;
7614         struct drm_display_mode *adjusted_mode;
7615         struct drm_encoder_helper_funcs *encoder_funcs;
7616         struct intel_encoder *encoder;
7617
7618         adjusted_mode = drm_mode_duplicate(dev, mode);
7619         if (!adjusted_mode)
7620                 return ERR_PTR(-ENOMEM);
7621
7622         /* Pass our mode to the connectors and the CRTC to give them a chance to
7623          * adjust it according to limitations or connector properties, and also
7624          * a chance to reject the mode entirely.
7625          */
7626         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7627                             base.head) {
7628
7629                 if (&encoder->new_crtc->base != crtc)
7630                         continue;
7631                 encoder_funcs = encoder->base.helper_private;
7632                 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7633                                                 adjusted_mode))) {
7634                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7635                         goto fail;
7636                 }
7637         }
7638
7639         if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7640                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7641                 goto fail;
7642         }
7643         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7644
7645         return adjusted_mode;
7646 fail:
7647         drm_mode_destroy(dev, adjusted_mode);
7648         return ERR_PTR(-EINVAL);
7649 }
7650
7651 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7652  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7653 static void
7654 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7655                              unsigned *prepare_pipes, unsigned *disable_pipes)
7656 {
7657         struct intel_crtc *intel_crtc;
7658         struct drm_device *dev = crtc->dev;
7659         struct intel_encoder *encoder;
7660         struct intel_connector *connector;
7661         struct drm_crtc *tmp_crtc;
7662
7663         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7664
7665         /* Check which crtcs have changed outputs connected to them, these need
7666          * to be part of the prepare_pipes mask. We don't (yet) support global
7667          * modeset across multiple crtcs, so modeset_pipes will only have one
7668          * bit set at most. */
7669         list_for_each_entry(connector, &dev->mode_config.connector_list,
7670                             base.head) {
7671                 if (connector->base.encoder == &connector->new_encoder->base)
7672                         continue;
7673
7674                 if (connector->base.encoder) {
7675                         tmp_crtc = connector->base.encoder->crtc;
7676
7677                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7678                 }
7679
7680                 if (connector->new_encoder)
7681                         *prepare_pipes |=
7682                                 1 << connector->new_encoder->new_crtc->pipe;
7683         }
7684
7685         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7686                             base.head) {
7687                 if (encoder->base.crtc == &encoder->new_crtc->base)
7688                         continue;
7689
7690                 if (encoder->base.crtc) {
7691                         tmp_crtc = encoder->base.crtc;
7692
7693                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7694                 }
7695
7696                 if (encoder->new_crtc)
7697                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7698         }
7699
7700         /* Check for any pipes that will be fully disabled ... */
7701         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7702                             base.head) {
7703                 bool used = false;
7704
7705                 /* Don't try to disable disabled crtcs. */
7706                 if (!intel_crtc->base.enabled)
7707                         continue;
7708
7709                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7710                                     base.head) {
7711                         if (encoder->new_crtc == intel_crtc)
7712                                 used = true;
7713                 }
7714
7715                 if (!used)
7716                         *disable_pipes |= 1 << intel_crtc->pipe;
7717         }
7718
7719
7720         /* set_mode is also used to update properties on life display pipes. */
7721         intel_crtc = to_intel_crtc(crtc);
7722         if (crtc->enabled)
7723                 *prepare_pipes |= 1 << intel_crtc->pipe;
7724
7725         /* We only support modeset on one single crtc, hence we need to do that
7726          * only for the passed in crtc iff we change anything else than just
7727          * disable crtcs.
7728          *
7729          * This is actually not true, to be fully compatible with the old crtc
7730          * helper we automatically disable _any_ output (i.e. doesn't need to be
7731          * connected to the crtc we're modesetting on) if it's disconnected.
7732          * Which is a rather nutty api (since changed the output configuration
7733          * without userspace's explicit request can lead to confusion), but
7734          * alas. Hence we currently need to modeset on all pipes we prepare. */
7735         if (*prepare_pipes)
7736                 *modeset_pipes = *prepare_pipes;
7737
7738         /* ... and mask these out. */
7739         *modeset_pipes &= ~(*disable_pipes);
7740         *prepare_pipes &= ~(*disable_pipes);
7741 }
7742
7743 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7744 {
7745         struct drm_encoder *encoder;
7746         struct drm_device *dev = crtc->dev;
7747
7748         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7749                 if (encoder->crtc == crtc)
7750                         return true;
7751
7752         return false;
7753 }
7754
7755 static void
7756 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7757 {
7758         struct intel_encoder *intel_encoder;
7759         struct intel_crtc *intel_crtc;
7760         struct drm_connector *connector;
7761
7762         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7763                             base.head) {
7764                 if (!intel_encoder->base.crtc)
7765                         continue;
7766
7767                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7768
7769                 if (prepare_pipes & (1 << intel_crtc->pipe))
7770                         intel_encoder->connectors_active = false;
7771         }
7772
7773         intel_modeset_commit_output_state(dev);
7774
7775         /* Update computed state. */
7776         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7777                             base.head) {
7778                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7779         }
7780
7781         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7782                 if (!connector->encoder || !connector->encoder->crtc)
7783                         continue;
7784
7785                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7786
7787                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7788                         struct drm_property *dpms_property =
7789                                 dev->mode_config.dpms_property;
7790
7791                         connector->dpms = DRM_MODE_DPMS_ON;
7792                         drm_object_property_set_value(&connector->base,
7793                                                          dpms_property,
7794                                                          DRM_MODE_DPMS_ON);
7795
7796                         intel_encoder = to_intel_encoder(connector->encoder);
7797                         intel_encoder->connectors_active = true;
7798                 }
7799         }
7800
7801 }
7802
7803 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7804         list_for_each_entry((intel_crtc), \
7805                             &(dev)->mode_config.crtc_list, \
7806                             base.head) \
7807                 if (mask & (1 <<(intel_crtc)->pipe)) \
7808
7809 void
7810 intel_modeset_check_state(struct drm_device *dev)
7811 {
7812         struct intel_crtc *crtc;
7813         struct intel_encoder *encoder;
7814         struct intel_connector *connector;
7815
7816         list_for_each_entry(connector, &dev->mode_config.connector_list,
7817                             base.head) {
7818                 /* This also checks the encoder/connector hw state with the
7819                  * ->get_hw_state callbacks. */
7820                 intel_connector_check_state(connector);
7821
7822                 WARN(&connector->new_encoder->base != connector->base.encoder,
7823                      "connector's staged encoder doesn't match current encoder\n");
7824         }
7825
7826         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7827                             base.head) {
7828                 bool enabled = false;
7829                 bool active = false;
