]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
Merge remote-tracking branch 'drm-intel/for-linux-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47 #include <linux/reservation.h>
48 #include <linux/dma-buf.h>
49
50 /* Primary plane formats for gen <= 3 */
51 static const uint32_t i8xx_primary_formats[] = {
52         DRM_FORMAT_C8,
53         DRM_FORMAT_RGB565,
54         DRM_FORMAT_XRGB1555,
55         DRM_FORMAT_XRGB8888,
56 };
57
58 /* Primary plane formats for gen >= 4 */
59 static const uint32_t i965_primary_formats[] = {
60         DRM_FORMAT_C8,
61         DRM_FORMAT_RGB565,
62         DRM_FORMAT_XRGB8888,
63         DRM_FORMAT_XBGR8888,
64         DRM_FORMAT_XRGB2101010,
65         DRM_FORMAT_XBGR2101010,
66 };
67
68 static const uint32_t skl_primary_formats[] = {
69         DRM_FORMAT_C8,
70         DRM_FORMAT_RGB565,
71         DRM_FORMAT_XRGB8888,
72         DRM_FORMAT_XBGR8888,
73         DRM_FORMAT_ARGB8888,
74         DRM_FORMAT_ABGR8888,
75         DRM_FORMAT_XRGB2101010,
76         DRM_FORMAT_XBGR2101010,
77         DRM_FORMAT_YUYV,
78         DRM_FORMAT_YVYU,
79         DRM_FORMAT_UYVY,
80         DRM_FORMAT_VYUY,
81 };
82
83 /* Cursor formats */
84 static const uint32_t intel_cursor_formats[] = {
85         DRM_FORMAT_ARGB8888,
86 };
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151                                   const char *name, u32 reg)
152 {
153         u32 val;
154         int divider;
155
156         if (dev_priv->hpll_freq == 0)
157                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159         mutex_lock(&dev_priv->sb_lock);
160         val = vlv_cck_read(dev_priv, reg);
161         mutex_unlock(&dev_priv->sb_lock);
162
163         divider = val & CCK_FREQUENCY_VALUES;
164
165         WARN((val & CCK_FREQUENCY_STATUS) !=
166              (divider << CCK_FREQUENCY_STATUS_SHIFT),
167              "%s change in progress\n", name);
168
169         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170 }
171
172 int
173 intel_pch_rawclk(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176
177         WARN_ON(!HAS_PCH_SPLIT(dev));
178
179         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
180 }
181
182 /* hrawclock is 1/4 the FSB frequency */
183 int intel_hrawclk(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186         uint32_t clkcfg;
187
188         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
189         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
190                 return 200;
191
192         clkcfg = I915_READ(CLKCFG);
193         switch (clkcfg & CLKCFG_FSB_MASK) {
194         case CLKCFG_FSB_400:
195                 return 100;
196         case CLKCFG_FSB_533:
197                 return 133;
198         case CLKCFG_FSB_667:
199                 return 166;
200         case CLKCFG_FSB_800:
201                 return 200;
202         case CLKCFG_FSB_1067:
203                 return 266;
204         case CLKCFG_FSB_1333:
205                 return 333;
206         /* these two are just a guess; one of them might be right */
207         case CLKCFG_FSB_1600:
208         case CLKCFG_FSB_1600_ALT:
209                 return 400;
210         default:
211                 return 133;
212         }
213 }
214
215 static void intel_update_czclk(struct drm_i915_private *dev_priv)
216 {
217         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
218                 return;
219
220         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
221                                                       CCK_CZ_CLOCK_CONTROL);
222
223         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
224 }
225
226 static inline u32 /* units of 100MHz */
227 intel_fdi_link_freq(struct drm_device *dev)
228 {
229         if (IS_GEN5(dev)) {
230                 struct drm_i915_private *dev_priv = dev->dev_private;
231                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
232         } else
233                 return 27;
234 }
235
236 static const intel_limit_t intel_limits_i8xx_dac = {
237         .dot = { .min = 25000, .max = 350000 },
238         .vco = { .min = 908000, .max = 1512000 },
239         .n = { .min = 2, .max = 16 },
240         .m = { .min = 96, .max = 140 },
241         .m1 = { .min = 18, .max = 26 },
242         .m2 = { .min = 6, .max = 16 },
243         .p = { .min = 4, .max = 128 },
244         .p1 = { .min = 2, .max = 33 },
245         .p2 = { .dot_limit = 165000,
246                 .p2_slow = 4, .p2_fast = 2 },
247 };
248
249 static const intel_limit_t intel_limits_i8xx_dvo = {
250         .dot = { .min = 25000, .max = 350000 },
251         .vco = { .min = 908000, .max = 1512000 },
252         .n = { .min = 2, .max = 16 },
253         .m = { .min = 96, .max = 140 },
254         .m1 = { .min = 18, .max = 26 },
255         .m2 = { .min = 6, .max = 16 },
256         .p = { .min = 4, .max = 128 },
257         .p1 = { .min = 2, .max = 33 },
258         .p2 = { .dot_limit = 165000,
259                 .p2_slow = 4, .p2_fast = 4 },
260 };
261
262 static const intel_limit_t intel_limits_i8xx_lvds = {
263         .dot = { .min = 25000, .max = 350000 },
264         .vco = { .min = 908000, .max = 1512000 },
265         .n = { .min = 2, .max = 16 },
266         .m = { .min = 96, .max = 140 },
267         .m1 = { .min = 18, .max = 26 },
268         .m2 = { .min = 6, .max = 16 },
269         .p = { .min = 4, .max = 128 },
270         .p1 = { .min = 1, .max = 6 },
271         .p2 = { .dot_limit = 165000,
272                 .p2_slow = 14, .p2_fast = 7 },
273 };
274
275 static const intel_limit_t intel_limits_i9xx_sdvo = {
276         .dot = { .min = 20000, .max = 400000 },
277         .vco = { .min = 1400000, .max = 2800000 },
278         .n = { .min = 1, .max = 6 },
279         .m = { .min = 70, .max = 120 },
280         .m1 = { .min = 8, .max = 18 },
281         .m2 = { .min = 3, .max = 7 },
282         .p = { .min = 5, .max = 80 },
283         .p1 = { .min = 1, .max = 8 },
284         .p2 = { .dot_limit = 200000,
285                 .p2_slow = 10, .p2_fast = 5 },
286 };
287
288 static const intel_limit_t intel_limits_i9xx_lvds = {
289         .dot = { .min = 20000, .max = 400000 },
290         .vco = { .min = 1400000, .max = 2800000 },
291         .n = { .min = 1, .max = 6 },
292         .m = { .min = 70, .max = 120 },
293         .m1 = { .min = 8, .max = 18 },
294         .m2 = { .min = 3, .max = 7 },
295         .p = { .min = 7, .max = 98 },
296         .p1 = { .min = 1, .max = 8 },
297         .p2 = { .dot_limit = 112000,
298                 .p2_slow = 14, .p2_fast = 7 },
299 };
300
301
302 static const intel_limit_t intel_limits_g4x_sdvo = {
303         .dot = { .min = 25000, .max = 270000 },
304         .vco = { .min = 1750000, .max = 3500000},
305         .n = { .min = 1, .max = 4 },
306         .m = { .min = 104, .max = 138 },
307         .m1 = { .min = 17, .max = 23 },
308         .m2 = { .min = 5, .max = 11 },
309         .p = { .min = 10, .max = 30 },
310         .p1 = { .min = 1, .max = 3},
311         .p2 = { .dot_limit = 270000,
312                 .p2_slow = 10,
313                 .p2_fast = 10
314         },
315 };
316
317 static const intel_limit_t intel_limits_g4x_hdmi = {
318         .dot = { .min = 22000, .max = 400000 },
319         .vco = { .min = 1750000, .max = 3500000},
320         .n = { .min = 1, .max = 4 },
321         .m = { .min = 104, .max = 138 },
322         .m1 = { .min = 16, .max = 23 },
323         .m2 = { .min = 5, .max = 11 },
324         .p = { .min = 5, .max = 80 },
325         .p1 = { .min = 1, .max = 8},
326         .p2 = { .dot_limit = 165000,
327                 .p2_slow = 10, .p2_fast = 5 },
328 };
329
330 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
331         .dot = { .min = 20000, .max = 115000 },
332         .vco = { .min = 1750000, .max = 3500000 },
333         .n = { .min = 1, .max = 3 },
334         .m = { .min = 104, .max = 138 },
335         .m1 = { .min = 17, .max = 23 },
336         .m2 = { .min = 5, .max = 11 },
337         .p = { .min = 28, .max = 112 },
338         .p1 = { .min = 2, .max = 8 },
339         .p2 = { .dot_limit = 0,
340                 .p2_slow = 14, .p2_fast = 14
341         },
342 };
343
344 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
345         .dot = { .min = 80000, .max = 224000 },
346         .vco = { .min = 1750000, .max = 3500000 },
347         .n = { .min = 1, .max = 3 },
348         .m = { .min = 104, .max = 138 },
349         .m1 = { .min = 17, .max = 23 },
350         .m2 = { .min = 5, .max = 11 },
351         .p = { .min = 14, .max = 42 },
352         .p1 = { .min = 2, .max = 6 },
353         .p2 = { .dot_limit = 0,
354                 .p2_slow = 7, .p2_fast = 7
355         },
356 };
357
358 static const intel_limit_t intel_limits_pineview_sdvo = {
359         .dot = { .min = 20000, .max = 400000},
360         .vco = { .min = 1700000, .max = 3500000 },
361         /* Pineview's Ncounter is a ring counter */
362         .n = { .min = 3, .max = 6 },
363         .m = { .min = 2, .max = 256 },
364         /* Pineview only has one combined m divider, which we treat as m2. */
365         .m1 = { .min = 0, .max = 0 },
366         .m2 = { .min = 0, .max = 254 },
367         .p = { .min = 5, .max = 80 },
368         .p1 = { .min = 1, .max = 8 },
369         .p2 = { .dot_limit = 200000,
370                 .p2_slow = 10, .p2_fast = 5 },
371 };
372
373 static const intel_limit_t intel_limits_pineview_lvds = {
374         .dot = { .min = 20000, .max = 400000 },
375         .vco = { .min = 1700000, .max = 3500000 },
376         .n = { .min = 3, .max = 6 },
377         .m = { .min = 2, .max = 256 },
378         .m1 = { .min = 0, .max = 0 },
379         .m2 = { .min = 0, .max = 254 },
380         .p = { .min = 7, .max = 112 },
381         .p1 = { .min = 1, .max = 8 },
382         .p2 = { .dot_limit = 112000,
383                 .p2_slow = 14, .p2_fast = 14 },
384 };
385
386 /* Ironlake / Sandybridge
387  *
388  * We calculate clock using (register_value + 2) for N/M1/M2, so here
389  * the range value for them is (actual_value - 2).
390  */
391 static const intel_limit_t intel_limits_ironlake_dac = {
392         .dot = { .min = 25000, .max = 350000 },
393         .vco = { .min = 1760000, .max = 3510000 },
394         .n = { .min = 1, .max = 5 },
395         .m = { .min = 79, .max = 127 },
396         .m1 = { .min = 12, .max = 22 },
397         .m2 = { .min = 5, .max = 9 },
398         .p = { .min = 5, .max = 80 },
399         .p1 = { .min = 1, .max = 8 },
400         .p2 = { .dot_limit = 225000,
401                 .p2_slow = 10, .p2_fast = 5 },
402 };
403
404 static const intel_limit_t intel_limits_ironlake_single_lvds = {
405         .dot = { .min = 25000, .max = 350000 },
406         .vco = { .min = 1760000, .max = 3510000 },
407         .n = { .min = 1, .max = 3 },
408         .m = { .min = 79, .max = 118 },
409         .m1 = { .min = 12, .max = 22 },
410         .m2 = { .min = 5, .max = 9 },
411         .p = { .min = 28, .max = 112 },
412         .p1 = { .min = 2, .max = 8 },
413         .p2 = { .dot_limit = 225000,
414                 .p2_slow = 14, .p2_fast = 14 },
415 };
416
417 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
418         .dot = { .min = 25000, .max = 350000 },
419         .vco = { .min = 1760000, .max = 3510000 },
420         .n = { .min = 1, .max = 3 },
421         .m = { .min = 79, .max = 127 },
422         .m1 = { .min = 12, .max = 22 },
423         .m2 = { .min = 5, .max = 9 },
424         .p = { .min = 14, .max = 56 },
425         .p1 = { .min = 2, .max = 8 },
426         .p2 = { .dot_limit = 225000,
427                 .p2_slow = 7, .p2_fast = 7 },
428 };
429
430 /* LVDS 100mhz refclk limits. */
431 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
432         .dot = { .min = 25000, .max = 350000 },
433         .vco = { .min = 1760000, .max = 3510000 },
434         .n = { .min = 1, .max = 2 },
435         .m = { .min = 79, .max = 126 },
436         .m1 = { .min = 12, .max = 22 },
437         .m2 = { .min = 5, .max = 9 },
438         .p = { .min = 28, .max = 112 },
439         .p1 = { .min = 2, .max = 8 },
440         .p2 = { .dot_limit = 225000,
441                 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
445         .dot = { .min = 25000, .max = 350000 },
446         .vco = { .min = 1760000, .max = 3510000 },
447         .n = { .min = 1, .max = 3 },
448         .m = { .min = 79, .max = 126 },
449         .m1 = { .min = 12, .max = 22 },
450         .m2 = { .min = 5, .max = 9 },
451         .p = { .min = 14, .max = 42 },
452         .p1 = { .min = 2, .max = 6 },
453         .p2 = { .dot_limit = 225000,
454                 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 static const intel_limit_t intel_limits_vlv = {
458          /*
459           * These are the data rate limits (measured in fast clocks)
460           * since those are the strictest limits we have. The fast
461           * clock and actual rate limits are more relaxed, so checking
462           * them would make no difference.
463           */
464         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
465         .vco = { .min = 4000000, .max = 6000000 },
466         .n = { .min = 1, .max = 7 },
467         .m1 = { .min = 2, .max = 3 },
468         .m2 = { .min = 11, .max = 156 },
469         .p1 = { .min = 2, .max = 3 },
470         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
471 };
472
473 static const intel_limit_t intel_limits_chv = {
474         /*
475          * These are the data rate limits (measured in fast clocks)
476          * since those are the strictest limits we have.  The fast
477          * clock and actual rate limits are more relaxed, so checking
478          * them would make no difference.
479          */
480         .dot = { .min = 25000 * 5, .max = 540000 * 5},
481         .vco = { .min = 4800000, .max = 6480000 },
482         .n = { .min = 1, .max = 1 },
483         .m1 = { .min = 2, .max = 2 },
484         .m2 = { .min = 24 << 22, .max = 175 << 22 },
485         .p1 = { .min = 2, .max = 4 },
486         .p2 = { .p2_slow = 1, .p2_fast = 14 },
487 };
488
489 static const intel_limit_t intel_limits_bxt = {
490         /* FIXME: find real dot limits */
491         .dot = { .min = 0, .max = INT_MAX },
492         .vco = { .min = 4800000, .max = 6700000 },
493         .n = { .min = 1, .max = 1 },
494         .m1 = { .min = 2, .max = 2 },
495         /* FIXME: find real m2 limits */
496         .m2 = { .min = 2 << 22, .max = 255 << 22 },
497         .p1 = { .min = 2, .max = 4 },
498         .p2 = { .p2_slow = 1, .p2_fast = 20 },
499 };
500
501 static bool
502 needs_modeset(struct drm_crtc_state *state)
503 {
504         return drm_atomic_crtc_needs_modeset(state);
505 }
506
507 /**
508  * Returns whether any output on the specified pipe is of the specified type
509  */
510 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
511 {
512         struct drm_device *dev = crtc->base.dev;
513         struct intel_encoder *encoder;
514
515         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
516                 if (encoder->type == type)
517                         return true;
518
519         return false;
520 }
521
522 /**
523  * Returns whether any output on the specified pipe will have the specified
524  * type after a staged modeset is complete, i.e., the same as
525  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
526  * encoder->crtc.
527  */
528 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
529                                       int type)
530 {
531         struct drm_atomic_state *state = crtc_state->base.state;
532         struct drm_connector *connector;
533         struct drm_connector_state *connector_state;
534         struct intel_encoder *encoder;
535         int i, num_connectors = 0;
536
537         for_each_connector_in_state(state, connector, connector_state, i) {
538                 if (connector_state->crtc != crtc_state->base.crtc)
539                         continue;
540
541                 num_connectors++;
542
543                 encoder = to_intel_encoder(connector_state->best_encoder);
544                 if (encoder->type == type)
545                         return true;
546         }
547
548         WARN_ON(num_connectors == 0);
549
550         return false;
551 }
552
553 static const intel_limit_t *
554 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
555 {
556         struct drm_device *dev = crtc_state->base.crtc->dev;
557         const intel_limit_t *limit;
558
559         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
560                 if (intel_is_dual_link_lvds(dev)) {
561                         if (refclk == 100000)
562                                 limit = &intel_limits_ironlake_dual_lvds_100m;
563                         else
564                                 limit = &intel_limits_ironlake_dual_lvds;
565                 } else {
566                         if (refclk == 100000)
567                                 limit = &intel_limits_ironlake_single_lvds_100m;
568                         else
569                                 limit = &intel_limits_ironlake_single_lvds;
570                 }
571         } else
572                 limit = &intel_limits_ironlake_dac;
573
574         return limit;
575 }
576
577 static const intel_limit_t *
578 intel_g4x_limit(struct intel_crtc_state *crtc_state)
579 {
580         struct drm_device *dev = crtc_state->base.crtc->dev;
581         const intel_limit_t *limit;
582
583         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
584                 if (intel_is_dual_link_lvds(dev))
585                         limit = &intel_limits_g4x_dual_channel_lvds;
586                 else
587                         limit = &intel_limits_g4x_single_channel_lvds;
588         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
589                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
590                 limit = &intel_limits_g4x_hdmi;
591         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
592                 limit = &intel_limits_g4x_sdvo;
593         } else /* The option is for other outputs */
594                 limit = &intel_limits_i9xx_sdvo;
595
596         return limit;
597 }
598
599 static const intel_limit_t *
600 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
601 {
602         struct drm_device *dev = crtc_state->base.crtc->dev;
603         const intel_limit_t *limit;
604
605         if (IS_BROXTON(dev))
606                 limit = &intel_limits_bxt;
607         else if (HAS_PCH_SPLIT(dev))
608                 limit = intel_ironlake_limit(crtc_state, refclk);
609         else if (IS_G4X(dev)) {
610                 limit = intel_g4x_limit(crtc_state);
611         } else if (IS_PINEVIEW(dev)) {
612                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
613                         limit = &intel_limits_pineview_lvds;
614                 else
615                         limit = &intel_limits_pineview_sdvo;
616         } else if (IS_CHERRYVIEW(dev)) {
617                 limit = &intel_limits_chv;
618         } else if (IS_VALLEYVIEW(dev)) {
619                 limit = &intel_limits_vlv;
620         } else if (!IS_GEN2(dev)) {
621                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
622                         limit = &intel_limits_i9xx_lvds;
623                 else
624                         limit = &intel_limits_i9xx_sdvo;
625         } else {
626                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
627                         limit = &intel_limits_i8xx_lvds;
628                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
629                         limit = &intel_limits_i8xx_dvo;
630                 else
631                         limit = &intel_limits_i8xx_dac;
632         }
633         return limit;
634 }
635
636 /*
637  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
638  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
639  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
640  * The helpers' return value is the rate of the clock that is fed to the
641  * display engine's pipe which can be the above fast dot clock rate or a
642  * divided-down version of it.
643  */
644 /* m1 is reserved as 0 in Pineview, n is a ring counter */
645 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
646 {
647         clock->m = clock->m2 + 2;
648         clock->p = clock->p1 * clock->p2;
649         if (WARN_ON(clock->n == 0 || clock->p == 0))
650                 return 0;
651         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
652         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
653
654         return clock->dot;
655 }
656
657 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
658 {
659         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
660 }
661
662 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
663 {
664         clock->m = i9xx_dpll_compute_m(clock);
665         clock->p = clock->p1 * clock->p2;
666         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
667                 return 0;
668         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
669         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
670
671         return clock->dot;
672 }
673
674 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
675 {
676         clock->m = clock->m1 * clock->m2;
677         clock->p = clock->p1 * clock->p2;
678         if (WARN_ON(clock->n == 0 || clock->p == 0))
679                 return 0;
680         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
681         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
682
683         return clock->dot / 5;
684 }
685
686 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
687 {
688         clock->m = clock->m1 * clock->m2;
689         clock->p = clock->p1 * clock->p2;
690         if (WARN_ON(clock->n == 0 || clock->p == 0))
691                 return 0;
692         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
693                         clock->n << 22);
694         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
695
696         return clock->dot / 5;
697 }
698
699 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
700 /**
701  * Returns whether the given set of divisors are valid for a given refclk with
702  * the given connectors.
703  */
704
705 static bool intel_PLL_is_valid(struct drm_device *dev,
706                                const intel_limit_t *limit,
707                                const intel_clock_t *clock)
708 {
709         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
710                 INTELPllInvalid("n out of range\n");
711         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
712                 INTELPllInvalid("p1 out of range\n");
713         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
714                 INTELPllInvalid("m2 out of range\n");
715         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
716                 INTELPllInvalid("m1 out of range\n");
717
718         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
719             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
720                 if (clock->m1 <= clock->m2)
721                         INTELPllInvalid("m1 <= m2\n");
722
723         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
724                 if (clock->p < limit->p.min || limit->p.max < clock->p)
725                         INTELPllInvalid("p out of range\n");
726                 if (clock->m < limit->m.min || limit->m.max < clock->m)
727                         INTELPllInvalid("m out of range\n");
728         }
729
730         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
731                 INTELPllInvalid("vco out of range\n");
732         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733          * connector, etc., rather than just a single range.
734          */
735         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
736                 INTELPllInvalid("dot out of range\n");
737
738         return true;
739 }
740
741 static int
742 i9xx_select_p2_div(const intel_limit_t *limit,
743                    const struct intel_crtc_state *crtc_state,
744                    int target)
745 {
746         struct drm_device *dev = crtc_state->base.crtc->dev;
747
748         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
749                 /*
750                  * For LVDS just rely on its current settings for dual-channel.
751                  * We haven't figured out how to reliably set up different
752                  * single/dual channel state, if we even can.
753                  */
754                 if (intel_is_dual_link_lvds(dev))
755                         return limit->p2.p2_fast;
756                 else
757                         return limit->p2.p2_slow;
758         } else {
759                 if (target < limit->p2.dot_limit)
760                         return limit->p2.p2_slow;
761                 else
762                         return limit->p2.p2_fast;
763         }
764 }
765
766 static bool
767 i9xx_find_best_dpll(const intel_limit_t *limit,
768                     struct intel_crtc_state *crtc_state,
769                     int target, int refclk, intel_clock_t *match_clock,
770                     intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc_state->base.crtc->dev;
773         intel_clock_t clock;
774         int err = target;
775
776         memset(best_clock, 0, sizeof(*best_clock));
777
778         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781              clock.m1++) {
782                 for (clock.m2 = limit->m2.min;
783                      clock.m2 <= limit->m2.max; clock.m2++) {
784                         if (clock.m2 >= clock.m1)
785                                 break;
786                         for (clock.n = limit->n.min;
787                              clock.n <= limit->n.max; clock.n++) {
788                                 for (clock.p1 = limit->p1.min;
789                                         clock.p1 <= limit->p1.max; clock.p1++) {
790                                         int this_err;
791
792                                         i9xx_calc_dpll_params(refclk, &clock);
793                                         if (!intel_PLL_is_valid(dev, limit,
794                                                                 &clock))
795                                                 continue;
796                                         if (match_clock &&
797                                             clock.p != match_clock->p)
798                                                 continue;
799
800                                         this_err = abs(clock.dot - target);
801                                         if (this_err < err) {
802                                                 *best_clock = clock;
803                                                 err = this_err;
804                                         }
805                                 }
806                         }
807                 }
808         }
809
810         return (err != target);
811 }
812
813 static bool
814 pnv_find_best_dpll(const intel_limit_t *limit,
815                    struct intel_crtc_state *crtc_state,
816                    int target, int refclk, intel_clock_t *match_clock,
817                    intel_clock_t *best_clock)
818 {
819         struct drm_device *dev = crtc_state->base.crtc->dev;
820         intel_clock_t clock;
821         int err = target;
822
823         memset(best_clock, 0, sizeof(*best_clock));
824
825         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
827         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828              clock.m1++) {
829                 for (clock.m2 = limit->m2.min;
830                      clock.m2 <= limit->m2.max; clock.m2++) {
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         pnv_calc_dpll_params(refclk, &clock);
838                                         if (!intel_PLL_is_valid(dev, limit,
839                                                                 &clock))
840                                                 continue;
841                                         if (match_clock &&
842                                             clock.p != match_clock->p)
843                                                 continue;
844
845                                         this_err = abs(clock.dot - target);
846                                         if (this_err < err) {
847                                                 *best_clock = clock;
848                                                 err = this_err;
849                                         }
850                                 }
851                         }
852                 }
853         }
854
855         return (err != target);
856 }
857
858 static bool
859 g4x_find_best_dpll(const intel_limit_t *limit,
860                    struct intel_crtc_state *crtc_state,
861                    int target, int refclk, intel_clock_t *match_clock,
862                    intel_clock_t *best_clock)
863 {
864         struct drm_device *dev = crtc_state->base.crtc->dev;
865         intel_clock_t clock;
866         int max_n;
867         bool found = false;
868         /* approximately equals target * 0.00585 */
869         int err_most = (target >> 8) + (target >> 9);
870
871         memset(best_clock, 0, sizeof(*best_clock));
872
873         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
875         max_n = limit->n.max;
876         /* based on hardware requirement, prefer smaller n to precision */
877         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
878                 /* based on hardware requirement, prefere larger m1,m2 */
879                 for (clock.m1 = limit->m1.max;
880                      clock.m1 >= limit->m1.min; clock.m1--) {
881                         for (clock.m2 = limit->m2.max;
882                              clock.m2 >= limit->m2.min; clock.m2--) {
883                                 for (clock.p1 = limit->p1.max;
884                                      clock.p1 >= limit->p1.min; clock.p1--) {
885                                         int this_err;
886
887                                         i9xx_calc_dpll_params(refclk, &clock);
888                                         if (!intel_PLL_is_valid(dev, limit,
889                                                                 &clock))
890                                                 continue;
891
892                                         this_err = abs(clock.dot - target);
893                                         if (this_err < err_most) {
894                                                 *best_clock = clock;
895                                                 err_most = this_err;
896                                                 max_n = clock.n;
897                                                 found = true;
898                                         }
899                                 }
900                         }
901                 }
902         }
903         return found;
904 }
905
906 /*
907  * Check if the calculated PLL configuration is more optimal compared to the
908  * best configuration and error found so far. Return the calculated error.
909  */
910 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911                                const intel_clock_t *calculated_clock,
912                                const intel_clock_t *best_clock,
913                                unsigned int best_error_ppm,
914                                unsigned int *error_ppm)
915 {
916         /*
917          * For CHV ignore the error and consider only the P value.
918          * Prefer a bigger P value based on HW requirements.
919          */
920         if (IS_CHERRYVIEW(dev)) {
921                 *error_ppm = 0;
922
923                 return calculated_clock->p > best_clock->p;
924         }
925
926         if (WARN_ON_ONCE(!target_freq))
927                 return false;
928
929         *error_ppm = div_u64(1000000ULL *
930                                 abs(target_freq - calculated_clock->dot),
931                              target_freq);
932         /*
933          * Prefer a better P value over a better (smaller) error if the error
934          * is small. Ensure this preference for future configurations too by
935          * setting the error to 0.
936          */
937         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938                 *error_ppm = 0;
939
940                 return true;
941         }
942
943         return *error_ppm + 10 < best_error_ppm;
944 }
945
946 static bool
947 vlv_find_best_dpll(const intel_limit_t *limit,
948                    struct intel_crtc_state *crtc_state,
949                    int target, int refclk, intel_clock_t *match_clock,
950                    intel_clock_t *best_clock)
951 {
952         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
953         struct drm_device *dev = crtc->base.dev;
954         intel_clock_t clock;
955         unsigned int bestppm = 1000000;
956         /* min update 19.2 MHz */
957         int max_n = min(limit->n.max, refclk / 19200);
958         bool found = false;
959
960         target *= 5; /* fast clock */
961
962         memset(best_clock, 0, sizeof(*best_clock));
963
964         /* based on hardware requirement, prefer smaller n to precision */
965         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
966                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
967                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
968                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
969                                 clock.p = clock.p1 * clock.p2;
970                                 /* based on hardware requirement, prefer bigger m1,m2 values */
971                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
972                                         unsigned int ppm;
973
974                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975                                                                      refclk * clock.m1);
976
977                                         vlv_calc_dpll_params(refclk, &clock);
978
979                                         if (!intel_PLL_is_valid(dev, limit,
980                                                                 &clock))
981                                                 continue;
982
983                                         if (!vlv_PLL_is_optimal(dev, target,
984                                                                 &clock,
985                                                                 best_clock,
986                                                                 bestppm, &ppm))
987                                                 continue;
988
989                                         *best_clock = clock;
990                                         bestppm = ppm;
991                                         found = true;
992                                 }
993                         }
994                 }
995         }
996
997         return found;
998 }
999
1000 static bool
1001 chv_find_best_dpll(const intel_limit_t *limit,
1002                    struct intel_crtc_state *crtc_state,
1003                    int target, int refclk, intel_clock_t *match_clock,
1004                    intel_clock_t *best_clock)
1005 {
1006         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1007         struct drm_device *dev = crtc->base.dev;
1008         unsigned int best_error_ppm;
1009         intel_clock_t clock;
1010         uint64_t m2;
1011         int found = false;
1012
1013         memset(best_clock, 0, sizeof(*best_clock));
1014         best_error_ppm = 1000000;
1015
1016         /*
1017          * Based on hardware doc, the n always set to 1, and m1 always
1018          * set to 2.  If requires to support 200Mhz refclk, we need to
1019          * revisit this because n may not 1 anymore.
1020          */
1021         clock.n = 1, clock.m1 = 2;
1022         target *= 5;    /* fast clock */
1023
1024         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025                 for (clock.p2 = limit->p2.p2_fast;
1026                                 clock.p2 >= limit->p2.p2_slow;
1027                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1028                         unsigned int error_ppm;
1029
1030                         clock.p = clock.p1 * clock.p2;
1031
1032                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033                                         clock.n) << 22, refclk * clock.m1);
1034
1035                         if (m2 > INT_MAX/clock.m1)
1036                                 continue;
1037
1038                         clock.m2 = m2;
1039
1040                         chv_calc_dpll_params(refclk, &clock);
1041
1042                         if (!intel_PLL_is_valid(dev, limit, &clock))
1043                                 continue;
1044
1045                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046                                                 best_error_ppm, &error_ppm))
1047                                 continue;
1048
1049                         *best_clock = clock;
1050                         best_error_ppm = error_ppm;
1051                         found = true;
1052                 }
1053         }
1054
1055         return found;
1056 }
1057
1058 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059                         intel_clock_t *best_clock)
1060 {
1061         int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064                                   target_clock, refclk, NULL, best_clock);
1065 }
1066
1067 bool intel_crtc_active(struct drm_crtc *crtc)
1068 {
1069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071         /* Be paranoid as we can arrive here with only partial
1072          * state retrieved from the hardware during setup.
1073          *
1074          * We can ditch the adjusted_mode.crtc_clock check as soon
1075          * as Haswell has gained clock readout/fastboot support.
1076          *
1077          * We can ditch the crtc->primary->fb check as soon as we can
1078          * properly reconstruct framebuffers.
1079          *
1080          * FIXME: The intel_crtc->active here should be switched to
1081          * crtc->state->active once we have proper CRTC states wired up
1082          * for atomic.
1083          */
1084         return intel_crtc->active && crtc->primary->state->fb &&
1085                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1086 }
1087
1088 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089                                              enum pipe pipe)
1090 {
1091         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
1094         return intel_crtc->config->cpu_transcoder;
1095 }
1096
1097 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098 {
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         i915_reg_t reg = PIPEDSL(pipe);
1101         u32 line1, line2;
1102         u32 line_mask;
1103
1104         if (IS_GEN2(dev))
1105                 line_mask = DSL_LINEMASK_GEN2;
1106         else
1107                 line_mask = DSL_LINEMASK_GEN3;
1108
1109         line1 = I915_READ(reg) & line_mask;
1110         msleep(5);
1111         line2 = I915_READ(reg) & line_mask;
1112
1113         return line1 == line2;
1114 }
1115
1116 /*
1117  * intel_wait_for_pipe_off - wait for pipe to turn off
1118  * @crtc: crtc whose pipe to wait for
1119  *
1120  * After disabling a pipe, we can't wait for vblank in the usual way,
1121  * spinning on the vblank interrupt status bit, since we won't actually
1122  * see an interrupt when the pipe is disabled.
1123  *
1124  * On Gen4 and above:
1125  *   wait for the pipe register state bit to turn off
1126  *
1127  * Otherwise:
1128  *   wait for the display line value to settle (it usually
1129  *   ends up stopping at the start of the next frame).
1130  *
1131  */
1132 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1133 {
1134         struct drm_device *dev = crtc->base.dev;
1135         struct drm_i915_private *dev_priv = dev->dev_private;
1136         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1137         enum pipe pipe = crtc->pipe;
1138
1139         if (INTEL_INFO(dev)->gen >= 4) {
1140                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1141
1142                 /* Wait for the Pipe State to go off */
1143                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144                              100))
1145                         WARN(1, "pipe_off wait timed out\n");
1146         } else {
1147                 /* Wait for the display line to settle */
1148                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1149                         WARN(1, "pipe_off wait timed out\n");
1150         }
1151 }
1152
1153 /* Only for pre-ILK configs */
1154 void assert_pll(struct drm_i915_private *dev_priv,
1155                 enum pipe pipe, bool state)
1156 {
1157         u32 val;
1158         bool cur_state;
1159
1160         val = I915_READ(DPLL(pipe));
1161         cur_state = !!(val & DPLL_VCO_ENABLE);
1162         I915_STATE_WARN(cur_state != state,
1163              "PLL state assertion failure (expected %s, current %s)\n",
1164                         onoff(state), onoff(cur_state));
1165 }
1166
1167 /* XXX: the dsi pll is shared between MIPI DSI ports */
1168 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1169 {
1170         u32 val;
1171         bool cur_state;
1172
1173         mutex_lock(&dev_priv->sb_lock);
1174         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1175         mutex_unlock(&dev_priv->sb_lock);
1176
1177         cur_state = val & DSI_PLL_VCO_EN;
1178         I915_STATE_WARN(cur_state != state,
1179              "DSI PLL state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1183 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1184
1185 struct intel_shared_dpll *
1186 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1187 {
1188         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1189
1190         if (crtc->config->shared_dpll < 0)
1191                 return NULL;
1192
1193         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1194 }
1195
1196 /* For ILK+ */
1197 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1198                         struct intel_shared_dpll *pll,
1199                         bool state)
1200 {
1201         bool cur_state;
1202         struct intel_dpll_hw_state hw_state;
1203
1204         if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
1205                 return;
1206
1207         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1208         I915_STATE_WARN(cur_state != state,
1209              "%s assertion failure (expected %s, current %s)\n",
1210                         pll->name, onoff(state), onoff(cur_state));
1211 }
1212
1213 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1214                           enum pipe pipe, bool state)
1215 {
1216         bool cur_state;
1217         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1218                                                                       pipe);
1219
1220         if (HAS_DDI(dev_priv->dev)) {
1221                 /* DDI does not have a specific FDI_TX register */
1222                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1223                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1224         } else {
1225                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1226                 cur_state = !!(val & FDI_TX_ENABLE);
1227         }
1228         I915_STATE_WARN(cur_state != state,
1229              "FDI TX state assertion failure (expected %s, current %s)\n",
1230                         onoff(state), onoff(cur_state));
1231 }
1232 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1233 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1234
1235 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1236                           enum pipe pipe, bool state)
1237 {
1238         u32 val;
1239         bool cur_state;
1240
1241         val = I915_READ(FDI_RX_CTL(pipe));
1242         cur_state = !!(val & FDI_RX_ENABLE);
1243         I915_STATE_WARN(cur_state != state,
1244              "FDI RX state assertion failure (expected %s, current %s)\n",
1245                         onoff(state), onoff(cur_state));
1246 }
1247 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1248 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1249
1250 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1251                                       enum pipe pipe)
1252 {
1253         u32 val;
1254
1255         /* ILK FDI PLL is always enabled */
1256         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1257                 return;
1258
1259         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1260         if (HAS_DDI(dev_priv->dev))
1261                 return;
1262
1263         val = I915_READ(FDI_TX_CTL(pipe));
1264         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1265 }
1266
1267 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1268                        enum pipe pipe, bool state)
1269 {
1270         u32 val;
1271         bool cur_state;
1272
1273         val = I915_READ(FDI_RX_CTL(pipe));
1274         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1275         I915_STATE_WARN(cur_state != state,
1276              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1277                         onoff(state), onoff(cur_state));
1278 }
1279
1280 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1281                            enum pipe pipe)
1282 {
1283         struct drm_device *dev = dev_priv->dev;
1284         i915_reg_t pp_reg;
1285         u32 val;
1286         enum pipe panel_pipe = PIPE_A;
1287         bool locked = true;
1288
1289         if (WARN_ON(HAS_DDI(dev)))
1290                 return;
1291
1292         if (HAS_PCH_SPLIT(dev)) {
1293                 u32 port_sel;
1294
1295                 pp_reg = PCH_PP_CONTROL;
1296                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1297
1298                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1299                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1300                         panel_pipe = PIPE_B;
1301                 /* XXX: else fix for eDP */
1302         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1303                 /* presumably write lock depends on pipe, not port select */
1304                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1305                 panel_pipe = pipe;
1306         } else {
1307                 pp_reg = PP_CONTROL;
1308                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1309                         panel_pipe = PIPE_B;
1310         }
1311
1312         val = I915_READ(pp_reg);
1313         if (!(val & PANEL_POWER_ON) ||
1314             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1315                 locked = false;
1316
1317         I915_STATE_WARN(panel_pipe == pipe && locked,
1318              "panel assertion failure, pipe %c regs locked\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static void assert_cursor(struct drm_i915_private *dev_priv,
1323                           enum pipe pipe, bool state)
1324 {
1325         struct drm_device *dev = dev_priv->dev;
1326         bool cur_state;
1327
1328         if (IS_845G(dev) || IS_I865G(dev))
1329                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1330         else
1331                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1332
1333         I915_STATE_WARN(cur_state != state,
1334              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1335                         pipe_name(pipe), onoff(state), onoff(cur_state));
1336 }
1337 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1338 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1339
1340 void assert_pipe(struct drm_i915_private *dev_priv,
1341                  enum pipe pipe, bool state)
1342 {
1343         bool cur_state;
1344         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1345                                                                       pipe);
1346
1347         /* if we need the pipe quirk it must be always on */
1348         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1349             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1350                 state = true;
1351
1352         if (!intel_display_power_is_enabled(dev_priv,
1353                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1354                 cur_state = false;
1355         } else {
1356                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1357                 cur_state = !!(val & PIPECONF_ENABLE);
1358         }
1359
1360         I915_STATE_WARN(cur_state != state,
1361              "pipe %c assertion failure (expected %s, current %s)\n",
1362                         pipe_name(pipe), onoff(state), onoff(cur_state));
1363 }
1364
1365 static void assert_plane(struct drm_i915_private *dev_priv,
1366                          enum plane plane, bool state)
1367 {
1368         u32 val;
1369         bool cur_state;
1370
1371         val = I915_READ(DSPCNTR(plane));
1372         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1373         I915_STATE_WARN(cur_state != state,
1374              "plane %c assertion failure (expected %s, current %s)\n",
1375                         plane_name(plane), onoff(state), onoff(cur_state));
1376 }
1377
1378 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1379 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1380
1381 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1382                                    enum pipe pipe)
1383 {
1384         struct drm_device *dev = dev_priv->dev;
1385         int i;
1386
1387         /* Primary planes are fixed to pipes on gen4+ */
1388         if (INTEL_INFO(dev)->gen >= 4) {
1389                 u32 val = I915_READ(DSPCNTR(pipe));
1390                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1391                      "plane %c assertion failure, should be disabled but not\n",
1392                      plane_name(pipe));
1393                 return;
1394         }
1395
1396         /* Need to check both planes against the pipe */
1397         for_each_pipe(dev_priv, i) {
1398                 u32 val = I915_READ(DSPCNTR(i));
1399                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1400                         DISPPLANE_SEL_PIPE_SHIFT;
1401                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1402                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1403                      plane_name(i), pipe_name(pipe));
1404         }
1405 }
1406
1407 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1408                                     enum pipe pipe)
1409 {
1410         struct drm_device *dev = dev_priv->dev;
1411         int sprite;
1412
1413         if (INTEL_INFO(dev)->gen >= 9) {
1414                 for_each_sprite(dev_priv, pipe, sprite) {
1415                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1416                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1417                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1418                              sprite, pipe_name(pipe));
1419                 }
1420         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1421                 for_each_sprite(dev_priv, pipe, sprite) {
1422                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1423                         I915_STATE_WARN(val & SP_ENABLE,
1424                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                              sprite_name(pipe, sprite), pipe_name(pipe));
1426                 }
1427         } else if (INTEL_INFO(dev)->gen >= 7) {
1428                 u32 val = I915_READ(SPRCTL(pipe));
1429                 I915_STATE_WARN(val & SPRITE_ENABLE,
1430                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                      plane_name(pipe), pipe_name(pipe));
1432         } else if (INTEL_INFO(dev)->gen >= 5) {
1433                 u32 val = I915_READ(DVSCNTR(pipe));
1434                 I915_STATE_WARN(val & DVS_ENABLE,
1435                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1436                      plane_name(pipe), pipe_name(pipe));
1437         }
1438 }
1439
1440 static void assert_vblank_disabled(struct drm_crtc *crtc)
1441 {
1442         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1443                 drm_crtc_vblank_put(crtc);
1444 }
1445
1446 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1447 {
1448         u32 val;
1449         bool enabled;
1450
1451         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1452
1453         val = I915_READ(PCH_DREF_CONTROL);
1454         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1455                             DREF_SUPERSPREAD_SOURCE_MASK));
1456         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1457 }
1458
1459 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1460                                            enum pipe pipe)
1461 {
1462         u32 val;
1463         bool enabled;
1464
1465         val = I915_READ(PCH_TRANSCONF(pipe));
1466         enabled = !!(val & TRANS_ENABLE);
1467         I915_STATE_WARN(enabled,
1468              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1469              pipe_name(pipe));
1470 }
1471
1472 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1473                             enum pipe pipe, u32 port_sel, u32 val)
1474 {
1475         if ((val & DP_PORT_EN) == 0)
1476                 return false;
1477
1478         if (HAS_PCH_CPT(dev_priv->dev)) {
1479                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1480                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1481                         return false;
1482         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1483                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1484                         return false;
1485         } else {
1486                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1487                         return false;
1488         }
1489         return true;
1490 }
1491
1492 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1493                               enum pipe pipe, u32 val)
1494 {
1495         if ((val & SDVO_ENABLE) == 0)
1496                 return false;
1497
1498         if (HAS_PCH_CPT(dev_priv->dev)) {
1499                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1500                         return false;
1501         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1502                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1503                         return false;
1504         } else {
1505                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1506                         return false;
1507         }
1508         return true;
1509 }
1510
1511 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1512                               enum pipe pipe, u32 val)
1513 {
1514         if ((val & LVDS_PORT_EN) == 0)
1515                 return false;
1516
1517         if (HAS_PCH_CPT(dev_priv->dev)) {
1518                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1519                         return false;
1520         } else {
1521                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1522                         return false;
1523         }
1524         return true;
1525 }
1526
1527 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1528                               enum pipe pipe, u32 val)
1529 {
1530         if ((val & ADPA_DAC_ENABLE) == 0)
1531                 return false;
1532         if (HAS_PCH_CPT(dev_priv->dev)) {
1533                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1534                         return false;
1535         } else {
1536                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1537                         return false;
1538         }
1539         return true;
1540 }
1541
1542 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1543                                    enum pipe pipe, i915_reg_t reg,
1544                                    u32 port_sel)
1545 {
1546         u32 val = I915_READ(reg);
1547         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1548              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1549              i915_mmio_reg_offset(reg), pipe_name(pipe));
1550
1551         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1552              && (val & DP_PIPEB_SELECT),
1553              "IBX PCH dp port still using transcoder B\n");
1554 }
1555
1556 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1557                                      enum pipe pipe, i915_reg_t reg)
1558 {
1559         u32 val = I915_READ(reg);
1560         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1561              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1562              i915_mmio_reg_offset(reg), pipe_name(pipe));
1563
1564         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1565              && (val & SDVO_PIPE_B_SELECT),
1566              "IBX PCH hdmi port still using transcoder B\n");
1567 }
1568
1569 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1570                                       enum pipe pipe)
1571 {
1572         u32 val;
1573
1574         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1575         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1576         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1577
1578         val = I915_READ(PCH_ADPA);
1579         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1580              "PCH VGA enabled on transcoder %c, should be disabled\n",
1581              pipe_name(pipe));
1582
1583         val = I915_READ(PCH_LVDS);
1584         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591 }
1592
1593 static void vlv_enable_pll(struct intel_crtc *crtc,
1594                            const struct intel_crtc_state *pipe_config)
1595 {
1596         struct drm_device *dev = crtc->base.dev;
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598         i915_reg_t reg = DPLL(crtc->pipe);
1599         u32 dpll = pipe_config->dpll_hw_state.dpll;
1600
1601         assert_pipe_disabled(dev_priv, crtc->pipe);
1602
1603         /* PLL is protected by panel, make sure we can write it */
1604         if (IS_MOBILE(dev_priv->dev))
1605                 assert_panel_unlocked(dev_priv, crtc->pipe);
1606
1607         I915_WRITE(reg, dpll);
1608         POSTING_READ(reg);
1609         udelay(150);
1610
1611         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1612                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1613
1614         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1615         POSTING_READ(DPLL_MD(crtc->pipe));
1616
1617         /* We do this three times for luck */
1618         I915_WRITE(reg, dpll);
1619         POSTING_READ(reg);
1620         udelay(150); /* wait for warmup */
1621         I915_WRITE(reg, dpll);
1622         POSTING_READ(reg);
1623         udelay(150); /* wait for warmup */
1624         I915_WRITE(reg, dpll);
1625         POSTING_READ(reg);
1626         udelay(150); /* wait for warmup */
1627 }
1628
1629 static void chv_enable_pll(struct intel_crtc *crtc,
1630                            const struct intel_crtc_state *pipe_config)
1631 {
1632         struct drm_device *dev = crtc->base.dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634         int pipe = crtc->pipe;
1635         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1636         u32 tmp;
1637
1638         assert_pipe_disabled(dev_priv, crtc->pipe);
1639
1640         mutex_lock(&dev_priv->sb_lock);
1641
1642         /* Enable back the 10bit clock to display controller */
1643         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1644         tmp |= DPIO_DCLKP_EN;
1645         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1646
1647         mutex_unlock(&dev_priv->sb_lock);
1648
1649         /*
1650          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1651          */
1652         udelay(1);
1653
1654         /* Enable PLL */
1655         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1656
1657         /* Check PLL is locked */
1658         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1659                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1660
1661         /* not sure when this should be written */
1662         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1663         POSTING_READ(DPLL_MD(pipe));
1664 }
1665
1666 static int intel_num_dvo_pipes(struct drm_device *dev)
1667 {
1668         struct intel_crtc *crtc;
1669         int count = 0;
1670
1671         for_each_intel_crtc(dev, crtc)
1672                 count += crtc->base.state->active &&
1673                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1674
1675         return count;
1676 }
1677
1678 static void i9xx_enable_pll(struct intel_crtc *crtc)
1679 {
1680         struct drm_device *dev = crtc->base.dev;
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         i915_reg_t reg = DPLL(crtc->pipe);
1683         u32 dpll = crtc->config->dpll_hw_state.dpll;
1684
1685         assert_pipe_disabled(dev_priv, crtc->pipe);
1686
1687         /* No really, not for ILK+ */
1688         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1689
1690         /* PLL is protected by panel, make sure we can write it */
1691         if (IS_MOBILE(dev) && !IS_I830(dev))
1692                 assert_panel_unlocked(dev_priv, crtc->pipe);
1693
1694         /* Enable DVO 2x clock on both PLLs if necessary */
1695         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1696                 /*
1697                  * It appears to be important that we don't enable this
1698                  * for the current pipe before otherwise configuring the
1699                  * PLL. No idea how this should be handled if multiple
1700                  * DVO outputs are enabled simultaneosly.
1701                  */
1702                 dpll |= DPLL_DVO_2X_MODE;
1703                 I915_WRITE(DPLL(!crtc->pipe),
1704                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1705         }
1706
1707         /*
1708          * Apparently we need to have VGA mode enabled prior to changing
1709          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1710          * dividers, even though the register value does change.
1711          */
1712         I915_WRITE(reg, 0);
1713
1714         I915_WRITE(reg, dpll);
1715
1716         /* Wait for the clocks to stabilize. */
1717         POSTING_READ(reg);
1718         udelay(150);
1719
1720         if (INTEL_INFO(dev)->gen >= 4) {
1721                 I915_WRITE(DPLL_MD(crtc->pipe),
1722                            crtc->config->dpll_hw_state.dpll_md);
1723         } else {
1724                 /* The pixel multiplier can only be updated once the
1725                  * DPLL is enabled and the clocks are stable.
1726                  *
1727                  * So write it again.
1728                  */
1729                 I915_WRITE(reg, dpll);
1730         }
1731
1732         /* We do this three times for luck */
1733         I915_WRITE(reg, dpll);
1734         POSTING_READ(reg);
1735         udelay(150); /* wait for warmup */
1736         I915_WRITE(reg, dpll);
1737         POSTING_READ(reg);
1738         udelay(150); /* wait for warmup */
1739         I915_WRITE(reg, dpll);
1740         POSTING_READ(reg);
1741         udelay(150); /* wait for warmup */
1742 }
1743
1744 /**
1745  * i9xx_disable_pll - disable a PLL
1746  * @dev_priv: i915 private structure
1747  * @pipe: pipe PLL to disable
1748  *
1749  * Disable the PLL for @pipe, making sure the pipe is off first.
1750  *
1751  * Note!  This is for pre-ILK only.
1752  */
1753 static void i9xx_disable_pll(struct intel_crtc *crtc)
1754 {
1755         struct drm_device *dev = crtc->base.dev;
1756         struct drm_i915_private *dev_priv = dev->dev_private;
1757         enum pipe pipe = crtc->pipe;
1758
1759         /* Disable DVO 2x clock on both PLLs if necessary */
1760         if (IS_I830(dev) &&
1761             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1762             !intel_num_dvo_pipes(dev)) {
1763                 I915_WRITE(DPLL(PIPE_B),
1764                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1765                 I915_WRITE(DPLL(PIPE_A),
1766                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1767         }
1768
1769         /* Don't disable pipe or pipe PLLs if needed */
1770         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1771             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1772                 return;
1773
1774         /* Make sure the pipe isn't still relying on us */
1775         assert_pipe_disabled(dev_priv, pipe);
1776
1777         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1778         POSTING_READ(DPLL(pipe));
1779 }
1780
1781 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1782 {
1783         u32 val;
1784
1785         /* Make sure the pipe isn't still relying on us */
1786         assert_pipe_disabled(dev_priv, pipe);
1787
1788         /*
1789          * Leave integrated clock source and reference clock enabled for pipe B.
1790          * The latter is needed for VGA hotplug / manual detection.
1791          */
1792         val = DPLL_VGA_MODE_DIS;
1793         if (pipe == PIPE_B)
1794                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1795         I915_WRITE(DPLL(pipe), val);
1796         POSTING_READ(DPLL(pipe));
1797
1798 }
1799
1800 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1801 {
1802         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1803         u32 val;
1804
1805         /* Make sure the pipe isn't still relying on us */
1806         assert_pipe_disabled(dev_priv, pipe);
1807
1808         /* Set PLL en = 0 */
1809         val = DPLL_SSC_REF_CLK_CHV |
1810                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1811         if (pipe != PIPE_A)
1812                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1813         I915_WRITE(DPLL(pipe), val);
1814         POSTING_READ(DPLL(pipe));
1815
1816         mutex_lock(&dev_priv->sb_lock);
1817
1818         /* Disable 10bit clock to display controller */
1819         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1820         val &= ~DPIO_DCLKP_EN;
1821         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1822
1823         mutex_unlock(&dev_priv->sb_lock);
1824 }
1825
1826 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1827                          struct intel_digital_port *dport,
1828                          unsigned int expected_mask)
1829 {
1830         u32 port_mask;
1831         i915_reg_t dpll_reg;
1832
1833         switch (dport->port) {
1834         case PORT_B:
1835                 port_mask = DPLL_PORTB_READY_MASK;
1836                 dpll_reg = DPLL(0);
1837                 break;
1838         case PORT_C:
1839                 port_mask = DPLL_PORTC_READY_MASK;
1840                 dpll_reg = DPLL(0);
1841                 expected_mask <<= 4;
1842                 break;
1843         case PORT_D:
1844                 port_mask = DPLL_PORTD_READY_MASK;
1845                 dpll_reg = DPIO_PHY_STATUS;
1846                 break;
1847         default:
1848                 BUG();
1849         }
1850
1851         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1852                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1853                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1854 }
1855
1856 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1857 {
1858         struct drm_device *dev = crtc->base.dev;
1859         struct drm_i915_private *dev_priv = dev->dev_private;
1860         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1861
1862         if (WARN_ON(pll == NULL))
1863                 return;
1864
1865         WARN_ON(!pll->config.crtc_mask);
1866         if (pll->active == 0) {
1867                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1868                 WARN_ON(pll->on);
1869                 assert_shared_dpll_disabled(dev_priv, pll);
1870
1871                 pll->mode_set(dev_priv, pll);
1872         }
1873 }
1874
1875 /**
1876  * intel_enable_shared_dpll - enable PCH PLL
1877  * @dev_priv: i915 private structure
1878  * @pipe: pipe PLL to enable
1879  *
1880  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1881  * drives the transcoder clock.
1882  */
1883 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1884 {
1885         struct drm_device *dev = crtc->base.dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1888
1889         if (WARN_ON(pll == NULL))
1890                 return;
1891
1892         if (WARN_ON(pll->config.crtc_mask == 0))
1893                 return;
1894
1895         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1896                       pll->name, pll->active, pll->on,
1897                       crtc->base.base.id);
1898
1899         if (pll->active++) {
1900                 WARN_ON(!pll->on);
1901                 assert_shared_dpll_enabled(dev_priv, pll);
1902                 return;
1903         }
1904         WARN_ON(pll->on);
1905
1906         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1907
1908         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1909         pll->enable(dev_priv, pll);
1910         pll->on = true;
1911 }
1912
1913 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1914 {
1915         struct drm_device *dev = crtc->base.dev;
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1918
1919         /* PCH only available on ILK+ */
1920         if (INTEL_INFO(dev)->gen < 5)
1921                 return;
1922
1923         if (pll == NULL)
1924                 return;
1925
1926         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1927                 return;
1928
1929         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1930                       pll->name, pll->active, pll->on,
1931                       crtc->base.base.id);
1932
1933         if (WARN_ON(pll->active == 0)) {
1934                 assert_shared_dpll_disabled(dev_priv, pll);
1935                 return;
1936         }
1937
1938         assert_shared_dpll_enabled(dev_priv, pll);
1939         WARN_ON(!pll->on);
1940         if (--pll->active)
1941                 return;
1942
1943         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1944         pll->disable(dev_priv, pll);
1945         pll->on = false;
1946
1947         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1948 }
1949
1950 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1951                                            enum pipe pipe)
1952 {
1953         struct drm_device *dev = dev_priv->dev;
1954         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1955         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1956         i915_reg_t reg;
1957         uint32_t val, pipeconf_val;
1958
1959         /* PCH only available on ILK+ */
1960         BUG_ON(!HAS_PCH_SPLIT(dev));
1961
1962         /* Make sure PCH DPLL is enabled */
1963         assert_shared_dpll_enabled(dev_priv,
1964                                    intel_crtc_to_shared_dpll(intel_crtc));
1965
1966         /* FDI must be feeding us bits for PCH ports */
1967         assert_fdi_tx_enabled(dev_priv, pipe);
1968         assert_fdi_rx_enabled(dev_priv, pipe);
1969
1970         if (HAS_PCH_CPT(dev)) {
1971                 /* Workaround: Set the timing override bit before enabling the
1972                  * pch transcoder. */
1973                 reg = TRANS_CHICKEN2(pipe);
1974                 val = I915_READ(reg);
1975                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1976                 I915_WRITE(reg, val);
1977         }
1978
1979         reg = PCH_TRANSCONF(pipe);
1980         val = I915_READ(reg);
1981         pipeconf_val = I915_READ(PIPECONF(pipe));
1982
1983         if (HAS_PCH_IBX(dev_priv->dev)) {
1984                 /*
1985                  * Make the BPC in transcoder be consistent with
1986                  * that in pipeconf reg. For HDMI we must use 8bpc
1987                  * here for both 8bpc and 12bpc.
1988                  */
1989                 val &= ~PIPECONF_BPC_MASK;
1990                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1991                         val |= PIPECONF_8BPC;
1992                 else
1993                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1994         }
1995
1996         val &= ~TRANS_INTERLACE_MASK;
1997         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1998                 if (HAS_PCH_IBX(dev_priv->dev) &&
1999                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2000                         val |= TRANS_LEGACY_INTERLACED_ILK;
2001                 else
2002                         val |= TRANS_INTERLACED;
2003         else
2004                 val |= TRANS_PROGRESSIVE;
2005
2006         I915_WRITE(reg, val | TRANS_ENABLE);
2007         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2008                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2009 }
2010
2011 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2012                                       enum transcoder cpu_transcoder)
2013 {
2014         u32 val, pipeconf_val;
2015
2016         /* PCH only available on ILK+ */
2017         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2018
2019         /* FDI must be feeding us bits for PCH ports */
2020         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2021         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2022
2023         /* Workaround: set timing override bit. */
2024         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2025         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2026         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2027
2028         val = TRANS_ENABLE;
2029         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2030
2031         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2032             PIPECONF_INTERLACED_ILK)
2033                 val |= TRANS_INTERLACED;
2034         else
2035                 val |= TRANS_PROGRESSIVE;
2036
2037         I915_WRITE(LPT_TRANSCONF, val);
2038         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2039                 DRM_ERROR("Failed to enable PCH transcoder\n");
2040 }
2041
2042 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2043                                             enum pipe pipe)
2044 {
2045         struct drm_device *dev = dev_priv->dev;
2046         i915_reg_t reg;
2047         uint32_t val;
2048
2049         /* FDI relies on the transcoder */
2050         assert_fdi_tx_disabled(dev_priv, pipe);
2051         assert_fdi_rx_disabled(dev_priv, pipe);
2052
2053         /* Ports must be off as well */
2054         assert_pch_ports_disabled(dev_priv, pipe);
2055
2056         reg = PCH_TRANSCONF(pipe);
2057         val = I915_READ(reg);
2058         val &= ~TRANS_ENABLE;
2059         I915_WRITE(reg, val);
2060         /* wait for PCH transcoder off, transcoder state */
2061         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2062                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2063
2064         if (HAS_PCH_CPT(dev)) {
2065                 /* Workaround: Clear the timing override chicken bit again. */
2066                 reg = TRANS_CHICKEN2(pipe);
2067                 val = I915_READ(reg);
2068                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2069                 I915_WRITE(reg, val);
2070         }
2071 }
2072
2073 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2074 {
2075         u32 val;
2076
2077         val = I915_READ(LPT_TRANSCONF);
2078         val &= ~TRANS_ENABLE;
2079         I915_WRITE(LPT_TRANSCONF, val);
2080         /* wait for PCH transcoder off, transcoder state */
2081         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2082                 DRM_ERROR("Failed to disable PCH transcoder\n");
2083
2084         /* Workaround: clear timing override bit. */
2085         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2086         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2087         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2088 }
2089
2090 /**
2091  * intel_enable_pipe - enable a pipe, asserting requirements
2092  * @crtc: crtc responsible for the pipe
2093  *
2094  * Enable @crtc's pipe, making sure that various hardware specific requirements
2095  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2096  */
2097 static void intel_enable_pipe(struct intel_crtc *crtc)
2098 {
2099         struct drm_device *dev = crtc->base.dev;
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         enum pipe pipe = crtc->pipe;
2102         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2103         enum pipe pch_transcoder;
2104         i915_reg_t reg;
2105         u32 val;
2106
2107         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2108
2109         assert_planes_disabled(dev_priv, pipe);
2110         assert_cursor_disabled(dev_priv, pipe);
2111         assert_sprites_disabled(dev_priv, pipe);
2112
2113         if (HAS_PCH_LPT(dev_priv->dev))
2114                 pch_transcoder = TRANSCODER_A;
2115         else
2116                 pch_transcoder = pipe;
2117
2118         /*
2119          * A pipe without a PLL won't actually be able to drive bits from
2120          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2121          * need the check.
