]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
ecryptfs: Fix memory leakage in keystore.c
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
56 {
57         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
59         return intel_dig_port->base.base.dev;
60 }
61
62 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63 {
64         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
65 }
66
67 static void intel_dp_link_down(struct intel_dp *intel_dp);
68
69 static int
70 intel_dp_max_link_bw(struct intel_dp *intel_dp)
71 {
72         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
73
74         switch (max_link_bw) {
75         case DP_LINK_BW_1_62:
76         case DP_LINK_BW_2_7:
77                 break;
78         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79                 max_link_bw = DP_LINK_BW_2_7;
80                 break;
81         default:
82                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83                      max_link_bw);
84                 max_link_bw = DP_LINK_BW_1_62;
85                 break;
86         }
87         return max_link_bw;
88 }
89
90 /*
91  * The units on the numbers in the next two are... bizarre.  Examples will
92  * make it clearer; this one parallels an example in the eDP spec.
93  *
94  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95  *
96  *     270000 * 1 * 8 / 10 == 216000
97  *
98  * The actual data capacity of that configuration is 2.16Gbit/s, so the
99  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
100  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101  * 119000.  At 18bpp that's 2142000 kilobits per second.
102  *
103  * Thus the strange-looking division by 10 in intel_dp_link_required, to
104  * get the result in decakilobits instead of kilobits.
105  */
106
107 static int
108 intel_dp_link_required(int pixel_clock, int bpp)
109 {
110         return (pixel_clock * bpp + 9) / 10;
111 }
112
113 static int
114 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115 {
116         return (max_link_clock * max_lanes * 8) / 10;
117 }
118
119 static int
120 intel_dp_mode_valid(struct drm_connector *connector,
121                     struct drm_display_mode *mode)
122 {
123         struct intel_dp *intel_dp = intel_attached_dp(connector);
124         struct intel_connector *intel_connector = to_intel_connector(connector);
125         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
126         int target_clock = mode->clock;
127         int max_rate, mode_rate, max_lanes, max_link_clock;
128
129         if (is_edp(intel_dp) && fixed_mode) {
130                 if (mode->hdisplay > fixed_mode->hdisplay)
131                         return MODE_PANEL;
132
133                 if (mode->vdisplay > fixed_mode->vdisplay)
134                         return MODE_PANEL;
135
136                 target_clock = fixed_mode->clock;
137         }
138
139         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
142         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143         mode_rate = intel_dp_link_required(target_clock, 18);
144
145         if (mode_rate > max_rate)
146                 return MODE_CLOCK_HIGH;
147
148         if (mode->clock < 10000)
149                 return MODE_CLOCK_LOW;
150
151         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152                 return MODE_H_ILLEGAL;
153
154         return MODE_OK;
155 }
156
157 static uint32_t
158 pack_aux(uint8_t *src, int src_bytes)
159 {
160         int     i;
161         uint32_t v = 0;
162
163         if (src_bytes > 4)
164                 src_bytes = 4;
165         for (i = 0; i < src_bytes; i++)
166                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
167         return v;
168 }
169
170 static void
171 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172 {
173         int i;
174         if (dst_bytes > 4)
175                 dst_bytes = 4;
176         for (i = 0; i < dst_bytes; i++)
177                 dst[i] = src >> ((3-i) * 8);
178 }
179
180 /* hrawclock is 1/4 the FSB frequency */
181 static int
182 intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215 {
216         struct drm_device *dev = intel_dp_to_dev(intel_dp);
217         struct drm_i915_private *dev_priv = dev->dev_private;
218         u32 pp_stat_reg;
219
220         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221         return (I915_READ(pp_stat_reg) & PP_ON) != 0;
222 }
223
224 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225 {
226         struct drm_device *dev = intel_dp_to_dev(intel_dp);
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 pp_ctrl_reg;
229
230         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231         return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
232 }
233
234 static void
235 intel_dp_check_edp(struct intel_dp *intel_dp)
236 {
237         struct drm_device *dev = intel_dp_to_dev(intel_dp);
238         struct drm_i915_private *dev_priv = dev->dev_private;
239         u32 pp_stat_reg, pp_ctrl_reg;
240
241         if (!is_edp(intel_dp))
242                 return;
243
244         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
247         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
249                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
250                                 I915_READ(pp_stat_reg),
251                                 I915_READ(pp_ctrl_reg));
252         }
253 }
254
255 static uint32_t
256 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257 {
258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259         struct drm_device *dev = intel_dig_port->base.base.dev;
260         struct drm_i915_private *dev_priv = dev->dev_private;
261         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
262         uint32_t status;
263         bool done;
264
265 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266         if (has_aux_irq)
267                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
268                                           msecs_to_jiffies_timeout(10));
269         else
270                 done = wait_for_atomic(C, 10) == 0;
271         if (!done)
272                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273                           has_aux_irq);
274 #undef C
275
276         return status;
277 }
278
279 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
280                                       int index)
281 {
282         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283         struct drm_device *dev = intel_dig_port->base.base.dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285
286         /* The clock divider is based off the hrawclk,
287          * and would like to run at 2MHz. So, take the
288          * hrawclk value and divide by 2 and use that
289          *
290          * Note that PCH attached eDP panels should use a 125MHz input
291          * clock divider.
292          */
293         if (IS_VALLEYVIEW(dev)) {
294                 return index ? 0 : 100;
295         } else if (intel_dig_port->port == PORT_A) {
296                 if (index)
297                         return 0;
298                 if (HAS_DDI(dev))
299                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
300                 else if (IS_GEN6(dev) || IS_GEN7(dev))
301                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
302                 else
303                         return 225; /* eDP input clock at 450Mhz */
304         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
305                 /* Workaround for non-ULT HSW */
306                 switch (index) {
307                 case 0: return 63;
308                 case 1: return 72;
309                 default: return 0;
310                 }
311         } else if (HAS_PCH_SPLIT(dev)) {
312                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
313         } else {
314                 return index ? 0 :intel_hrawclk(dev) / 2;
315         }
316 }
317
318 static int
319 intel_dp_aux_ch(struct intel_dp *intel_dp,
320                 uint8_t *send, int send_bytes,
321                 uint8_t *recv, int recv_size)
322 {
323         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324         struct drm_device *dev = intel_dig_port->base.base.dev;
325         struct drm_i915_private *dev_priv = dev->dev_private;
326         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
327         uint32_t ch_data = ch_ctl + 4;
328         uint32_t aux_clock_divider;
329         int i, ret, recv_bytes;
330         uint32_t status;
331         int try, precharge, clock = 0;
332         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
333
334         /* dp aux is extremely sensitive to irq latency, hence request the
335          * lowest possible wakeup latency and so prevent the cpu from going into
336          * deep sleep states.
337          */
338         pm_qos_update_request(&dev_priv->pm_qos, 0);
339
340         intel_dp_check_edp(intel_dp);
341
342         if (IS_GEN6(dev))
343                 precharge = 3;
344         else
345                 precharge = 5;
346
347         intel_aux_display_runtime_get(dev_priv);
348
349         /* Try to wait for any previous AUX channel activity */
350         for (try = 0; try < 3; try++) {
351                 status = I915_READ_NOTRACE(ch_ctl);
352                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
353                         break;
354                 msleep(1);
355         }
356
357         if (try == 3) {
358                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
359                      I915_READ(ch_ctl));
360                 ret = -EBUSY;
361                 goto out;
362         }
363
364         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
365                 /* Must try at least 3 times according to DP spec */
366                 for (try = 0; try < 5; try++) {
367                         /* Load the send data into the aux channel data registers */
368                         for (i = 0; i < send_bytes; i += 4)
369                                 I915_WRITE(ch_data + i,
370                                            pack_aux(send + i, send_bytes - i));
371
372                         /* Send the command and wait for it to complete */
373                         I915_WRITE(ch_ctl,
374                                    DP_AUX_CH_CTL_SEND_BUSY |
375                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
376                                    DP_AUX_CH_CTL_TIME_OUT_400us |
377                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
378                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
379                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
380                                    DP_AUX_CH_CTL_DONE |
381                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
382                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
383
384                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
385
386                         /* Clear done status and any errors */
387                         I915_WRITE(ch_ctl,
388                                    status |
389                                    DP_AUX_CH_CTL_DONE |
390                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
391                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
392
393                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
394                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
395                                 continue;
396                         if (status & DP_AUX_CH_CTL_DONE)
397                                 break;
398                 }
399                 if (status & DP_AUX_CH_CTL_DONE)
400                         break;
401         }
402
403         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
404                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
405                 ret = -EBUSY;
406                 goto out;
407         }
408
409         /* Check for timeout or receive error.
410          * Timeouts occur when the sink is not connected
411          */
412         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
413                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
414                 ret = -EIO;
415                 goto out;
416         }
417
418         /* Timeouts occur when the device isn't connected, so they're
419          * "normal" -- don't fill the kernel log with these */
420         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
421                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
422                 ret = -ETIMEDOUT;
423                 goto out;
424         }
425
426         /* Unload any bytes sent back from the other side */
427         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
428                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
429         if (recv_bytes > recv_size)
430                 recv_bytes = recv_size;
431
432         for (i = 0; i < recv_bytes; i += 4)
433                 unpack_aux(I915_READ(ch_data + i),
434                            recv + i, recv_bytes - i);
435
436         ret = recv_bytes;
437 out:
438         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
439         intel_aux_display_runtime_put(dev_priv);
440
441         return ret;
442 }
443
444 /* Write data to the aux channel in native mode */
445 static int
446 intel_dp_aux_native_write(struct intel_dp *intel_dp,
447                           uint16_t address, uint8_t *send, int send_bytes)
448 {
449         int ret;
450         uint8_t msg[20];
451         int msg_bytes;
452         uint8_t ack;
453
454         intel_dp_check_edp(intel_dp);
455         if (send_bytes > 16)
456                 return -1;
457         msg[0] = AUX_NATIVE_WRITE << 4;
458         msg[1] = address >> 8;
459         msg[2] = address & 0xff;
460         msg[3] = send_bytes - 1;
461         memcpy(&msg[4], send, send_bytes);
462         msg_bytes = send_bytes + 4;
463         for (;;) {
464                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
465                 if (ret < 0)
466                         return ret;
467                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
468                         break;
469                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
470                         udelay(100);
471                 else
472                         return -EIO;
473         }
474         return send_bytes;
475 }
476
477 /* Write a single byte to the aux channel in native mode */
478 static int
479 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
480                             uint16_t address, uint8_t byte)
481 {
482         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
483 }
484
485 /* read bytes from a native aux channel */
486 static int
487 intel_dp_aux_native_read(struct intel_dp *intel_dp,
488                          uint16_t address, uint8_t *recv, int recv_bytes)
489 {
490         uint8_t msg[4];
491         int msg_bytes;
492         uint8_t reply[20];
493         int reply_bytes;
494         uint8_t ack;
495         int ret;
496
497         intel_dp_check_edp(intel_dp);
498         msg[0] = AUX_NATIVE_READ << 4;
499         msg[1] = address >> 8;
500         msg[2] = address & 0xff;
501         msg[3] = recv_bytes - 1;
502
503         msg_bytes = 4;
504         reply_bytes = recv_bytes + 1;
505
506         for (;;) {
507                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
508                                       reply, reply_bytes);
509                 if (ret == 0)
510                         return -EPROTO;
511                 if (ret < 0)
512                         return ret;
513                 ack = reply[0];
514                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
515                         memcpy(recv, reply + 1, ret - 1);
516                         return ret - 1;
517                 }
518                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
519                         udelay(100);
520                 else
521                         return -EIO;
522         }
523 }
524
525 static int
526 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
527                     uint8_t write_byte, uint8_t *read_byte)
528 {
529         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
530         struct intel_dp *intel_dp = container_of(adapter,
531                                                 struct intel_dp,
532                                                 adapter);
533         uint16_t address = algo_data->address;
534         uint8_t msg[5];
535         uint8_t reply[2];
536         unsigned retry;
537         int msg_bytes;
538         int reply_bytes;
539         int ret;
540
541         intel_dp_check_edp(intel_dp);
542         /* Set up the command byte */
543         if (mode & MODE_I2C_READ)
544                 msg[0] = AUX_I2C_READ << 4;
545         else
546                 msg[0] = AUX_I2C_WRITE << 4;
547
548         if (!(mode & MODE_I2C_STOP))
549                 msg[0] |= AUX_I2C_MOT << 4;
550
551         msg[1] = address >> 8;
552         msg[2] = address;
553
554         switch (mode) {
555         case MODE_I2C_WRITE:
556                 msg[3] = 0;
557                 msg[4] = write_byte;
558                 msg_bytes = 5;
559                 reply_bytes = 1;
560                 break;
561         case MODE_I2C_READ:
562                 msg[3] = 0;
563                 msg_bytes = 4;
564                 reply_bytes = 2;
565                 break;
566         default:
567                 msg_bytes = 3;
568                 reply_bytes = 1;
569                 break;
570         }
571
572         for (retry = 0; retry < 5; retry++) {
573                 ret = intel_dp_aux_ch(intel_dp,
574                                       msg, msg_bytes,
575                                       reply, reply_bytes);
576                 if (ret < 0) {
577                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
578                         return ret;
579                 }
580
581                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
582                 case AUX_NATIVE_REPLY_ACK:
583                         /* I2C-over-AUX Reply field is only valid
584                          * when paired with AUX ACK.