7830                 enum pipe pipe, tracked_pipe;
7831
7832                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7833                               encoder->base.base.id,
7834                               drm_get_encoder_name(&encoder->base));
7835
7836                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7837                      "encoder's stage crtc doesn't match current crtc\n");
7838                 WARN(encoder->connectors_active && !encoder->base.crtc,
7839                      "encoder's active_connectors set, but no crtc\n");
7840
7841                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7842                                     base.head) {
7843                         if (connector->base.encoder != &encoder->base)
7844                                 continue;
7845                         enabled = true;
7846                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7847                                 active = true;
7848                 }
7849                 WARN(!!encoder->base.crtc != enabled,
7850                      "encoder's enabled state mismatch "
7851                      "(expected %i, found %i)\n",
7852                      !!encoder->base.crtc, enabled);
7853                 WARN(active && !encoder->base.crtc,
7854                      "active encoder with no crtc\n");
7855
7856                 WARN(encoder->connectors_active != active,
7857                      "encoder's computed active state doesn't match tracked active state "
7858                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7859
7860                 active = encoder->get_hw_state(encoder, &pipe);
7861                 WARN(active != encoder->connectors_active,
7862                      "encoder's hw state doesn't match sw tracking "
7863                      "(expected %i, found %i)\n",
7864                      encoder->connectors_active, active);
7865
7866                 if (!encoder->base.crtc)
7867                         continue;
7868
7869                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7870                 WARN(active && pipe != tracked_pipe,
7871                      "active encoder's pipe doesn't match"
7872                      "(expected %i, found %i)\n",
7873                      tracked_pipe, pipe);
7874
7875         }
7876
7877         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7878                             base.head) {
7879                 bool enabled = false;
7880                 bool active = false;
7881
7882                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7883                               crtc->base.base.id);
7884
7885                 WARN(crtc->active && !crtc->base.enabled,
7886                      "active crtc, but not enabled in sw tracking\n");
7887
7888                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7889                                     base.head) {
7890                         if (encoder->base.crtc != &crtc->base)
7891                                 continue;
7892                         enabled = true;
7893                         if (encoder->connectors_active)
7894                                 active = true;
7895                 }
7896                 WARN(active != crtc->active,
7897                      "crtc's computed active state doesn't match tracked active state "
7898                      "(expected %i, found %i)\n", active, crtc->active);
7899                 WARN(enabled != crtc->base.enabled,
7900                      "crtc's computed enabled state doesn't match tracked enabled state "
7901                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7902
7903                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7904         }
7905 }
7906
7907 bool intel_set_mode(struct drm_crtc *crtc,
7908                     struct drm_display_mode *mode,
7909                     int x, int y, struct drm_framebuffer *fb)
7910 {
7911         struct drm_device *dev = crtc->dev;
7912         drm_i915_private_t *dev_priv = dev->dev_private;
7913         struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7914         struct intel_crtc *intel_crtc;
7915         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7916         bool ret = true;
7917
7918         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7919                                      &prepare_pipes, &disable_pipes);
7920
7921         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7922                       modeset_pipes, prepare_pipes, disable_pipes);
7923
7924         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7925                 intel_crtc_disable(&intel_crtc->base);
7926
7927         saved_hwmode = crtc->hwmode;
7928         saved_mode = crtc->mode;
7929
7930         /* Hack: Because we don't (yet) support global modeset on multiple
7931          * crtcs, we don't keep track of the new mode for more than one crtc.
7932          * Hence simply check whether any bit is set in modeset_pipes in all the
7933          * pieces of code that are not yet converted to deal with mutliple crtcs
7934          * changing their mode at the same time. */
7935         adjusted_mode = NULL;
7936         if (modeset_pipes) {
7937                 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7938                 if (IS_ERR(adjusted_mode)) {
7939                         return false;
7940                 }
7941         }
7942
7943         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7944                 if (intel_crtc->base.enabled)
7945                         dev_priv->display.crtc_disable(&intel_crtc->base);
7946         }
7947
7948         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7949          * to set it here already despite that we pass it down the callchain.
7950          */
7951         if (modeset_pipes)
7952                 crtc->mode = *mode;
7953
7954         /* Only after disabling all output pipelines that will be changed can we
7955          * update the the output configuration. */
7956         intel_modeset_update_state(dev, prepare_pipes);
7957
7958         if (dev_priv->display.modeset_global_resources)
7959                 dev_priv->display.modeset_global_resources(dev);
7960
7961         /* Set up the DPLL and any encoders state that needs to adjust or depend
7962          * on the DPLL.
7963          */
7964         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7965                 ret = !intel_crtc_mode_set(&intel_crtc->base,
7966                                            mode, adjusted_mode,
7967                                            x, y, fb);
7968                 if (!ret)
7969                     goto done;
7970         }
7971
7972         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7973         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7974                 dev_priv->display.crtc_enable(&intel_crtc->base);
7975
7976         if (modeset_pipes) {
7977                 /* Store real post-adjustment hardware mode. */
7978                 crtc->hwmode = *adjusted_mode;
7979
7980                 /* Calculate and store various constants which
7981                  * are later needed by vblank and swap-completion
7982                  * timestamping. They are derived from true hwmode.
7983                  */
7984                 drm_calc_timestamping_constants(crtc);
7985         }
7986
7987         /* FIXME: add subpixel order */
7988 done:
7989         drm_mode_destroy(dev, adjusted_mode);
7990         if (!ret && crtc->enabled) {
7991                 crtc->hwmode = saved_hwmode;
7992                 crtc->mode = saved_mode;
7993         } else {
7994                 intel_modeset_check_state(dev);
7995         }
7996
7997         return ret;
7998 }
7999
8000 #undef for_each_intel_crtc_masked
8001
8002 static void intel_set_config_free(struct intel_set_config *config)
8003 {
8004         if (!config)
8005                 return;
8006
8007         kfree(config->save_connector_encoders);
8008         kfree(config->save_encoder_crtcs);
8009         kfree(config);
8010 }
8011
8012 static int intel_set_config_save_state(struct drm_device *dev,
8013                                        struct intel_set_config *config)
8014 {
8015         struct drm_encoder *encoder;
8016         struct drm_connector *connector;
8017         int count;
8018
8019         config->save_encoder_crtcs =
8020                 kcalloc(dev->mode_config.num_encoder,
8021                         sizeof(struct drm_crtc *), GFP_KERNEL);
8022         if (!config->save_encoder_crtcs)
8023                 return -ENOMEM;
8024
8025         config->save_connector_encoders =
8026                 kcalloc(dev->mode_config.num_connector,
8027                         sizeof(struct drm_encoder *), GFP_KERNEL);
8028         if (!config->save_connector_encoders)
8029                 return -ENOMEM;
8030
8031         /* Copy data. Note that driver private data is not affected.
8032          * Should anything bad happen only the expected state is
8033          * restored, not the drivers personal bookkeeping.