2122          */
2123         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2124                 if (crtc->config->has_dsi_encoder)
2125                         assert_dsi_pll_enabled(dev_priv);
2126                 else
2127                         assert_pll_enabled(dev_priv, pipe);
2128         else {
2129                 if (crtc->config->has_pch_encoder) {
2130                         /* if driving the PCH, we need FDI enabled */
2131                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2132                         assert_fdi_tx_pll_enabled(dev_priv,
2133                                                   (enum pipe) cpu_transcoder);
2134                 }
2135                 /* FIXME: assert CPU port conditions for SNB+ */
2136         }
2137
2138         reg = PIPECONF(cpu_transcoder);
2139         val = I915_READ(reg);
2140         if (val & PIPECONF_ENABLE) {
2141                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2142                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2143                 return;
2144         }
2145
2146         I915_WRITE(reg, val | PIPECONF_ENABLE);
2147         POSTING_READ(reg);
2148
2149         /*
2150          * Until the pipe starts DSL will read as 0, which would cause
2151          * an apparent vblank timestamp jump, which messes up also the
2152          * frame count when it's derived from the timestamps. So let's
2153          * wait for the pipe to start properly before we call
2154          * drm_crtc_vblank_on()
2155          */
2156         if (dev->max_vblank_count == 0 &&
2157             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2158                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2159 }
2160
2161 /**
2162  * intel_disable_pipe - disable a pipe, asserting requirements
2163  * @crtc: crtc whose pipes is to be disabled
2164  *
2165  * Disable the pipe of @crtc, making sure that various hardware
2166  * specific requirements are met, if applicable, e.g. plane
2167  * disabled, panel fitter off, etc.
2168  *
2169  * Will wait until the pipe has shut down before returning.
2170  */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175         enum pipe pipe = crtc->pipe;
2176         i915_reg_t reg;
2177         u32 val;
2178
2179         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180
2181         /*
2182          * Make sure planes won't keep trying to pump pixels to us,
2183          * or we might hang the display.
2184          */
2185         assert_planes_disabled(dev_priv, pipe);
2186         assert_cursor_disabled(dev_priv, pipe);
2187         assert_sprites_disabled(dev_priv, pipe);
2188
2189         reg = PIPECONF(cpu_transcoder);
2190         val = I915_READ(reg);
2191         if ((val & PIPECONF_ENABLE) == 0)
2192                 return;
2193
2194         /*
2195          * Double wide has implications for planes
2196          * so best keep it disabled when not needed.
2197          */
2198         if (crtc->config->double_wide)
2199                 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201         /* Don't disable pipe or pipe PLLs if needed */
2202         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2204                 val &= ~PIPECONF_ENABLE;
2205
2206         I915_WRITE(reg, val);
2207         if ((val & PIPECONF_ENABLE) == 0)
2208                 intel_wait_for_pipe_off(crtc);
2209 }
2210
2211 static bool need_vtd_wa(struct drm_device *dev)
2212 {
2213 #ifdef CONFIG_INTEL_IOMMU
2214         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2215                 return true;
2216 #endif
2217         return false;
2218 }
2219
2220 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2221 {
2222         return IS_GEN2(dev_priv) ? 2048 : 4096;
2223 }
2224
2225 static unsigned int intel_tile_width(const struct drm_i915_private *dev_priv,
2226                                      uint64_t fb_modifier, unsigned int cpp)
2227 {
2228         switch (fb_modifier) {
2229         case DRM_FORMAT_MOD_NONE:
2230                 return cpp;
2231         case I915_FORMAT_MOD_X_TILED:
2232                 if (IS_GEN2(dev_priv))
2233                         return 128;
2234                 else
2235                         return 512;
2236         case I915_FORMAT_MOD_Y_TILED:
2237                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2238                         return 128;
2239                 else
2240                         return 512;
2241         case I915_FORMAT_MOD_Yf_TILED:
2242                 switch (cpp) {
2243                 case 1:
2244                         return 64;
2245                 case 2:
2246                 case 4:
2247                         return 128;
2248                 case 8:
2249                 case 16:
2250                         return 256;
2251                 default:
2252                         MISSING_CASE(cpp);
2253                         return cpp;
2254                 }
2255                 break;
2256         default:
2257                 MISSING_CASE(fb_modifier);
2258                 return cpp;
2259         }
2260 }
2261
2262 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2263                                uint64_t fb_modifier, unsigned int cpp)
2264 {
2265         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2266                 return 1;
2267         else
2268                 return intel_tile_size(dev_priv) /
2269                         intel_tile_width(dev_priv, fb_modifier, cpp);
2270 }
2271
2272 unsigned int
2273 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2274                       uint32_t pixel_format, uint64_t fb_modifier)
2275 {
2276         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2277         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2278
2279         return ALIGN(height, tile_height);
2280 }
2281
2282 static void
2283 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284                         const struct drm_plane_state *plane_state)
2285 {
2286         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2287         struct intel_rotation_info *info = &view->params.rotated;
2288         unsigned int tile_size, tile_width, tile_height, cpp;
2289
2290         *view = i915_ggtt_view_normal;
2291
2292         if (!plane_state)
2293                 return;
2294
2295         if (!intel_rotation_90_or_270(plane_state->rotation))
2296                 return;
2297
2298         *view = i915_ggtt_view_rotated;
2299
2300         info->height = fb->height;
2301         info->pixel_format = fb->pixel_format;
2302         info->pitch = fb->pitches[0];
2303         info->uv_offset = fb->offsets[1];
2304         info->fb_modifier = fb->modifier[0];
2305
2306         tile_size = intel_tile_size(dev_priv);
2307
2308         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2309         tile_width = intel_tile_width(dev_priv, fb->modifier[0], cpp);
2310         tile_height = tile_size / tile_width;
2311
2312         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_width);
2313         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2314         info->size = info->width_pages * info->height_pages * tile_size;
2315
2316         if (info->pixel_format == DRM_FORMAT_NV12) {
2317                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2318                 tile_width = intel_tile_width(dev_priv, fb->modifier[1], cpp);
2319                 tile_height = tile_size / tile_width;
2320
2321                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[1], tile_width);
2322                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2, tile_height);
2323                 info->size_uv = info->width_pages_uv * info->height_pages_uv * tile_size;
2324         }
2325 }
2326
2327 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2328 {
2329         if (INTEL_INFO(dev_priv)->gen >= 9)
2330                 return 256 * 1024;
2331         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2332                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2333                 return 128 * 1024;
2334         else if (INTEL_INFO(dev_priv)->gen >= 4)
2335                 return 4 * 1024;
2336         else
2337                 return 0;
2338 }
2339
2340 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2341                                          uint64_t fb_modifier)
2342 {
2343         switch (fb_modifier) {
2344         case DRM_FORMAT_MOD_NONE:
2345                 return intel_linear_alignment(dev_priv);
2346         case I915_FORMAT_MOD_X_TILED:
2347                 if (INTEL_INFO(dev_priv)->gen >= 9)
2348                         return 256 * 1024;
2349                 return 0;
2350         case I915_FORMAT_MOD_Y_TILED:
2351         case I915_FORMAT_MOD_Yf_TILED:
2352                 return 1 * 1024 * 1024;
2353         default:
2354                 MISSING_CASE(fb_modifier);
2355                 return 0;
2356         }
2357 }
2358
2359 int
2360 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2361                            struct drm_framebuffer *fb,
2362                            const struct drm_plane_state *plane_state)
2363 {
2364         struct drm_device *dev = fb->dev;
2365         struct drm_i915_private *dev_priv = dev->dev_private;
2366         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2367         struct i915_ggtt_view view;
2368         u32 alignment;
2369         int ret;
2370
2371         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2372
2373         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2374
2375         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2376
2377         /* Note that the w/a also requires 64 PTE of padding following the
2378          * bo. We currently fill all unused PTE with the shadow page and so
2379          * we should always have valid PTE following the scanout preventing
2380          * the VT-d warning.
2381          */
2382         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2383                 alignment = 256 * 1024;
2384
2385         /*
2386          * Global gtt pte registers are special registers which actually forward
2387          * writes to a chunk of system memory. Which means that there is no risk
2388          * that the register values disappear as soon as we call
2389          * intel_runtime_pm_put(), so it is correct to wrap only the
2390          * pin/unpin/fence and not more.
2391          */
2392         intel_runtime_pm_get(dev_priv);
2393
2394         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2395                                                    &view);
2396         if (ret)
2397                 goto err_pm;
2398
2399         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2400          * fence, whereas 965+ only requires a fence if using
2401          * framebuffer compression.  For simplicity, we always install
2402          * a fence as the cost is not that onerous.
2403          */
2404         if (view.type == I915_GGTT_VIEW_NORMAL) {
2405                 ret = i915_gem_object_get_fence(obj);
2406                 if (ret == -EDEADLK) {
2407                         /*
2408                          * -EDEADLK means there are no free fences
2409                          * no pending flips.
2410                          *
2411                          * This is propagated to atomic, but it uses
2412                          * -EDEADLK to force a locking recovery, so
2413                          * change the returned error to -EBUSY.
2414                          */
2415                         ret = -EBUSY;
2416                         goto err_unpin;
2417                 } else if (ret)
2418                         goto err_unpin;
2419
2420                 i915_gem_object_pin_fence(obj);
2421         }
2422
2423         intel_runtime_pm_put(dev_priv);
2424         return 0;
2425
2426 err_unpin:
2427         i915_gem_object_unpin_from_display_plane(obj, &view);
2428 err_pm:
2429         intel_runtime_pm_put(dev_priv);
2430         return ret;
2431 }
2432
2433 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2434                                const struct drm_plane_state *plane_state)
2435 {
2436         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2437         struct i915_ggtt_view view;
2438
2439         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2440
2441         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2442
2443         if (view.type == I915_GGTT_VIEW_NORMAL)
2444                 i915_gem_object_unpin_fence(obj);
2445
2446         i915_gem_object_unpin_from_display_plane(obj, &view);
2447 }
2448
2449 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2450  * is assumed to be a power-of-two. */
2451 u32 intel_compute_tile_offset(struct drm_i915_private *dev_priv,
2452                               int *x, int *y,
2453                               uint64_t fb_modifier,
2454                               unsigned int cpp,
2455                               unsigned int pitch)
2456 {
2457         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2458                 unsigned int tile_size, tile_width, tile_height;
2459                 unsigned int tile_rows, tiles;
2460
2461                 tile_size = intel_tile_size(dev_priv);
2462                 tile_width = intel_tile_width(dev_priv, fb_modifier, cpp);
2463                 tile_height = tile_size / tile_width;
2464
2465                 tile_rows = *y / tile_height;
2466                 *y %= tile_height;
2467
2468                 tiles = *x / (tile_width/cpp);
2469                 *x %= tile_width/cpp;
2470
2471                 return tile_rows * pitch * tile_height + tiles * tile_size;
2472         } else {
2473                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2474                 unsigned int offset;
2475
2476                 offset = *y * pitch + *x * cpp;
2477                 *y = (offset & alignment) / pitch;
2478                 *x = ((offset & alignment) - *y * pitch) / cpp;
2479                 return offset & ~alignment;
2480         }
2481 }
2482
2483 static int i9xx_format_to_fourcc(int format)
2484 {
2485         switch (format) {
2486         case DISPPLANE_8BPP:
2487                 return DRM_FORMAT_C8;
2488         case DISPPLANE_BGRX555:
2489                 return DRM_FORMAT_XRGB1555;
2490         case DISPPLANE_BGRX565:
2491                 return DRM_FORMAT_RGB565;
2492         default:
2493         case DISPPLANE_BGRX888:
2494                 return DRM_FORMAT_XRGB8888;
2495         case DISPPLANE_RGBX888:
2496                 return DRM_FORMAT_XBGR8888;
2497         case DISPPLANE_BGRX101010:
2498                 return DRM_FORMAT_XRGB2101010;
2499         case DISPPLANE_RGBX101010:
2500                 return DRM_FORMAT_XBGR2101010;
2501         }
2502 }
2503
2504 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2505 {
2506         switch (format) {
2507         case PLANE_CTL_FORMAT_RGB_565:
2508                 return DRM_FORMAT_RGB565;
2509         default:
2510         case PLANE_CTL_FORMAT_XRGB_8888:
2511                 if (rgb_order) {
2512                         if (alpha)
2513                                 return DRM_FORMAT_ABGR8888;
2514                         else
2515                                 return DRM_FORMAT_XBGR8888;
2516                 } else {
2517                         if (alpha)
2518                                 return DRM_FORMAT_ARGB8888;
2519                         else
2520                                 return DRM_FORMAT_XRGB8888;
2521                 }
2522         case PLANE_CTL_FORMAT_XRGB_2101010:
2523                 if (rgb_order)
2524                         return DRM_FORMAT_XBGR2101010;
2525                 else
2526                         return DRM_FORMAT_XRGB2101010;
2527         }
2528 }
2529
2530 static bool
2531 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2532                               struct intel_initial_plane_config *plane_config)
2533 {
2534         struct drm_device *dev = crtc->base.dev;
2535         struct drm_i915_private *dev_priv = to_i915(dev);
2536         struct drm_i915_gem_object *obj = NULL;
2537         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2538         struct drm_framebuffer *fb = &plane_config->fb->base;
2539         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2540         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2541                                     PAGE_SIZE);
2542
2543         size_aligned -= base_aligned;
2544
2545         if (plane_config->size == 0)
2546                 return false;
2547
2548         /* If the FB is too big, just don't use it since fbdev is not very
2549          * important and we should probably use that space with FBC or other
2550          * features. */
2551         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2552                 return false;
2553
2554         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2555                                                              base_aligned,
2556                                                              base_aligned,
2557                                                              size_aligned);
2558         if (!obj)
2559                 return false;
2560
2561         obj->tiling_mode = plane_config->tiling;
2562         if (obj->tiling_mode == I915_TILING_X)
2563                 obj->stride = fb->pitches[0];
2564
2565         mode_cmd.pixel_format = fb->pixel_format;
2566         mode_cmd.width = fb->width;
2567         mode_cmd.height = fb->height;
2568         mode_cmd.pitches[0] = fb->pitches[0];
2569         mode_cmd.modifier[0] = fb->modifier[0];
2570         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2571
2572         mutex_lock(&dev->struct_mutex);
2573         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2574                                    &mode_cmd, obj)) {
2575                 DRM_DEBUG_KMS("intel fb init failed\n");
2576                 goto out_unref_obj;
2577         }
2578         mutex_unlock(&dev->struct_mutex);
2579
2580         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2581         return true;
2582
2583 out_unref_obj:
2584         drm_gem_object_unreference(&obj->base);
2585         mutex_unlock(&dev->struct_mutex);
2586         return false;
2587 }
2588
2589 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2590 static void
2591 update_state_fb(struct drm_plane *plane)
2592 {
2593         if (plane->fb == plane->state->fb)
2594                 return;
2595
2596         if (plane->state->fb)
2597                 drm_framebuffer_unreference(plane->state->fb);
2598         plane->state->fb = plane->fb;
2599         if (plane->state->fb)
2600                 drm_framebuffer_reference(plane->state->fb);
2601 }
2602
2603 static void
2604 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2605                              struct intel_initial_plane_config *plane_config)
2606 {
2607         struct drm_device *dev = intel_crtc->base.dev;
2608         struct drm_i915_private *dev_priv = dev->dev_private;
2609         struct drm_crtc *c;
2610         struct intel_crtc *i;
2611         struct drm_i915_gem_object *obj;
2612         struct drm_plane *primary = intel_crtc->base.primary;
2613         struct drm_plane_state *plane_state = primary->state;
2614         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2615         struct intel_plane *intel_plane = to_intel_plane(primary);
2616         struct intel_plane_state *intel_state =
2617                 to_intel_plane_state(plane_state);
2618         struct drm_framebuffer *fb;
2619
2620         if (!plane_config->fb)
2621                 return;
2622
2623         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2624                 fb = &plane_config->fb->base;
2625                 goto valid_fb;
2626         }
2627
2628         kfree(plane_config->fb);
2629
2630         /*
2631          * Failed to alloc the obj, check to see if we should share
2632          * an fb with another CRTC instead
2633          */
2634         for_each_crtc(dev, c) {
2635                 i = to_intel_crtc(c);
2636
2637                 if (c == &intel_crtc->base)
2638                         continue;
2639
2640                 if (!i->active)
2641                         continue;
2642
2643                 fb = c->primary->fb;
2644                 if (!fb)
2645                         continue;
2646
2647                 obj = intel_fb_obj(fb);
2648                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2649                         drm_framebuffer_reference(fb);
2650                         goto valid_fb;
2651                 }
2652         }
2653
2654         /*
2655          * We've failed to reconstruct the BIOS FB.  Current display state
2656          * indicates that the primary plane is visible, but has a NULL FB,
2657          * which will lead to problems later if we don't fix it up.  The
2658          * simplest solution is to just disable the primary plane now and
2659          * pretend the BIOS never had it enabled.
2660          */
2661         to_intel_plane_state(plane_state)->visible = false;
2662         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2663         intel_pre_disable_primary(&intel_crtc->base);
2664         intel_plane->disable_plane(primary, &intel_crtc->base);
2665
2666         return;
2667
2668 valid_fb:
2669         plane_state->src_x = 0;
2670         plane_state->src_y = 0;
2671         plane_state->src_w = fb->width << 16;
2672         plane_state->src_h = fb->height << 16;
2673
2674         plane_state->crtc_x = 0;
2675         plane_state->crtc_y = 0;
2676         plane_state->crtc_w = fb->width;
2677         plane_state->crtc_h = fb->height;
2678
2679         intel_state->src.x1 = plane_state->src_x;
2680         intel_state->src.y1 = plane_state->src_y;
2681         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2682         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2683         intel_state->dst.x1 = plane_state->crtc_x;
2684         intel_state->dst.y1 = plane_state->crtc_y;
2685         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2686         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2687
2688         obj = intel_fb_obj(fb);
2689         if (obj->tiling_mode != I915_TILING_NONE)
2690                 dev_priv->preserve_bios_swizzle = true;
2691
2692         drm_framebuffer_reference(fb);
2693         primary->fb = primary->state->fb = fb;
2694         primary->crtc = primary->state->crtc = &intel_crtc->base;
2695         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2696         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2697 }
2698
2699 static void i9xx_update_primary_plane(struct drm_plane *primary,
2700                                       const struct intel_crtc_state *crtc_state,
2701                                       const struct intel_plane_state *plane_state)
2702 {
2703         struct drm_device *dev = primary->dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2706         struct drm_framebuffer *fb = plane_state->base.fb;
2707         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2708         int plane = intel_crtc->plane;
2709         u32 linear_offset;
2710         u32 dspcntr;
2711         i915_reg_t reg = DSPCNTR(plane);
2712         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2713         int x = plane_state->src.x1 >> 16;
2714         int y = plane_state->src.y1 >> 16;
2715
2716         dspcntr = DISPPLANE_GAMMA_ENABLE;
2717
2718         dspcntr |= DISPLAY_PLANE_ENABLE;
2719
2720         if (INTEL_INFO(dev)->gen < 4) {
2721                 if (intel_crtc->pipe == PIPE_B)
2722                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2723
2724                 /* pipesrc and dspsize control the size that is scaled from,
2725                  * which should always be the user's requested size.
2726                  */
2727                 I915_WRITE(DSPSIZE(plane),
2728                            ((crtc_state->pipe_src_h - 1) << 16) |
2729                            (crtc_state->pipe_src_w - 1));
2730                 I915_WRITE(DSPPOS(plane), 0);
2731         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2732                 I915_WRITE(PRIMSIZE(plane),
2733                            ((crtc_state->pipe_src_h - 1) << 16) |
2734                            (crtc_state->pipe_src_w - 1));
2735                 I915_WRITE(PRIMPOS(plane), 0);
2736                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2737         }
2738
2739         switch (fb->pixel_format) {
2740         case DRM_FORMAT_C8:
2741                 dspcntr |= DISPPLANE_8BPP;
2742                 break;
2743         case DRM_FORMAT_XRGB1555:
2744                 dspcntr |= DISPPLANE_BGRX555;
2745                 break;
2746         case DRM_FORMAT_RGB565:
2747                 dspcntr |= DISPPLANE_BGRX565;
2748                 break;
2749         case DRM_FORMAT_XRGB8888:
2750                 dspcntr |= DISPPLANE_BGRX888;
2751                 break;
2752         case DRM_FORMAT_XBGR8888:
2753                 dspcntr |= DISPPLANE_RGBX888;
2754                 break;
2755         case DRM_FORMAT_XRGB2101010:
2756                 dspcntr |= DISPPLANE_BGRX101010;
2757                 break;
2758         case DRM_FORMAT_XBGR2101010:
2759                 dspcntr |= DISPPLANE_RGBX101010;
2760                 break;
2761         default:
2762                 BUG();
2763         }
2764
2765         if (INTEL_INFO(dev)->gen >= 4 &&
2766             obj->tiling_mode != I915_TILING_NONE)
2767                 dspcntr |= DISPPLANE_TILED;
2768
2769         if (IS_G4X(dev))
2770                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2771
2772         linear_offset = y * fb->pitches[0] + x * cpp;
2773
2774         if (INTEL_INFO(dev)->gen >= 4) {
2775                 intel_crtc->dspaddr_offset =
2776                         intel_compute_tile_offset(dev_priv, &x, &y,
2777                                                   fb->modifier[0], cpp,
2778                                                   fb->pitches[0]);
2779                 linear_offset -= intel_crtc->dspaddr_offset;
2780         } else {
2781                 intel_crtc->dspaddr_offset = linear_offset;
2782         }
2783
2784         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2785                 dspcntr |= DISPPLANE_ROTATE_180;
2786
2787                 x += (crtc_state->pipe_src_w - 1);
2788                 y += (crtc_state->pipe_src_h - 1);
2789
2790                 /* Finding the last pixel of the last line of the display
2791                 data and adding to linear_offset*/
2792                 linear_offset +=
2793                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2794                         (crtc_state->pipe_src_w - 1) * cpp;
2795         }
2796
2797         intel_crtc->adjusted_x = x;
2798         intel_crtc->adjusted_y = y;
2799
2800         I915_WRITE(reg, dspcntr);
2801
2802         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2803         if (INTEL_INFO(dev)->gen >= 4) {
2804                 I915_WRITE(DSPSURF(plane),
2805                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2806                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2807                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2808         } else
2809                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2810         POSTING_READ(reg);
2811 }
2812
2813 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2814                                        struct drm_crtc *crtc)
2815 {
2816         struct drm_device *dev = crtc->dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819         int plane = intel_crtc->plane;
2820
2821         I915_WRITE(DSPCNTR(plane), 0);
2822         if (INTEL_INFO(dev_priv)->gen >= 4)
2823                 I915_WRITE(DSPSURF(plane), 0);
2824         else
2825                 I915_WRITE(DSPADDR(plane), 0);
2826         POSTING_READ(DSPCNTR(plane));
2827 }
2828
2829 static void ironlake_update_primary_plane(struct drm_plane *primary,
2830                                           const struct intel_crtc_state *crtc_state,
2831                                           const struct intel_plane_state *plane_state)
2832 {
2833         struct drm_device *dev = primary->dev;
2834         struct drm_i915_private *dev_priv = dev->dev_private;
2835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2836         struct drm_framebuffer *fb = plane_state->base.fb;
2837         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2838         int plane = intel_crtc->plane;
2839         u32 linear_offset;
2840         u32 dspcntr;
2841         i915_reg_t reg = DSPCNTR(plane);
2842         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2843         int x = plane_state->src.x1 >> 16;
2844         int y = plane_state->src.y1 >> 16;
2845
2846         dspcntr = DISPPLANE_GAMMA_ENABLE;
2847         dspcntr |= DISPLAY_PLANE_ENABLE;
2848
2849         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2850                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2851
2852         switch (fb->pixel_format) {
2853         case DRM_FORMAT_C8:
2854                 dspcntr |= DISPPLANE_8BPP;
2855                 break;
2856         case DRM_FORMAT_RGB565:
2857                 dspcntr |= DISPPLANE_BGRX565;
2858                 break;
2859         case DRM_FORMAT_XRGB8888:
2860                 dspcntr |= DISPPLANE_BGRX888;
2861                 break;
2862         case DRM_FORMAT_XBGR8888:
2863                 dspcntr |= DISPPLANE_RGBX888;
2864                 break;
2865         case DRM_FORMAT_XRGB2101010:
2866                 dspcntr |= DISPPLANE_BGRX101010;
2867                 break;
2868         case DRM_FORMAT_XBGR2101010:
2869                 dspcntr |= DISPPLANE_RGBX101010;
2870                 break;
2871         default:
2872                 BUG();
2873         }
2874
2875         if (obj->tiling_mode != I915_TILING_NONE)
2876                 dspcntr |= DISPPLANE_TILED;
2877
2878         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2879                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2880
2881         linear_offset = y * fb->pitches[0] + x * cpp;
2882         intel_crtc->dspaddr_offset =
2883                 intel_compute_tile_offset(dev_priv, &x, &y,
2884                                           fb->modifier[0], cpp,
2885                                           fb->pitches[0]);
2886         linear_offset -= intel_crtc->dspaddr_offset;
2887         if (plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
2888                 dspcntr |= DISPPLANE_ROTATE_180;
2889
2890                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2891                         x += (crtc_state->pipe_src_w - 1);
2892                         y += (crtc_state->pipe_src_h - 1);
2893
2894                         /* Finding the last pixel of the last line of the display
2895                         data and adding to linear_offset*/
2896                         linear_offset +=
2897                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2898                                 (crtc_state->pipe_src_w - 1) * cpp;
2899                 }
2900         }
2901
2902         intel_crtc->adjusted_x = x;
2903         intel_crtc->adjusted_y = y;
2904
2905         I915_WRITE(reg, dspcntr);
2906
2907         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2908         I915_WRITE(DSPSURF(plane),
2909                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2910         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2911                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2912         } else {
2913                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2914                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2915         }
2916         POSTING_READ(reg);
2917 }
2918
2919 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2920                               uint64_t fb_modifier, uint32_t pixel_format)
2921 {
2922         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2923                 return 64;
2924         } else {
2925                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2926
2927                 return intel_tile_width(dev_priv, fb_modifier, cpp);
2928         }
2929 }
2930
2931 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2932                            struct drm_i915_gem_object *obj,
2933                            unsigned int plane)
2934 {
2935         struct i915_ggtt_view view;
2936         struct i915_vma *vma;
2937         u64 offset;
2938
2939         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2940                                 intel_plane->base.state);
2941
2942         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2943         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2944                 view.type))
2945                 return -1;
2946
2947         offset = vma->node.start;
2948
2949         if (plane == 1) {
2950                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2951                           PAGE_SIZE;
2952         }
2953
2954         WARN_ON(upper_32_bits(offset));
2955
2956         return lower_32_bits(offset);
2957 }
2958
2959 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2960 {
2961         struct drm_device *dev = intel_crtc->base.dev;
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963
2964         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2965         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2966         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2967 }
2968
2969 /*
2970  * This function detaches (aka. unbinds) unused scalers in hardware
2971  */
2972 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2973 {
2974         struct intel_crtc_scaler_state *scaler_state;
2975         int i;
2976
2977         scaler_state = &intel_crtc->config->scaler_state;
2978
2979         /* loop through and disable scalers that aren't in use */
2980         for (i = 0; i < intel_crtc->num_scalers; i++) {
2981                 if (!scaler_state->scalers[i].in_use)
2982                         skl_detach_scaler(intel_crtc, i);
2983         }
2984 }
2985
2986 u32 skl_plane_ctl_format(uint32_t pixel_format)
2987 {
2988         switch (pixel_format) {
2989         case DRM_FORMAT_C8:
2990                 return PLANE_CTL_FORMAT_INDEXED;
2991         case DRM_FORMAT_RGB565:
2992                 return PLANE_CTL_FORMAT_RGB_565;
2993         case DRM_FORMAT_XBGR8888:
2994                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2995         case DRM_FORMAT_XRGB8888:
2996                 return PLANE_CTL_FORMAT_XRGB_8888;
2997         /*
2998          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2999          * to be already pre-multiplied. We need to add a knob (or a different
3000          * DRM_FORMAT) for user-space to configure that.
3001          */
3002         case DRM_FORMAT_ABGR8888:
3003                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3004                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3005         case DRM_FORMAT_ARGB8888:
3006                 return PLANE_CTL_FORMAT_XRGB_8888 |
3007                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3008         case DRM_FORMAT_XRGB2101010:
3009                 return PLANE_CTL_FORMAT_XRGB_2101010;
3010         case DRM_FORMAT_XBGR2101010:
3011                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3012         case DRM_FORMAT_YUYV:
3013                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3014         case DRM_FORMAT_YVYU:
3015                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3016         case DRM_FORMAT_UYVY:
3017                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3018         case DRM_FORMAT_VYUY:
3019                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3020         default:
3021                 MISSING_CASE(pixel_format);
3022         }
3023
3024         return 0;
3025 }
3026
3027 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3028 {
3029         switch (fb_modifier) {
3030         case DRM_FORMAT_MOD_NONE:
3031                 break;
3032         case I915_FORMAT_MOD_X_TILED:
3033                 return PLANE_CTL_TILED_X;
3034         case I915_FORMAT_MOD_Y_TILED:
3035                 return PLANE_CTL_TILED_Y;
3036         case I915_FORMAT_MOD_Yf_TILED:
3037                 return PLANE_CTL_TILED_YF;
3038         default:
3039                 MISSING_CASE(fb_modifier);
3040         }
3041
3042         return 0;
3043 }
3044
3045 u32 skl_plane_ctl_rotation(unsigned int rotation)
3046 {
3047         switch (rotation) {
3048         case BIT(DRM_ROTATE_0):
3049                 break;
3050         /*
3051          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3052          * while i915 HW rotation is clockwise, thats why this swapping.
3053          */
3054         case BIT(DRM_ROTATE_90):
3055                 return PLANE_CTL_ROTATE_270;
3056         case BIT(DRM_ROTATE_180):
3057                 return PLANE_CTL_ROTATE_180;
3058         case BIT(DRM_ROTATE_270):
3059                 return PLANE_CTL_ROTATE_90;
3060         default:
3061                 MISSING_CASE(rotation);
3062         }
3063
3064         return 0;
3065 }
3066
3067 static void skylake_update_primary_plane(struct drm_plane *plane,
3068                                          const struct intel_crtc_state *crtc_state,
3069                                          const struct intel_plane_state *plane_state)
3070 {
3071         struct drm_device *dev = plane->dev;
3072         struct drm_i915_private *dev_priv = dev->dev_private;
3073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3074         struct drm_framebuffer *fb = plane_state->base.fb;
3075         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3076         int pipe = intel_crtc->pipe;
3077         u32 plane_ctl, stride_div, stride;
3078         u32 tile_height, plane_offset, plane_size;
3079         unsigned int rotation = plane_state->base.rotation;
3080         int x_offset, y_offset;
3081         u32 surf_addr;
3082         int scaler_id = plane_state->scaler_id;
3083         int src_x = plane_state->src.x1 >> 16;
3084         int src_y = plane_state->src.y1 >> 16;
3085         int src_w = drm_rect_width(&plane_state->src) >> 16;
3086         int src_h = drm_rect_height(&plane_state->src) >> 16;
3087         int dst_x = plane_state->dst.x1;
3088         int dst_y = plane_state->dst.y1;
3089         int dst_w = drm_rect_width(&plane_state->dst);
3090         int dst_h = drm_rect_height(&plane_state->dst);
3091
3092         plane_ctl = PLANE_CTL_ENABLE |
3093                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3094                     PLANE_CTL_PIPE_CSC_ENABLE;
3095
3096         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3097         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3098         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3099         plane_ctl |= skl_plane_ctl_rotation(rotation);
3100
3101         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3102                                                fb->pixel_format);
3103         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3104
3105         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3106
3107         if (intel_rotation_90_or_270(rotation)) {
3108                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3109
3110                 /* stride = Surface height in tiles */
3111                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3112                 stride = DIV_ROUND_UP(fb->height, tile_height);
3113                 x_offset = stride * tile_height - src_y - src_h;
3114                 y_offset = src_x;
3115                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3116         } else {
3117                 stride = fb->pitches[0] / stride_div;
3118                 x_offset = src_x;
3119                 y_offset = src_y;
3120                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3121         }
3122         plane_offset = y_offset << 16 | x_offset;
3123
3124         intel_crtc->adjusted_x = x_offset;
3125         intel_crtc->adjusted_y = y_offset;
3126
3127         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3128         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3129         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3130         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3131
3132         if (scaler_id >= 0) {
3133                 uint32_t ps_ctrl = 0;
3134
3135                 WARN_ON(!dst_w || !dst_h);
3136                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3137                         crtc_state->scaler_state.scalers[scaler_id].mode;
3138                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3139                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3140                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3141                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3142                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3143         } else {
3144                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3145         }
3146
3147         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3148
3149         POSTING_READ(PLANE_SURF(pipe, 0));
3150 }
3151
3152 static void skylake_disable_primary_plane(struct drm_plane *primary,
3153                                           struct drm_crtc *crtc)
3154 {
3155         struct drm_device *dev = crtc->dev;
3156         struct drm_i915_private *dev_priv = dev->dev_private;
3157         int pipe = to_intel_crtc(crtc)->pipe;
3158
3159         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3160         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3161         POSTING_READ(PLANE_SURF(pipe, 0));
3162 }
3163
3164 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3165 static int
3166 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3167                            int x, int y, enum mode_set_atomic state)
3168 {
3169         /* Support for kgdboc is disabled, this needs a major rework. */
3170         DRM_ERROR("legacy panic handler not supported any more.\n");
3171
3172         return -ENODEV;
3173 }
3174
3175 static void intel_complete_page_flips(struct drm_device *dev)
3176 {
3177         struct drm_crtc *crtc;
3178
3179         for_each_crtc(dev, crtc) {
3180                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181                 enum plane plane = intel_crtc->plane;
3182
3183                 intel_prepare_page_flip(dev, plane);
3184                 intel_finish_page_flip_plane(dev, plane);
3185         }
3186 }
3187
3188 static void intel_update_primary_planes(struct drm_device *dev)
3189 {
3190         struct drm_crtc *crtc;
3191
3192         for_each_crtc(dev, crtc) {
3193                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3194                 struct intel_plane_state *plane_state;
3195
3196                 drm_modeset_lock_crtc(crtc, &plane->base);
3197                 plane_state = to_intel_plane_state(plane->base.state);
3198
3199                 if (plane_state->visible)
3200                         plane->update_plane(&plane->base,
3201                                             to_intel_crtc_state(crtc->state),
3202                                             plane_state);
3203
3204                 drm_modeset_unlock_crtc(crtc);
3205         }
3206 }
3207
3208 void intel_prepare_reset(struct drm_device *dev)
3209 {
3210         /* no reset support for gen2 */
3211         if (IS_GEN2(dev))
3212                 return;
3213
3214         /* reset doesn't touch the display */
3215         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3216                 return;
3217
3218         drm_modeset_lock_all(dev);
3219         /*
3220          * Disabling the crtcs gracefully seems nicer. Also the
3221          * g33 docs say we should at least disable all the planes.
3222          */
3223         intel_display_suspend(dev);
3224 }
3225
3226 void intel_finish_reset(struct drm_device *dev)
3227 {
3228         struct drm_i915_private *dev_priv = to_i915(dev);
3229
3230         /*
3231          * Flips in the rings will be nuked by the reset,
3232          * so complete all pending flips so that user space
3233          * will get its events and not get stuck.
3234          */
3235         intel_complete_page_flips(dev);
3236
3237         /* no reset support for gen2 */
3238         if (IS_GEN2(dev))
3239                 return;
3240
3241         /* reset doesn't touch the display */
3242         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3243                 /*
3244                  * Flips in the rings have been nuked by the reset,
3245                  * so update the base address of all primary
3246                  * planes to the the last fb to make sure we're
3247                  * showing the correct fb after a reset.
3248                  *
3249                  * FIXME: Atomic will make this obsolete since we won't schedule
3250                  * CS-based flips (which might get lost in gpu resets) any more.
3251                  */
3252                 intel_update_primary_planes(dev);
3253                 return;
3254         }
3255
3256         /*
3257          * The display has been reset as well,
3258          * so need a full re-initialization.
3259          */
3260         intel_runtime_pm_disable_interrupts(dev_priv);
3261         intel_runtime_pm_enable_interrupts(dev_priv);
3262
3263         intel_modeset_init_hw(dev);
3264
3265         spin_lock_irq(&dev_priv->irq_lock);
3266         if (dev_priv->display.hpd_irq_setup)
3267                 dev_priv->display.hpd_irq_setup(dev);
3268         spin_unlock_irq(&dev_priv->irq_lock);
3269
3270         intel_display_resume(dev);
3271
3272         intel_hpd_init(dev_priv);
3273
3274         drm_modeset_unlock_all(dev);
3275 }
3276
3277 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3278 {
3279         struct drm_device *dev = crtc->dev;
3280         struct drm_i915_private *dev_priv = dev->dev_private;
3281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3282         bool pending;
3283
3284         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3285             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3286                 return false;
3287
3288         spin_lock_irq(&dev->event_lock);
3289         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3290         spin_unlock_irq(&dev->event_lock);
3291
3292         return pending;
3293 }
3294
3295 static void intel_update_pipe_config(struct intel_crtc *crtc,
3296                                      struct intel_crtc_state *old_crtc_state)
3297 {
3298         struct drm_device *dev = crtc->base.dev;
3299         struct drm_i915_private *dev_priv = dev->dev_private;
3300         struct intel_crtc_state *pipe_config =
3301                 to_intel_crtc_state(crtc->base.state);
3302
3303         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3304         crtc->base.mode = crtc->base.state->mode;
3305
3306         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3307                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3308                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3309
3310         if (HAS_DDI(dev))
3311                 intel_set_pipe_csc(&crtc->base);
3312
3313         /*
3314          * Update pipe size and adjust fitter if needed: the reason for this is
3315          * that in compute_mode_changes we check the native mode (not the pfit
3316          * mode) to see if we can flip rather than do a full mode set. In the
3317          * fastboot case, we'll flip, but if we don't update the pipesrc and
3318          * pfit state, we'll end up with a big fb scanned out into the wrong
3319          * sized surface.
3320          */
3321
3322         I915_WRITE(PIPESRC(crtc->pipe),
3323                    ((pipe_config->pipe_src_w - 1) << 16) |
3324                    (pipe_config->pipe_src_h - 1));
3325
3326         /* on skylake this is done by detaching scalers */
3327         if (INTEL_INFO(dev)->gen >= 9) {
3328                 skl_detach_scalers(crtc);
3329
3330                 if (pipe_config->pch_pfit.enabled)
3331                         skylake_pfit_enable(crtc);
3332         } else if (HAS_PCH_SPLIT(dev)) {
3333                 if (pipe_config->pch_pfit.enabled)
3334                         ironlake_pfit_enable(crtc);
3335                 else if (old_crtc_state->pch_pfit.enabled)
3336                         ironlake_pfit_disable(crtc, true);
3337         }
3338 }
3339
3340 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3341 {
3342         struct drm_device *dev = crtc->dev;
3343         struct drm_i915_private *dev_priv = dev->dev_private;
3344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3345         int pipe = intel_crtc->pipe;
3346         i915_reg_t reg;
3347         u32 temp;
3348
3349         /* enable normal train */
3350         reg = FDI_TX_CTL(pipe);
3351         temp = I915_READ(reg);
3352         if (IS_IVYBRIDGE(dev)) {
3353                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3354                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3355         } else {
3356                 temp &= ~FDI_LINK_TRAIN_NONE;
3357                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3358         }
3359         I915_WRITE(reg, temp);
3360
3361         reg = FDI_RX_CTL(pipe);
3362         temp = I915_READ(reg);
3363         if (HAS_PCH_CPT(dev)) {
3364                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3365                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3366         } else {
3367                 temp &= ~FDI_LINK_TRAIN_NONE;
3368                 temp |= FDI_LINK_TRAIN_NONE;
3369         }
3370         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3371
3372         /* wait one idle pattern time */
3373         POSTING_READ(reg);
3374         udelay(1000);
3375
3376         /* IVB wants error correction enabled */
3377         if (IS_IVYBRIDGE(dev))
3378                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3379                            FDI_FE_ERRC_ENABLE);
3380 }
3381
3382 /* The FDI link training functions for ILK/Ibexpeak. */
3383 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3384 {
3385         struct drm_device *dev = crtc->dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3388         int pipe = intel_crtc->pipe;
3389         i915_reg_t reg;
3390         u32 temp, tries;
3391
3392         /* FDI needs bits from pipe first */
3393         assert_pipe_enabled(dev_priv, pipe);
3394
3395         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3396            for train result */
3397         reg = FDI_RX_IMR(pipe);
3398         temp = I915_READ(reg);
3399         temp &= ~FDI_RX_SYMBOL_LOCK;
3400         temp &= ~FDI_RX_BIT_LOCK;
3401         I915_WRITE(reg, temp);
3402         I915_READ(reg);
3403         udelay(150);
3404
3405         /* enable CPU FDI TX and PCH FDI RX */
3406         reg = FDI_TX_CTL(pipe);
3407         temp = I915_READ(reg);
3408         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3409         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3410         temp &= ~FDI_LINK_TRAIN_NONE;
3411         temp |= FDI_LINK_TRAIN_PATTERN_1;
3412         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3413
3414         reg = FDI_RX_CTL(pipe);
3415         temp = I915_READ(reg);
3416         temp &= ~FDI_LINK_TRAIN_NONE;
3417         temp |= FDI_LINK_TRAIN_PATTERN_1;
3418         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3419
3420         POSTING_READ(reg);
3421         udelay(150);
3422
3423         /* Ironlake workaround, enable clock pointer after FDI enable*/
3424         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3425         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3426                    FDI_RX_PHASE_SYNC_POINTER_EN);
3427
3428         reg = FDI_RX_IIR(pipe);
3429         for (tries = 0; tries < 5; tries++) {
3430                 temp = I915_READ(reg);
3431                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3432
3433                 if ((temp & FDI_RX_BIT_LOCK)) {
3434                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3435                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3436                         break;
3437                 }
3438         }
3439         if (tries == 5)
3440                 DRM_ERROR("FDI train 1 fail!\n");
3441
3442         /* Train 2 */
3443         reg = FDI_TX_CTL(pipe);
3444         temp = I915_READ(reg);
3445         temp &= ~FDI_LINK_TRAIN_NONE;
3446         temp |= FDI_LINK_TRAIN_PATTERN_2;
3447         I915_WRITE(reg, temp);
3448
3449         reg = FDI_RX_CTL(pipe);
3450         temp = I915_READ(reg);
3451         temp &= ~FDI_LINK_TRAIN_NONE;
3452         temp |= FDI_LINK_TRAIN_PATTERN_2;
3453         I915_WRITE(reg, temp);
3454
3455         POSTING_READ(reg);
3456         udelay(150);
3457
3458         reg = FDI_RX_IIR(pipe);
3459         for (tries = 0; tries < 5; tries++) {
3460                 temp = I915_READ(reg);
3461                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3462
3463                 if (temp & FDI_RX_SYMBOL_LOCK) {
3464                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3465                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3466                         break;
3467                 }
3468         }
3469         if (tries == 5)
3470                 DRM_ERROR("FDI train 2 fail!\n");
3471
3472         DRM_DEBUG_KMS("FDI train done\n");
3473
3474 }
3475
3476 static const int snb_b_fdi_train_param[] = {
3477         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3478         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3479         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3480         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3481 };
3482
3483 /* The FDI link training functions for SNB/Cougarpoint. */
3484 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489         int pipe = intel_crtc->pipe;
3490         i915_reg_t reg;
3491         u32 temp, i, retry;
3492
3493         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3494            for train result */
3495         reg = FDI_RX_IMR(pipe);
3496         temp = I915_READ(reg);
3497         temp &= ~FDI_RX_SYMBOL_LOCK;
3498         temp &= ~FDI_RX_BIT_LOCK;
3499         I915_WRITE(reg, temp);
3500
3501         POSTING_READ(reg);
3502         udelay(150);
3503
3504         /* enable CPU FDI TX and PCH FDI RX */
3505         reg = FDI_TX_CTL(pipe);
3506         temp = I915_READ(reg);
3507         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3508         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3509         temp &= ~FDI_LINK_TRAIN_NONE;
3510         temp |= FDI_LINK_TRAIN_PATTERN_1;
3511         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3512         /* SNB-B */
3513         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3514         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3515
3516         I915_WRITE(FDI_RX_MISC(pipe),
3517                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3518
3519         reg = FDI_RX_CTL(pipe);
3520         temp = I915_READ(reg);
3521         if (HAS_PCH_CPT(dev)) {
3522                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3523                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3524         } else {
3525                 temp &= ~FDI_LINK_TRAIN_NONE;
3526                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3527         }
3528         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3529
3530         POSTING_READ(reg);
3531         udelay(150);
3532
3533         for (i = 0; i < 4; i++) {
3534                 reg = FDI_TX_CTL(pipe);
3535                 temp = I915_READ(reg);
3536                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3537                 temp |= snb_b_fdi_train_param[i];
3538                 I915_WRITE(reg, temp);
3539
3540                 POSTING_READ(reg);
3541                 udelay(500);
3542
3543                 for (retry = 0; retry < 5; retry++) {
3544                         reg = FDI_RX_IIR(pipe);
3545                         temp = I915_READ(reg);
3546                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3547                         if (temp & FDI_RX_BIT_LOCK) {
3548                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3549                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3550                                 break;
3551                         }
3552                         udelay(50);
3553                 }
3554                 if (retry < 5)
3555                         break;
3556         }
3557         if (i == 4)
3558                 DRM_ERROR("FDI train 1 fail!\n");
3559
3560         /* Train 2 */
3561         reg = FDI_TX_CTL(pipe);
3562         temp = I915_READ(reg);
3563         temp &= ~FDI_LINK_TRAIN_NONE;
3564         temp |= FDI_LINK_TRAIN_PATTERN_2;
3565         if (IS_GEN6(dev)) {
3566                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3567                 /* SNB-B */
3568                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3569         }
3570         I915_WRITE(reg, temp);
3571
3572         reg = FDI_RX_CTL(pipe);
3573         temp = I915_READ(reg);
3574         if (HAS_PCH_CPT(dev)) {
3575                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3576                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3577         } else {
3578                 temp &= ~FDI_LINK_TRAIN_NONE;
3579                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3580         }
3581         I915_WRITE(reg, temp);
3582
3583         POSTING_READ(reg);
3584         udelay(150);
3585
3586         for (i = 0; i < 4; i++) {
3587                 reg = FDI_TX_CTL(pipe);
3588                 temp = I915_READ(reg);
3589                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3590                 temp |= snb_b_fdi_train_param[i];
3591                 I915_WRITE(reg, temp);
3592
3593                 POSTING_READ(reg);
3594                 udelay(500);
3595
3596                 for (retry = 0; retry < 5; retry++) {
3597                         reg = FDI_RX_IIR(pipe);
3598                         temp = I915_READ(reg);
3599                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3600                         if (temp & FDI_RX_SYMBOL_LOCK) {
3601                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3602                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3603                                 break;
3604                         }
3605                         udelay(50);
3606                 }
3607                 if (retry < 5)
3608                         break;
3609         }
3610         if (i == 4)
3611                 DRM_ERROR("FDI train 2 fail!\n");
3612
3613         DRM_DEBUG_KMS("FDI train done.\n");
3614 }
3615
3616 /* Manual link training for Ivy Bridge A0 parts */
3617 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3618 {
3619         struct drm_device *dev = crtc->dev;
3620         struct drm_i915_private *dev_priv = dev->dev_private;
3621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3622         int pipe = intel_crtc->pipe;
3623         i915_reg_t reg;
3624         u32 temp, i, j;
3625
3626         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3627            for train result */
3628         reg = FDI_RX_IMR(pipe);
3629         temp = I915_READ(reg);
3630         temp &= ~FDI_RX_SYMBOL_LOCK;
3631         temp &= ~FDI_RX_BIT_LOCK;
3632         I915_WRITE(reg, temp);
3633
3634         POSTING_READ(reg);
3635         udelay(150);
3636
3637         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3638                       I915_READ(FDI_RX_IIR(pipe)));
3639
3640         /* Try each vswing and preemphasis setting twice before moving on */
3641         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3642                 /* disable first in case we need to retry */
3643                 reg = FDI_TX_CTL(pipe);
3644                 temp = I915_READ(reg);
3645                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3646                 temp &= ~FDI_TX_ENABLE;
3647                 I915_WRITE(reg, temp);
3648
3649                 reg = FDI_RX_CTL(pipe);
3650                 temp = I915_READ(reg);
3651                 temp &= ~FDI_LINK_TRAIN_AUTO;
3652                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3653                 temp &= ~FDI_RX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 /* enable CPU FDI TX and PCH FDI RX */
3657                 reg = FDI_TX_CTL(pipe);
3658                 temp = I915_READ(reg);
3659                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3660                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3661                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3662                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3663                 temp |= snb_b_fdi_train_param[j/2];
3664                 temp |= FDI_COMPOSITE_SYNC;
3665                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3666
3667                 I915_WRITE(FDI_RX_MISC(pipe),
3668                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3669
3670                 reg = FDI_RX_CTL(pipe);
3671                 temp = I915_READ(reg);
3672                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3673                 temp |= FDI_COMPOSITE_SYNC;
3674                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3675
3676                 POSTING_READ(reg);
3677                 udelay(1); /* should be 0.5us */
3678
3679                 for (i = 0; i < 4; i++) {
3680                         reg = FDI_RX_IIR(pipe);
3681                         temp = I915_READ(reg);
3682                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3683
3684                         if (temp & FDI_RX_BIT_LOCK ||
3685                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3686                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3687                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3688                                               i);
3689                                 break;
3690                         }
3691                         udelay(1); /* should be 0.5us */
3692                 }
3693                 if (i == 4) {
3694                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3695                         continue;
3696                 }
3697
3698                 /* Train 2 */
3699                 reg = FDI_TX_CTL(pipe);
3700                 temp = I915_READ(reg);
3701                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3702                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3703                 I915_WRITE(reg, temp);
3704
3705                 reg = FDI_RX_CTL(pipe);
3706                 temp = I915_READ(reg);
3707                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3708                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3709                 I915_WRITE(reg, temp);
3710
3711                 POSTING_READ(reg);
3712                 udelay(2); /* should be 1.5us */
3713
3714                 for (i = 0; i < 4; i++) {
3715                         reg = FDI_RX_IIR(pipe);
3716                         temp = I915_READ(reg);
3717                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3718
3719                         if (temp & FDI_RX_SYMBOL_LOCK ||
3720                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3721                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3722                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3723                                               i);
3724                                 goto train_done;
3725                         }
3726                         udelay(2); /* should be 1.5us */
3727                 }
3728                 if (i == 4)
3729                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3730         }
3731
3732 train_done:
3733         DRM_DEBUG_KMS("FDI train done.\n");
3734 }
3735
3736 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3737 {
3738         struct drm_device *dev = intel_crtc->base.dev;
3739         struct drm_i915_private *dev_priv = dev->dev_private;
3740         int pipe = intel_crtc->pipe;
3741         i915_reg_t reg;
3742         u32 temp;
3743
3744         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3745         reg = FDI_RX_CTL(pipe);
3746         temp = I915_READ(reg);
3747         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3748         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3749         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3750         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3751
3752         POSTING_READ(reg);
3753         udelay(200);
3754
3755         /* Switch from Rawclk to PCDclk */
3756         temp = I915_READ(reg);
3757         I915_WRITE(reg, temp | FDI_PCDCLK);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Enable CPU FDI TX PLL, always on for Ironlake */
3763         reg = FDI_TX_CTL(pipe);
3764         temp = I915_READ(reg);
3765         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3766                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3767
3768                 POSTING_READ(reg);
3769                 udelay(100);
3770         }
3771 }
3772
3773 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3774 {
3775         struct drm_device *dev = intel_crtc->base.dev;
3776         struct drm_i915_private *dev_priv = dev->dev_private;
3777         int pipe = intel_crtc->pipe;
3778         i915_reg_t reg;
3779         u32 temp;
3780
3781         /* Switch from PCDclk to Rawclk */
3782         reg = FDI_RX_CTL(pipe);
3783         temp = I915_READ(reg);
3784         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3785
3786         /* Disable CPU FDI TX PLL */
3787         reg = FDI_TX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3790
3791         POSTING_READ(reg);
3792         udelay(100);
3793
3794         reg = FDI_RX_CTL(pipe);
3795         temp = I915_READ(reg);
3796         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3797
3798         /* Wait for the clocks to turn off. */
3799         POSTING_READ(reg);
3800         udelay(100);
3801 }
3802
3803 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3804 {
3805         struct drm_device *dev = crtc->dev;
3806         struct drm_i915_private *dev_priv = dev->dev_private;
3807         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3808         int pipe = intel_crtc->pipe;
3809         i915_reg_t reg;
3810         u32 temp;
3811
3812         /* disable CPU FDI tx and PCH FDI rx */
3813         reg = FDI_TX_CTL(pipe);
3814         temp = I915_READ(reg);
3815         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3816         POSTING_READ(reg);
3817
3818         reg = FDI_RX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         temp &= ~(0x7 << 16);
3821         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3823
3824         POSTING_READ(reg);
3825         udelay(100);
3826
3827         /* Ironlake workaround, disable clock pointer after downing FDI */
3828         if (HAS_PCH_IBX(dev))
3829                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3830
3831         /* still set train pattern 1 */
3832         reg = FDI_TX_CTL(pipe);
3833         temp = I915_READ(reg);
3834         temp &= ~FDI_LINK_TRAIN_NONE;
3835         temp |= FDI_LINK_TRAIN_PATTERN_1;
3836         I915_WRITE(reg, temp);
3837
3838         reg = FDI_RX_CTL(pipe);
3839         temp = I915_READ(reg);
3840         if (HAS_PCH_CPT(dev)) {
3841                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3842                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3843         } else {
3844                 temp &= ~FDI_LINK_TRAIN_NONE;
3845                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846         }
3847         /* BPC in FDI rx is consistent with that in PIPECONF */
3848         temp &= ~(0x07 << 16);
3849         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3850         I915_WRITE(reg, temp);
3851
3852         POSTING_READ(reg);
3853         udelay(100);
3854 }
3855
3856 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3857 {
3858         struct intel_crtc *crtc;
3859
3860         /* Note that we don't need to be called with mode_config.lock here
3861          * as our list of CRTC objects is static for the lifetime of the
3862          * device and so cannot disappear as we iterate. Similarly, we can
3863          * happily treat the predicates as racy, atomic checks as userspace
3864          * cannot claim and pin a new fb without at least acquring the
3865          * struct_mutex and so serialising with us.
3866          */
3867         for_each_intel_crtc(dev, crtc) {
3868                 if (atomic_read(&crtc->unpin_work_count) == 0)
3869                         continue;
3870
3871                 if (crtc->unpin_work)
3872                         intel_wait_for_vblank(dev, crtc->pipe);
3873
3874                 return true;
3875         }
3876
3877         return false;
3878 }
3879
3880 static void page_flip_completed(struct intel_crtc *intel_crtc)
3881 {
3882         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3883         struct intel_unpin_work *work = intel_crtc->unpin_work;
3884
3885         /* ensure that the unpin work is consistent wrt ->pending. */
3886         smp_rmb();
3887         intel_crtc->unpin_work = NULL;
3888
3889         if (work->event)
3890                 drm_send_vblank_event(intel_crtc->base.dev,
3891                                       intel_crtc->pipe,
3892                                       work->event);
3893
3894         drm_crtc_vblank_put(&intel_crtc->base);
3895
3896         wake_up_all(&dev_priv->pending_flip_queue);
3897         queue_work(dev_priv->wq, &work->work);
3898
3899         trace_i915_flip_complete(intel_crtc->plane,
3900                                  work->pending_flip_obj);
3901 }
3902
3903 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3904 {
3905         struct drm_device *dev = crtc->dev;
3906         struct drm_i915_private *dev_priv = dev->dev_private;
3907         long ret;
3908
3909         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3910
3911         ret = wait_event_interruptible_timeout(
3912                                         dev_priv->pending_flip_queue,
3913                                         !intel_crtc_has_pending_flip(crtc),
3914                                         60*HZ);
3915
3916         if (ret < 0)
3917                 return ret;
3918
3919         if (ret == 0) {
3920                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3921
3922                 spin_lock_irq(&dev->event_lock);
3923                 if (intel_crtc->unpin_work) {
3924                         WARN_ONCE(1, "Removing stuck page flip\n");
3925                         page_flip_completed(intel_crtc);
3926                 }
3927                 spin_unlock_irq(&dev->event_lock);
3928         }
3929
3930         return 0;
3931 }
3932
3933 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3934 {
3935         u32 temp;
3936
3937         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3938
3939         mutex_lock(&dev_priv->sb_lock);
3940
3941         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3942         temp |= SBI_SSCCTL_DISABLE;
3943         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3944
3945         mutex_unlock(&dev_priv->sb_lock);
3946 }
3947
3948 /* Program iCLKIP clock to the desired frequency */
3949 static void lpt_program_iclkip(struct drm_crtc *crtc)
3950 {
3951         struct drm_device *dev = crtc->dev;
3952         struct drm_i915_private *dev_priv = dev->dev_private;
3953         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3954         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3955         u32 temp;
3956
3957         lpt_disable_iclkip(dev_priv);
3958
3959         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3960         if (clock == 20000) {
3961                 auxdiv = 1;
3962                 divsel = 0x41;
3963                 phaseinc = 0x20;
3964         } else {
3965                 /* The iCLK virtual clock root frequency is in MHz,
3966                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3967                  * divisors, it is necessary to divide one by another, so we
3968                  * convert the virtual clock precision to KHz here for higher
3969                  * precision.
3970                  */
3971                 u32 iclk_virtual_root_freq = 172800 * 1000;
3972                 u32 iclk_pi_range = 64;
3973                 u32 desired_divisor, msb_divisor_value, pi_value;
3974
3975                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq, clock);
3976                 msb_divisor_value = desired_divisor / iclk_pi_range;
3977                 pi_value = desired_divisor % iclk_pi_range;
3978
3979                 auxdiv = 0;
3980                 divsel = msb_divisor_value - 2;
3981                 phaseinc = pi_value;
3982         }
3983
3984         /* This should not happen with any sane values */
3985         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3986                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3987         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3988                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3989
3990         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3991                         clock,
3992                         auxdiv,
3993                         divsel,
3994                         phasedir,
3995                         phaseinc);
3996
3997         mutex_lock(&dev_priv->sb_lock);
3998
3999         /* Program SSCDIVINTPHASE6 */
4000         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4001         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4002         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4003         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4004         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4005         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4006         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4007         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4008
4009         /* Program SSCAUXDIV */
4010         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4011         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4012         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4013         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4014
4015         /* Enable modulator and associated divider */
4016         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4017         temp &= ~SBI_SSCCTL_DISABLE;
4018         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4019
4020         mutex_unlock(&dev_priv->sb_lock);
4021
4022         /* Wait for initialization time */
4023         udelay(24);
4024
4025         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4026 }
4027
4028 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4029                                                 enum pipe pch_transcoder)
4030 {
4031         struct drm_device *dev = crtc->base.dev;
4032         struct drm_i915_private *dev_priv = dev->dev_private;
4033         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4034
4035         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4036                    I915_READ(HTOTAL(cpu_transcoder)));
4037         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4038                    I915_READ(HBLANK(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4040                    I915_READ(HSYNC(cpu_transcoder)));
4041
4042         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4043                    I915_READ(VTOTAL(cpu_transcoder)));
4044         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4045                    I915_READ(VBLANK(cpu_transcoder)));
4046         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4047                    I915_READ(VSYNC(cpu_transcoder)));
4048         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4049                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4050 }
4051
4052 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4053 {
4054         struct drm_i915_private *dev_priv = dev->dev_private;
4055         uint32_t temp;
4056
4057         temp = I915_READ(SOUTH_CHICKEN1);
4058         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4059                 return;
4060
4061         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4062         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4063
4064         temp &= ~FDI_BC_BIFURCATION_SELECT;
4065         if (enable)
4066                 temp |= FDI_BC_BIFURCATION_SELECT;
4067
4068         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4069         I915_WRITE(SOUTH_CHICKEN1, temp);
4070         POSTING_READ(SOUTH_CHICKEN1);
4071 }
4072
4073 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4074 {
4075         struct drm_device *dev = intel_crtc->base.dev;
4076
4077         switch (intel_crtc->pipe) {
4078         case PIPE_A:
4079                 break;
4080         case PIPE_B:
4081                 if (intel_crtc->config->fdi_lanes > 2)
4082                         cpt_set_fdi_bc_bifurcation(dev, false);
4083                 else
4084                         cpt_set_fdi_bc_bifurcation(dev, true);
4085
4086                 break;
4087         case PIPE_C:
4088                 cpt_set_fdi_bc_bifurcation(dev, true);
4089
4090                 break;
4091         default:
4092                 BUG();
4093         }
4094 }
4095
4096 /* Return which DP Port should be selected for Transcoder DP control */
4097 static enum port
4098 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4099 {
4100         struct drm_device *dev = crtc->dev;
4101         struct intel_encoder *encoder;
4102
4103         for_each_encoder_on_crtc(dev, crtc, encoder) {
4104                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4105                     encoder->type == INTEL_OUTPUT_EDP)
4106                         return enc_to_dig_port(&encoder->base)->port;
4107         }
4108
4109         return -1;
4110 }
4111
4112 /*
4113  * Enable PCH resources required for PCH ports:
4114  *   - PCH PLLs
4115  *   - FDI training & RX/TX
4116  *   - update transcoder timings
4117  *   - DP transcoding bits
4118  *   - transcoder
4119  */
4120 static void ironlake_pch_enable(struct drm_crtc *crtc)
4121 {
4122         struct drm_device *dev = crtc->dev;
4123         struct drm_i915_private *dev_priv = dev->dev_private;
4124         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4125         int pipe = intel_crtc->pipe;
4126         u32 temp;
4127
4128         assert_pch_transcoder_disabled(dev_priv, pipe);
4129
4130         if (IS_IVYBRIDGE(dev))
4131                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4132
4133         /* Write the TU size bits before fdi link training, so that error
4134          * detection works. */
4135         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4136                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4137
4138         /*
4139          * Sometimes spurious CPU pipe underruns happen during FDI
4140          * training, at least with VGA+HDMI cloning. Suppress them.