585                          */
586                         break;
587                 case AUX_NATIVE_REPLY_NACK:
588                         DRM_DEBUG_KMS("aux_ch native nack\n");
589                         return -EREMOTEIO;
590                 case AUX_NATIVE_REPLY_DEFER:
591                         /*
592                          * For now, just give more slack to branch devices. We
593                          * could check the DPCD for I2C bit rate capabilities,
594                          * and if available, adjust the interval. We could also
595                          * be more careful with DP-to-Legacy adapters where a
596                          * long legacy cable may force very low I2C bit rates.
597                          */
598                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
599                             DP_DWN_STRM_PORT_PRESENT)
600                                 usleep_range(500, 600);
601                         else
602                                 usleep_range(300, 400);
603                         continue;
604                 default:
605                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
606                                   reply[0]);
607                         return -EREMOTEIO;
608                 }
609
610                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
611                 case AUX_I2C_REPLY_ACK:
612                         if (mode == MODE_I2C_READ) {
613                                 *read_byte = reply[1];
614                         }
615                         return reply_bytes - 1;
616                 case AUX_I2C_REPLY_NACK:
617                         DRM_DEBUG_KMS("aux_i2c nack\n");
618                         return -EREMOTEIO;
619                 case AUX_I2C_REPLY_DEFER:
620                         DRM_DEBUG_KMS("aux_i2c defer\n");
621                         udelay(100);
622                         break;
623                 default:
624                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
625                         return -EREMOTEIO;
626                 }
627         }
628
629         DRM_ERROR("too many retries, giving up\n");
630         return -EREMOTEIO;
631 }
632
633 static int
634 intel_dp_i2c_init(struct intel_dp *intel_dp,
635                   struct intel_connector *intel_connector, const char *name)
636 {
637         int     ret;
638
639         DRM_DEBUG_KMS("i2c_init %s\n", name);
640         intel_dp->algo.running = false;
641         intel_dp->algo.address = 0;
642         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
643
644         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
645         intel_dp->adapter.owner = THIS_MODULE;
646         intel_dp->adapter.class = I2C_CLASS_DDC;
647         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
648         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
649         intel_dp->adapter.algo_data = &intel_dp->algo;
650         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
651
652         ironlake_edp_panel_vdd_on(intel_dp);
653         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
654         ironlake_edp_panel_vdd_off(intel_dp, false);
655         return ret;
656 }
657
658 static void
659 intel_dp_set_clock(struct intel_encoder *encoder,
660                    struct intel_crtc_config *pipe_config, int link_bw)
661 {
662         struct drm_device *dev = encoder->base.dev;
663
664         if (IS_G4X(dev)) {
665                 if (link_bw == DP_LINK_BW_1_62) {
666                         pipe_config->dpll.p1 = 2;
667                         pipe_config->dpll.p2 = 10;
668                         pipe_config->dpll.n = 2;
669                         pipe_config->dpll.m1 = 23;
670                         pipe_config->dpll.m2 = 8;
671                 } else {
672                         pipe_config->dpll.p1 = 1;
673                         pipe_config->dpll.p2 = 10;
674                         pipe_config->dpll.n = 1;
675                         pipe_config->dpll.m1 = 14;
676                         pipe_config->dpll.m2 = 2;
677                 }
678                 pipe_config->clock_set = true;
679         } else if (IS_HASWELL(dev)) {
680                 /* Haswell has special-purpose DP DDI clocks. */
681         } else if (HAS_PCH_SPLIT(dev)) {
682                 if (link_bw == DP_LINK_BW_1_62) {
683                         pipe_config->dpll.n = 1;
684                         pipe_config->dpll.p1 = 2;
685                         pipe_config->dpll.p2 = 10;
686                         pipe_config->dpll.m1 = 12;
687                         pipe_config->dpll.m2 = 9;
688                 } else {
689                         pipe_config->dpll.n = 2;
690                         pipe_config->dpll.p1 = 1;
691                         pipe_config->dpll.p2 = 10;
692                         pipe_config->dpll.m1 = 14;
693                         pipe_config->dpll.m2 = 8;
694                 }
695                 pipe_config->clock_set = true;
696         } else if (IS_VALLEYVIEW(dev)) {
697                 /* FIXME: Need to figure out optimized DP clocks for vlv. */
698         }
699 }
700
701 bool
702 intel_dp_compute_config(struct intel_encoder *encoder,
703                         struct intel_crtc_config *pipe_config)
704 {
705         struct drm_device *dev = encoder->base.dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
708         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
709         enum port port = dp_to_dig_port(intel_dp)->port;
710         struct intel_crtc *intel_crtc = encoder->new_crtc;
711         struct intel_connector *intel_connector = intel_dp->attached_connector;
712         int lane_count, clock;
713         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
714         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
715         int bpp, mode_rate;
716         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
717         int link_avail, link_clock;
718
719         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
720                 pipe_config->has_pch_encoder = true;
721
722         pipe_config->has_dp_encoder = true;
723
724         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
725                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
726                                        adjusted_mode);
727                 if (!HAS_PCH_SPLIT(dev))
728                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
729                                                  intel_connector->panel.fitting_mode);
730                 else
731                         intel_pch_panel_fitting(intel_crtc, pipe_config,
732                                                 intel_connector->panel.fitting_mode);
733         }
734
735         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
736                 return false;
737
738         DRM_DEBUG_KMS("DP link computation with max lane count %i "
739                       "max bw %02x pixel clock %iKHz\n",
740                       max_lane_count, bws[max_clock], adjusted_mode->clock);
741
742         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
743          * bpc in between. */
744         bpp = pipe_config->pipe_bpp;
745         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
746                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
747                               dev_priv->vbt.edp_bpp);
748                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
749         }
750
751         for (; bpp >= 6*3; bpp -= 2*3) {
752                 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
753
754                 for (clock = 0; clock <= max_clock; clock++) {
755                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
756                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
757                                 link_avail = intel_dp_max_data_rate(link_clock,
758                                                                     lane_count);
759
760                                 if (mode_rate <= link_avail) {
761                                         goto found;
762                                 }
763                         }
764                 }
765         }
766
767         return false;
768
769 found:
770         if (intel_dp->color_range_auto) {
771                 /*
772                  * See:
773                  * CEA-861-E - 5.1 Default Encoding Parameters
774                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
775                  */
776                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
777                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
778                 else
779                         intel_dp->color_range = 0;
780         }
781
782         if (intel_dp->color_range)
783                 pipe_config->limited_color_range = true;
784
785         intel_dp->link_bw = bws[clock];
786         intel_dp->lane_count = lane_count;
787         pipe_config->pipe_bpp = bpp;
788         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
789
790         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
791                       intel_dp->link_bw, intel_dp->lane_count,
792                       pipe_config->port_clock, bpp);
793         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
794                       mode_rate, link_avail);
795
796         intel_link_compute_m_n(bpp, lane_count,
797                                adjusted_mode->clock, pipe_config->port_clock,
798                                &pipe_config->dp_m_n);
799
800         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
801
802         return true;
803 }
804
805 void intel_dp_init_link_config(struct intel_dp *intel_dp)
806 {
807         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
808         intel_dp->link_configuration[0] = intel_dp->link_bw;
809         intel_dp->link_configuration[1] = intel_dp->lane_count;
810         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
811         /*
812          * Check for DPCD version > 1.1 and enhanced framing support
813          */
814         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
815             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
816                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
817         }
818 }
819
820 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
821 {
822         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
823         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
824         struct drm_device *dev = crtc->base.dev;
825         struct drm_i915_private *dev_priv = dev->dev_private;
826         u32 dpa_ctl;
827
828         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
829         dpa_ctl = I915_READ(DP_A);
830         dpa_ctl &= ~DP_PLL_FREQ_MASK;
831
832         if (crtc->config.port_clock == 162000) {
833                 /* For a long time we've carried around a ILK-DevA w/a for the
834                  * 160MHz clock. If we're really unlucky, it's still required.
835                  */
836                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
837                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
838                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
839         } else {
840                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
841                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
842         }
843
844         I915_WRITE(DP_A, dpa_ctl);
845
846         POSTING_READ(DP_A);
847         udelay(500);
848 }
849
850 static void intel_dp_mode_set(struct intel_encoder *encoder)
851 {
852         struct drm_device *dev = encoder->base.dev;
853         struct drm_i915_private *dev_priv = dev->dev_private;
854         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
855         enum port port = dp_to_dig_port(intel_dp)->port;
856         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
857         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
858
859         /*
860          * There are four kinds of DP registers:
861          *
862          *      IBX PCH
863          *      SNB CPU
864          *      IVB CPU
865          *      CPT PCH
866          *
867          * IBX PCH and CPU are the same for almost everything,
868          * except that the CPU DP PLL is configured in this
869          * register
870          *
871          * CPT PCH is quite different, having many bits moved
872          * to the TRANS_DP_CTL register instead. That
873          * configuration happens (oddly) in ironlake_pch_enable
874          */
875
876         /* Preserve the BIOS-computed detected bit. This is
877          * supposed to be read-only.
