]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_pm.c
Merge tag 'v3.12-rc2' into drm-intel-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <drm/i915_powerwell.h>
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static void i8xx_disable_fbc(struct drm_device *dev)
47 {
48         struct drm_i915_private *dev_priv = dev->dev_private;
49         u32 fbc_ctl;
50
51         /* Disable compression */
52         fbc_ctl = I915_READ(FBC_CONTROL);
53         if ((fbc_ctl & FBC_CTL_EN) == 0)
54                 return;
55
56         fbc_ctl &= ~FBC_CTL_EN;
57         I915_WRITE(FBC_CONTROL, fbc_ctl);
58
59         /* Wait for compressing bit to clear */
60         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
61                 DRM_DEBUG_KMS("FBC idle timed out\n");
62                 return;
63         }
64
65         DRM_DEBUG_KMS("disabled FBC\n");
66 }
67
68 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
69 {
70         struct drm_device *dev = crtc->dev;
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         struct drm_framebuffer *fb = crtc->fb;
73         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
74         struct drm_i915_gem_object *obj = intel_fb->obj;
75         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
76         int cfb_pitch;
77         int plane, i;
78         u32 fbc_ctl, fbc_ctl2;
79
80         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
81         if (fb->pitches[0] < cfb_pitch)
82                 cfb_pitch = fb->pitches[0];
83
84         /* FBC_CTL wants 64B units */
85         cfb_pitch = (cfb_pitch / 64) - 1;
86         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
87
88         /* Clear old tags */
89         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
90                 I915_WRITE(FBC_TAG + (i * 4), 0);
91
92         /* Set it up... */
93         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
94         fbc_ctl2 |= plane;
95         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
96         I915_WRITE(FBC_FENCE_OFF, crtc->y);
97
98         /* enable it... */
99         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
100         if (IS_I945GM(dev))
101                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
102         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
103         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
104         fbc_ctl |= obj->fence_reg;
105         I915_WRITE(FBC_CONTROL, fbc_ctl);
106
107         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
108                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
109 }
110
111 static bool i8xx_fbc_enabled(struct drm_device *dev)
112 {
113         struct drm_i915_private *dev_priv = dev->dev_private;
114
115         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
116 }
117
118 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
119 {
120         struct drm_device *dev = crtc->dev;
121         struct drm_i915_private *dev_priv = dev->dev_private;
122         struct drm_framebuffer *fb = crtc->fb;
123         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
124         struct drm_i915_gem_object *obj = intel_fb->obj;
125         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
126         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
127         unsigned long stall_watermark = 200;
128         u32 dpfc_ctl;
129
130         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
131         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
132         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
133
134         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
135                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
136                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
137         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
138
139         /* enable it... */
140         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
141
142         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
143 }
144
145 static void g4x_disable_fbc(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         u32 dpfc_ctl;
149
150         /* Disable compression */
151         dpfc_ctl = I915_READ(DPFC_CONTROL);
152         if (dpfc_ctl & DPFC_CTL_EN) {
153                 dpfc_ctl &= ~DPFC_CTL_EN;
154                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
155
156                 DRM_DEBUG_KMS("disabled FBC\n");
157         }
158 }
159
160 static bool g4x_fbc_enabled(struct drm_device *dev)
161 {
162         struct drm_i915_private *dev_priv = dev->dev_private;
163
164         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
165 }
166
167 static void sandybridge_blit_fbc_update(struct drm_device *dev)
168 {
169         struct drm_i915_private *dev_priv = dev->dev_private;
170         u32 blt_ecoskpd;
171
172         /* Make sure blitter notifies FBC of writes */
173         gen6_gt_force_wake_get(dev_priv);
174         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
175         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
176                 GEN6_BLITTER_LOCK_SHIFT;
177         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
178         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
179         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
180         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
181                          GEN6_BLITTER_LOCK_SHIFT);
182         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
183         POSTING_READ(GEN6_BLITTER_ECOSKPD);
184         gen6_gt_force_wake_put(dev_priv);
185 }
186
187 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
188 {
189         struct drm_device *dev = crtc->dev;