4141          */
4142         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4143
4144         /* For PCH output, training FDI link */
4145         dev_priv->display.fdi_link_train(crtc);
4146
4147         /* We need to program the right clock selection before writing the pixel
4148          * mutliplier into the DPLL. */
4149         if (HAS_PCH_CPT(dev)) {
4150                 u32 sel;
4151
4152                 temp = I915_READ(PCH_DPLL_SEL);
4153                 temp |= TRANS_DPLL_ENABLE(pipe);
4154                 sel = TRANS_DPLLB_SEL(pipe);
4155                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4156                         temp |= sel;
4157                 else
4158                         temp &= ~sel;
4159                 I915_WRITE(PCH_DPLL_SEL, temp);
4160         }
4161
4162         /* XXX: pch pll's can be enabled any time before we enable the PCH
4163          * transcoder, and we actually should do this to not upset any PCH
4164          * transcoder that already use the clock when we share it.
4165          *
4166          * Note that enable_shared_dpll tries to do the right thing, but
4167          * get_shared_dpll unconditionally resets the pll - we need that to have
4168          * the right LVDS enable sequence. */
4169         intel_enable_shared_dpll(intel_crtc);
4170
4171         /* set transcoder timing, panel must allow it */
4172         assert_panel_unlocked(dev_priv, pipe);
4173         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4174
4175         intel_fdi_normal_train(crtc);
4176
4177         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4178
4179         /* For PCH DP, enable TRANS_DP_CTL */
4180         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4181                 const struct drm_display_mode *adjusted_mode =
4182                         &intel_crtc->config->base.adjusted_mode;
4183                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4184                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4185                 temp = I915_READ(reg);
4186                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4187                           TRANS_DP_SYNC_MASK |
4188                           TRANS_DP_BPC_MASK);
4189                 temp |= TRANS_DP_OUTPUT_ENABLE;
4190                 temp |= bpc << 9; /* same format but at 11:9 */
4191
4192                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4193                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4194                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4195                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4196
4197                 switch (intel_trans_dp_port_sel(crtc)) {
4198                 case PORT_B:
4199                         temp |= TRANS_DP_PORT_SEL_B;
4200                         break;
4201                 case PORT_C:
4202                         temp |= TRANS_DP_PORT_SEL_C;
4203                         break;
4204                 case PORT_D:
4205                         temp |= TRANS_DP_PORT_SEL_D;
4206                         break;
4207                 default:
4208                         BUG();
4209                 }
4210
4211                 I915_WRITE(reg, temp);
4212         }
4213
4214         ironlake_enable_pch_transcoder(dev_priv, pipe);
4215 }
4216
4217 static void lpt_pch_enable(struct drm_crtc *crtc)
4218 {
4219         struct drm_device *dev = crtc->dev;
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4223
4224         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4225
4226         lpt_program_iclkip(crtc);
4227
4228         /* Set transcoder timing. */
4229         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4230
4231         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4232 }
4233
4234 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4235                                                 struct intel_crtc_state *crtc_state)
4236 {
4237         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4238         struct intel_shared_dpll *pll;
4239         struct intel_shared_dpll_config *shared_dpll;
4240         enum intel_dpll_id i;
4241         int max = dev_priv->num_shared_dpll;
4242
4243         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4244
4245         if (HAS_PCH_IBX(dev_priv->dev)) {
4246                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4247                 i = (enum intel_dpll_id) crtc->pipe;
4248                 pll = &dev_priv->shared_dplls[i];
4249
4250                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4251                               crtc->base.base.id, pll->name);
4252
4253                 WARN_ON(shared_dpll[i].crtc_mask);
4254
4255                 goto found;
4256         }
4257
4258         if (IS_BROXTON(dev_priv->dev)) {
4259                 /* PLL is attached to port in bxt */
4260                 struct intel_encoder *encoder;
4261                 struct intel_digital_port *intel_dig_port;
4262
4263                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4264                 if (WARN_ON(!encoder))
4265                         return NULL;
4266
4267                 intel_dig_port = enc_to_dig_port(&encoder->base);
4268                 /* 1:1 mapping between ports and PLLs */
4269                 i = (enum intel_dpll_id)intel_dig_port->port;
4270                 pll = &dev_priv->shared_dplls[i];
4271                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4272                         crtc->base.base.id, pll->name);
4273                 WARN_ON(shared_dpll[i].crtc_mask);
4274
4275                 goto found;
4276         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4277                 /* Do not consider SPLL */
4278                 max = 2;
4279
4280         for (i = 0; i < max; i++) {
4281                 pll = &dev_priv->shared_dplls[i];
4282
4283                 /* Only want to check enabled timings first */
4284                 if (shared_dpll[i].crtc_mask == 0)
4285                         continue;
4286
4287                 if (memcmp(&crtc_state->dpll_hw_state,
4288                            &shared_dpll[i].hw_state,
4289                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4290                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4291                                       crtc->base.base.id, pll->name,
4292                                       shared_dpll[i].crtc_mask,
4293                                       pll->active);
4294                         goto found;
4295                 }
4296         }
4297
4298         /* Ok no matching timings, maybe there's a free one? */
4299         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4300                 pll = &dev_priv->shared_dplls[i];
4301                 if (shared_dpll[i].crtc_mask == 0) {
4302                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4303                                       crtc->base.base.id, pll->name);
4304                         goto found;
4305                 }
4306         }
4307
4308         return NULL;
4309
4310 found:
4311         if (shared_dpll[i].crtc_mask == 0)
4312                 shared_dpll[i].hw_state =
4313                         crtc_state->dpll_hw_state;
4314
4315         crtc_state->shared_dpll = i;
4316         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4317                          pipe_name(crtc->pipe));
4318
4319         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4320
4321         return pll;
4322 }
4323
4324 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4325 {
4326         struct drm_i915_private *dev_priv = to_i915(state->dev);
4327         struct intel_shared_dpll_config *shared_dpll;
4328         struct intel_shared_dpll *pll;
4329         enum intel_dpll_id i;
4330
4331         if (!to_intel_atomic_state(state)->dpll_set)
4332                 return;
4333
4334         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4335         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4336                 pll = &dev_priv->shared_dplls[i];
4337                 pll->config = shared_dpll[i];
4338         }
4339 }
4340
4341 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4342 {
4343         struct drm_i915_private *dev_priv = dev->dev_private;
4344         i915_reg_t dslreg = PIPEDSL(pipe);
4345         u32 temp;
4346
4347         temp = I915_READ(dslreg);
4348         udelay(500);
4349         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4350                 if (wait_for(I915_READ(dslreg) != temp, 5))
4351                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4352         }
4353 }
4354
4355 static int
4356 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4357                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4358                   int src_w, int src_h, int dst_w, int dst_h)
4359 {
4360         struct intel_crtc_scaler_state *scaler_state =
4361                 &crtc_state->scaler_state;
4362         struct intel_crtc *intel_crtc =
4363                 to_intel_crtc(crtc_state->base.crtc);
4364         int need_scaling;
4365
4366         need_scaling = intel_rotation_90_or_270(rotation) ?
4367                 (src_h != dst_w || src_w != dst_h):
4368                 (src_w != dst_w || src_h != dst_h);
4369
4370         /*
4371          * if plane is being disabled or scaler is no more required or force detach
4372          *  - free scaler binded to this plane/crtc
4373          *  - in order to do this, update crtc->scaler_usage
4374          *
4375          * Here scaler state in crtc_state is set free so that
4376          * scaler can be assigned to other user. Actual register
4377          * update to free the scaler is done in plane/panel-fit programming.
4378          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4379          */
4380         if (force_detach || !need_scaling) {
4381                 if (*scaler_id >= 0) {
4382                         scaler_state->scaler_users &= ~(1 << scaler_user);
4383                         scaler_state->scalers[*scaler_id].in_use = 0;
4384
4385                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4386                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4387                                 intel_crtc->pipe, scaler_user, *scaler_id,
4388                                 scaler_state->scaler_users);
4389                         *scaler_id = -1;
4390                 }
4391                 return 0;
4392         }
4393
4394         /* range checks */
4395         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4396                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4397
4398                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4399                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4400                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4401                         "size is out of scaler range\n",
4402                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4403                 return -EINVAL;
4404         }
4405
4406         /* mark this plane as a scaler user in crtc_state */
4407         scaler_state->scaler_users |= (1 << scaler_user);
4408         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4409                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4410                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4411                 scaler_state->scaler_users);
4412
4413         return 0;
4414 }
4415
4416 /**
4417  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4418  *
4419  * @state: crtc's scaler state
4420  *
4421  * Return
4422  *     0 - scaler_usage updated successfully
4423  *    error - requested scaling cannot be supported or other error condition
4424  */
4425 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4426 {
4427         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4428         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4429
4430         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4431                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4432
4433         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4434                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4435                 state->pipe_src_w, state->pipe_src_h,
4436                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4437 }
4438
4439 /**
4440  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4441  *
4442  * @state: crtc's scaler state
4443  * @plane_state: atomic plane state to update
4444  *
4445  * Return
4446  *     0 - scaler_usage updated successfully
4447  *    error - requested scaling cannot be supported or other error condition
4448  */
4449 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4450                                    struct intel_plane_state *plane_state)
4451 {
4452
4453         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4454         struct intel_plane *intel_plane =
4455                 to_intel_plane(plane_state->base.plane);
4456         struct drm_framebuffer *fb = plane_state->base.fb;
4457         int ret;
4458
4459         bool force_detach = !fb || !plane_state->visible;
4460
4461         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4462                       intel_plane->base.base.id, intel_crtc->pipe,
4463                       drm_plane_index(&intel_plane->base));
4464
4465         ret = skl_update_scaler(crtc_state, force_detach,
4466                                 drm_plane_index(&intel_plane->base),
4467                                 &plane_state->scaler_id,
4468                                 plane_state->base.rotation,
4469                                 drm_rect_width(&plane_state->src) >> 16,
4470                                 drm_rect_height(&plane_state->src) >> 16,
4471                                 drm_rect_width(&plane_state->dst),
4472                                 drm_rect_height(&plane_state->dst));
4473
4474         if (ret || plane_state->scaler_id < 0)
4475                 return ret;
4476
4477         /* check colorkey */
4478         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4479                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4480                               intel_plane->base.base.id);
4481                 return -EINVAL;
4482         }
4483
4484         /* Check src format */
4485         switch (fb->pixel_format) {
4486         case DRM_FORMAT_RGB565:
4487         case DRM_FORMAT_XBGR8888:
4488         case DRM_FORMAT_XRGB8888:
4489         case DRM_FORMAT_ABGR8888:
4490         case DRM_FORMAT_ARGB8888:
4491         case DRM_FORMAT_XRGB2101010:
4492         case DRM_FORMAT_XBGR2101010:
4493         case DRM_FORMAT_YUYV:
4494         case DRM_FORMAT_YVYU:
4495         case DRM_FORMAT_UYVY:
4496         case DRM_FORMAT_VYUY:
4497                 break;
4498         default:
4499                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4500                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4501                 return -EINVAL;
4502         }
4503
4504         return 0;
4505 }
4506
4507 static void skylake_scaler_disable(struct intel_crtc *crtc)
4508 {
4509         int i;
4510
4511         for (i = 0; i < crtc->num_scalers; i++)
4512                 skl_detach_scaler(crtc, i);
4513 }
4514
4515 static void skylake_pfit_enable(struct intel_crtc *crtc)
4516 {
4517         struct drm_device *dev = crtc->base.dev;
4518         struct drm_i915_private *dev_priv = dev->dev_private;
4519         int pipe = crtc->pipe;
4520         struct intel_crtc_scaler_state *scaler_state =
4521                 &crtc->config->scaler_state;
4522
4523         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4524
4525         if (crtc->config->pch_pfit.enabled) {
4526                 int id;
4527
4528                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4529                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4530                         return;
4531                 }
4532
4533                 id = scaler_state->scaler_id;
4534                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4535                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4536                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4537                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4538
4539                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4540         }
4541 }
4542
4543 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4544 {
4545         struct drm_device *dev = crtc->base.dev;
4546         struct drm_i915_private *dev_priv = dev->dev_private;
4547         int pipe = crtc->pipe;
4548
4549         if (crtc->config->pch_pfit.enabled) {
4550                 /* Force use of hard-coded filter coefficients
4551                  * as some pre-programmed values are broken,
4552                  * e.g. x201.
4553                  */
4554                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4555                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4556                                                  PF_PIPE_SEL_IVB(pipe));
4557                 else
4558                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4559                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4560                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4561         }
4562 }
4563
4564 void hsw_enable_ips(struct intel_crtc *crtc)
4565 {
4566         struct drm_device *dev = crtc->base.dev;
4567         struct drm_i915_private *dev_priv = dev->dev_private;
4568
4569         if (!crtc->config->ips_enabled)
4570                 return;
4571
4572         /* We can only enable IPS after we enable a plane and wait for a vblank */
4573         intel_wait_for_vblank(dev, crtc->pipe);
4574
4575         assert_plane_enabled(dev_priv, crtc->plane);
4576         if (IS_BROADWELL(dev)) {
4577                 mutex_lock(&dev_priv->rps.hw_lock);
4578                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4579                 mutex_unlock(&dev_priv->rps.hw_lock);
4580                 /* Quoting Art Runyan: "its not safe to expect any particular
4581                  * value in IPS_CTL bit 31 after enabling IPS through the
4582                  * mailbox." Moreover, the mailbox may return a bogus state,
4583                  * so we need to just enable it and continue on.
4584                  */
4585         } else {
4586                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4587                 /* The bit only becomes 1 in the next vblank, so this wait here
4588                  * is essentially intel_wait_for_vblank. If we don't have this
4589                  * and don't wait for vblanks until the end of crtc_enable, then
4590                  * the HW state readout code will complain that the expected
4591                  * IPS_CTL value is not the one we read. */
4592                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4593                         DRM_ERROR("Timed out waiting for IPS enable\n");
4594         }
4595 }
4596
4597 void hsw_disable_ips(struct intel_crtc *crtc)
4598 {
4599         struct drm_device *dev = crtc->base.dev;
4600         struct drm_i915_private *dev_priv = dev->dev_private;
4601
4602         if (!crtc->config->ips_enabled)
4603                 return;
4604
4605         assert_plane_enabled(dev_priv, crtc->plane);
4606         if (IS_BROADWELL(dev)) {
4607                 mutex_lock(&dev_priv->rps.hw_lock);
4608                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4609                 mutex_unlock(&dev_priv->rps.hw_lock);
4610                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4611                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4612                         DRM_ERROR("Timed out waiting for IPS disable\n");
4613         } else {
4614                 I915_WRITE(IPS_CTL, 0);
4615                 POSTING_READ(IPS_CTL);
4616         }
4617
4618         /* We need to wait for a vblank before we can disable the plane. */
4619         intel_wait_for_vblank(dev, crtc->pipe);
4620 }
4621
4622 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4623 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4624 {
4625         struct drm_device *dev = crtc->dev;
4626         struct drm_i915_private *dev_priv = dev->dev_private;
4627         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4628         enum pipe pipe = intel_crtc->pipe;
4629         int i;
4630         bool reenable_ips = false;
4631
4632         /* The clocks have to be on to load the palette. */
4633         if (!crtc->state->active)
4634                 return;
4635
4636         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4637                 if (intel_crtc->config->has_dsi_encoder)
4638                         assert_dsi_pll_enabled(dev_priv);
4639                 else
4640                         assert_pll_enabled(dev_priv, pipe);
4641         }
4642
4643         /* Workaround : Do not read or write the pipe palette/gamma data while
4644          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4645          */
4646         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4647             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4648              GAMMA_MODE_MODE_SPLIT)) {
4649                 hsw_disable_ips(intel_crtc);
4650                 reenable_ips = true;
4651         }
4652
4653         for (i = 0; i < 256; i++) {
4654                 i915_reg_t palreg;
4655
4656                 if (HAS_GMCH_DISPLAY(dev))
4657                         palreg = PALETTE(pipe, i);
4658                 else
4659                         palreg = LGC_PALETTE(pipe, i);
4660
4661                 I915_WRITE(palreg,
4662                            (intel_crtc->lut_r[i] << 16) |
4663                            (intel_crtc->lut_g[i] << 8) |
4664                            intel_crtc->lut_b[i]);
4665         }
4666
4667         if (reenable_ips)
4668                 hsw_enable_ips(intel_crtc);
4669 }
4670
4671 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4672 {
4673         if (intel_crtc->overlay) {
4674                 struct drm_device *dev = intel_crtc->base.dev;
4675                 struct drm_i915_private *dev_priv = dev->dev_private;
4676
4677                 mutex_lock(&dev->struct_mutex);
4678                 dev_priv->mm.interruptible = false;
4679                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4680                 dev_priv->mm.interruptible = true;
4681                 mutex_unlock(&dev->struct_mutex);
4682         }
4683
4684         /* Let userspace switch the overlay on again. In most cases userspace
4685          * has to recompute where to put it anyway.
4686          */
4687 }
4688
4689 /**
4690  * intel_post_enable_primary - Perform operations after enabling primary plane
4691  * @crtc: the CRTC whose primary plane was just enabled
4692  *
4693  * Performs potentially sleeping operations that must be done after the primary
4694  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4695  * called due to an explicit primary plane update, or due to an implicit
4696  * re-enable that is caused when a sprite plane is updated to no longer
4697  * completely hide the primary plane.
4698  */
4699 static void
4700 intel_post_enable_primary(struct drm_crtc *crtc)
4701 {
4702         struct drm_device *dev = crtc->dev;
4703         struct drm_i915_private *dev_priv = dev->dev_private;
4704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4705         int pipe = intel_crtc->pipe;
4706
4707         /*
4708          * FIXME IPS should be fine as long as one plane is
4709          * enabled, but in practice it seems to have problems
4710          * when going from primary only to sprite only and vice
4711          * versa.
4712          */
4713         hsw_enable_ips(intel_crtc);
4714
4715         /*
4716          * Gen2 reports pipe underruns whenever all planes are disabled.
4717          * So don't enable underrun reporting before at least some planes
4718          * are enabled.
4719          * FIXME: Need to fix the logic to work when we turn off all planes
4720          * but leave the pipe running.
4721          */
4722         if (IS_GEN2(dev))
4723                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4724
4725         /* Underruns don't always raise interrupts, so check manually. */
4726         intel_check_cpu_fifo_underruns(dev_priv);
4727         intel_check_pch_fifo_underruns(dev_priv);
4728 }
4729
4730 /**
4731  * intel_pre_disable_primary - Perform operations before disabling primary plane
4732  * @crtc: the CRTC whose primary plane is to be disabled
4733  *
4734  * Performs potentially sleeping operations that must be done before the
4735  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4736  * be called due to an explicit primary plane update, or due to an implicit
4737  * disable that is caused when a sprite plane completely hides the primary
4738  * plane.
4739  */
4740 static void
4741 intel_pre_disable_primary(struct drm_crtc *crtc)
4742 {
4743         struct drm_device *dev = crtc->dev;
4744         struct drm_i915_private *dev_priv = dev->dev_private;
4745         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4746         int pipe = intel_crtc->pipe;
4747
4748         /*
4749          * Gen2 reports pipe underruns whenever all planes are disabled.
4750          * So diasble underrun reporting before all the planes get disabled.
4751          * FIXME: Need to fix the logic to work when we turn off all planes
4752          * but leave the pipe running.
4753          */
4754         if (IS_GEN2(dev))
4755                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757         /*
4758          * Vblank time updates from the shadow to live plane control register
4759          * are blocked if the memory self-refresh mode is active at that
4760          * moment. So to make sure the plane gets truly disabled, disable
4761          * first the self-refresh mode. The self-refresh enable bit in turn
4762          * will be checked/applied by the HW only at the next frame start
4763          * event which is after the vblank start event, so we need to have a
4764          * wait-for-vblank between disabling the plane and the pipe.
4765          */
4766         if (HAS_GMCH_DISPLAY(dev)) {
4767                 intel_set_memory_cxsr(dev_priv, false);
4768                 dev_priv->wm.vlv.cxsr = false;
4769                 intel_wait_for_vblank(dev, pipe);
4770         }
4771
4772         /*
4773          * FIXME IPS should be fine as long as one plane is
4774          * enabled, but in practice it seems to have problems
4775          * when going from primary only to sprite only and vice
4776          * versa.
4777          */
4778         hsw_disable_ips(intel_crtc);
4779 }
4780
4781 static void intel_post_plane_update(struct intel_crtc *crtc)
4782 {
4783         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4784         struct intel_crtc_state *pipe_config =
4785                 to_intel_crtc_state(crtc->base.state);
4786         struct drm_device *dev = crtc->base.dev;
4787
4788         if (atomic->wait_vblank)
4789                 intel_wait_for_vblank(dev, crtc->pipe);
4790
4791         intel_frontbuffer_flip(dev, atomic->fb_bits);
4792
4793         crtc->wm.cxsr_allowed = true;
4794
4795         if (pipe_config->wm_changed && pipe_config->base.active)
4796                 intel_update_watermarks(&crtc->base);
4797
4798         if (atomic->update_fbc)
4799                 intel_fbc_post_update(crtc);
4800
4801         if (atomic->post_enable_primary)
4802                 intel_post_enable_primary(&crtc->base);
4803
4804         memset(atomic, 0, sizeof(*atomic));
4805 }
4806
4807 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4808 {
4809         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4810         struct drm_device *dev = crtc->base.dev;
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4813         struct intel_crtc_state *pipe_config =
4814                 to_intel_crtc_state(crtc->base.state);
4815         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4816         struct drm_plane *primary = crtc->base.primary;
4817         struct drm_plane_state *old_pri_state =
4818                 drm_atomic_get_existing_plane_state(old_state, primary);
4819         bool modeset = needs_modeset(&pipe_config->base);
4820
4821         if (atomic->update_fbc)
4822                 intel_fbc_pre_update(crtc);
4823
4824         if (old_pri_state) {
4825                 struct intel_plane_state *primary_state =
4826                         to_intel_plane_state(primary->state);
4827                 struct intel_plane_state *old_primary_state =
4828                         to_intel_plane_state(old_pri_state);
4829
4830                 if (old_primary_state->visible &&
4831                     (modeset || !primary_state->visible))
4832                         intel_pre_disable_primary(&crtc->base);
4833         }
4834
4835         if (pipe_config->disable_cxsr) {
4836                 crtc->wm.cxsr_allowed = false;
4837
4838                 if (old_crtc_state->base.active)
4839                         intel_set_memory_cxsr(dev_priv, false);
4840         }
4841
4842         if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4843                 intel_update_watermarks(&crtc->base);
4844 }
4845
4846 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4847 {
4848         struct drm_device *dev = crtc->dev;
4849         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4850         struct drm_plane *p;
4851         int pipe = intel_crtc->pipe;
4852
4853         intel_crtc_dpms_overlay_disable(intel_crtc);
4854
4855         drm_for_each_plane_mask(p, dev, plane_mask)
4856                 to_intel_plane(p)->disable_plane(p, crtc);
4857
4858         /*
4859          * FIXME: Once we grow proper nuclear flip support out of this we need
4860          * to compute the mask of flip planes precisely. For the time being
4861          * consider this a flip to a NULL plane.
4862          */
4863         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4864 }
4865
4866 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4867 {
4868         struct drm_device *dev = crtc->dev;
4869         struct drm_i915_private *dev_priv = dev->dev_private;
4870         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871         struct intel_encoder *encoder;
4872         int pipe = intel_crtc->pipe;
4873
4874         if (WARN_ON(intel_crtc->active))
4875                 return;
4876
4877         if (intel_crtc->config->has_pch_encoder)
4878                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4879
4880         if (intel_crtc->config->has_pch_encoder)
4881                 intel_prepare_shared_dpll(intel_crtc);
4882
4883         if (intel_crtc->config->has_dp_encoder)
4884                 intel_dp_set_m_n(intel_crtc, M1_N1);
4885
4886         intel_set_pipe_timings(intel_crtc);
4887
4888         if (intel_crtc->config->has_pch_encoder) {
4889                 intel_cpu_transcoder_set_m_n(intel_crtc,
4890                                      &intel_crtc->config->fdi_m_n, NULL);
4891         }
4892
4893         ironlake_set_pipeconf(crtc);
4894
4895         intel_crtc->active = true;
4896
4897         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4898
4899         for_each_encoder_on_crtc(dev, crtc, encoder)
4900                 if (encoder->pre_enable)
4901                         encoder->pre_enable(encoder);
4902
4903         if (intel_crtc->config->has_pch_encoder) {
4904                 /* Note: FDI PLL enabling _must_ be done before we enable the
4905                  * cpu pipes, hence this is separate from all the other fdi/pch
4906                  * enabling. */
4907                 ironlake_fdi_pll_enable(intel_crtc);
4908         } else {
4909                 assert_fdi_tx_disabled(dev_priv, pipe);
4910                 assert_fdi_rx_disabled(dev_priv, pipe);
4911         }
4912
4913         ironlake_pfit_enable(intel_crtc);
4914
4915         /*
4916          * On ILK+ LUT must be loaded before the pipe is running but with
4917          * clocks enabled
4918          */
4919         intel_crtc_load_lut(crtc);
4920
4921         intel_update_watermarks(crtc);
4922         intel_enable_pipe(intel_crtc);
4923
4924         if (intel_crtc->config->has_pch_encoder)
4925                 ironlake_pch_enable(crtc);
4926
4927         assert_vblank_disabled(crtc);
4928         drm_crtc_vblank_on(crtc);
4929
4930         for_each_encoder_on_crtc(dev, crtc, encoder)
4931                 encoder->enable(encoder);
4932
4933         if (HAS_PCH_CPT(dev))
4934                 cpt_verify_modeset(dev, intel_crtc->pipe);
4935
4936         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4937         if (intel_crtc->config->has_pch_encoder)
4938                 intel_wait_for_vblank(dev, pipe);
4939         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4940 }
4941
4942 /* IPS only exists on ULT machines and is tied to pipe A. */
4943 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4944 {
4945         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4946 }
4947
4948 static void haswell_crtc_enable(struct drm_crtc *crtc)
4949 {
4950         struct drm_device *dev = crtc->dev;
4951         struct drm_i915_private *dev_priv = dev->dev_private;
4952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4953         struct intel_encoder *encoder;
4954         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4955         struct intel_crtc_state *pipe_config =
4956                 to_intel_crtc_state(crtc->state);
4957
4958         if (WARN_ON(intel_crtc->active))
4959                 return;
4960
4961         if (intel_crtc->config->has_pch_encoder)
4962                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4963                                                       false);
4964
4965         if (intel_crtc_to_shared_dpll(intel_crtc))
4966                 intel_enable_shared_dpll(intel_crtc);
4967
4968         if (intel_crtc->config->has_dp_encoder)
4969                 intel_dp_set_m_n(intel_crtc, M1_N1);
4970
4971         intel_set_pipe_timings(intel_crtc);
4972
4973         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4974                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4975                            intel_crtc->config->pixel_multiplier - 1);
4976         }
4977
4978         if (intel_crtc->config->has_pch_encoder) {
4979                 intel_cpu_transcoder_set_m_n(intel_crtc,
4980                                      &intel_crtc->config->fdi_m_n, NULL);
4981         }
4982
4983         haswell_set_pipeconf(crtc);
4984
4985         intel_set_pipe_csc(crtc);
4986
4987         intel_crtc->active = true;
4988
4989         if (intel_crtc->config->has_pch_encoder)
4990                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4991         else
4992                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4993
4994         for_each_encoder_on_crtc(dev, crtc, encoder) {
4995                 if (encoder->pre_enable)
4996                         encoder->pre_enable(encoder);
4997         }
4998
4999         if (intel_crtc->config->has_pch_encoder)
5000                 dev_priv->display.fdi_link_train(crtc);
5001
5002         if (!intel_crtc->config->has_dsi_encoder)
5003                 intel_ddi_enable_pipe_clock(intel_crtc);
5004
5005         if (INTEL_INFO(dev)->gen >= 9)
5006                 skylake_pfit_enable(intel_crtc);
5007         else
5008                 ironlake_pfit_enable(intel_crtc);
5009
5010         /*
5011          * On ILK+ LUT must be loaded before the pipe is running but with
5012          * clocks enabled
5013          */
5014         intel_crtc_load_lut(crtc);
5015
5016         intel_ddi_set_pipe_settings(crtc);
5017         if (!intel_crtc->config->has_dsi_encoder)
5018                 intel_ddi_enable_transcoder_func(crtc);
5019
5020         intel_update_watermarks(crtc);
5021         intel_enable_pipe(intel_crtc);
5022
5023         if (intel_crtc->config->has_pch_encoder)
5024                 lpt_pch_enable(crtc);
5025
5026         if (intel_crtc->config->dp_encoder_is_mst)
5027                 intel_ddi_set_vc_payload_alloc(crtc, true);
5028
5029         assert_vblank_disabled(crtc);
5030         drm_crtc_vblank_on(crtc);
5031
5032         for_each_encoder_on_crtc(dev, crtc, encoder) {
5033                 encoder->enable(encoder);
5034                 intel_opregion_notify_encoder(encoder, true);
5035         }
5036
5037         if (intel_crtc->config->has_pch_encoder) {
5038                 intel_wait_for_vblank(dev, pipe);
5039                 intel_wait_for_vblank(dev, pipe);
5040                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5041                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5042                                                       true);
5043         }
5044
5045         /* If we change the relative order between pipe/planes enabling, we need
5046          * to change the workaround. */
5047         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5048         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5049                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5050                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5051         }
5052 }
5053
5054 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5055 {
5056         struct drm_device *dev = crtc->base.dev;
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058         int pipe = crtc->pipe;
5059
5060         /* To avoid upsetting the power well on haswell only disable the pfit if
5061          * it's in use. The hw state code will make sure we get this right. */
5062         if (force || crtc->config->pch_pfit.enabled) {
5063                 I915_WRITE(PF_CTL(pipe), 0);
5064                 I915_WRITE(PF_WIN_POS(pipe), 0);
5065                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5066         }
5067 }
5068
5069 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5070 {
5071         struct drm_device *dev = crtc->dev;
5072         struct drm_i915_private *dev_priv = dev->dev_private;
5073         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5074         struct intel_encoder *encoder;
5075         int pipe = intel_crtc->pipe;
5076
5077         if (intel_crtc->config->has_pch_encoder)
5078                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5079
5080         for_each_encoder_on_crtc(dev, crtc, encoder)
5081                 encoder->disable(encoder);
5082
5083         drm_crtc_vblank_off(crtc);
5084         assert_vblank_disabled(crtc);
5085
5086         /*
5087          * Sometimes spurious CPU pipe underruns happen when the
5088          * pipe is already disabled, but FDI RX/TX is still enabled.
5089          * Happens at least with VGA+HDMI cloning. Suppress them.
5090          */
5091         if (intel_crtc->config->has_pch_encoder)
5092                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5093
5094         intel_disable_pipe(intel_crtc);
5095
5096         ironlake_pfit_disable(intel_crtc, false);
5097
5098         if (intel_crtc->config->has_pch_encoder) {
5099                 ironlake_fdi_disable(crtc);
5100                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5101         }
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder)
5104                 if (encoder->post_disable)
5105                         encoder->post_disable(encoder);
5106
5107         if (intel_crtc->config->has_pch_encoder) {
5108                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5109
5110                 if (HAS_PCH_CPT(dev)) {
5111                         i915_reg_t reg;
5112                         u32 temp;
5113
5114                         /* disable TRANS_DP_CTL */
5115                         reg = TRANS_DP_CTL(pipe);
5116                         temp = I915_READ(reg);
5117                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5118                                   TRANS_DP_PORT_SEL_MASK);
5119                         temp |= TRANS_DP_PORT_SEL_NONE;
5120                         I915_WRITE(reg, temp);
5121
5122                         /* disable DPLL_SEL */
5123                         temp = I915_READ(PCH_DPLL_SEL);
5124                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5125                         I915_WRITE(PCH_DPLL_SEL, temp);
5126                 }
5127
5128                 ironlake_fdi_pll_disable(intel_crtc);
5129         }
5130
5131         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5132 }
5133
5134 static void haswell_crtc_disable(struct drm_crtc *crtc)
5135 {
5136         struct drm_device *dev = crtc->dev;
5137         struct drm_i915_private *dev_priv = dev->dev_private;
5138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5139         struct intel_encoder *encoder;
5140         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5141
5142         if (intel_crtc->config->has_pch_encoder)
5143                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5144                                                       false);
5145
5146         for_each_encoder_on_crtc(dev, crtc, encoder) {
5147                 intel_opregion_notify_encoder(encoder, false);
5148                 encoder->disable(encoder);
5149         }
5150
5151         drm_crtc_vblank_off(crtc);
5152         assert_vblank_disabled(crtc);
5153
5154         intel_disable_pipe(intel_crtc);
5155
5156         if (intel_crtc->config->dp_encoder_is_mst)
5157                 intel_ddi_set_vc_payload_alloc(crtc, false);
5158
5159         if (!intel_crtc->config->has_dsi_encoder)
5160                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5161
5162         if (INTEL_INFO(dev)->gen >= 9)
5163                 skylake_scaler_disable(intel_crtc);
5164         else
5165                 ironlake_pfit_disable(intel_crtc, false);
5166
5167         if (!intel_crtc->config->has_dsi_encoder)
5168                 intel_ddi_disable_pipe_clock(intel_crtc);
5169
5170         for_each_encoder_on_crtc(dev, crtc, encoder)
5171                 if (encoder->post_disable)
5172                         encoder->post_disable(encoder);
5173
5174         if (intel_crtc->config->has_pch_encoder) {
5175                 lpt_disable_pch_transcoder(dev_priv);
5176                 lpt_disable_iclkip(dev_priv);
5177                 intel_ddi_fdi_disable(crtc);
5178
5179                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5180                                                       true);
5181         }
5182 }
5183
5184 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5185 {
5186         struct drm_device *dev = crtc->base.dev;
5187         struct drm_i915_private *dev_priv = dev->dev_private;
5188         struct intel_crtc_state *pipe_config = crtc->config;
5189
5190         if (!pipe_config->gmch_pfit.control)
5191                 return;
5192
5193         /*
5194          * The panel fitter should only be adjusted whilst the pipe is disabled,
5195          * according to register description and PRM.
5196          */
5197         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5198         assert_pipe_disabled(dev_priv, crtc->pipe);
5199
5200         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5201         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5202
5203         /* Border color in case we don't scale up to the full screen. Black by
5204          * default, change to something else for debugging. */
5205         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5206 }
5207
5208 static enum intel_display_power_domain port_to_power_domain(enum port port)
5209 {
5210         switch (port) {
5211         case PORT_A:
5212                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5213         case PORT_B:
5214                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5215         case PORT_C:
5216                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5217         case PORT_D:
5218                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5219         case PORT_E:
5220                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5221         default:
5222                 MISSING_CASE(port);
5223                 return POWER_DOMAIN_PORT_OTHER;
5224         }
5225 }
5226
5227 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5228 {
5229         switch (port) {
5230         case PORT_A:
5231                 return POWER_DOMAIN_AUX_A;
5232         case PORT_B:
5233                 return POWER_DOMAIN_AUX_B;
5234         case PORT_C:
5235                 return POWER_DOMAIN_AUX_C;
5236         case PORT_D:
5237                 return POWER_DOMAIN_AUX_D;
5238         case PORT_E:
5239                 /* FIXME: Check VBT for actual wiring of PORT E */
5240                 return POWER_DOMAIN_AUX_D;
5241         default:
5242                 MISSING_CASE(port);
5243                 return POWER_DOMAIN_AUX_A;
5244         }
5245 }
5246
5247 enum intel_display_power_domain
5248 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5249 {
5250         struct drm_device *dev = intel_encoder->base.dev;
5251         struct intel_digital_port *intel_dig_port;
5252
5253         switch (intel_encoder->type) {
5254         case INTEL_OUTPUT_UNKNOWN:
5255                 /* Only DDI platforms should ever use this output type */
5256                 WARN_ON_ONCE(!HAS_DDI(dev));
5257         case INTEL_OUTPUT_DISPLAYPORT:
5258         case INTEL_OUTPUT_HDMI:
5259         case INTEL_OUTPUT_EDP:
5260                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5261                 return port_to_power_domain(intel_dig_port->port);
5262         case INTEL_OUTPUT_DP_MST:
5263                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5264                 return port_to_power_domain(intel_dig_port->port);
5265         case INTEL_OUTPUT_ANALOG:
5266                 return POWER_DOMAIN_PORT_CRT;
5267         case INTEL_OUTPUT_DSI:
5268                 return POWER_DOMAIN_PORT_DSI;
5269         default:
5270                 return POWER_DOMAIN_PORT_OTHER;
5271         }
5272 }
5273
5274 enum intel_display_power_domain
5275 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5276 {
5277         struct drm_device *dev = intel_encoder->base.dev;
5278         struct intel_digital_port *intel_dig_port;
5279
5280         switch (intel_encoder->type) {
5281         case INTEL_OUTPUT_UNKNOWN:
5282         case INTEL_OUTPUT_HDMI:
5283                 /*
5284                  * Only DDI platforms should ever use these output types.
5285                  * We can get here after the HDMI detect code has already set
5286                  * the type of the shared encoder. Since we can't be sure
5287                  * what's the status of the given connectors, play safe and
5288                  * run the DP detection too.
5289                  */
5290                 WARN_ON_ONCE(!HAS_DDI(dev));
5291         case INTEL_OUTPUT_DISPLAYPORT:
5292         case INTEL_OUTPUT_EDP:
5293                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5294                 return port_to_aux_power_domain(intel_dig_port->port);
5295         case INTEL_OUTPUT_DP_MST:
5296                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5297                 return port_to_aux_power_domain(intel_dig_port->port);
5298         default:
5299                 MISSING_CASE(intel_encoder->type);
5300                 return POWER_DOMAIN_AUX_A;
5301         }
5302 }
5303
5304 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5305 {
5306         struct drm_device *dev = crtc->dev;
5307         struct intel_encoder *intel_encoder;
5308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5309         enum pipe pipe = intel_crtc->pipe;
5310         unsigned long mask;
5311         enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5312
5313         if (!crtc->state->active)
5314                 return 0;
5315
5316         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5317         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5318         if (intel_crtc->config->pch_pfit.enabled ||
5319             intel_crtc->config->pch_pfit.force_thru)
5320                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5321
5322         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5323                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5324
5325         return mask;
5326 }
5327
5328 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5329 {
5330         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5331         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5332         enum intel_display_power_domain domain;
5333         unsigned long domains, new_domains, old_domains;
5334
5335         old_domains = intel_crtc->enabled_power_domains;
5336         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5337
5338         domains = new_domains & ~old_domains;
5339
5340         for_each_power_domain(domain, domains)
5341                 intel_display_power_get(dev_priv, domain);
5342
5343         return old_domains & ~new_domains;
5344 }
5345
5346 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5347                                       unsigned long domains)
5348 {
5349         enum intel_display_power_domain domain;
5350
5351         for_each_power_domain(domain, domains)
5352                 intel_display_power_put(dev_priv, domain);
5353 }
5354
5355 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5356 {
5357         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5358         struct drm_device *dev = state->dev;
5359         struct drm_i915_private *dev_priv = dev->dev_private;
5360         unsigned long put_domains[I915_MAX_PIPES] = {};
5361         struct drm_crtc_state *crtc_state;
5362         struct drm_crtc *crtc;
5363         int i;
5364
5365         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5366                 if (needs_modeset(crtc->state))
5367                         put_domains[to_intel_crtc(crtc)->pipe] =
5368                                 modeset_get_crtc_power_domains(crtc);
5369         }
5370
5371         if (dev_priv->display.modeset_commit_cdclk &&
5372             intel_state->dev_cdclk != dev_priv->cdclk_freq)
5373                 dev_priv->display.modeset_commit_cdclk(state);
5374
5375         for (i = 0; i < I915_MAX_PIPES; i++)
5376                 if (put_domains[i])
5377                         modeset_put_power_domains(dev_priv, put_domains[i]);
5378 }
5379
5380 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5381 {
5382         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5383
5384         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5385             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5386                 return max_cdclk_freq;
5387         else if (IS_CHERRYVIEW(dev_priv))
5388                 return max_cdclk_freq*95/100;
5389         else if (INTEL_INFO(dev_priv)->gen < 4)
5390                 return 2*max_cdclk_freq*90/100;
5391         else
5392                 return max_cdclk_freq*90/100;
5393 }
5394
5395 static void intel_update_max_cdclk(struct drm_device *dev)
5396 {
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398
5399         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5400                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5401
5402                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5403                         dev_priv->max_cdclk_freq = 675000;
5404                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5405                         dev_priv->max_cdclk_freq = 540000;
5406                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5407                         dev_priv->max_cdclk_freq = 450000;
5408                 else
5409                         dev_priv->max_cdclk_freq = 337500;
5410         } else if (IS_BROADWELL(dev))  {
5411                 /*
5412                  * FIXME with extra cooling we can allow
5413                  * 540 MHz for ULX and 675 Mhz for ULT.
5414                  * How can we know if extra cooling is
5415                  * available? PCI ID, VTB, something else?
5416                  */
5417                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5418                         dev_priv->max_cdclk_freq = 450000;
5419                 else if (IS_BDW_ULX(dev))
5420                         dev_priv->max_cdclk_freq = 450000;
5421                 else if (IS_BDW_ULT(dev))
5422                         dev_priv->max_cdclk_freq = 540000;
5423                 else
5424                         dev_priv->max_cdclk_freq = 675000;
5425         } else if (IS_CHERRYVIEW(dev)) {
5426                 dev_priv->max_cdclk_freq = 320000;
5427         } else if (IS_VALLEYVIEW(dev)) {
5428                 dev_priv->max_cdclk_freq = 400000;
5429         } else {
5430                 /* otherwise assume cdclk is fixed */
5431                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5432         }
5433
5434         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5435
5436         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5437                          dev_priv->max_cdclk_freq);
5438
5439         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5440                          dev_priv->max_dotclk_freq);
5441 }
5442
5443 static void intel_update_cdclk(struct drm_device *dev)
5444 {
5445         struct drm_i915_private *dev_priv = dev->dev_private;
5446
5447         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5448         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5449                          dev_priv->cdclk_freq);
5450
5451         /*
5452          * Program the gmbus_freq based on the cdclk frequency.
5453          * BSpec erroneously claims we should aim for 4MHz, but
5454          * in fact 1MHz is the correct frequency.
5455          */
5456         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5457                 /*
5458                  * Program the gmbus_freq based on the cdclk frequency.
5459                  * BSpec erroneously claims we should aim for 4MHz, but
5460                  * in fact 1MHz is the correct frequency.
5461                  */
5462                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5463         }
5464
5465         if (dev_priv->max_cdclk_freq == 0)
5466                 intel_update_max_cdclk(dev);
5467 }
5468
5469 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5470 {
5471         struct drm_i915_private *dev_priv = dev->dev_private;
5472         uint32_t divider;
5473         uint32_t ratio;
5474         uint32_t current_freq;
5475         int ret;
5476
5477         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5478         switch (frequency) {
5479         case 144000:
5480                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5481                 ratio = BXT_DE_PLL_RATIO(60);
5482                 break;
5483         case 288000:
5484                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5485                 ratio = BXT_DE_PLL_RATIO(60);
5486                 break;
5487         case 384000:
5488                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5489                 ratio = BXT_DE_PLL_RATIO(60);
5490                 break;
5491         case 576000:
5492                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5493                 ratio = BXT_DE_PLL_RATIO(60);
5494                 break;
5495         case 624000:
5496                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5497                 ratio = BXT_DE_PLL_RATIO(65);
5498                 break;
5499         case 19200:
5500                 /*
5501                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5502                  * to suppress GCC warning.
5503                  */
5504                 ratio = 0;
5505                 divider = 0;
5506                 break;
5507         default:
5508                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5509
5510                 return;
5511         }
5512
5513         mutex_lock(&dev_priv->rps.hw_lock);
5514         /* Inform power controller of upcoming frequency change */
5515         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5516                                       0x80000000);
5517         mutex_unlock(&dev_priv->rps.hw_lock);
5518
5519         if (ret) {
5520                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5521                           ret, frequency);
5522                 return;
5523         }
5524
5525         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5526         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5527         current_freq = current_freq * 500 + 1000;
5528
5529         /*
5530          * DE PLL has to be disabled when
5531          * - setting to 19.2MHz (bypass, PLL isn't used)
5532          * - before setting to 624MHz (PLL needs toggling)
5533          * - before setting to any frequency from 624MHz (PLL needs toggling)
5534          */
5535         if (frequency == 19200 || frequency == 624000 ||
5536             current_freq == 624000) {
5537                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5538                 /* Timeout 200us */
5539                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5540                              1))
5541                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5542         }
5543
5544         if (frequency != 19200) {
5545                 uint32_t val;
5546
5547                 val = I915_READ(BXT_DE_PLL_CTL);
5548                 val &= ~BXT_DE_PLL_RATIO_MASK;
5549                 val |= ratio;
5550                 I915_WRITE(BXT_DE_PLL_CTL, val);
5551
5552                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5553                 /* Timeout 200us */
5554                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5555                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5556
5557                 val = I915_READ(CDCLK_CTL);
5558                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5559                 val |= divider;
5560                 /*
5561                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5562                  * enable otherwise.
5563                  */
5564                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5565                 if (frequency >= 500000)
5566                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5567
5568                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5569                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5570                 val |= (frequency - 1000) / 500;
5571                 I915_WRITE(CDCLK_CTL, val);
5572         }
5573
5574         mutex_lock(&dev_priv->rps.hw_lock);
5575         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5576                                       DIV_ROUND_UP(frequency, 25000));
5577         mutex_unlock(&dev_priv->rps.hw_lock);
5578
5579         if (ret) {
5580                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5581                           ret, frequency);
5582                 return;
5583         }
5584
5585         intel_update_cdclk(dev);
5586 }
5587
5588 void broxton_init_cdclk(struct drm_device *dev)
5589 {
5590         struct drm_i915_private *dev_priv = dev->dev_private;
5591         uint32_t val;
5592
5593         /*
5594          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5595          * or else the reset will hang because there is no PCH to respond.
5596          * Move the handshake programming to initialization sequence.
5597          * Previously was left up to BIOS.
5598          */
5599         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5600         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5601         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5602
5603         /* Enable PG1 for cdclk */
5604         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5605
5606         /* check if cd clock is enabled */
5607         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5608                 DRM_DEBUG_KMS("Display already initialized\n");
5609                 return;
5610         }
5611
5612         /*
5613          * FIXME:
5614          * - The initial CDCLK needs to be read from VBT.
5615          *   Need to make this change after VBT has changes for BXT.
5616          * - check if setting the max (or any) cdclk freq is really necessary
5617          *   here, it belongs to modeset time
5618          */
5619         broxton_set_cdclk(dev, 624000);
5620
5621         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5622         POSTING_READ(DBUF_CTL);
5623
5624         udelay(10);
5625
5626         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5627                 DRM_ERROR("DBuf power enable timeout!\n");
5628 }
5629
5630 void broxton_uninit_cdclk(struct drm_device *dev)
5631 {
5632         struct drm_i915_private *dev_priv = dev->dev_private;
5633
5634         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5635         POSTING_READ(DBUF_CTL);
5636
5637         udelay(10);
5638
5639         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5640                 DRM_ERROR("DBuf power disable timeout!\n");
5641
5642         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5643         broxton_set_cdclk(dev, 19200);
5644
5645         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5646 }
5647
5648 static const struct skl_cdclk_entry {
5649         unsigned int freq;
5650         unsigned int vco;
5651 } skl_cdclk_frequencies[] = {
5652         { .freq = 308570, .vco = 8640 },
5653         { .freq = 337500, .vco = 8100 },
5654         { .freq = 432000, .vco = 8640 },
5655         { .freq = 450000, .vco = 8100 },
5656         { .freq = 540000, .vco = 8100 },
5657         { .freq = 617140, .vco = 8640 },
5658         { .freq = 675000, .vco = 8100 },
5659 };
5660
5661 static unsigned int skl_cdclk_decimal(unsigned int freq)
5662 {
5663         return (freq - 1000) / 500;
5664 }
5665
5666 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5667 {
5668         unsigned int i;
5669
5670         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5671                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5672
5673                 if (e->freq == freq)
5674                         return e->vco;
5675         }
5676
5677         return 8100;
5678 }
5679
5680 static void
5681 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5682 {
5683         unsigned int min_freq;
5684         u32 val;
5685
5686         /* select the minimum CDCLK before enabling DPLL 0 */
5687         val = I915_READ(CDCLK_CTL);
5688         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5689         val |= CDCLK_FREQ_337_308;
5690
5691         if (required_vco == 8640)
5692                 min_freq = 308570;
5693         else
5694                 min_freq = 337500;
5695
5696         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5697
5698         I915_WRITE(CDCLK_CTL, val);
5699         POSTING_READ(CDCLK_CTL);
5700
5701         /*
5702          * We always enable DPLL0 with the lowest link rate possible, but still
5703          * taking into account the VCO required to operate the eDP panel at the
5704          * desired frequency. The usual DP link rates operate with a VCO of
5705          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5706          * The modeset code is responsible for the selection of the exact link
5707          * rate later on, with the constraint of choosing a frequency that
5708          * works with required_vco.
5709          */
5710         val = I915_READ(DPLL_CTRL1);
5711
5712         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5713                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5714         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5715         if (required_vco == 8640)
5716                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5717                                             SKL_DPLL0);
5718         else
5719                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5720                                             SKL_DPLL0);
5721
5722         I915_WRITE(DPLL_CTRL1, val);
5723         POSTING_READ(DPLL_CTRL1);
5724
5725         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5726
5727         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5728                 DRM_ERROR("DPLL0 not locked\n");
5729 }
5730
5731 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5732 {
5733         int ret;
5734         u32 val;
5735
5736         /* inform PCU we want to change CDCLK */
5737         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5738         mutex_lock(&dev_priv->rps.hw_lock);
5739         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5740         mutex_unlock(&dev_priv->rps.hw_lock);
5741
5742         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5743 }
5744
5745 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5746 {
5747         unsigned int i;
5748
5749         for (i = 0; i < 15; i++) {
5750                 if (skl_cdclk_pcu_ready(dev_priv))
5751                         return true;
5752                 udelay(10);
5753         }
5754
5755         return false;
5756 }
5757
5758 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5759 {
5760         struct drm_device *dev = dev_priv->dev;
5761         u32 freq_select, pcu_ack;
5762
5763         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5764
5765         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5766                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5767                 return;
5768         }
5769
5770         /* set CDCLK_CTL */
5771         switch(freq) {
5772         case 450000:
5773         case 432000:
5774                 freq_select = CDCLK_FREQ_450_432;
5775                 pcu_ack = 1;
5776                 break;
5777         case 540000:
5778                 freq_select = CDCLK_FREQ_540;
5779                 pcu_ack = 2;
5780                 break;
5781         case 308570:
5782         case 337500:
5783         default:
5784                 freq_select = CDCLK_FREQ_337_308;
5785                 pcu_ack = 0;
5786                 break;
5787         case 617140:
5788         case 675000:
5789                 freq_select = CDCLK_FREQ_675_617;
5790                 pcu_ack = 3;
5791                 break;
5792         }
5793
5794         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5795         POSTING_READ(CDCLK_CTL);
5796
5797         /* inform PCU of the change */
5798         mutex_lock(&dev_priv->rps.hw_lock);
5799         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5800         mutex_unlock(&dev_priv->rps.hw_lock);
5801
5802         intel_update_cdclk(dev);
5803 }
5804
5805 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5806 {
5807         /* disable DBUF power */
5808         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5809         POSTING_READ(DBUF_CTL);
5810
5811         udelay(10);
5812
5813         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5814                 DRM_ERROR("DBuf power disable timeout\n");
5815
5816         /* disable DPLL0 */
5817         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5818         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5819                 DRM_ERROR("Couldn't disable DPLL0\n");
5820 }
5821
5822 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5823 {
5824         unsigned int required_vco;
5825
5826         /* DPLL0 not enabled (happens on early BIOS versions) */
5827         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5828                 /* enable DPLL0 */
5829                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5830                 skl_dpll0_enable(dev_priv, required_vco);
5831         }
5832
5833         /* set CDCLK to the frequency the BIOS chose */
5834         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5835
5836         /* enable DBUF power */
5837         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5838         POSTING_READ(DBUF_CTL);
5839
5840         udelay(10);
5841
5842         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5843                 DRM_ERROR("DBuf power enable timeout\n");
5844 }
5845
5846 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5847 {
5848         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5849         uint32_t cdctl = I915_READ(CDCLK_CTL);
5850         int freq = dev_priv->skl_boot_cdclk;
5851
5852         /*
5853          * check if the pre-os intialized the display
5854          * There is SWF18 scratchpad register defined which is set by the
5855          * pre-os which can be used by the OS drivers to check the status
5856          */
5857         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5858                 goto sanitize;
5859
5860         /* Is PLL enabled and locked ? */
5861         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5862                 goto sanitize;
5863
5864         /* DPLL okay; verify the cdclock
5865          *
5866          * Noticed in some instances that the freq selection is correct but
5867          * decimal part is programmed wrong from BIOS where pre-os does not
5868          * enable display. Verify the same as well.
5869          */
5870         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5871                 /* All well; nothing to sanitize */
5872                 return false;
5873 sanitize:
5874         /*
5875          * As of now initialize with max cdclk till
5876          * we get dynamic cdclk support
5877          * */
5878         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5879         skl_init_cdclk(dev_priv);
5880
5881         /* we did have to sanitize */
5882         return true;
5883 }
5884
5885 /* Adjust CDclk dividers to allow high res or save power if possible */
5886 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5887 {
5888         struct drm_i915_private *dev_priv = dev->dev_private;
5889         u32 val, cmd;
5890
5891         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5892                                         != dev_priv->cdclk_freq);
5893
5894         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5895                 cmd = 2;
5896         else if (cdclk == 266667)
5897                 cmd = 1;
5898         else
5899                 cmd = 0;
5900
5901         mutex_lock(&dev_priv->rps.hw_lock);
5902         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5903         val &= ~DSPFREQGUAR_MASK;
5904         val |= (cmd << DSPFREQGUAR_SHIFT);
5905         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5906         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5907                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5908                      50)) {
5909                 DRM_ERROR("timed out waiting for CDclk change\n");
5910         }
5911         mutex_unlock(&dev_priv->rps.hw_lock);
5912
5913         mutex_lock(&dev_priv->sb_lock);
5914
5915         if (cdclk == 400000) {
5916                 u32 divider;
5917
5918                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5919
5920                 /* adjust cdclk divider */
5921                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5922                 val &= ~CCK_FREQUENCY_VALUES;
5923                 val |= divider;
5924                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5925
5926                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5927                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5928                              50))
5929                         DRM_ERROR("timed out waiting for CDclk change\n");
5930         }
5931
5932         /* adjust self-refresh exit latency value */
5933         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5934         val &= ~0x7f;
5935
5936         /*
5937          * For high bandwidth configs, we set a higher latency in the bunit
5938          * so that the core display fetch happens in time to avoid underruns.
5939          */
5940         if (cdclk == 400000)
5941                 val |= 4500 / 250; /* 4.5 usec */
5942         else
5943                 val |= 3000 / 250; /* 3.0 usec */
5944         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5945
5946         mutex_unlock(&dev_priv->sb_lock);
5947
5948         intel_update_cdclk(dev);
5949 }
5950
5951 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5952 {
5953         struct drm_i915_private *dev_priv = dev->dev_private;
5954         u32 val, cmd;
5955
5956         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5957                                                 != dev_priv->cdclk_freq);
5958
5959         switch (cdclk) {
5960         case 333333:
5961         case 320000:
5962         case 266667:
5963         case 200000:
5964                 break;
5965         default:
5966                 MISSING_CASE(cdclk);
5967                 return;
5968         }
5969
5970         /*
5971          * Specs are full of misinformation, but testing on actual
5972          * hardware has shown that we just need to write the desired
5973          * CCK divider into the Punit register.
5974          */
5975         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5976
5977         mutex_lock(&dev_priv->rps.hw_lock);
5978         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5979         val &= ~DSPFREQGUAR_MASK_CHV;
5980         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5981         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5982         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5983                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5984                      50)) {
5985                 DRM_ERROR("timed out waiting for CDclk change\n");
5986         }
5987         mutex_unlock(&dev_priv->rps.hw_lock);
5988
5989         intel_update_cdclk(dev);
5990 }
5991
5992 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5993                                  int max_pixclk)
5994 {
5995         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5996         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5997
5998         /*
5999          * Really only a few cases to deal with, as only 4 CDclks are supported:
6000          *   200MHz
6001          *   267MHz
6002          *   320/333MHz (depends on HPLL freq)
6003          *   400MHz (VLV only)
6004          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6005          * of the lower bin and adjust if needed.
6006          *
6007          * We seem to get an unstable or solid color picture at 200MHz.
6008          * Not sure what's wrong. For now use 200MHz only when all pipes
6009          * are off.