878          */
879         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
880
881         /* Handle DP bits in common between all three register formats */
882         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
883         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
884
885         if (intel_dp->has_audio) {
886                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
887                                  pipe_name(crtc->pipe));
888                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
889                 intel_write_eld(&encoder->base, adjusted_mode);
890         }
891
892         intel_dp_init_link_config(intel_dp);
893
894         /* Split out the IBX/CPU vs CPT settings */
895
896         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
897                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
898                         intel_dp->DP |= DP_SYNC_HS_HIGH;
899                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
900                         intel_dp->DP |= DP_SYNC_VS_HIGH;
901                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
902
903                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
904                         intel_dp->DP |= DP_ENHANCED_FRAMING;
905
906                 intel_dp->DP |= crtc->pipe << 29;
907         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
908                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
909                         intel_dp->DP |= intel_dp->color_range;
910
911                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
912                         intel_dp->DP |= DP_SYNC_HS_HIGH;
913                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
914                         intel_dp->DP |= DP_SYNC_VS_HIGH;
915                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
916
917                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
918                         intel_dp->DP |= DP_ENHANCED_FRAMING;
919
920                 if (crtc->pipe == 1)
921                         intel_dp->DP |= DP_PIPEB_SELECT;
922         } else {
923                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
924         }
925
926         if (port == PORT_A && !IS_VALLEYVIEW(dev))
927                 ironlake_set_pll_cpu_edp(intel_dp);
928 }
929
930 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
931 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
932
933 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
934 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
935
936 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
937 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
938
939 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
940                                        u32 mask,
941                                        u32 value)
942 {
943         struct drm_device *dev = intel_dp_to_dev(intel_dp);
944         struct drm_i915_private *dev_priv = dev->dev_private;
945         u32 pp_stat_reg, pp_ctrl_reg;
946
947         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
948         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
949
950         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
951                         mask, value,
952                         I915_READ(pp_stat_reg),
953                         I915_READ(pp_ctrl_reg));
954
955         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
956                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
957                                 I915_READ(pp_stat_reg),
958                                 I915_READ(pp_ctrl_reg));
959         }
960 }
961
962 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
963 {
964         DRM_DEBUG_KMS("Wait for panel power on\n");
965         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
966 }
967
968 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
969 {
970         DRM_DEBUG_KMS("Wait for panel power off time\n");
971         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
972 }
973
974 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
975 {
976         DRM_DEBUG_KMS("Wait for panel power cycle\n");
977         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
978 }
979
980
981 /* Read the current pp_control value, unlocking the register if it
982  * is locked
983  */
984
985 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
986 {
987         struct drm_device *dev = intel_dp_to_dev(intel_dp);
988         struct drm_i915_private *dev_priv = dev->dev_private;
989         u32 control;
990         u32 pp_ctrl_reg;
991
992         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
993         control = I915_READ(pp_ctrl_reg);
994
995         control &= ~PANEL_UNLOCK_MASK;
996         control |= PANEL_UNLOCK_REGS;
997         return control;
998 }
999
1000 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1001 {
1002         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1003         struct drm_i915_private *dev_priv = dev->dev_private;
1004         u32 pp;
1005         u32 pp_stat_reg, pp_ctrl_reg;
1006
1007         if (!is_edp(intel_dp))
1008                 return;
1009         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1010
1011         WARN(intel_dp->want_panel_vdd,
1012              "eDP VDD already requested on\n");
1013
1014         intel_dp->want_panel_vdd = true;
1015
1016         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1017                 DRM_DEBUG_KMS("eDP VDD already on\n");
1018                 return;
1019         }
1020
1021         if (!ironlake_edp_have_panel_power(intel_dp))
1022                 ironlake_wait_panel_power_cycle(intel_dp);
1023
1024         pp = ironlake_get_pp_control(intel_dp);
1025         pp |= EDP_FORCE_VDD;
1026
1027         pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1028         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1029
1030         I915_WRITE(pp_ctrl_reg, pp);
1031         POSTING_READ(pp_ctrl_reg);
1032         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1033                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1034         /*
1035          * If the panel wasn't on, delay before accessing aux channel
1036          */
1037         if (!ironlake_edp_have_panel_power(intel_dp)) {
1038                 DRM_DEBUG_KMS("eDP was not running\n");
1039                 msleep(intel_dp->panel_power_up_delay);
1040         }
1041 }
1042
1043 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1044 {
1045         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         u32 pp;
1048         u32 pp_stat_reg, pp_ctrl_reg;
1049
1050         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1051
1052         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1053                 pp = ironlake_get_pp_control(intel_dp);
1054                 pp &= ~EDP_FORCE_VDD;
1055
1056                 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1057                 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1058
1059                 I915_WRITE(pp_ctrl_reg, pp);
1060                 POSTING_READ(pp_ctrl_reg);
1061
1062                 /* Make sure sequencer is idle before allowing subsequent activity */
1063                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1064                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1065                 msleep(intel_dp->panel_power_down_delay);
1066         }
1067 }
1068
1069 static void ironlake_panel_vdd_work(struct work_struct *__work)
1070 {
1071         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1072                                                  struct intel_dp, panel_vdd_work);
1073         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1074
1075         mutex_lock(&dev->mode_config.mutex);
1076         ironlake_panel_vdd_off_sync(intel_dp);
1077         mutex_unlock(&dev->mode_config.mutex);
1078 }
1079
1080 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1081 {
1082         if (!is_edp(intel_dp))
1083                 return;
1084
1085         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1086         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1087
1088         intel_dp->want_panel_vdd = false;
1089
1090         if (sync) {
1091                 ironlake_panel_vdd_off_sync(intel_dp);
1092         } else {
1093                 /*
1094                  * Queue the timer to fire a long
1095                  * time from now (relative to the power down delay)
1096                  * to keep the panel power up across a sequence of operations
1097                  */
1098                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1099                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1100         }
1101 }
1102
1103 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1104 {
1105         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 pp;
1108         u32 pp_ctrl_reg;
1109
1110         if (!is_edp(intel_dp))
1111                 return;
1112
1113         DRM_DEBUG_KMS("Turn eDP power on\n");
1114
1115         if (ironlake_edp_have_panel_power(intel_dp)) {
1116                 DRM_DEBUG_KMS("eDP power already on\n");
1117                 return;
1118         }
1119
1120         ironlake_wait_panel_power_cycle(intel_dp);
1121
1122         pp = ironlake_get_pp_control(intel_dp);
1123         if (IS_GEN5(dev)) {
1124                 /* ILK workaround: disable reset around power sequence */
1125                 pp &= ~PANEL_POWER_RESET;
1126                 I915_WRITE(PCH_PP_CONTROL, pp);
1127                 POSTING_READ(PCH_PP_CONTROL);
1128         }
1129
1130         pp |= POWER_TARGET_ON;
1131         if (!IS_GEN5(dev))
1132                 pp |= PANEL_POWER_RESET;
1133
1134         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1135
1136         I915_WRITE(pp_ctrl_reg, pp);
1137         POSTING_READ(pp_ctrl_reg);
1138
1139         ironlake_wait_panel_on(intel_dp);
1140
1141         if (IS_GEN5(dev)) {
1142                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1143                 I915_WRITE(PCH_PP_CONTROL, pp);
1144                 POSTING_READ(PCH_PP_CONTROL);
1145         }
1146 }
1147
1148 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1149 {
1150         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         u32 pp;
1153         u32 pp_ctrl_reg;
1154
1155         if (!is_edp(intel_dp))
1156                 return;
1157
1158         DRM_DEBUG_KMS("Turn eDP power off\n");
1159
1160         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1161
1162         pp = ironlake_get_pp_control(intel_dp);
1163         /* We need to switch off panel power _and_ force vdd, for otherwise some
1164          * panels get very unhappy and cease to work. */
1165         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1166
1167         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1168
1169         I915_WRITE(pp_ctrl_reg, pp);
1170         POSTING_READ(pp_ctrl_reg);
1171
1172         intel_dp->want_panel_vdd = false;
1173
1174         ironlake_wait_panel_off(intel_dp);
1175 }
1176
1177 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1178 {
1179         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1180         struct drm_device *dev = intel_dig_port->base.base.dev;
1181         struct drm_i915_private *dev_priv = dev->dev_private;
1182         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1183         u32 pp;
1184         u32 pp_ctrl_reg;
1185
1186         if (!is_edp(intel_dp))
1187                 return;
1188
1189         DRM_DEBUG_KMS("\n");
1190         /*
1191          * If we enable the backlight right away following a panel power
1192          * on, we may see slight flicker as the panel syncs with the eDP
1193          * link.  So delay a bit to make sure the image is solid before
1194          * allowing it to appear.
1195          */
1196         msleep(intel_dp->backlight_on_delay);
1197         pp = ironlake_get_pp_control(intel_dp);
1198         pp |= EDP_BLC_ENABLE;
1199
1200         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1201
1202         I915_WRITE(pp_ctrl_reg, pp);
1203         POSTING_READ(pp_ctrl_reg);
1204
1205         intel_panel_enable_backlight(dev, pipe);
1206 }
1207
1208 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1209 {
1210         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212         u32 pp;
1213         u32 pp_ctrl_reg;
1214
1215         if (!is_edp(intel_dp))
1216                 return;
1217
1218         intel_panel_disable_backlight(dev);
1219
1220         DRM_DEBUG_KMS("\n");
1221         pp = ironlake_get_pp_control(intel_dp);
1222         pp &= ~EDP_BLC_ENABLE;
1223
1224         pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1225
1226         I915_WRITE(pp_ctrl_reg, pp);
1227         POSTING_READ(pp_ctrl_reg);
1228         msleep(intel_dp->backlight_off_delay);
1229 }
1230
1231 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1232 {
1233         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1234         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1235         struct drm_device *dev = crtc->dev;
1236         struct drm_i915_private *dev_priv = dev->dev_private;
1237         u32 dpa_ctl;
1238
1239         assert_pipe_disabled(dev_priv,
1240                              to_intel_crtc(crtc)->pipe);
1241
1242         DRM_DEBUG_KMS("\n");
1243         dpa_ctl = I915_READ(DP_A);
1244         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1245         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1246
1247         /* We don't adjust intel_dp->DP while tearing down the link, to
1248          * facilitate link retraining (e.g. after hotplug). Hence clear all
1249          * enable bits here to ensure that we don't enable too much. */
1250         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1251         intel_dp->DP |= DP_PLL_ENABLE;
1252         I915_WRITE(DP_A, intel_dp->DP);
1253         POSTING_READ(DP_A);
1254         udelay(200);
1255 }
1256
1257 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1258 {
1259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1260         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1261         struct drm_device *dev = crtc->dev;
1262         struct drm_i915_private *dev_priv = dev->dev_private;
1263         u32 dpa_ctl;
1264
1265         assert_pipe_disabled(dev_priv,
1266                              to_intel_crtc(crtc)->pipe);
1267
1268         dpa_ctl = I915_READ(DP_A);
1269         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1270              "dp pll off, should be on\n");
1271         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1272
1273         /* We can't rely on the value tracked for the DP register in
1274          * intel_dp->DP because link_down must not change that (otherwise link
1275          * re-training will fail. */
1276         dpa_ctl &= ~DP_PLL_ENABLE;
1277         I915_WRITE(DP_A, dpa_ctl);
1278         POSTING_READ(DP_A);
1279         udelay(200);
1280 }
1281
1282 /* If the sink supports it, try to set the power state appropriately */
1283 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1284 {
1285         int ret, i;
1286
1287         /* Should have a valid DPCD by this point */
1288         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1289                 return;
1290
1291         if (mode != DRM_MODE_DPMS_ON) {
1292                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1293                                                   DP_SET_POWER_D3);
1294                 if (ret != 1)
1295                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1296         } else {
1297                 /*
1298                  * When turning on, we need to retry for 1ms to give the sink
1299                  * time to wake up.