190         struct drm_i915_private *dev_priv = dev->dev_private;
191         struct drm_framebuffer *fb = crtc->fb;
192         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
193         struct drm_i915_gem_object *obj = intel_fb->obj;
194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
195         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
196         unsigned long stall_watermark = 200;
197         u32 dpfc_ctl;
198
199         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
200         dpfc_ctl &= DPFC_RESERVED;
201         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
202         /* Set persistent mode for front-buffer rendering, ala X. */
203         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
204         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
205         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
206
207         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
208                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
209                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
210         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
211         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
212         /* enable it... */
213         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
214
215         if (IS_GEN6(dev)) {
216                 I915_WRITE(SNB_DPFC_CTL_SA,
217                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
218                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
219                 sandybridge_blit_fbc_update(dev);
220         }
221
222         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
223 }
224
225 static void ironlake_disable_fbc(struct drm_device *dev)
226 {
227         struct drm_i915_private *dev_priv = dev->dev_private;
228         u32 dpfc_ctl;
229
230         /* Disable compression */
231         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
232         if (dpfc_ctl & DPFC_CTL_EN) {
233                 dpfc_ctl &= ~DPFC_CTL_EN;
234                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
235
236                 if (IS_IVYBRIDGE(dev))
237                         /* WaFbcDisableDpfcClockGating:ivb */
238                         I915_WRITE(ILK_DSPCLK_GATE_D,
239                                    I915_READ(ILK_DSPCLK_GATE_D) &
240                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
241
242                 if (IS_HASWELL(dev))
243                         /* WaFbcDisableDpfcClockGating:hsw */
244                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
245                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
246                                    ~HSW_DPFC_GATING_DISABLE);
247
248                 DRM_DEBUG_KMS("disabled FBC\n");
249         }
250 }
251
252 static bool ironlake_fbc_enabled(struct drm_device *dev)
253 {
254         struct drm_i915_private *dev_priv = dev->dev_private;
255
256         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
257 }
258
259 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
260 {
261         struct drm_device *dev = crtc->dev;
262         struct drm_i915_private *dev_priv = dev->dev_private;
263         struct drm_framebuffer *fb = crtc->fb;
264         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
265         struct drm_i915_gem_object *obj = intel_fb->obj;
266         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
267
268         I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
269
270         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
271                    IVB_DPFC_CTL_FENCE_EN |
272                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
273
274         if (IS_IVYBRIDGE(dev)) {
275                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
276                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
277                 /* WaFbcDisableDpfcClockGating:ivb */
278                 I915_WRITE(ILK_DSPCLK_GATE_D,
279                            I915_READ(ILK_DSPCLK_GATE_D) |
280                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
281         } else {
282                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
283                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
284                            HSW_BYPASS_FBC_QUEUE);
285                 /* WaFbcDisableDpfcClockGating:hsw */
286                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
287                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
288                            HSW_DPFC_GATING_DISABLE);
289         }
290
291         I915_WRITE(SNB_DPFC_CTL_SA,
292                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
293         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
294
295         sandybridge_blit_fbc_update(dev);
296
297         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
298 }
299
300 bool intel_fbc_enabled(struct drm_device *dev)
301 {
302         struct drm_i915_private *dev_priv = dev->dev_private;
303
304         if (!dev_priv->display.fbc_enabled)
305                 return false;
306
307         return dev_priv->display.fbc_enabled(dev);
308 }
309
310 static void intel_fbc_work_fn(struct work_struct *__work)
311 {
312         struct intel_fbc_work *work =
313                 container_of(to_delayed_work(__work),
314                              struct intel_fbc_work, work);
315         struct drm_device *dev = work->crtc->dev;
316         struct drm_i915_private *dev_priv = dev->dev_private;
317
318         mutex_lock(&dev->struct_mutex);
319         if (work == dev_priv->fbc.fbc_work) {
320                 /* Double check that we haven't switched fb without cancelling
321                  * the prior work.