6010          */
6011         if (!IS_CHERRYVIEW(dev_priv) &&
6012             max_pixclk > freq_320*limit/100)
6013                 return 400000;
6014         else if (max_pixclk > 266667*limit/100)
6015                 return freq_320;
6016         else if (max_pixclk > 0)
6017                 return 266667;
6018         else
6019                 return 200000;
6020 }
6021
6022 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6023                               int max_pixclk)
6024 {
6025         /*
6026          * FIXME:
6027          * - remove the guardband, it's not needed on BXT
6028          * - set 19.2MHz bypass frequency if there are no active pipes
6029          */
6030         if (max_pixclk > 576000*9/10)
6031                 return 624000;
6032         else if (max_pixclk > 384000*9/10)
6033                 return 576000;
6034         else if (max_pixclk > 288000*9/10)
6035                 return 384000;
6036         else if (max_pixclk > 144000*9/10)
6037                 return 288000;
6038         else
6039                 return 144000;
6040 }
6041
6042 /* Compute the max pixel clock for new configuration. Uses atomic state if
6043  * that's non-NULL, look at current state otherwise. */
6044 static int intel_mode_max_pixclk(struct drm_device *dev,
6045                                  struct drm_atomic_state *state)
6046 {
6047         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6048         struct drm_i915_private *dev_priv = dev->dev_private;
6049         struct drm_crtc *crtc;
6050         struct drm_crtc_state *crtc_state;
6051         unsigned max_pixclk = 0, i;
6052         enum pipe pipe;
6053
6054         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6055                sizeof(intel_state->min_pixclk));
6056
6057         for_each_crtc_in_state(state, crtc, crtc_state, i) {
6058                 int pixclk = 0;
6059
6060                 if (crtc_state->enable)
6061                         pixclk = crtc_state->adjusted_mode.crtc_clock;
6062
6063                 intel_state->min_pixclk[i] = pixclk;
6064         }
6065
6066         if (!intel_state->active_crtcs)
6067                 return 0;
6068
6069         for_each_pipe(dev_priv, pipe)
6070                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6071
6072         return max_pixclk;
6073 }
6074
6075 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6076 {
6077         struct drm_device *dev = state->dev;
6078         struct drm_i915_private *dev_priv = dev->dev_private;
6079         int max_pixclk = intel_mode_max_pixclk(dev, state);
6080         struct intel_atomic_state *intel_state =
6081                 to_intel_atomic_state(state);
6082
6083         if (max_pixclk < 0)
6084                 return max_pixclk;
6085
6086         intel_state->cdclk = intel_state->dev_cdclk =
6087                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6088
6089         if (!intel_state->active_crtcs)
6090                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6091
6092         return 0;
6093 }
6094
6095 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6096 {
6097         struct drm_device *dev = state->dev;
6098         struct drm_i915_private *dev_priv = dev->dev_private;
6099         int max_pixclk = intel_mode_max_pixclk(dev, state);
6100         struct intel_atomic_state *intel_state =
6101                 to_intel_atomic_state(state);
6102
6103         if (max_pixclk < 0)
6104                 return max_pixclk;
6105
6106         intel_state->cdclk = intel_state->dev_cdclk =
6107                 broxton_calc_cdclk(dev_priv, max_pixclk);
6108
6109         if (!intel_state->active_crtcs)
6110                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6111
6112         return 0;
6113 }
6114
6115 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6116 {
6117         unsigned int credits, default_credits;
6118
6119         if (IS_CHERRYVIEW(dev_priv))
6120                 default_credits = PFI_CREDIT(12);
6121         else
6122                 default_credits = PFI_CREDIT(8);
6123
6124         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6125                 /* CHV suggested value is 31 or 63 */
6126                 if (IS_CHERRYVIEW(dev_priv))
6127                         credits = PFI_CREDIT_63;
6128                 else
6129                         credits = PFI_CREDIT(15);
6130         } else {
6131                 credits = default_credits;
6132         }
6133
6134         /*
6135          * WA - write default credits before re-programming
6136          * FIXME: should we also set the resend bit here?
6137          */
6138         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6139                    default_credits);
6140
6141         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6142                    credits | PFI_CREDIT_RESEND);
6143
6144         /*
6145          * FIXME is this guaranteed to clear
6146          * immediately or should we poll for it?
6147          */
6148         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6149 }
6150
6151 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6152 {
6153         struct drm_device *dev = old_state->dev;
6154         struct drm_i915_private *dev_priv = dev->dev_private;
6155         struct intel_atomic_state *old_intel_state =
6156                 to_intel_atomic_state(old_state);
6157         unsigned req_cdclk = old_intel_state->dev_cdclk;
6158
6159         /*
6160          * FIXME: We can end up here with all power domains off, yet
6161          * with a CDCLK frequency other than the minimum. To account
6162          * for this take the PIPE-A power domain, which covers the HW
6163          * blocks needed for the following programming. This can be
6164          * removed once it's guaranteed that we get here either with
6165          * the minimum CDCLK set, or the required power domains
6166          * enabled.
6167          */
6168         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6169
6170         if (IS_CHERRYVIEW(dev))
6171                 cherryview_set_cdclk(dev, req_cdclk);
6172         else
6173                 valleyview_set_cdclk(dev, req_cdclk);
6174
6175         vlv_program_pfi_credits(dev_priv);
6176
6177         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6178 }
6179
6180 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6181 {
6182         struct drm_device *dev = crtc->dev;
6183         struct drm_i915_private *dev_priv = to_i915(dev);
6184         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6185         struct intel_encoder *encoder;
6186         int pipe = intel_crtc->pipe;
6187
6188         if (WARN_ON(intel_crtc->active))
6189                 return;
6190
6191         if (intel_crtc->config->has_dp_encoder)
6192                 intel_dp_set_m_n(intel_crtc, M1_N1);
6193
6194         intel_set_pipe_timings(intel_crtc);
6195
6196         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6197                 struct drm_i915_private *dev_priv = dev->dev_private;
6198
6199                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6200                 I915_WRITE(CHV_CANVAS(pipe), 0);
6201         }
6202
6203         i9xx_set_pipeconf(intel_crtc);
6204
6205         intel_crtc->active = true;
6206
6207         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6208
6209         for_each_encoder_on_crtc(dev, crtc, encoder)
6210                 if (encoder->pre_pll_enable)
6211                         encoder->pre_pll_enable(encoder);
6212
6213         if (!intel_crtc->config->has_dsi_encoder) {
6214                 if (IS_CHERRYVIEW(dev)) {
6215                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6216                         chv_enable_pll(intel_crtc, intel_crtc->config);
6217                 } else {
6218                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6219                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6220                 }
6221         }
6222
6223         for_each_encoder_on_crtc(dev, crtc, encoder)
6224                 if (encoder->pre_enable)
6225                         encoder->pre_enable(encoder);
6226
6227         i9xx_pfit_enable(intel_crtc);
6228
6229         intel_crtc_load_lut(crtc);
6230
6231         intel_enable_pipe(intel_crtc);
6232
6233         assert_vblank_disabled(crtc);
6234         drm_crtc_vblank_on(crtc);
6235
6236         for_each_encoder_on_crtc(dev, crtc, encoder)
6237                 encoder->enable(encoder);
6238 }
6239
6240 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6241 {
6242         struct drm_device *dev = crtc->base.dev;
6243         struct drm_i915_private *dev_priv = dev->dev_private;
6244
6245         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6246         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6247 }
6248
6249 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6250 {
6251         struct drm_device *dev = crtc->dev;
6252         struct drm_i915_private *dev_priv = to_i915(dev);
6253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254         struct intel_encoder *encoder;
6255         int pipe = intel_crtc->pipe;
6256
6257         if (WARN_ON(intel_crtc->active))
6258                 return;
6259
6260         i9xx_set_pll_dividers(intel_crtc);
6261
6262         if (intel_crtc->config->has_dp_encoder)
6263                 intel_dp_set_m_n(intel_crtc, M1_N1);
6264
6265         intel_set_pipe_timings(intel_crtc);
6266
6267         i9xx_set_pipeconf(intel_crtc);
6268
6269         intel_crtc->active = true;
6270
6271         if (!IS_GEN2(dev))
6272                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6273
6274         for_each_encoder_on_crtc(dev, crtc, encoder)
6275                 if (encoder->pre_enable)
6276                         encoder->pre_enable(encoder);
6277
6278         i9xx_enable_pll(intel_crtc);
6279
6280         i9xx_pfit_enable(intel_crtc);
6281
6282         intel_crtc_load_lut(crtc);
6283
6284         intel_update_watermarks(crtc);
6285         intel_enable_pipe(intel_crtc);
6286
6287         assert_vblank_disabled(crtc);
6288         drm_crtc_vblank_on(crtc);
6289
6290         for_each_encoder_on_crtc(dev, crtc, encoder)
6291                 encoder->enable(encoder);
6292 }
6293
6294 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6295 {
6296         struct drm_device *dev = crtc->base.dev;
6297         struct drm_i915_private *dev_priv = dev->dev_private;
6298
6299         if (!crtc->config->gmch_pfit.control)
6300                 return;
6301
6302         assert_pipe_disabled(dev_priv, crtc->pipe);
6303
6304         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6305                          I915_READ(PFIT_CONTROL));
6306         I915_WRITE(PFIT_CONTROL, 0);
6307 }
6308
6309 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6310 {
6311         struct drm_device *dev = crtc->dev;
6312         struct drm_i915_private *dev_priv = dev->dev_private;
6313         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6314         struct intel_encoder *encoder;
6315         int pipe = intel_crtc->pipe;
6316
6317         /*
6318          * On gen2 planes are double buffered but the pipe isn't, so we must
6319          * wait for planes to fully turn off before disabling the pipe.
6320          * We also need to wait on all gmch platforms because of the
6321          * self-refresh mode constraint explained above.
6322          */
6323         intel_wait_for_vblank(dev, pipe);
6324
6325         for_each_encoder_on_crtc(dev, crtc, encoder)
6326                 encoder->disable(encoder);
6327
6328         drm_crtc_vblank_off(crtc);
6329         assert_vblank_disabled(crtc);
6330
6331         intel_disable_pipe(intel_crtc);
6332
6333         i9xx_pfit_disable(intel_crtc);
6334
6335         for_each_encoder_on_crtc(dev, crtc, encoder)
6336                 if (encoder->post_disable)
6337                         encoder->post_disable(encoder);
6338
6339         if (!intel_crtc->config->has_dsi_encoder) {
6340                 if (IS_CHERRYVIEW(dev))
6341                         chv_disable_pll(dev_priv, pipe);
6342                 else if (IS_VALLEYVIEW(dev))
6343                         vlv_disable_pll(dev_priv, pipe);
6344                 else
6345                         i9xx_disable_pll(intel_crtc);
6346         }
6347
6348         for_each_encoder_on_crtc(dev, crtc, encoder)
6349                 if (encoder->post_pll_disable)
6350                         encoder->post_pll_disable(encoder);
6351
6352         if (!IS_GEN2(dev))
6353                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6354 }
6355
6356 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6357 {
6358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6359         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6360         enum intel_display_power_domain domain;
6361         unsigned long domains;
6362
6363         if (!intel_crtc->active)
6364                 return;
6365
6366         if (to_intel_plane_state(crtc->primary->state)->visible) {
6367                 WARN_ON(intel_crtc->unpin_work);
6368
6369                 intel_pre_disable_primary(crtc);
6370
6371                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6372                 to_intel_plane_state(crtc->primary->state)->visible = false;
6373         }
6374
6375         dev_priv->display.crtc_disable(crtc);
6376         intel_crtc->active = false;
6377         intel_fbc_disable(intel_crtc);
6378         intel_update_watermarks(crtc);
6379         intel_disable_shared_dpll(intel_crtc);
6380
6381         domains = intel_crtc->enabled_power_domains;
6382         for_each_power_domain(domain, domains)
6383                 intel_display_power_put(dev_priv, domain);
6384         intel_crtc->enabled_power_domains = 0;
6385
6386         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6387         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6388 }
6389
6390 /*
6391  * turn all crtc's off, but do not adjust state
6392  * This has to be paired with a call to intel_modeset_setup_hw_state.
6393  */
6394 int intel_display_suspend(struct drm_device *dev)
6395 {
6396         struct drm_mode_config *config = &dev->mode_config;
6397         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6398         struct drm_atomic_state *state;
6399         struct drm_crtc *crtc;
6400         unsigned crtc_mask = 0;
6401         int ret = 0;
6402
6403         if (WARN_ON(!ctx))
6404                 return 0;
6405
6406         lockdep_assert_held(&ctx->ww_ctx);
6407         state = drm_atomic_state_alloc(dev);
6408         if (WARN_ON(!state))
6409                 return -ENOMEM;
6410
6411         state->acquire_ctx = ctx;
6412         state->allow_modeset = true;
6413
6414         for_each_crtc(dev, crtc) {
6415                 struct drm_crtc_state *crtc_state =
6416                         drm_atomic_get_crtc_state(state, crtc);
6417
6418                 ret = PTR_ERR_OR_ZERO(crtc_state);
6419                 if (ret)
6420                         goto free;
6421
6422                 if (!crtc_state->active)
6423                         continue;
6424
6425                 crtc_state->active = false;
6426                 crtc_mask |= 1 << drm_crtc_index(crtc);
6427         }
6428
6429         if (crtc_mask) {
6430                 ret = drm_atomic_commit(state);
6431
6432                 if (!ret) {
6433                         for_each_crtc(dev, crtc)
6434                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6435                                         crtc->state->active = true;
6436
6437                         return ret;
6438                 }
6439         }
6440
6441 free:
6442         if (ret)
6443                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6444         drm_atomic_state_free(state);
6445         return ret;
6446 }
6447
6448 void intel_encoder_destroy(struct drm_encoder *encoder)
6449 {
6450         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6451
6452         drm_encoder_cleanup(encoder);
6453         kfree(intel_encoder);
6454 }
6455
6456 /* Cross check the actual hw state with our own modeset state tracking (and it's
6457  * internal consistency). */
6458 static void intel_connector_check_state(struct intel_connector *connector)
6459 {
6460         struct drm_crtc *crtc = connector->base.state->crtc;
6461
6462         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6463                       connector->base.base.id,
6464                       connector->base.name);
6465
6466         if (connector->get_hw_state(connector)) {
6467                 struct intel_encoder *encoder = connector->encoder;
6468                 struct drm_connector_state *conn_state = connector->base.state;
6469
6470                 I915_STATE_WARN(!crtc,
6471                          "connector enabled without attached crtc\n");
6472
6473                 if (!crtc)
6474                         return;
6475
6476                 I915_STATE_WARN(!crtc->state->active,
6477                       "connector is active, but attached crtc isn't\n");
6478
6479                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6480                         return;
6481
6482                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6483                         "atomic encoder doesn't match attached encoder\n");
6484
6485                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6486                         "attached encoder crtc differs from connector crtc\n");
6487         } else {
6488                 I915_STATE_WARN(crtc && crtc->state->active,
6489                         "attached crtc is active, but connector isn't\n");
6490                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6491                         "best encoder set without crtc!\n");
6492         }
6493 }
6494
6495 int intel_connector_init(struct intel_connector *connector)
6496 {
6497         drm_atomic_helper_connector_reset(&connector->base);
6498
6499         if (!connector->base.state)
6500                 return -ENOMEM;
6501
6502         return 0;
6503 }
6504
6505 struct intel_connector *intel_connector_alloc(void)
6506 {
6507         struct intel_connector *connector;
6508
6509         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6510         if (!connector)
6511                 return NULL;
6512
6513         if (intel_connector_init(connector) < 0) {
6514                 kfree(connector);
6515                 return NULL;
6516         }
6517
6518         return connector;
6519 }
6520
6521 /* Simple connector->get_hw_state implementation for encoders that support only
6522  * one connector and no cloning and hence the encoder state determines the state
6523  * of the connector. */
6524 bool intel_connector_get_hw_state(struct intel_connector *connector)
6525 {
6526         enum pipe pipe = 0;
6527         struct intel_encoder *encoder = connector->encoder;
6528
6529         return encoder->get_hw_state(encoder, &pipe);
6530 }
6531
6532 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6533 {
6534         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6535                 return crtc_state->fdi_lanes;
6536
6537         return 0;
6538 }
6539
6540 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6541                                      struct intel_crtc_state *pipe_config)
6542 {
6543         struct drm_atomic_state *state = pipe_config->base.state;
6544         struct intel_crtc *other_crtc;
6545         struct intel_crtc_state *other_crtc_state;
6546
6547         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6548                       pipe_name(pipe), pipe_config->fdi_lanes);
6549         if (pipe_config->fdi_lanes > 4) {
6550                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6551                               pipe_name(pipe), pipe_config->fdi_lanes);
6552                 return -EINVAL;
6553         }
6554
6555         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6556                 if (pipe_config->fdi_lanes > 2) {
6557                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6558                                       pipe_config->fdi_lanes);
6559                         return -EINVAL;
6560                 } else {
6561                         return 0;
6562                 }
6563         }
6564
6565         if (INTEL_INFO(dev)->num_pipes == 2)
6566                 return 0;
6567
6568         /* Ivybridge 3 pipe is really complicated */
6569         switch (pipe) {
6570         case PIPE_A:
6571                 return 0;
6572         case PIPE_B:
6573                 if (pipe_config->fdi_lanes <= 2)
6574                         return 0;
6575
6576                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6577                 other_crtc_state =
6578                         intel_atomic_get_crtc_state(state, other_crtc);
6579                 if (IS_ERR(other_crtc_state))
6580                         return PTR_ERR(other_crtc_state);
6581
6582                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6583                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6584                                       pipe_name(pipe), pipe_config->fdi_lanes);
6585                         return -EINVAL;
6586                 }
6587                 return 0;
6588         case PIPE_C:
6589                 if (pipe_config->fdi_lanes > 2) {
6590                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6591                                       pipe_name(pipe), pipe_config->fdi_lanes);
6592                         return -EINVAL;
6593                 }
6594
6595                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6596                 other_crtc_state =
6597                         intel_atomic_get_crtc_state(state, other_crtc);
6598                 if (IS_ERR(other_crtc_state))
6599                         return PTR_ERR(other_crtc_state);
6600
6601                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6602                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6603                         return -EINVAL;
6604                 }
6605                 return 0;
6606         default:
6607                 BUG();
6608         }
6609 }
6610
6611 #define RETRY 1
6612 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6613                                        struct intel_crtc_state *pipe_config)
6614 {
6615         struct drm_device *dev = intel_crtc->base.dev;
6616         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6617         int lane, link_bw, fdi_dotclock, ret;
6618         bool needs_recompute = false;
6619
6620 retry:
6621         /* FDI is a binary signal running at ~2.7GHz, encoding
6622          * each output octet as 10 bits. The actual frequency
6623          * is stored as a divider into a 100MHz clock, and the
6624          * mode pixel clock is stored in units of 1KHz.
6625          * Hence the bw of each lane in terms of the mode signal
6626          * is:
6627          */
6628         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6629
6630         fdi_dotclock = adjusted_mode->crtc_clock;
6631
6632         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6633                                            pipe_config->pipe_bpp);
6634
6635         pipe_config->fdi_lanes = lane;
6636
6637         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6638                                link_bw, &pipe_config->fdi_m_n);
6639
6640         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6641                                        intel_crtc->pipe, pipe_config);
6642         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6643                 pipe_config->pipe_bpp -= 2*3;
6644                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6645                               pipe_config->pipe_bpp);
6646                 needs_recompute = true;
6647                 pipe_config->bw_constrained = true;
6648
6649                 goto retry;
6650         }
6651
6652         if (needs_recompute)
6653                 return RETRY;
6654
6655         return ret;
6656 }
6657
6658 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6659                                      struct intel_crtc_state *pipe_config)
6660 {
6661         if (pipe_config->pipe_bpp > 24)
6662                 return false;
6663
6664         /* HSW can handle pixel rate up to cdclk? */
6665         if (IS_HASWELL(dev_priv->dev))
6666                 return true;
6667
6668         /*
6669          * We compare against max which means we must take
6670          * the increased cdclk requirement into account when
6671          * calculating the new cdclk.
6672          *
6673          * Should measure whether using a lower cdclk w/o IPS
6674          */
6675         return ilk_pipe_pixel_rate(pipe_config) <=
6676                 dev_priv->max_cdclk_freq * 95 / 100;
6677 }
6678
6679 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6680                                    struct intel_crtc_state *pipe_config)
6681 {
6682         struct drm_device *dev = crtc->base.dev;
6683         struct drm_i915_private *dev_priv = dev->dev_private;
6684
6685         pipe_config->ips_enabled = i915.enable_ips &&
6686                 hsw_crtc_supports_ips(crtc) &&
6687                 pipe_config_supports_ips(dev_priv, pipe_config);
6688 }
6689
6690 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6691 {
6692         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6693
6694         /* GDG double wide on either pipe, otherwise pipe A only */
6695         return INTEL_INFO(dev_priv)->gen < 4 &&
6696                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6697 }
6698
6699 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6700                                      struct intel_crtc_state *pipe_config)
6701 {
6702         struct drm_device *dev = crtc->base.dev;
6703         struct drm_i915_private *dev_priv = dev->dev_private;
6704         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6705
6706         /* FIXME should check pixel clock limits on all platforms */
6707         if (INTEL_INFO(dev)->gen < 4) {
6708                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6709
6710                 /*
6711                  * Enable double wide mode when the dot clock
6712                  * is > 90% of the (display) core speed.
6713                  */
6714                 if (intel_crtc_supports_double_wide(crtc) &&
6715                     adjusted_mode->crtc_clock > clock_limit) {
6716                         clock_limit *= 2;
6717                         pipe_config->double_wide = true;
6718                 }
6719
6720                 if (adjusted_mode->crtc_clock > clock_limit) {
6721                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6722                                       adjusted_mode->crtc_clock, clock_limit,
6723                                       yesno(pipe_config->double_wide));
6724                         return -EINVAL;
6725                 }
6726         }
6727
6728         /*
6729          * Pipe horizontal size must be even in:
6730          * - DVO ganged mode
6731          * - LVDS dual channel mode
6732          * - Double wide pipe
6733          */
6734         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6735              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6736                 pipe_config->pipe_src_w &= ~1;
6737
6738         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6739          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6740          */
6741         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6742                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6743                 return -EINVAL;
6744
6745         if (HAS_IPS(dev))
6746                 hsw_compute_ips_config(crtc, pipe_config);
6747
6748         if (pipe_config->has_pch_encoder)
6749                 return ironlake_fdi_compute_config(crtc, pipe_config);
6750
6751         return 0;
6752 }
6753
6754 static int skylake_get_display_clock_speed(struct drm_device *dev)
6755 {
6756         struct drm_i915_private *dev_priv = to_i915(dev);
6757         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6758         uint32_t cdctl = I915_READ(CDCLK_CTL);
6759         uint32_t linkrate;
6760
6761         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6762                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6763
6764         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6765                 return 540000;
6766
6767         linkrate = (I915_READ(DPLL_CTRL1) &
6768                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6769
6770         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6771             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6772                 /* vco 8640 */
6773                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6774                 case CDCLK_FREQ_450_432:
6775                         return 432000;
6776                 case CDCLK_FREQ_337_308:
6777                         return 308570;
6778                 case CDCLK_FREQ_675_617:
6779                         return 617140;
6780                 default:
6781                         WARN(1, "Unknown cd freq selection\n");
6782                 }
6783         } else {
6784                 /* vco 8100 */
6785                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6786                 case CDCLK_FREQ_450_432:
6787                         return 450000;
6788                 case CDCLK_FREQ_337_308:
6789                         return 337500;
6790                 case CDCLK_FREQ_675_617:
6791                         return 675000;
6792                 default:
6793                         WARN(1, "Unknown cd freq selection\n");
6794                 }
6795         }
6796
6797         /* error case, do as if DPLL0 isn't enabled */
6798         return 24000;
6799 }
6800
6801 static int broxton_get_display_clock_speed(struct drm_device *dev)
6802 {
6803         struct drm_i915_private *dev_priv = to_i915(dev);
6804         uint32_t cdctl = I915_READ(CDCLK_CTL);
6805         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6806         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6807         int cdclk;
6808
6809         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6810                 return 19200;
6811
6812         cdclk = 19200 * pll_ratio / 2;
6813
6814         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6815         case BXT_CDCLK_CD2X_DIV_SEL_1:
6816                 return cdclk;  /* 576MHz or 624MHz */
6817         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6818                 return cdclk * 2 / 3; /* 384MHz */
6819         case BXT_CDCLK_CD2X_DIV_SEL_2:
6820                 return cdclk / 2; /* 288MHz */
6821         case BXT_CDCLK_CD2X_DIV_SEL_4:
6822                 return cdclk / 4; /* 144MHz */
6823         }
6824
6825         /* error case, do as if DE PLL isn't enabled */
6826         return 19200;
6827 }
6828
6829 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6830 {
6831         struct drm_i915_private *dev_priv = dev->dev_private;
6832         uint32_t lcpll = I915_READ(LCPLL_CTL);
6833         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6834
6835         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6836                 return 800000;
6837         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6838                 return 450000;
6839         else if (freq == LCPLL_CLK_FREQ_450)
6840                 return 450000;
6841         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6842                 return 540000;
6843         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6844                 return 337500;
6845         else
6846                 return 675000;
6847 }
6848
6849 static int haswell_get_display_clock_speed(struct drm_device *dev)
6850 {
6851         struct drm_i915_private *dev_priv = dev->dev_private;
6852         uint32_t lcpll = I915_READ(LCPLL_CTL);
6853         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6854
6855         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6856                 return 800000;
6857         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6858                 return 450000;
6859         else if (freq == LCPLL_CLK_FREQ_450)
6860                 return 450000;
6861         else if (IS_HSW_ULT(dev))
6862                 return 337500;
6863         else
6864                 return 540000;
6865 }
6866
6867 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6868 {
6869         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6870                                       CCK_DISPLAY_CLOCK_CONTROL);
6871 }
6872
6873 static int ilk_get_display_clock_speed(struct drm_device *dev)
6874 {
6875         return 450000;
6876 }
6877
6878 static int i945_get_display_clock_speed(struct drm_device *dev)
6879 {
6880         return 400000;
6881 }
6882
6883 static int i915_get_display_clock_speed(struct drm_device *dev)
6884 {
6885         return 333333;
6886 }
6887
6888 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6889 {
6890         return 200000;
6891 }
6892
6893 static int pnv_get_display_clock_speed(struct drm_device *dev)
6894 {
6895         u16 gcfgc = 0;
6896
6897         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6898
6899         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6900         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6901                 return 266667;
6902         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6903                 return 333333;
6904         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6905                 return 444444;
6906         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6907                 return 200000;
6908         default:
6909                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6910         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6911                 return 133333;
6912         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6913                 return 166667;
6914         }
6915 }
6916
6917 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6918 {
6919         u16 gcfgc = 0;
6920
6921         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6922
6923         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6924                 return 133333;
6925         else {
6926                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6927                 case GC_DISPLAY_CLOCK_333_MHZ:
6928                         return 333333;
6929                 default:
6930                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6931                         return 190000;
6932                 }
6933         }
6934 }
6935
6936 static int i865_get_display_clock_speed(struct drm_device *dev)
6937 {
6938         return 266667;
6939 }
6940
6941 static int i85x_get_display_clock_speed(struct drm_device *dev)
6942 {
6943         u16 hpllcc = 0;
6944
6945         /*
6946          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6947          * encoding is different :(
6948          * FIXME is this the right way to detect 852GM/852GMV?
6949          */
6950         if (dev->pdev->revision == 0x1)
6951                 return 133333;
6952
6953         pci_bus_read_config_word(dev->pdev->bus,
6954                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6955
6956         /* Assume that the hardware is in the high speed state.  This
6957          * should be the default.
6958          */
6959         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6960         case GC_CLOCK_133_200:
6961         case GC_CLOCK_133_200_2:
6962         case GC_CLOCK_100_200:
6963                 return 200000;
6964         case GC_CLOCK_166_250:
6965                 return 250000;
6966         case GC_CLOCK_100_133:
6967                 return 133333;
6968         case GC_CLOCK_133_266:
6969         case GC_CLOCK_133_266_2:
6970         case GC_CLOCK_166_266:
6971                 return 266667;
6972         }
6973
6974         /* Shouldn't happen */
6975         return 0;
6976 }
6977
6978 static int i830_get_display_clock_speed(struct drm_device *dev)
6979 {
6980         return 133333;
6981 }
6982
6983 static unsigned int intel_hpll_vco(struct drm_device *dev)
6984 {
6985         struct drm_i915_private *dev_priv = dev->dev_private;
6986         static const unsigned int blb_vco[8] = {
6987                 [0] = 3200000,
6988                 [1] = 4000000,
6989                 [2] = 5333333,
6990                 [3] = 4800000,
6991                 [4] = 6400000,
6992         };
6993         static const unsigned int pnv_vco[8] = {
6994                 [0] = 3200000,
6995                 [1] = 4000000,
6996                 [2] = 5333333,
6997                 [3] = 4800000,
6998                 [4] = 2666667,
6999         };
7000         static const unsigned int cl_vco[8] = {
7001                 [0] = 3200000,
7002                 [1] = 4000000,
7003                 [2] = 5333333,
7004                 [3] = 6400000,
7005                 [4] = 3333333,
7006                 [5] = 3566667,
7007                 [6] = 4266667,
7008         };
7009         static const unsigned int elk_vco[8] = {
7010                 [0] = 3200000,
7011                 [1] = 4000000,
7012                 [2] = 5333333,
7013                 [3] = 4800000,
7014         };
7015         static const unsigned int ctg_vco[8] = {
7016                 [0] = 3200000,
7017                 [1] = 4000000,
7018                 [2] = 5333333,
7019                 [3] = 6400000,
7020                 [4] = 2666667,
7021                 [5] = 4266667,
7022         };
7023         const unsigned int *vco_table;
7024         unsigned int vco;
7025         uint8_t tmp = 0;
7026
7027         /* FIXME other chipsets? */
7028         if (IS_GM45(dev))
7029                 vco_table = ctg_vco;
7030         else if (IS_G4X(dev))
7031                 vco_table = elk_vco;
7032         else if (IS_CRESTLINE(dev))
7033                 vco_table = cl_vco;
7034         else if (IS_PINEVIEW(dev))
7035                 vco_table = pnv_vco;
7036         else if (IS_G33(dev))
7037                 vco_table = blb_vco;
7038         else
7039                 return 0;
7040
7041         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7042
7043         vco = vco_table[tmp & 0x7];
7044         if (vco == 0)
7045                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7046         else
7047                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7048
7049         return vco;
7050 }
7051
7052 static int gm45_get_display_clock_speed(struct drm_device *dev)
7053 {
7054         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7055         uint16_t tmp = 0;
7056
7057         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7058
7059         cdclk_sel = (tmp >> 12) & 0x1;
7060
7061         switch (vco) {
7062         case 2666667:
7063         case 4000000:
7064         case 5333333:
7065                 return cdclk_sel ? 333333 : 222222;
7066         case 3200000:
7067                 return cdclk_sel ? 320000 : 228571;
7068         default:
7069                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7070                 return 222222;
7071         }
7072 }
7073
7074 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7075 {
7076         static const uint8_t div_3200[] = { 16, 10,  8 };
7077         static const uint8_t div_4000[] = { 20, 12, 10 };
7078         static const uint8_t div_5333[] = { 24, 16, 14 };
7079         const uint8_t *div_table;
7080         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7081         uint16_t tmp = 0;
7082
7083         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7084
7085         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7086
7087         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7088                 goto fail;
7089
7090         switch (vco) {
7091         case 3200000:
7092                 div_table = div_3200;
7093                 break;
7094         case 4000000:
7095                 div_table = div_4000;
7096                 break;
7097         case 5333333:
7098                 div_table = div_5333;
7099                 break;
7100         default:
7101                 goto fail;
7102         }
7103
7104         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7105
7106 fail:
7107         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7108         return 200000;
7109 }
7110
7111 static int g33_get_display_clock_speed(struct drm_device *dev)
7112 {
7113         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7114         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7115         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7116         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7117         const uint8_t *div_table;
7118         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7119         uint16_t tmp = 0;
7120
7121         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7122
7123         cdclk_sel = (tmp >> 4) & 0x7;
7124
7125         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7126                 goto fail;
7127
7128         switch (vco) {
7129         case 3200000:
7130                 div_table = div_3200;
7131                 break;
7132         case 4000000:
7133                 div_table = div_4000;
7134                 break;
7135         case 4800000:
7136                 div_table = div_4800;
7137                 break;
7138         case 5333333:
7139                 div_table = div_5333;
7140                 break;
7141         default:
7142                 goto fail;
7143         }
7144
7145         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7146
7147 fail:
7148         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7149         return 190476;
7150 }
7151
7152 static void
7153 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7154 {
7155         while (*num > DATA_LINK_M_N_MASK ||
7156                *den > DATA_LINK_M_N_MASK) {
7157                 *num >>= 1;
7158                 *den >>= 1;
7159         }
7160 }
7161
7162 static void compute_m_n(unsigned int m, unsigned int n,
7163                         uint32_t *ret_m, uint32_t *ret_n)
7164 {
7165         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7166         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7167         intel_reduce_m_n_ratio(ret_m, ret_n);
7168 }
7169
7170 void
7171 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7172                        int pixel_clock, int link_clock,
7173                        struct intel_link_m_n *m_n)
7174 {
7175         m_n->tu = 64;
7176
7177         compute_m_n(bits_per_pixel * pixel_clock,
7178                     link_clock * nlanes * 8,
7179                     &m_n->gmch_m, &m_n->gmch_n);
7180
7181         compute_m_n(pixel_clock, link_clock,
7182                     &m_n->link_m, &m_n->link_n);
7183 }
7184
7185 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7186 {
7187         if (i915.panel_use_ssc >= 0)
7188                 return i915.panel_use_ssc != 0;
7189         return dev_priv->vbt.lvds_use_ssc
7190                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7191 }
7192
7193 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7194                            int num_connectors)
7195 {
7196         struct drm_device *dev = crtc_state->base.crtc->dev;
7197         struct drm_i915_private *dev_priv = dev->dev_private;
7198         int refclk;
7199
7200         WARN_ON(!crtc_state->base.state);
7201
7202         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
7203                 refclk = 100000;
7204         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7205             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7206                 refclk = dev_priv->vbt.lvds_ssc_freq;
7207                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7208         } else if (!IS_GEN2(dev)) {
7209                 refclk = 96000;
7210         } else {
7211                 refclk = 48000;
7212         }
7213
7214         return refclk;
7215 }
7216
7217 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7218 {
7219         return (1 << dpll->n) << 16 | dpll->m2;
7220 }
7221
7222 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7223 {
7224         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7225 }
7226
7227 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7228                                      struct intel_crtc_state *crtc_state,
7229                                      intel_clock_t *reduced_clock)
7230 {
7231         struct drm_device *dev = crtc->base.dev;
7232         u32 fp, fp2 = 0;
7233
7234         if (IS_PINEVIEW(dev)) {
7235                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7236                 if (reduced_clock)
7237                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7238         } else {
7239                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7240                 if (reduced_clock)
7241                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7242         }
7243
7244         crtc_state->dpll_hw_state.fp0 = fp;
7245
7246         crtc->lowfreq_avail = false;
7247         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7248             reduced_clock) {
7249                 crtc_state->dpll_hw_state.fp1 = fp2;
7250                 crtc->lowfreq_avail = true;
7251         } else {
7252                 crtc_state->dpll_hw_state.fp1 = fp;
7253         }
7254 }
7255
7256 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7257                 pipe)
7258 {
7259         u32 reg_val;
7260
7261         /*
7262          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7263          * and set it to a reasonable value instead.
7264          */
7265         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7266         reg_val &= 0xffffff00;
7267         reg_val |= 0x00000030;
7268         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7269
7270         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7271         reg_val &= 0x8cffffff;
7272         reg_val = 0x8c000000;
7273         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7274
7275         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7276         reg_val &= 0xffffff00;
7277         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7278
7279         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7280         reg_val &= 0x00ffffff;
7281         reg_val |= 0xb0000000;
7282         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7283 }
7284
7285 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7286                                          struct intel_link_m_n *m_n)
7287 {
7288         struct drm_device *dev = crtc->base.dev;
7289         struct drm_i915_private *dev_priv = dev->dev_private;
7290         int pipe = crtc->pipe;
7291
7292         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7293         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7294         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7295         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7296 }
7297
7298 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7299                                          struct intel_link_m_n *m_n,
7300                                          struct intel_link_m_n *m2_n2)
7301 {
7302         struct drm_device *dev = crtc->base.dev;
7303         struct drm_i915_private *dev_priv = dev->dev_private;
7304         int pipe = crtc->pipe;
7305         enum transcoder transcoder = crtc->config->cpu_transcoder;
7306
7307         if (INTEL_INFO(dev)->gen >= 5) {
7308                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7309                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7310                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7311                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7312                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7313                  * for gen < 8) and if DRRS is supported (to make sure the
7314                  * registers are not unnecessarily accessed).
7315                  */
7316                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7317                         crtc->config->has_drrs) {
7318                         I915_WRITE(PIPE_DATA_M2(transcoder),
7319                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7320                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7321                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7322                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7323                 }
7324         } else {
7325                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7326                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7327                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7328                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7329         }
7330 }
7331
7332 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7333 {
7334         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7335
7336         if (m_n == M1_N1) {
7337                 dp_m_n = &crtc->config->dp_m_n;
7338                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7339         } else if (m_n == M2_N2) {
7340
7341                 /*
7342                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7343                  * needs to be programmed into M1_N1.
7344                  */
7345                 dp_m_n = &crtc->config->dp_m2_n2;
7346         } else {
7347                 DRM_ERROR("Unsupported divider value\n");
7348                 return;
7349         }
7350
7351         if (crtc->config->has_pch_encoder)
7352                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7353         else
7354                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7355 }
7356
7357 static void vlv_compute_dpll(struct intel_crtc *crtc,
7358                              struct intel_crtc_state *pipe_config)
7359 {
7360         u32 dpll, dpll_md;
7361
7362         /*
7363          * Enable DPIO clock input. We should never disable the reference
7364          * clock for pipe B, since VGA hotplug / manual detection depends
7365          * on it.
7366          */
7367         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7368                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7369         /* We should never disable this, set it here for state tracking */
7370         if (crtc->pipe == PIPE_B)
7371                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7372         dpll |= DPLL_VCO_ENABLE;
7373         pipe_config->dpll_hw_state.dpll = dpll;
7374
7375         dpll_md = (pipe_config->pixel_multiplier - 1)
7376                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7377         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7378 }
7379
7380 static void vlv_prepare_pll(struct intel_crtc *crtc,
7381                             const struct intel_crtc_state *pipe_config)
7382 {
7383         struct drm_device *dev = crtc->base.dev;
7384         struct drm_i915_private *dev_priv = dev->dev_private;
7385         int pipe = crtc->pipe;
7386         u32 mdiv;
7387         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7388         u32 coreclk, reg_val;
7389
7390         mutex_lock(&dev_priv->sb_lock);
7391
7392         bestn = pipe_config->dpll.n;
7393         bestm1 = pipe_config->dpll.m1;
7394         bestm2 = pipe_config->dpll.m2;
7395         bestp1 = pipe_config->dpll.p1;
7396         bestp2 = pipe_config->dpll.p2;
7397
7398         /* See eDP HDMI DPIO driver vbios notes doc */
7399
7400         /* PLL B needs special handling */
7401         if (pipe == PIPE_B)
7402                 vlv_pllb_recal_opamp(dev_priv, pipe);
7403
7404         /* Set up Tx target for periodic Rcomp update */
7405         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7406
7407         /* Disable target IRef on PLL */
7408         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7409         reg_val &= 0x00ffffff;
7410         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7411
7412         /* Disable fast lock */
7413         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7414
7415         /* Set idtafcrecal before PLL is enabled */
7416         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7417         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7418         mdiv |= ((bestn << DPIO_N_SHIFT));
7419         mdiv |= (1 << DPIO_K_SHIFT);
7420
7421         /*
7422          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7423          * but we don't support that).
7424          * Note: don't use the DAC post divider as it seems unstable.
7425          */
7426         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7427         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7428
7429         mdiv |= DPIO_ENABLE_CALIBRATION;
7430         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7431
7432         /* Set HBR and RBR LPF coefficients */
7433         if (pipe_config->port_clock == 162000 ||
7434             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7435             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7436                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7437                                  0x009f0003);
7438         else
7439                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7440                                  0x00d0000f);
7441
7442         if (pipe_config->has_dp_encoder) {
7443                 /* Use SSC source */
7444                 if (pipe == PIPE_A)
7445                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7446                                          0x0df40000);
7447                 else
7448                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7449                                          0x0df70000);
7450         } else { /* HDMI or VGA */
7451                 /* Use bend source */
7452                 if (pipe == PIPE_A)
7453                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7454                                          0x0df70000);
7455                 else
7456                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7457                                          0x0df40000);
7458         }
7459
7460         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7461         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7462         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7463             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7464                 coreclk |= 0x01000000;
7465         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7466
7467         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7468         mutex_unlock(&dev_priv->sb_lock);
7469 }
7470
7471 static void chv_compute_dpll(struct intel_crtc *crtc,
7472                              struct intel_crtc_state *pipe_config)
7473 {
7474         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7475                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7476                 DPLL_VCO_ENABLE;
7477         if (crtc->pipe != PIPE_A)
7478                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7479
7480         pipe_config->dpll_hw_state.dpll_md =
7481                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7482 }
7483
7484 static void chv_prepare_pll(struct intel_crtc *crtc,
7485                             const struct intel_crtc_state *pipe_config)
7486 {
7487         struct drm_device *dev = crtc->base.dev;
7488         struct drm_i915_private *dev_priv = dev->dev_private;
7489         int pipe = crtc->pipe;
7490         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7491         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7492         u32 loopfilter, tribuf_calcntr;
7493         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7494         u32 dpio_val;
7495         int vco;
7496
7497         bestn = pipe_config->dpll.n;
7498         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7499         bestm1 = pipe_config->dpll.m1;
7500         bestm2 = pipe_config->dpll.m2 >> 22;
7501         bestp1 = pipe_config->dpll.p1;
7502         bestp2 = pipe_config->dpll.p2;
7503         vco = pipe_config->dpll.vco;
7504         dpio_val = 0;
7505         loopfilter = 0;
7506
7507         /*
7508          * Enable Refclk and SSC
7509          */
7510         I915_WRITE(dpll_reg,
7511                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7512
7513         mutex_lock(&dev_priv->sb_lock);
7514
7515         /* p1 and p2 divider */
7516         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7517                         5 << DPIO_CHV_S1_DIV_SHIFT |
7518                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7519                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7520                         1 << DPIO_CHV_K_DIV_SHIFT);
7521
7522         /* Feedback post-divider - m2 */
7523         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7524
7525         /* Feedback refclk divider - n and m1 */
7526         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7527                         DPIO_CHV_M1_DIV_BY_2 |
7528                         1 << DPIO_CHV_N_DIV_SHIFT);
7529
7530         /* M2 fraction division */
7531         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7532
7533         /* M2 fraction division enable */
7534         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7535         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7536         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7537         if (bestm2_frac)
7538                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7539         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7540
7541         /* Program digital lock detect threshold */
7542         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7543         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7544                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7545         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7546         if (!bestm2_frac)
7547                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7548         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7549
7550         /* Loop filter */
7551         if (vco == 5400000) {
7552                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7553                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7554                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7555                 tribuf_calcntr = 0x9;
7556         } else if (vco <= 6200000) {
7557                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7558                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7559                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7560                 tribuf_calcntr = 0x9;
7561         } else if (vco <= 6480000) {
7562                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7563                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7564                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7565                 tribuf_calcntr = 0x8;
7566         } else {
7567                 /* Not supported. Apply the same limits as in the max case */
7568                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7569                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7570                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7571                 tribuf_calcntr = 0;
7572         }
7573         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7574
7575         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7576         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7577         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7578         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7579
7580         /* AFC Recal */
7581         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7582                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7583                         DPIO_AFC_RECAL);
7584
7585         mutex_unlock(&dev_priv->sb_lock);
7586 }
7587
7588 /**
7589  * vlv_force_pll_on - forcibly enable just the PLL
7590  * @dev_priv: i915 private structure
7591  * @pipe: pipe PLL to enable
7592  * @dpll: PLL configuration
7593  *
7594  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7595  * in cases where we need the PLL enabled even when @pipe is not going to
7596  * be enabled.
7597  */
7598 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7599                      const struct dpll *dpll)
7600 {
7601         struct intel_crtc *crtc =
7602                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7603         struct intel_crtc_state *pipe_config;
7604
7605         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7606         if (!pipe_config)
7607                 return -ENOMEM;
7608
7609         pipe_config->base.crtc = &crtc->base;
7610         pipe_config->pixel_multiplier = 1;
7611         pipe_config->dpll = *dpll;
7612
7613         if (IS_CHERRYVIEW(dev)) {
7614                 chv_compute_dpll(crtc, pipe_config);
7615                 chv_prepare_pll(crtc, pipe_config);
7616                 chv_enable_pll(crtc, pipe_config);
7617         } else {
7618                 vlv_compute_dpll(crtc, pipe_config);
7619                 vlv_prepare_pll(crtc, pipe_config);
7620                 vlv_enable_pll(crtc, pipe_config);
7621         }
7622
7623         kfree(pipe_config);
7624
7625         return 0;
7626 }
7627
7628 /**
7629  * vlv_force_pll_off - forcibly disable just the PLL
7630  * @dev_priv: i915 private structure
7631  * @pipe: pipe PLL to disable
7632  *
7633  * Disable the PLL for @pipe. To be used in cases where we need
7634  * the PLL enabled even when @pipe is not going to be enabled.
7635  */
7636 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7637 {
7638         if (IS_CHERRYVIEW(dev))
7639                 chv_disable_pll(to_i915(dev), pipe);
7640         else
7641                 vlv_disable_pll(to_i915(dev), pipe);
7642 }
7643
7644 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7645                               struct intel_crtc_state *crtc_state,
7646                               intel_clock_t *reduced_clock,
7647                               int num_connectors)
7648 {
7649         struct drm_device *dev = crtc->base.dev;
7650         struct drm_i915_private *dev_priv = dev->dev_private;
7651         u32 dpll;
7652         bool is_sdvo;
7653         struct dpll *clock = &crtc_state->dpll;
7654
7655         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7656
7657         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7658                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7659
7660         dpll = DPLL_VGA_MODE_DIS;
7661
7662         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7663                 dpll |= DPLLB_MODE_LVDS;
7664         else
7665                 dpll |= DPLLB_MODE_DAC_SERIAL;
7666
7667         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7668                 dpll |= (crtc_state->pixel_multiplier - 1)
7669                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7670         }
7671
7672         if (is_sdvo)
7673                 dpll |= DPLL_SDVO_HIGH_SPEED;
7674
7675         if (crtc_state->has_dp_encoder)
7676                 dpll |= DPLL_SDVO_HIGH_SPEED;
7677
7678         /* compute bitmask from p1 value */
7679         if (IS_PINEVIEW(dev))
7680                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7681         else {
7682                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7683                 if (IS_G4X(dev) && reduced_clock)
7684                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7685         }
7686         switch (clock->p2) {
7687         case 5:
7688                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7689                 break;
7690         case 7:
7691                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7692                 break;
7693         case 10:
7694                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7695                 break;
7696         case 14:
7697                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7698                 break;
7699         }
7700         if (INTEL_INFO(dev)->gen >= 4)
7701                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7702
7703         if (crtc_state->sdvo_tv_clock)
7704                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7705         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7706                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7707                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7708         else
7709                 dpll |= PLL_REF_INPUT_DREFCLK;
7710
7711         dpll |= DPLL_VCO_ENABLE;
7712         crtc_state->dpll_hw_state.dpll = dpll;
7713
7714         if (INTEL_INFO(dev)->gen >= 4) {
7715                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7716                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7717                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7718         }
7719 }
7720
7721 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7722                               struct intel_crtc_state *crtc_state,
7723                               intel_clock_t *reduced_clock,
7724                               int num_connectors)
7725 {
7726         struct drm_device *dev = crtc->base.dev;
7727         struct drm_i915_private *dev_priv = dev->dev_private;
7728         u32 dpll;
7729         struct dpll *clock = &crtc_state->dpll;
7730
7731         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7732
7733         dpll = DPLL_VGA_MODE_DIS;
7734
7735         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7736                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7737         } else {
7738                 if (clock->p1 == 2)
7739                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7740                 else
7741                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7742                 if (clock->p2 == 4)
7743                         dpll |= PLL_P2_DIVIDE_BY_4;
7744         }
7745
7746         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7747                 dpll |= DPLL_DVO_2X_MODE;
7748
7749         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7750                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7751                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7752         else
7753                 dpll |= PLL_REF_INPUT_DREFCLK;
7754
7755         dpll |= DPLL_VCO_ENABLE;
7756         crtc_state->dpll_hw_state.dpll = dpll;
7757 }
7758
7759 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7760 {
7761         struct drm_device *dev = intel_crtc->base.dev;
7762         struct drm_i915_private *dev_priv = dev->dev_private;
7763         enum pipe pipe = intel_crtc->pipe;
7764         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7765         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7766         uint32_t crtc_vtotal, crtc_vblank_end;
7767         int vsyncshift = 0;
7768
7769         /* We need to be careful not to changed the adjusted mode, for otherwise
7770          * the hw state checker will get angry at the mismatch. */
7771         crtc_vtotal = adjusted_mode->crtc_vtotal;
7772         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7773
7774         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7775                 /* the chip adds 2 halflines automatically */
7776                 crtc_vtotal -= 1;
7777                 crtc_vblank_end -= 1;
7778
7779                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7780                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7781                 else
7782                         vsyncshift = adjusted_mode->crtc_hsync_start -
7783                                 adjusted_mode->crtc_htotal / 2;
7784                 if (vsyncshift < 0)
7785                         vsyncshift += adjusted_mode->crtc_htotal;
7786         }
7787
7788         if (INTEL_INFO(dev)->gen > 3)
7789                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7790
7791         I915_WRITE(HTOTAL(cpu_transcoder),
7792                    (adjusted_mode->crtc_hdisplay - 1) |
7793                    ((adjusted_mode->crtc_htotal - 1) << 16));
7794         I915_WRITE(HBLANK(cpu_transcoder),
7795                    (adjusted_mode->crtc_hblank_start - 1) |
7796                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7797         I915_WRITE(HSYNC(cpu_transcoder),
7798                    (adjusted_mode->crtc_hsync_start - 1) |
7799                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7800
7801         I915_WRITE(VTOTAL(cpu_transcoder),
7802                    (adjusted_mode->crtc_vdisplay - 1) |
7803                    ((crtc_vtotal - 1) << 16));
7804         I915_WRITE(VBLANK(cpu_transcoder),
7805                    (adjusted_mode->crtc_vblank_start - 1) |
7806                    ((crtc_vblank_end - 1) << 16));
7807         I915_WRITE(VSYNC(cpu_transcoder),
7808                    (adjusted_mode->crtc_vsync_start - 1) |
7809                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7810
7811         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7812          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7813          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7814          * bits. */
7815         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7816             (pipe == PIPE_B || pipe == PIPE_C))
7817                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7818
7819         /* pipesrc controls the size that is scaled from, which should
7820          * always be the user's requested size.
7821          */
7822         I915_WRITE(PIPESRC(pipe),
7823                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7824                    (intel_crtc->config->pipe_src_h - 1));
7825 }
7826
7827 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7828                                    struct intel_crtc_state *pipe_config)
7829 {
7830         struct drm_device *dev = crtc->base.dev;
7831         struct drm_i915_private *dev_priv = dev->dev_private;
7832         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7833         uint32_t tmp;
7834
7835         tmp = I915_READ(HTOTAL(cpu_transcoder));
7836         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7837         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7838         tmp = I915_READ(HBLANK(cpu_transcoder));
7839         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7840         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7841         tmp = I915_READ(HSYNC(cpu_transcoder));
7842         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7843         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7844
7845         tmp = I915_READ(VTOTAL(cpu_transcoder));
7846         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7847         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7848         tmp = I915_READ(VBLANK(cpu_transcoder));
7849         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7850         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7851         tmp = I915_READ(VSYNC(cpu_transcoder));
7852         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7853         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7854
7855         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7856                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7857                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7858                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7859         }
7860
7861         tmp = I915_READ(PIPESRC(crtc->pipe));
7862         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7863         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7864
7865         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7866         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7867 }
7868
7869 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7870                                  struct intel_crtc_state *pipe_config)
7871 {
7872         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7873         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7874         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7875         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7876
7877         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7878         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7879         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7880         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7881
7882         mode->flags = pipe_config->base.adjusted_mode.flags;
7883         mode->type = DRM_MODE_TYPE_DRIVER;
7884
7885         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7886         mode->flags |= pipe_config->base.adjusted_mode.flags;
7887
7888         mode->hsync = drm_mode_hsync(mode);
7889         mode->vrefresh = drm_mode_vrefresh(mode);
7890         drm_mode_set_name(mode);
7891 }
7892
7893 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7894 {
7895         struct drm_device *dev = intel_crtc->base.dev;
7896         struct drm_i915_private *dev_priv = dev->dev_private;
7897         uint32_t pipeconf;
7898
7899         pipeconf = 0;
7900
7901         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7902             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7903                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7904
7905         if (intel_crtc->config->double_wide)
7906                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7907
7908         /* only g4x and later have fancy bpc/dither controls */
7909         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7910                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7911                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7912                         pipeconf |= PIPECONF_DITHER_EN |
7913                                     PIPECONF_DITHER_TYPE_SP;
7914
7915                 switch (intel_crtc->config->pipe_bpp) {
7916                 case 18:
7917                         pipeconf |= PIPECONF_6BPC;
7918                         break;
7919                 case 24:
7920                         pipeconf |= PIPECONF_8BPC;
7921                         break;
7922                 case 30:
7923                         pipeconf |= PIPECONF_10BPC;
7924                         break;
7925                 default:
7926                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7927                         BUG();
7928                 }
7929         }
7930
7931         if (HAS_PIPE_CXSR(dev)) {
7932                 if (intel_crtc->lowfreq_avail) {
7933                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7934                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7935                 } else {
7936                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7937                 }
7938         }
7939
7940         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7941                 if (INTEL_INFO(dev)->gen < 4 ||
7942                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7943                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7944                 else
7945                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7946         } else
7947                 pipeconf |= PIPECONF_PROGRESSIVE;
7948
7949         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7950              intel_crtc->config->limited_color_range)
7951                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7952
7953         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7954         POSTING_READ(PIPECONF(intel_crtc->pipe));
7955 }
7956
7957 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7958                                    struct intel_crtc_state *crtc_state)
7959 {
7960         struct drm_device *dev = crtc->base.dev;
7961         struct drm_i915_private *dev_priv = dev->dev_private;
7962         int refclk, num_connectors = 0;
7963         intel_clock_t clock;
7964         bool ok;
7965         const intel_limit_t *limit;
7966         struct drm_atomic_state *state = crtc_state->base.state;
7967         struct drm_connector *connector;
7968         struct drm_connector_state *connector_state;
7969         int i;
7970
7971         memset(&crtc_state->dpll_hw_state, 0,
7972                sizeof(crtc_state->dpll_hw_state));
7973
7974         if (crtc_state->has_dsi_encoder)
7975                 return 0;
7976
7977         for_each_connector_in_state(state, connector, connector_state, i) {
7978                 if (connector_state->crtc == &crtc->base)
7979                         num_connectors++;
7980         }
7981
7982         if (!crtc_state->clock_set) {
7983                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7984
7985                 /*
7986                  * Returns a set of divisors for the desired target clock with
7987                  * the given refclk, or FALSE.  The returned values represent
7988                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7989                  * 2) / p1 / p2.
7990                  */
7991                 limit = intel_limit(crtc_state, refclk);
7992                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7993                                                  crtc_state->port_clock,
7994                                                  refclk, NULL, &clock);
7995                 if (!ok) {
7996                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7997                         return -EINVAL;
7998                 }
7999
8000                 /* Compat-code for transition, will disappear. */
8001                 crtc_state->dpll.n = clock.n;
8002                 crtc_state->dpll.m1 = clock.m1;
8003                 crtc_state->dpll.m2 = clock.m2;
8004                 crtc_state->dpll.p1 = clock.p1;
8005                 crtc_state->dpll.p2 = clock.p2;
8006         }
8007
8008         if (IS_GEN2(dev)) {
8009                 i8xx_compute_dpll(crtc, crtc_state, NULL,
8010                                   num_connectors);
8011         } else if (IS_CHERRYVIEW(dev)) {
8012                 chv_compute_dpll(crtc, crtc_state);
8013         } else if (IS_VALLEYVIEW(dev)) {
8014                 vlv_compute_dpll(crtc, crtc_state);
8015         } else {
8016                 i9xx_compute_dpll(crtc, crtc_state, NULL,
8017                                   num_connectors);
8018         }
8019
8020         return 0;
8021 }
8022
8023 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8024                                  struct intel_crtc_state *pipe_config)
8025 {
8026         struct drm_device *dev = crtc->base.dev;
8027         struct drm_i915_private *dev_priv = dev->dev_private;
8028         uint32_t tmp;
8029
8030         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8031                 return;
8032
8033         tmp = I915_READ(PFIT_CONTROL);
8034         if (!(tmp & PFIT_ENABLE))
8035                 return;
8036
8037         /* Check whether the pfit is attached to our pipe. */
8038         if (INTEL_INFO(dev)->gen < 4) {
8039                 if (crtc->pipe != PIPE_B)
8040                         return;
8041         } else {
8042                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8043                         return;
8044         }
8045
8046         pipe_config->gmch_pfit.control = tmp;
8047         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8048         if (INTEL_INFO(dev)->gen < 5)
8049                 pipe_config->gmch_pfit.lvds_border_bits =
8050                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8051 }
8052
8053 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8054                                struct intel_crtc_state *pipe_config)
8055 {
8056         struct drm_device *dev = crtc->base.dev;
8057         struct drm_i915_private *dev_priv = dev->dev_private;
8058         int pipe = pipe_config->cpu_transcoder;
8059         intel_clock_t clock;
8060         u32 mdiv;
8061         int refclk = 100000;
8062
8063         /* In case of MIPI DPLL will not even be used */
8064         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8065                 return;
8066
8067         mutex_lock(&dev_priv->sb_lock);
8068         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8069         mutex_unlock(&dev_priv->sb_lock);
8070
8071         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8072         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8073         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8074         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8075         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8076
8077         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8078 }
8079
8080 static void
8081 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8082                               struct intel_initial_plane_config *plane_config)
8083 {
8084         struct drm_device *dev = crtc->base.dev;
8085         struct drm_i915_private *dev_priv = dev->dev_private;
8086         u32 val, base, offset;
8087         int pipe = crtc->pipe, plane = crtc->plane;
8088         int fourcc, pixel_format;
8089         unsigned int aligned_height;
8090         struct drm_framebuffer *fb;
8091         struct intel_framebuffer *intel_fb;
8092
8093         val = I915_READ(DSPCNTR(plane));
8094         if (!(val & DISPLAY_PLANE_ENABLE))
8095                 return;
8096
8097         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8098         if (!intel_fb) {
8099                 DRM_DEBUG_KMS("failed to alloc fb\n");
8100                 return;
8101         }
8102
8103         fb = &intel_fb->base;
8104
8105         if (INTEL_INFO(dev)->gen >= 4) {
8106                 if (val & DISPPLANE_TILED) {
8107                         plane_config->tiling = I915_TILING_X;
8108                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8109                 }
8110         }
8111
8112         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8113         fourcc = i9xx_format_to_fourcc(pixel_format);
8114         fb->pixel_format = fourcc;
8115         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8116
8117         if (INTEL_INFO(dev)->gen >= 4) {
8118                 if (plane_config->tiling)
8119                         offset = I915_READ(DSPTILEOFF(plane));
8120                 else
8121                         offset = I915_READ(DSPLINOFF(plane));
8122                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8123         } else {
8124                 base = I915_READ(DSPADDR(plane));
8125         }
8126         plane_config->base = base;
8127
8128         val = I915_READ(PIPESRC(pipe));
8129         fb->width = ((val >> 16) & 0xfff) + 1;
8130         fb->height = ((val >> 0) & 0xfff) + 1;
8131
8132         val = I915_READ(DSPSTRIDE(pipe));
8133         fb->pitches[0] = val & 0xffffffc0;
8134
8135         aligned_height = intel_fb_align_height(dev, fb->height,
8136                                                fb->pixel_format,
8137                                                fb->modifier[0]);
8138
8139         plane_config->size = fb->pitches[0] * aligned_height;
8140
8141         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8142                       pipe_name(pipe), plane, fb->width, fb->height,
8143                       fb->bits_per_pixel, base, fb->pitches[0],
8144                       plane_config->size);
8145
8146         plane_config->fb = intel_fb;
8147 }
8148
8149 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8150                                struct intel_crtc_state *pipe_config)
8151 {
8152         struct drm_device *dev = crtc->base.dev;
8153         struct drm_i915_private *dev_priv = dev->dev_private;
8154         int pipe = pipe_config->cpu_transcoder;
8155         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8156         intel_clock_t clock;
8157         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8158         int refclk = 100000;
8159
8160         mutex_lock(&dev_priv->sb_lock);
8161         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8162         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8163         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8164         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8165         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8166         mutex_unlock(&dev_priv->sb_lock);
8167
8168         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8169         clock.m2 = (pll_dw0 & 0xff) << 22;
8170         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8171                 clock.m2 |= pll_dw2 & 0x3fffff;
8172         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8173         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8174         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8175
8176         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8177 }
8178
8179 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8180                                  struct intel_crtc_state *pipe_config)
8181 {
8182         struct drm_device *dev = crtc->base.dev;
8183         struct drm_i915_private *dev_priv = dev->dev_private;
8184         uint32_t tmp;
8185
8186         if (!intel_display_power_is_enabled(dev_priv,
8187                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8188                 return false;
8189
8190         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8191         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8192
8193         tmp = I915_READ(PIPECONF(crtc->pipe));
8194         if (!(tmp & PIPECONF_ENABLE))
8195                 return false;
8196
8197         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8198                 switch (tmp & PIPECONF_BPC_MASK) {
8199                 case PIPECONF_6BPC:
8200                         pipe_config->pipe_bpp = 18;
8201                         break;
8202                 case PIPECONF_8BPC:
8203                         pipe_config->pipe_bpp = 24;
8204                         break;
8205                 case PIPECONF_10BPC:
8206                         pipe_config->pipe_bpp = 30;
8207                         break;
8208                 default:
8209                         break;
8210                 }
8211         }
8212
8213         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8214             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8215                 pipe_config->limited_color_range = true;
8216
8217         if (INTEL_INFO(dev)->gen < 4)
8218                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8219
8220         intel_get_pipe_timings(crtc, pipe_config);
8221
8222         i9xx_get_pfit_config(crtc, pipe_config);
8223
8224         if (INTEL_INFO(dev)->gen >= 4) {
8225                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8226                 pipe_config->pixel_multiplier =
8227                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8228                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8229                 pipe_config->dpll_hw_state.dpll_md = tmp;
8230         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8231                 tmp = I915_READ(DPLL(crtc->pipe));
8232                 pipe_config->pixel_multiplier =
8233                         ((tmp & SDVO_MULTIPLIER_MASK)
8234                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8235         } else {
8236                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8237                  * port and will be fixed up in the encoder->get_config
8238                  * function. */
8239                 pipe_config->pixel_multiplier = 1;
8240         }
8241         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8242         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8243                 /*
8244                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8245                  * on 830. Filter it out here so that we don't
8246                  * report errors due to that.