1300                  */
1301                 for (i = 0; i < 3; i++) {
1302                         ret = intel_dp_aux_native_write_1(intel_dp,
1303                                                           DP_SET_POWER,
1304                                                           DP_SET_POWER_D0);
1305                         if (ret == 1)
1306                                 break;
1307                         msleep(1);
1308                 }
1309         }
1310 }
1311
1312 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1313                                   enum pipe *pipe)
1314 {
1315         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1316         enum port port = dp_to_dig_port(intel_dp)->port;
1317         struct drm_device *dev = encoder->base.dev;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319         u32 tmp = I915_READ(intel_dp->output_reg);
1320
1321         if (!(tmp & DP_PORT_EN))
1322                 return false;
1323
1324         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1325                 *pipe = PORT_TO_PIPE_CPT(tmp);
1326         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1327                 *pipe = PORT_TO_PIPE(tmp);
1328         } else {
1329                 u32 trans_sel;
1330                 u32 trans_dp;
1331                 int i;
1332
1333                 switch (intel_dp->output_reg) {
1334                 case PCH_DP_B:
1335                         trans_sel = TRANS_DP_PORT_SEL_B;
1336                         break;
1337                 case PCH_DP_C:
1338                         trans_sel = TRANS_DP_PORT_SEL_C;
1339                         break;
1340                 case PCH_DP_D:
1341                         trans_sel = TRANS_DP_PORT_SEL_D;
1342                         break;
1343                 default:
1344                         return true;
1345                 }
1346
1347                 for_each_pipe(i) {
1348                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1349                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1350                                 *pipe = i;
1351                                 return true;
1352                         }
1353                 }
1354
1355                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1356                               intel_dp->output_reg);
1357         }
1358
1359         return true;
1360 }
1361
1362 static void intel_dp_get_config(struct intel_encoder *encoder,
1363                                 struct intel_crtc_config *pipe_config)
1364 {
1365         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1366         u32 tmp, flags = 0;
1367         struct drm_device *dev = encoder->base.dev;
1368         struct drm_i915_private *dev_priv = dev->dev_private;
1369         enum port port = dp_to_dig_port(intel_dp)->port;
1370         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1371
1372         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1373                 tmp = I915_READ(intel_dp->output_reg);
1374                 if (tmp & DP_SYNC_HS_HIGH)
1375                         flags |= DRM_MODE_FLAG_PHSYNC;
1376                 else
1377                         flags |= DRM_MODE_FLAG_NHSYNC;
1378
1379                 if (tmp & DP_SYNC_VS_HIGH)
1380                         flags |= DRM_MODE_FLAG_PVSYNC;
1381                 else
1382                         flags |= DRM_MODE_FLAG_NVSYNC;
1383         } else {
1384                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1385                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1386                         flags |= DRM_MODE_FLAG_PHSYNC;
1387                 else
1388                         flags |= DRM_MODE_FLAG_NHSYNC;
1389
1390                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1391                         flags |= DRM_MODE_FLAG_PVSYNC;
1392                 else
1393                         flags |= DRM_MODE_FLAG_NVSYNC;
1394         }
1395
1396         pipe_config->adjusted_mode.flags |= flags;
1397
1398         if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1399                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1400                         pipe_config->port_clock = 162000;
1401                 else
1402                         pipe_config->port_clock = 270000;
1403         }
1404 }
1405
1406 static bool is_edp_psr(struct intel_dp *intel_dp)
1407 {
1408         return is_edp(intel_dp) &&
1409                 intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1410 }
1411
1412 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1413 {
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415
1416         if (!IS_HASWELL(dev))
1417                 return false;
1418
1419         return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1420 }
1421
1422 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1423                                     struct edp_vsc_psr *vsc_psr)
1424 {
1425         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1426         struct drm_device *dev = dig_port->base.base.dev;
1427         struct drm_i915_private *dev_priv = dev->dev_private;
1428         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1429         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1430         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1431         uint32_t *data = (uint32_t *) vsc_psr;
1432         unsigned int i;
1433
1434         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1435            the video DIP being updated before program video DIP data buffer
1436            registers for DIP being updated. */
1437         I915_WRITE(ctl_reg, 0);
1438         POSTING_READ(ctl_reg);
1439
1440         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1441                 if (i < sizeof(struct edp_vsc_psr))
1442                         I915_WRITE(data_reg + i, *data++);
1443                 else
1444                         I915_WRITE(data_reg + i, 0);
1445         }
1446
1447         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1448         POSTING_READ(ctl_reg);
1449 }
1450
1451 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1452 {
1453         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1454         struct drm_i915_private *dev_priv = dev->dev_private;
1455         struct edp_vsc_psr psr_vsc;
1456
1457         if (intel_dp->psr_setup_done)
1458                 return;
1459
1460         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1461         memset(&psr_vsc, 0, sizeof(psr_vsc));
1462         psr_vsc.sdp_header.HB0 = 0;
1463         psr_vsc.sdp_header.HB1 = 0x7;
1464         psr_vsc.sdp_header.HB2 = 0x2;
1465         psr_vsc.sdp_header.HB3 = 0x8;
1466         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1467
1468         /* Avoid continuous PSR exit by masking memup and hpd */
1469         I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1470                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1471
1472         intel_dp->psr_setup_done = true;
1473 }
1474
1475 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1476 {
1477         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1478         struct drm_i915_private *dev_priv = dev->dev_private;
1479         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1480         int precharge = 0x3;
1481         int msg_size = 5;       /* Header(4) + Message(1) */
1482
1483         /* Enable PSR in sink */
1484         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1485                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1486                                             DP_PSR_ENABLE &
1487                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1488         else
1489                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1490                                             DP_PSR_ENABLE |
1491                                             DP_PSR_MAIN_LINK_ACTIVE);
1492
1493         /* Setup AUX registers */
1494         I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1495         I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1496         I915_WRITE(EDP_PSR_AUX_CTL,
1497                    DP_AUX_CH_CTL_TIME_OUT_400us |
1498                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1499                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1500                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1501 }
1502
1503 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1504 {
1505         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         uint32_t max_sleep_time = 0x1f;
1508         uint32_t idle_frames = 1;
1509         uint32_t val = 0x0;
1510
1511         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1512                 val |= EDP_PSR_LINK_STANDBY;
1513                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1514                 val |= EDP_PSR_TP1_TIME_0us;
1515                 val |= EDP_PSR_SKIP_AUX_EXIT;
1516         } else
1517                 val |= EDP_PSR_LINK_DISABLE;
1518
1519         I915_WRITE(EDP_PSR_CTL, val |
1520                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1521                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1522                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1523                    EDP_PSR_ENABLE);
1524 }
1525
1526 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1527 {
1528         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1529         struct drm_device *dev = dig_port->base.base.dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531         struct drm_crtc *crtc = dig_port->base.base.crtc;
1532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1533         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1534         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1535
1536         if (!IS_HASWELL(dev)) {
1537                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1538                 dev_priv->no_psr_reason = PSR_NO_SOURCE;
1539                 return false;
1540         }
1541
1542         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1543             (dig_port->port != PORT_A)) {
1544                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1545                 dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1546                 return false;
1547         }
1548
1549         if (!is_edp_psr(intel_dp)) {
1550                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1551                 dev_priv->no_psr_reason = PSR_NO_SINK;
1552                 return false;
1553         }
1554
1555         if (!i915_enable_psr) {
1556                 DRM_DEBUG_KMS("PSR disable by flag\n");
1557                 dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1558                 return false;
1559         }
1560
1561         crtc = dig_port->base.base.crtc;
1562         if (crtc == NULL) {
1563                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1564                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1565                 return false;
1566         }
1567
1568         intel_crtc = to_intel_crtc(crtc);
1569         if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1570                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1571                 dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1572                 return false;
1573         }
1574
1575         obj = to_intel_framebuffer(crtc->fb)->obj;
1576         if (obj->tiling_mode != I915_TILING_X ||
1577             obj->fence_reg == I915_FENCE_REG_NONE) {
1578                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1579                 dev_priv->no_psr_reason = PSR_NOT_TILED;
1580                 return false;
1581         }
1582
1583         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1584                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1585                 dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1586                 return false;
1587         }
1588
1589         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1590             S3D_ENABLE) {
1591                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1592                 dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1593                 return false;
1594         }
1595
1596         if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1597                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1598                 dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1599                 return false;
1600         }
1601
1602         return true;
1603 }
1604
1605 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1606 {
1607         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1608
1609         if (!intel_edp_psr_match_conditions(intel_dp) ||
1610             intel_edp_is_psr_enabled(dev))
1611                 return;
1612
1613         /* Setup PSR once */
1614         intel_edp_psr_setup(intel_dp);
1615
1616         /* Enable PSR on the panel */
1617         intel_edp_psr_enable_sink(intel_dp);
1618
1619         /* Enable PSR on the host */
1620         intel_edp_psr_enable_source(intel_dp);
1621 }
1622
1623 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1624 {
1625         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1626
1627         if (intel_edp_psr_match_conditions(intel_dp) &&
1628             !intel_edp_is_psr_enabled(dev))
1629                 intel_edp_psr_do_enable(intel_dp);
1630 }
1631
1632 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1633 {
1634         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636
1637         if (!intel_edp_is_psr_enabled(dev))
1638                 return;
1639
1640         I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1641
1642         /* Wait till PSR is idle */
1643         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1644                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1645                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1646 }
1647
1648 void intel_edp_psr_update(struct drm_device *dev)
1649 {
1650         struct intel_encoder *encoder;
1651         struct intel_dp *intel_dp = NULL;
1652
1653         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1654                 if (encoder->type == INTEL_OUTPUT_EDP) {
1655                         intel_dp = enc_to_intel_dp(&encoder->base);
1656
1657                         if (!is_edp_psr(intel_dp))
1658                                 return;
1659
1660                         if (!intel_edp_psr_match_conditions(intel_dp))
1661                                 intel_edp_psr_disable(intel_dp);
1662                         else
1663                                 if (!intel_edp_is_psr_enabled(dev))
1664                                         intel_edp_psr_do_enable(intel_dp);
1665                 }
1666 }
1667
1668 static void intel_disable_dp(struct intel_encoder *encoder)
1669 {
1670         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1671         enum port port = dp_to_dig_port(intel_dp)->port;
1672         struct drm_device *dev = encoder->base.dev;
1673
1674         /* Make sure the panel is off before trying to change the mode. But also
1675          * ensure that we have vdd while we switch off the panel. */
1676         ironlake_edp_panel_vdd_on(intel_dp);
1677         ironlake_edp_backlight_off(intel_dp);
1678         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1679         ironlake_edp_panel_off(intel_dp);
1680
1681         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1682         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1683                 intel_dp_link_down(intel_dp);
1684 }
1685
1686 static void intel_post_disable_dp(struct intel_encoder *encoder)
1687 {
1688         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1689         enum port port = dp_to_dig_port(intel_dp)->port;
1690         struct drm_device *dev = encoder->base.dev;
1691
1692         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1693                 intel_dp_link_down(intel_dp);
1694                 if (!IS_VALLEYVIEW(dev))
1695                         ironlake_edp_pll_off(intel_dp);
1696         }
1697 }
1698
1699 static void intel_enable_dp(struct intel_encoder *encoder)
1700 {
1701         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1702         struct drm_device *dev = encoder->base.dev;
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1705
1706         if (WARN_ON(dp_reg & DP_PORT_EN))
1707                 return;
1708
1709         ironlake_edp_panel_vdd_on(intel_dp);
1710         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1711         intel_dp_start_link_train(intel_dp);
1712         ironlake_edp_panel_on(intel_dp);
1713         ironlake_edp_panel_vdd_off(intel_dp, true);
1714         intel_dp_complete_link_train(intel_dp);
1715         intel_dp_stop_link_train(intel_dp);
1716         ironlake_edp_backlight_on(intel_dp);
1717 }
1718
1719 static void vlv_enable_dp(struct intel_encoder *encoder)
1720 {
1721 }
1722
1723 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1724 {
1725         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1726         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1727
1728         if (dport->port == PORT_A)
1729                 ironlake_edp_pll_on(intel_dp);
1730 }
1731
1732 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1733 {
1734         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1735         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1736         struct drm_device *dev = encoder->base.dev;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1739         int port = vlv_dport_to_channel(dport);
1740         int pipe = intel_crtc->pipe;
1741         u32 val;
1742
1743         mutex_lock(&dev_priv->dpio_lock);
1744
1745         val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1746         val = 0;
1747         if (pipe)
1748                 val |= (1<<21);
1749         else
1750                 val &= ~(1<<21);
1751         val |= 0x001000c4;
1752         vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1753         vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1754         vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1755
1756         mutex_unlock(&dev_priv->dpio_lock);
1757
1758         intel_enable_dp(encoder);
1759
1760         vlv_wait_port_ready(dev_priv, port);
1761 }
1762
1763 static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1764 {
1765         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1766         struct drm_device *dev = encoder->base.dev;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         int port = vlv_dport_to_channel(dport);
1769
1770         if (!IS_VALLEYVIEW(dev))
1771                 return;
1772
1773         /* Program Tx lane resets to default */
1774         mutex_lock(&dev_priv->dpio_lock);
1775         vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1776                          DPIO_PCS_TX_LANE2_RESET |
1777                          DPIO_PCS_TX_LANE1_RESET);
1778         vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1779                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1780                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1781                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1782                                  DPIO_PCS_CLK_SOFT_RESET);
1783
1784         /* Fix up inter-pair skew failure */
1785         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1786         vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1787         vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1788         mutex_unlock(&dev_priv->dpio_lock);
1789 }
1790
1791 /*
1792  * Native read with retry for link status and receiver capability reads for
1793  * cases where the sink may still be asleep.
1794  */
1795 static bool
1796 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1797                                uint8_t *recv, int recv_bytes)
1798 {
1799         int ret, i;
1800
1801         /*
1802          * Sinks are *supposed* to come up within 1ms from an off state,
1803          * but we're also supposed to retry 3 times per the spec.