322                  */
323                 if (work->crtc->fb == work->fb) {
324                         dev_priv->display.enable_fbc(work->crtc,
325                                                      work->interval);
326
327                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
328                         dev_priv->fbc.fb_id = work->crtc->fb->base.id;
329                         dev_priv->fbc.y = work->crtc->y;
330                 }
331
332                 dev_priv->fbc.fbc_work = NULL;
333         }
334         mutex_unlock(&dev->struct_mutex);
335
336         kfree(work);
337 }
338
339 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
340 {
341         if (dev_priv->fbc.fbc_work == NULL)
342                 return;
343
344         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
345
346         /* Synchronisation is provided by struct_mutex and checking of
347          * dev_priv->fbc.fbc_work, so we can perform the cancellation
348          * entirely asynchronously.
349          */
350         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
351                 /* tasklet was killed before being run, clean up */
352                 kfree(dev_priv->fbc.fbc_work);
353
354         /* Mark the work as no longer wanted so that if it does
355          * wake-up (because the work was already running and waiting
356          * for our mutex), it will discover that is no longer
357          * necessary to run.
358          */
359         dev_priv->fbc.fbc_work = NULL;
360 }
361
362 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
363 {
364         struct intel_fbc_work *work;
365         struct drm_device *dev = crtc->dev;
366         struct drm_i915_private *dev_priv = dev->dev_private;
367
368         if (!dev_priv->display.enable_fbc)
369                 return;
370
371         intel_cancel_fbc_work(dev_priv);
372
373         work = kzalloc(sizeof *work, GFP_KERNEL);
374         if (work == NULL) {
375                 DRM_ERROR("Failed to allocate FBC work structure\n");
376                 dev_priv->display.enable_fbc(crtc, interval);
377                 return;
378         }
379
380         work->crtc = crtc;
381         work->fb = crtc->fb;
382         work->interval = interval;
383         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
384
385         dev_priv->fbc.fbc_work = work;
386
387         /* Delay the actual enabling to let pageflipping cease and the
388          * display to settle before starting the compression. Note that
389          * this delay also serves a second purpose: it allows for a
390          * vblank to pass after disabling the FBC before we attempt
391          * to modify the control registers.
392          *
393          * A more complicated solution would involve tracking vblanks
394          * following the termination of the page-flipping sequence
395          * and indeed performing the enable as a co-routine and not
396          * waiting synchronously upon the vblank.
397          *
398          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
399          */
400         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
401 }
402
403 void intel_disable_fbc(struct drm_device *dev)
404 {
405         struct drm_i915_private *dev_priv = dev->dev_private;
406
407         intel_cancel_fbc_work(dev_priv);
408
409         if (!dev_priv->display.disable_fbc)
410                 return;
411
412         dev_priv->display.disable_fbc(dev);
413         dev_priv->fbc.plane = -1;
414 }
415
416 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
417                               enum no_fbc_reason reason)
418 {
419         if (dev_priv->fbc.no_fbc_reason == reason)
420                 return false;
421
422         dev_priv->fbc.no_fbc_reason = reason;
423         return true;
424 }
425
426 /**
427  * intel_update_fbc - enable/disable FBC as needed
428  * @dev: the drm_device
429  *
430  * Set up the framebuffer compression hardware at mode set time.  We
431  * enable it if possible:
432  *   - plane A only (on pre-965)
433  *   - no pixel mulitply/line duplication
434  *   - no alpha buffer discard
435  *   - no dual wide
436  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
437  *
438  * We can't assume that any compression will take place (worst case),
439  * so the compressed buffer has to be the same size as the uncompressed
440  * one.  It also must reside (along with the line length buffer) in
441  * stolen memory.
442  *
443  * We need to enable/disable FBC on a global basis.
444  */
445 void intel_update_fbc(struct drm_device *dev)
446 {
447         struct drm_i915_private *dev_priv = dev->dev_private;
448         struct drm_crtc *crtc = NULL, *tmp_crtc;
449         struct intel_crtc *intel_crtc;
450         struct drm_framebuffer *fb;
451         struct intel_framebuffer *intel_fb;
452         struct drm_i915_gem_object *obj;
453         const struct drm_display_mode *adjusted_mode;
454         unsigned int max_width, max_height;
455
456         if (!I915_HAS_FBC(dev)) {
457                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
458                 return;
459         }
460
461         if (!i915_powersave) {
462                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
463                         DRM_DEBUG_KMS("fbc disabled per module param\n");
464                 return;
465         }
466
467         /*
468          * If FBC is already on, we just have to verify that we can
469          * keep it that way...