8247                  */
8248                 if (IS_I830(dev))
8249                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8250
8251                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8252                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8253         } else {
8254                 /* Mask out read-only status bits. */
8255                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8256                                                      DPLL_PORTC_READY_MASK |
8257                                                      DPLL_PORTB_READY_MASK);
8258         }
8259
8260         if (IS_CHERRYVIEW(dev))
8261                 chv_crtc_clock_get(crtc, pipe_config);
8262         else if (IS_VALLEYVIEW(dev))
8263                 vlv_crtc_clock_get(crtc, pipe_config);
8264         else
8265                 i9xx_crtc_clock_get(crtc, pipe_config);
8266
8267         /*
8268          * Normally the dotclock is filled in by the encoder .get_config()
8269          * but in case the pipe is enabled w/o any ports we need a sane
8270          * default.
8271          */
8272         pipe_config->base.adjusted_mode.crtc_clock =
8273                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8274
8275         return true;
8276 }
8277
8278 static void ironlake_init_pch_refclk(struct drm_device *dev)
8279 {
8280         struct drm_i915_private *dev_priv = dev->dev_private;
8281         struct intel_encoder *encoder;
8282         u32 val, final;
8283         bool has_lvds = false;
8284         bool has_cpu_edp = false;
8285         bool has_panel = false;
8286         bool has_ck505 = false;
8287         bool can_ssc = false;
8288
8289         /* We need to take the global config into account */
8290         for_each_intel_encoder(dev, encoder) {
8291                 switch (encoder->type) {
8292                 case INTEL_OUTPUT_LVDS:
8293                         has_panel = true;
8294                         has_lvds = true;
8295                         break;
8296                 case INTEL_OUTPUT_EDP:
8297                         has_panel = true;
8298                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8299                                 has_cpu_edp = true;
8300                         break;
8301                 default:
8302                         break;
8303                 }
8304         }
8305
8306         if (HAS_PCH_IBX(dev)) {
8307                 has_ck505 = dev_priv->vbt.display_clock_mode;
8308                 can_ssc = has_ck505;
8309         } else {
8310                 has_ck505 = false;
8311                 can_ssc = true;
8312         }
8313
8314         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8315                       has_panel, has_lvds, has_ck505);
8316
8317         /* Ironlake: try to setup display ref clock before DPLL
8318          * enabling. This is only under driver's control after
8319          * PCH B stepping, previous chipset stepping should be
8320          * ignoring this setting.
8321          */
8322         val = I915_READ(PCH_DREF_CONTROL);
8323
8324         /* As we must carefully and slowly disable/enable each source in turn,
8325          * compute the final state we want first and check if we need to
8326          * make any changes at all.
8327          */
8328         final = val;
8329         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8330         if (has_ck505)
8331                 final |= DREF_NONSPREAD_CK505_ENABLE;
8332         else
8333                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8334
8335         final &= ~DREF_SSC_SOURCE_MASK;
8336         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8337         final &= ~DREF_SSC1_ENABLE;
8338
8339         if (has_panel) {
8340                 final |= DREF_SSC_SOURCE_ENABLE;
8341
8342                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8343                         final |= DREF_SSC1_ENABLE;
8344
8345                 if (has_cpu_edp) {
8346                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8347                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8348                         else
8349                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8350                 } else
8351                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8352         } else {
8353                 final |= DREF_SSC_SOURCE_DISABLE;
8354                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8355         }
8356
8357         if (final == val)
8358                 return;
8359
8360         /* Always enable nonspread source */
8361         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8362
8363         if (has_ck505)
8364                 val |= DREF_NONSPREAD_CK505_ENABLE;
8365         else
8366                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8367
8368         if (has_panel) {
8369                 val &= ~DREF_SSC_SOURCE_MASK;
8370                 val |= DREF_SSC_SOURCE_ENABLE;
8371
8372                 /* SSC must be turned on before enabling the CPU output  */
8373                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8374                         DRM_DEBUG_KMS("Using SSC on panel\n");
8375                         val |= DREF_SSC1_ENABLE;
8376                 } else
8377                         val &= ~DREF_SSC1_ENABLE;
8378
8379                 /* Get SSC going before enabling the outputs */
8380                 I915_WRITE(PCH_DREF_CONTROL, val);
8381                 POSTING_READ(PCH_DREF_CONTROL);
8382                 udelay(200);
8383
8384                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8385
8386                 /* Enable CPU source on CPU attached eDP */
8387                 if (has_cpu_edp) {
8388                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8389                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8390                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8391                         } else
8392                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8393                 } else
8394                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8395
8396                 I915_WRITE(PCH_DREF_CONTROL, val);
8397                 POSTING_READ(PCH_DREF_CONTROL);
8398                 udelay(200);
8399         } else {
8400                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8401
8402                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8403
8404                 /* Turn off CPU output */
8405                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8406
8407                 I915_WRITE(PCH_DREF_CONTROL, val);
8408                 POSTING_READ(PCH_DREF_CONTROL);
8409                 udelay(200);
8410
8411                 /* Turn off the SSC source */
8412                 val &= ~DREF_SSC_SOURCE_MASK;
8413                 val |= DREF_SSC_SOURCE_DISABLE;
8414
8415                 /* Turn off SSC1 */
8416                 val &= ~DREF_SSC1_ENABLE;
8417
8418                 I915_WRITE(PCH_DREF_CONTROL, val);
8419                 POSTING_READ(PCH_DREF_CONTROL);
8420                 udelay(200);
8421         }
8422
8423         BUG_ON(val != final);
8424 }
8425
8426 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8427 {
8428         uint32_t tmp;
8429
8430         tmp = I915_READ(SOUTH_CHICKEN2);
8431         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8432         I915_WRITE(SOUTH_CHICKEN2, tmp);
8433
8434         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8435                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8436                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8437
8438         tmp = I915_READ(SOUTH_CHICKEN2);
8439         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8440         I915_WRITE(SOUTH_CHICKEN2, tmp);
8441
8442         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8443                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8444                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8445 }
8446
8447 /* WaMPhyProgramming:hsw */
8448 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8449 {
8450         uint32_t tmp;
8451
8452         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8453         tmp &= ~(0xFF << 24);
8454         tmp |= (0x12 << 24);
8455         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8456
8457         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8458         tmp |= (1 << 11);
8459         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8460
8461         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8462         tmp |= (1 << 11);
8463         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8464
8465         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8466         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8467         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8470         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8471         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8474         tmp &= ~(7 << 13);
8475         tmp |= (5 << 13);
8476         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8479         tmp &= ~(7 << 13);
8480         tmp |= (5 << 13);
8481         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8482
8483         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8484         tmp &= ~0xFF;
8485         tmp |= 0x1C;
8486         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8487
8488         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8489         tmp &= ~0xFF;
8490         tmp |= 0x1C;
8491         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8492
8493         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8494         tmp &= ~(0xFF << 16);
8495         tmp |= (0x1C << 16);
8496         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8497
8498         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8499         tmp &= ~(0xFF << 16);
8500         tmp |= (0x1C << 16);
8501         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8502
8503         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8504         tmp |= (1 << 27);
8505         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8506
8507         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8508         tmp |= (1 << 27);
8509         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8510
8511         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8512         tmp &= ~(0xF << 28);
8513         tmp |= (4 << 28);
8514         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8515
8516         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8517         tmp &= ~(0xF << 28);
8518         tmp |= (4 << 28);
8519         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8520 }
8521
8522 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8523  * Programming" based on the parameters passed:
8524  * - Sequence to enable CLKOUT_DP
8525  * - Sequence to enable CLKOUT_DP without spread
8526  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8527  */
8528 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8529                                  bool with_fdi)
8530 {
8531         struct drm_i915_private *dev_priv = dev->dev_private;
8532         uint32_t reg, tmp;
8533
8534         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8535                 with_spread = true;
8536         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8537                 with_fdi = false;
8538
8539         mutex_lock(&dev_priv->sb_lock);
8540
8541         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8542         tmp &= ~SBI_SSCCTL_DISABLE;
8543         tmp |= SBI_SSCCTL_PATHALT;
8544         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8545
8546         udelay(24);
8547
8548         if (with_spread) {
8549                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8550                 tmp &= ~SBI_SSCCTL_PATHALT;
8551                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8552
8553                 if (with_fdi) {
8554                         lpt_reset_fdi_mphy(dev_priv);
8555                         lpt_program_fdi_mphy(dev_priv);
8556                 }
8557         }
8558
8559         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8560         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8561         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8562         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8563
8564         mutex_unlock(&dev_priv->sb_lock);
8565 }
8566
8567 /* Sequence to disable CLKOUT_DP */
8568 static void lpt_disable_clkout_dp(struct drm_device *dev)
8569 {
8570         struct drm_i915_private *dev_priv = dev->dev_private;
8571         uint32_t reg, tmp;
8572
8573         mutex_lock(&dev_priv->sb_lock);
8574
8575         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8576         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8577         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8578         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8579
8580         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8581         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8582                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8583                         tmp |= SBI_SSCCTL_PATHALT;
8584                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8585                         udelay(32);
8586                 }
8587                 tmp |= SBI_SSCCTL_DISABLE;
8588                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8589         }
8590
8591         mutex_unlock(&dev_priv->sb_lock);
8592 }
8593
8594 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8595
8596 static const uint16_t sscdivintphase[] = {
8597         [BEND_IDX( 50)] = 0x3B23,
8598         [BEND_IDX( 45)] = 0x3B23,
8599         [BEND_IDX( 40)] = 0x3C23,
8600         [BEND_IDX( 35)] = 0x3C23,
8601         [BEND_IDX( 30)] = 0x3D23,
8602         [BEND_IDX( 25)] = 0x3D23,
8603         [BEND_IDX( 20)] = 0x3E23,
8604         [BEND_IDX( 15)] = 0x3E23,
8605         [BEND_IDX( 10)] = 0x3F23,
8606         [BEND_IDX(  5)] = 0x3F23,
8607         [BEND_IDX(  0)] = 0x0025,
8608         [BEND_IDX( -5)] = 0x0025,
8609         [BEND_IDX(-10)] = 0x0125,
8610         [BEND_IDX(-15)] = 0x0125,
8611         [BEND_IDX(-20)] = 0x0225,
8612         [BEND_IDX(-25)] = 0x0225,
8613         [BEND_IDX(-30)] = 0x0325,
8614         [BEND_IDX(-35)] = 0x0325,
8615         [BEND_IDX(-40)] = 0x0425,
8616         [BEND_IDX(-45)] = 0x0425,
8617         [BEND_IDX(-50)] = 0x0525,
8618 };
8619
8620 /*
8621  * Bend CLKOUT_DP
8622  * steps -50 to 50 inclusive, in steps of 5
8623  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8624  * change in clock period = -(steps / 10) * 5.787 ps
8625  */
8626 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8627 {
8628         uint32_t tmp;
8629         int idx = BEND_IDX(steps);
8630
8631         if (WARN_ON(steps % 5 != 0))
8632                 return;
8633
8634         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8635                 return;
8636
8637         mutex_lock(&dev_priv->sb_lock);
8638
8639         if (steps % 10 != 0)
8640                 tmp = 0xAAAAAAAB;
8641         else
8642                 tmp = 0x00000000;
8643         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8644
8645         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8646         tmp &= 0xffff0000;
8647         tmp |= sscdivintphase[idx];
8648         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8649
8650         mutex_unlock(&dev_priv->sb_lock);
8651 }
8652
8653 #undef BEND_IDX
8654
8655 static void lpt_init_pch_refclk(struct drm_device *dev)
8656 {
8657         struct intel_encoder *encoder;
8658         bool has_vga = false;
8659
8660         for_each_intel_encoder(dev, encoder) {
8661                 switch (encoder->type) {
8662                 case INTEL_OUTPUT_ANALOG:
8663                         has_vga = true;
8664                         break;
8665                 default:
8666                         break;
8667                 }
8668         }
8669
8670         if (has_vga) {
8671                 lpt_bend_clkout_dp(to_i915(dev), 0);
8672                 lpt_enable_clkout_dp(dev, true, true);
8673         } else {
8674                 lpt_disable_clkout_dp(dev);
8675         }
8676 }
8677
8678 /*
8679  * Initialize reference clocks when the driver loads
8680  */
8681 void intel_init_pch_refclk(struct drm_device *dev)
8682 {
8683         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8684                 ironlake_init_pch_refclk(dev);
8685         else if (HAS_PCH_LPT(dev))
8686                 lpt_init_pch_refclk(dev);
8687 }
8688
8689 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8690 {
8691         struct drm_device *dev = crtc_state->base.crtc->dev;
8692         struct drm_i915_private *dev_priv = dev->dev_private;
8693         struct drm_atomic_state *state = crtc_state->base.state;
8694         struct drm_connector *connector;
8695         struct drm_connector_state *connector_state;
8696         struct intel_encoder *encoder;
8697         int num_connectors = 0, i;
8698         bool is_lvds = false;
8699
8700         for_each_connector_in_state(state, connector, connector_state, i) {
8701                 if (connector_state->crtc != crtc_state->base.crtc)
8702                         continue;
8703
8704                 encoder = to_intel_encoder(connector_state->best_encoder);
8705
8706                 switch (encoder->type) {
8707                 case INTEL_OUTPUT_LVDS:
8708                         is_lvds = true;
8709                         break;
8710                 default:
8711                         break;
8712                 }
8713                 num_connectors++;
8714         }
8715
8716         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8717                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8718                               dev_priv->vbt.lvds_ssc_freq);
8719                 return dev_priv->vbt.lvds_ssc_freq;
8720         }
8721
8722         return 120000;
8723 }
8724
8725 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8726 {
8727         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8729         int pipe = intel_crtc->pipe;
8730         uint32_t val;
8731
8732         val = 0;
8733
8734         switch (intel_crtc->config->pipe_bpp) {
8735         case 18:
8736                 val |= PIPECONF_6BPC;
8737                 break;
8738         case 24:
8739                 val |= PIPECONF_8BPC;
8740                 break;
8741         case 30:
8742                 val |= PIPECONF_10BPC;
8743                 break;
8744         case 36:
8745                 val |= PIPECONF_12BPC;
8746                 break;
8747         default:
8748                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8749                 BUG();
8750         }
8751
8752         if (intel_crtc->config->dither)
8753                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8754
8755         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8756                 val |= PIPECONF_INTERLACED_ILK;
8757         else
8758                 val |= PIPECONF_PROGRESSIVE;
8759
8760         if (intel_crtc->config->limited_color_range)
8761                 val |= PIPECONF_COLOR_RANGE_SELECT;
8762
8763         I915_WRITE(PIPECONF(pipe), val);
8764         POSTING_READ(PIPECONF(pipe));
8765 }
8766
8767 /*
8768  * Set up the pipe CSC unit.
8769  *
8770  * Currently only full range RGB to limited range RGB conversion
8771  * is supported, but eventually this should handle various
8772  * RGB<->YCbCr scenarios as well.
8773  */
8774 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8775 {
8776         struct drm_device *dev = crtc->dev;
8777         struct drm_i915_private *dev_priv = dev->dev_private;
8778         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8779         int pipe = intel_crtc->pipe;
8780         uint16_t coeff = 0x7800; /* 1.0 */
8781
8782         /*
8783          * TODO: Check what kind of values actually come out of the pipe
8784          * with these coeff/postoff values and adjust to get the best
8785          * accuracy. Perhaps we even need to take the bpc value into
8786          * consideration.
8787          */
8788
8789         if (intel_crtc->config->limited_color_range)
8790                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8791
8792         /*
8793          * GY/GU and RY/RU should be the other way around according
8794          * to BSpec, but reality doesn't agree. Just set them up in
8795          * a way that results in the correct picture.
8796          */
8797         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8798         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8799
8800         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8801         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8802
8803         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8804         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8805
8806         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8807         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8808         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8809
8810         if (INTEL_INFO(dev)->gen > 6) {
8811                 uint16_t postoff = 0;
8812
8813                 if (intel_crtc->config->limited_color_range)
8814                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8815
8816                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8817                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8818                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8819
8820                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8821         } else {
8822                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8823
8824                 if (intel_crtc->config->limited_color_range)
8825                         mode |= CSC_BLACK_SCREEN_OFFSET;
8826
8827                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8828         }
8829 }
8830
8831 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8832 {
8833         struct drm_device *dev = crtc->dev;
8834         struct drm_i915_private *dev_priv = dev->dev_private;
8835         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8836         enum pipe pipe = intel_crtc->pipe;
8837         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8838         uint32_t val;
8839
8840         val = 0;
8841
8842         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8843                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8844
8845         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8846                 val |= PIPECONF_INTERLACED_ILK;
8847         else
8848                 val |= PIPECONF_PROGRESSIVE;
8849
8850         I915_WRITE(PIPECONF(cpu_transcoder), val);
8851         POSTING_READ(PIPECONF(cpu_transcoder));
8852
8853         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8854         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8855
8856         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8857                 val = 0;
8858
8859                 switch (intel_crtc->config->pipe_bpp) {
8860                 case 18:
8861                         val |= PIPEMISC_DITHER_6_BPC;
8862                         break;
8863                 case 24:
8864                         val |= PIPEMISC_DITHER_8_BPC;
8865                         break;
8866                 case 30:
8867                         val |= PIPEMISC_DITHER_10_BPC;
8868                         break;
8869                 case 36:
8870                         val |= PIPEMISC_DITHER_12_BPC;
8871                         break;
8872                 default:
8873                         /* Case prevented by pipe_config_set_bpp. */
8874                         BUG();
8875                 }
8876
8877                 if (intel_crtc->config->dither)
8878                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8879
8880                 I915_WRITE(PIPEMISC(pipe), val);
8881         }
8882 }
8883
8884 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8885                                     struct intel_crtc_state *crtc_state,
8886                                     intel_clock_t *clock,
8887                                     bool *has_reduced_clock,
8888                                     intel_clock_t *reduced_clock)
8889 {
8890         struct drm_device *dev = crtc->dev;
8891         struct drm_i915_private *dev_priv = dev->dev_private;
8892         int refclk;
8893         const intel_limit_t *limit;
8894         bool ret;
8895
8896         refclk = ironlake_get_refclk(crtc_state);
8897
8898         /*
8899          * Returns a set of divisors for the desired target clock with the given
8900          * refclk, or FALSE.  The returned values represent the clock equation:
8901          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8902          */
8903         limit = intel_limit(crtc_state, refclk);
8904         ret = dev_priv->display.find_dpll(limit, crtc_state,
8905                                           crtc_state->port_clock,
8906                                           refclk, NULL, clock);
8907         if (!ret)
8908                 return false;
8909
8910         return true;
8911 }
8912
8913 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8914 {
8915         /*
8916          * Account for spread spectrum to avoid
8917          * oversubscribing the link. Max center spread
8918          * is 2.5%; use 5% for safety's sake.
8919          */
8920         u32 bps = target_clock * bpp * 21 / 20;
8921         return DIV_ROUND_UP(bps, link_bw * 8);
8922 }
8923
8924 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8925 {
8926         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8927 }
8928
8929 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8930                                       struct intel_crtc_state *crtc_state,
8931                                       u32 *fp,
8932                                       intel_clock_t *reduced_clock, u32 *fp2)
8933 {
8934         struct drm_crtc *crtc = &intel_crtc->base;
8935         struct drm_device *dev = crtc->dev;
8936         struct drm_i915_private *dev_priv = dev->dev_private;
8937         struct drm_atomic_state *state = crtc_state->base.state;
8938         struct drm_connector *connector;
8939         struct drm_connector_state *connector_state;
8940         struct intel_encoder *encoder;
8941         uint32_t dpll;
8942         int factor, num_connectors = 0, i;
8943         bool is_lvds = false, is_sdvo = false;
8944
8945         for_each_connector_in_state(state, connector, connector_state, i) {
8946                 if (connector_state->crtc != crtc_state->base.crtc)
8947                         continue;
8948
8949                 encoder = to_intel_encoder(connector_state->best_encoder);
8950
8951                 switch (encoder->type) {
8952                 case INTEL_OUTPUT_LVDS:
8953                         is_lvds = true;
8954                         break;
8955                 case INTEL_OUTPUT_SDVO:
8956                 case INTEL_OUTPUT_HDMI:
8957                         is_sdvo = true;
8958                         break;
8959                 default:
8960                         break;
8961                 }
8962
8963                 num_connectors++;
8964         }
8965
8966         /* Enable autotuning of the PLL clock (if permissible) */
8967         factor = 21;
8968         if (is_lvds) {
8969                 if ((intel_panel_use_ssc(dev_priv) &&
8970                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8971                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8972                         factor = 25;
8973         } else if (crtc_state->sdvo_tv_clock)
8974                 factor = 20;
8975
8976         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8977                 *fp |= FP_CB_TUNE;
8978
8979         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8980                 *fp2 |= FP_CB_TUNE;
8981
8982         dpll = 0;
8983
8984         if (is_lvds)
8985                 dpll |= DPLLB_MODE_LVDS;
8986         else
8987                 dpll |= DPLLB_MODE_DAC_SERIAL;
8988
8989         dpll |= (crtc_state->pixel_multiplier - 1)
8990                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8991
8992         if (is_sdvo)
8993                 dpll |= DPLL_SDVO_HIGH_SPEED;
8994         if (crtc_state->has_dp_encoder)
8995                 dpll |= DPLL_SDVO_HIGH_SPEED;
8996
8997         /* compute bitmask from p1 value */
8998         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8999         /* also FPA1 */
9000         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9001
9002         switch (crtc_state->dpll.p2) {
9003         case 5:
9004                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9005                 break;
9006         case 7:
9007                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9008                 break;
9009         case 10:
9010                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9011                 break;
9012         case 14:
9013                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9014                 break;
9015         }
9016
9017         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
9018                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9019         else
9020                 dpll |= PLL_REF_INPUT_DREFCLK;
9021
9022         return dpll | DPLL_VCO_ENABLE;
9023 }
9024
9025 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9026                                        struct intel_crtc_state *crtc_state)
9027 {
9028         struct drm_device *dev = crtc->base.dev;
9029         intel_clock_t clock, reduced_clock;
9030         u32 dpll = 0, fp = 0, fp2 = 0;
9031         bool ok, has_reduced_clock = false;
9032         bool is_lvds = false;
9033         struct intel_shared_dpll *pll;
9034
9035         memset(&crtc_state->dpll_hw_state, 0,
9036                sizeof(crtc_state->dpll_hw_state));
9037
9038         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
9039
9040         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
9041              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
9042
9043         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
9044                                      &has_reduced_clock, &reduced_clock);
9045         if (!ok && !crtc_state->clock_set) {
9046                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9047                 return -EINVAL;
9048         }
9049         /* Compat-code for transition, will disappear. */
9050         if (!crtc_state->clock_set) {
9051                 crtc_state->dpll.n = clock.n;
9052                 crtc_state->dpll.m1 = clock.m1;
9053                 crtc_state->dpll.m2 = clock.m2;
9054                 crtc_state->dpll.p1 = clock.p1;
9055                 crtc_state->dpll.p2 = clock.p2;
9056         }
9057
9058         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9059         if (crtc_state->has_pch_encoder) {
9060                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9061                 if (has_reduced_clock)
9062                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
9063
9064                 dpll = ironlake_compute_dpll(crtc, crtc_state,
9065                                              &fp, &reduced_clock,
9066                                              has_reduced_clock ? &fp2 : NULL);
9067
9068                 crtc_state->dpll_hw_state.dpll = dpll;
9069                 crtc_state->dpll_hw_state.fp0 = fp;
9070                 if (has_reduced_clock)
9071                         crtc_state->dpll_hw_state.fp1 = fp2;
9072                 else
9073                         crtc_state->dpll_hw_state.fp1 = fp;
9074
9075                 pll = intel_get_shared_dpll(crtc, crtc_state);
9076                 if (pll == NULL) {
9077                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9078                                          pipe_name(crtc->pipe));
9079                         return -EINVAL;
9080                 }
9081         }
9082
9083         if (is_lvds && has_reduced_clock)
9084                 crtc->lowfreq_avail = true;
9085         else
9086                 crtc->lowfreq_avail = false;
9087
9088         return 0;
9089 }
9090
9091 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9092                                          struct intel_link_m_n *m_n)
9093 {
9094         struct drm_device *dev = crtc->base.dev;
9095         struct drm_i915_private *dev_priv = dev->dev_private;
9096         enum pipe pipe = crtc->pipe;
9097
9098         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9099         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9100         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9101                 & ~TU_SIZE_MASK;
9102         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9103         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9104                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9105 }
9106
9107 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9108                                          enum transcoder transcoder,
9109                                          struct intel_link_m_n *m_n,
9110                                          struct intel_link_m_n *m2_n2)
9111 {
9112         struct drm_device *dev = crtc->base.dev;
9113         struct drm_i915_private *dev_priv = dev->dev_private;
9114         enum pipe pipe = crtc->pipe;
9115
9116         if (INTEL_INFO(dev)->gen >= 5) {
9117                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9118                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9119                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9120                         & ~TU_SIZE_MASK;
9121                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9122                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9123                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9124                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9125                  * gen < 8) and if DRRS is supported (to make sure the
9126                  * registers are not unnecessarily read).
9127                  */
9128                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9129                         crtc->config->has_drrs) {
9130                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9131                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9132                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9133                                         & ~TU_SIZE_MASK;
9134                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9135                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9136                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9137                 }
9138         } else {
9139                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9140                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9141                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9142                         & ~TU_SIZE_MASK;
9143                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9144                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9145                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9146         }
9147 }
9148
9149 void intel_dp_get_m_n(struct intel_crtc *crtc,
9150                       struct intel_crtc_state *pipe_config)
9151 {
9152         if (pipe_config->has_pch_encoder)
9153                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9154         else
9155                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9156                                              &pipe_config->dp_m_n,
9157                                              &pipe_config->dp_m2_n2);
9158 }
9159
9160 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9161                                         struct intel_crtc_state *pipe_config)
9162 {
9163         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9164                                      &pipe_config->fdi_m_n, NULL);
9165 }
9166
9167 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9168                                     struct intel_crtc_state *pipe_config)
9169 {
9170         struct drm_device *dev = crtc->base.dev;
9171         struct drm_i915_private *dev_priv = dev->dev_private;
9172         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9173         uint32_t ps_ctrl = 0;
9174         int id = -1;
9175         int i;
9176
9177         /* find scaler attached to this pipe */
9178         for (i = 0; i < crtc->num_scalers; i++) {
9179                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9180                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9181                         id = i;
9182                         pipe_config->pch_pfit.enabled = true;
9183                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9184                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9185                         break;
9186                 }
9187         }
9188
9189         scaler_state->scaler_id = id;
9190         if (id >= 0) {
9191                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9192         } else {
9193                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9194         }
9195 }
9196
9197 static void
9198 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9199                                  struct intel_initial_plane_config *plane_config)
9200 {
9201         struct drm_device *dev = crtc->base.dev;
9202         struct drm_i915_private *dev_priv = dev->dev_private;
9203         u32 val, base, offset, stride_mult, tiling;
9204         int pipe = crtc->pipe;
9205         int fourcc, pixel_format;
9206         unsigned int aligned_height;
9207         struct drm_framebuffer *fb;
9208         struct intel_framebuffer *intel_fb;
9209
9210         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9211         if (!intel_fb) {
9212                 DRM_DEBUG_KMS("failed to alloc fb\n");
9213                 return;
9214         }
9215
9216         fb = &intel_fb->base;
9217
9218         val = I915_READ(PLANE_CTL(pipe, 0));
9219         if (!(val & PLANE_CTL_ENABLE))
9220                 goto error;
9221
9222         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9223         fourcc = skl_format_to_fourcc(pixel_format,
9224                                       val & PLANE_CTL_ORDER_RGBX,
9225                                       val & PLANE_CTL_ALPHA_MASK);
9226         fb->pixel_format = fourcc;
9227         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9228
9229         tiling = val & PLANE_CTL_TILED_MASK;
9230         switch (tiling) {
9231         case PLANE_CTL_TILED_LINEAR:
9232                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9233                 break;
9234         case PLANE_CTL_TILED_X:
9235                 plane_config->tiling = I915_TILING_X;
9236                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9237                 break;
9238         case PLANE_CTL_TILED_Y:
9239                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9240                 break;
9241         case PLANE_CTL_TILED_YF:
9242                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9243                 break;
9244         default:
9245                 MISSING_CASE(tiling);
9246                 goto error;
9247         }
9248
9249         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9250         plane_config->base = base;
9251
9252         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9253
9254         val = I915_READ(PLANE_SIZE(pipe, 0));
9255         fb->height = ((val >> 16) & 0xfff) + 1;
9256         fb->width = ((val >> 0) & 0x1fff) + 1;
9257
9258         val = I915_READ(PLANE_STRIDE(pipe, 0));
9259         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9260                                                 fb->pixel_format);
9261         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9262
9263         aligned_height = intel_fb_align_height(dev, fb->height,
9264                                                fb->pixel_format,
9265                                                fb->modifier[0]);
9266
9267         plane_config->size = fb->pitches[0] * aligned_height;
9268
9269         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9270                       pipe_name(pipe), fb->width, fb->height,
9271                       fb->bits_per_pixel, base, fb->pitches[0],
9272                       plane_config->size);
9273
9274         plane_config->fb = intel_fb;
9275         return;
9276
9277 error:
9278         kfree(fb);
9279 }
9280
9281 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9282                                      struct intel_crtc_state *pipe_config)
9283 {
9284         struct drm_device *dev = crtc->base.dev;
9285         struct drm_i915_private *dev_priv = dev->dev_private;
9286         uint32_t tmp;
9287
9288         tmp = I915_READ(PF_CTL(crtc->pipe));
9289
9290         if (tmp & PF_ENABLE) {
9291                 pipe_config->pch_pfit.enabled = true;
9292                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9293                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9294
9295                 /* We currently do not free assignements of panel fitters on
9296                  * ivb/hsw (since we don't use the higher upscaling modes which
9297                  * differentiates them) so just WARN about this case for now. */
9298                 if (IS_GEN7(dev)) {
9299                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9300                                 PF_PIPE_SEL_IVB(crtc->pipe));
9301                 }
9302         }
9303 }
9304
9305 static void
9306 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9307                                   struct intel_initial_plane_config *plane_config)
9308 {
9309         struct drm_device *dev = crtc->base.dev;
9310         struct drm_i915_private *dev_priv = dev->dev_private;
9311         u32 val, base, offset;
9312         int pipe = crtc->pipe;
9313         int fourcc, pixel_format;
9314         unsigned int aligned_height;
9315         struct drm_framebuffer *fb;
9316         struct intel_framebuffer *intel_fb;
9317
9318         val = I915_READ(DSPCNTR(pipe));
9319         if (!(val & DISPLAY_PLANE_ENABLE))
9320                 return;
9321
9322         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9323         if (!intel_fb) {
9324                 DRM_DEBUG_KMS("failed to alloc fb\n");
9325                 return;
9326         }
9327
9328         fb = &intel_fb->base;
9329
9330         if (INTEL_INFO(dev)->gen >= 4) {
9331                 if (val & DISPPLANE_TILED) {
9332                         plane_config->tiling = I915_TILING_X;
9333                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9334                 }
9335         }
9336
9337         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9338         fourcc = i9xx_format_to_fourcc(pixel_format);
9339         fb->pixel_format = fourcc;
9340         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9341
9342         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9343         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9344                 offset = I915_READ(DSPOFFSET(pipe));
9345         } else {
9346                 if (plane_config->tiling)
9347                         offset = I915_READ(DSPTILEOFF(pipe));
9348                 else
9349                         offset = I915_READ(DSPLINOFF(pipe));
9350         }
9351         plane_config->base = base;
9352
9353         val = I915_READ(PIPESRC(pipe));
9354         fb->width = ((val >> 16) & 0xfff) + 1;
9355         fb->height = ((val >> 0) & 0xfff) + 1;
9356
9357         val = I915_READ(DSPSTRIDE(pipe));
9358         fb->pitches[0] = val & 0xffffffc0;
9359
9360         aligned_height = intel_fb_align_height(dev, fb->height,
9361                                                fb->pixel_format,
9362                                                fb->modifier[0]);
9363
9364         plane_config->size = fb->pitches[0] * aligned_height;
9365
9366         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9367                       pipe_name(pipe), fb->width, fb->height,
9368                       fb->bits_per_pixel, base, fb->pitches[0],
9369                       plane_config->size);
9370
9371         plane_config->fb = intel_fb;
9372 }
9373
9374 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9375                                      struct intel_crtc_state *pipe_config)
9376 {
9377         struct drm_device *dev = crtc->base.dev;
9378         struct drm_i915_private *dev_priv = dev->dev_private;
9379         uint32_t tmp;
9380
9381         if (!intel_display_power_is_enabled(dev_priv,
9382                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9383                 return false;
9384
9385         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9386         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9387
9388         tmp = I915_READ(PIPECONF(crtc->pipe));
9389         if (!(tmp & PIPECONF_ENABLE))
9390                 return false;
9391
9392         switch (tmp & PIPECONF_BPC_MASK) {
9393         case PIPECONF_6BPC:
9394                 pipe_config->pipe_bpp = 18;
9395                 break;
9396         case PIPECONF_8BPC:
9397                 pipe_config->pipe_bpp = 24;
9398                 break;
9399         case PIPECONF_10BPC:
9400                 pipe_config->pipe_bpp = 30;
9401                 break;
9402         case PIPECONF_12BPC:
9403                 pipe_config->pipe_bpp = 36;
9404                 break;
9405         default:
9406                 break;
9407         }
9408
9409         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9410                 pipe_config->limited_color_range = true;
9411
9412         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9413                 struct intel_shared_dpll *pll;
9414
9415                 pipe_config->has_pch_encoder = true;
9416
9417                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9418                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9419                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9420
9421                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9422
9423                 if (HAS_PCH_IBX(dev_priv->dev)) {
9424                         pipe_config->shared_dpll =
9425                                 (enum intel_dpll_id) crtc->pipe;
9426                 } else {
9427                         tmp = I915_READ(PCH_DPLL_SEL);
9428                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9429                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9430                         else
9431                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9432                 }
9433
9434                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9435
9436                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9437                                            &pipe_config->dpll_hw_state));
9438
9439                 tmp = pipe_config->dpll_hw_state.dpll;
9440                 pipe_config->pixel_multiplier =
9441                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9442                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9443
9444                 ironlake_pch_clock_get(crtc, pipe_config);
9445         } else {
9446                 pipe_config->pixel_multiplier = 1;
9447         }
9448
9449         intel_get_pipe_timings(crtc, pipe_config);
9450
9451         ironlake_get_pfit_config(crtc, pipe_config);
9452
9453         return true;
9454 }
9455
9456 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9457 {
9458         struct drm_device *dev = dev_priv->dev;
9459         struct intel_crtc *crtc;
9460
9461         for_each_intel_crtc(dev, crtc)
9462                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9463                      pipe_name(crtc->pipe));
9464
9465         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9466         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9467         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9468         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9469         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9470         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9471              "CPU PWM1 enabled\n");
9472         if (IS_HASWELL(dev))
9473                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9474                      "CPU PWM2 enabled\n");
9475         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9476              "PCH PWM1 enabled\n");
9477         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9478              "Utility pin enabled\n");
9479         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9480
9481         /*
9482          * In theory we can still leave IRQs enabled, as long as only the HPD
9483          * interrupts remain enabled. We used to check for that, but since it's
9484          * gen-specific and since we only disable LCPLL after we fully disable
9485          * the interrupts, the check below should be enough.
9486          */
9487         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9488 }
9489
9490 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9491 {
9492         struct drm_device *dev = dev_priv->dev;
9493
9494         if (IS_HASWELL(dev))
9495                 return I915_READ(D_COMP_HSW);
9496         else
9497                 return I915_READ(D_COMP_BDW);
9498 }
9499
9500 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9501 {
9502         struct drm_device *dev = dev_priv->dev;
9503
9504         if (IS_HASWELL(dev)) {
9505                 mutex_lock(&dev_priv->rps.hw_lock);
9506                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9507                                             val))
9508                         DRM_ERROR("Failed to write to D_COMP\n");
9509                 mutex_unlock(&dev_priv->rps.hw_lock);
9510         } else {
9511                 I915_WRITE(D_COMP_BDW, val);
9512                 POSTING_READ(D_COMP_BDW);
9513         }
9514 }
9515
9516 /*
9517  * This function implements pieces of two sequences from BSpec:
9518  * - Sequence for display software to disable LCPLL
9519  * - Sequence for display software to allow package C8+
9520  * The steps implemented here are just the steps that actually touch the LCPLL
9521  * register. Callers should take care of disabling all the display engine
9522  * functions, doing the mode unset, fixing interrupts, etc.
9523  */
9524 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9525                               bool switch_to_fclk, bool allow_power_down)
9526 {
9527         uint32_t val;
9528
9529         assert_can_disable_lcpll(dev_priv);
9530
9531         val = I915_READ(LCPLL_CTL);
9532
9533         if (switch_to_fclk) {
9534                 val |= LCPLL_CD_SOURCE_FCLK;
9535                 I915_WRITE(LCPLL_CTL, val);
9536
9537                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9538                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9539                         DRM_ERROR("Switching to FCLK failed\n");
9540
9541                 val = I915_READ(LCPLL_CTL);
9542         }
9543
9544         val |= LCPLL_PLL_DISABLE;
9545         I915_WRITE(LCPLL_CTL, val);
9546         POSTING_READ(LCPLL_CTL);
9547
9548         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9549                 DRM_ERROR("LCPLL still locked\n");
9550
9551         val = hsw_read_dcomp(dev_priv);
9552         val |= D_COMP_COMP_DISABLE;
9553         hsw_write_dcomp(dev_priv, val);
9554         ndelay(100);
9555
9556         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9557                      1))
9558                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9559
9560         if (allow_power_down) {
9561                 val = I915_READ(LCPLL_CTL);
9562                 val |= LCPLL_POWER_DOWN_ALLOW;
9563                 I915_WRITE(LCPLL_CTL, val);
9564                 POSTING_READ(LCPLL_CTL);
9565         }
9566 }
9567
9568 /*
9569  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9570  * source.
9571  */
9572 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9573 {
9574         uint32_t val;
9575
9576         val = I915_READ(LCPLL_CTL);
9577
9578         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9579                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9580                 return;
9581
9582         /*
9583          * Make sure we're not on PC8 state before disabling PC8, otherwise
9584          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9585          */
9586         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9587
9588         if (val & LCPLL_POWER_DOWN_ALLOW) {
9589                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9590                 I915_WRITE(LCPLL_CTL, val);
9591                 POSTING_READ(LCPLL_CTL);
9592         }
9593
9594         val = hsw_read_dcomp(dev_priv);
9595         val |= D_COMP_COMP_FORCE;
9596         val &= ~D_COMP_COMP_DISABLE;
9597         hsw_write_dcomp(dev_priv, val);
9598
9599         val = I915_READ(LCPLL_CTL);
9600         val &= ~LCPLL_PLL_DISABLE;
9601         I915_WRITE(LCPLL_CTL, val);
9602
9603         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9604                 DRM_ERROR("LCPLL not locked yet\n");
9605
9606         if (val & LCPLL_CD_SOURCE_FCLK) {
9607                 val = I915_READ(LCPLL_CTL);
9608                 val &= ~LCPLL_CD_SOURCE_FCLK;
9609                 I915_WRITE(LCPLL_CTL, val);
9610
9611                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9612                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9613                         DRM_ERROR("Switching back to LCPLL failed\n");
9614         }
9615
9616         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9617         intel_update_cdclk(dev_priv->dev);
9618 }
9619
9620 /*
9621  * Package states C8 and deeper are really deep PC states that can only be
9622  * reached when all the devices on the system allow it, so even if the graphics
9623  * device allows PC8+, it doesn't mean the system will actually get to these
9624  * states. Our driver only allows PC8+ when going into runtime PM.
9625  *
9626  * The requirements for PC8+ are that all the outputs are disabled, the power
9627  * well is disabled and most interrupts are disabled, and these are also
9628  * requirements for runtime PM. When these conditions are met, we manually do
9629  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9630  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9631  * hang the machine.
9632  *
9633  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9634  * the state of some registers, so when we come back from PC8+ we need to
9635  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9636  * need to take care of the registers kept by RC6. Notice that this happens even
9637  * if we don't put the device in PCI D3 state (which is what currently happens
9638  * because of the runtime PM support).
9639  *
9640  * For more, read "Display Sequences for Package C8" on the hardware
9641  * documentation.
9642  */
9643 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9644 {
9645         struct drm_device *dev = dev_priv->dev;
9646         uint32_t val;
9647
9648         DRM_DEBUG_KMS("Enabling package C8+\n");
9649
9650         if (HAS_PCH_LPT_LP(dev)) {
9651                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9652                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9653                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9654         }
9655
9656         lpt_disable_clkout_dp(dev);
9657         hsw_disable_lcpll(dev_priv, true, true);
9658 }
9659
9660 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9661 {
9662         struct drm_device *dev = dev_priv->dev;
9663         uint32_t val;
9664
9665         DRM_DEBUG_KMS("Disabling package C8+\n");
9666
9667         hsw_restore_lcpll(dev_priv);
9668         lpt_init_pch_refclk(dev);
9669
9670         if (HAS_PCH_LPT_LP(dev)) {
9671                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9672                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9673                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9674         }
9675 }
9676
9677 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9678 {
9679         struct drm_device *dev = old_state->dev;
9680         struct intel_atomic_state *old_intel_state =
9681                 to_intel_atomic_state(old_state);
9682         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9683
9684         broxton_set_cdclk(dev, req_cdclk);
9685 }
9686
9687 /* compute the max rate for new configuration */
9688 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9689 {
9690         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9691         struct drm_i915_private *dev_priv = state->dev->dev_private;
9692         struct drm_crtc *crtc;
9693         struct drm_crtc_state *cstate;
9694         struct intel_crtc_state *crtc_state;
9695         unsigned max_pixel_rate = 0, i;
9696         enum pipe pipe;
9697
9698         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9699                sizeof(intel_state->min_pixclk));
9700
9701         for_each_crtc_in_state(state, crtc, cstate, i) {
9702                 int pixel_rate;
9703
9704                 crtc_state = to_intel_crtc_state(cstate);
9705                 if (!crtc_state->base.enable) {
9706                         intel_state->min_pixclk[i] = 0;
9707                         continue;
9708                 }
9709
9710                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9711
9712                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9713                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9714                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9715
9716                 intel_state->min_pixclk[i] = pixel_rate;
9717         }
9718
9719         if (!intel_state->active_crtcs)
9720                 return 0;
9721
9722         for_each_pipe(dev_priv, pipe)
9723                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9724
9725         return max_pixel_rate;
9726 }
9727
9728 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9729 {
9730         struct drm_i915_private *dev_priv = dev->dev_private;
9731         uint32_t val, data;
9732         int ret;
9733
9734         if (WARN((I915_READ(LCPLL_CTL) &
9735                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9736                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9737                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9738                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9739                  "trying to change cdclk frequency with cdclk not enabled\n"))
9740                 return;
9741
9742         mutex_lock(&dev_priv->rps.hw_lock);
9743         ret = sandybridge_pcode_write(dev_priv,
9744                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9745         mutex_unlock(&dev_priv->rps.hw_lock);
9746         if (ret) {
9747                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9748                 return;
9749         }
9750
9751         val = I915_READ(LCPLL_CTL);
9752         val |= LCPLL_CD_SOURCE_FCLK;
9753         I915_WRITE(LCPLL_CTL, val);
9754
9755         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9756                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9757                 DRM_ERROR("Switching to FCLK failed\n");
9758
9759         val = I915_READ(LCPLL_CTL);
9760         val &= ~LCPLL_CLK_FREQ_MASK;
9761
9762         switch (cdclk) {
9763         case 450000:
9764                 val |= LCPLL_CLK_FREQ_450;
9765                 data = 0;
9766                 break;
9767         case 540000:
9768                 val |= LCPLL_CLK_FREQ_54O_BDW;
9769                 data = 1;
9770                 break;
9771         case 337500:
9772                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9773                 data = 2;
9774                 break;
9775         case 675000:
9776                 val |= LCPLL_CLK_FREQ_675_BDW;
9777                 data = 3;
9778                 break;
9779         default:
9780                 WARN(1, "invalid cdclk frequency\n");
9781                 return;
9782         }
9783
9784         I915_WRITE(LCPLL_CTL, val);
9785
9786         val = I915_READ(LCPLL_CTL);
9787         val &= ~LCPLL_CD_SOURCE_FCLK;
9788         I915_WRITE(LCPLL_CTL, val);
9789
9790         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9791                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9792                 DRM_ERROR("Switching back to LCPLL failed\n");
9793
9794         mutex_lock(&dev_priv->rps.hw_lock);
9795         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9796         mutex_unlock(&dev_priv->rps.hw_lock);
9797
9798         intel_update_cdclk(dev);
9799
9800         WARN(cdclk != dev_priv->cdclk_freq,
9801              "cdclk requested %d kHz but got %d kHz\n",
9802              cdclk, dev_priv->cdclk_freq);
9803 }
9804
9805 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9806 {
9807         struct drm_i915_private *dev_priv = to_i915(state->dev);
9808         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9809         int max_pixclk = ilk_max_pixel_rate(state);
9810         int cdclk;
9811
9812         /*
9813          * FIXME should also account for plane ratio
9814          * once 64bpp pixel formats are supported.
9815          */
9816         if (max_pixclk > 540000)
9817                 cdclk = 675000;
9818         else if (max_pixclk > 450000)
9819                 cdclk = 540000;
9820         else if (max_pixclk > 337500)
9821                 cdclk = 450000;
9822         else
9823                 cdclk = 337500;
9824
9825         if (cdclk > dev_priv->max_cdclk_freq) {
9826                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9827                               cdclk, dev_priv->max_cdclk_freq);
9828                 return -EINVAL;
9829         }
9830
9831         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9832         if (!intel_state->active_crtcs)
9833                 intel_state->dev_cdclk = 337500;
9834
9835         return 0;
9836 }
9837
9838 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9839 {
9840         struct drm_device *dev = old_state->dev;
9841         struct intel_atomic_state *old_intel_state =
9842                 to_intel_atomic_state(old_state);
9843         unsigned req_cdclk = old_intel_state->dev_cdclk;
9844
9845         broadwell_set_cdclk(dev, req_cdclk);
9846 }
9847
9848 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9849                                       struct intel_crtc_state *crtc_state)
9850 {
9851         struct intel_encoder *intel_encoder =
9852                 intel_ddi_get_crtc_new_encoder(crtc_state);
9853
9854         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9855                 if (!intel_ddi_pll_select(crtc, crtc_state))
9856                         return -EINVAL;
9857         }
9858
9859         crtc->lowfreq_avail = false;
9860
9861         return 0;
9862 }
9863
9864 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9865                                 enum port port,
9866                                 struct intel_crtc_state *pipe_config)
9867 {
9868         switch (port) {
9869         case PORT_A:
9870                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9871                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9872                 break;
9873         case PORT_B:
9874                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9875                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9876                 break;
9877         case PORT_C:
9878                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9879                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9880                 break;
9881         default:
9882                 DRM_ERROR("Incorrect port type\n");
9883         }
9884 }
9885
9886 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9887                                 enum port port,
9888                                 struct intel_crtc_state *pipe_config)
9889 {
9890         u32 temp, dpll_ctl1;
9891
9892         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9893         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9894
9895         switch (pipe_config->ddi_pll_sel) {
9896         case SKL_DPLL0:
9897                 /*
9898                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9899                  * of the shared DPLL framework and thus needs to be read out
9900                  * separately
9901                  */
9902                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9903                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9904                 break;
9905         case SKL_DPLL1:
9906                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9907                 break;
9908         case SKL_DPLL2:
9909                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9910                 break;
9911         case SKL_DPLL3:
9912                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9913                 break;
9914         }
9915 }
9916
9917 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9918                                 enum port port,
9919                                 struct intel_crtc_state *pipe_config)
9920 {
9921         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9922
9923         switch (pipe_config->ddi_pll_sel) {
9924         case PORT_CLK_SEL_WRPLL1:
9925                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9926                 break;
9927         case PORT_CLK_SEL_WRPLL2:
9928                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9929                 break;
9930         case PORT_CLK_SEL_SPLL:
9931                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9932                 break;
9933         }
9934 }
9935
9936 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9937                                        struct intel_crtc_state *pipe_config)
9938 {
9939         struct drm_device *dev = crtc->base.dev;
9940         struct drm_i915_private *dev_priv = dev->dev_private;
9941         struct intel_shared_dpll *pll;
9942         enum port port;
9943         uint32_t tmp;
9944
9945         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9946
9947         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9948
9949         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9950                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9951         else if (IS_BROXTON(dev))
9952                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9953         else
9954                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9955
9956         if (pipe_config->shared_dpll >= 0) {
9957                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9958
9959                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9960                                            &pipe_config->dpll_hw_state));
9961         }
9962
9963         /*
9964          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9965          * DDI E. So just check whether this pipe is wired to DDI E and whether
9966          * the PCH transcoder is on.
9967          */
9968         if (INTEL_INFO(dev)->gen < 9 &&
9969             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9970                 pipe_config->has_pch_encoder = true;
9971
9972                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9973                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9974                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9975
9976                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9977         }
9978 }
9979
9980 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9981                                     struct intel_crtc_state *pipe_config)
9982 {
9983         struct drm_device *dev = crtc->base.dev;
9984         struct drm_i915_private *dev_priv = dev->dev_private;
9985         enum intel_display_power_domain pfit_domain;
9986         uint32_t tmp;
9987
9988         if (!intel_display_power_is_enabled(dev_priv,
9989                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9990                 return false;
9991
9992         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9993         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9994
9995         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9996         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9997                 enum pipe trans_edp_pipe;
9998                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9999                 default:
10000                         WARN(1, "unknown pipe linked to edp transcoder\n");
10001                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10002                 case TRANS_DDI_EDP_INPUT_A_ON:
10003                         trans_edp_pipe = PIPE_A;
10004                         break;
10005                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10006                         trans_edp_pipe = PIPE_B;
10007                         break;
10008                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10009                         trans_edp_pipe = PIPE_C;
10010                         break;
10011                 }
10012
10013                 if (trans_edp_pipe == crtc->pipe)
10014                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
10015         }
10016
10017         if (!intel_display_power_is_enabled(dev_priv,
10018                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
10019                 return false;
10020
10021         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10022         if (!(tmp & PIPECONF_ENABLE))
10023                 return false;
10024
10025         haswell_get_ddi_port_state(crtc, pipe_config);
10026
10027         intel_get_pipe_timings(crtc, pipe_config);
10028
10029         if (INTEL_INFO(dev)->gen >= 9) {
10030                 skl_init_scalers(dev, crtc, pipe_config);
10031         }
10032
10033         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10034
10035         if (INTEL_INFO(dev)->gen >= 9) {
10036                 pipe_config->scaler_state.scaler_id = -1;
10037                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10038         }
10039
10040         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
10041                 if (INTEL_INFO(dev)->gen >= 9)
10042                         skylake_get_pfit_config(crtc, pipe_config);
10043                 else
10044                         ironlake_get_pfit_config(crtc, pipe_config);
10045         }
10046
10047         if (IS_HASWELL(dev))
10048                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10049                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10050
10051         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
10052                 pipe_config->pixel_multiplier =
10053                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10054         } else {
10055                 pipe_config->pixel_multiplier = 1;
10056         }
10057
10058         return true;
10059 }
10060
10061 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10062                                const struct intel_plane_state *plane_state)
10063 {
10064         struct drm_device *dev = crtc->dev;
10065         struct drm_i915_private *dev_priv = dev->dev_private;
10066         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10067         uint32_t cntl = 0, size = 0;
10068
10069         if (plane_state && plane_state->visible) {
10070                 unsigned int width = plane_state->base.crtc_w;
10071                 unsigned int height = plane_state->base.crtc_h;
10072                 unsigned int stride = roundup_pow_of_two(width) * 4;
10073
10074                 switch (stride) {
10075                 default:
10076                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10077                                   width, stride);
10078                         stride = 256;
10079                         /* fallthrough */
10080                 case 256:
10081                 case 512:
10082                 case 1024:
10083                 case 2048:
10084                         break;
10085                 }
10086
10087                 cntl |= CURSOR_ENABLE |
10088                         CURSOR_GAMMA_ENABLE |
10089                         CURSOR_FORMAT_ARGB |
10090                         CURSOR_STRIDE(stride);
10091
10092                 size = (height << 12) | width;
10093         }
10094
10095         if (intel_crtc->cursor_cntl != 0 &&
10096             (intel_crtc->cursor_base != base ||
10097              intel_crtc->cursor_size != size ||
10098              intel_crtc->cursor_cntl != cntl)) {
10099                 /* On these chipsets we can only modify the base/size/stride
10100                  * whilst the cursor is disabled.
10101                  */
10102                 I915_WRITE(CURCNTR(PIPE_A), 0);
10103                 POSTING_READ(CURCNTR(PIPE_A));
10104                 intel_crtc->cursor_cntl = 0;
10105         }
10106
10107         if (intel_crtc->cursor_base != base) {
10108                 I915_WRITE(CURBASE(PIPE_A), base);
10109                 intel_crtc->cursor_base = base;
10110         }
10111
10112         if (intel_crtc->cursor_size != size) {
10113                 I915_WRITE(CURSIZE, size);
10114                 intel_crtc->cursor_size = size;
10115         }
10116
10117         if (intel_crtc->cursor_cntl != cntl) {
10118                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10119                 POSTING_READ(CURCNTR(PIPE_A));
10120                 intel_crtc->cursor_cntl = cntl;
10121         }
10122 }
10123
10124 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10125                                const struct intel_plane_state *plane_state)
10126 {
10127         struct drm_device *dev = crtc->dev;
10128         struct drm_i915_private *dev_priv = dev->dev_private;
10129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10130         int pipe = intel_crtc->pipe;
10131         uint32_t cntl = 0;
10132
10133         if (plane_state && plane_state->visible) {
10134                 cntl = MCURSOR_GAMMA_ENABLE;
10135                 switch (plane_state->base.crtc_w) {
10136                         case 64:
10137                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10138                                 break;
10139                         case 128:
10140                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10141                                 break;
10142                         case 256:
10143                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10144                                 break;
10145                         default:
10146                                 MISSING_CASE(plane_state->base.crtc_w);
10147                                 return;
10148                 }
10149                 cntl |= pipe << 28; /* Connect to correct pipe */
10150
10151                 if (HAS_DDI(dev))
10152                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10153
10154                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10155                         cntl |= CURSOR_ROTATE_180;
10156         }
10157
10158         if (intel_crtc->cursor_cntl != cntl) {
10159                 I915_WRITE(CURCNTR(pipe), cntl);
10160                 POSTING_READ(CURCNTR(pipe));
10161                 intel_crtc->cursor_cntl = cntl;
10162         }
10163
10164         /* and commit changes on next vblank */
10165         I915_WRITE(CURBASE(pipe), base);
10166         POSTING_READ(CURBASE(pipe));
10167
10168         intel_crtc->cursor_base = base;
10169 }
10170
10171 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10172 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10173                                      const struct intel_plane_state *plane_state)
10174 {
10175         struct drm_device *dev = crtc->dev;
10176         struct drm_i915_private *dev_priv = dev->dev_private;
10177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10178         int pipe = intel_crtc->pipe;
10179         u32 base = intel_crtc->cursor_addr;
10180         u32 pos = 0;
10181
10182         if (plane_state) {
10183                 int x = plane_state->base.crtc_x;
10184                 int y = plane_state->base.crtc_y;
10185
10186                 if (x < 0) {
10187                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10188                         x = -x;
10189                 }
10190                 pos |= x << CURSOR_X_SHIFT;
10191
10192                 if (y < 0) {
10193                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10194                         y = -y;
10195                 }
10196                 pos |= y << CURSOR_Y_SHIFT;
10197
10198                 /* ILK+ do this automagically */
10199                 if (HAS_GMCH_DISPLAY(dev) &&
10200                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10201                         base += (plane_state->base.crtc_h *
10202                                  plane_state->base.crtc_w - 1) * 4;
10203                 }
10204         }
10205
10206         I915_WRITE(CURPOS(pipe), pos);
10207
10208         if (IS_845G(dev) || IS_I865G(dev))
10209                 i845_update_cursor(crtc, base, plane_state);
10210         else
10211                 i9xx_update_cursor(crtc, base, plane_state);
10212 }
10213
10214 static bool cursor_size_ok(struct drm_device *dev,
10215                            uint32_t width, uint32_t height)
10216 {
10217         if (width == 0 || height == 0)
10218                 return false;
10219
10220         /*
10221          * 845g/865g are special in that they are only limited by
10222          * the width of their cursors, the height is arbitrary up to
10223          * the precision of the register. Everything else requires
10224          * square cursors, limited to a few power-of-two sizes.