8034          */
8035         count = 0;
8036         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8037                 config->save_encoder_crtcs[count++] = encoder->crtc;
8038         }
8039
8040         count = 0;
8041         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8042                 config->save_connector_encoders[count++] = connector->encoder;
8043         }
8044
8045         return 0;
8046 }
8047
8048 static void intel_set_config_restore_state(struct drm_device *dev,
8049                                            struct intel_set_config *config)
8050 {
8051         struct intel_encoder *encoder;
8052         struct intel_connector *connector;
8053         int count;
8054
8055         count = 0;
8056         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8057                 encoder->new_crtc =
8058                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8059         }
8060
8061         count = 0;
8062         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8063                 connector->new_encoder =
8064                         to_intel_encoder(config->save_connector_encoders[count++]);
8065         }
8066 }
8067
8068 static void
8069 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8070                                       struct intel_set_config *config)
8071 {
8072
8073         /* We should be able to check here if the fb has the same properties
8074          * and then just flip_or_move it */
8075         if (set->crtc->fb != set->fb) {
8076                 /* If we have no fb then treat it as a full mode set */
8077                 if (set->crtc->fb == NULL) {
8078                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8079                         config->mode_changed = true;
8080                 } else if (set->fb == NULL) {
8081                         config->mode_changed = true;
8082                 } else if (set->fb->depth != set->crtc->fb->depth) {
8083                         config->mode_changed = true;
8084                 } else if (set->fb->bits_per_pixel !=
8085                            set->crtc->fb->bits_per_pixel) {
8086                         config->mode_changed = true;
8087                 } else
8088                         config->fb_changed = true;
8089         }
8090
8091         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8092                 config->fb_changed = true;
8093
8094         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8095                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8096                 drm_mode_debug_printmodeline(&set->crtc->mode);
8097                 drm_mode_debug_printmodeline(set->mode);
8098                 config->mode_changed = true;
8099         }
8100 }
8101
8102 static int
8103 intel_modeset_stage_output_state(struct drm_device *dev,
8104                                  struct drm_mode_set *set,
8105                                  struct intel_set_config *config)
8106 {
8107         struct drm_crtc *new_crtc;
8108         struct intel_connector *connector;
8109         struct intel_encoder *encoder;
8110         int count, ro;
8111
8112         /* The upper layers ensure that we either disabl a crtc or have a list
8113          * of connectors. For paranoia, double-check this. */
8114         WARN_ON(!set->fb && (set->num_connectors != 0));
8115         WARN_ON(set->fb && (set->num_connectors == 0));
8116
8117         count = 0;
8118         list_for_each_entry(connector, &dev->mode_config.connector_list,
8119                             base.head) {
8120                 /* Otherwise traverse passed in connector list and get encoders
8121                  * for them. */
8122                 for (ro = 0; ro < set->num_connectors; ro++) {
8123                         if (set->connectors[ro] == &connector->base) {
8124                                 connector->new_encoder = connector->encoder;
8125                                 break;
8126                         }
8127                 }
8128
8129                 /* If we disable the crtc, disable all its connectors. Also, if
8130                  * the connector is on the changing crtc but not on the new
8131                  * connector list, disable it. */
8132                 if ((!set->fb || ro == set->num_connectors) &&
8133                     connector->base.encoder &&
8134                     connector->base.encoder->crtc == set->crtc) {
8135                         connector->new_encoder = NULL;
8136
8137                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8138                                 connector->base.base.id,
8139                                 drm_get_connector_name(&connector->base));
8140                 }
8141
8142
8143                 if (&connector->new_encoder->base != connector->base.encoder) {
8144                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8145                         config->mode_changed = true;
8146                 }
8147         }
8148         /* connector->new_encoder is now updated for all connectors. */
8149
8150         /* Update crtc of enabled connectors. */
8151         count = 0;
8152         list_for_each_entry(connector, &dev->mode_config.connector_list,
8153                             base.head) {
8154                 if (!connector->new_encoder)
8155                         continue;
8156
8157                 new_crtc = connector->new_encoder->base.crtc;
8158
8159                 for (ro = 0; ro < set->num_connectors; ro++) {
8160                         if (set->connectors[ro] == &connector->base)
8161                                 new_crtc = set->crtc;
8162                 }
8163
8164                 /* Make sure the new CRTC will work with the encoder */
8165                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8166                                            new_crtc)) {
8167                         return -EINVAL;
8168                 }
8169                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8170
8171                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8172                         connector->base.base.id,
8173                         drm_get_connector_name(&connector->base),
8174                         new_crtc->base.id);
8175         }
8176
8177         /* Check for any encoders that needs to be disabled. */
8178         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8179                             base.head) {
8180                 list_for_each_entry(connector,
8181                                     &dev->mode_config.connector_list,
8182                                     base.head) {
8183                         if (connector->new_encoder == encoder) {
8184                                 WARN_ON(!connector->new_encoder->new_crtc);
8185
8186                                 goto next_encoder;
8187                         }
8188                 }
8189                 encoder->new_crtc = NULL;
8190 next_encoder:
8191                 /* Only now check for crtc changes so we don't miss encoders
8192                  * that will be disabled. */
8193                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8194                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8195                         config->mode_changed = true;
8196                 }
8197         }
8198         /* Now we've also updated encoder->new_crtc for all encoders. */
8199
8200         return 0;
8201 }
8202
8203 static int intel_crtc_set_config(struct drm_mode_set *set)
8204 {
8205         struct drm_device *dev;
8206         struct drm_mode_set save_set;
8207         struct intel_set_config *config;
8208         int ret;
8209
8210         BUG_ON(!set);
8211         BUG_ON(!set->crtc);
8212         BUG_ON(!set->crtc->helper_private);
8213
8214         if (!set->mode)
8215                 set->fb = NULL;
8216
8217         /* The fb helper likes to play gross jokes with ->mode_set_config.
8218          * Unfortunately the crtc helper doesn't do much at all for this case,
8219          * so we have to cope with this madness until the fb helper is fixed up. */
8220         if (set->fb && set->num_connectors == 0)
8221                 return 0;
8222
8223         if (set->fb) {
8224                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8225                                 set->crtc->base.id, set->fb->base.id,
8226                                 (int)set->num_connectors, set->x, set->y);
8227         } else {
8228                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8229         }
8230
8231         dev = set->crtc->dev;
8232
8233         ret = -ENOMEM;
8234         config = kzalloc(sizeof(*config), GFP_KERNEL);
8235         if (!config)
8236                 goto out_config;
8237
8238         ret = intel_set_config_save_state(dev, config);
8239         if (ret)
8240                 goto out_config;
8241
8242         save_set.crtc = set->crtc;
8243         save_set.mode = &set->crtc->mode;
8244         save_set.x = set->crtc->x;
8245         save_set.y = set->crtc->y;
8246         save_set.fb = set->crtc->fb;
8247
8248         /* Compute whether we need a full modeset, only an fb base update or no
8249          * change at all. In the future we might also check whether only the
8250          * mode changed, e.g. for LVDS where we only change the panel fitter in
8251          * such cases. */
8252         intel_set_config_compute_mode_changes(set, config);
8253
8254         ret = intel_modeset_stage_output_state(dev, set, config);
8255         if (ret)
8256                 goto fail;
8257
8258         if (config->mode_changed) {
8259                 if (set->mode) {
8260                         DRM_DEBUG_KMS("attempting to set mode from"
8261                                         " userspace\n");
8262                         drm_mode_debug_printmodeline(set->mode);
8263                 }
8264
8265                 if (!intel_set_mode(set->crtc, set->mode,
8266                                     set->x, set->y, set->fb)) {
8267                         DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8268                                   set->crtc->base.id);
8269                         ret = -EINVAL;
8270                         goto fail;
8271                 }
8272         } else if (config->fb_changed) {
8273                 ret = intel_pipe_set_base(set->crtc,
8274                                           set->x, set->y, set->fb);
8275         }
8276
8277         intel_set_config_free(config);