470          * Need to disable if:
471          *   - more than one pipe is active
472          *   - changing FBC params (stride, fence, mode)
473          *   - new fb is too large to fit in compressed buffer
474          *   - going to an unsupported config (interlace, pixel multiply, etc.)
475          */
476         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
477                 if (intel_crtc_active(tmp_crtc) &&
478                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
479                         if (crtc) {
480                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
481                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
482                                 goto out_disable;
483                         }
484                         crtc = tmp_crtc;
485                 }
486         }
487
488         if (!crtc || crtc->fb == NULL) {
489                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
490                         DRM_DEBUG_KMS("no output, disabling\n");
491                 goto out_disable;
492         }
493
494         intel_crtc = to_intel_crtc(crtc);
495         fb = crtc->fb;
496         intel_fb = to_intel_framebuffer(fb);
497         obj = intel_fb->obj;
498         adjusted_mode = &intel_crtc->config.adjusted_mode;
499
500         if (i915_enable_fbc < 0 &&
501             INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
502                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
503                         DRM_DEBUG_KMS("disabled per chip default\n");
504                 goto out_disable;
505         }
506         if (!i915_enable_fbc) {
507                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
508                         DRM_DEBUG_KMS("fbc disabled per module param\n");
509                 goto out_disable;
510         }
511         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
512             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
513                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
514                         DRM_DEBUG_KMS("mode incompatible with compression, "
515                                       "disabling\n");
516                 goto out_disable;
517         }
518
519         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
520                 max_width = 4096;
521                 max_height = 2048;
522         } else {
523                 max_width = 2048;
524                 max_height = 1536;
525         }
526         if (intel_crtc->config.pipe_src_w > max_width ||
527             intel_crtc->config.pipe_src_h > max_height) {
528                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
529                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
530                 goto out_disable;
531         }
532         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
533             intel_crtc->plane != 0) {
534                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
535                         DRM_DEBUG_KMS("plane not 0, disabling compression\n");
536                 goto out_disable;
537         }
538
539         /* The use of a CPU fence is mandatory in order to detect writes
540          * by the CPU to the scanout and trigger updates to the FBC.
541          */
542         if (obj->tiling_mode != I915_TILING_X ||
543             obj->fence_reg == I915_FENCE_REG_NONE) {
544                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
545                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
546                 goto out_disable;
547         }
548
549         /* If the kernel debugger is active, always disable compression */
550         if (in_dbg_master())
551                 goto out_disable;
552
553         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
554                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
555                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
556                 goto out_disable;
557         }
558
559         /* If the scanout has not changed, don't modify the FBC settings.
560          * Note that we make the fundamental assumption that the fb->obj
561          * cannot be unpinned (and have its GTT offset and fence revoked)
562          * without first being decoupled from the scanout and FBC disabled.
563          */
564         if (dev_priv->fbc.plane == intel_crtc->plane &&
565             dev_priv->fbc.fb_id == fb->base.id &&
566             dev_priv->fbc.y == crtc->y)
567                 return;
568
569         if (intel_fbc_enabled(dev)) {
570                 /* We update FBC along two paths, after changing fb/crtc
571                  * configuration (modeswitching) and after page-flipping
572                  * finishes. For the latter, we know that not only did
573                  * we disable the FBC at the start of the page-flip
574                  * sequence, but also more than one vblank has passed.
575                  *
576                  * For the former case of modeswitching, it is possible
577                  * to switch between two FBC valid configurations
578                  * instantaneously so we do need to disable the FBC
579                  * before we can modify its control registers. We also
580                  * have to wait for the next vblank for that to take
581                  * effect. However, since we delay enabling FBC we can
582                  * assume that a vblank has passed since disabling and
583                  * that we can safely alter the registers in the deferred
584                  * callback.