1804          */
1805         for (i = 0; i < 3; i++) {
1806                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1807                                                recv_bytes);
1808                 if (ret == recv_bytes)
1809                         return true;
1810                 msleep(1);
1811         }
1812
1813         return false;
1814 }
1815
1816 /*
1817  * Fetch AUX CH registers 0x202 - 0x207 which contain
1818  * link status information
1819  */
1820 static bool
1821 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1822 {
1823         return intel_dp_aux_native_read_retry(intel_dp,
1824                                               DP_LANE0_1_STATUS,
1825                                               link_status,
1826                                               DP_LINK_STATUS_SIZE);
1827 }
1828
1829 #if 0
1830 static char     *voltage_names[] = {
1831         "0.4V", "0.6V", "0.8V", "1.2V"
1832 };
1833 static char     *pre_emph_names[] = {
1834         "0dB", "3.5dB", "6dB", "9.5dB"
1835 };
1836 static char     *link_train_names[] = {
1837         "pattern 1", "pattern 2", "idle", "off"
1838 };
1839 #endif
1840
1841 /*
1842  * These are source-specific values; current Intel hardware supports
1843  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1844  */
1845
1846 static uint8_t
1847 intel_dp_voltage_max(struct intel_dp *intel_dp)
1848 {
1849         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1850         enum port port = dp_to_dig_port(intel_dp)->port;
1851
1852         if (IS_VALLEYVIEW(dev))
1853                 return DP_TRAIN_VOLTAGE_SWING_1200;
1854         else if (IS_GEN7(dev) && port == PORT_A)
1855                 return DP_TRAIN_VOLTAGE_SWING_800;
1856         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1857                 return DP_TRAIN_VOLTAGE_SWING_1200;
1858         else
1859                 return DP_TRAIN_VOLTAGE_SWING_800;
1860 }
1861
1862 static uint8_t
1863 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1864 {
1865         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1866         enum port port = dp_to_dig_port(intel_dp)->port;
1867
1868         if (HAS_DDI(dev)) {
1869                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1870                 case DP_TRAIN_VOLTAGE_SWING_400:
1871                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1872                 case DP_TRAIN_VOLTAGE_SWING_600:
1873                         return DP_TRAIN_PRE_EMPHASIS_6;
1874                 case DP_TRAIN_VOLTAGE_SWING_800:
1875                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1876                 case DP_TRAIN_VOLTAGE_SWING_1200:
1877                 default:
1878                         return DP_TRAIN_PRE_EMPHASIS_0;
1879                 }
1880         } else if (IS_VALLEYVIEW(dev)) {
1881                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1882                 case DP_TRAIN_VOLTAGE_SWING_400:
1883                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1884                 case DP_TRAIN_VOLTAGE_SWING_600:
1885                         return DP_TRAIN_PRE_EMPHASIS_6;
1886                 case DP_TRAIN_VOLTAGE_SWING_800:
1887                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1888                 case DP_TRAIN_VOLTAGE_SWING_1200:
1889                 default:
1890                         return DP_TRAIN_PRE_EMPHASIS_0;
1891                 }
1892         } else if (IS_GEN7(dev) && port == PORT_A) {
1893                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1894                 case DP_TRAIN_VOLTAGE_SWING_400:
1895                         return DP_TRAIN_PRE_EMPHASIS_6;
1896                 case DP_TRAIN_VOLTAGE_SWING_600:
1897                 case DP_TRAIN_VOLTAGE_SWING_800:
1898                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1899                 default:
1900                         return DP_TRAIN_PRE_EMPHASIS_0;
1901                 }
1902         } else {
1903                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1904                 case DP_TRAIN_VOLTAGE_SWING_400:
1905                         return DP_TRAIN_PRE_EMPHASIS_6;
1906                 case DP_TRAIN_VOLTAGE_SWING_600:
1907                         return DP_TRAIN_PRE_EMPHASIS_6;
1908                 case DP_TRAIN_VOLTAGE_SWING_800:
1909                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1910                 case DP_TRAIN_VOLTAGE_SWING_1200:
1911                 default:
1912                         return DP_TRAIN_PRE_EMPHASIS_0;
1913                 }
1914         }
1915 }
1916
1917 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1918 {
1919         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1922         unsigned long demph_reg_value, preemph_reg_value,
1923                 uniqtranscale_reg_value;
1924         uint8_t train_set = intel_dp->train_set[0];
1925         int port = vlv_dport_to_channel(dport);
1926
1927         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1928         case DP_TRAIN_PRE_EMPHASIS_0:
1929                 preemph_reg_value = 0x0004000;
1930                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1931                 case DP_TRAIN_VOLTAGE_SWING_400:
1932                         demph_reg_value = 0x2B405555;
1933                         uniqtranscale_reg_value = 0x552AB83A;
1934                         break;
1935                 case DP_TRAIN_VOLTAGE_SWING_600:
1936                         demph_reg_value = 0x2B404040;
1937                         uniqtranscale_reg_value = 0x5548B83A;
1938                         break;
1939                 case DP_TRAIN_VOLTAGE_SWING_800:
1940                         demph_reg_value = 0x2B245555;
1941                         uniqtranscale_reg_value = 0x5560B83A;
1942                         break;
1943                 case DP_TRAIN_VOLTAGE_SWING_1200:
1944                         demph_reg_value = 0x2B405555;
1945                         uniqtranscale_reg_value = 0x5598DA3A;
1946                         break;
1947                 default:
1948                         return 0;
1949                 }
1950                 break;
1951         case DP_TRAIN_PRE_EMPHASIS_3_5:
1952                 preemph_reg_value = 0x0002000;
1953                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1954                 case DP_TRAIN_VOLTAGE_SWING_400:
1955                         demph_reg_value = 0x2B404040;
1956                         uniqtranscale_reg_value = 0x5552B83A;
1957                         break;
1958                 case DP_TRAIN_VOLTAGE_SWING_600:
1959                         demph_reg_value = 0x2B404848;
1960                         uniqtranscale_reg_value = 0x5580B83A;
1961                         break;
1962                 case DP_TRAIN_VOLTAGE_SWING_800:
1963                         demph_reg_value = 0x2B404040;
1964                         uniqtranscale_reg_value = 0x55ADDA3A;
1965                         break;
1966                 default:
1967                         return 0;
1968                 }
1969                 break;
1970         case DP_TRAIN_PRE_EMPHASIS_6:
1971                 preemph_reg_value = 0x0000000;
1972                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1973                 case DP_TRAIN_VOLTAGE_SWING_400:
1974                         demph_reg_value = 0x2B305555;
1975                         uniqtranscale_reg_value = 0x5570B83A;
1976                         break;
1977                 case DP_TRAIN_VOLTAGE_SWING_600:
1978                         demph_reg_value = 0x2B2B4040;
1979                         uniqtranscale_reg_value = 0x55ADDA3A;
1980                         break;
1981                 default:
1982                         return 0;
1983                 }
1984                 break;
1985         case DP_TRAIN_PRE_EMPHASIS_9_5:
1986                 preemph_reg_value = 0x0006000;
1987                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1988                 case DP_TRAIN_VOLTAGE_SWING_400:
1989                         demph_reg_value = 0x1B405555;
1990                         uniqtranscale_reg_value = 0x55ADDA3A;
1991                         break;
1992                 default:
1993                         return 0;
1994                 }
1995                 break;
1996         default:
1997                 return 0;
1998         }
1999
2000         mutex_lock(&dev_priv->dpio_lock);
2001         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
2002         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2003         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
2004                          uniqtranscale_reg_value);
2005         vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2006         vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
2007         vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2008         vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
2009         mutex_unlock(&dev_priv->dpio_lock);
2010
2011         return 0;
2012 }
2013
2014 static void
2015 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2016 {
2017         uint8_t v = 0;
2018         uint8_t p = 0;
2019         int lane;
2020         uint8_t voltage_max;
2021         uint8_t preemph_max;
2022
2023         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2024                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2025                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2026
2027                 if (this_v > v)
2028                         v = this_v;
2029                 if (this_p > p)
2030                         p = this_p;
2031         }
2032
2033         voltage_max = intel_dp_voltage_max(intel_dp);
2034         if (v >= voltage_max)
2035                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2036
2037         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2038         if (p >= preemph_max)
2039                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2040
2041         for (lane = 0; lane < 4; lane++)
2042                 intel_dp->train_set[lane] = v | p;
2043 }
2044
2045 static uint32_t
2046 intel_gen4_signal_levels(uint8_t train_set)
2047 {
2048         uint32_t        signal_levels = 0;
2049
2050         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2051         case DP_TRAIN_VOLTAGE_SWING_400:
2052         default:
2053                 signal_levels |= DP_VOLTAGE_0_4;
2054                 break;
2055         case DP_TRAIN_VOLTAGE_SWING_600:
2056                 signal_levels |= DP_VOLTAGE_0_6;
2057                 break;
2058         case DP_TRAIN_VOLTAGE_SWING_800:
2059                 signal_levels |= DP_VOLTAGE_0_8;
2060                 break;
2061         case DP_TRAIN_VOLTAGE_SWING_1200:
2062                 signal_levels |= DP_VOLTAGE_1_2;
2063                 break;
2064         }
2065         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2066         case DP_TRAIN_PRE_EMPHASIS_0:
2067         default:
2068                 signal_levels |= DP_PRE_EMPHASIS_0;
2069                 break;
2070         case DP_TRAIN_PRE_EMPHASIS_3_5:
2071                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2072                 break;
2073         case DP_TRAIN_PRE_EMPHASIS_6:
2074                 signal_levels |= DP_PRE_EMPHASIS_6;
2075                 break;
2076         case DP_TRAIN_PRE_EMPHASIS_9_5:
2077                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2078                 break;
2079         }
2080         return signal_levels;
2081 }
2082
2083 /* Gen6's DP voltage swing and pre-emphasis control */
2084 static uint32_t
2085 intel_gen6_edp_signal_levels(uint8_t train_set)
2086 {
2087         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2088                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2089         switch (signal_levels) {
2090         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2091         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2092                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2093         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2094                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2095         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2096         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2097                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2098         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2099         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2100                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2101         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2102         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2103                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2104         default:
2105                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2106                               "0x%x\n", signal_levels);
2107                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2108         }
2109 }
2110
2111 /* Gen7's DP voltage swing and pre-emphasis control */
2112 static uint32_t
2113 intel_gen7_edp_signal_levels(uint8_t train_set)
2114 {
2115         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2116                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2117         switch (signal_levels) {
2118         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2119                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2120         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2121                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2122         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2123                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2124
2125         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2126                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2127         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2128                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2129
2130         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2131                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2132         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2133                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2134
2135         default:
2136                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2137                               "0x%x\n", signal_levels);
2138                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2139         }
2140 }
2141
2142 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2143 static uint32_t
2144 intel_hsw_signal_levels(uint8_t train_set)
2145 {
2146         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2147                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2148         switch (signal_levels) {
2149         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2150                 return DDI_BUF_EMP_400MV_0DB_HSW;
2151         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2152                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2153         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2154                 return DDI_BUF_EMP_400MV_6DB_HSW;
2155         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2156                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2157
2158         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2159                 return DDI_BUF_EMP_600MV_0DB_HSW;
2160         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2161                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2162         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2163                 return DDI_BUF_EMP_600MV_6DB_HSW;
2164
2165         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2166                 return DDI_BUF_EMP_800MV_0DB_HSW;
2167         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2168                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2169         default:
2170                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2171                               "0x%x\n", signal_levels);
2172                 return DDI_BUF_EMP_400MV_0DB_HSW;
2173         }
2174 }
2175
2176 /* Properly updates "DP" with the correct signal levels. */
2177 static void
2178 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2179 {
2180         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2181         enum port port = intel_dig_port->port;
2182         struct drm_device *dev = intel_dig_port->base.base.dev;
2183         uint32_t signal_levels, mask;
2184         uint8_t train_set = intel_dp->train_set[0];
2185
2186         if (HAS_DDI(dev)) {
2187                 signal_levels = intel_hsw_signal_levels(train_set);
2188                 mask = DDI_BUF_EMP_MASK;
2189         } else if (IS_VALLEYVIEW(dev)) {
2190                 signal_levels = intel_vlv_signal_levels(intel_dp);
2191                 mask = 0;
2192         } else if (IS_GEN7(dev) && port == PORT_A) {
2193                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2194                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2195         } else if (IS_GEN6(dev) && port == PORT_A) {
2196                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2197                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2198         } else {
2199                 signal_levels = intel_gen4_signal_levels(train_set);
2200                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2201         }
2202
2203         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2204
2205         *DP = (*DP & ~mask) | signal_levels;
2206 }
2207
2208 static bool
2209 intel_dp_set_link_train(struct intel_dp *intel_dp,
2210                         uint32_t dp_reg_value,
2211                         uint8_t dp_train_pat)
2212 {
2213         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2214         struct drm_device *dev = intel_dig_port->base.base.dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         enum port port = intel_dig_port->port;
2217         int ret;
2218
2219         if (HAS_DDI(dev)) {
2220                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2221
2222                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2223                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2224                 else
2225                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2226
2227                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2228                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2229                 case DP_TRAINING_PATTERN_DISABLE:
2230                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2231
2232                         break;
2233                 case DP_TRAINING_PATTERN_1:
2234                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2235                         break;
2236                 case DP_TRAINING_PATTERN_2:
2237                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2238                         break;
2239                 case DP_TRAINING_PATTERN_3:
2240                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2241                         break;
2242                 }
2243                 I915_WRITE(DP_TP_CTL(port), temp);
2244
2245         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2246                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2247
2248                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2249                 case DP_TRAINING_PATTERN_DISABLE:
2250                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2251                         break;
2252                 case DP_TRAINING_PATTERN_1:
2253                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2254                         break;
2255                 case DP_TRAINING_PATTERN_2:
2256                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2257                         break;
2258                 case DP_TRAINING_PATTERN_3:
2259                         DRM_ERROR("DP training pattern 3 not supported\n");
2260                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2261                         break;
2262                 }
2263
2264         } else {
2265                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2266
2267                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2268                 case DP_TRAINING_PATTERN_DISABLE:
2269                         dp_reg_value |= DP_LINK_TRAIN_OFF;
2270                         break;
2271                 case DP_TRAINING_PATTERN_1:
2272                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2273                         break;
2274                 case DP_TRAINING_PATTERN_2:
2275                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2276                         break;
2277                 case DP_TRAINING_PATTERN_3:
2278                         DRM_ERROR("DP training pattern 3 not supported\n");
2279                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2280                         break;
2281                 }
2282         }
2283
2284         I915_WRITE(intel_dp->output_reg, dp_reg_value);
2285         POSTING_READ(intel_dp->output_reg);
2286
2287         intel_dp_aux_native_write_1(intel_dp,
2288                                     DP_TRAINING_PATTERN_SET,
2289                                     dp_train_pat);
2290
2291         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2292             DP_TRAINING_PATTERN_DISABLE) {
2293                 ret = intel_dp_aux_native_write(intel_dp,
2294                                                 DP_TRAINING_LANE0_SET,
2295                                                 intel_dp->train_set,
2296                                                 intel_dp->lane_count);
2297                 if (ret != intel_dp->lane_count)
2298                         return false;
2299         }
2300
2301         return true;
2302 }
2303
2304 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2305 {
2306         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2307         struct drm_device *dev = intel_dig_port->base.base.dev;
2308         struct drm_i915_private *dev_priv = dev->dev_private;
2309         enum port port = intel_dig_port->port;
2310         uint32_t val;
2311
2312         if (!HAS_DDI(dev))
2313                 return;
2314
2315         val = I915_READ(DP_TP_CTL(port));
2316         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2317         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2318         I915_WRITE(DP_TP_CTL(port), val);
2319
2320         /*
2321          * On PORT_A we can have only eDP in SST mode. There the only reason
2322          * we need to set idle transmission mode is to work around a HW issue
2323          * where we enable the pipe while not in idle link-training mode.