8278
8279         return 0;
8280
8281 fail:
8282         intel_set_config_restore_state(dev, config);
8283
8284         /* Try to restore the config */
8285         if (config->mode_changed &&
8286             !intel_set_mode(save_set.crtc, save_set.mode,
8287                             save_set.x, save_set.y, save_set.fb))
8288                 DRM_ERROR("failed to restore config after modeset failure\n");
8289
8290 out_config:
8291         intel_set_config_free(config);
8292         return ret;
8293 }
8294
8295 static const struct drm_crtc_funcs intel_crtc_funcs = {
8296         .cursor_set = intel_crtc_cursor_set,
8297         .cursor_move = intel_crtc_cursor_move,
8298         .gamma_set = intel_crtc_gamma_set,
8299         .set_config = intel_crtc_set_config,
8300         .destroy = intel_crtc_destroy,
8301         .page_flip = intel_crtc_page_flip,
8302 };
8303
8304 static void intel_cpu_pll_init(struct drm_device *dev)
8305 {
8306         if (IS_HASWELL(dev))
8307                 intel_ddi_pll_init(dev);
8308 }
8309
8310 static void intel_pch_pll_init(struct drm_device *dev)
8311 {
8312         drm_i915_private_t *dev_priv = dev->dev_private;
8313         int i;
8314
8315         if (dev_priv->num_pch_pll == 0) {
8316                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8317                 return;
8318         }
8319
8320         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8321                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8322                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8323                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8324         }
8325 }
8326
8327 static void intel_crtc_init(struct drm_device *dev, int pipe)
8328 {
8329         drm_i915_private_t *dev_priv = dev->dev_private;
8330         struct intel_crtc *intel_crtc;
8331         int i;
8332
8333         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8334         if (intel_crtc == NULL)
8335                 return;
8336
8337         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8338
8339         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8340         for (i = 0; i < 256; i++) {
8341                 intel_crtc->lut_r[i] = i;
8342                 intel_crtc->lut_g[i] = i;
8343                 intel_crtc->lut_b[i] = i;
8344         }
8345
8346         /* Swap pipes & planes for FBC on pre-965 */
8347         intel_crtc->pipe = pipe;
8348         intel_crtc->plane = pipe;
8349         intel_crtc->cpu_transcoder = pipe;
8350         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8351                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8352                 intel_crtc->plane = !pipe;
8353         }
8354
8355         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8356                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8357         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8358         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8359
8360         intel_crtc->bpp = 24; /* default for pre-Ironlake */
8361
8362         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8363 }
8364
8365 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8366                                 struct drm_file *file)
8367 {
8368         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8369         struct drm_mode_object *drmmode_obj;
8370         struct intel_crtc *crtc;
8371
8372         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8373                 return -ENODEV;
8374
8375         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8376                         DRM_MODE_OBJECT_CRTC);
8377
8378         if (!drmmode_obj) {
8379                 DRM_ERROR("no such CRTC id\n");
8380                 return -EINVAL;
8381         }
8382
8383         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8384         pipe_from_crtc_id->pipe = crtc->pipe;
8385
8386         return 0;
8387 }
8388
8389 static int intel_encoder_clones(struct intel_encoder *encoder)
8390 {
8391         struct drm_device *dev = encoder->base.dev;
8392         struct intel_encoder *source_encoder;
8393         int index_mask = 0;
8394         int entry = 0;
8395
8396         list_for_each_entry(source_encoder,
8397                             &dev->mode_config.encoder_list, base.head) {
8398
8399                 if (encoder == source_encoder)
8400                         index_mask |= (1 << entry);
8401
8402                 /* Intel hw has only one MUX where enocoders could be cloned. */
8403                 if (encoder->cloneable && source_encoder->cloneable)
8404                         index_mask |= (1 << entry);
8405
8406                 entry++;
8407         }
8408
8409         return index_mask;
8410 }
8411
8412 static bool has_edp_a(struct drm_device *dev)
8413 {
8414         struct drm_i915_private *dev_priv = dev->dev_private;
8415
8416         if (!IS_MOBILE(dev))
8417                 return false;
8418
8419         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8420                 return false;
8421
8422         if (IS_GEN5(dev) &&
8423             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8424                 return false;
8425
8426         return true;
8427 }
8428
8429 static void intel_setup_outputs(struct drm_device *dev)
8430 {
8431         struct drm_i915_private *dev_priv = dev->dev_private;
8432         struct intel_encoder *encoder;
8433         bool dpd_is_edp = false;
8434         bool has_lvds;
8435
8436         has_lvds = intel_lvds_init(dev);
8437         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8438                 /* disable the panel fitter on everything but LVDS */
8439                 I915_WRITE(PFIT_CONTROL, 0);
8440         }
8441
8442         if (!(IS_HASWELL(dev) &&
8443               (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8444                 intel_crt_init(dev);
8445
8446         if (IS_HASWELL(dev)) {
8447                 int found;
8448
8449                 /* Haswell uses DDI functions to detect digital outputs */
8450                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8451                 /* DDI A only supports eDP */
8452                 if (found)
8453                         intel_ddi_init(dev, PORT_A);
8454
8455                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8456                  * register */
8457                 found = I915_READ(SFUSE_STRAP);
8458
8459                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8460                         intel_ddi_init(dev, PORT_B);
8461                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8462                         intel_ddi_init(dev, PORT_C);
8463                 if (found & SFUSE_STRAP_DDID_DETECTED)
8464                         intel_ddi_init(dev, PORT_D);
8465         } else if (HAS_PCH_SPLIT(dev)) {
8466                 int found;
8467                 dpd_is_edp = intel_dpd_is_edp(dev);
8468
8469                 if (has_edp_a(dev))
8470                         intel_dp_init(dev, DP_A, PORT_A);
8471
8472                 if (I915_READ(HDMIB) & PORT_DETECTED) {
8473                         /* PCH SDVOB multiplex with HDMIB */
8474                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8475                         if (!found)
8476                                 intel_hdmi_init(dev, HDMIB, PORT_B);
8477                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8478                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8479                 }
8480
8481                 if (I915_READ(HDMIC) & PORT_DETECTED)
8482                         intel_hdmi_init(dev, HDMIC, PORT_C);
8483
8484                 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8485                         intel_hdmi_init(dev, HDMID, PORT_D);
8486
8487                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8488                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8489
8490                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8491                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8492         } else if (IS_VALLEYVIEW(dev)) {
8493                 int found;
8494
8495                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8496                 if (I915_READ(DP_C) & DP_DETECTED)
8497                         intel_dp_init(dev, DP_C, PORT_C);
8498
8499                 if (I915_READ(SDVOB) & PORT_DETECTED) {
8500                         /* SDVOB multiplex with HDMIB */
8501                         found = intel_sdvo_init(dev, SDVOB, true);
8502                         if (!found)
8503                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8504                         if (!found && (I915_READ(DP_B) & DP_DETECTED))
8505                                 intel_dp_init(dev, DP_B, PORT_B);
8506                 }
8507
8508                 if (I915_READ(SDVOC) & PORT_DETECTED)
8509                         intel_hdmi_init(dev, SDVOC, PORT_C);
8510
8511         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8512                 bool found = false;
8513
8514                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8515                         DRM_DEBUG_KMS("probing SDVOB\n");
8516                         found = intel_sdvo_init(dev, SDVOB, true);
8517                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8518                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8519                                 intel_hdmi_init(dev, SDVOB, PORT_B);
8520                         }
8521
8522                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8523                                 DRM_DEBUG_KMS("probing DP_B\n");
8524                                 intel_dp_init(dev, DP_B, PORT_B);
8525                         }
8526                 }
8527
8528                 /* Before G4X SDVOC doesn't have its own detect register */
8529
8530                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8531                         DRM_DEBUG_KMS("probing SDVOC\n");
8532                         found = intel_sdvo_init(dev, SDVOC, false);
8533                 }
8534
8535                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8536
8537                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8538                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8539                                 intel_hdmi_init(dev, SDVOC, PORT_C);