585                  *
586                  * In the scenario that we go from a valid to invalid
587                  * and then back to valid FBC configuration we have
588                  * no strict enforcement that a vblank occurred since
589                  * disabling the FBC. However, along all current pipe
590                  * disabling paths we do need to wait for a vblank at
591                  * some point. And we wait before enabling FBC anyway.
592                  */
593                 DRM_DEBUG_KMS("disabling active FBC for update\n");
594                 intel_disable_fbc(dev);
595         }
596
597         intel_enable_fbc(crtc, 500);
598         dev_priv->fbc.no_fbc_reason = FBC_OK;
599         return;
600
601 out_disable:
602         /* Multiple disables should be harmless */
603         if (intel_fbc_enabled(dev)) {
604                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
605                 intel_disable_fbc(dev);
606         }
607         i915_gem_stolen_cleanup_compression(dev);
608 }
609
610 static void i915_pineview_get_mem_freq(struct drm_device *dev)
611 {
612         drm_i915_private_t *dev_priv = dev->dev_private;
613         u32 tmp;
614
615         tmp = I915_READ(CLKCFG);
616
617         switch (tmp & CLKCFG_FSB_MASK) {
618         case CLKCFG_FSB_533:
619                 dev_priv->fsb_freq = 533; /* 133*4 */
620                 break;
621         case CLKCFG_FSB_800:
622                 dev_priv->fsb_freq = 800; /* 200*4 */
623                 break;
624         case CLKCFG_FSB_667:
625                 dev_priv->fsb_freq =  667; /* 167*4 */
626                 break;
627         case CLKCFG_FSB_400:
628                 dev_priv->fsb_freq = 400; /* 100*4 */
629                 break;
630         }
631
632         switch (tmp & CLKCFG_MEM_MASK) {
633         case CLKCFG_MEM_533:
634                 dev_priv->mem_freq = 533;
635                 break;
636         case CLKCFG_MEM_667:
637                 dev_priv->mem_freq = 667;
638                 break;
639         case CLKCFG_MEM_800:
640                 dev_priv->mem_freq = 800;
641                 break;
642         }
643
644         /* detect pineview DDR3 setting */
645         tmp = I915_READ(CSHRDDR3CTL);
646         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
647 }
648
649 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
650 {
651         drm_i915_private_t *dev_priv = dev->dev_private;
652         u16 ddrpll, csipll;
653
654         ddrpll = I915_READ16(DDRMPLL1);
655         csipll = I915_READ16(CSIPLL0);
656
657         switch (ddrpll & 0xff) {
658         case 0xc:
659                 dev_priv->mem_freq = 800;
660                 break;
661         case 0x10:
662                 dev_priv->mem_freq = 1066;
663                 break;
664         case 0x14:
665                 dev_priv->mem_freq = 1333;
666                 break;
667         case 0x18:
668                 dev_priv->mem_freq = 1600;
669                 break;
670         default:
671                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
672                                  ddrpll & 0xff);
673                 dev_priv->mem_freq = 0;
674                 break;
675         }
676
677         dev_priv->ips.r_t = dev_priv->mem_freq;
678
679         switch (csipll & 0x3ff) {
680         case 0x00c:
681                 dev_priv->fsb_freq = 3200;
682                 break;
683         case 0x00e:
684                 dev_priv->fsb_freq = 3733;
685                 break;
686         case 0x010:
687                 dev_priv->fsb_freq = 4266;
688                 break;
689         case 0x012:
690                 dev_priv->fsb_freq = 4800;
691                 break;
692         case 0x014:
693                 dev_priv->fsb_freq = 5333;
694                 break;
695         case 0x016:
696                 dev_priv->fsb_freq = 5866;
697                 break;
698         case 0x018:
699                 dev_priv->fsb_freq = 6400;
700                 break;
701         default:
702                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
703                                  csipll & 0x3ff);
704                 dev_priv->fsb_freq = 0;
705                 break;
706         }
707
708         if (dev_priv->fsb_freq == 3200) {
709                 dev_priv->ips.c_m = 0;
710         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
711                 dev_priv->ips.c_m = 1;
712         } else {
713                 dev_priv->ips.c_m = 2;
714         }
715 }
716
717 static const struct cxsr_latency cxsr_latency_table[] = {
718         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
719         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
720         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
721         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