10225          */
10226         if (IS_845G(dev) || IS_I865G(dev)) {
10227                 if ((width & 63) != 0)
10228                         return false;
10229
10230                 if (width > (IS_845G(dev) ? 64 : 512))
10231                         return false;
10232
10233                 if (height > 1023)
10234                         return false;
10235         } else {
10236                 switch (width | height) {
10237                 case 256:
10238                 case 128:
10239                         if (IS_GEN2(dev))
10240                                 return false;
10241                 case 64:
10242                         break;
10243                 default:
10244                         return false;
10245                 }
10246         }
10247
10248         return true;
10249 }
10250
10251 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10252                                  u16 *blue, uint32_t start, uint32_t size)
10253 {
10254         int end = (start + size > 256) ? 256 : start + size, i;
10255         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10256
10257         for (i = start; i < end; i++) {
10258                 intel_crtc->lut_r[i] = red[i] >> 8;
10259                 intel_crtc->lut_g[i] = green[i] >> 8;
10260                 intel_crtc->lut_b[i] = blue[i] >> 8;
10261         }
10262
10263         intel_crtc_load_lut(crtc);
10264 }
10265
10266 /* VESA 640x480x72Hz mode to set on the pipe */
10267 static struct drm_display_mode load_detect_mode = {
10268         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10269                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10270 };
10271
10272 struct drm_framebuffer *
10273 __intel_framebuffer_create(struct drm_device *dev,
10274                            struct drm_mode_fb_cmd2 *mode_cmd,
10275                            struct drm_i915_gem_object *obj)
10276 {
10277         struct intel_framebuffer *intel_fb;
10278         int ret;
10279
10280         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10281         if (!intel_fb)
10282                 return ERR_PTR(-ENOMEM);
10283
10284         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10285         if (ret)
10286                 goto err;
10287
10288         return &intel_fb->base;
10289
10290 err:
10291         kfree(intel_fb);
10292         return ERR_PTR(ret);
10293 }
10294
10295 static struct drm_framebuffer *
10296 intel_framebuffer_create(struct drm_device *dev,
10297                          struct drm_mode_fb_cmd2 *mode_cmd,
10298                          struct drm_i915_gem_object *obj)
10299 {
10300         struct drm_framebuffer *fb;
10301         int ret;
10302
10303         ret = i915_mutex_lock_interruptible(dev);
10304         if (ret)
10305                 return ERR_PTR(ret);
10306         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10307         mutex_unlock(&dev->struct_mutex);
10308
10309         return fb;
10310 }
10311
10312 static u32
10313 intel_framebuffer_pitch_for_width(int width, int bpp)
10314 {
10315         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10316         return ALIGN(pitch, 64);
10317 }
10318
10319 static u32
10320 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10321 {
10322         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10323         return PAGE_ALIGN(pitch * mode->vdisplay);
10324 }
10325
10326 static struct drm_framebuffer *
10327 intel_framebuffer_create_for_mode(struct drm_device *dev,
10328                                   struct drm_display_mode *mode,
10329                                   int depth, int bpp)
10330 {
10331         struct drm_framebuffer *fb;
10332         struct drm_i915_gem_object *obj;
10333         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10334
10335         obj = i915_gem_alloc_object(dev,
10336                                     intel_framebuffer_size_for_mode(mode, bpp));
10337         if (obj == NULL)
10338                 return ERR_PTR(-ENOMEM);
10339
10340         mode_cmd.width = mode->hdisplay;
10341         mode_cmd.height = mode->vdisplay;
10342         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10343                                                                 bpp);
10344         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10345
10346         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10347         if (IS_ERR(fb))
10348                 drm_gem_object_unreference_unlocked(&obj->base);
10349
10350         return fb;
10351 }
10352
10353 static struct drm_framebuffer *
10354 mode_fits_in_fbdev(struct drm_device *dev,
10355                    struct drm_display_mode *mode)
10356 {
10357 #ifdef CONFIG_DRM_FBDEV_EMULATION
10358         struct drm_i915_private *dev_priv = dev->dev_private;
10359         struct drm_i915_gem_object *obj;
10360         struct drm_framebuffer *fb;
10361
10362         if (!dev_priv->fbdev)
10363                 return NULL;
10364
10365         if (!dev_priv->fbdev->fb)
10366                 return NULL;
10367
10368         obj = dev_priv->fbdev->fb->obj;
10369         BUG_ON(!obj);
10370
10371         fb = &dev_priv->fbdev->fb->base;
10372         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10373                                                                fb->bits_per_pixel))
10374                 return NULL;
10375
10376         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10377                 return NULL;
10378
10379         return fb;
10380 #else
10381         return NULL;
10382 #endif
10383 }
10384
10385 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10386                                            struct drm_crtc *crtc,
10387                                            struct drm_display_mode *mode,
10388                                            struct drm_framebuffer *fb,
10389                                            int x, int y)
10390 {
10391         struct drm_plane_state *plane_state;
10392         int hdisplay, vdisplay;
10393         int ret;
10394
10395         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10396         if (IS_ERR(plane_state))
10397                 return PTR_ERR(plane_state);
10398
10399         if (mode)
10400                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10401         else
10402                 hdisplay = vdisplay = 0;
10403
10404         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10405         if (ret)
10406                 return ret;
10407         drm_atomic_set_fb_for_plane(plane_state, fb);
10408         plane_state->crtc_x = 0;
10409         plane_state->crtc_y = 0;
10410         plane_state->crtc_w = hdisplay;
10411         plane_state->crtc_h = vdisplay;
10412         plane_state->src_x = x << 16;
10413         plane_state->src_y = y << 16;
10414         plane_state->src_w = hdisplay << 16;
10415         plane_state->src_h = vdisplay << 16;
10416
10417         return 0;
10418 }
10419
10420 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10421                                 struct drm_display_mode *mode,
10422                                 struct intel_load_detect_pipe *old,
10423                                 struct drm_modeset_acquire_ctx *ctx)
10424 {
10425         struct intel_crtc *intel_crtc;
10426         struct intel_encoder *intel_encoder =
10427                 intel_attached_encoder(connector);
10428         struct drm_crtc *possible_crtc;
10429         struct drm_encoder *encoder = &intel_encoder->base;
10430         struct drm_crtc *crtc = NULL;
10431         struct drm_device *dev = encoder->dev;
10432         struct drm_framebuffer *fb;
10433         struct drm_mode_config *config = &dev->mode_config;
10434         struct drm_atomic_state *state = NULL;
10435         struct drm_connector_state *connector_state;
10436         struct intel_crtc_state *crtc_state;
10437         int ret, i = -1;
10438
10439         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10440                       connector->base.id, connector->name,
10441                       encoder->base.id, encoder->name);
10442
10443 retry:
10444         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10445         if (ret)
10446                 goto fail;
10447
10448         /*
10449          * Algorithm gets a little messy:
10450          *
10451          *   - if the connector already has an assigned crtc, use it (but make
10452          *     sure it's on first)
10453          *
10454          *   - try to find the first unused crtc that can drive this connector,
10455          *     and use that if we find one
10456          */
10457
10458         /* See if we already have a CRTC for this connector */
10459         if (encoder->crtc) {
10460                 crtc = encoder->crtc;
10461
10462                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10463                 if (ret)
10464                         goto fail;
10465                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10466                 if (ret)
10467                         goto fail;
10468
10469                 old->dpms_mode = connector->dpms;
10470                 old->load_detect_temp = false;
10471
10472                 /* Make sure the crtc and connector are running */
10473                 if (connector->dpms != DRM_MODE_DPMS_ON)
10474                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10475
10476                 return true;
10477         }
10478
10479         /* Find an unused one (if possible) */
10480         for_each_crtc(dev, possible_crtc) {
10481                 i++;
10482                 if (!(encoder->possible_crtcs & (1 << i)))
10483                         continue;
10484                 if (possible_crtc->state->enable)
10485                         continue;
10486
10487                 crtc = possible_crtc;
10488                 break;
10489         }
10490
10491         /*
10492          * If we didn't find an unused CRTC, don't use any.
10493          */
10494         if (!crtc) {
10495                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10496                 goto fail;
10497         }
10498
10499         ret = drm_modeset_lock(&crtc->mutex, ctx);
10500         if (ret)
10501                 goto fail;
10502         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10503         if (ret)
10504                 goto fail;
10505
10506         intel_crtc = to_intel_crtc(crtc);
10507         old->dpms_mode = connector->dpms;
10508         old->load_detect_temp = true;
10509         old->release_fb = NULL;
10510
10511         state = drm_atomic_state_alloc(dev);
10512         if (!state)
10513                 return false;
10514
10515         state->acquire_ctx = ctx;
10516
10517         connector_state = drm_atomic_get_connector_state(state, connector);
10518         if (IS_ERR(connector_state)) {
10519                 ret = PTR_ERR(connector_state);
10520                 goto fail;
10521         }
10522
10523         connector_state->crtc = crtc;
10524         connector_state->best_encoder = &intel_encoder->base;
10525
10526         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10527         if (IS_ERR(crtc_state)) {
10528                 ret = PTR_ERR(crtc_state);
10529                 goto fail;
10530         }
10531
10532         crtc_state->base.active = crtc_state->base.enable = true;
10533
10534         if (!mode)
10535                 mode = &load_detect_mode;
10536
10537         /* We need a framebuffer large enough to accommodate all accesses
10538          * that the plane may generate whilst we perform load detection.
10539          * We can not rely on the fbcon either being present (we get called
10540          * during its initialisation to detect all boot displays, or it may
10541          * not even exist) or that it is large enough to satisfy the
10542          * requested mode.
10543          */
10544         fb = mode_fits_in_fbdev(dev, mode);
10545         if (fb == NULL) {
10546                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10547                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10548                 old->release_fb = fb;
10549         } else
10550                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10551         if (IS_ERR(fb)) {
10552                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10553                 goto fail;
10554         }
10555
10556         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10557         if (ret)
10558                 goto fail;
10559
10560         drm_mode_copy(&crtc_state->base.mode, mode);
10561
10562         if (drm_atomic_commit(state)) {
10563                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10564                 if (old->release_fb)
10565                         old->release_fb->funcs->destroy(old->release_fb);
10566                 goto fail;
10567         }
10568         crtc->primary->crtc = crtc;
10569
10570         /* let the connector get through one full cycle before testing */
10571         intel_wait_for_vblank(dev, intel_crtc->pipe);
10572         return true;
10573
10574 fail:
10575         drm_atomic_state_free(state);
10576         state = NULL;
10577
10578         if (ret == -EDEADLK) {
10579                 drm_modeset_backoff(ctx);
10580                 goto retry;
10581         }
10582
10583         return false;
10584 }
10585
10586 void intel_release_load_detect_pipe(struct drm_connector *connector,
10587                                     struct intel_load_detect_pipe *old,
10588                                     struct drm_modeset_acquire_ctx *ctx)
10589 {
10590         struct drm_device *dev = connector->dev;
10591         struct intel_encoder *intel_encoder =
10592                 intel_attached_encoder(connector);
10593         struct drm_encoder *encoder = &intel_encoder->base;
10594         struct drm_crtc *crtc = encoder->crtc;
10595         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10596         struct drm_atomic_state *state;
10597         struct drm_connector_state *connector_state;
10598         struct intel_crtc_state *crtc_state;
10599         int ret;
10600
10601         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10602                       connector->base.id, connector->name,
10603                       encoder->base.id, encoder->name);
10604
10605         if (old->load_detect_temp) {
10606                 state = drm_atomic_state_alloc(dev);
10607                 if (!state)
10608                         goto fail;
10609
10610                 state->acquire_ctx = ctx;
10611
10612                 connector_state = drm_atomic_get_connector_state(state, connector);
10613                 if (IS_ERR(connector_state))
10614                         goto fail;
10615
10616                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10617                 if (IS_ERR(crtc_state))
10618                         goto fail;
10619
10620                 connector_state->best_encoder = NULL;
10621                 connector_state->crtc = NULL;
10622
10623                 crtc_state->base.enable = crtc_state->base.active = false;
10624
10625                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10626                                                       0, 0);
10627                 if (ret)
10628                         goto fail;
10629
10630                 ret = drm_atomic_commit(state);
10631                 if (ret)
10632                         goto fail;
10633
10634                 if (old->release_fb) {
10635                         drm_framebuffer_unregister_private(old->release_fb);
10636                         drm_framebuffer_unreference(old->release_fb);
10637                 }
10638
10639                 return;
10640         }
10641
10642         /* Switch crtc and encoder back off if necessary */
10643         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10644                 connector->funcs->dpms(connector, old->dpms_mode);
10645
10646         return;
10647 fail:
10648         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10649         drm_atomic_state_free(state);
10650 }
10651
10652 static int i9xx_pll_refclk(struct drm_device *dev,
10653                            const struct intel_crtc_state *pipe_config)
10654 {
10655         struct drm_i915_private *dev_priv = dev->dev_private;
10656         u32 dpll = pipe_config->dpll_hw_state.dpll;
10657
10658         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10659                 return dev_priv->vbt.lvds_ssc_freq;
10660         else if (HAS_PCH_SPLIT(dev))
10661                 return 120000;
10662         else if (!IS_GEN2(dev))
10663                 return 96000;
10664         else
10665                 return 48000;
10666 }
10667
10668 /* Returns the clock of the currently programmed mode of the given pipe. */
10669 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10670                                 struct intel_crtc_state *pipe_config)
10671 {
10672         struct drm_device *dev = crtc->base.dev;
10673         struct drm_i915_private *dev_priv = dev->dev_private;
10674         int pipe = pipe_config->cpu_transcoder;
10675         u32 dpll = pipe_config->dpll_hw_state.dpll;
10676         u32 fp;
10677         intel_clock_t clock;
10678         int port_clock;
10679         int refclk = i9xx_pll_refclk(dev, pipe_config);
10680
10681         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10682                 fp = pipe_config->dpll_hw_state.fp0;
10683         else
10684                 fp = pipe_config->dpll_hw_state.fp1;
10685
10686         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10687         if (IS_PINEVIEW(dev)) {
10688                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10689                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10690         } else {
10691                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10692                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10693         }
10694
10695         if (!IS_GEN2(dev)) {
10696                 if (IS_PINEVIEW(dev))
10697                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10698                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10699                 else
10700                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10701                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10702
10703                 switch (dpll & DPLL_MODE_MASK) {
10704                 case DPLLB_MODE_DAC_SERIAL:
10705                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10706                                 5 : 10;
10707                         break;
10708                 case DPLLB_MODE_LVDS:
10709                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10710                                 7 : 14;
10711                         break;
10712                 default:
10713                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10714                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10715                         return;
10716                 }
10717
10718                 if (IS_PINEVIEW(dev))
10719                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10720                 else
10721                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10722         } else {
10723                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10724                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10725
10726                 if (is_lvds) {
10727                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10728                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10729
10730                         if (lvds & LVDS_CLKB_POWER_UP)
10731                                 clock.p2 = 7;
10732                         else
10733                                 clock.p2 = 14;
10734                 } else {
10735                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10736                                 clock.p1 = 2;
10737                         else {
10738                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10739                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10740                         }
10741                         if (dpll & PLL_P2_DIVIDE_BY_4)
10742                                 clock.p2 = 4;
10743                         else
10744                                 clock.p2 = 2;
10745                 }
10746
10747                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10748         }
10749
10750         /*
10751          * This value includes pixel_multiplier. We will use
10752          * port_clock to compute adjusted_mode.crtc_clock in the
10753          * encoder's get_config() function.
10754          */
10755         pipe_config->port_clock = port_clock;
10756 }
10757
10758 int intel_dotclock_calculate(int link_freq,
10759                              const struct intel_link_m_n *m_n)
10760 {
10761         /*
10762          * The calculation for the data clock is:
10763          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10764          * But we want to avoid losing precison if possible, so:
10765          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10766          *
10767          * and the link clock is simpler:
10768          * link_clock = (m * link_clock) / n
10769          */
10770
10771         if (!m_n->link_n)
10772                 return 0;
10773
10774         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10775 }
10776
10777 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10778                                    struct intel_crtc_state *pipe_config)
10779 {
10780         struct drm_device *dev = crtc->base.dev;
10781
10782         /* read out port_clock from the DPLL */
10783         i9xx_crtc_clock_get(crtc, pipe_config);
10784
10785         /*
10786          * This value does not include pixel_multiplier.
10787          * We will check that port_clock and adjusted_mode.crtc_clock
10788          * agree once we know their relationship in the encoder's
10789          * get_config() function.
10790          */
10791         pipe_config->base.adjusted_mode.crtc_clock =
10792                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10793                                          &pipe_config->fdi_m_n);
10794 }
10795
10796 /** Returns the currently programmed mode of the given pipe. */
10797 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10798                                              struct drm_crtc *crtc)
10799 {
10800         struct drm_i915_private *dev_priv = dev->dev_private;
10801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10802         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10803         struct drm_display_mode *mode;
10804         struct intel_crtc_state *pipe_config;
10805         int htot = I915_READ(HTOTAL(cpu_transcoder));
10806         int hsync = I915_READ(HSYNC(cpu_transcoder));
10807         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10808         int vsync = I915_READ(VSYNC(cpu_transcoder));
10809         enum pipe pipe = intel_crtc->pipe;
10810
10811         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10812         if (!mode)
10813                 return NULL;
10814
10815         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10816         if (!pipe_config) {
10817                 kfree(mode);
10818                 return NULL;
10819         }
10820
10821         /*
10822          * Construct a pipe_config sufficient for getting the clock info
10823          * back out of crtc_clock_get.
10824          *
10825          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10826          * to use a real value here instead.
10827          */
10828         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10829         pipe_config->pixel_multiplier = 1;
10830         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10831         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10832         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10833         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10834
10835         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10836         mode->hdisplay = (htot & 0xffff) + 1;
10837         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10838         mode->hsync_start = (hsync & 0xffff) + 1;
10839         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10840         mode->vdisplay = (vtot & 0xffff) + 1;
10841         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10842         mode->vsync_start = (vsync & 0xffff) + 1;
10843         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10844
10845         drm_mode_set_name(mode);
10846
10847         kfree(pipe_config);
10848
10849         return mode;
10850 }
10851
10852 void intel_mark_busy(struct drm_device *dev)
10853 {
10854         struct drm_i915_private *dev_priv = dev->dev_private;
10855
10856         if (dev_priv->mm.busy)
10857                 return;
10858
10859         intel_runtime_pm_get(dev_priv);
10860         i915_update_gfx_val(dev_priv);
10861         if (INTEL_INFO(dev)->gen >= 6)
10862                 gen6_rps_busy(dev_priv);
10863         dev_priv->mm.busy = true;
10864 }
10865
10866 void intel_mark_idle(struct drm_device *dev)
10867 {
10868         struct drm_i915_private *dev_priv = dev->dev_private;
10869
10870         if (!dev_priv->mm.busy)
10871                 return;
10872
10873         dev_priv->mm.busy = false;
10874
10875         if (INTEL_INFO(dev)->gen >= 6)
10876                 gen6_rps_idle(dev->dev_private);
10877
10878         intel_runtime_pm_put(dev_priv);
10879 }
10880
10881 static void intel_crtc_destroy(struct drm_crtc *crtc)
10882 {
10883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10884         struct drm_device *dev = crtc->dev;
10885         struct intel_unpin_work *work;
10886
10887         spin_lock_irq(&dev->event_lock);
10888         work = intel_crtc->unpin_work;
10889         intel_crtc->unpin_work = NULL;
10890         spin_unlock_irq(&dev->event_lock);
10891
10892         if (work) {
10893                 cancel_work_sync(&work->work);
10894                 kfree(work);
10895         }
10896
10897         drm_crtc_cleanup(crtc);
10898
10899         kfree(intel_crtc);
10900 }
10901
10902 static void intel_unpin_work_fn(struct work_struct *__work)
10903 {
10904         struct intel_unpin_work *work =
10905                 container_of(__work, struct intel_unpin_work, work);
10906         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10907         struct drm_device *dev = crtc->base.dev;
10908         struct drm_plane *primary = crtc->base.primary;
10909
10910         mutex_lock(&dev->struct_mutex);
10911         intel_unpin_fb_obj(work->old_fb, primary->state);
10912         drm_gem_object_unreference(&work->pending_flip_obj->base);
10913
10914         if (work->flip_queued_req)
10915                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10916         mutex_unlock(&dev->struct_mutex);
10917
10918         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10919         intel_fbc_post_update(crtc);
10920         drm_framebuffer_unreference(work->old_fb);
10921
10922         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10923         atomic_dec(&crtc->unpin_work_count);
10924
10925         kfree(work);
10926 }
10927
10928 static void do_intel_finish_page_flip(struct drm_device *dev,
10929                                       struct drm_crtc *crtc)
10930 {
10931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10932         struct intel_unpin_work *work;
10933         unsigned long flags;
10934
10935         /* Ignore early vblank irqs */
10936         if (intel_crtc == NULL)
10937                 return;
10938
10939         /*
10940          * This is called both by irq handlers and the reset code (to complete
10941          * lost pageflips) so needs the full irqsave spinlocks.
10942          */
10943         spin_lock_irqsave(&dev->event_lock, flags);
10944         work = intel_crtc->unpin_work;
10945
10946         /* Ensure we don't miss a work->pending update ... */
10947         smp_rmb();
10948
10949         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10950                 spin_unlock_irqrestore(&dev->event_lock, flags);
10951                 return;
10952         }
10953
10954         page_flip_completed(intel_crtc);
10955
10956         spin_unlock_irqrestore(&dev->event_lock, flags);
10957 }
10958
10959 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10960 {
10961         struct drm_i915_private *dev_priv = dev->dev_private;
10962         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10963
10964         do_intel_finish_page_flip(dev, crtc);
10965 }
10966
10967 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10968 {
10969         struct drm_i915_private *dev_priv = dev->dev_private;
10970         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10971
10972         do_intel_finish_page_flip(dev, crtc);
10973 }
10974
10975 /* Is 'a' after or equal to 'b'? */
10976 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10977 {
10978         return !((a - b) & 0x80000000);
10979 }
10980
10981 static bool page_flip_finished(struct intel_crtc *crtc)
10982 {
10983         struct drm_device *dev = crtc->base.dev;
10984         struct drm_i915_private *dev_priv = dev->dev_private;
10985
10986         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10987             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10988                 return true;
10989
10990         /*
10991          * The relevant registers doen't exist on pre-ctg.
10992          * As the flip done interrupt doesn't trigger for mmio
10993          * flips on gmch platforms, a flip count check isn't
10994          * really needed there. But since ctg has the registers,
10995          * include it in the check anyway.
10996          */
10997         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10998                 return true;
10999
11000         /*
11001          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11002          * used the same base address. In that case the mmio flip might
11003          * have completed, but the CS hasn't even executed the flip yet.
11004          *
11005          * A flip count check isn't enough as the CS might have updated
11006          * the base address just after start of vblank, but before we
11007          * managed to process the interrupt. This means we'd complete the
11008          * CS flip too soon.
11009          *
11010          * Combining both checks should get us a good enough result. It may
11011          * still happen that the CS flip has been executed, but has not
11012          * yet actually completed. But in case the base address is the same
11013          * anyway, we don't really care.
11014          */
11015         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11016                 crtc->unpin_work->gtt_offset &&
11017                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11018                                     crtc->unpin_work->flip_count);
11019 }
11020
11021 void intel_prepare_page_flip(struct drm_device *dev, int plane)
11022 {
11023         struct drm_i915_private *dev_priv = dev->dev_private;
11024         struct intel_crtc *intel_crtc =
11025                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11026         unsigned long flags;
11027
11028
11029         /*
11030          * This is called both by irq handlers and the reset code (to complete
11031          * lost pageflips) so needs the full irqsave spinlocks.
11032          *
11033          * NB: An MMIO update of the plane base pointer will also
11034          * generate a page-flip completion irq, i.e. every modeset
11035          * is also accompanied by a spurious intel_prepare_page_flip().
11036          */
11037         spin_lock_irqsave(&dev->event_lock, flags);
11038         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11039                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11040         spin_unlock_irqrestore(&dev->event_lock, flags);
11041 }
11042
11043 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11044 {
11045         /* Ensure that the work item is consistent when activating it ... */
11046         smp_wmb();
11047         atomic_set(&work->pending, INTEL_FLIP_PENDING);
11048         /* and that it is marked active as soon as the irq could fire. */
11049         smp_wmb();
11050 }
11051
11052 static int intel_gen2_queue_flip(struct drm_device *dev,
11053                                  struct drm_crtc *crtc,
11054                                  struct drm_framebuffer *fb,
11055                                  struct drm_i915_gem_object *obj,
11056                                  struct drm_i915_gem_request *req,
11057                                  uint32_t flags)
11058 {
11059         struct intel_engine_cs *ring = req->ring;
11060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11061         u32 flip_mask;
11062         int ret;
11063
11064         ret = intel_ring_begin(req, 6);
11065         if (ret)
11066                 return ret;
11067
11068         /* Can't queue multiple flips, so wait for the previous
11069          * one to finish before executing the next.
11070          */
11071         if (intel_crtc->plane)
11072                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11073         else
11074                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11075         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11076         intel_ring_emit(ring, MI_NOOP);
11077         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11078                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11079         intel_ring_emit(ring, fb->pitches[0]);
11080         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11081         intel_ring_emit(ring, 0); /* aux display base address, unused */
11082
11083         intel_mark_page_flip_active(intel_crtc->unpin_work);
11084         return 0;
11085 }
11086
11087 static int intel_gen3_queue_flip(struct drm_device *dev,
11088                                  struct drm_crtc *crtc,
11089                                  struct drm_framebuffer *fb,
11090                                  struct drm_i915_gem_object *obj,
11091                                  struct drm_i915_gem_request *req,
11092                                  uint32_t flags)
11093 {
11094         struct intel_engine_cs *ring = req->ring;
11095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11096         u32 flip_mask;
11097         int ret;
11098
11099         ret = intel_ring_begin(req, 6);
11100         if (ret)
11101                 return ret;
11102
11103         if (intel_crtc->plane)
11104                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11105         else
11106                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11107         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11108         intel_ring_emit(ring, MI_NOOP);
11109         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11110                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11111         intel_ring_emit(ring, fb->pitches[0]);
11112         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11113         intel_ring_emit(ring, MI_NOOP);
11114
11115         intel_mark_page_flip_active(intel_crtc->unpin_work);
11116         return 0;
11117 }
11118
11119 static int intel_gen4_queue_flip(struct drm_device *dev,
11120                                  struct drm_crtc *crtc,
11121                                  struct drm_framebuffer *fb,
11122                                  struct drm_i915_gem_object *obj,
11123                                  struct drm_i915_gem_request *req,
11124                                  uint32_t flags)
11125 {
11126         struct intel_engine_cs *ring = req->ring;
11127         struct drm_i915_private *dev_priv = dev->dev_private;
11128         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11129         uint32_t pf, pipesrc;
11130         int ret;
11131
11132         ret = intel_ring_begin(req, 4);
11133         if (ret)
11134                 return ret;
11135
11136         /* i965+ uses the linear or tiled offsets from the
11137          * Display Registers (which do not change across a page-flip)
11138          * so we need only reprogram the base address.
11139          */
11140         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11141                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11142         intel_ring_emit(ring, fb->pitches[0]);
11143         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11144                         obj->tiling_mode);
11145
11146         /* XXX Enabling the panel-fitter across page-flip is so far
11147          * untested on non-native modes, so ignore it for now.
11148          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11149          */
11150         pf = 0;
11151         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11152         intel_ring_emit(ring, pf | pipesrc);
11153
11154         intel_mark_page_flip_active(intel_crtc->unpin_work);
11155         return 0;
11156 }
11157
11158 static int intel_gen6_queue_flip(struct drm_device *dev,
11159                                  struct drm_crtc *crtc,
11160                                  struct drm_framebuffer *fb,
11161                                  struct drm_i915_gem_object *obj,
11162                                  struct drm_i915_gem_request *req,
11163                                  uint32_t flags)
11164 {
11165         struct intel_engine_cs *ring = req->ring;
11166         struct drm_i915_private *dev_priv = dev->dev_private;
11167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11168         uint32_t pf, pipesrc;
11169         int ret;
11170
11171         ret = intel_ring_begin(req, 4);
11172         if (ret)
11173                 return ret;
11174
11175         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11176                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11177         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11178         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11179
11180         /* Contrary to the suggestions in the documentation,
11181          * "Enable Panel Fitter" does not seem to be required when page
11182          * flipping with a non-native mode, and worse causes a normal
11183          * modeset to fail.
11184          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11185          */
11186         pf = 0;
11187         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11188         intel_ring_emit(ring, pf | pipesrc);
11189
11190         intel_mark_page_flip_active(intel_crtc->unpin_work);
11191         return 0;
11192 }
11193
11194 static int intel_gen7_queue_flip(struct drm_device *dev,
11195                                  struct drm_crtc *crtc,
11196                                  struct drm_framebuffer *fb,
11197                                  struct drm_i915_gem_object *obj,
11198                                  struct drm_i915_gem_request *req,
11199                                  uint32_t flags)
11200 {
11201         struct intel_engine_cs *ring = req->ring;
11202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11203         uint32_t plane_bit = 0;
11204         int len, ret;
11205
11206         switch (intel_crtc->plane) {
11207         case PLANE_A:
11208                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11209                 break;
11210         case PLANE_B:
11211                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11212                 break;
11213         case PLANE_C:
11214                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11215                 break;
11216         default:
11217                 WARN_ONCE(1, "unknown plane in flip command\n");
11218                 return -ENODEV;
11219         }
11220
11221         len = 4;
11222         if (ring->id == RCS) {
11223                 len += 6;
11224                 /*
11225                  * On Gen 8, SRM is now taking an extra dword to accommodate
11226                  * 48bits addresses, and we need a NOOP for the batch size to
11227                  * stay even.
11228                  */
11229                 if (IS_GEN8(dev))
11230                         len += 2;
11231         }
11232
11233         /*
11234          * BSpec MI_DISPLAY_FLIP for IVB:
11235          * "The full packet must be contained within the same cache line."
11236          *
11237          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11238          * cacheline, if we ever start emitting more commands before
11239          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11240          * then do the cacheline alignment, and finally emit the
11241          * MI_DISPLAY_FLIP.
11242          */
11243         ret = intel_ring_cacheline_align(req);
11244         if (ret)
11245                 return ret;
11246
11247         ret = intel_ring_begin(req, len);
11248         if (ret)
11249                 return ret;
11250
11251         /* Unmask the flip-done completion message. Note that the bspec says that
11252          * we should do this for both the BCS and RCS, and that we must not unmask
11253          * more than one flip event at any time (or ensure that one flip message
11254          * can be sent by waiting for flip-done prior to queueing new flips).
11255          * Experimentation says that BCS works despite DERRMR masking all
11256          * flip-done completion events and that unmasking all planes at once
11257          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11258          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11259          */
11260         if (ring->id == RCS) {
11261                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11262                 intel_ring_emit_reg(ring, DERRMR);
11263                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11264                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11265                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11266                 if (IS_GEN8(dev))
11267                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11268                                               MI_SRM_LRM_GLOBAL_GTT);
11269                 else
11270                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11271                                               MI_SRM_LRM_GLOBAL_GTT);
11272                 intel_ring_emit_reg(ring, DERRMR);
11273                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11274                 if (IS_GEN8(dev)) {
11275                         intel_ring_emit(ring, 0);
11276                         intel_ring_emit(ring, MI_NOOP);
11277                 }
11278         }
11279
11280         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11281         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11282         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11283         intel_ring_emit(ring, (MI_NOOP));
11284
11285         intel_mark_page_flip_active(intel_crtc->unpin_work);
11286         return 0;
11287 }
11288
11289 static bool use_mmio_flip(struct intel_engine_cs *ring,
11290                           struct drm_i915_gem_object *obj)
11291 {
11292         /*
11293          * This is not being used for older platforms, because
11294          * non-availability of flip done interrupt forces us to use
11295          * CS flips. Older platforms derive flip done using some clever
11296          * tricks involving the flip_pending status bits and vblank irqs.
11297          * So using MMIO flips there would disrupt this mechanism.
11298          */
11299
11300         if (ring == NULL)
11301                 return true;
11302
11303         if (INTEL_INFO(ring->dev)->gen < 5)
11304                 return false;
11305
11306         if (i915.use_mmio_flip < 0)
11307                 return false;
11308         else if (i915.use_mmio_flip > 0)
11309                 return true;
11310         else if (i915.enable_execlists)
11311                 return true;
11312         else if (obj->base.dma_buf &&
11313                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11314                                                        false))
11315                 return true;
11316         else
11317                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11318 }
11319
11320 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11321                              unsigned int rotation,
11322                              struct intel_unpin_work *work)
11323 {
11324         struct drm_device *dev = intel_crtc->base.dev;
11325         struct drm_i915_private *dev_priv = dev->dev_private;
11326         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11327         const enum pipe pipe = intel_crtc->pipe;
11328         u32 ctl, stride, tile_height;
11329
11330         ctl = I915_READ(PLANE_CTL(pipe, 0));
11331         ctl &= ~PLANE_CTL_TILED_MASK;
11332         switch (fb->modifier[0]) {
11333         case DRM_FORMAT_MOD_NONE:
11334                 break;
11335         case I915_FORMAT_MOD_X_TILED:
11336                 ctl |= PLANE_CTL_TILED_X;
11337                 break;
11338         case I915_FORMAT_MOD_Y_TILED:
11339                 ctl |= PLANE_CTL_TILED_Y;
11340                 break;
11341         case I915_FORMAT_MOD_Yf_TILED:
11342                 ctl |= PLANE_CTL_TILED_YF;
11343                 break;
11344         default:
11345                 MISSING_CASE(fb->modifier[0]);
11346         }
11347
11348         /*
11349          * The stride is either expressed as a multiple of 64 bytes chunks for
11350          * linear buffers or in number of tiles for tiled buffers.
11351          */
11352         if (intel_rotation_90_or_270(rotation)) {
11353                 /* stride = Surface height in tiles */
11354                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11355                 stride = DIV_ROUND_UP(fb->height, tile_height);
11356         } else {
11357                 stride = fb->pitches[0] /
11358                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11359                                                   fb->pixel_format);
11360         }
11361
11362         /*
11363          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11364          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11365          */
11366         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11367         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11368
11369         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11370         POSTING_READ(PLANE_SURF(pipe, 0));
11371 }
11372
11373 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11374                              struct intel_unpin_work *work)
11375 {
11376         struct drm_device *dev = intel_crtc->base.dev;
11377         struct drm_i915_private *dev_priv = dev->dev_private;
11378         struct intel_framebuffer *intel_fb =
11379                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11380         struct drm_i915_gem_object *obj = intel_fb->obj;
11381         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11382         u32 dspcntr;
11383
11384         dspcntr = I915_READ(reg);
11385
11386         if (obj->tiling_mode != I915_TILING_NONE)
11387                 dspcntr |= DISPPLANE_TILED;
11388         else
11389                 dspcntr &= ~DISPPLANE_TILED;
11390
11391         I915_WRITE(reg, dspcntr);
11392
11393         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11394         POSTING_READ(DSPSURF(intel_crtc->plane));
11395 }
11396
11397 /*
11398  * XXX: This is the temporary way to update the plane registers until we get
11399  * around to using the usual plane update functions for MMIO flips
11400  */
11401 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11402 {
11403         struct intel_crtc *crtc = mmio_flip->crtc;
11404         struct intel_unpin_work *work;
11405
11406         spin_lock_irq(&crtc->base.dev->event_lock);
11407         work = crtc->unpin_work;
11408         spin_unlock_irq(&crtc->base.dev->event_lock);
11409         if (work == NULL)
11410                 return;
11411
11412         intel_mark_page_flip_active(work);
11413
11414         intel_pipe_update_start(crtc);
11415
11416         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11417                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11418         else
11419                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11420                 ilk_do_mmio_flip(crtc, work);
11421
11422         intel_pipe_update_end(crtc);
11423 }
11424
11425 static void intel_mmio_flip_work_func(struct work_struct *work)
11426 {
11427         struct intel_mmio_flip *mmio_flip =
11428                 container_of(work, struct intel_mmio_flip, work);
11429         struct intel_framebuffer *intel_fb =
11430                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11431         struct drm_i915_gem_object *obj = intel_fb->obj;
11432
11433         if (mmio_flip->req) {
11434                 WARN_ON(__i915_wait_request(mmio_flip->req,
11435                                             mmio_flip->crtc->reset_counter,
11436                                             false, NULL,
11437                                             &mmio_flip->i915->rps.mmioflips));
11438                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11439         }
11440
11441         /* For framebuffer backed by dmabuf, wait for fence */
11442         if (obj->base.dma_buf)
11443                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11444                                                             false, false,
11445                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11446
11447         intel_do_mmio_flip(mmio_flip);
11448         kfree(mmio_flip);
11449 }
11450
11451 static int intel_queue_mmio_flip(struct drm_device *dev,
11452                                  struct drm_crtc *crtc,
11453                                  struct drm_i915_gem_object *obj)
11454 {
11455         struct intel_mmio_flip *mmio_flip;
11456
11457         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11458         if (mmio_flip == NULL)
11459                 return -ENOMEM;
11460
11461         mmio_flip->i915 = to_i915(dev);
11462         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11463         mmio_flip->crtc = to_intel_crtc(crtc);
11464         mmio_flip->rotation = crtc->primary->state->rotation;
11465
11466         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11467         schedule_work(&mmio_flip->work);
11468
11469         return 0;
11470 }
11471
11472 static int intel_default_queue_flip(struct drm_device *dev,
11473                                     struct drm_crtc *crtc,
11474                                     struct drm_framebuffer *fb,
11475                                     struct drm_i915_gem_object *obj,
11476                                     struct drm_i915_gem_request *req,
11477                                     uint32_t flags)
11478 {
11479         return -ENODEV;
11480 }
11481
11482 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11483                                          struct drm_crtc *crtc)
11484 {
11485         struct drm_i915_private *dev_priv = dev->dev_private;
11486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11487         struct intel_unpin_work *work = intel_crtc->unpin_work;
11488         u32 addr;
11489
11490         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11491                 return true;
11492
11493         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11494                 return false;
11495
11496         if (!work->enable_stall_check)
11497                 return false;
11498
11499         if (work->flip_ready_vblank == 0) {
11500                 if (work->flip_queued_req &&
11501                     !i915_gem_request_completed(work->flip_queued_req, true))
11502                         return false;
11503
11504                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11505         }
11506
11507         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11508                 return false;
11509
11510         /* Potential stall - if we see that the flip has happened,
11511          * assume a missed interrupt. */
11512         if (INTEL_INFO(dev)->gen >= 4)
11513                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11514         else
11515                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11516
11517         /* There is a potential issue here with a false positive after a flip
11518          * to the same address. We could address this by checking for a
11519          * non-incrementing frame counter.
11520          */
11521         return addr == work->gtt_offset;
11522 }
11523
11524 void intel_check_page_flip(struct drm_device *dev, int pipe)
11525 {
11526         struct drm_i915_private *dev_priv = dev->dev_private;
11527         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11529         struct intel_unpin_work *work;
11530
11531         WARN_ON(!in_interrupt());
11532
11533         if (crtc == NULL)
11534                 return;
11535
11536         spin_lock(&dev->event_lock);
11537         work = intel_crtc->unpin_work;
11538         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11539                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11540                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11541                 page_flip_completed(intel_crtc);
11542                 work = NULL;
11543         }
11544         if (work != NULL &&
11545             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11546                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11547         spin_unlock(&dev->event_lock);
11548 }
11549
11550 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11551                                 struct drm_framebuffer *fb,
11552                                 struct drm_pending_vblank_event *event,
11553                                 uint32_t page_flip_flags)
11554 {
11555         struct drm_device *dev = crtc->dev;
11556         struct drm_i915_private *dev_priv = dev->dev_private;
11557         struct drm_framebuffer *old_fb = crtc->primary->fb;
11558         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11560         struct drm_plane *primary = crtc->primary;
11561         enum pipe pipe = intel_crtc->pipe;
11562         struct intel_unpin_work *work;
11563         struct intel_engine_cs *ring;
11564         bool mmio_flip;
11565         struct drm_i915_gem_request *request = NULL;
11566         int ret;
11567
11568         /*
11569          * drm_mode_page_flip_ioctl() should already catch this, but double
11570          * check to be safe.  In the future we may enable pageflipping from
11571          * a disabled primary plane.
11572          */
11573         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11574                 return -EBUSY;
11575
11576         /* Can't change pixel format via MI display flips. */
11577         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11578                 return -EINVAL;
11579
11580         /*
11581          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11582          * Note that pitch changes could also affect these register.
11583          */
11584         if (INTEL_INFO(dev)->gen > 3 &&
11585             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11586              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11587                 return -EINVAL;
11588
11589         if (i915_terminally_wedged(&dev_priv->gpu_error))
11590                 goto out_hang;
11591
11592         work = kzalloc(sizeof(*work), GFP_KERNEL);
11593         if (work == NULL)
11594                 return -ENOMEM;
11595
11596         work->event = event;
11597         work->crtc = crtc;
11598         work->old_fb = old_fb;
11599         INIT_WORK(&work->work, intel_unpin_work_fn);
11600
11601         ret = drm_crtc_vblank_get(crtc);
11602         if (ret)
11603                 goto free_work;
11604
11605         /* We borrow the event spin lock for protecting unpin_work */
11606         spin_lock_irq(&dev->event_lock);
11607         if (intel_crtc->unpin_work) {
11608                 /* Before declaring the flip queue wedged, check if
11609                  * the hardware completed the operation behind our backs.
11610                  */
11611                 if (__intel_pageflip_stall_check(dev, crtc)) {
11612                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11613                         page_flip_completed(intel_crtc);
11614                 } else {
11615                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11616                         spin_unlock_irq(&dev->event_lock);
11617
11618                         drm_crtc_vblank_put(crtc);
11619                         kfree(work);
11620                         return -EBUSY;
11621                 }
11622         }
11623         intel_crtc->unpin_work = work;
11624         spin_unlock_irq(&dev->event_lock);
11625
11626         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11627                 flush_workqueue(dev_priv->wq);
11628
11629         /* Reference the objects for the scheduled work. */
11630         drm_framebuffer_reference(work->old_fb);
11631         drm_gem_object_reference(&obj->base);
11632
11633         crtc->primary->fb = fb;
11634         update_state_fb(crtc->primary);
11635         intel_fbc_pre_update(intel_crtc);
11636
11637         work->pending_flip_obj = obj;
11638
11639         ret = i915_mutex_lock_interruptible(dev);
11640         if (ret)
11641                 goto cleanup;
11642
11643         atomic_inc(&intel_crtc->unpin_work_count);
11644         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11645
11646         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11647                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11648
11649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11650                 ring = &dev_priv->ring[BCS];
11651                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11652                         /* vlv: DISPLAY_FLIP fails to change tiling */
11653                         ring = NULL;
11654         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11655                 ring = &dev_priv->ring[BCS];
11656         } else if (INTEL_INFO(dev)->gen >= 7) {
11657                 ring = i915_gem_request_get_ring(obj->last_write_req);
11658                 if (ring == NULL || ring->id != RCS)
11659                         ring = &dev_priv->ring[BCS];
11660         } else {
11661                 ring = &dev_priv->ring[RCS];
11662         }
11663
11664         mmio_flip = use_mmio_flip(ring, obj);
11665
11666         /* When using CS flips, we want to emit semaphores between rings.
11667          * However, when using mmio flips we will create a task to do the
11668          * synchronisation, so all we want here is to pin the framebuffer
11669          * into the display plane and skip any waits.
11670          */
11671         if (!mmio_flip) {
11672                 ret = i915_gem_object_sync(obj, ring, &request);
11673                 if (ret)
11674                         goto cleanup_pending;
11675         }
11676
11677         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11678                                          crtc->primary->state);
11679         if (ret)
11680                 goto cleanup_pending;
11681
11682         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11683                                                   obj, 0);
11684         work->gtt_offset += intel_crtc->dspaddr_offset;
11685
11686         if (mmio_flip) {
11687                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11688                 if (ret)
11689                         goto cleanup_unpin;
11690
11691                 i915_gem_request_assign(&work->flip_queued_req,
11692                                         obj->last_write_req);
11693         } else {
11694                 if (!request) {
11695                         request = i915_gem_request_alloc(ring, NULL);
11696                         if (IS_ERR(request)) {
11697                                 ret = PTR_ERR(request);
11698                                 goto cleanup_unpin;
11699                         }
11700                 }
11701
11702                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11703                                                    page_flip_flags);
11704                 if (ret)
11705                         goto cleanup_unpin;
11706
11707                 i915_gem_request_assign(&work->flip_queued_req, request);
11708         }
11709
11710         if (request)
11711                 i915_add_request_no_flush(request);
11712
11713         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11714         work->enable_stall_check = true;
11715
11716         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11717                           to_intel_plane(primary)->frontbuffer_bit);
11718         mutex_unlock(&dev->struct_mutex);
11719
11720         intel_frontbuffer_flip_prepare(dev,
11721                                        to_intel_plane(primary)->frontbuffer_bit);
11722
11723         trace_i915_flip_request(intel_crtc->plane, obj);
11724
11725         return 0;
11726
11727 cleanup_unpin:
11728         intel_unpin_fb_obj(fb, crtc->primary->state);
11729 cleanup_pending:
11730         if (!IS_ERR_OR_NULL(request))
11731                 i915_gem_request_cancel(request);
11732         atomic_dec(&intel_crtc->unpin_work_count);
11733         mutex_unlock(&dev->struct_mutex);
11734 cleanup:
11735         crtc->primary->fb = old_fb;
11736         update_state_fb(crtc->primary);
11737
11738         drm_gem_object_unreference_unlocked(&obj->base);
11739         drm_framebuffer_unreference(work->old_fb);
11740
11741         spin_lock_irq(&dev->event_lock);
11742         intel_crtc->unpin_work = NULL;
11743         spin_unlock_irq(&dev->event_lock);
11744
11745         drm_crtc_vblank_put(crtc);
11746 free_work:
11747         kfree(work);
11748
11749         if (ret == -EIO) {
11750                 struct drm_atomic_state *state;
11751                 struct drm_plane_state *plane_state;
11752
11753 out_hang:
11754                 state = drm_atomic_state_alloc(dev);
11755                 if (!state)
11756                         return -ENOMEM;
11757                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11758
11759 retry:
11760                 plane_state = drm_atomic_get_plane_state(state, primary);
11761                 ret = PTR_ERR_OR_ZERO(plane_state);
11762                 if (!ret) {
11763                         drm_atomic_set_fb_for_plane(plane_state, fb);
11764
11765                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11766                         if (!ret)
11767                                 ret = drm_atomic_commit(state);
11768                 }
11769
11770                 if (ret == -EDEADLK) {
11771                         drm_modeset_backoff(state->acquire_ctx);
11772                         drm_atomic_state_clear(state);
11773                         goto retry;
11774                 }
11775
11776                 if (ret)
11777                         drm_atomic_state_free(state);
11778
11779                 if (ret == 0 && event) {
11780                         spin_lock_irq(&dev->event_lock);
11781                         drm_send_vblank_event(dev, pipe, event);
11782                         spin_unlock_irq(&dev->event_lock);
11783                 }
11784         }
11785         return ret;
11786 }
11787
11788
11789 /**
11790  * intel_wm_need_update - Check whether watermarks need updating
11791  * @plane: drm plane
11792  * @state: new plane state
11793  *
11794  * Check current plane state versus the new one to determine whether
11795  * watermarks need to be recalculated.
11796  *
11797  * Returns true or false.
11798  */
11799 static bool intel_wm_need_update(struct drm_plane *plane,
11800                                  struct drm_plane_state *state)
11801 {
11802         struct intel_plane_state *new = to_intel_plane_state(state);
11803         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11804
11805         /* Update watermarks on tiling or size changes. */
11806         if (new->visible != cur->visible)
11807                 return true;
11808
11809         if (!cur->base.fb || !new->base.fb)
11810                 return false;
11811
11812         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11813             cur->base.rotation != new->base.rotation ||
11814             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11815             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11816             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11817             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11818                 return true;
11819
11820         return false;
11821 }
11822
11823 static bool needs_scaling(struct intel_plane_state *state)
11824 {
11825         int src_w = drm_rect_width(&state->src) >> 16;
11826         int src_h = drm_rect_height(&state->src) >> 16;
11827         int dst_w = drm_rect_width(&state->dst);
11828         int dst_h = drm_rect_height(&state->dst);
11829
11830         return (src_w != dst_w || src_h != dst_h);
11831 }
11832
11833 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11834                                     struct drm_plane_state *plane_state)
11835 {
11836         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11837         struct drm_crtc *crtc = crtc_state->crtc;
11838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839         struct drm_plane *plane = plane_state->plane;
11840         struct drm_device *dev = crtc->dev;
11841         struct intel_plane_state *old_plane_state =
11842                 to_intel_plane_state(plane->state);
11843         int idx = intel_crtc->base.base.id, ret;
11844         int i = drm_plane_index(plane);
11845         bool mode_changed = needs_modeset(crtc_state);
11846         bool was_crtc_enabled = crtc->state->active;
11847         bool is_crtc_enabled = crtc_state->active;
11848         bool turn_off, turn_on, visible, was_visible;
11849         struct drm_framebuffer *fb = plane_state->fb;
11850
11851         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11852             plane->type != DRM_PLANE_TYPE_CURSOR) {
11853                 ret = skl_update_scaler_plane(
11854                         to_intel_crtc_state(crtc_state),
11855                         to_intel_plane_state(plane_state));
11856                 if (ret)
11857                         return ret;
11858         }
11859
11860         was_visible = old_plane_state->visible;
11861         visible = to_intel_plane_state(plane_state)->visible;
11862
11863         if (!was_crtc_enabled && WARN_ON(was_visible))
11864                 was_visible = false;
11865
11866         /*
11867          * Visibility is calculated as if the crtc was on, but
11868          * after scaler setup everything depends on it being off
11869          * when the crtc isn't active.
11870          */
11871         if (!is_crtc_enabled)
11872                 to_intel_plane_state(plane_state)->visible = visible = false;
11873
11874         if (!was_visible && !visible)
11875                 return 0;
11876
11877         turn_off = was_visible && (!visible || mode_changed);
11878         turn_on = visible && (!was_visible || mode_changed);
11879
11880         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11881                          plane->base.id, fb ? fb->base.id : -1);
11882
11883         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11884                          plane->base.id, was_visible, visible,
11885                          turn_off, turn_on, mode_changed);
11886
11887         if (turn_on || turn_off) {
11888                 pipe_config->wm_changed = true;
11889
11890                 /* must disable cxsr around plane enable/disable */
11891                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11892                         if (is_crtc_enabled)
11893                                 intel_crtc->atomic.wait_vblank = true;
11894                         pipe_config->disable_cxsr = true;
11895                 }
11896         } else if (intel_wm_need_update(plane, plane_state)) {
11897                 pipe_config->wm_changed = true;
11898         }
11899
11900         if (visible || was_visible)
11901                 intel_crtc->atomic.fb_bits |=
11902                         to_intel_plane(plane)->frontbuffer_bit;
11903
11904         switch (plane->type) {
11905         case DRM_PLANE_TYPE_PRIMARY:
11906                 intel_crtc->atomic.post_enable_primary = turn_on;
11907                 intel_crtc->atomic.update_fbc = true;
11908
11909                 /*
11910                  * BDW signals flip done immediately if the plane
11911                  * is disabled, even if the plane enable is already
11912                  * armed to occur at the next vblank :(
11913                  */
11914                 if (turn_on && IS_BROADWELL(dev))
11915                         intel_crtc->atomic.wait_vblank = true;
11916
11917                 break;
11918         case DRM_PLANE_TYPE_CURSOR:
11919                 break;
11920         case DRM_PLANE_TYPE_OVERLAY:
11921                 /*
11922                  * WaCxSRDisabledForSpriteScaling:ivb
11923                  *
11924                  * cstate->update_wm was already set above, so this flag will
11925                  * take effect when we commit and program watermarks.
11926                  */
11927                 if (IS_IVYBRIDGE(dev) &&
11928                     needs_scaling(to_intel_plane_state(plane_state)) &&
11929                     !needs_scaling(old_plane_state)) {
11930                         to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11931                 } else if (turn_off && !mode_changed) {
11932                         intel_crtc->atomic.wait_vblank = true;
11933                         intel_crtc->atomic.update_sprite_watermarks |=
11934                                 1 << i;
11935                 }
11936
11937                 break;
11938         }
11939         return 0;
11940 }
11941
11942 static bool encoders_cloneable(const struct intel_encoder *a,
11943                                const struct intel_encoder *b)
11944 {
11945         /* masks could be asymmetric, so check both ways */
11946         return a == b || (a->cloneable & (1 << b->type) &&
11947                           b->cloneable & (1 << a->type));
11948 }
11949
11950 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11951                                          struct intel_crtc *crtc,
11952                                          struct intel_encoder *encoder)
11953 {
11954         struct intel_encoder *source_encoder;
11955         struct drm_connector *connector;
11956         struct drm_connector_state *connector_state;
11957         int i;
11958
11959         for_each_connector_in_state(state, connector, connector_state, i) {
11960                 if (connector_state->crtc != &crtc->base)
11961                         continue;
11962
11963                 source_encoder =
11964                         to_intel_encoder(connector_state->best_encoder);
11965                 if (!encoders_cloneable(encoder, source_encoder))
11966                         return false;
11967         }
11968
11969         return true;
11970 }
11971
11972 static bool check_encoder_cloning(struct drm_atomic_state *state,
11973                                   struct intel_crtc *crtc)
11974 {
11975         struct intel_encoder *encoder;
11976         struct drm_connector *connector;
11977         struct drm_connector_state *connector_state;
11978         int i;
11979
11980         for_each_connector_in_state(state, connector, connector_state, i) {
11981                 if (connector_state->crtc != &crtc->base)
11982                         continue;
11983
11984                 encoder = to_intel_encoder(connector_state->best_encoder);
11985                 if (!check_single_encoder_cloning(state, crtc, encoder))
11986                         return false;
11987         }
11988
11989         return true;
11990 }
11991
11992 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11993                                    struct drm_crtc_state *crtc_state)
11994 {
11995         struct drm_device *dev = crtc->dev;
11996         struct drm_i915_private *dev_priv = dev->dev_private;
11997         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11998         struct intel_crtc_state *pipe_config =
11999                 to_intel_crtc_state(crtc_state);
12000         struct drm_atomic_state *state = crtc_state->state;
12001         int ret;
12002         bool mode_changed = needs_modeset(crtc_state);
12003
12004         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
12005                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12006                 return -EINVAL;
12007         }
12008
12009         if (mode_changed && !crtc_state->active)
12010                 pipe_config->wm_changed = true;
12011
12012         if (mode_changed && crtc_state->enable &&
12013             dev_priv->display.crtc_compute_clock &&
12014             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
12015                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12016                                                            pipe_config);
12017                 if (ret)
12018                         return ret;
12019         }
12020
12021         ret = 0;
12022         if (dev_priv->display.compute_pipe_wm) {
12023                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
12024                 if (ret)
12025                         return ret;
12026         }
12027
12028         if (INTEL_INFO(dev)->gen >= 9) {
12029                 if (mode_changed)
12030                         ret = skl_update_scaler_crtc(pipe_config);
12031
12032                 if (!ret)
12033                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
12034                                                          pipe_config);
12035         }
12036
12037         return ret;
12038 }
12039
12040 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12041         .mode_set_base_atomic = intel_pipe_set_base_atomic,
12042         .load_lut = intel_crtc_load_lut,
12043         .atomic_begin = intel_begin_crtc_commit,
12044         .atomic_flush = intel_finish_crtc_commit,
12045         .atomic_check = intel_crtc_atomic_check,
12046 };
12047
12048 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12049 {
12050         struct intel_connector *connector;
12051
12052         for_each_intel_connector(dev, connector) {
12053                 if (connector->base.encoder) {
12054                         connector->base.state->best_encoder =
12055                                 connector->base.encoder;
12056                         connector->base.state->crtc =
12057                                 connector->base.encoder->crtc;
12058                 } else {
12059                         connector->base.state->best_encoder = NULL;
12060                         connector->base.state->crtc = NULL;
12061                 }
12062         }
12063 }
12064
12065 static void
12066 connected_sink_compute_bpp(struct intel_connector *connector,
12067                            struct intel_crtc_state *pipe_config)
12068 {
12069         int bpp = pipe_config->pipe_bpp;
12070
12071         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12072                 connector->base.base.id,
12073                 connector->base.name);
12074
12075         /* Don't use an invalid EDID bpc value */
12076         if (connector->base.display_info.bpc &&
12077             connector->base.display_info.bpc * 3 < bpp) {
12078                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12079                               bpp, connector->base.display_info.bpc*3);
12080                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12081         }
12082
12083         /* Clamp bpp to default limit on screens without EDID 1.4 */
12084         if (connector->base.display_info.bpc == 0) {
12085                 int type = connector->base.connector_type;
12086                 int clamp_bpp = 24;
12087
12088                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12089                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12090                     type == DRM_MODE_CONNECTOR_eDP)
12091                         clamp_bpp = 18;
12092
12093                 if (bpp > clamp_bpp) {
12094                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12095                                       bpp, clamp_bpp);
12096                         pipe_config->pipe_bpp = clamp_bpp;
12097                 }
12098         }
12099 }
12100
12101 static int
12102 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12103                           struct intel_crtc_state *pipe_config)
12104 {
12105         struct drm_device *dev = crtc->base.dev;
12106         struct drm_atomic_state *state;
12107         struct drm_connector *connector;
12108         struct drm_connector_state *connector_state;
12109         int bpp, i;
12110
12111         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12112                 bpp = 10*3;
12113         else if (INTEL_INFO(dev)->gen >= 5)
12114                 bpp = 12*3;
12115         else
12116                 bpp = 8*3;
12117
12118
12119         pipe_config->pipe_bpp = bpp;
12120
12121         state = pipe_config->base.state;
12122
12123         /* Clamp display bpp to EDID value */
12124         for_each_connector_in_state(state, connector, connector_state, i) {
12125                 if (connector_state->crtc != &crtc->base)
12126                         continue;
12127
12128                 connected_sink_compute_bpp(to_intel_connector(connector),
12129                                            pipe_config);
12130         }
12131
12132         return bpp;
12133 }
12134
12135 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12136 {
12137         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12138                         "type: 0x%x flags: 0x%x\n",
12139                 mode->crtc_clock,
12140                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12141                 mode->crtc_hsync_end, mode->crtc_htotal,
12142                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12143                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12144 }
12145
12146 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12147                                    struct intel_crtc_state *pipe_config,
12148                                    const char *context)
12149 {
12150         struct drm_device *dev = crtc->base.dev;
12151         struct drm_plane *plane;
12152         struct intel_plane *intel_plane;
12153         struct intel_plane_state *state;
12154         struct drm_framebuffer *fb;
12155
12156         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12157                       context, pipe_config, pipe_name(crtc->pipe));
12158
12159         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12160         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12161                       pipe_config->pipe_bpp, pipe_config->dither);
12162         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12163                       pipe_config->has_pch_encoder,
12164                       pipe_config->fdi_lanes,
12165                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12166                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12167                       pipe_config->fdi_m_n.tu);
12168         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12169                       pipe_config->has_dp_encoder,
12170                       pipe_config->lane_count,
12171                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12172                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12173                       pipe_config->dp_m_n.tu);
12174
12175         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12176                       pipe_config->has_dp_encoder,
12177                       pipe_config->lane_count,
12178                       pipe_config->dp_m2_n2.gmch_m,
12179                       pipe_config->dp_m2_n2.gmch_n,
12180                       pipe_config->dp_m2_n2.link_m,
12181                       pipe_config->dp_m2_n2.link_n,
12182                       pipe_config->dp_m2_n2.tu);
12183
12184         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12185                       pipe_config->has_audio,
12186                       pipe_config->has_infoframe);
12187
12188         DRM_DEBUG_KMS("requested mode:\n");
12189         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12190         DRM_DEBUG_KMS("adjusted mode:\n");
12191         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12192         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12193         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12194         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12195                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12196         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12197                       crtc->num_scalers,
12198                       pipe_config->scaler_state.scaler_users,
12199                       pipe_config->scaler_state.scaler_id);
12200         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12201                       pipe_config->gmch_pfit.control,
12202                       pipe_config->gmch_pfit.pgm_ratios,
12203                       pipe_config->gmch_pfit.lvds_border_bits);
12204         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12205                       pipe_config->pch_pfit.pos,
12206                       pipe_config->pch_pfit.size,
12207                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12208         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12209         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12210
12211         if (IS_BROXTON(dev)) {
12212                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12213                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12214                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12215                               pipe_config->ddi_pll_sel,
12216                               pipe_config->dpll_hw_state.ebb0,
12217                               pipe_config->dpll_hw_state.ebb4,
12218                               pipe_config->dpll_hw_state.pll0,
12219                               pipe_config->dpll_hw_state.pll1,
12220                               pipe_config->dpll_hw_state.pll2,
12221                               pipe_config->dpll_hw_state.pll3,
12222                               pipe_config->dpll_hw_state.pll6,
12223                               pipe_config->dpll_hw_state.pll8,
12224                               pipe_config->dpll_hw_state.pll9,
12225                               pipe_config->dpll_hw_state.pll10,
12226                               pipe_config->dpll_hw_state.pcsdw12);
12227         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12228                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12229                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12230                               pipe_config->ddi_pll_sel,
12231                               pipe_config->dpll_hw_state.ctrl1,
12232                               pipe_config->dpll_hw_state.cfgcr1,
12233                               pipe_config->dpll_hw_state.cfgcr2);
12234         } else if (HAS_DDI(dev)) {
12235                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12236                               pipe_config->ddi_pll_sel,
12237                               pipe_config->dpll_hw_state.wrpll,
12238                               pipe_config->dpll_hw_state.spll);
12239         } else {
12240                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12241                               "fp0: 0x%x, fp1: 0x%x\n",
12242                               pipe_config->dpll_hw_state.dpll,
12243                               pipe_config->dpll_hw_state.dpll_md,
12244                               pipe_config->dpll_hw_state.fp0,
12245                               pipe_config->dpll_hw_state.fp1);
12246         }
12247
12248         DRM_DEBUG_KMS("planes on this crtc\n");
12249         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12250                 intel_plane = to_intel_plane(plane);
12251                 if (intel_plane->pipe != crtc->pipe)
12252                         continue;
12253
12254                 state = to_intel_plane_state(plane->state);
12255                 fb = state->base.fb;
12256                 if (!fb) {
12257                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12258                                 "disabled, scaler_id = %d\n",
12259                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12260                                 plane->base.id, intel_plane->pipe,
12261                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12262                                 drm_plane_index(plane), state->scaler_id);
12263                         continue;
12264                 }
12265
12266                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12267                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12268                         plane->base.id, intel_plane->pipe,
12269                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12270                         drm_plane_index(plane));
12271                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12272                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12273                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12274                         state->scaler_id,
12275                         state->src.x1 >> 16, state->src.y1 >> 16,
12276                         drm_rect_width(&state->src) >> 16,
12277                         drm_rect_height(&state->src) >> 16,
12278                         state->dst.x1, state->dst.y1,
12279                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12280         }
12281 }
12282
12283 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12284 {
12285         struct drm_device *dev = state->dev;
12286         struct drm_connector *connector;
12287         unsigned int used_ports = 0;
12288
12289         /*
12290          * Walk the connector list instead of the encoder
12291          * list to detect the problem on ddi platforms
12292          * where there's just one encoder per digital port.