8540                         }
8541                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8542                                 DRM_DEBUG_KMS("probing DP_C\n");
8543                                 intel_dp_init(dev, DP_C, PORT_C);
8544                         }
8545                 }
8546
8547                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8548                     (I915_READ(DP_D) & DP_DETECTED)) {
8549                         DRM_DEBUG_KMS("probing DP_D\n");
8550                         intel_dp_init(dev, DP_D, PORT_D);
8551                 }
8552         } else if (IS_GEN2(dev))
8553                 intel_dvo_init(dev);
8554
8555         if (SUPPORTS_TV(dev))
8556                 intel_tv_init(dev);
8557
8558         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8559                 encoder->base.possible_crtcs = encoder->crtc_mask;
8560                 encoder->base.possible_clones =
8561                         intel_encoder_clones(encoder);
8562         }
8563
8564         intel_init_pch_refclk(dev);
8565
8566         drm_helper_move_panel_connectors_to_head(dev);
8567 }
8568
8569 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8570 {
8571         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8572
8573         drm_framebuffer_cleanup(fb);
8574         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8575
8576         kfree(intel_fb);
8577 }
8578
8579 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8580                                                 struct drm_file *file,
8581                                                 unsigned int *handle)
8582 {
8583         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8584         struct drm_i915_gem_object *obj = intel_fb->obj;
8585
8586         return drm_gem_handle_create(file, &obj->base, handle);
8587 }
8588
8589 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8590         .destroy = intel_user_framebuffer_destroy,
8591         .create_handle = intel_user_framebuffer_create_handle,
8592 };
8593
8594 int intel_framebuffer_init(struct drm_device *dev,
8595                            struct intel_framebuffer *intel_fb,
8596                            struct drm_mode_fb_cmd2 *mode_cmd,
8597                            struct drm_i915_gem_object *obj)
8598 {
8599         int ret;
8600
8601         if (obj->tiling_mode == I915_TILING_Y)
8602                 return -EINVAL;
8603
8604         if (mode_cmd->pitches[0] & 63)
8605                 return -EINVAL;
8606
8607         /* FIXME <= Gen4 stride limits are bit unclear */
8608         if (mode_cmd->pitches[0] > 32768)
8609                 return -EINVAL;
8610
8611         if (obj->tiling_mode != I915_TILING_NONE &&
8612             mode_cmd->pitches[0] != obj->stride)
8613                 return -EINVAL;
8614
8615         /* Reject formats not supported by any plane early. */
8616         switch (mode_cmd->pixel_format) {
8617         case DRM_FORMAT_C8:
8618         case DRM_FORMAT_RGB565:
8619         case DRM_FORMAT_XRGB8888:
8620         case DRM_FORMAT_ARGB8888:
8621                 break;
8622         case DRM_FORMAT_XRGB1555:
8623         case DRM_FORMAT_ARGB1555:
8624                 if (INTEL_INFO(dev)->gen > 3)
8625                         return -EINVAL;
8626                 break;
8627         case DRM_FORMAT_XBGR8888:
8628         case DRM_FORMAT_ABGR8888:
8629         case DRM_FORMAT_XRGB2101010:
8630         case DRM_FORMAT_ARGB2101010:
8631         case DRM_FORMAT_XBGR2101010:
8632         case DRM_FORMAT_ABGR2101010:
8633                 if (INTEL_INFO(dev)->gen < 4)
8634                         return -EINVAL;
8635                 break;
8636         case DRM_FORMAT_YUYV:
8637         case DRM_FORMAT_UYVY:
8638         case DRM_FORMAT_YVYU:
8639         case DRM_FORMAT_VYUY:
8640                 if (INTEL_INFO(dev)->gen < 6)
8641                         return -EINVAL;
8642                 break;
8643         default:
8644                 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8645                 return -EINVAL;
8646         }
8647
8648         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8649         if (mode_cmd->offsets[0] != 0)
8650                 return -EINVAL;
8651
8652         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8653         if (ret) {
8654                 DRM_ERROR("framebuffer init failed %d\n", ret);
8655                 return ret;
8656         }
8657
8658         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8659         intel_fb->obj = obj;
8660         return 0;
8661 }
8662
8663 static struct drm_framebuffer *
8664 intel_user_framebuffer_create(struct drm_device *dev,
8665                               struct drm_file *filp,
8666                               struct drm_mode_fb_cmd2 *mode_cmd)
8667 {
8668         struct drm_i915_gem_object *obj;
8669
8670         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8671                                                 mode_cmd->handles[0]));
8672         if (&obj->base == NULL)
8673                 return ERR_PTR(-ENOENT);
8674
8675         return intel_framebuffer_create(dev, mode_cmd, obj);
8676 }
8677
8678 static const struct drm_mode_config_funcs intel_mode_funcs = {
8679         .fb_create = intel_user_framebuffer_create,
8680         .output_poll_changed = intel_fb_output_poll_changed,
8681 };
8682
8683 /* Set up chip specific display functions */
8684 static void intel_init_display(struct drm_device *dev)
8685 {
8686         struct drm_i915_private *dev_priv = dev->dev_private;
8687
8688         /* We always want a DPMS function */
8689         if (IS_HASWELL(dev)) {
8690                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8691                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8692                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8693                 dev_priv->display.off = haswell_crtc_off;
8694                 dev_priv->display.update_plane = ironlake_update_plane;
8695         } else if (HAS_PCH_SPLIT(dev)) {
8696                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8697                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8698                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8699                 dev_priv->display.off = ironlake_crtc_off;
8700                 dev_priv->display.update_plane = ironlake_update_plane;
8701         } else {
8702                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8703                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8704                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8705                 dev_priv->display.off = i9xx_crtc_off;
8706                 dev_priv->display.update_plane = i9xx_update_plane;
8707         }
8708
8709         /* Returns the core display clock speed */
8710         if (IS_VALLEYVIEW(dev))
8711                 dev_priv->display.get_display_clock_speed =
8712                         valleyview_get_display_clock_speed;
8713         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8714                 dev_priv->display.get_display_clock_speed =
8715                         i945_get_display_clock_speed;
8716         else if (IS_I915G(dev))
8717                 dev_priv->display.get_display_clock_speed =
8718                         i915_get_display_clock_speed;
8719         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8720                 dev_priv->display.get_display_clock_speed =
8721                         i9xx_misc_get_display_clock_speed;
8722         else if (IS_I915GM(dev))
8723                 dev_priv->display.get_display_clock_speed =
8724                         i915gm_get_display_clock_speed;
8725         else if (IS_I865G(dev))
8726                 dev_priv->display.get_display_clock_speed =
8727                         i865_get_display_clock_speed;
8728         else if (IS_I85X(dev))
8729                 dev_priv->display.get_display_clock_speed =
8730                         i855_get_display_clock_speed;
8731         else /* 852, 830 */
8732                 dev_priv->display.get_display_clock_speed =
8733                         i830_get_display_clock_speed;
8734
8735         if (HAS_PCH_SPLIT(dev)) {
8736                 if (IS_GEN5(dev)) {
8737                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8738                         dev_priv->display.write_eld = ironlake_write_eld;
8739                 } else if (IS_GEN6(dev)) {
8740                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8741                         dev_priv->display.write_eld = ironlake_write_eld;
8742                 } else if (IS_IVYBRIDGE(dev)) {
8743                         /* FIXME: detect B0+ stepping and use auto training */
8744                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8745                         dev_priv->display.write_eld = ironlake_write_eld;
8746                         dev_priv->display.modeset_global_resources =
8747                                 ivb_modeset_global_resources;
8748                 } else if (IS_HASWELL(dev)) {
8749                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8750                         dev_priv->display.write_eld = haswell_write_eld;
8751                 } else
8752                         dev_priv->display.update_wm = NULL;
8753         } else if (IS_G4X(dev)) {
8754                 dev_priv->display.write_eld = g4x_write_eld;
8755         }
8756
8757         /* Default just returns -ENODEV to indicate unsupported */
8758         dev_priv->display.queue_flip = intel_default_queue_flip;
8759
8760         switch (INTEL_INFO(dev)->gen) {
8761         case 2:
8762                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8763                 break;
8764
8765         case 3:
8766                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8767                 break;
8768
8769         case 4:
8770         case 5:
8771                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8772                 break;
8773
8774         case 6:
8775                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8776                 break;
8777         case 7:
8778                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8779                 break;
8780         }
8781 }
8782
8783 /*
8784  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8785  * resume, or other times.  This quirk makes sure that's the case for
8786  * affected systems.