2324          * In this case there is requirement to wait for a minimum number of
2325          * idle patterns to be sent.
2326          */
2327         if (port == PORT_A)
2328                 return;
2329
2330         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2331                      1))
2332                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2333 }
2334
2335 /* Enable corresponding port and start training pattern 1 */
2336 void
2337 intel_dp_start_link_train(struct intel_dp *intel_dp)
2338 {
2339         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2340         struct drm_device *dev = encoder->dev;
2341         int i;
2342         uint8_t voltage;
2343         int voltage_tries, loop_tries;
2344         uint32_t DP = intel_dp->DP;
2345
2346         if (HAS_DDI(dev))
2347                 intel_ddi_prepare_link_retrain(encoder);
2348
2349         /* Write the link configuration data */
2350         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2351                                   intel_dp->link_configuration,
2352                                   DP_LINK_CONFIGURATION_SIZE);
2353
2354         DP |= DP_PORT_EN;
2355
2356         memset(intel_dp->train_set, 0, 4);
2357         voltage = 0xff;
2358         voltage_tries = 0;
2359         loop_tries = 0;
2360         for (;;) {
2361                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2362                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2363
2364                 intel_dp_set_signal_levels(intel_dp, &DP);
2365
2366                 /* Set training pattern 1 */
2367                 if (!intel_dp_set_link_train(intel_dp, DP,
2368                                              DP_TRAINING_PATTERN_1 |
2369                                              DP_LINK_SCRAMBLING_DISABLE))
2370                         break;
2371
2372                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2373                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2374                         DRM_ERROR("failed to get link status\n");
2375                         break;
2376                 }
2377
2378                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2379                         DRM_DEBUG_KMS("clock recovery OK\n");
2380                         break;
2381                 }
2382
2383                 /* Check to see if we've tried the max voltage */
2384                 for (i = 0; i < intel_dp->lane_count; i++)
2385                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2386                                 break;
2387                 if (i == intel_dp->lane_count) {
2388                         ++loop_tries;
2389                         if (loop_tries == 5) {
2390                                 DRM_DEBUG_KMS("too many full retries, give up\n");
2391                                 break;
2392                         }
2393                         memset(intel_dp->train_set, 0, 4);
2394                         voltage_tries = 0;
2395                         continue;
2396                 }
2397
2398                 /* Check to see if we've tried the same voltage 5 times */
2399                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2400                         ++voltage_tries;
2401                         if (voltage_tries == 5) {
2402                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
2403                                 break;
2404                         }
2405                 } else
2406                         voltage_tries = 0;
2407                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2408
2409                 /* Compute new intel_dp->train_set as requested by target */
2410                 intel_get_adjust_train(intel_dp, link_status);
2411         }
2412
2413         intel_dp->DP = DP;
2414 }
2415
2416 void
2417 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2418 {
2419         bool channel_eq = false;
2420         int tries, cr_tries;
2421         uint32_t DP = intel_dp->DP;
2422
2423         /* channel equalization */
2424         tries = 0;
2425         cr_tries = 0;
2426         channel_eq = false;
2427         for (;;) {
2428                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
2429
2430                 if (cr_tries > 5) {
2431                         DRM_ERROR("failed to train DP, aborting\n");
2432                         intel_dp_link_down(intel_dp);
2433                         break;
2434                 }
2435
2436                 intel_dp_set_signal_levels(intel_dp, &DP);
2437
2438                 /* channel eq pattern */
2439                 if (!intel_dp_set_link_train(intel_dp, DP,
2440                                              DP_TRAINING_PATTERN_2 |
2441                                              DP_LINK_SCRAMBLING_DISABLE))
2442                         break;
2443
2444                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2445                 if (!intel_dp_get_link_status(intel_dp, link_status))
2446                         break;
2447
2448                 /* Make sure clock is still ok */
2449                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2450                         intel_dp_start_link_train(intel_dp);
2451                         cr_tries++;
2452                         continue;
2453                 }
2454
2455                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2456                         channel_eq = true;
2457                         break;
2458                 }
2459
2460                 /* Try 5 times, then try clock recovery if that fails */
2461                 if (tries > 5) {
2462                         intel_dp_link_down(intel_dp);
2463                         intel_dp_start_link_train(intel_dp);
2464                         tries = 0;
2465                         cr_tries++;
2466                         continue;
2467                 }
2468
2469                 /* Compute new intel_dp->train_set as requested by target */
2470                 intel_get_adjust_train(intel_dp, link_status);
2471                 ++tries;
2472         }
2473
2474         intel_dp_set_idle_link_train(intel_dp);
2475
2476         intel_dp->DP = DP;
2477
2478         if (channel_eq)
2479                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2480
2481 }
2482
2483 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2484 {
2485         intel_dp_set_link_train(intel_dp, intel_dp->DP,
2486                                 DP_TRAINING_PATTERN_DISABLE);
2487 }
2488
2489 static void
2490 intel_dp_link_down(struct intel_dp *intel_dp)
2491 {
2492         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2493         enum port port = intel_dig_port->port;
2494         struct drm_device *dev = intel_dig_port->base.base.dev;
2495         struct drm_i915_private *dev_priv = dev->dev_private;
2496         struct intel_crtc *intel_crtc =
2497                 to_intel_crtc(intel_dig_port->base.base.crtc);
2498         uint32_t DP = intel_dp->DP;
2499
2500         /*
2501          * DDI code has a strict mode set sequence and we should try to respect
2502          * it, otherwise we might hang the machine in many different ways. So we
2503          * really should be disabling the port only on a complete crtc_disable
2504          * sequence. This function is just called under two conditions on DDI
2505          * code:
2506          * - Link train failed while doing crtc_enable, and on this case we
2507          *   really should respect the mode set sequence and wait for a
2508          *   crtc_disable.
2509          * - Someone turned the monitor off and intel_dp_check_link_status
2510          *   called us. We don't need to disable the whole port on this case, so
2511          *   when someone turns the monitor on again,
2512          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2513          *   train.
2514          */
2515         if (HAS_DDI(dev))
2516                 return;
2517
2518         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2519                 return;
2520
2521         DRM_DEBUG_KMS("\n");
2522
2523         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2524                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2525                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2526         } else {
2527                 DP &= ~DP_LINK_TRAIN_MASK;
2528                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2529         }
2530         POSTING_READ(intel_dp->output_reg);
2531
2532         /* We don't really know why we're doing this */
2533         intel_wait_for_vblank(dev, intel_crtc->pipe);
2534
2535         if (HAS_PCH_IBX(dev) &&
2536             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2537                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2538
2539                 /* Hardware workaround: leaving our transcoder select
2540                  * set to transcoder B while it's off will prevent the
2541                  * corresponding HDMI output on transcoder A.
2542                  *
2543                  * Combine this with another hardware workaround:
2544                  * transcoder select bit can only be cleared while the
2545                  * port is enabled.
2546                  */
2547                 DP &= ~DP_PIPEB_SELECT;
2548                 I915_WRITE(intel_dp->output_reg, DP);
2549
2550                 /* Changes to enable or select take place the vblank
2551                  * after being written.
2552                  */
2553                 if (WARN_ON(crtc == NULL)) {
2554                         /* We should never try to disable a port without a crtc
2555                          * attached. For paranoia keep the code around for a
2556                          * bit. */
2557                         POSTING_READ(intel_dp->output_reg);
2558                         msleep(50);
2559                 } else
2560                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2561         }
2562
2563         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2564         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2565         POSTING_READ(intel_dp->output_reg);
2566         msleep(intel_dp->panel_power_down_delay);
2567 }
2568
2569 static bool
2570 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2571 {
2572         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2573
2574         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2575                                            sizeof(intel_dp->dpcd)) == 0)
2576                 return false; /* aux transfer failed */
2577
2578         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2579                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2580         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2581
2582         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2583                 return false; /* DPCD not present */
2584
2585         /* Check if the panel supports PSR */
2586         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2587         intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2588                                        intel_dp->psr_dpcd,
2589                                        sizeof(intel_dp->psr_dpcd));
2590         if (is_edp_psr(intel_dp))
2591                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2592         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2593               DP_DWN_STRM_PORT_PRESENT))
2594                 return true; /* native DP sink */
2595
2596         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2597                 return true; /* no per-port downstream info */
2598
2599         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2600                                            intel_dp->downstream_ports,
2601                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2602                 return false; /* downstream port status fetch failed */
2603
2604         return true;
2605 }
2606
2607 static void
2608 intel_dp_probe_oui(struct intel_dp *intel_dp)
2609 {
2610         u8 buf[3];
2611
2612         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2613                 return;
2614
2615         ironlake_edp_panel_vdd_on(intel_dp);
2616
2617         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2618                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2619                               buf[0], buf[1], buf[2]);
2620
2621         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2622                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2623                               buf[0], buf[1], buf[2]);
2624
2625         ironlake_edp_panel_vdd_off(intel_dp, false);
2626 }
2627
2628 static bool
2629 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2630 {
2631         int ret;
2632
2633         ret = intel_dp_aux_native_read_retry(intel_dp,
2634                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2635                                              sink_irq_vector, 1);
2636         if (!ret)
2637                 return false;
2638
2639         return true;
2640 }
2641
2642 static void
2643 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2644 {
2645         /* NAK by default */
2646         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2647 }
2648
2649 /*
2650  * According to DP spec
2651  * 5.1.2:
2652  *  1. Read DPCD
2653  *  2. Configure link according to Receiver Capabilities
2654  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2655  *  4. Check link status on receipt of hot-plug interrupt
2656  */
2657
2658 void
2659 intel_dp_check_link_status(struct intel_dp *intel_dp)
2660 {
2661         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2662         u8 sink_irq_vector;
2663         u8 link_status[DP_LINK_STATUS_SIZE];
2664
2665         if (!intel_encoder->connectors_active)
2666                 return;
2667
2668         if (WARN_ON(!intel_encoder->base.crtc))
2669                 return;
2670
2671         /* Try to read receiver status if the link appears to be up */
2672         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2673                 intel_dp_link_down(intel_dp);
2674                 return;
2675         }
2676
2677         /* Now read the DPCD to see if it's actually running */
2678         if (!intel_dp_get_dpcd(intel_dp)) {
2679                 intel_dp_link_down(intel_dp);
2680                 return;
2681         }
2682
2683         /* Try to read the source of the interrupt */
2684         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2685             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2686                 /* Clear interrupt source */
2687                 intel_dp_aux_native_write_1(intel_dp,
2688                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2689                                             sink_irq_vector);
2690
2691                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2692                         intel_dp_handle_test_request(intel_dp);
2693                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2694                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2695         }
2696
2697         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2698                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2699                               drm_get_encoder_name(&intel_encoder->base));
2700                 intel_dp_start_link_train(intel_dp);
2701                 intel_dp_complete_link_train(intel_dp);
2702                 intel_dp_stop_link_train(intel_dp);
2703         }
2704 }
2705
2706 /* XXX this is probably wrong for multiple downstream ports */
2707 static enum drm_connector_status
2708 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2709 {
2710         uint8_t *dpcd = intel_dp->dpcd;
2711         bool hpd;
2712         uint8_t type;
2713
2714         if (!intel_dp_get_dpcd(intel_dp))
2715                 return connector_status_disconnected;
2716
2717         /* if there's no downstream port, we're done */
2718         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2719                 return connector_status_connected;
2720
2721         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2722         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2723         if (hpd) {
2724                 uint8_t reg;
2725                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2726                                                     &reg, 1))
2727                         return connector_status_unknown;
2728                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2729                                               : connector_status_disconnected;