722         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
723
724         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
725         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
726         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
727         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
728         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
729
730         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
731         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
732         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
733         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
734         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
735
736         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
737         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
738         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
739         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
740         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
741
742         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
743         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
744         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
745         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
746         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
747
748         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
749         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
750         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
751         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
752         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
753 };
754
755 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
756                                                          int is_ddr3,
757                                                          int fsb,
758                                                          int mem)
759 {
760         const struct cxsr_latency *latency;
761         int i;
762
763         if (fsb == 0 || mem == 0)
764                 return NULL;
765
766         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
767                 latency = &cxsr_latency_table[i];
768                 if (is_desktop == latency->is_desktop &&
769                     is_ddr3 == latency->is_ddr3 &&
770                     fsb == latency->fsb_freq && mem == latency->mem_freq)
771                         return latency;
772         }
773
774         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
775
776         return NULL;
777 }
778
779 static void pineview_disable_cxsr(struct drm_device *dev)
780 {
781         struct drm_i915_private *dev_priv = dev->dev_private;
782
783         /* deactivate cxsr */
784         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
785 }
786
787 /*
788  * Latency for FIFO fetches is dependent on several factors:
789  *   - memory configuration (speed, channels)
790  *   - chipset
791  *   - current MCH state
792  * It can be fairly high in some situations, so here we assume a fairly
793  * pessimal value.  It's a tradeoff between extra memory fetches (if we
794  * set this value too high, the FIFO will fetch frequently to stay full)
795  * and power consumption (set it too low to save power and we might see
796  * FIFO underruns and display "flicker").
797  *
798  * A value of 5us seems to be a good balance; safe for very low end
799  * platforms but not overly aggressive on lower latency configs.
800  */
801 static const int latency_ns = 5000;
802
803 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
804 {
805         struct drm_i915_private *dev_priv = dev->dev_private;
806         uint32_t dsparb = I915_READ(DSPARB);
807         int size;
808
809         size = dsparb & 0x7f;
810         if (plane)
811                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
812
813         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
814                       plane ? "B" : "A", size);
815
816         return size;
817 }
818
819 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
820 {
821         struct drm_i915_private *dev_priv = dev->dev_private;
822         uint32_t dsparb = I915_READ(DSPARB);
823         int size;
824
825         size = dsparb & 0x1ff;
826         if (plane)
827                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
828         size >>= 1; /* Convert to cachelines */
829
830         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
831                       plane ? "B" : "A", size);
832
833         return size;
834 }
835
836 static int i845_get_fifo_size(struct drm_device *dev, int plane)
837 {
838         struct drm_i915_private *dev_priv = dev->dev_private;
839         uint32_t dsparb = I915_READ(DSPARB);
840         int size;
841