8787  */
8788 static void quirk_pipea_force(struct drm_device *dev)
8789 {
8790         struct drm_i915_private *dev_priv = dev->dev_private;
8791
8792         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8793         DRM_INFO("applying pipe a force quirk\n");
8794 }
8795
8796 /*
8797  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8798  */
8799 static void quirk_ssc_force_disable(struct drm_device *dev)
8800 {
8801         struct drm_i915_private *dev_priv = dev->dev_private;
8802         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8803         DRM_INFO("applying lvds SSC disable quirk\n");
8804 }
8805
8806 /*
8807  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8808  * brightness value
8809  */
8810 static void quirk_invert_brightness(struct drm_device *dev)
8811 {
8812         struct drm_i915_private *dev_priv = dev->dev_private;
8813         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8814         DRM_INFO("applying inverted panel brightness quirk\n");
8815 }
8816
8817 struct intel_quirk {
8818         int device;
8819         int subsystem_vendor;
8820         int subsystem_device;
8821         void (*hook)(struct drm_device *dev);
8822 };
8823
8824 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8825 struct intel_dmi_quirk {
8826         void (*hook)(struct drm_device *dev);
8827         const struct dmi_system_id (*dmi_id_list)[];
8828 };
8829
8830 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8831 {
8832         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8833         return 1;
8834 }
8835
8836 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8837         {
8838                 .dmi_id_list = &(const struct dmi_system_id[]) {
8839                         {
8840                                 .callback = intel_dmi_reverse_brightness,
8841                                 .ident = "NCR Corporation",
8842                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8843                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8844                                 },
8845                         },
8846                         { }  /* terminating entry */
8847                 },
8848                 .hook = quirk_invert_brightness,
8849         },
8850 };
8851
8852 static struct intel_quirk intel_quirks[] = {
8853         /* HP Mini needs pipe A force quirk (LP: #322104) */
8854         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8855
8856         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8857         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8858
8859         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8860         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8861
8862         /* 830/845 need to leave pipe A & dpll A up */
8863         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8864         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8865
8866         /* Lenovo U160 cannot use SSC on LVDS */
8867         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8868
8869         /* Sony Vaio Y cannot use SSC on LVDS */
8870         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8871
8872         /* Acer Aspire 5734Z must invert backlight brightness */
8873         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8874 };
8875
8876 static void intel_init_quirks(struct drm_device *dev)
8877 {
8878         struct pci_dev *d = dev->pdev;
8879         int i;
8880
8881         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8882                 struct intel_quirk *q = &intel_quirks[i];
8883
8884                 if (d->device == q->device &&
8885                     (d->subsystem_vendor == q->subsystem_vendor ||
8886                      q->subsystem_vendor == PCI_ANY_ID) &&
8887                     (d->subsystem_device == q->subsystem_device ||
8888                      q->subsystem_device == PCI_ANY_ID))
8889                         q->hook(dev);
8890         }
8891         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8892                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8893                         intel_dmi_quirks[i].hook(dev);
8894         }
8895 }
8896
8897 /* Disable the VGA plane that we never use */
8898 static void i915_disable_vga(struct drm_device *dev)
8899 {
8900         struct drm_i915_private *dev_priv = dev->dev_private;
8901         u8 sr1;
8902         u32 vga_reg;
8903
8904         if (HAS_PCH_SPLIT(dev))
8905                 vga_reg = CPU_VGACNTRL;
8906         else
8907                 vga_reg = VGACNTRL;
8908
8909         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8910         outb(SR01, VGA_SR_INDEX);
8911         sr1 = inb(VGA_SR_DATA);
8912         outb(sr1 | 1<<5, VGA_SR_DATA);
8913         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8914         udelay(300);
8915
8916         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8917         POSTING_READ(vga_reg);
8918 }
8919
8920 void intel_modeset_init_hw(struct drm_device *dev)
8921 {
8922         /* We attempt to init the necessary power wells early in the initialization
8923          * time, so the subsystems that expect power to be enabled can work.
8924          */
8925         intel_init_power_wells(dev);
8926
8927         intel_prepare_ddi(dev);
8928
8929         intel_init_clock_gating(dev);
8930
8931         mutex_lock(&dev->struct_mutex);
8932         intel_enable_gt_powersave(dev);
8933         mutex_unlock(&dev->struct_mutex);
8934 }
8935
8936 void intel_modeset_init(struct drm_device *dev)
8937 {
8938         struct drm_i915_private *dev_priv = dev->dev_private;
8939         int i, ret;
8940
8941         drm_mode_config_init(dev);
8942
8943         dev->mode_config.min_width = 0;
8944         dev->mode_config.min_height = 0;
8945
8946         dev->mode_config.preferred_depth = 24;
8947         dev->mode_config.prefer_shadow = 1;
8948
8949         dev->mode_config.funcs = &intel_mode_funcs;
8950
8951         intel_init_quirks(dev);
8952
8953         intel_init_pm(dev);
8954
8955         intel_init_display(dev);
8956
8957         if (IS_GEN2(dev)) {
8958                 dev->mode_config.max_width = 2048;
8959                 dev->mode_config.max_height = 2048;
8960         } else if (IS_GEN3(dev)) {
8961                 dev->mode_config.max_width = 4096;
8962                 dev->mode_config.max_height = 4096;
8963         } else {
8964                 dev->mode_config.max_width = 8192;
8965                 dev->mode_config.max_height = 8192;
8966         }
8967         dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8968
8969         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8970                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8971
8972         for (i = 0; i < dev_priv->num_pipe; i++) {
8973                 intel_crtc_init(dev, i);
8974                 ret = intel_plane_init(dev, i);
8975                 if (ret)
8976                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8977         }
8978
8979         intel_cpu_pll_init(dev);
8980         intel_pch_pll_init(dev);
8981
8982         /* Just disable it once at startup */
8983         i915_disable_vga(dev);
8984         intel_setup_outputs(dev);
8985 }
8986
8987 static void
8988 intel_connector_break_all_links(struct intel_connector *connector)
8989 {
8990         connector->base.dpms = DRM_MODE_DPMS_OFF;
8991         connector->base.encoder = NULL;
8992         connector->encoder->connectors_active = false;
8993         connector->encoder->base.crtc = NULL;
8994 }
8995
8996 static void intel_enable_pipe_a(struct drm_device *dev)
8997 {
8998         struct intel_connector *connector;
8999         struct drm_connector *crt = NULL;
9000         struct intel_load_detect_pipe load_detect_temp;
9001
9002         /* We can't just switch on the pipe A, we need to set things up with a
9003          * proper mode and output configuration. As a gross hack, enable pipe A
9004          * by enabling the load detect pipe once. */
9005         list_for_each_entry(connector,
9006                             &dev->mode_config.connector_list,
9007                             base.head) {
9008                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9009                         crt = &connector->base;
9010                         break;
9011                 }
9012         }
9013
9014         if (!crt)
9015                 return;
9016
9017         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9018                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9019
9020
9021 }
9022
9023 static bool
9024 intel_check_plane_mapping(struct intel_crtc *crtc)
9025 {
9026         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
9027         u32 reg, val;
9028
9029         if (dev_priv->num_pipe == 1)
9030                 return true;
9031
9032         reg = DSPCNTR(!crtc->plane);
9033         val = I915_READ(reg);
9034
9035         if ((val & DISPLAY_PLANE_ENABLE) &&
9036             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9037                 return false;
9038
9039         return true;
9040 }
9041
9042 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9043 {
9044         struct drm_device *dev = crtc->base.dev;
9045         struct drm_i915_private *dev_priv = dev->dev_private;
9046         u32 reg;
9047
9048         /* Clear any frame start delays used for debugging left by the BIOS */
9049         reg = PIPECONF(crtc->cpu_transcoder);
9050         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9051
9052         /* We need to sanitize the plane -> pipe mapping first because this will
9053          * disable the crtc (and hence change the state) if it is wrong. Note
9054          * that gen4+ has a fixed plane -> pipe mapping.  */
9055         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9056                 struct intel_connector *connector;
9057                 bool plane;
9058
9059                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9060                               crtc->base.base.id);
9061
9062                 /* Pipe has the wrong plane attached and the plane is active.