12293          */
12294         drm_for_each_connector(connector, dev) {
12295                 struct drm_connector_state *connector_state;
12296                 struct intel_encoder *encoder;
12297
12298                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12299                 if (!connector_state)
12300                         connector_state = connector->state;
12301
12302                 if (!connector_state->best_encoder)
12303                         continue;
12304
12305                 encoder = to_intel_encoder(connector_state->best_encoder);
12306
12307                 WARN_ON(!connector_state->crtc);
12308
12309                 switch (encoder->type) {
12310                         unsigned int port_mask;
12311                 case INTEL_OUTPUT_UNKNOWN:
12312                         if (WARN_ON(!HAS_DDI(dev)))
12313                                 break;
12314                 case INTEL_OUTPUT_DISPLAYPORT:
12315                 case INTEL_OUTPUT_HDMI:
12316                 case INTEL_OUTPUT_EDP:
12317                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12318
12319                         /* the same port mustn't appear more than once */
12320                         if (used_ports & port_mask)
12321                                 return false;
12322
12323                         used_ports |= port_mask;
12324                 default:
12325                         break;
12326                 }
12327         }
12328
12329         return true;
12330 }
12331
12332 static void
12333 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12334 {
12335         struct drm_crtc_state tmp_state;
12336         struct intel_crtc_scaler_state scaler_state;
12337         struct intel_dpll_hw_state dpll_hw_state;
12338         enum intel_dpll_id shared_dpll;
12339         uint32_t ddi_pll_sel;
12340         bool force_thru;
12341
12342         /* FIXME: before the switch to atomic started, a new pipe_config was
12343          * kzalloc'd. Code that depends on any field being zero should be
12344          * fixed, so that the crtc_state can be safely duplicated. For now,
12345          * only fields that are know to not cause problems are preserved. */
12346
12347         tmp_state = crtc_state->base;
12348         scaler_state = crtc_state->scaler_state;
12349         shared_dpll = crtc_state->shared_dpll;
12350         dpll_hw_state = crtc_state->dpll_hw_state;
12351         ddi_pll_sel = crtc_state->ddi_pll_sel;
12352         force_thru = crtc_state->pch_pfit.force_thru;
12353
12354         memset(crtc_state, 0, sizeof *crtc_state);
12355
12356         crtc_state->base = tmp_state;
12357         crtc_state->scaler_state = scaler_state;
12358         crtc_state->shared_dpll = shared_dpll;
12359         crtc_state->dpll_hw_state = dpll_hw_state;
12360         crtc_state->ddi_pll_sel = ddi_pll_sel;
12361         crtc_state->pch_pfit.force_thru = force_thru;
12362 }
12363
12364 static int
12365 intel_modeset_pipe_config(struct drm_crtc *crtc,
12366                           struct intel_crtc_state *pipe_config)
12367 {
12368         struct drm_atomic_state *state = pipe_config->base.state;
12369         struct intel_encoder *encoder;
12370         struct drm_connector *connector;
12371         struct drm_connector_state *connector_state;
12372         int base_bpp, ret = -EINVAL;
12373         int i;
12374         bool retry = true;
12375
12376         clear_intel_crtc_state(pipe_config);
12377
12378         pipe_config->cpu_transcoder =
12379                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12380
12381         /*
12382          * Sanitize sync polarity flags based on requested ones. If neither
12383          * positive or negative polarity is requested, treat this as meaning
12384          * negative polarity.
12385          */
12386         if (!(pipe_config->base.adjusted_mode.flags &
12387               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12388                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12389
12390         if (!(pipe_config->base.adjusted_mode.flags &
12391               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12392                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12393
12394         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12395                                              pipe_config);
12396         if (base_bpp < 0)
12397                 goto fail;
12398
12399         /*
12400          * Determine the real pipe dimensions. Note that stereo modes can
12401          * increase the actual pipe size due to the frame doubling and
12402          * insertion of additional space for blanks between the frame. This
12403          * is stored in the crtc timings. We use the requested mode to do this
12404          * computation to clearly distinguish it from the adjusted mode, which
12405          * can be changed by the connectors in the below retry loop.
12406          */
12407         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12408                                &pipe_config->pipe_src_w,
12409                                &pipe_config->pipe_src_h);
12410
12411 encoder_retry:
12412         /* Ensure the port clock defaults are reset when retrying. */
12413         pipe_config->port_clock = 0;
12414         pipe_config->pixel_multiplier = 1;
12415
12416         /* Fill in default crtc timings, allow encoders to overwrite them. */
12417         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12418                               CRTC_STEREO_DOUBLE);
12419
12420         /* Pass our mode to the connectors and the CRTC to give them a chance to
12421          * adjust it according to limitations or connector properties, and also
12422          * a chance to reject the mode entirely.
12423          */
12424         for_each_connector_in_state(state, connector, connector_state, i) {
12425                 if (connector_state->crtc != crtc)
12426                         continue;
12427
12428                 encoder = to_intel_encoder(connector_state->best_encoder);
12429
12430                 if (!(encoder->compute_config(encoder, pipe_config))) {
12431                         DRM_DEBUG_KMS("Encoder config failure\n");
12432                         goto fail;
12433                 }
12434         }
12435
12436         /* Set default port clock if not overwritten by the encoder. Needs to be
12437          * done afterwards in case the encoder adjusts the mode. */
12438         if (!pipe_config->port_clock)
12439                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12440                         * pipe_config->pixel_multiplier;
12441
12442         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12443         if (ret < 0) {
12444                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12445                 goto fail;
12446         }
12447
12448         if (ret == RETRY) {
12449                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12450                         ret = -EINVAL;
12451                         goto fail;
12452                 }
12453
12454                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12455                 retry = false;
12456                 goto encoder_retry;
12457         }
12458
12459         /* Dithering seems to not pass-through bits correctly when it should, so
12460          * only enable it on 6bpc panels. */
12461         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12462         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12463                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12464
12465 fail:
12466         return ret;
12467 }
12468
12469 static void
12470 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12471 {
12472         struct drm_crtc *crtc;
12473         struct drm_crtc_state *crtc_state;
12474         int i;
12475
12476         /* Double check state. */
12477         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12478                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12479
12480                 /* Update hwmode for vblank functions */
12481                 if (crtc->state->active)
12482                         crtc->hwmode = crtc->state->adjusted_mode;
12483                 else
12484                         crtc->hwmode.crtc_clock = 0;
12485
12486                 /*
12487                  * Update legacy state to satisfy fbc code. This can
12488                  * be removed when fbc uses the atomic state.
12489                  */
12490                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12491                         struct drm_plane_state *plane_state = crtc->primary->state;
12492
12493                         crtc->primary->fb = plane_state->fb;
12494                         crtc->x = plane_state->src_x >> 16;
12495                         crtc->y = plane_state->src_y >> 16;
12496                 }
12497         }
12498 }
12499
12500 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12501 {
12502         int diff;
12503
12504         if (clock1 == clock2)
12505                 return true;
12506
12507         if (!clock1 || !clock2)
12508                 return false;
12509
12510         diff = abs(clock1 - clock2);
12511
12512         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12513                 return true;
12514
12515         return false;
12516 }
12517
12518 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12519         list_for_each_entry((intel_crtc), \
12520                             &(dev)->mode_config.crtc_list, \
12521                             base.head) \
12522                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12523
12524 static bool
12525 intel_compare_m_n(unsigned int m, unsigned int n,
12526                   unsigned int m2, unsigned int n2,
12527                   bool exact)
12528 {
12529         if (m == m2 && n == n2)
12530                 return true;
12531
12532         if (exact || !m || !n || !m2 || !n2)
12533                 return false;
12534
12535         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12536
12537         if (n > n2) {
12538                 while (n > n2) {
12539                         m2 <<= 1;
12540                         n2 <<= 1;
12541                 }
12542         } else if (n < n2) {
12543                 while (n < n2) {
12544                         m <<= 1;
12545                         n <<= 1;
12546                 }
12547         }
12548
12549         if (n != n2)
12550                 return false;
12551
12552         return intel_fuzzy_clock_check(m, m2);
12553 }
12554
12555 static bool
12556 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12557                        struct intel_link_m_n *m2_n2,
12558                        bool adjust)
12559 {
12560         if (m_n->tu == m2_n2->tu &&
12561             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12562                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12563             intel_compare_m_n(m_n->link_m, m_n->link_n,
12564                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12565                 if (adjust)
12566                         *m2_n2 = *m_n;
12567
12568                 return true;
12569         }
12570
12571         return false;
12572 }
12573
12574 static bool
12575 intel_pipe_config_compare(struct drm_device *dev,
12576                           struct intel_crtc_state *current_config,
12577                           struct intel_crtc_state *pipe_config,
12578                           bool adjust)
12579 {
12580         bool ret = true;
12581
12582 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12583         do { \
12584                 if (!adjust) \
12585                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12586                 else \
12587                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12588         } while (0)
12589
12590 #define PIPE_CONF_CHECK_X(name) \
12591         if (current_config->name != pipe_config->name) { \
12592                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12593                           "(expected 0x%08x, found 0x%08x)\n", \
12594                           current_config->name, \
12595                           pipe_config->name); \
12596                 ret = false; \
12597         }
12598
12599 #define PIPE_CONF_CHECK_I(name) \
12600         if (current_config->name != pipe_config->name) { \
12601                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12602                           "(expected %i, found %i)\n", \
12603                           current_config->name, \
12604                           pipe_config->name); \
12605                 ret = false; \
12606         }
12607
12608 #define PIPE_CONF_CHECK_M_N(name) \
12609         if (!intel_compare_link_m_n(&current_config->name, \
12610                                     &pipe_config->name,\
12611                                     adjust)) { \
12612                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12613                           "(expected tu %i gmch %i/%i link %i/%i, " \
12614                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12615                           current_config->name.tu, \
12616                           current_config->name.gmch_m, \
12617                           current_config->name.gmch_n, \
12618                           current_config->name.link_m, \
12619                           current_config->name.link_n, \
12620                           pipe_config->name.tu, \
12621                           pipe_config->name.gmch_m, \
12622                           pipe_config->name.gmch_n, \
12623                           pipe_config->name.link_m, \
12624                           pipe_config->name.link_n); \
12625                 ret = false; \
12626         }
12627
12628 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12629         if (!intel_compare_link_m_n(&current_config->name, \
12630                                     &pipe_config->name, adjust) && \
12631             !intel_compare_link_m_n(&current_config->alt_name, \
12632                                     &pipe_config->name, adjust)) { \
12633                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12634                           "(expected tu %i gmch %i/%i link %i/%i, " \
12635                           "or tu %i gmch %i/%i link %i/%i, " \
12636                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12637                           current_config->name.tu, \
12638                           current_config->name.gmch_m, \
12639                           current_config->name.gmch_n, \
12640                           current_config->name.link_m, \
12641                           current_config->name.link_n, \
12642                           current_config->alt_name.tu, \
12643                           current_config->alt_name.gmch_m, \
12644                           current_config->alt_name.gmch_n, \
12645                           current_config->alt_name.link_m, \
12646                           current_config->alt_name.link_n, \
12647                           pipe_config->name.tu, \
12648                           pipe_config->name.gmch_m, \
12649                           pipe_config->name.gmch_n, \
12650                           pipe_config->name.link_m, \
12651                           pipe_config->name.link_n); \
12652                 ret = false; \
12653         }
12654
12655 /* This is required for BDW+ where there is only one set of registers for
12656  * switching between high and low RR.
12657  * This macro can be used whenever a comparison has to be made between one
12658  * hw state and multiple sw state variables.
12659  */
12660 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12661         if ((current_config->name != pipe_config->name) && \
12662                 (current_config->alt_name != pipe_config->name)) { \
12663                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12664                                   "(expected %i or %i, found %i)\n", \
12665                                   current_config->name, \
12666                                   current_config->alt_name, \
12667                                   pipe_config->name); \
12668                         ret = false; \
12669         }
12670
12671 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12672         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12673                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12674                           "(expected %i, found %i)\n", \
12675                           current_config->name & (mask), \
12676                           pipe_config->name & (mask)); \
12677                 ret = false; \
12678         }
12679
12680 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12681         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12682                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12683                           "(expected %i, found %i)\n", \
12684                           current_config->name, \
12685                           pipe_config->name); \
12686                 ret = false; \
12687         }
12688
12689 #define PIPE_CONF_QUIRK(quirk)  \
12690         ((current_config->quirks | pipe_config->quirks) & (quirk))
12691
12692         PIPE_CONF_CHECK_I(cpu_transcoder);
12693
12694         PIPE_CONF_CHECK_I(has_pch_encoder);
12695         PIPE_CONF_CHECK_I(fdi_lanes);
12696         PIPE_CONF_CHECK_M_N(fdi_m_n);
12697
12698         PIPE_CONF_CHECK_I(has_dp_encoder);
12699         PIPE_CONF_CHECK_I(lane_count);
12700
12701         if (INTEL_INFO(dev)->gen < 8) {
12702                 PIPE_CONF_CHECK_M_N(dp_m_n);
12703
12704                 if (current_config->has_drrs)
12705                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12706         } else
12707                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12708
12709         PIPE_CONF_CHECK_I(has_dsi_encoder);
12710
12711         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12712         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12713         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12714         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12715         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12716         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12717
12718         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12719         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12720         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12721         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12722         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12723         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12724
12725         PIPE_CONF_CHECK_I(pixel_multiplier);
12726         PIPE_CONF_CHECK_I(has_hdmi_sink);
12727         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12728             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12729                 PIPE_CONF_CHECK_I(limited_color_range);
12730         PIPE_CONF_CHECK_I(has_infoframe);
12731
12732         PIPE_CONF_CHECK_I(has_audio);
12733
12734         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12735                               DRM_MODE_FLAG_INTERLACE);
12736
12737         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12738                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12739                                       DRM_MODE_FLAG_PHSYNC);
12740                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12741                                       DRM_MODE_FLAG_NHSYNC);
12742                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12743                                       DRM_MODE_FLAG_PVSYNC);
12744                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12745                                       DRM_MODE_FLAG_NVSYNC);
12746         }
12747
12748         PIPE_CONF_CHECK_X(gmch_pfit.control);
12749         /* pfit ratios are autocomputed by the hw on gen4+ */
12750         if (INTEL_INFO(dev)->gen < 4)
12751                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12752         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12753
12754         if (!adjust) {
12755                 PIPE_CONF_CHECK_I(pipe_src_w);
12756                 PIPE_CONF_CHECK_I(pipe_src_h);
12757
12758                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12759                 if (current_config->pch_pfit.enabled) {
12760                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12761                         PIPE_CONF_CHECK_X(pch_pfit.size);
12762                 }
12763
12764                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12765         }
12766
12767         /* BDW+ don't expose a synchronous way to read the state */
12768         if (IS_HASWELL(dev))
12769                 PIPE_CONF_CHECK_I(ips_enabled);
12770
12771         PIPE_CONF_CHECK_I(double_wide);
12772
12773         PIPE_CONF_CHECK_X(ddi_pll_sel);
12774
12775         PIPE_CONF_CHECK_I(shared_dpll);
12776         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12777         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12778         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12779         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12780         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12781         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12782         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12783         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12784         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12785
12786         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12787                 PIPE_CONF_CHECK_I(pipe_bpp);
12788
12789         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12790         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12791
12792 #undef PIPE_CONF_CHECK_X
12793 #undef PIPE_CONF_CHECK_I
12794 #undef PIPE_CONF_CHECK_I_ALT
12795 #undef PIPE_CONF_CHECK_FLAGS
12796 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12797 #undef PIPE_CONF_QUIRK
12798 #undef INTEL_ERR_OR_DBG_KMS
12799
12800         return ret;
12801 }
12802
12803 static void check_wm_state(struct drm_device *dev)
12804 {
12805         struct drm_i915_private *dev_priv = dev->dev_private;
12806         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12807         struct intel_crtc *intel_crtc;
12808         int plane;
12809
12810         if (INTEL_INFO(dev)->gen < 9)
12811                 return;
12812
12813         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12814         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12815
12816         for_each_intel_crtc(dev, intel_crtc) {
12817                 struct skl_ddb_entry *hw_entry, *sw_entry;
12818                 const enum pipe pipe = intel_crtc->pipe;
12819
12820                 if (!intel_crtc->active)
12821                         continue;
12822
12823                 /* planes */
12824                 for_each_plane(dev_priv, pipe, plane) {
12825                         hw_entry = &hw_ddb.plane[pipe][plane];
12826                         sw_entry = &sw_ddb->plane[pipe][plane];
12827
12828                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12829                                 continue;
12830
12831                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12832                                   "(expected (%u,%u), found (%u,%u))\n",
12833                                   pipe_name(pipe), plane + 1,
12834                                   sw_entry->start, sw_entry->end,
12835                                   hw_entry->start, hw_entry->end);
12836                 }
12837
12838                 /* cursor */
12839                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12840                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12841
12842                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12843                         continue;
12844
12845                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12846                           "(expected (%u,%u), found (%u,%u))\n",
12847                           pipe_name(pipe),
12848                           sw_entry->start, sw_entry->end,
12849                           hw_entry->start, hw_entry->end);
12850         }
12851 }
12852
12853 static void
12854 check_connector_state(struct drm_device *dev,
12855                       struct drm_atomic_state *old_state)
12856 {
12857         struct drm_connector_state *old_conn_state;
12858         struct drm_connector *connector;
12859         int i;
12860
12861         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12862                 struct drm_encoder *encoder = connector->encoder;
12863                 struct drm_connector_state *state = connector->state;
12864
12865                 /* This also checks the encoder/connector hw state with the
12866                  * ->get_hw_state callbacks. */
12867                 intel_connector_check_state(to_intel_connector(connector));
12868
12869                 I915_STATE_WARN(state->best_encoder != encoder,
12870                      "connector's atomic encoder doesn't match legacy encoder\n");
12871         }
12872 }
12873
12874 static void
12875 check_encoder_state(struct drm_device *dev)
12876 {
12877         struct intel_encoder *encoder;
12878         struct intel_connector *connector;
12879
12880         for_each_intel_encoder(dev, encoder) {
12881                 bool enabled = false;
12882                 enum pipe pipe;
12883
12884                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12885                               encoder->base.base.id,
12886                               encoder->base.name);
12887
12888                 for_each_intel_connector(dev, connector) {
12889                         if (connector->base.state->best_encoder != &encoder->base)
12890                                 continue;
12891                         enabled = true;
12892
12893                         I915_STATE_WARN(connector->base.state->crtc !=
12894                                         encoder->base.crtc,
12895                              "connector's crtc doesn't match encoder crtc\n");
12896                 }
12897
12898                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12899                      "encoder's enabled state mismatch "
12900                      "(expected %i, found %i)\n",
12901                      !!encoder->base.crtc, enabled);
12902
12903                 if (!encoder->base.crtc) {
12904                         bool active;
12905
12906                         active = encoder->get_hw_state(encoder, &pipe);
12907                         I915_STATE_WARN(active,
12908                              "encoder detached but still enabled on pipe %c.\n",
12909                              pipe_name(pipe));
12910                 }
12911         }
12912 }
12913
12914 static void
12915 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12916 {
12917         struct drm_i915_private *dev_priv = dev->dev_private;
12918         struct intel_encoder *encoder;
12919         struct drm_crtc_state *old_crtc_state;
12920         struct drm_crtc *crtc;
12921         int i;
12922
12923         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12924                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12925                 struct intel_crtc_state *pipe_config, *sw_config;
12926                 bool active;
12927
12928                 if (!needs_modeset(crtc->state) &&
12929                     !to_intel_crtc_state(crtc->state)->update_pipe)
12930                         continue;
12931
12932                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12933                 pipe_config = to_intel_crtc_state(old_crtc_state);
12934                 memset(pipe_config, 0, sizeof(*pipe_config));
12935                 pipe_config->base.crtc = crtc;
12936                 pipe_config->base.state = old_state;
12937
12938                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12939                               crtc->base.id);
12940
12941                 active = dev_priv->display.get_pipe_config(intel_crtc,
12942                                                            pipe_config);
12943
12944                 /* hw state is inconsistent with the pipe quirk */
12945                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12946                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12947                         active = crtc->state->active;
12948
12949                 I915_STATE_WARN(crtc->state->active != active,
12950                      "crtc active state doesn't match with hw state "
12951                      "(expected %i, found %i)\n", crtc->state->active, active);
12952
12953                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12954                      "transitional active state does not match atomic hw state "
12955                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12956
12957                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12958                         enum pipe pipe;
12959
12960                         active = encoder->get_hw_state(encoder, &pipe);
12961                         I915_STATE_WARN(active != crtc->state->active,
12962                                 "[ENCODER:%i] active %i with crtc active %i\n",
12963                                 encoder->base.base.id, active, crtc->state->active);
12964
12965                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12966                                         "Encoder connected to wrong pipe %c\n",
12967                                         pipe_name(pipe));
12968
12969                         if (active)
12970                                 encoder->get_config(encoder, pipe_config);
12971                 }
12972
12973                 if (!crtc->state->active)
12974                         continue;
12975
12976                 sw_config = to_intel_crtc_state(crtc->state);
12977                 if (!intel_pipe_config_compare(dev, sw_config,
12978                                                pipe_config, false)) {
12979                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12980                         intel_dump_pipe_config(intel_crtc, pipe_config,
12981                                                "[hw state]");
12982                         intel_dump_pipe_config(intel_crtc, sw_config,
12983                                                "[sw state]");
12984                 }
12985         }
12986 }
12987
12988 static void
12989 check_shared_dpll_state(struct drm_device *dev)
12990 {
12991         struct drm_i915_private *dev_priv = dev->dev_private;
12992         struct intel_crtc *crtc;
12993         struct intel_dpll_hw_state dpll_hw_state;
12994         int i;
12995
12996         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12997                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12998                 int enabled_crtcs = 0, active_crtcs = 0;
12999                 bool active;
13000
13001                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13002
13003                 DRM_DEBUG_KMS("%s\n", pll->name);
13004
13005                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
13006
13007                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
13008                      "more active pll users than references: %i vs %i\n",
13009                      pll->active, hweight32(pll->config.crtc_mask));
13010                 I915_STATE_WARN(pll->active && !pll->on,
13011                      "pll in active use but not on in sw tracking\n");
13012                 I915_STATE_WARN(pll->on && !pll->active,
13013                      "pll in on but not on in use in sw tracking\n");
13014                 I915_STATE_WARN(pll->on != active,
13015                      "pll on state mismatch (expected %i, found %i)\n",
13016                      pll->on, active);
13017
13018                 for_each_intel_crtc(dev, crtc) {
13019                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
13020                                 enabled_crtcs++;
13021                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13022                                 active_crtcs++;
13023                 }
13024                 I915_STATE_WARN(pll->active != active_crtcs,
13025                      "pll active crtcs mismatch (expected %i, found %i)\n",
13026                      pll->active, active_crtcs);
13027                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
13028                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
13029                      hweight32(pll->config.crtc_mask), enabled_crtcs);
13030
13031                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
13032                                        sizeof(dpll_hw_state)),
13033                      "pll hw state mismatch\n");
13034         }
13035 }
13036
13037 static void
13038 intel_modeset_check_state(struct drm_device *dev,
13039                           struct drm_atomic_state *old_state)
13040 {
13041         check_wm_state(dev);
13042         check_connector_state(dev, old_state);
13043         check_encoder_state(dev);
13044         check_crtc_state(dev, old_state);
13045         check_shared_dpll_state(dev);
13046 }
13047
13048 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
13049                                      int dotclock)
13050 {
13051         /*
13052          * FDI already provided one idea for the dotclock.
13053          * Yell if the encoder disagrees.
13054          */
13055         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
13056              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13057              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
13058 }
13059
13060 static void update_scanline_offset(struct intel_crtc *crtc)
13061 {
13062         struct drm_device *dev = crtc->base.dev;
13063
13064         /*
13065          * The scanline counter increments at the leading edge of hsync.
13066          *
13067          * On most platforms it starts counting from vtotal-1 on the
13068          * first active line. That means the scanline counter value is
13069          * always one less than what we would expect. Ie. just after
13070          * start of vblank, which also occurs at start of hsync (on the
13071          * last active line), the scanline counter will read vblank_start-1.
13072          *
13073          * On gen2 the scanline counter starts counting from 1 instead
13074          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13075          * to keep the value positive), instead of adding one.
13076          *
13077          * On HSW+ the behaviour of the scanline counter depends on the output
13078          * type. For DP ports it behaves like most other platforms, but on HDMI
13079          * there's an extra 1 line difference. So we need to add two instead of
13080          * one to the value.
13081          */
13082         if (IS_GEN2(dev)) {
13083                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13084                 int vtotal;
13085
13086                 vtotal = adjusted_mode->crtc_vtotal;
13087                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13088                         vtotal /= 2;
13089
13090                 crtc->scanline_offset = vtotal - 1;
13091         } else if (HAS_DDI(dev) &&
13092                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13093                 crtc->scanline_offset = 2;
13094         } else
13095                 crtc->scanline_offset = 1;
13096 }
13097
13098 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13099 {
13100         struct drm_device *dev = state->dev;
13101         struct drm_i915_private *dev_priv = to_i915(dev);
13102         struct intel_shared_dpll_config *shared_dpll = NULL;
13103         struct intel_crtc *intel_crtc;
13104         struct intel_crtc_state *intel_crtc_state;
13105         struct drm_crtc *crtc;
13106         struct drm_crtc_state *crtc_state;
13107         int i;
13108
13109         if (!dev_priv->display.crtc_compute_clock)
13110                 return;
13111
13112         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13113                 int dpll;
13114
13115                 intel_crtc = to_intel_crtc(crtc);
13116                 intel_crtc_state = to_intel_crtc_state(crtc_state);
13117                 dpll = intel_crtc_state->shared_dpll;
13118
13119                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13120                         continue;
13121
13122                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13123
13124                 if (!shared_dpll)
13125                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13126
13127                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13128         }
13129 }
13130
13131 /*
13132  * This implements the workaround described in the "notes" section of the mode
13133  * set sequence documentation. When going from no pipes or single pipe to
13134  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13135  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13136  */
13137 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13138 {
13139         struct drm_crtc_state *crtc_state;
13140         struct intel_crtc *intel_crtc;
13141         struct drm_crtc *crtc;
13142         struct intel_crtc_state *first_crtc_state = NULL;
13143         struct intel_crtc_state *other_crtc_state = NULL;
13144         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13145         int i;
13146
13147         /* look at all crtc's that are going to be enabled in during modeset */
13148         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13149                 intel_crtc = to_intel_crtc(crtc);
13150
13151                 if (!crtc_state->active || !needs_modeset(crtc_state))
13152                         continue;
13153
13154                 if (first_crtc_state) {
13155                         other_crtc_state = to_intel_crtc_state(crtc_state);
13156                         break;
13157                 } else {
13158                         first_crtc_state = to_intel_crtc_state(crtc_state);
13159                         first_pipe = intel_crtc->pipe;
13160                 }
13161         }
13162
13163         /* No workaround needed? */
13164         if (!first_crtc_state)
13165                 return 0;
13166
13167         /* w/a possibly needed, check how many crtc's are already enabled. */
13168         for_each_intel_crtc(state->dev, intel_crtc) {
13169                 struct intel_crtc_state *pipe_config;
13170
13171                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13172                 if (IS_ERR(pipe_config))
13173                         return PTR_ERR(pipe_config);
13174
13175                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13176
13177                 if (!pipe_config->base.active ||
13178                     needs_modeset(&pipe_config->base))
13179                         continue;
13180
13181                 /* 2 or more enabled crtcs means no need for w/a */
13182                 if (enabled_pipe != INVALID_PIPE)
13183                         return 0;
13184
13185                 enabled_pipe = intel_crtc->pipe;
13186         }
13187
13188         if (enabled_pipe != INVALID_PIPE)
13189                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13190         else if (other_crtc_state)
13191                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13192
13193         return 0;
13194 }
13195
13196 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13197 {
13198         struct drm_crtc *crtc;
13199         struct drm_crtc_state *crtc_state;
13200         int ret = 0;
13201
13202         /* add all active pipes to the state */
13203         for_each_crtc(state->dev, crtc) {
13204                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13205                 if (IS_ERR(crtc_state))
13206                         return PTR_ERR(crtc_state);
13207
13208                 if (!crtc_state->active || needs_modeset(crtc_state))
13209                         continue;
13210
13211                 crtc_state->mode_changed = true;
13212
13213                 ret = drm_atomic_add_affected_connectors(state, crtc);
13214                 if (ret)
13215                         break;
13216
13217                 ret = drm_atomic_add_affected_planes(state, crtc);
13218                 if (ret)
13219                         break;
13220         }
13221
13222         return ret;
13223 }
13224
13225 static int intel_modeset_checks(struct drm_atomic_state *state)
13226 {
13227         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13228         struct drm_i915_private *dev_priv = state->dev->dev_private;
13229         struct drm_crtc *crtc;
13230         struct drm_crtc_state *crtc_state;
13231         int ret = 0, i;
13232
13233         if (!check_digital_port_conflicts(state)) {
13234                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13235                 return -EINVAL;
13236         }
13237
13238         intel_state->modeset = true;
13239         intel_state->active_crtcs = dev_priv->active_crtcs;
13240
13241         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13242                 if (crtc_state->active)
13243                         intel_state->active_crtcs |= 1 << i;
13244                 else
13245                         intel_state->active_crtcs &= ~(1 << i);
13246         }
13247
13248         /*
13249          * See if the config requires any additional preparation, e.g.
13250          * to adjust global state with pipes off.  We need to do this
13251          * here so we can get the modeset_pipe updated config for the new
13252          * mode set on this crtc.  For other crtcs we need to use the
13253          * adjusted_mode bits in the crtc directly.
13254          */
13255         if (dev_priv->display.modeset_calc_cdclk) {
13256                 ret = dev_priv->display.modeset_calc_cdclk(state);
13257
13258                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13259                         ret = intel_modeset_all_pipes(state);
13260
13261                 if (ret < 0)
13262                         return ret;
13263         } else
13264                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13265
13266         intel_modeset_clear_plls(state);
13267
13268         if (IS_HASWELL(dev_priv))
13269                 return haswell_mode_set_planes_workaround(state);
13270
13271         return 0;
13272 }
13273
13274 /*
13275  * Handle calculation of various watermark data at the end of the atomic check
13276  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13277  * handlers to ensure that all derived state has been updated.
13278  */
13279 static void calc_watermark_data(struct drm_atomic_state *state)
13280 {
13281         struct drm_device *dev = state->dev;
13282         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13283         struct drm_crtc *crtc;
13284         struct drm_crtc_state *cstate;
13285         struct drm_plane *plane;
13286         struct drm_plane_state *pstate;
13287
13288         /*
13289          * Calculate watermark configuration details now that derived
13290          * plane/crtc state is all properly updated.
13291          */
13292         drm_for_each_crtc(crtc, dev) {
13293                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13294                         crtc->state;
13295
13296                 if (cstate->active)
13297                         intel_state->wm_config.num_pipes_active++;
13298         }
13299         drm_for_each_legacy_plane(plane, dev) {
13300                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13301                         plane->state;
13302
13303                 if (!to_intel_plane_state(pstate)->visible)
13304                         continue;
13305
13306                 intel_state->wm_config.sprites_enabled = true;
13307                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13308                     pstate->crtc_h != pstate->src_h >> 16)
13309                         intel_state->wm_config.sprites_scaled = true;
13310         }
13311 }
13312
13313 /**
13314  * intel_atomic_check - validate state object
13315  * @dev: drm device
13316  * @state: state to validate
13317  */
13318 static int intel_atomic_check(struct drm_device *dev,
13319                               struct drm_atomic_state *state)
13320 {
13321         struct drm_i915_private *dev_priv = to_i915(dev);
13322         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13323         struct drm_crtc *crtc;
13324         struct drm_crtc_state *crtc_state;
13325         int ret, i;
13326         bool any_ms = false;
13327
13328         ret = drm_atomic_helper_check_modeset(dev, state);
13329         if (ret)
13330                 return ret;
13331
13332         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13333                 struct intel_crtc_state *pipe_config =
13334                         to_intel_crtc_state(crtc_state);
13335
13336                 memset(&to_intel_crtc(crtc)->atomic, 0,
13337                        sizeof(struct intel_crtc_atomic_commit));
13338
13339                 /* Catch I915_MODE_FLAG_INHERITED */
13340                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13341                         crtc_state->mode_changed = true;
13342
13343                 if (!crtc_state->enable) {
13344                         if (needs_modeset(crtc_state))
13345                                 any_ms = true;
13346                         continue;
13347                 }
13348
13349                 if (!needs_modeset(crtc_state))
13350                         continue;
13351
13352                 /* FIXME: For only active_changed we shouldn't need to do any
13353                  * state recomputation at all. */
13354
13355                 ret = drm_atomic_add_affected_connectors(state, crtc);
13356                 if (ret)
13357                         return ret;
13358
13359                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13360                 if (ret)
13361                         return ret;
13362
13363                 if (i915.fastboot &&
13364                     intel_pipe_config_compare(dev,
13365                                         to_intel_crtc_state(crtc->state),
13366                                         pipe_config, true)) {
13367                         crtc_state->mode_changed = false;
13368                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13369                 }
13370
13371                 if (needs_modeset(crtc_state)) {
13372                         any_ms = true;
13373
13374                         ret = drm_atomic_add_affected_planes(state, crtc);
13375                         if (ret)
13376                                 return ret;
13377                 }
13378
13379                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13380                                        needs_modeset(crtc_state) ?
13381                                        "[modeset]" : "[fastset]");
13382         }
13383
13384         if (any_ms) {
13385                 ret = intel_modeset_checks(state);
13386
13387                 if (ret)
13388                         return ret;
13389         } else
13390                 intel_state->cdclk = dev_priv->cdclk_freq;
13391
13392         ret = drm_atomic_helper_check_planes(dev, state);
13393         if (ret)
13394                 return ret;
13395
13396         intel_fbc_choose_crtc(dev_priv, state);
13397         calc_watermark_data(state);
13398
13399         return 0;
13400 }
13401
13402 static int intel_atomic_prepare_commit(struct drm_device *dev,
13403                                        struct drm_atomic_state *state,
13404                                        bool async)
13405 {
13406         struct drm_i915_private *dev_priv = dev->dev_private;
13407         struct drm_plane_state *plane_state;
13408         struct drm_crtc_state *crtc_state;
13409         struct drm_plane *plane;
13410         struct drm_crtc *crtc;
13411         int i, ret;
13412
13413         if (async) {
13414                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13415                 return -EINVAL;
13416         }
13417
13418         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13419                 ret = intel_crtc_wait_for_pending_flips(crtc);
13420                 if (ret)
13421                         return ret;
13422
13423                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13424                         flush_workqueue(dev_priv->wq);
13425         }
13426
13427         ret = mutex_lock_interruptible(&dev->struct_mutex);
13428         if (ret)
13429                 return ret;
13430
13431         ret = drm_atomic_helper_prepare_planes(dev, state);
13432         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13433                 u32 reset_counter;
13434
13435                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13436                 mutex_unlock(&dev->struct_mutex);
13437
13438                 for_each_plane_in_state(state, plane, plane_state, i) {
13439                         struct intel_plane_state *intel_plane_state =
13440                                 to_intel_plane_state(plane_state);
13441
13442                         if (!intel_plane_state->wait_req)
13443                                 continue;
13444
13445                         ret = __i915_wait_request(intel_plane_state->wait_req,
13446                                                   reset_counter, true,
13447                                                   NULL, NULL);
13448
13449                         /* Swallow -EIO errors to allow updates during hw lockup. */
13450                         if (ret == -EIO)
13451                                 ret = 0;
13452
13453                         if (ret)
13454                                 break;
13455                 }
13456
13457                 if (!ret)
13458                         return 0;
13459
13460                 mutex_lock(&dev->struct_mutex);
13461                 drm_atomic_helper_cleanup_planes(dev, state);
13462         }
13463
13464         mutex_unlock(&dev->struct_mutex);
13465         return ret;
13466 }
13467
13468 /**
13469  * intel_atomic_commit - commit validated state object
13470  * @dev: DRM device
13471  * @state: the top-level driver state object
13472  * @async: asynchronous commit
13473  *
13474  * This function commits a top-level state object that has been validated
13475  * with drm_atomic_helper_check().
13476  *
13477  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13478  * we can only handle plane-related operations and do not yet support
13479  * asynchronous commit.
13480  *
13481  * RETURNS
13482  * Zero for success or -errno.
13483  */
13484 static int intel_atomic_commit(struct drm_device *dev,
13485                                struct drm_atomic_state *state,
13486                                bool async)
13487 {
13488         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13489         struct drm_i915_private *dev_priv = dev->dev_private;
13490         struct drm_crtc_state *crtc_state;
13491         struct drm_crtc *crtc;
13492         int ret = 0, i;
13493         bool hw_check = intel_state->modeset;
13494
13495         ret = intel_atomic_prepare_commit(dev, state, async);
13496         if (ret) {
13497                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13498                 return ret;
13499         }
13500
13501         drm_atomic_helper_swap_state(dev, state);
13502         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13503
13504         if (intel_state->modeset) {
13505                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13506                        sizeof(intel_state->min_pixclk));
13507                 dev_priv->active_crtcs = intel_state->active_crtcs;
13508                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13509         }
13510
13511         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13512                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13513
13514                 if (!needs_modeset(crtc->state))
13515                         continue;
13516
13517                 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13518
13519                 if (crtc_state->active) {
13520                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13521                         dev_priv->display.crtc_disable(crtc);
13522                         intel_crtc->active = false;
13523                         intel_fbc_disable(intel_crtc);
13524                         intel_disable_shared_dpll(intel_crtc);
13525
13526                         /*
13527                          * Underruns don't always raise
13528                          * interrupts, so check manually.
13529                          */
13530                         intel_check_cpu_fifo_underruns(dev_priv);
13531                         intel_check_pch_fifo_underruns(dev_priv);
13532
13533                         if (!crtc->state->active)
13534                                 intel_update_watermarks(crtc);
13535                 }
13536         }
13537
13538         /* Only after disabling all output pipelines that will be changed can we
13539          * update the the output configuration. */
13540         intel_modeset_update_crtc_state(state);
13541
13542         if (intel_state->modeset) {
13543                 intel_shared_dpll_commit(state);
13544
13545                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13546                 modeset_update_crtc_power_domains(state);
13547         }
13548
13549         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13550         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13551                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13552                 bool modeset = needs_modeset(crtc->state);
13553                 bool update_pipe = !modeset &&
13554                         to_intel_crtc_state(crtc->state)->update_pipe;
13555                 unsigned long put_domains = 0;
13556
13557                 if (modeset)
13558                         intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13559
13560                 if (modeset && crtc->state->active) {
13561                         update_scanline_offset(to_intel_crtc(crtc));
13562                         dev_priv->display.crtc_enable(crtc);
13563                 }
13564
13565                 if (update_pipe) {
13566                         put_domains = modeset_get_crtc_power_domains(crtc);
13567
13568                         /* make sure intel_modeset_check_state runs */
13569                         hw_check = true;
13570                 }
13571
13572                 if (!modeset)
13573                         intel_pre_plane_update(to_intel_crtc_state(crtc_state));
13574
13575                 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13576                         intel_fbc_enable(intel_crtc);
13577
13578                 if (crtc->state->active &&
13579                     (crtc->state->planes_changed || update_pipe))
13580                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13581
13582                 if (put_domains)
13583                         modeset_put_power_domains(dev_priv, put_domains);
13584
13585                 intel_post_plane_update(intel_crtc);
13586
13587                 if (modeset)
13588                         intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13589         }
13590
13591         /* FIXME: add subpixel order */
13592
13593         drm_atomic_helper_wait_for_vblanks(dev, state);
13594
13595         mutex_lock(&dev->struct_mutex);
13596         drm_atomic_helper_cleanup_planes(dev, state);
13597         mutex_unlock(&dev->struct_mutex);
13598
13599         if (hw_check)
13600                 intel_modeset_check_state(dev, state);
13601
13602         drm_atomic_state_free(state);
13603
13604         /* As one of the primary mmio accessors, KMS has a high likelihood
13605          * of triggering bugs in unclaimed access. After we finish
13606          * modesetting, see if an error has been flagged, and if so
13607          * enable debugging for the next modeset - and hope we catch
13608          * the culprit.
13609          *
13610          * XXX note that we assume display power is on at this point.
13611          * This might hold true now but we need to add pm helper to check
13612          * unclaimed only when the hardware is on, as atomic commits
13613          * can happen also when the device is completely off.
13614          */
13615         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13616
13617         return 0;
13618 }
13619
13620 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13621 {
13622         struct drm_device *dev = crtc->dev;
13623         struct drm_atomic_state *state;
13624         struct drm_crtc_state *crtc_state;
13625         int ret;
13626
13627         state = drm_atomic_state_alloc(dev);
13628         if (!state) {
13629                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13630                               crtc->base.id);
13631                 return;
13632         }
13633
13634         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13635
13636 retry:
13637         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13638         ret = PTR_ERR_OR_ZERO(crtc_state);
13639         if (!ret) {
13640                 if (!crtc_state->active)
13641                         goto out;
13642
13643                 crtc_state->mode_changed = true;
13644                 ret = drm_atomic_commit(state);
13645         }
13646
13647         if (ret == -EDEADLK) {
13648                 drm_atomic_state_clear(state);
13649                 drm_modeset_backoff(state->acquire_ctx);
13650                 goto retry;
13651         }
13652
13653         if (ret)
13654 out:
13655                 drm_atomic_state_free(state);
13656 }
13657
13658 #undef for_each_intel_crtc_masked
13659
13660 static const struct drm_crtc_funcs intel_crtc_funcs = {
13661         .gamma_set = intel_crtc_gamma_set,
13662         .set_config = drm_atomic_helper_set_config,
13663         .destroy = intel_crtc_destroy,
13664         .page_flip = intel_crtc_page_flip,
13665         .atomic_duplicate_state = intel_crtc_duplicate_state,
13666         .atomic_destroy_state = intel_crtc_destroy_state,
13667 };
13668
13669 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13670                                       struct intel_shared_dpll *pll,
13671                                       struct intel_dpll_hw_state *hw_state)
13672 {
13673         uint32_t val;
13674
13675         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13676                 return false;
13677
13678         val = I915_READ(PCH_DPLL(pll->id));
13679         hw_state->dpll = val;
13680         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13681         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13682
13683         return val & DPLL_VCO_ENABLE;
13684 }
13685
13686 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13687                                   struct intel_shared_dpll *pll)
13688 {
13689         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13690         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13691 }
13692
13693 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13694                                 struct intel_shared_dpll *pll)
13695 {
13696         /* PCH refclock must be enabled first */
13697         ibx_assert_pch_refclk_enabled(dev_priv);
13698
13699         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13700
13701         /* Wait for the clocks to stabilize. */
13702         POSTING_READ(PCH_DPLL(pll->id));
13703         udelay(150);
13704
13705         /* The pixel multiplier can only be updated once the
13706          * DPLL is enabled and the clocks are stable.
13707          *
13708          * So write it again.
13709          */
13710         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13711         POSTING_READ(PCH_DPLL(pll->id));
13712         udelay(200);
13713 }
13714
13715 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13716                                  struct intel_shared_dpll *pll)
13717 {
13718         struct drm_device *dev = dev_priv->dev;
13719         struct intel_crtc *crtc;
13720
13721         /* Make sure no transcoder isn't still depending on us. */
13722         for_each_intel_crtc(dev, crtc) {
13723                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13724                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13725         }
13726
13727         I915_WRITE(PCH_DPLL(pll->id), 0);
13728         POSTING_READ(PCH_DPLL(pll->id));
13729         udelay(200);
13730 }
13731
13732 static char *ibx_pch_dpll_names[] = {
13733         "PCH DPLL A",
13734         "PCH DPLL B",
13735 };
13736
13737 static void ibx_pch_dpll_init(struct drm_device *dev)
13738 {
13739         struct drm_i915_private *dev_priv = dev->dev_private;
13740         int i;
13741
13742         dev_priv->num_shared_dpll = 2;
13743
13744         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13745                 dev_priv->shared_dplls[i].id = i;
13746                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13747                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13748                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13749                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13750                 dev_priv->shared_dplls[i].get_hw_state =
13751                         ibx_pch_dpll_get_hw_state;
13752         }
13753 }
13754
13755 static void intel_shared_dpll_init(struct drm_device *dev)
13756 {
13757         struct drm_i915_private *dev_priv = dev->dev_private;
13758
13759         if (HAS_DDI(dev))
13760                 intel_ddi_pll_init(dev);
13761         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13762                 ibx_pch_dpll_init(dev);
13763         else
13764                 dev_priv->num_shared_dpll = 0;
13765
13766         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13767 }
13768
13769 /**
13770  * intel_prepare_plane_fb - Prepare fb for usage on plane
13771  * @plane: drm plane to prepare for
13772  * @fb: framebuffer to prepare for presentation
13773  *
13774  * Prepares a framebuffer for usage on a display plane.  Generally this
13775  * involves pinning the underlying object and updating the frontbuffer tracking
13776  * bits.  Some older platforms need special physical address handling for
13777  * cursor planes.
13778  *
13779  * Must be called with struct_mutex held.
13780  *
13781  * Returns 0 on success, negative error code on failure.
13782  */
13783 int
13784 intel_prepare_plane_fb(struct drm_plane *plane,
13785                        const struct drm_plane_state *new_state)
13786 {
13787         struct drm_device *dev = plane->dev;
13788         struct drm_framebuffer *fb = new_state->fb;
13789         struct intel_plane *intel_plane = to_intel_plane(plane);
13790         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13791         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13792         int ret = 0;
13793
13794         if (!obj && !old_obj)
13795                 return 0;
13796
13797         if (old_obj) {
13798                 struct drm_crtc_state *crtc_state =
13799                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13800
13801                 /* Big Hammer, we also need to ensure that any pending
13802                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13803                  * current scanout is retired before unpinning the old
13804                  * framebuffer. Note that we rely on userspace rendering
13805                  * into the buffer attached to the pipe they are waiting
13806                  * on. If not, userspace generates a GPU hang with IPEHR
13807                  * point to the MI_WAIT_FOR_EVENT.
13808                  *
13809                  * This should only fail upon a hung GPU, in which case we
13810                  * can safely continue.
13811                  */
13812                 if (needs_modeset(crtc_state))
13813                         ret = i915_gem_object_wait_rendering(old_obj, true);
13814
13815                 /* Swallow -EIO errors to allow updates during hw lockup. */
13816                 if (ret && ret != -EIO)
13817                         return ret;
13818         }
13819
13820         /* For framebuffer backed by dmabuf, wait for fence */
13821         if (obj && obj->base.dma_buf) {
13822                 long lret;
13823
13824                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13825                                                            false, true,
13826                                                            MAX_SCHEDULE_TIMEOUT);
13827                 if (lret == -ERESTARTSYS)
13828                         return lret;
13829
13830                 WARN(lret < 0, "waiting returns %li\n", lret);
13831         }
13832
13833         if (!obj) {
13834                 ret = 0;
13835         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13836             INTEL_INFO(dev)->cursor_needs_physical) {
13837                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13838                 ret = i915_gem_object_attach_phys(obj, align);
13839                 if (ret)
13840                         DRM_DEBUG_KMS("failed to attach phys object\n");
13841         } else {
13842                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13843         }
13844
13845         if (ret == 0) {
13846                 if (obj) {
13847                         struct intel_plane_state *plane_state =
13848                                 to_intel_plane_state(new_state);
13849
13850                         i915_gem_request_assign(&plane_state->wait_req,
13851                                                 obj->last_write_req);
13852                 }
13853
13854                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13855         }
13856
13857         return ret;
13858 }
13859
13860 /**
13861  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13862  * @plane: drm plane to clean up for
13863  * @fb: old framebuffer that was on plane
13864  *
13865  * Cleans up a framebuffer that has just been removed from a plane.
13866  *
13867  * Must be called with struct_mutex held.
13868  */
13869 void
13870 intel_cleanup_plane_fb(struct drm_plane *plane,
13871                        const struct drm_plane_state *old_state)
13872 {
13873         struct drm_device *dev = plane->dev;
13874         struct intel_plane *intel_plane = to_intel_plane(plane);
13875         struct intel_plane_state *old_intel_state;
13876         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13877         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13878
13879         old_intel_state = to_intel_plane_state(old_state);
13880
13881         if (!obj && !old_obj)
13882                 return;
13883
13884         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13885             !INTEL_INFO(dev)->cursor_needs_physical))
13886                 intel_unpin_fb_obj(old_state->fb, old_state);
13887
13888         /* prepare_fb aborted? */
13889         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13890             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13891                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13892
13893         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13894
13895 }
13896
13897 int
13898 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13899 {
13900         int max_scale;
13901         struct drm_device *dev;
13902         struct drm_i915_private *dev_priv;
13903         int crtc_clock, cdclk;
13904
13905         if (!intel_crtc || !crtc_state->base.enable)
13906                 return DRM_PLANE_HELPER_NO_SCALING;
13907
13908         dev = intel_crtc->base.dev;
13909         dev_priv = dev->dev_private;
13910         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13911         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13912
13913         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13914                 return DRM_PLANE_HELPER_NO_SCALING;
13915
13916         /*
13917          * skl max scale is lower of:
13918          *    close to 3 but not 3, -1 is for that purpose
13919          *            or
13920          *    cdclk/crtc_clock
13921          */
13922         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13923
13924         return max_scale;
13925 }
13926
13927 static int
13928 intel_check_primary_plane(struct drm_plane *plane,
13929                           struct intel_crtc_state *crtc_state,
13930                           struct intel_plane_state *state)
13931 {
13932         struct drm_crtc *crtc = state->base.crtc;
13933         struct drm_framebuffer *fb = state->base.fb;
13934         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13935         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13936         bool can_position = false;
13937
13938         if (INTEL_INFO(plane->dev)->gen >= 9) {
13939                 /* use scaler when colorkey is not required */
13940                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13941                         min_scale = 1;
13942                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13943                 }
13944                 can_position = true;
13945         }
13946
13947         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13948                                              &state->dst, &state->clip,
13949                                              min_scale, max_scale,
13950                                              can_position, true,
13951                                              &state->visible);
13952 }
13953
13954 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13955                                     struct drm_crtc_state *old_crtc_state)
13956 {
13957         struct drm_device *dev = crtc->dev;
13958         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13959         struct intel_crtc_state *old_intel_state =
13960                 to_intel_crtc_state(old_crtc_state);
13961         bool modeset = needs_modeset(crtc->state);
13962
13963         /* Perform vblank evasion around commit operation */
13964         intel_pipe_update_start(intel_crtc);
13965
13966         if (modeset)
13967                 return;
13968
13969         if (to_intel_crtc_state(crtc->state)->update_pipe)
13970                 intel_update_pipe_config(intel_crtc, old_intel_state);
13971         else if (INTEL_INFO(dev)->gen >= 9)
13972                 skl_detach_scalers(intel_crtc);
13973 }
13974
13975 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13976                                      struct drm_crtc_state *old_crtc_state)
13977 {
13978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13979
13980         intel_pipe_update_end(intel_crtc);
13981 }
13982
13983 /**
13984  * intel_plane_destroy - destroy a plane
13985  * @plane: plane to destroy
13986  *
13987  * Common destruction function for all types of planes (primary, cursor,
13988  * sprite).
13989  */
13990 void intel_plane_destroy(struct drm_plane *plane)
13991 {
13992         struct intel_plane *intel_plane = to_intel_plane(plane);
13993         drm_plane_cleanup(plane);
13994         kfree(intel_plane);
13995 }
13996
13997 const struct drm_plane_funcs intel_plane_funcs = {
13998         .update_plane = drm_atomic_helper_update_plane,
13999         .disable_plane = drm_atomic_helper_disable_plane,
14000         .destroy = intel_plane_destroy,
14001         .set_property = drm_atomic_helper_plane_set_property,
14002         .atomic_get_property = intel_plane_atomic_get_property,
14003         .atomic_set_property = intel_plane_atomic_set_property,
14004         .atomic_duplicate_state = intel_plane_duplicate_state,
14005         .atomic_destroy_state = intel_plane_destroy_state,
14006
14007 };
14008
14009 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14010                                                     int pipe)
14011 {
14012         struct intel_plane *primary;
14013         struct intel_plane_state *state;
14014         const uint32_t *intel_primary_formats;
14015         unsigned int num_formats;
14016
14017         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14018         if (primary == NULL)
14019                 return NULL;
14020
14021         state = intel_create_plane_state(&primary->base);
14022         if (!state) {
14023                 kfree(primary);
14024                 return NULL;
14025         }
14026         primary->base.state = &state->base;
14027
14028         primary->can_scale = false;
14029         primary->max_downscale = 1;
14030         if (INTEL_INFO(dev)->gen >= 9) {
14031                 primary->can_scale = true;
14032                 state->scaler_id = -1;
14033         }
14034         primary->pipe = pipe;
14035         primary->plane = pipe;
14036         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14037         primary->check_plane = intel_check_primary_plane;
14038         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14039                 primary->plane = !pipe;
14040
14041         if (INTEL_INFO(dev)->gen >= 9) {
14042                 intel_primary_formats = skl_primary_formats;
14043                 num_formats = ARRAY_SIZE(skl_primary_formats);
14044
14045                 primary->update_plane = skylake_update_primary_plane;
14046                 primary->disable_plane = skylake_disable_primary_plane;
14047         } else if (HAS_PCH_SPLIT(dev)) {
14048                 intel_primary_formats = i965_primary_formats;
14049                 num_formats = ARRAY_SIZE(i965_primary_formats);
14050
14051                 primary->update_plane = ironlake_update_primary_plane;
14052                 primary->disable_plane = i9xx_disable_primary_plane;
14053         } else if (INTEL_INFO(dev)->gen >= 4) {
14054                 intel_primary_formats = i965_primary_formats;
14055                 num_formats = ARRAY_SIZE(i965_primary_formats);
14056
14057                 primary->update_plane = i9xx_update_primary_plane;
14058                 primary->disable_plane = i9xx_disable_primary_plane;
14059         } else {
14060                 intel_primary_formats = i8xx_primary_formats;
14061                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14062
14063                 primary->update_plane = i9xx_update_primary_plane;
14064                 primary->disable_plane = i9xx_disable_primary_plane;
14065         }
14066
14067         drm_universal_plane_init(dev, &primary->base, 0,
14068                                  &intel_plane_funcs,
14069                                  intel_primary_formats, num_formats,
14070                                  DRM_PLANE_TYPE_PRIMARY, NULL);
14071
14072         if (INTEL_INFO(dev)->gen >= 4)
14073                 intel_create_rotation_property(dev, primary);
14074
14075         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14076
14077         return &primary->base;
14078 }
14079
14080 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14081 {
14082         if (!dev->mode_config.rotation_property) {
14083                 unsigned long flags = BIT(DRM_ROTATE_0) |
14084                         BIT(DRM_ROTATE_180);
14085
14086                 if (INTEL_INFO(dev)->gen >= 9)
14087                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14088
14089                 dev->mode_config.rotation_property =
14090                         drm_mode_create_rotation_property(dev, flags);
14091         }
14092         if (dev->mode_config.rotation_property)
14093                 drm_object_attach_property(&plane->base.base,
14094                                 dev->mode_config.rotation_property,
14095                                 plane->base.state->rotation);
14096 }
14097
14098 static int
14099 intel_check_cursor_plane(struct drm_plane *plane,
14100                          struct intel_crtc_state *crtc_state,
14101                          struct intel_plane_state *state)
14102 {
14103         struct drm_crtc *crtc = crtc_state->base.crtc;
14104         struct drm_framebuffer *fb = state->base.fb;
14105         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14106         enum pipe pipe = to_intel_plane(plane)->pipe;
14107         unsigned stride;
14108         int ret;
14109
14110         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14111                                             &state->dst, &state->clip,
14112                                             DRM_PLANE_HELPER_NO_SCALING,
14113                                             DRM_PLANE_HELPER_NO_SCALING,
14114                                             true, true, &state->visible);
14115         if (ret)
14116                 return ret;
14117
14118         /* if we want to turn off the cursor ignore width and height */
14119         if (!obj)
14120                 return 0;
14121
14122         /* Check for which cursor types we support */
14123         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14124                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14125                           state->base.crtc_w, state->base.crtc_h);
14126                 return -EINVAL;
14127         }
14128
14129         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14130         if (obj->base.size < stride * state->base.crtc_h) {
14131                 DRM_DEBUG_KMS("buffer is too small\n");
14132                 return -ENOMEM;
14133         }
14134
14135         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14136                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14137                 return -EINVAL;
14138         }
14139
14140         /*
14141          * There's something wrong with the cursor on CHV pipe C.
14142          * If it straddles the left edge of the screen then
14143          * moving it away from the edge or disabling it often
14144          * results in a pipe underrun, and often that can lead to
14145          * dead pipe (constant underrun reported, and it scans
14146          * out just a solid color). To recover from that, the
14147          * display power well must be turned off and on again.
14148          * Refuse the put the cursor into that compromised position.