2730         }
2731
2732         /* If no HPD, poke DDC gently */
2733         if (drm_probe_ddc(&intel_dp->adapter))
2734                 return connector_status_connected;
2735
2736         /* Well we tried, say unknown for unreliable port types */
2737         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2738         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2739                 return connector_status_unknown;
2740
2741         /* Anything else is out of spec, warn and ignore */
2742         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2743         return connector_status_disconnected;
2744 }
2745
2746 static enum drm_connector_status
2747 ironlake_dp_detect(struct intel_dp *intel_dp)
2748 {
2749         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2750         struct drm_i915_private *dev_priv = dev->dev_private;
2751         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2752         enum drm_connector_status status;
2753
2754         /* Can't disconnect eDP, but you can close the lid... */
2755         if (is_edp(intel_dp)) {
2756                 status = intel_panel_detect(dev);
2757                 if (status == connector_status_unknown)
2758                         status = connector_status_connected;
2759                 return status;
2760         }
2761
2762         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2763                 return connector_status_disconnected;
2764
2765         return intel_dp_detect_dpcd(intel_dp);
2766 }
2767
2768 static enum drm_connector_status
2769 g4x_dp_detect(struct intel_dp *intel_dp)
2770 {
2771         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2772         struct drm_i915_private *dev_priv = dev->dev_private;
2773         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2774         uint32_t bit;
2775
2776         /* Can't disconnect eDP, but you can close the lid... */
2777         if (is_edp(intel_dp)) {
2778                 enum drm_connector_status status;
2779
2780                 status = intel_panel_detect(dev);
2781                 if (status == connector_status_unknown)
2782                         status = connector_status_connected;
2783                 return status;
2784         }
2785
2786         switch (intel_dig_port->port) {
2787         case PORT_B:
2788                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2789                 break;
2790         case PORT_C:
2791                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2792                 break;
2793         case PORT_D:
2794                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2795                 break;
2796         default:
2797                 return connector_status_unknown;
2798         }
2799
2800         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2801                 return connector_status_disconnected;
2802
2803         return intel_dp_detect_dpcd(intel_dp);
2804 }
2805
2806 static struct edid *
2807 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2808 {
2809         struct intel_connector *intel_connector = to_intel_connector(connector);
2810
2811         /* use cached edid if we have one */
2812         if (intel_connector->edid) {
2813                 struct edid *edid;
2814                 int size;
2815
2816                 /* invalid edid */
2817                 if (IS_ERR(intel_connector->edid))
2818                         return NULL;
2819
2820                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2821                 edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
2822                 if (!edid)
2823                         return NULL;
2824
2825                 return edid;
2826         }
2827
2828         return drm_get_edid(connector, adapter);
2829 }
2830
2831 static int
2832 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2833 {
2834         struct intel_connector *intel_connector = to_intel_connector(connector);
2835
2836         /* use cached edid if we have one */
2837         if (intel_connector->edid) {
2838                 /* invalid edid */
2839                 if (IS_ERR(intel_connector->edid))
2840                         return 0;
2841
2842                 return intel_connector_update_modes(connector,
2843                                                     intel_connector->edid);
2844         }
2845
2846         return intel_ddc_get_modes(connector, adapter);
2847 }
2848
2849 static enum drm_connector_status
2850 intel_dp_detect(struct drm_connector *connector, bool force)
2851 {
2852         struct intel_dp *intel_dp = intel_attached_dp(connector);
2853         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2854         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2855         struct drm_device *dev = connector->dev;
2856         enum drm_connector_status status;
2857         struct edid *edid = NULL;
2858
2859         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2860                       connector->base.id, drm_get_connector_name(connector));
2861
2862         intel_dp->has_audio = false;
2863
2864         if (HAS_PCH_SPLIT(dev))
2865                 status = ironlake_dp_detect(intel_dp);
2866         else
2867                 status = g4x_dp_detect(intel_dp);
2868
2869         if (status != connector_status_connected)
2870                 return status;
2871
2872         intel_dp_probe_oui(intel_dp);
2873
2874         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2875                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2876         } else {
2877                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2878                 if (edid) {
2879                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2880                         kfree(edid);
2881                 }
2882         }
2883
2884         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2885                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2886         return connector_status_connected;
2887 }
2888
2889 static int intel_dp_get_modes(struct drm_connector *connector)
2890 {
2891         struct intel_dp *intel_dp = intel_attached_dp(connector);
2892         struct intel_connector *intel_connector = to_intel_connector(connector);
2893         struct drm_device *dev = connector->dev;
2894         int ret;
2895
2896         /* We should parse the EDID data and find out if it has an audio sink
2897          */
2898
2899         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2900         if (ret)
2901                 return ret;
2902
2903         /* if eDP has no EDID, fall back to fixed mode */
2904         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2905                 struct drm_display_mode *mode;
2906                 mode = drm_mode_duplicate(dev,
2907                                           intel_connector->panel.fixed_mode);
2908                 if (mode) {
2909                         drm_mode_probed_add(connector, mode);
2910                         return 1;
2911                 }
2912         }
2913         return 0;
2914 }
2915
2916 static bool
2917 intel_dp_detect_audio(struct drm_connector *connector)
2918 {
2919         struct intel_dp *intel_dp = intel_attached_dp(connector);
2920         struct edid *edid;
2921         bool has_audio = false;
2922
2923         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2924         if (edid) {
2925                 has_audio = drm_detect_monitor_audio(edid);
2926                 kfree(edid);
2927         }
2928
2929         return has_audio;
2930 }
2931
2932 static int
2933 intel_dp_set_property(struct drm_connector *connector,
2934                       struct drm_property *property,
2935                       uint64_t val)
2936 {
2937         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2938         struct intel_connector *intel_connector = to_intel_connector(connector);
2939         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2940         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2941         int ret;
2942
2943         ret = drm_object_property_set_value(&connector->base, property, val);
2944         if (ret)
2945                 return ret;
2946
2947         if (property == dev_priv->force_audio_property) {
2948                 int i = val;
2949                 bool has_audio;
2950
2951                 if (i == intel_dp->force_audio)
2952                         return 0;
2953
2954                 intel_dp->force_audio = i;
2955
2956                 if (i == HDMI_AUDIO_AUTO)
2957                         has_audio = intel_dp_detect_audio(connector);
2958                 else
2959                         has_audio = (i == HDMI_AUDIO_ON);
2960
2961                 if (has_audio == intel_dp->has_audio)
2962                         return 0;
2963
2964                 intel_dp->has_audio = has_audio;
2965                 goto done;
2966         }
2967
2968         if (property == dev_priv->broadcast_rgb_property) {
2969                 bool old_auto = intel_dp->color_range_auto;
2970                 uint32_t old_range = intel_dp->color_range;
2971
2972                 switch (val) {
2973                 case INTEL_BROADCAST_RGB_AUTO:
2974                         intel_dp->color_range_auto = true;
2975                         break;
2976                 case INTEL_BROADCAST_RGB_FULL:
2977                         intel_dp->color_range_auto = false;
2978                         intel_dp->color_range = 0;
2979                         break;
2980                 case INTEL_BROADCAST_RGB_LIMITED:
2981                         intel_dp->color_range_auto = false;
2982                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
2983                         break;
2984                 default:
2985                         return -EINVAL;
2986                 }
2987
2988                 if (old_auto == intel_dp->color_range_auto &&
2989                     old_range == intel_dp->color_range)
2990                         return 0;
2991
2992                 goto done;
2993         }
2994
2995         if (is_edp(intel_dp) &&
2996             property == connector->dev->mode_config.scaling_mode_property) {
2997                 if (val == DRM_MODE_SCALE_NONE) {
2998                         DRM_DEBUG_KMS("no scaling not supported\n");
2999                         return -EINVAL;
3000                 }
3001
3002                 if (intel_connector->panel.fitting_mode == val) {
3003                         /* the eDP scaling property is not changed */
3004                         return 0;
3005                 }
3006                 intel_connector->panel.fitting_mode = val;
3007
3008                 goto done;
3009         }
3010
3011         return -EINVAL;
3012
3013 done:
3014         if (intel_encoder->base.crtc)
3015                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3016
3017         return 0;
3018 }
3019
3020 static void
3021 intel_dp_connector_destroy(struct drm_connector *connector)
3022 {
3023         struct intel_connector *intel_connector = to_intel_connector(connector);
3024
3025         if (!IS_ERR_OR_NULL(intel_connector->edid))
3026                 kfree(intel_connector->edid);
3027
3028         /* Can't call is_edp() since the encoder may have been destroyed
3029          * already. */
3030         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3031                 intel_panel_fini(&intel_connector->panel);
3032
3033         drm_sysfs_connector_remove(connector);
3034         drm_connector_cleanup(connector);
3035         kfree(connector);
3036 }
3037
3038 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3039 {
3040         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3041         struct intel_dp *intel_dp = &intel_dig_port->dp;
3042         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3043
3044         i2c_del_adapter(&intel_dp->adapter);
3045         drm_encoder_cleanup(encoder);
3046         if (is_edp(intel_dp)) {
3047                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3048                 mutex_lock(&dev->mode_config.mutex);
3049                 ironlake_panel_vdd_off_sync(intel_dp);
3050                 mutex_unlock(&dev->mode_config.mutex);
3051         }
3052         kfree(intel_dig_port);
3053 }
3054
3055 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3056         .dpms = intel_connector_dpms,
3057         .detect = intel_dp_detect,
3058         .fill_modes = drm_helper_probe_single_connector_modes,
3059         .set_property = intel_dp_set_property,
3060         .destroy = intel_dp_connector_destroy,
3061 };
3062
3063 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3064         .get_modes = intel_dp_get_modes,
3065         .mode_valid = intel_dp_mode_valid,
3066         .best_encoder = intel_best_encoder,
3067 };
3068
3069 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3070         .destroy = intel_dp_encoder_destroy,
3071 };
3072
3073 static void
3074 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3075 {
3076         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3077
3078         intel_dp_check_link_status(intel_dp);
3079 }
3080
3081 /* Return which DP Port should be selected for Transcoder DP control */
3082 int
3083 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3084 {
3085         struct drm_device *dev = crtc->dev;
3086         struct intel_encoder *intel_encoder;
3087         struct intel_dp *intel_dp;
3088
3089         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3090                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3091
3092                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3093                     intel_encoder->type == INTEL_OUTPUT_EDP)
3094                         return intel_dp->output_reg;
3095         }
3096
3097         return -1;
3098 }
3099
3100 /* check the VBT to see whether the eDP is on DP-D port */
3101 bool intel_dpd_is_edp(struct drm_device *dev)
3102 {
3103         struct drm_i915_private *dev_priv = dev->dev_private;
3104         struct child_device_config *p_child;
3105         int i;
3106
3107         if (!dev_priv->vbt.child_dev_num)
3108                 return false;
3109
3110         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3111                 p_child = dev_priv->vbt.child_dev + i;
3112
3113                 if (p_child->dvo_port == PORT_IDPD &&
3114                     p_child->device_type == DEVICE_TYPE_eDP)
3115                         return true;
3116         }
3117         return false;
3118 }
3119
3120 static void
3121 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3122 {
3123         struct intel_connector *intel_connector = to_intel_connector(connector);
3124
3125         intel_attach_force_audio_property(connector);
3126         intel_attach_broadcast_rgb_property(connector);
3127         intel_dp->color_range_auto = true;
3128
3129         if (is_edp(intel_dp)) {
3130                 drm_mode_create_scaling_mode_property(connector->dev);
3131                 drm_object_attach_property(
3132                         &connector->base,
3133                         connector->dev->mode_config.scaling_mode_property,
3134                         DRM_MODE_SCALE_ASPECT);
3135                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3136         }
3137 }
3138
3139 static void
3140 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3141                                     struct intel_dp *intel_dp,
3142                                     struct edp_power_seq *out)
3143 {
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         struct edp_power_seq cur, vbt, spec, final;
3146         u32 pp_on, pp_off, pp_div, pp;
3147         int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3148
3149         if (HAS_PCH_SPLIT(dev)) {
3150                 pp_control_reg = PCH_PP_CONTROL;
3151                 pp_on_reg = PCH_PP_ON_DELAYS;
3152                 pp_off_reg = PCH_PP_OFF_DELAYS;
3153                 pp_div_reg = PCH_PP_DIVISOR;
3154         } else {
3155                 pp_control_reg = PIPEA_PP_CONTROL;
3156                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3157                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3158                 pp_div_reg = PIPEA_PP_DIVISOR;
3159         }
3160
3161         /* Workaround: Need to write PP_CONTROL with the unlock key as
3162          * the very first thing. */
3163         pp = ironlake_get_pp_control(intel_dp);
3164         I915_WRITE(pp_control_reg, pp);
3165
3166         pp_on = I915_READ(pp_on_reg);
3167         pp_off = I915_READ(pp_off_reg);
3168         pp_div = I915_READ(pp_div_reg);
3169
3170         /* Pull timing values out of registers */