9063                  * Temporarily change the plane mapping and disable everything
9064                  * ...  */
9065                 plane = crtc->plane;
9066                 crtc->plane = !plane;
9067                 dev_priv->display.crtc_disable(&crtc->base);
9068                 crtc->plane = plane;
9069
9070                 /* ... and break all links. */
9071                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9072                                     base.head) {
9073                         if (connector->encoder->base.crtc != &crtc->base)
9074                                 continue;
9075
9076                         intel_connector_break_all_links(connector);
9077                 }
9078
9079                 WARN_ON(crtc->active);
9080                 crtc->base.enabled = false;
9081         }
9082
9083         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9084             crtc->pipe == PIPE_A && !crtc->active) {
9085                 /* BIOS forgot to enable pipe A, this mostly happens after
9086                  * resume. Force-enable the pipe to fix this, the update_dpms
9087                  * call below we restore the pipe to the right state, but leave
9088                  * the required bits on. */
9089                 intel_enable_pipe_a(dev);
9090         }
9091
9092         /* Adjust the state of the output pipe according to whether we
9093          * have active connectors/encoders. */
9094         intel_crtc_update_dpms(&crtc->base);
9095
9096         if (crtc->active != crtc->base.enabled) {
9097                 struct intel_encoder *encoder;
9098
9099                 /* This can happen either due to bugs in the get_hw_state
9100                  * functions or because the pipe is force-enabled due to the
9101                  * pipe A quirk. */
9102                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9103                               crtc->base.base.id,
9104                               crtc->base.enabled ? "enabled" : "disabled",
9105                               crtc->active ? "enabled" : "disabled");
9106
9107                 crtc->base.enabled = crtc->active;
9108
9109                 /* Because we only establish the connector -> encoder ->
9110                  * crtc links if something is active, this means the
9111                  * crtc is now deactivated. Break the links. connector
9112                  * -> encoder links are only establish when things are
9113                  *  actually up, hence no need to break them. */
9114                 WARN_ON(crtc->active);
9115
9116                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9117                         WARN_ON(encoder->connectors_active);
9118                         encoder->base.crtc = NULL;
9119                 }
9120         }
9121 }
9122
9123 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9124 {
9125         struct intel_connector *connector;
9126         struct drm_device *dev = encoder->base.dev;
9127
9128         /* We need to check both for a crtc link (meaning that the
9129          * encoder is active and trying to read from a pipe) and the
9130          * pipe itself being active. */
9131         bool has_active_crtc = encoder->base.crtc &&
9132                 to_intel_crtc(encoder->base.crtc)->active;
9133
9134         if (encoder->connectors_active && !has_active_crtc) {
9135                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9136                               encoder->base.base.id,
9137                               drm_get_encoder_name(&encoder->base));
9138
9139                 /* Connector is active, but has no active pipe. This is
9140                  * fallout from our resume register restoring. Disable
9141                  * the encoder manually again. */
9142                 if (encoder->base.crtc) {
9143                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9144                                       encoder->base.base.id,
9145                                       drm_get_encoder_name(&encoder->base));
9146                         encoder->disable(encoder);
9147                 }
9148
9149                 /* Inconsistent output/port/pipe state happens presumably due to
9150                  * a bug in one of the get_hw_state functions. Or someplace else
9151                  * in our code, like the register restore mess on resume. Clamp
9152                  * things to off as a safer default. */
9153                 list_for_each_entry(connector,
9154                                     &dev->mode_config.connector_list,
9155                                     base.head) {
9156                         if (connector->encoder != encoder)
9157                                 continue;
9158
9159                         intel_connector_break_all_links(connector);
9160                 }
9161         }
9162         /* Enabled encoders without active connectors will be fixed in
9163          * the crtc fixup. */
9164 }
9165
9166 static void i915_redisable_vga(struct drm_device *dev)
9167 {
9168         struct drm_i915_private *dev_priv = dev->dev_private;
9169         u32 vga_reg;
9170
9171         if (HAS_PCH_SPLIT(dev))
9172                 vga_reg = CPU_VGACNTRL;
9173         else
9174                 vga_reg = VGACNTRL;
9175
9176         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9177                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9178                 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9179                 POSTING_READ(vga_reg);
9180         }
9181 }
9182
9183 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9184  * and i915 state tracking structures. */
9185 void intel_modeset_setup_hw_state(struct drm_device *dev,
9186                                   bool force_restore)
9187 {
9188         struct drm_i915_private *dev_priv = dev->dev_private;
9189         enum pipe pipe;
9190         u32 tmp;
9191         struct intel_crtc *crtc;
9192         struct intel_encoder *encoder;
9193         struct intel_connector *connector;
9194
9195         if (IS_HASWELL(dev)) {
9196                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9197
9198                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9199                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9200                         case TRANS_DDI_EDP_INPUT_A_ON:
9201                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9202                                 pipe = PIPE_A;
9203                                 break;
9204                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9205                                 pipe = PIPE_B;
9206                                 break;
9207                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9208                                 pipe = PIPE_C;
9209                                 break;
9210                         }
9211
9212                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9213                         crtc->cpu_transcoder = TRANSCODER_EDP;
9214
9215                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9216                                       pipe_name(pipe));
9217                 }
9218         }
9219
9220         for_each_pipe(pipe) {
9221                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9222
9223                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9224                 if (tmp & PIPECONF_ENABLE)
9225                         crtc->active = true;
9226                 else
9227                         crtc->active = false;
9228
9229                 crtc->base.enabled = crtc->active;
9230
9231                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9232                               crtc->base.base.id,
9233                               crtc->active ? "enabled" : "disabled");
9234         }
9235
9236         if (IS_HASWELL(dev))
9237                 intel_ddi_setup_hw_pll_state(dev);
9238
9239         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9240                             base.head) {
9241                 pipe = 0;
9242
9243                 if (encoder->get_hw_state(encoder, &pipe)) {
9244                         encoder->base.crtc =
9245                                 dev_priv->pipe_to_crtc_mapping[pipe];
9246                 } else {
9247                         encoder->base.crtc = NULL;
9248                 }
9249
9250                 encoder->connectors_active = false;
9251                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9252                               encoder->base.base.id,
9253                               drm_get_encoder_name(&encoder->base),
9254                               encoder->base.crtc ? "enabled" : "disabled",
9255                               pipe);
9256         }
9257
9258         list_for_each_entry(connector, &dev->mode_config.connector_list,
9259                             base.head) {
9260                 if (connector->get_hw_state(connector)) {
9261                         connector->base.dpms = DRM_MODE_DPMS_ON;
9262                         connector->encoder->connectors_active = true;
9263                         connector->base.encoder = &connector->encoder->base;