14149          */
14150         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14151             state->visible && state->base.crtc_x < 0) {
14152                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14153                 return -EINVAL;
14154         }
14155
14156         return 0;
14157 }
14158
14159 static void
14160 intel_disable_cursor_plane(struct drm_plane *plane,
14161                            struct drm_crtc *crtc)
14162 {
14163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14164
14165         intel_crtc->cursor_addr = 0;
14166         intel_crtc_update_cursor(crtc, NULL);
14167 }
14168
14169 static void
14170 intel_update_cursor_plane(struct drm_plane *plane,
14171                           const struct intel_crtc_state *crtc_state,
14172                           const struct intel_plane_state *state)
14173 {
14174         struct drm_crtc *crtc = crtc_state->base.crtc;
14175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14176         struct drm_device *dev = plane->dev;
14177         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14178         uint32_t addr;
14179
14180         if (!obj)
14181                 addr = 0;
14182         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14183                 addr = i915_gem_obj_ggtt_offset(obj);
14184         else
14185                 addr = obj->phys_handle->busaddr;
14186
14187         intel_crtc->cursor_addr = addr;
14188         intel_crtc_update_cursor(crtc, state);
14189 }
14190
14191 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14192                                                    int pipe)
14193 {
14194         struct intel_plane *cursor;
14195         struct intel_plane_state *state;
14196
14197         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14198         if (cursor == NULL)
14199                 return NULL;
14200
14201         state = intel_create_plane_state(&cursor->base);
14202         if (!state) {
14203                 kfree(cursor);
14204                 return NULL;
14205         }
14206         cursor->base.state = &state->base;
14207
14208         cursor->can_scale = false;
14209         cursor->max_downscale = 1;
14210         cursor->pipe = pipe;
14211         cursor->plane = pipe;
14212         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14213         cursor->check_plane = intel_check_cursor_plane;
14214         cursor->update_plane = intel_update_cursor_plane;
14215         cursor->disable_plane = intel_disable_cursor_plane;
14216
14217         drm_universal_plane_init(dev, &cursor->base, 0,
14218                                  &intel_plane_funcs,
14219                                  intel_cursor_formats,
14220                                  ARRAY_SIZE(intel_cursor_formats),
14221                                  DRM_PLANE_TYPE_CURSOR, NULL);
14222
14223         if (INTEL_INFO(dev)->gen >= 4) {
14224                 if (!dev->mode_config.rotation_property)
14225                         dev->mode_config.rotation_property =
14226                                 drm_mode_create_rotation_property(dev,
14227                                                         BIT(DRM_ROTATE_0) |
14228                                                         BIT(DRM_ROTATE_180));
14229                 if (dev->mode_config.rotation_property)
14230                         drm_object_attach_property(&cursor->base.base,
14231                                 dev->mode_config.rotation_property,
14232                                 state->base.rotation);
14233         }
14234
14235         if (INTEL_INFO(dev)->gen >=9)
14236                 state->scaler_id = -1;
14237
14238         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14239
14240         return &cursor->base;
14241 }
14242
14243 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14244         struct intel_crtc_state *crtc_state)
14245 {
14246         int i;
14247         struct intel_scaler *intel_scaler;
14248         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14249
14250         for (i = 0; i < intel_crtc->num_scalers; i++) {
14251                 intel_scaler = &scaler_state->scalers[i];
14252                 intel_scaler->in_use = 0;
14253                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14254         }
14255
14256         scaler_state->scaler_id = -1;
14257 }
14258
14259 static void intel_crtc_init(struct drm_device *dev, int pipe)
14260 {
14261         struct drm_i915_private *dev_priv = dev->dev_private;
14262         struct intel_crtc *intel_crtc;
14263         struct intel_crtc_state *crtc_state = NULL;
14264         struct drm_plane *primary = NULL;
14265         struct drm_plane *cursor = NULL;
14266         int i, ret;
14267
14268         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14269         if (intel_crtc == NULL)
14270                 return;
14271
14272         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14273         if (!crtc_state)
14274                 goto fail;
14275         intel_crtc->config = crtc_state;
14276         intel_crtc->base.state = &crtc_state->base;
14277         crtc_state->base.crtc = &intel_crtc->base;
14278
14279         /* initialize shared scalers */
14280         if (INTEL_INFO(dev)->gen >= 9) {
14281                 if (pipe == PIPE_C)
14282                         intel_crtc->num_scalers = 1;
14283                 else
14284                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14285
14286                 skl_init_scalers(dev, intel_crtc, crtc_state);
14287         }
14288
14289         primary = intel_primary_plane_create(dev, pipe);
14290         if (!primary)
14291                 goto fail;
14292
14293         cursor = intel_cursor_plane_create(dev, pipe);
14294         if (!cursor)
14295                 goto fail;
14296
14297         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14298                                         cursor, &intel_crtc_funcs, NULL);
14299         if (ret)
14300                 goto fail;
14301
14302         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14303         for (i = 0; i < 256; i++) {
14304                 intel_crtc->lut_r[i] = i;
14305                 intel_crtc->lut_g[i] = i;
14306                 intel_crtc->lut_b[i] = i;
14307         }
14308
14309         /*
14310          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14311          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14312          */
14313         intel_crtc->pipe = pipe;
14314         intel_crtc->plane = pipe;
14315         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14316                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14317                 intel_crtc->plane = !pipe;
14318         }
14319
14320         intel_crtc->cursor_base = ~0;
14321         intel_crtc->cursor_cntl = ~0;
14322         intel_crtc->cursor_size = ~0;
14323
14324         intel_crtc->wm.cxsr_allowed = true;
14325
14326         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14327                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14328         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14329         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14330
14331         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14332
14333         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14334         return;
14335
14336 fail:
14337         if (primary)
14338                 drm_plane_cleanup(primary);
14339         if (cursor)
14340                 drm_plane_cleanup(cursor);
14341         kfree(crtc_state);
14342         kfree(intel_crtc);
14343 }
14344
14345 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14346 {
14347         struct drm_encoder *encoder = connector->base.encoder;
14348         struct drm_device *dev = connector->base.dev;
14349
14350         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14351
14352         if (!encoder || WARN_ON(!encoder->crtc))
14353                 return INVALID_PIPE;
14354
14355         return to_intel_crtc(encoder->crtc)->pipe;
14356 }
14357
14358 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14359                                 struct drm_file *file)
14360 {
14361         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14362         struct drm_crtc *drmmode_crtc;
14363         struct intel_crtc *crtc;
14364
14365         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14366
14367         if (!drmmode_crtc) {
14368                 DRM_ERROR("no such CRTC id\n");
14369                 return -ENOENT;
14370         }
14371
14372         crtc = to_intel_crtc(drmmode_crtc);
14373         pipe_from_crtc_id->pipe = crtc->pipe;
14374
14375         return 0;
14376 }
14377
14378 static int intel_encoder_clones(struct intel_encoder *encoder)
14379 {
14380         struct drm_device *dev = encoder->base.dev;
14381         struct intel_encoder *source_encoder;
14382         int index_mask = 0;
14383         int entry = 0;
14384
14385         for_each_intel_encoder(dev, source_encoder) {
14386                 if (encoders_cloneable(encoder, source_encoder))
14387                         index_mask |= (1 << entry);
14388
14389                 entry++;
14390         }
14391
14392         return index_mask;
14393 }
14394
14395 static bool has_edp_a(struct drm_device *dev)
14396 {
14397         struct drm_i915_private *dev_priv = dev->dev_private;
14398
14399         if (!IS_MOBILE(dev))
14400                 return false;
14401
14402         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14403                 return false;
14404
14405         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14406                 return false;
14407
14408         return true;
14409 }
14410
14411 static bool intel_crt_present(struct drm_device *dev)
14412 {
14413         struct drm_i915_private *dev_priv = dev->dev_private;
14414
14415         if (INTEL_INFO(dev)->gen >= 9)
14416                 return false;
14417
14418         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14419                 return false;
14420
14421         if (IS_CHERRYVIEW(dev))
14422                 return false;
14423
14424         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14425                 return false;
14426
14427         /* DDI E can't be used if DDI A requires 4 lanes */
14428         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14429                 return false;
14430
14431         if (!dev_priv->vbt.int_crt_support)
14432                 return false;
14433
14434         return true;
14435 }
14436
14437 static void intel_setup_outputs(struct drm_device *dev)
14438 {
14439         struct drm_i915_private *dev_priv = dev->dev_private;
14440         struct intel_encoder *encoder;
14441         bool dpd_is_edp = false;
14442
14443         intel_lvds_init(dev);
14444
14445         if (intel_crt_present(dev))
14446                 intel_crt_init(dev);
14447
14448         if (IS_BROXTON(dev)) {
14449                 /*
14450                  * FIXME: Broxton doesn't support port detection via the
14451                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14452                  * detect the ports.
14453                  */
14454                 intel_ddi_init(dev, PORT_A);
14455                 intel_ddi_init(dev, PORT_B);
14456                 intel_ddi_init(dev, PORT_C);
14457         } else if (HAS_DDI(dev)) {
14458                 int found;
14459
14460                 /*
14461                  * Haswell uses DDI functions to detect digital outputs.
14462                  * On SKL pre-D0 the strap isn't connected, so we assume
14463                  * it's there.
14464                  */
14465                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14466                 /* WaIgnoreDDIAStrap: skl */
14467                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14468                         intel_ddi_init(dev, PORT_A);
14469
14470                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14471                  * register */
14472                 found = I915_READ(SFUSE_STRAP);
14473
14474                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14475                         intel_ddi_init(dev, PORT_B);
14476                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14477                         intel_ddi_init(dev, PORT_C);
14478                 if (found & SFUSE_STRAP_DDID_DETECTED)
14479                         intel_ddi_init(dev, PORT_D);
14480                 /*
14481                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14482                  */
14483                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14484                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14485                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14486                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14487                         intel_ddi_init(dev, PORT_E);
14488
14489         } else if (HAS_PCH_SPLIT(dev)) {
14490                 int found;
14491                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14492
14493                 if (has_edp_a(dev))
14494                         intel_dp_init(dev, DP_A, PORT_A);
14495
14496                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14497                         /* PCH SDVOB multiplex with HDMIB */
14498                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14499                         if (!found)
14500                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14501                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14502                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14503                 }
14504
14505                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14506                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14507
14508                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14509                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14510
14511                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14512                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14513
14514                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14515                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14516         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14517                 /*
14518                  * The DP_DETECTED bit is the latched state of the DDC
14519                  * SDA pin at boot. However since eDP doesn't require DDC
14520                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14521                  * eDP ports may have been muxed to an alternate function.
14522                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14523                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14524                  * detect eDP ports.
14525                  */
14526                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14527                     !intel_dp_is_edp(dev, PORT_B))
14528                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14529                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14530                     intel_dp_is_edp(dev, PORT_B))
14531                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14532
14533                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14534                     !intel_dp_is_edp(dev, PORT_C))
14535                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14536                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14537                     intel_dp_is_edp(dev, PORT_C))
14538                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14539
14540                 if (IS_CHERRYVIEW(dev)) {
14541                         /* eDP not supported on port D, so don't check VBT */
14542                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14543                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14544                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14545                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14546                 }
14547
14548                 intel_dsi_init(dev);
14549         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14550                 bool found = false;
14551
14552                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14553                         DRM_DEBUG_KMS("probing SDVOB\n");
14554                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14555                         if (!found && IS_G4X(dev)) {
14556                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14557                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14558                         }
14559
14560                         if (!found && IS_G4X(dev))
14561                                 intel_dp_init(dev, DP_B, PORT_B);
14562                 }
14563
14564                 /* Before G4X SDVOC doesn't have its own detect register */
14565
14566                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14567                         DRM_DEBUG_KMS("probing SDVOC\n");
14568                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14569                 }
14570
14571                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14572
14573                         if (IS_G4X(dev)) {
14574                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14575                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14576                         }
14577                         if (IS_G4X(dev))
14578                                 intel_dp_init(dev, DP_C, PORT_C);
14579                 }
14580
14581                 if (IS_G4X(dev) &&
14582                     (I915_READ(DP_D) & DP_DETECTED))
14583                         intel_dp_init(dev, DP_D, PORT_D);
14584         } else if (IS_GEN2(dev))
14585                 intel_dvo_init(dev);
14586
14587         if (SUPPORTS_TV(dev))
14588                 intel_tv_init(dev);
14589
14590         intel_psr_init(dev);
14591
14592         for_each_intel_encoder(dev, encoder) {
14593                 encoder->base.possible_crtcs = encoder->crtc_mask;
14594                 encoder->base.possible_clones =
14595                         intel_encoder_clones(encoder);
14596         }
14597
14598         intel_init_pch_refclk(dev);
14599
14600         drm_helper_move_panel_connectors_to_head(dev);
14601 }
14602
14603 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14604 {
14605         struct drm_device *dev = fb->dev;
14606         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14607
14608         drm_framebuffer_cleanup(fb);
14609         mutex_lock(&dev->struct_mutex);
14610         WARN_ON(!intel_fb->obj->framebuffer_references--);
14611         drm_gem_object_unreference(&intel_fb->obj->base);
14612         mutex_unlock(&dev->struct_mutex);
14613         kfree(intel_fb);
14614 }
14615
14616 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14617                                                 struct drm_file *file,
14618                                                 unsigned int *handle)
14619 {
14620         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14621         struct drm_i915_gem_object *obj = intel_fb->obj;
14622
14623         if (obj->userptr.mm) {
14624                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14625                 return -EINVAL;
14626         }
14627
14628         return drm_gem_handle_create(file, &obj->base, handle);
14629 }
14630
14631 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14632                                         struct drm_file *file,
14633                                         unsigned flags, unsigned color,
14634                                         struct drm_clip_rect *clips,
14635                                         unsigned num_clips)
14636 {
14637         struct drm_device *dev = fb->dev;
14638         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14639         struct drm_i915_gem_object *obj = intel_fb->obj;
14640
14641         mutex_lock(&dev->struct_mutex);
14642         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14643         mutex_unlock(&dev->struct_mutex);
14644
14645         return 0;
14646 }
14647
14648 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14649         .destroy = intel_user_framebuffer_destroy,
14650         .create_handle = intel_user_framebuffer_create_handle,
14651         .dirty = intel_user_framebuffer_dirty,
14652 };
14653
14654 static
14655 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14656                          uint32_t pixel_format)
14657 {
14658         u32 gen = INTEL_INFO(dev)->gen;
14659
14660         if (gen >= 9) {
14661                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14662
14663                 /* "The stride in bytes must not exceed the of the size of 8K
14664                  *  pixels and 32K bytes."
14665                  */
14666                 return min(8192 * cpp, 32768);
14667         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14668                 return 32*1024;
14669         } else if (gen >= 4) {
14670                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14671                         return 16*1024;
14672                 else
14673                         return 32*1024;
14674         } else if (gen >= 3) {
14675                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14676                         return 8*1024;
14677                 else
14678                         return 16*1024;
14679         } else {
14680                 /* XXX DSPC is limited to 4k tiled */
14681                 return 8*1024;
14682         }
14683 }
14684
14685 static int intel_framebuffer_init(struct drm_device *dev,
14686                                   struct intel_framebuffer *intel_fb,
14687                                   struct drm_mode_fb_cmd2 *mode_cmd,
14688                                   struct drm_i915_gem_object *obj)
14689 {
14690         struct drm_i915_private *dev_priv = to_i915(dev);
14691         unsigned int aligned_height;
14692         int ret;
14693         u32 pitch_limit, stride_alignment;
14694
14695         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14696
14697         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14698                 /* Enforce that fb modifier and tiling mode match, but only for
14699                  * X-tiled. This is needed for FBC. */
14700                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14701                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14702                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14703                         return -EINVAL;
14704                 }
14705         } else {
14706                 if (obj->tiling_mode == I915_TILING_X)
14707                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14708                 else if (obj->tiling_mode == I915_TILING_Y) {
14709                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14710                         return -EINVAL;
14711                 }
14712         }
14713
14714         /* Passed in modifier sanity checking. */
14715         switch (mode_cmd->modifier[0]) {
14716         case I915_FORMAT_MOD_Y_TILED:
14717         case I915_FORMAT_MOD_Yf_TILED:
14718                 if (INTEL_INFO(dev)->gen < 9) {
14719                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14720                                   mode_cmd->modifier[0]);
14721                         return -EINVAL;
14722                 }
14723         case DRM_FORMAT_MOD_NONE:
14724         case I915_FORMAT_MOD_X_TILED:
14725                 break;
14726         default:
14727                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14728                           mode_cmd->modifier[0]);
14729                 return -EINVAL;
14730         }
14731
14732         stride_alignment = intel_fb_stride_alignment(dev_priv,
14733                                                      mode_cmd->modifier[0],
14734                                                      mode_cmd->pixel_format);
14735         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14736                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14737                           mode_cmd->pitches[0], stride_alignment);
14738                 return -EINVAL;
14739         }
14740
14741         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14742                                            mode_cmd->pixel_format);
14743         if (mode_cmd->pitches[0] > pitch_limit) {
14744                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14745                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14746                           "tiled" : "linear",
14747                           mode_cmd->pitches[0], pitch_limit);
14748                 return -EINVAL;
14749         }
14750
14751         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14752             mode_cmd->pitches[0] != obj->stride) {
14753                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14754                           mode_cmd->pitches[0], obj->stride);
14755                 return -EINVAL;
14756         }
14757
14758         /* Reject formats not supported by any plane early. */
14759         switch (mode_cmd->pixel_format) {
14760         case DRM_FORMAT_C8:
14761         case DRM_FORMAT_RGB565:
14762         case DRM_FORMAT_XRGB8888:
14763         case DRM_FORMAT_ARGB8888:
14764                 break;
14765         case DRM_FORMAT_XRGB1555:
14766                 if (INTEL_INFO(dev)->gen > 3) {
14767                         DRM_DEBUG("unsupported pixel format: %s\n",
14768                                   drm_get_format_name(mode_cmd->pixel_format));
14769                         return -EINVAL;
14770                 }
14771                 break;
14772         case DRM_FORMAT_ABGR8888:
14773                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14774                     INTEL_INFO(dev)->gen < 9) {
14775                         DRM_DEBUG("unsupported pixel format: %s\n",
14776                                   drm_get_format_name(mode_cmd->pixel_format));
14777                         return -EINVAL;
14778                 }
14779                 break;
14780         case DRM_FORMAT_XBGR8888:
14781         case DRM_FORMAT_XRGB2101010:
14782         case DRM_FORMAT_XBGR2101010:
14783                 if (INTEL_INFO(dev)->gen < 4) {
14784                         DRM_DEBUG("unsupported pixel format: %s\n",
14785                                   drm_get_format_name(mode_cmd->pixel_format));
14786                         return -EINVAL;
14787                 }
14788                 break;
14789         case DRM_FORMAT_ABGR2101010:
14790                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14791                         DRM_DEBUG("unsupported pixel format: %s\n",
14792                                   drm_get_format_name(mode_cmd->pixel_format));
14793                         return -EINVAL;
14794                 }
14795                 break;
14796         case DRM_FORMAT_YUYV:
14797         case DRM_FORMAT_UYVY:
14798         case DRM_FORMAT_YVYU:
14799         case DRM_FORMAT_VYUY:
14800                 if (INTEL_INFO(dev)->gen < 5) {
14801                         DRM_DEBUG("unsupported pixel format: %s\n",
14802                                   drm_get_format_name(mode_cmd->pixel_format));
14803                         return -EINVAL;
14804                 }
14805                 break;
14806         default:
14807                 DRM_DEBUG("unsupported pixel format: %s\n",
14808                           drm_get_format_name(mode_cmd->pixel_format));
14809                 return -EINVAL;
14810         }
14811
14812         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14813         if (mode_cmd->offsets[0] != 0)
14814                 return -EINVAL;
14815
14816         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14817                                                mode_cmd->pixel_format,
14818                                                mode_cmd->modifier[0]);
14819         /* FIXME drm helper for size checks (especially planar formats)? */
14820         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14821                 return -EINVAL;
14822
14823         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14824         intel_fb->obj = obj;
14825
14826         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14827         if (ret) {
14828                 DRM_ERROR("framebuffer init failed %d\n", ret);
14829                 return ret;
14830         }
14831
14832         intel_fb->obj->framebuffer_references++;
14833
14834         return 0;
14835 }
14836
14837 static struct drm_framebuffer *
14838 intel_user_framebuffer_create(struct drm_device *dev,
14839                               struct drm_file *filp,
14840                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14841 {
14842         struct drm_framebuffer *fb;
14843         struct drm_i915_gem_object *obj;
14844         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14845
14846         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14847                                                 mode_cmd.handles[0]));
14848         if (&obj->base == NULL)
14849                 return ERR_PTR(-ENOENT);
14850
14851         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14852         if (IS_ERR(fb))
14853                 drm_gem_object_unreference_unlocked(&obj->base);
14854
14855         return fb;
14856 }
14857
14858 #ifndef CONFIG_DRM_FBDEV_EMULATION
14859 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14860 {
14861 }
14862 #endif
14863
14864 static const struct drm_mode_config_funcs intel_mode_funcs = {
14865         .fb_create = intel_user_framebuffer_create,
14866         .output_poll_changed = intel_fbdev_output_poll_changed,
14867         .atomic_check = intel_atomic_check,
14868         .atomic_commit = intel_atomic_commit,
14869         .atomic_state_alloc = intel_atomic_state_alloc,
14870         .atomic_state_clear = intel_atomic_state_clear,
14871 };
14872
14873 /* Set up chip specific display functions */
14874 static void intel_init_display(struct drm_device *dev)
14875 {
14876         struct drm_i915_private *dev_priv = dev->dev_private;
14877
14878         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14879                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14880         else if (IS_CHERRYVIEW(dev))
14881                 dev_priv->display.find_dpll = chv_find_best_dpll;
14882         else if (IS_VALLEYVIEW(dev))
14883                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14884         else if (IS_PINEVIEW(dev))
14885                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14886         else
14887                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14888
14889         if (INTEL_INFO(dev)->gen >= 9) {
14890                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14891                 dev_priv->display.get_initial_plane_config =
14892                         skylake_get_initial_plane_config;
14893                 dev_priv->display.crtc_compute_clock =
14894                         haswell_crtc_compute_clock;
14895                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14896                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14897         } else if (HAS_DDI(dev)) {
14898                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14899                 dev_priv->display.get_initial_plane_config =
14900                         ironlake_get_initial_plane_config;
14901                 dev_priv->display.crtc_compute_clock =
14902                         haswell_crtc_compute_clock;
14903                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14904                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14905         } else if (HAS_PCH_SPLIT(dev)) {
14906                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14907                 dev_priv->display.get_initial_plane_config =
14908                         ironlake_get_initial_plane_config;
14909                 dev_priv->display.crtc_compute_clock =
14910                         ironlake_crtc_compute_clock;
14911                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14912                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14913         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14914                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14915                 dev_priv->display.get_initial_plane_config =
14916                         i9xx_get_initial_plane_config;
14917                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14918                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14919                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14920         } else {
14921                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14922                 dev_priv->display.get_initial_plane_config =
14923                         i9xx_get_initial_plane_config;
14924                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14925                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14926                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14927         }
14928
14929         /* Returns the core display clock speed */
14930         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14931                 dev_priv->display.get_display_clock_speed =
14932                         skylake_get_display_clock_speed;
14933         else if (IS_BROXTON(dev))
14934                 dev_priv->display.get_display_clock_speed =
14935                         broxton_get_display_clock_speed;
14936         else if (IS_BROADWELL(dev))
14937                 dev_priv->display.get_display_clock_speed =
14938                         broadwell_get_display_clock_speed;
14939         else if (IS_HASWELL(dev))
14940                 dev_priv->display.get_display_clock_speed =
14941                         haswell_get_display_clock_speed;
14942         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
14943                 dev_priv->display.get_display_clock_speed =
14944                         valleyview_get_display_clock_speed;
14945         else if (IS_GEN5(dev))
14946                 dev_priv->display.get_display_clock_speed =
14947                         ilk_get_display_clock_speed;
14948         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14949                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14950                 dev_priv->display.get_display_clock_speed =
14951                         i945_get_display_clock_speed;
14952         else if (IS_GM45(dev))
14953                 dev_priv->display.get_display_clock_speed =
14954                         gm45_get_display_clock_speed;
14955         else if (IS_CRESTLINE(dev))
14956                 dev_priv->display.get_display_clock_speed =
14957                         i965gm_get_display_clock_speed;
14958         else if (IS_PINEVIEW(dev))
14959                 dev_priv->display.get_display_clock_speed =
14960                         pnv_get_display_clock_speed;
14961         else if (IS_G33(dev) || IS_G4X(dev))
14962                 dev_priv->display.get_display_clock_speed =
14963                         g33_get_display_clock_speed;
14964         else if (IS_I915G(dev))
14965                 dev_priv->display.get_display_clock_speed =
14966                         i915_get_display_clock_speed;
14967         else if (IS_I945GM(dev) || IS_845G(dev))
14968                 dev_priv->display.get_display_clock_speed =
14969                         i9xx_misc_get_display_clock_speed;
14970         else if (IS_I915GM(dev))
14971                 dev_priv->display.get_display_clock_speed =
14972                         i915gm_get_display_clock_speed;
14973         else if (IS_I865G(dev))
14974                 dev_priv->display.get_display_clock_speed =
14975                         i865_get_display_clock_speed;
14976         else if (IS_I85X(dev))
14977                 dev_priv->display.get_display_clock_speed =
14978                         i85x_get_display_clock_speed;
14979         else { /* 830 */
14980                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14981                 dev_priv->display.get_display_clock_speed =
14982                         i830_get_display_clock_speed;
14983         }
14984
14985         if (IS_GEN5(dev)) {
14986                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14987         } else if (IS_GEN6(dev)) {
14988                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14989         } else if (IS_IVYBRIDGE(dev)) {
14990                 /* FIXME: detect B0+ stepping and use auto training */
14991                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14992         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14993                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14994                 if (IS_BROADWELL(dev)) {
14995                         dev_priv->display.modeset_commit_cdclk =
14996                                 broadwell_modeset_commit_cdclk;
14997                         dev_priv->display.modeset_calc_cdclk =
14998                                 broadwell_modeset_calc_cdclk;
14999                 }
15000         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15001                 dev_priv->display.modeset_commit_cdclk =
15002                         valleyview_modeset_commit_cdclk;
15003                 dev_priv->display.modeset_calc_cdclk =
15004                         valleyview_modeset_calc_cdclk;
15005         } else if (IS_BROXTON(dev)) {
15006                 dev_priv->display.modeset_commit_cdclk =
15007                         broxton_modeset_commit_cdclk;
15008                 dev_priv->display.modeset_calc_cdclk =
15009                         broxton_modeset_calc_cdclk;
15010         }
15011
15012         switch (INTEL_INFO(dev)->gen) {
15013         case 2:
15014                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15015                 break;
15016
15017         case 3:
15018                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15019                 break;
15020
15021         case 4:
15022         case 5:
15023                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15024                 break;
15025
15026         case 6:
15027                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15028                 break;
15029         case 7:
15030         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15031                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15032                 break;
15033         case 9:
15034                 /* Drop through - unsupported since execlist only. */
15035         default:
15036                 /* Default just returns -ENODEV to indicate unsupported */
15037                 dev_priv->display.queue_flip = intel_default_queue_flip;
15038         }
15039
15040         mutex_init(&dev_priv->pps_mutex);
15041 }
15042
15043 /*
15044  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15045  * resume, or other times.  This quirk makes sure that's the case for
15046  * affected systems.
15047  */
15048 static void quirk_pipea_force(struct drm_device *dev)
15049 {
15050         struct drm_i915_private *dev_priv = dev->dev_private;
15051
15052         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15053         DRM_INFO("applying pipe a force quirk\n");
15054 }
15055
15056 static void quirk_pipeb_force(struct drm_device *dev)
15057 {
15058         struct drm_i915_private *dev_priv = dev->dev_private;
15059
15060         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15061         DRM_INFO("applying pipe b force quirk\n");
15062 }
15063
15064 /*
15065  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15066  */
15067 static void quirk_ssc_force_disable(struct drm_device *dev)
15068 {
15069         struct drm_i915_private *dev_priv = dev->dev_private;
15070         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15071         DRM_INFO("applying lvds SSC disable quirk\n");
15072 }
15073
15074 /*
15075  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15076  * brightness value
15077  */
15078 static void quirk_invert_brightness(struct drm_device *dev)
15079 {
15080         struct drm_i915_private *dev_priv = dev->dev_private;
15081         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15082         DRM_INFO("applying inverted panel brightness quirk\n");
15083 }
15084
15085 /* Some VBT's incorrectly indicate no backlight is present */
15086 static void quirk_backlight_present(struct drm_device *dev)
15087 {
15088         struct drm_i915_private *dev_priv = dev->dev_private;
15089         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15090         DRM_INFO("applying backlight present quirk\n");
15091 }
15092
15093 struct intel_quirk {
15094         int device;
15095         int subsystem_vendor;
15096         int subsystem_device;
15097         void (*hook)(struct drm_device *dev);
15098 };
15099
15100 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15101 struct intel_dmi_quirk {
15102         void (*hook)(struct drm_device *dev);
15103         const struct dmi_system_id (*dmi_id_list)[];
15104 };
15105
15106 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15107 {
15108         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15109         return 1;
15110 }
15111
15112 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15113         {
15114                 .dmi_id_list = &(const struct dmi_system_id[]) {
15115                         {
15116                                 .callback = intel_dmi_reverse_brightness,
15117                                 .ident = "NCR Corporation",
15118                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15119                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15120                                 },
15121                         },
15122                         { }  /* terminating entry */
15123                 },
15124                 .hook = quirk_invert_brightness,
15125         },
15126 };
15127
15128 static struct intel_quirk intel_quirks[] = {
15129         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15130         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15131
15132         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15133         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15134
15135         /* 830 needs to leave pipe A & dpll A up */
15136         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15137
15138         /* 830 needs to leave pipe B & dpll B up */
15139         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15140
15141         /* Lenovo U160 cannot use SSC on LVDS */
15142         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15143
15144         /* Sony Vaio Y cannot use SSC on LVDS */
15145         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15146
15147         /* Acer Aspire 5734Z must invert backlight brightness */
15148         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15149
15150         /* Acer/eMachines G725 */
15151         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15152
15153         /* Acer/eMachines e725 */
15154         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15155
15156         /* Acer/Packard Bell NCL20 */
15157         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15158
15159         /* Acer Aspire 4736Z */
15160         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15161
15162         /* Acer Aspire 5336 */
15163         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15164
15165         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15166         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15167
15168         /* Acer C720 Chromebook (Core i3 4005U) */
15169         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15170
15171         /* Apple Macbook 2,1 (Core 2 T7400) */
15172         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15173
15174         /* Apple Macbook 4,1 */
15175         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15176
15177         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15178         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15179
15180         /* HP Chromebook 14 (Celeron 2955U) */
15181         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15182
15183         /* Dell Chromebook 11 */
15184         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15185
15186         /* Dell Chromebook 11 (2015 version) */
15187         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15188 };
15189
15190 static void intel_init_quirks(struct drm_device *dev)
15191 {
15192         struct pci_dev *d = dev->pdev;
15193         int i;
15194
15195         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15196                 struct intel_quirk *q = &intel_quirks[i];
15197
15198                 if (d->device == q->device &&
15199                     (d->subsystem_vendor == q->subsystem_vendor ||
15200                      q->subsystem_vendor == PCI_ANY_ID) &&
15201                     (d->subsystem_device == q->subsystem_device ||
15202                      q->subsystem_device == PCI_ANY_ID))
15203                         q->hook(dev);
15204         }
15205         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15206                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15207                         intel_dmi_quirks[i].hook(dev);
15208         }
15209 }
15210
15211 /* Disable the VGA plane that we never use */
15212 static void i915_disable_vga(struct drm_device *dev)
15213 {
15214         struct drm_i915_private *dev_priv = dev->dev_private;
15215         u8 sr1;
15216         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15217
15218         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15219         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15220         outb(SR01, VGA_SR_INDEX);
15221         sr1 = inb(VGA_SR_DATA);
15222         outb(sr1 | 1<<5, VGA_SR_DATA);
15223         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15224         udelay(300);
15225
15226         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15227         POSTING_READ(vga_reg);
15228 }
15229
15230 void intel_modeset_init_hw(struct drm_device *dev)
15231 {
15232         struct drm_i915_private *dev_priv = dev->dev_private;
15233
15234         intel_update_cdclk(dev);
15235
15236         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15237
15238         intel_init_clock_gating(dev);
15239         intel_enable_gt_powersave(dev);
15240 }
15241
15242 /*
15243  * Calculate what we think the watermarks should be for the state we've read
15244  * out of the hardware and then immediately program those watermarks so that
15245  * we ensure the hardware settings match our internal state.
15246  *
15247  * We can calculate what we think WM's should be by creating a duplicate of the
15248  * current state (which was constructed during hardware readout) and running it
15249  * through the atomic check code to calculate new watermark values in the
15250  * state object.
15251  */
15252 static void sanitize_watermarks(struct drm_device *dev)
15253 {
15254         struct drm_i915_private *dev_priv = to_i915(dev);
15255         struct drm_atomic_state *state;
15256         struct drm_crtc *crtc;
15257         struct drm_crtc_state *cstate;
15258         struct drm_modeset_acquire_ctx ctx;
15259         int ret;
15260         int i;
15261
15262         /* Only supported on platforms that use atomic watermark design */
15263         if (!dev_priv->display.program_watermarks)
15264                 return;
15265
15266         /*
15267          * We need to hold connection_mutex before calling duplicate_state so
15268          * that the connector loop is protected.
15269          */
15270         drm_modeset_acquire_init(&ctx, 0);
15271 retry:
15272         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15273         if (ret == -EDEADLK) {
15274                 drm_modeset_backoff(&ctx);
15275                 goto retry;
15276         } else if (WARN_ON(ret)) {
15277                 goto fail;
15278         }
15279
15280         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15281         if (WARN_ON(IS_ERR(state)))
15282                 goto fail;
15283
15284         ret = intel_atomic_check(dev, state);
15285         if (ret) {
15286                 /*
15287                  * If we fail here, it means that the hardware appears to be
15288                  * programmed in a way that shouldn't be possible, given our
15289                  * understanding of watermark requirements.  This might mean a
15290                  * mistake in the hardware readout code or a mistake in the
15291                  * watermark calculations for a given platform.  Raise a WARN
15292                  * so that this is noticeable.
15293                  *
15294                  * If this actually happens, we'll have to just leave the
15295                  * BIOS-programmed watermarks untouched and hope for the best.
15296                  */
15297                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15298                 goto fail;
15299         }
15300
15301         /* Write calculated watermark values back */
15302         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15303         for_each_crtc_in_state(state, crtc, cstate, i) {
15304                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15305
15306                 dev_priv->display.program_watermarks(cs);
15307         }
15308
15309         drm_atomic_state_free(state);
15310 fail:
15311         drm_modeset_drop_locks(&ctx);
15312         drm_modeset_acquire_fini(&ctx);
15313 }
15314
15315 void intel_modeset_init(struct drm_device *dev)
15316 {
15317         struct drm_i915_private *dev_priv = dev->dev_private;
15318         int sprite, ret;
15319         enum pipe pipe;
15320         struct intel_crtc *crtc;
15321
15322         drm_mode_config_init(dev);
15323
15324         dev->mode_config.min_width = 0;
15325         dev->mode_config.min_height = 0;
15326
15327         dev->mode_config.preferred_depth = 24;
15328         dev->mode_config.prefer_shadow = 1;
15329
15330         dev->mode_config.allow_fb_modifiers = true;
15331
15332         dev->mode_config.funcs = &intel_mode_funcs;
15333
15334         intel_init_quirks(dev);
15335
15336         intel_init_pm(dev);
15337
15338         if (INTEL_INFO(dev)->num_pipes == 0)
15339                 return;
15340
15341         /*
15342          * There may be no VBT; and if the BIOS enabled SSC we can
15343          * just keep using it to avoid unnecessary flicker.  Whereas if the
15344          * BIOS isn't using it, don't assume it will work even if the VBT
15345          * indicates as much.
15346          */
15347         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15348                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15349                                             DREF_SSC1_ENABLE);
15350
15351                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15352                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15353                                      bios_lvds_use_ssc ? "en" : "dis",
15354                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15355                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15356                 }
15357         }
15358
15359         intel_init_display(dev);
15360         intel_init_audio(dev);
15361
15362         if (IS_GEN2(dev)) {
15363                 dev->mode_config.max_width = 2048;
15364                 dev->mode_config.max_height = 2048;
15365         } else if (IS_GEN3(dev)) {
15366                 dev->mode_config.max_width = 4096;
15367                 dev->mode_config.max_height = 4096;
15368         } else {
15369                 dev->mode_config.max_width = 8192;
15370                 dev->mode_config.max_height = 8192;
15371         }
15372
15373         if (IS_845G(dev) || IS_I865G(dev)) {
15374                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15375                 dev->mode_config.cursor_height = 1023;
15376         } else if (IS_GEN2(dev)) {
15377                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15378                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15379         } else {
15380                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15381                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15382         }
15383
15384         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15385
15386         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15387                       INTEL_INFO(dev)->num_pipes,
15388                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15389
15390         for_each_pipe(dev_priv, pipe) {
15391                 intel_crtc_init(dev, pipe);
15392                 for_each_sprite(dev_priv, pipe, sprite) {
15393                         ret = intel_plane_init(dev, pipe, sprite);
15394                         if (ret)
15395                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15396                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15397                 }
15398         }
15399
15400         intel_update_czclk(dev_priv);
15401         intel_update_cdclk(dev);
15402
15403         intel_shared_dpll_init(dev);
15404
15405         /* Just disable it once at startup */
15406         i915_disable_vga(dev);
15407         intel_setup_outputs(dev);
15408
15409         drm_modeset_lock_all(dev);
15410         intel_modeset_setup_hw_state(dev);
15411         drm_modeset_unlock_all(dev);
15412
15413         for_each_intel_crtc(dev, crtc) {
15414                 struct intel_initial_plane_config plane_config = {};
15415
15416                 if (!crtc->active)
15417                         continue;
15418
15419                 /*
15420                  * Note that reserving the BIOS fb up front prevents us
15421                  * from stuffing other stolen allocations like the ring
15422                  * on top.  This prevents some ugliness at boot time, and
15423                  * can even allow for smooth boot transitions if the BIOS
15424                  * fb is large enough for the active pipe configuration.
15425                  */
15426                 dev_priv->display.get_initial_plane_config(crtc,
15427                                                            &plane_config);
15428
15429                 /*
15430                  * If the fb is shared between multiple heads, we'll
15431                  * just get the first one.
15432                  */
15433                 intel_find_initial_plane_obj(crtc, &plane_config);
15434         }
15435
15436         /*
15437          * Make sure hardware watermarks really match the state we read out.
15438          * Note that we need to do this after reconstructing the BIOS fb's
15439          * since the watermark calculation done here will use pstate->fb.
15440          */
15441         sanitize_watermarks(dev);
15442 }
15443
15444 static void intel_enable_pipe_a(struct drm_device *dev)
15445 {
15446         struct intel_connector *connector;
15447         struct drm_connector *crt = NULL;
15448         struct intel_load_detect_pipe load_detect_temp;
15449         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15450
15451         /* We can't just switch on the pipe A, we need to set things up with a
15452          * proper mode and output configuration. As a gross hack, enable pipe A
15453          * by enabling the load detect pipe once. */
15454         for_each_intel_connector(dev, connector) {
15455                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15456                         crt = &connector->base;
15457                         break;
15458                 }
15459         }
15460
15461         if (!crt)
15462                 return;
15463
15464         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15465                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15466 }
15467
15468 static bool
15469 intel_check_plane_mapping(struct intel_crtc *crtc)
15470 {
15471         struct drm_device *dev = crtc->base.dev;
15472         struct drm_i915_private *dev_priv = dev->dev_private;
15473         u32 val;
15474
15475         if (INTEL_INFO(dev)->num_pipes == 1)
15476                 return true;
15477
15478         val = I915_READ(DSPCNTR(!crtc->plane));
15479
15480         if ((val & DISPLAY_PLANE_ENABLE) &&
15481             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15482                 return false;
15483
15484         return true;
15485 }
15486
15487 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15488 {
15489         struct drm_device *dev = crtc->base.dev;
15490         struct intel_encoder *encoder;
15491
15492         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15493                 return true;
15494
15495         return false;
15496 }
15497
15498 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15499 {
15500         struct drm_device *dev = crtc->base.dev;
15501         struct drm_i915_private *dev_priv = dev->dev_private;
15502         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15503
15504         /* Clear any frame start delays used for debugging left by the BIOS */
15505         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15506
15507         /* restore vblank interrupts to correct state */
15508         drm_crtc_vblank_reset(&crtc->base);
15509         if (crtc->active) {
15510                 struct intel_plane *plane;
15511
15512                 drm_crtc_vblank_on(&crtc->base);
15513
15514                 /* Disable everything but the primary plane */
15515                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15516                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15517                                 continue;
15518
15519                         plane->disable_plane(&plane->base, &crtc->base);
15520                 }
15521         }
15522
15523         /* We need to sanitize the plane -> pipe mapping first because this will
15524          * disable the crtc (and hence change the state) if it is wrong. Note
15525          * that gen4+ has a fixed plane -> pipe mapping.  */
15526         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15527                 bool plane;
15528
15529                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15530                               crtc->base.base.id);
15531
15532                 /* Pipe has the wrong plane attached and the plane is active.
15533                  * Temporarily change the plane mapping and disable everything
15534                  * ...  */
15535                 plane = crtc->plane;
15536                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15537                 crtc->plane = !plane;
15538                 intel_crtc_disable_noatomic(&crtc->base);
15539                 crtc->plane = plane;
15540         }
15541
15542         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15543             crtc->pipe == PIPE_A && !crtc->active) {
15544                 /* BIOS forgot to enable pipe A, this mostly happens after
15545                  * resume. Force-enable the pipe to fix this, the update_dpms
15546                  * call below we restore the pipe to the right state, but leave
15547                  * the required bits on. */
15548                 intel_enable_pipe_a(dev);
15549         }
15550
15551         /* Adjust the state of the output pipe according to whether we
15552          * have active connectors/encoders. */
15553         if (!intel_crtc_has_encoders(crtc))
15554                 intel_crtc_disable_noatomic(&crtc->base);
15555
15556         if (crtc->active != crtc->base.state->active) {
15557                 struct intel_encoder *encoder;
15558
15559                 /* This can happen either due to bugs in the get_hw_state
15560                  * functions or because of calls to intel_crtc_disable_noatomic,
15561                  * or because the pipe is force-enabled due to the
15562                  * pipe A quirk. */
15563                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15564                               crtc->base.base.id,
15565                               crtc->base.state->enable ? "enabled" : "disabled",
15566                               crtc->active ? "enabled" : "disabled");
15567
15568                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15569                 crtc->base.state->active = crtc->active;
15570                 crtc->base.enabled = crtc->active;
15571                 crtc->base.state->connector_mask = 0;
15572
15573                 /* Because we only establish the connector -> encoder ->
15574                  * crtc links if something is active, this means the
15575                  * crtc is now deactivated. Break the links. connector
15576                  * -> encoder links are only establish when things are
15577                  *  actually up, hence no need to break them. */
15578                 WARN_ON(crtc->active);
15579
15580                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15581                         encoder->base.crtc = NULL;
15582         }
15583
15584         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15585                 /*
15586                  * We start out with underrun reporting disabled to avoid races.
15587                  * For correct bookkeeping mark this on active crtcs.
15588                  *
15589                  * Also on gmch platforms we dont have any hardware bits to
15590                  * disable the underrun reporting. Which means we need to start
15591                  * out with underrun reporting disabled also on inactive pipes,
15592                  * since otherwise we'll complain about the garbage we read when
15593                  * e.g. coming up after runtime pm.
15594                  *
15595                  * No protection against concurrent access is required - at
15596                  * worst a fifo underrun happens which also sets this to false.
15597                  */
15598                 crtc->cpu_fifo_underrun_disabled = true;
15599                 crtc->pch_fifo_underrun_disabled = true;
15600         }
15601 }
15602
15603 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15604 {
15605         struct intel_connector *connector;
15606         struct drm_device *dev = encoder->base.dev;
15607         bool active = false;
15608
15609         /* We need to check both for a crtc link (meaning that the
15610          * encoder is active and trying to read from a pipe) and the
15611          * pipe itself being active. */
15612         bool has_active_crtc = encoder->base.crtc &&
15613                 to_intel_crtc(encoder->base.crtc)->active;
15614
15615         for_each_intel_connector(dev, connector) {
15616                 if (connector->base.encoder != &encoder->base)
15617                         continue;
15618
15619                 active = true;
15620                 break;
15621         }
15622
15623         if (active && !has_active_crtc) {
15624                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15625                               encoder->base.base.id,
15626                               encoder->base.name);
15627
15628                 /* Connector is active, but has no active pipe. This is
15629                  * fallout from our resume register restoring. Disable
15630                  * the encoder manually again. */
15631                 if (encoder->base.crtc) {
15632                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15633                                       encoder->base.base.id,
15634                                       encoder->base.name);
15635                         encoder->disable(encoder);
15636                         if (encoder->post_disable)
15637                                 encoder->post_disable(encoder);
15638                 }
15639                 encoder->base.crtc = NULL;
15640
15641                 /* Inconsistent output/port/pipe state happens presumably due to
15642                  * a bug in one of the get_hw_state functions. Or someplace else
15643                  * in our code, like the register restore mess on resume. Clamp
15644                  * things to off as a safer default. */
15645                 for_each_intel_connector(dev, connector) {
15646                         if (connector->encoder != encoder)
15647                                 continue;
15648                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15649                         connector->base.encoder = NULL;
15650                 }
15651         }
15652         /* Enabled encoders without active connectors will be fixed in
15653          * the crtc fixup. */
15654 }
15655
15656 void i915_redisable_vga_power_on(struct drm_device *dev)
15657 {
15658         struct drm_i915_private *dev_priv = dev->dev_private;
15659         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15660
15661         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15662                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15663                 i915_disable_vga(dev);
15664         }
15665 }
15666
15667 void i915_redisable_vga(struct drm_device *dev)
15668 {
15669         struct drm_i915_private *dev_priv = dev->dev_private;
15670
15671         /* This function can be called both from intel_modeset_setup_hw_state or
15672          * at a very early point in our resume sequence, where the power well
15673          * structures are not yet restored. Since this function is at a very
15674          * paranoid "someone might have enabled VGA while we were not looking"
15675          * level, just check if the power well is enabled instead of trying to
15676          * follow the "don't touch the power well if we don't need it" policy
15677          * the rest of the driver uses. */
15678         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15679                 return;
15680
15681         i915_redisable_vga_power_on(dev);
15682 }
15683
15684 static bool primary_get_hw_state(struct intel_plane *plane)
15685 {
15686         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15687
15688         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15689 }
15690
15691 /* FIXME read out full plane state for all planes */
15692 static void readout_plane_state(struct intel_crtc *crtc)
15693 {
15694         struct drm_plane *primary = crtc->base.primary;
15695         struct intel_plane_state *plane_state =
15696                 to_intel_plane_state(primary->state);
15697
15698         plane_state->visible = crtc->active &&
15699                 primary_get_hw_state(to_intel_plane(primary));
15700
15701         if (plane_state->visible)
15702                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15703 }
15704
15705 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15706 {
15707         struct drm_i915_private *dev_priv = dev->dev_private;
15708         enum pipe pipe;
15709         struct intel_crtc *crtc;
15710         struct intel_encoder *encoder;
15711         struct intel_connector *connector;
15712         int i;
15713
15714         dev_priv->active_crtcs = 0;
15715
15716         for_each_intel_crtc(dev, crtc) {
15717                 struct intel_crtc_state *crtc_state = crtc->config;
15718                 int pixclk = 0;
15719
15720                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15721                 memset(crtc_state, 0, sizeof(*crtc_state));
15722                 crtc_state->base.crtc = &crtc->base;
15723
15724                 crtc_state->base.active = crtc_state->base.enable =
15725                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15726
15727                 crtc->base.enabled = crtc_state->base.enable;
15728                 crtc->active = crtc_state->base.active;
15729
15730                 if (crtc_state->base.active) {
15731                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15732
15733                         if (IS_BROADWELL(dev_priv)) {
15734                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15735
15736                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15737                                 if (crtc_state->ips_enabled)
15738                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15739                         } else if (IS_VALLEYVIEW(dev_priv) ||
15740                                    IS_CHERRYVIEW(dev_priv) ||
15741                                    IS_BROXTON(dev_priv))
15742                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15743                         else
15744                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15745                 }
15746
15747                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15748
15749                 readout_plane_state(crtc);
15750
15751                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15752                               crtc->base.base.id,
15753                               crtc->active ? "enabled" : "disabled");
15754         }
15755
15756         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15757                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15758
15759                 pll->on = pll->get_hw_state(dev_priv, pll,
15760                                             &pll->config.hw_state);
15761                 pll->active = 0;
15762                 pll->config.crtc_mask = 0;
15763                 for_each_intel_crtc(dev, crtc) {
15764                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15765                                 pll->active++;
15766                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15767                         }
15768                 }
15769
15770                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15771                               pll->name, pll->config.crtc_mask, pll->on);
15772
15773                 if (pll->config.crtc_mask)
15774                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15775         }
15776
15777         for_each_intel_encoder(dev, encoder) {
15778                 pipe = 0;
15779
15780                 if (encoder->get_hw_state(encoder, &pipe)) {
15781                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15782                         encoder->base.crtc = &crtc->base;
15783                         encoder->get_config(encoder, crtc->config);
15784                 } else {
15785                         encoder->base.crtc = NULL;
15786                 }
15787
15788                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15789                               encoder->base.base.id,
15790                               encoder->base.name,
15791                               encoder->base.crtc ? "enabled" : "disabled",
15792                               pipe_name(pipe));
15793         }
15794
15795         for_each_intel_connector(dev, connector) {
15796                 if (connector->get_hw_state(connector)) {
15797                         connector->base.dpms = DRM_MODE_DPMS_ON;
15798
15799                         encoder = connector->encoder;
15800                         connector->base.encoder = &encoder->base;
15801
15802                         if (encoder->base.crtc &&
15803                             encoder->base.crtc->state->active) {
15804                                 /*
15805                                  * This has to be done during hardware readout
15806                                  * because anything calling .crtc_disable may
15807                                  * rely on the connector_mask being accurate.
15808                                  */
15809                                 encoder->base.crtc->state->connector_mask |=
15810                                         1 << drm_connector_index(&connector->base);
15811                         }
15812
15813                 } else {
15814                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15815                         connector->base.encoder = NULL;
15816                 }
15817                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15818                               connector->base.base.id,
15819                               connector->base.name,
15820                               connector->base.encoder ? "enabled" : "disabled");
15821         }
15822
15823         for_each_intel_crtc(dev, crtc) {
15824                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15825
15826                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15827                 if (crtc->base.state->active) {
15828                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15829                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15830                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15831
15832                         /*
15833                          * The initial mode needs to be set in order to keep
15834                          * the atomic core happy. It wants a valid mode if the
15835                          * crtc's enabled, so we do the above call.
15836                          *
15837                          * At this point some state updated by the connectors
15838                          * in their ->detect() callback has not run yet, so
15839                          * no recalculation can be done yet.
15840                          *
15841                          * Even if we could do a recalculation and modeset
15842                          * right now it would cause a double modeset if
15843                          * fbdev or userspace chooses a different initial mode.
15844                          *
15845                          * If that happens, someone indicated they wanted a
15846                          * mode change, which means it's safe to do a full
15847                          * recalculation.
15848                          */
15849                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15850
15851                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15852                         update_scanline_offset(crtc);
15853                 }
15854         }
15855 }
15856
15857 /* Scan out the current hw modeset state,
15858  * and sanitizes it to the current state
15859  */
15860 static void
15861 intel_modeset_setup_hw_state(struct drm_device *dev)
15862 {
15863         struct drm_i915_private *dev_priv = dev->dev_private;
15864         enum pipe pipe;
15865         struct intel_crtc *crtc;
15866         struct intel_encoder *encoder;
15867         int i;
15868
15869         intel_modeset_readout_hw_state(dev);
15870
15871         /* HW state is read out, now we need to sanitize this mess. */
15872         for_each_intel_encoder(dev, encoder) {
15873                 intel_sanitize_encoder(encoder);
15874         }
15875
15876         for_each_pipe(dev_priv, pipe) {
15877                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15878                 intel_sanitize_crtc(crtc);
15879                 intel_dump_pipe_config(crtc, crtc->config,
15880                                        "[setup_hw_state]");
15881         }
15882
15883         intel_modeset_update_connector_atomic_state(dev);
15884
15885         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15886                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15887
15888                 if (!pll->on || pll->active)
15889                         continue;
15890
15891                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15892
15893                 pll->disable(dev_priv, pll);
15894                 pll->on = false;
15895         }
15896
15897         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15898                 vlv_wm_get_hw_state(dev);
15899         else if (IS_GEN9(dev))
15900                 skl_wm_get_hw_state(dev);
15901         else if (HAS_PCH_SPLIT(dev))
15902                 ilk_wm_get_hw_state(dev);
15903
15904         for_each_intel_crtc(dev, crtc) {
15905                 unsigned long put_domains;
15906
15907                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15908                 if (WARN_ON(put_domains))
15909                         modeset_put_power_domains(dev_priv, put_domains);
15910         }
15911         intel_display_set_init_power(dev_priv, false);
15912
15913         intel_fbc_init_pipe_state(dev_priv);
15914 }
15915
15916 void intel_display_resume(struct drm_device *dev)
15917 {
15918         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15919         struct intel_connector *conn;
15920         struct intel_plane *plane;
15921         struct drm_crtc *crtc;
15922         int ret;
15923
15924         if (!state)
15925                 return;
15926
15927         state->acquire_ctx = dev->mode_config.acquire_ctx;
15928
15929         /* preserve complete old state, including dpll */
15930         intel_atomic_get_shared_dpll_state(state);
15931
15932         for_each_crtc(dev, crtc) {
15933                 struct drm_crtc_state *crtc_state =
15934                         drm_atomic_get_crtc_state(state, crtc);
15935
15936                 ret = PTR_ERR_OR_ZERO(crtc_state);
15937                 if (ret)
15938                         goto err;
15939
15940                 /* force a restore */
15941                 crtc_state->mode_changed = true;
15942         }
15943
15944         for_each_intel_plane(dev, plane) {
15945                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15946                 if (ret)
15947                         goto err;
15948         }
15949
15950         for_each_intel_connector(dev, conn) {
15951                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15952                 if (ret)
15953                         goto err;
15954         }
15955
15956         intel_modeset_setup_hw_state(dev);
15957
15958         i915_redisable_vga(dev);
15959         ret = drm_atomic_commit(state);
15960         if (!ret)
15961                 return;
15962
15963 err:
15964         DRM_ERROR("Restoring old state failed with %i\n", ret);
15965         drm_atomic_state_free(state);
15966 }
15967
15968 void intel_modeset_gem_init(struct drm_device *dev)
15969 {
15970         struct drm_crtc *c;
15971         struct drm_i915_gem_object *obj;
15972         int ret;
15973
15974         mutex_lock(&dev->struct_mutex);
15975         intel_init_gt_powersave(dev);
15976         mutex_unlock(&dev->struct_mutex);
15977
15978         intel_modeset_init_hw(dev);
15979
15980         intel_setup_overlay(dev);
15981
15982         /*
15983          * Make sure any fbs we allocated at startup are properly
15984          * pinned & fenced.  When we do the allocation it's too early
15985          * for this.
15986          */
15987         for_each_crtc(dev, c) {
15988                 obj = intel_fb_obj(c->primary->fb);
15989                 if (obj == NULL)
15990                         continue;
15991
15992                 mutex_lock(&dev->struct_mutex);
15993                 ret = intel_pin_and_fence_fb_obj(c->primary,
15994                                                  c->primary->fb,
15995                                                  c->primary->state);
15996                 mutex_unlock(&dev->struct_mutex);
15997                 if (ret) {
15998                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15999                                   to_intel_crtc(c)->pipe);
16000                         drm_framebuffer_unreference(c->primary->fb);
16001                         c->primary->fb = NULL;
16002                         c->primary->crtc = c->primary->state->crtc = NULL;
16003                         update_state_fb(c->primary);
16004                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16005                 }
16006         }
16007
16008         intel_backlight_register(dev);
16009 }
16010
16011 void intel_connector_unregister(struct intel_connector *intel_connector)
16012 {
16013         struct drm_connector *connector = &intel_connector->base;
16014
16015         intel_panel_destroy_backlight(connector);
16016         drm_connector_unregister(connector);
16017 }
16018
16019 void intel_modeset_cleanup(struct drm_device *dev)
16020 {
16021         struct drm_i915_private *dev_priv = dev->dev_private;
16022         struct intel_connector *connector;
16023
16024         intel_disable_gt_powersave(dev);
16025
16026         intel_backlight_unregister(dev);
16027
16028         /*
16029          * Interrupts and polling as the first thing to avoid creating havoc.
16030          * Too much stuff here (turning of connectors, ...) would
16031          * experience fancy races otherwise.
16032          */
16033         intel_irq_uninstall(dev_priv);
16034
16035         /*
16036          * Due to the hpd irq storm handling the hotplug work can re-arm the
16037          * poll handlers. Hence disable polling after hpd handling is shut down.
16038          */
16039         drm_kms_helper_poll_fini(dev);
16040
16041         intel_unregister_dsm_handler();
16042
16043         intel_fbc_global_disable(dev_priv);
16044
16045         /* flush any delayed tasks or pending work */
16046         flush_scheduled_work();
16047
16048         /* destroy the backlight and sysfs files before encoders/connectors */
16049         for_each_intel_connector(dev, connector)
16050                 connector->unregister(connector);
16051
16052         drm_mode_config_cleanup(dev);
16053
16054         intel_cleanup_overlay(dev);
16055
16056         mutex_lock(&dev->struct_mutex);
16057         intel_cleanup_gt_powersave(dev);
16058         mutex_unlock(&dev->struct_mutex);
16059
16060         intel_teardown_gmbus(dev);
16061 }
16062
16063 /*
16064  * Return which encoder is currently attached for connector.
16065  */
16066 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16067 {
16068         return &intel_attached_encoder(connector)->base;
16069 }
16070
16071 void intel_connector_attach_encoder(struct intel_connector *connector,
16072                                     struct intel_encoder *encoder)
16073 {
16074         connector->encoder = encoder;
16075         drm_mode_connector_attach_encoder(&connector->base,
16076                                           &encoder->base);
16077 }
16078
16079 /*
16080  * set vga decode state - true == enable VGA decode
16081  */
16082 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16083 {
16084         struct drm_i915_private *dev_priv = dev->dev_private;
16085         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16086         u16 gmch_ctrl;
16087
16088         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16089                 DRM_ERROR("failed to read control word\n");
16090                 return -EIO;
16091         }
16092
16093         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16094                 return 0;
16095
16096         if (state)
16097                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16098         else
16099                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16100
16101         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16102                 DRM_ERROR("failed to write control word\n");
16103                 return -EIO;
16104         }
16105
16106         return 0;
16107 }
16108
16109 struct intel_display_error_state {
16110
16111         u32 power_well_driver;
16112
16113         int num_transcoders;
16114
16115         struct intel_cursor_error_state {
16116                 u32 control;
16117                 u32 position;
16118                 u32 base;
16119                 u32 size;
16120         } cursor[I915_MAX_PIPES];
16121
16122         struct intel_pipe_error_state {
16123                 bool power_domain_on;
16124                 u32 source;
16125                 u32 stat;
16126         } pipe[I915_MAX_PIPES];
16127
16128         struct intel_plane_error_state {
16129                 u32 control;
16130                 u32 stride;
16131                 u32 size;
16132                 u32 pos;
16133                 u32 addr;
16134                 u32 surface;
16135                 u32 tile_offset;
16136         } plane[I915_MAX_PIPES];
16137
16138         struct intel_transcoder_error_state {
16139                 bool power_domain_on;
16140                 enum transcoder cpu_transcoder;
16141
16142                 u32 conf;
16143
16144                 u32 htotal;
16145                 u32 hblank;
16146                 u32 hsync;
16147                 u32 vtotal;
16148                 u32 vblank;
16149                 u32 vsync;
16150         } transcoder[4];
16151 };
16152
16153 struct intel_display_error_state *
16154 intel_display_capture_error_state(struct drm_device *dev)
16155 {
16156         struct drm_i915_private *dev_priv = dev->dev_private;
16157         struct intel_display_error_state *error;
16158         int transcoders[] = {
16159                 TRANSCODER_A,
16160                 TRANSCODER_B,
16161                 TRANSCODER_C,
16162                 TRANSCODER_EDP,
16163         };
16164         int i;
16165
16166         if (INTEL_INFO(dev)->num_pipes == 0)
16167                 return NULL;
16168
16169         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16170         if (error == NULL)
16171                 return NULL;
16172
16173         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16174                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16175
16176         for_each_pipe(dev_priv, i) {
16177                 error->pipe[i].power_domain_on =
16178                         __intel_display_power_is_enabled(dev_priv,
16179                                                          POWER_DOMAIN_PIPE(i));
16180                 if (!error->pipe[i].power_domain_on)
16181                         continue;
16182
16183                 error->cursor[i].control = I915_READ(CURCNTR(i));
16184                 error->cursor[i].position = I915_READ(CURPOS(i));
16185                 error->cursor[i].base = I915_READ(CURBASE(i));
16186
16187                 error->plane[i].control = I915_READ(DSPCNTR(i));
16188                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16189                 if (INTEL_INFO(dev)->gen <= 3) {
16190                         error->plane[i].size = I915_READ(DSPSIZE(i));
16191                         error->plane[i].pos = I915_READ(DSPPOS(i));
16192                 }
16193                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16194                         error->plane[i].addr = I915_READ(DSPADDR(i));
16195                 if (INTEL_INFO(dev)->gen >= 4) {
16196                         error->plane[i].surface = I915_READ(DSPSURF(i));
16197                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16198                 }
16199
16200                 error->pipe[i].source = I915_READ(PIPESRC(i));
16201
16202                 if (HAS_GMCH_DISPLAY(dev))
16203                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16204         }
16205
16206         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16207         if (HAS_DDI(dev_priv->dev))
16208                 error->num_transcoders++; /* Account for eDP. */
16209
16210         for (i = 0; i < error->num_transcoders; i++) {
16211                 enum transcoder cpu_transcoder = transcoders[i];
16212
16213                 error->transcoder[i].power_domain_on =
16214                         __intel_display_power_is_enabled(dev_priv,
16215                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16216                 if (!error->transcoder[i].power_domain_on)
16217                         continue;
16218
16219                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16220
16221                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16222                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16223                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16224                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16225                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16226                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16227                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16228         }
16229
16230         return error;
16231 }
16232
16233 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16234
16235 void
16236 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16237                                 struct drm_device *dev,
16238                                 struct intel_display_error_state *error)
16239 {
16240         struct drm_i915_private *dev_priv = dev->dev_private;
16241         int i;
16242
16243         if (!error)
16244                 return;
16245
16246         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16247         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16248                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16249                            error->power_well_driver);
16250         for_each_pipe(dev_priv, i) {
16251                 err_printf(m, "Pipe [%d]:\n", i);
16252                 err_printf(m, "  Power: %s\n",
16253                            onoff(error->pipe[i].power_domain_on));
16254                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16255                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16256
16257                 err_printf(m, "Plane [%d]:\n", i);
16258                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16259                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16260                 if (INTEL_INFO(dev)->gen <= 3) {
16261                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16262                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16263                 }
16264                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16265                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16266                 if (INTEL_INFO(dev)->gen >= 4) {
16267                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16268                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16269                 }
16270
16271                 err_printf(m, "Cursor [%d]:\n", i);
16272                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16273                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16274                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16275         }
16276
16277         for (i = 0; i < error->num_transcoders; i++) {
16278                 err_printf(m, "CPU transcoder: %c\n",
16279                            transcoder_name(error->transcoder[i].cpu_transcoder));
16280                 err_printf(m, "  Power: %s\n",
16281                            onoff(error->transcoder[i].power_domain_on));
16282                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16283                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16284                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16285                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16286                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16287                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16288                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16289         }
16290 }