3171         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3172                 PANEL_POWER_UP_DELAY_SHIFT;
3173
3174         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3175                 PANEL_LIGHT_ON_DELAY_SHIFT;
3176
3177         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3178                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3179
3180         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3181                 PANEL_POWER_DOWN_DELAY_SHIFT;
3182
3183         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3184                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3185
3186         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3187                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3188
3189         vbt = dev_priv->vbt.edp_pps;
3190
3191         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3192          * our hw here, which are all in 100usec. */
3193         spec.t1_t3 = 210 * 10;
3194         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3195         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3196         spec.t10 = 500 * 10;
3197         /* This one is special and actually in units of 100ms, but zero
3198          * based in the hw (so we need to add 100 ms). But the sw vbt
3199          * table multiplies it with 1000 to make it in units of 100usec,
3200          * too. */
3201         spec.t11_t12 = (510 + 100) * 10;
3202
3203         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3204                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3205
3206         /* Use the max of the register settings and vbt. If both are
3207          * unset, fall back to the spec limits. */
3208 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3209                                        spec.field : \
3210                                        max(cur.field, vbt.field))
3211         assign_final(t1_t3);
3212         assign_final(t8);
3213         assign_final(t9);
3214         assign_final(t10);
3215         assign_final(t11_t12);
3216 #undef assign_final
3217
3218 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3219         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3220         intel_dp->backlight_on_delay = get_delay(t8);
3221         intel_dp->backlight_off_delay = get_delay(t9);
3222         intel_dp->panel_power_down_delay = get_delay(t10);
3223         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3224 #undef get_delay
3225
3226         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3227                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3228                       intel_dp->panel_power_cycle_delay);
3229
3230         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3231                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3232
3233         if (out)
3234                 *out = final;
3235 }
3236
3237 static void
3238 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3239                                               struct intel_dp *intel_dp,
3240                                               struct edp_power_seq *seq)
3241 {
3242         struct drm_i915_private *dev_priv = dev->dev_private;
3243         u32 pp_on, pp_off, pp_div, port_sel = 0;
3244         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3245         int pp_on_reg, pp_off_reg, pp_div_reg;
3246
3247         if (HAS_PCH_SPLIT(dev)) {
3248                 pp_on_reg = PCH_PP_ON_DELAYS;
3249                 pp_off_reg = PCH_PP_OFF_DELAYS;
3250                 pp_div_reg = PCH_PP_DIVISOR;
3251         } else {
3252                 pp_on_reg = PIPEA_PP_ON_DELAYS;
3253                 pp_off_reg = PIPEA_PP_OFF_DELAYS;
3254                 pp_div_reg = PIPEA_PP_DIVISOR;
3255         }
3256
3257         /* And finally store the new values in the power sequencer. */
3258         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3259                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3260         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3261                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3262         /* Compute the divisor for the pp clock, simply match the Bspec
3263          * formula. */
3264         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3265         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3266                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3267
3268         /* Haswell doesn't have any port selection bits for the panel
3269          * power sequencer any more. */
3270         if (IS_VALLEYVIEW(dev)) {
3271                 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3272         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3273                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3274                         port_sel = PANEL_POWER_PORT_DP_A;
3275                 else
3276                         port_sel = PANEL_POWER_PORT_DP_D;
3277         }
3278
3279         pp_on |= port_sel;
3280
3281         I915_WRITE(pp_on_reg, pp_on);
3282         I915_WRITE(pp_off_reg, pp_off);
3283         I915_WRITE(pp_div_reg, pp_div);
3284
3285         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3286                       I915_READ(pp_on_reg),
3287                       I915_READ(pp_off_reg),
3288                       I915_READ(pp_div_reg));
3289 }
3290
3291 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3292                                      struct intel_connector *intel_connector)
3293 {
3294         struct drm_connector *connector = &intel_connector->base;
3295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3296         struct drm_device *dev = intel_dig_port->base.base.dev;
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         struct drm_display_mode *fixed_mode = NULL;
3299         struct edp_power_seq power_seq = { 0 };
3300         bool has_dpcd;
3301         struct drm_display_mode *scan;
3302         struct edid *edid;
3303
3304         if (!is_edp(intel_dp))
3305                 return true;
3306
3307         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3308
3309         /* Cache DPCD and EDID for edp. */
3310         ironlake_edp_panel_vdd_on(intel_dp);
3311         has_dpcd = intel_dp_get_dpcd(intel_dp);
3312         ironlake_edp_panel_vdd_off(intel_dp, false);
3313
3314         if (has_dpcd) {
3315                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3316                         dev_priv->no_aux_handshake =
3317                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3318                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3319         } else {
3320                 /* if this fails, presume the device is a ghost */
3321                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3322                 return false;
3323         }
3324
3325         /* We now know it's not a ghost, init power sequence regs. */
3326         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3327                                                       &power_seq);
3328
3329         ironlake_edp_panel_vdd_on(intel_dp);
3330         edid = drm_get_edid(connector, &intel_dp->adapter);
3331         if (edid) {
3332                 if (drm_add_edid_modes(connector, edid)) {
3333                         drm_mode_connector_update_edid_property(connector,
3334                                                                 edid);
3335                         drm_edid_to_eld(connector, edid);
3336                 } else {
3337                         kfree(edid);
3338                         edid = ERR_PTR(-EINVAL);
3339                 }
3340         } else {
3341                 edid = ERR_PTR(-ENOENT);
3342         }
3343         intel_connector->edid = edid;
3344
3345         /* prefer fixed mode from EDID if available */
3346         list_for_each_entry(scan, &connector->probed_modes, head) {
3347                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3348                         fixed_mode = drm_mode_duplicate(dev, scan);
3349                         break;
3350                 }
3351         }
3352
3353         /* fallback to VBT if available for eDP */
3354         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3355                 fixed_mode = drm_mode_duplicate(dev,
3356                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3357                 if (fixed_mode)
3358                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3359         }
3360
3361         ironlake_edp_panel_vdd_off(intel_dp, false);
3362
3363         intel_panel_init(&intel_connector->panel, fixed_mode);
3364         intel_panel_setup_backlight(connector);
3365
3366         return true;
3367 }
3368
3369 bool
3370 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3371                         struct intel_connector *intel_connector)
3372 {
3373         struct drm_connector *connector = &intel_connector->base;
3374         struct intel_dp *intel_dp = &intel_dig_port->dp;
3375         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3376         struct drm_device *dev = intel_encoder->base.dev;
3377         struct drm_i915_private *dev_priv = dev->dev_private;
3378         enum port port = intel_dig_port->port;
3379         const char *name = NULL;
3380         int type, error;
3381
3382         /* Preserve the current hw state. */
3383         intel_dp->DP = I915_READ(intel_dp->output_reg);
3384         intel_dp->attached_connector = intel_connector;
3385
3386         type = DRM_MODE_CONNECTOR_DisplayPort;
3387         /*
3388          * FIXME : We need to initialize built-in panels before external panels.
3389          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3390          */
3391         switch (port) {
3392         case PORT_A:
3393                 type = DRM_MODE_CONNECTOR_eDP;
3394                 break;
3395         case PORT_C:
3396                 if (IS_VALLEYVIEW(dev))
3397                         type = DRM_MODE_CONNECTOR_eDP;
3398                 break;
3399         case PORT_D:
3400                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3401                         type = DRM_MODE_CONNECTOR_eDP;
3402                 break;
3403         default:        /* silence GCC warning */
3404                 break;
3405         }
3406
3407         /*
3408          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3409          * for DP the encoder type can be set by the caller to
3410          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3411          */
3412         if (type == DRM_MODE_CONNECTOR_eDP)
3413                 intel_encoder->type = INTEL_OUTPUT_EDP;
3414
3415         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3416                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3417                         port_name(port));
3418
3419         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3420         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3421
3422         connector->interlace_allowed = true;
3423         connector->doublescan_allowed = 0;
3424
3425         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3426                           ironlake_panel_vdd_work);
3427
3428         intel_connector_attach_encoder(intel_connector, intel_encoder);
3429         drm_sysfs_connector_add(connector);
3430
3431         if (HAS_DDI(dev))
3432                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3433         else
3434                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3435
3436         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3437         if (HAS_DDI(dev)) {
3438                 switch (intel_dig_port->port) {
3439                 case PORT_A:
3440                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3441                         break;
3442                 case PORT_B:
3443                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3444                         break;
3445                 case PORT_C:
3446                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3447                         break;
3448                 case PORT_D:
3449                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3450                         break;
3451                 default:
3452                         BUG();
3453                 }
3454         }
3455
3456         /* Set up the DDC bus. */
3457         switch (port) {
3458         case PORT_A:
3459                 intel_encoder->hpd_pin = HPD_PORT_A;
3460                 name = "DPDDC-A";
3461                 break;
3462         case PORT_B:
3463                 intel_encoder->hpd_pin = HPD_PORT_B;
3464                 name = "DPDDC-B";
3465                 break;
3466         case PORT_C:
3467                 intel_encoder->hpd_pin = HPD_PORT_C;
3468                 name = "DPDDC-C";
3469                 break;
3470         case PORT_D:
3471                 intel_encoder->hpd_pin = HPD_PORT_D;
3472                 name = "DPDDC-D";
3473                 break;
3474         default:
3475                 BUG();
3476         }
3477
3478         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3479         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3480              error, port_name(port));
3481
3482         intel_dp->psr_setup_done = false;
3483
3484         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3485                 i2c_del_adapter(&intel_dp->adapter);
3486                 if (is_edp(intel_dp)) {
3487                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3488                         mutex_lock(&dev->mode_config.mutex);
3489                         ironlake_panel_vdd_off_sync(intel_dp);
3490                         mutex_unlock(&dev->mode_config.mutex);
3491                 }
3492                 drm_sysfs_connector_remove(connector);
3493                 drm_connector_cleanup(connector);
3494                 return false;
3495         }
3496
3497         intel_dp_add_properties(intel_dp, connector);
3498
3499         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3500          * 0xd.  Failure to do so will result in spurious interrupts being
3501          * generated on the port when a cable is not attached.
3502          */
3503         if (IS_G4X(dev) && !IS_GM45(dev)) {
3504                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3505                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3506         }
3507
3508         return true;
3509 }
3510
3511 void
3512 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3513 {
3514         struct intel_digital_port *intel_dig_port;
3515         struct intel_encoder *intel_encoder;
3516         struct drm_encoder *encoder;
3517         struct intel_connector *intel_connector;
3518
3519         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3520         if (!intel_dig_port)
3521                 return;
3522
3523         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3524         if (!intel_connector) {
3525                 kfree(intel_dig_port);
3526                 return;
3527         }
3528
3529         intel_encoder = &intel_dig_port->base;
3530         encoder = &intel_encoder->base;
3531
3532         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3533                          DRM_MODE_ENCODER_TMDS);
3534
3535         intel_encoder->compute_config = intel_dp_compute_config;
3536         intel_encoder->mode_set = intel_dp_mode_set;
3537         intel_encoder->disable = intel_disable_dp;
3538         intel_encoder->post_disable = intel_post_disable_dp;
3539         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3540         intel_encoder->get_config = intel_dp_get_config;
3541         if (IS_VALLEYVIEW(dev)) {
3542                 intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3543                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3544                 intel_encoder->enable = vlv_enable_dp;
3545         } else {
3546                 intel_encoder->pre_enable = intel_pre_enable_dp;
3547                 intel_encoder->enable = intel_enable_dp;
3548         }
3549
3550         intel_dig_port->port = port;
3551         intel_dig_port->dp.output_reg = output_reg;
3552
3553         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3554         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3555         intel_encoder->cloneable = false;
3556         intel_encoder->hot_plug = intel_dp_hot_plug;
3557
3558         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3559                 drm_encoder_cleanup(encoder);
3560                 kfree(intel_dig_port);
3561                 kfree(intel_connector);
3562         }
3563 }