9264                 } else {
9265                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9266                         connector->base.encoder = NULL;
9267                 }
9268                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9269                               connector->base.base.id,
9270                               drm_get_connector_name(&connector->base),
9271                               connector->base.encoder ? "enabled" : "disabled");
9272         }
9273
9274         /* HW state is read out, now we need to sanitize this mess. */
9275         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9276                             base.head) {
9277                 intel_sanitize_encoder(encoder);
9278         }
9279
9280         for_each_pipe(pipe) {
9281                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9282                 intel_sanitize_crtc(crtc);
9283         }
9284
9285         if (force_restore) {
9286                 for_each_pipe(pipe) {
9287                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9288                         intel_set_mode(&crtc->base, &crtc->base.mode,
9289                                        crtc->base.x, crtc->base.y, crtc->base.fb);
9290                 }
9291
9292                 i915_redisable_vga(dev);
9293         } else {
9294                 intel_modeset_update_staged_output_state(dev);
9295         }
9296
9297         intel_modeset_check_state(dev);
9298
9299         drm_mode_config_reset(dev);
9300 }
9301
9302 void intel_modeset_gem_init(struct drm_device *dev)
9303 {
9304         intel_modeset_init_hw(dev);
9305
9306         intel_setup_overlay(dev);
9307
9308         intel_modeset_setup_hw_state(dev, false);
9309 }
9310
9311 void intel_modeset_cleanup(struct drm_device *dev)
9312 {
9313         struct drm_i915_private *dev_priv = dev->dev_private;
9314         struct drm_crtc *crtc;
9315         struct intel_crtc *intel_crtc;
9316
9317         drm_kms_helper_poll_fini(dev);
9318         mutex_lock(&dev->struct_mutex);
9319
9320         intel_unregister_dsm_handler();
9321
9322
9323         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9324                 /* Skip inactive CRTCs */
9325                 if (!crtc->fb)
9326                         continue;
9327
9328                 intel_crtc = to_intel_crtc(crtc);
9329                 intel_increase_pllclock(crtc);
9330         }
9331
9332         intel_disable_fbc(dev);
9333
9334         intel_disable_gt_powersave(dev);
9335
9336         ironlake_teardown_rc6(dev);
9337
9338         if (IS_VALLEYVIEW(dev))
9339                 vlv_init_dpio(dev);
9340
9341         mutex_unlock(&dev->struct_mutex);
9342
9343         /* Disable the irq before mode object teardown, for the irq might
9344          * enqueue unpin/hotplug work. */
9345         drm_irq_uninstall(dev);
9346         cancel_work_sync(&dev_priv->hotplug_work);
9347         cancel_work_sync(&dev_priv->rps.work);
9348
9349         /* flush any delayed tasks or pending work */
9350         flush_scheduled_work();
9351
9352         drm_mode_config_cleanup(dev);
9353 }
9354
9355 /*
9356  * Return which encoder is currently attached for connector.
9357  */
9358 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9359 {
9360         return &intel_attached_encoder(connector)->base;
9361 }
9362
9363 void intel_connector_attach_encoder(struct intel_connector *connector,
9364                                     struct intel_encoder *encoder)
9365 {
9366         connector->encoder = encoder;
9367         drm_mode_connector_attach_encoder(&connector->base,
9368                                           &encoder->base);
9369 }
9370
9371 /*
9372  * set vga decode state - true == enable VGA decode
9373  */
9374 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9375 {
9376         struct drm_i915_private *dev_priv = dev->dev_private;
9377         u16 gmch_ctrl;
9378
9379         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9380         if (state)
9381                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9382         else
9383                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9384         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9385         return 0;
9386 }
9387
9388 #ifdef CONFIG_DEBUG_FS
9389 #include <linux/seq_file.h>
9390
9391 struct intel_display_error_state {
9392         struct intel_cursor_error_state {
9393                 u32 control;
9394                 u32 position;
9395                 u32 base;
9396                 u32 size;
9397         } cursor[I915_MAX_PIPES];
9398
9399         struct intel_pipe_error_state {
9400                 u32 conf;
9401                 u32 source;
9402
9403                 u32 htotal;
9404                 u32 hblank;
9405                 u32 hsync;
9406                 u32 vtotal;
9407                 u32 vblank;
9408                 u32 vsync;
9409         } pipe[I915_MAX_PIPES];
9410
9411         struct intel_plane_error_state {
9412                 u32 control;
9413                 u32 stride;
9414                 u32 size;
9415                 u32 pos;
9416                 u32 addr;
9417                 u32 surface;
9418                 u32 tile_offset;
9419         } plane[I915_MAX_PIPES];
9420 };
9421
9422 struct intel_display_error_state *
9423 intel_display_capture_error_state(struct drm_device *dev)
9424 {
9425         drm_i915_private_t *dev_priv = dev->dev_private;
9426         struct intel_display_error_state *error;
9427         enum transcoder cpu_transcoder;
9428         int i;
9429
9430         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9431         if (error == NULL)
9432                 return NULL;
9433
9434         for_each_pipe(i) {
9435                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9436
9437                 error->cursor[i].control = I915_READ(CURCNTR(i));
9438                 error->cursor[i].position = I915_READ(CURPOS(i));
9439                 error->cursor[i].base = I915_READ(CURBASE(i));
9440
9441                 error->plane[i].control = I915_READ(DSPCNTR(i));
9442                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9443                 error->plane[i].size = I915_READ(DSPSIZE(i));
9444                 error->plane[i].pos = I915_READ(DSPPOS(i));
9445                 error->plane[i].addr = I915_READ(DSPADDR(i));
9446                 if (INTEL_INFO(dev)->gen >= 4) {
9447                         error->plane[i].surface = I915_READ(DSPSURF(i));
9448                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9449                 }
9450
9451                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9452                 error->pipe[i].source = I915_READ(PIPESRC(i));
9453                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9454                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9455                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9456                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9457                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9458                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9459         }
9460
9461         return error;
9462 }
9463
9464 void
9465 intel_display_print_error_state(struct seq_file *m,
9466                                 struct drm_device *dev,
9467                                 struct intel_display_error_state *error)
9468 {
9469         drm_i915_private_t *dev_priv = dev->dev_private;
9470         int i;
9471
9472         seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9473         for_each_pipe(i) {
9474                 seq_printf(m, "Pipe [%d]:\n", i);
9475                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9476                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9477                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9478                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9479                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9480                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9481                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9482                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9483
9484                 seq_printf(m, "Plane [%d]:\n", i);
9485                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9486                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9487                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9488                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9489                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9490                 if (INTEL_INFO(dev)->gen >= 4) {
9491                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9492                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9493                 }
9494
9495                 seq_printf(m, "Cursor [%d]:\n", i);
9496                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9497                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9498                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9499         }
9500 }
9501 #endif