842         size = dsparb & 0x7f;
843         size >>= 2; /* Convert to cachelines */
844
845         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
846                       plane ? "B" : "A",
847                       size);
848
849         return size;
850 }
851
852 static int i830_get_fifo_size(struct drm_device *dev, int plane)
853 {
854         struct drm_i915_private *dev_priv = dev->dev_private;
855         uint32_t dsparb = I915_READ(DSPARB);
856         int size;
857
858         size = dsparb & 0x7f;
859         size >>= 1; /* Convert to cachelines */
860
861         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
862                       plane ? "B" : "A", size);
863
864         return size;
865 }
866
867 /* Pineview has different values for various configs */
868 static const struct intel_watermark_params pineview_display_wm = {
869         PINEVIEW_DISPLAY_FIFO,
870         PINEVIEW_MAX_WM,
871         PINEVIEW_DFT_WM,
872         PINEVIEW_GUARD_WM,
873         PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_display_hplloff_wm = {
876         PINEVIEW_DISPLAY_FIFO,
877         PINEVIEW_MAX_WM,
878         PINEVIEW_DFT_HPLLOFF_WM,
879         PINEVIEW_GUARD_WM,
880         PINEVIEW_FIFO_LINE_SIZE
881 };
882 static const struct intel_watermark_params pineview_cursor_wm = {
883         PINEVIEW_CURSOR_FIFO,
884         PINEVIEW_CURSOR_MAX_WM,
885         PINEVIEW_CURSOR_DFT_WM,
886         PINEVIEW_CURSOR_GUARD_WM,
887         PINEVIEW_FIFO_LINE_SIZE,
888 };
889 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
890         PINEVIEW_CURSOR_FIFO,
891         PINEVIEW_CURSOR_MAX_WM,
892         PINEVIEW_CURSOR_DFT_WM,
893         PINEVIEW_CURSOR_GUARD_WM,
894         PINEVIEW_FIFO_LINE_SIZE
895 };
896 static const struct intel_watermark_params g4x_wm_info = {
897         G4X_FIFO_SIZE,
898         G4X_MAX_WM,
899         G4X_MAX_WM,
900         2,
901         G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params g4x_cursor_wm_info = {
904         I965_CURSOR_FIFO,
905         I965_CURSOR_MAX_WM,
906         I965_CURSOR_DFT_WM,
907         2,
908         G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_wm_info = {
911         VALLEYVIEW_FIFO_SIZE,
912         VALLEYVIEW_MAX_WM,
913         VALLEYVIEW_MAX_WM,
914         2,
915         G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params valleyview_cursor_wm_info = {
918         I965_CURSOR_FIFO,
919         VALLEYVIEW_CURSOR_MAX_WM,
920         I965_CURSOR_DFT_WM,
921         2,
922         G4X_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i965_cursor_wm_info = {
925         I965_CURSOR_FIFO,
926         I965_CURSOR_MAX_WM,
927         I965_CURSOR_DFT_WM,
928         2,
929         I915_FIFO_LINE_SIZE,
930 };
931 static const struct intel_watermark_params i945_wm_info = {
932         I945_FIFO_SIZE,
933         I915_MAX_WM,
934         1,
935         2,
936         I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i915_wm_info = {
939         I915_FIFO_SIZE,
940         I915_MAX_WM,
941         1,
942         2,
943         I915_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i855_wm_info = {
946         I855GM_FIFO_SIZE,
947         I915_MAX_WM,
948         1,
949         2,
950         I830_FIFO_LINE_SIZE
951 };
952 static const struct intel_watermark_params i830_wm_info = {
953         I830_FIFO_SIZE,
954         I915_MAX_WM,
955         1,
956         2,
957         I830_FIFO_LINE_SIZE
958 };
959
960 static const struct intel_watermark_params ironlake_display_wm_info = {
961         ILK_DISPLAY_FIFO,
962         ILK_DISPLAY_MAXWM,
963         ILK_DISPLAY_DFTWM,
964         2,
965         ILK_FIFO_LINE_SIZE
966 };
967 static const struct intel_watermark_params ironlake_cursor_wm_info = {
968         ILK_CURSOR_FIFO,
969         ILK_CURSOR_MAXWM,
970         ILK_CURSOR_DFTWM,
971         2,
972         ILK_FIFO_LINE_SIZE
973 };
974 static const struct intel_watermark_params ironlake_display_srwm_info = {
975         ILK_DISPLAY_SR_FIFO,
976         ILK_DISPLAY_MAX_SRWM,
977         ILK_DISPLAY_DFT_SRWM,
978         2,
979         ILK_FIFO_LINE_SIZE
980 };
981 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
982         ILK_CURSOR_SR_FIFO,
983         ILK_CURSOR_MAX_SRWM,
984         ILK_CURSOR_DFT_SRWM,
985         2,
986         ILK_FIFO_LINE_SIZE
987 };
988
989 static const struct intel_watermark_params sandybridge_display_wm_info = {
990         SNB_DISPLAY_FIFO,
991         SNB_DISPLAY_MAXWM,
992         SNB_DISPLAY_DFTWM,
993         2,
994         SNB_FIFO_LINE_SIZE
995 };
996 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
997         SNB_CURSOR_FIFO,
998         SNB_CURSOR_MAXWM,
999         SNB_CURSOR_DFTWM,
1000         2,
1001         SNB_FIFO_LINE_SIZE
1002 };
1003 static const struct intel_watermark_params sandybridge_display_srwm_info = {
1004         SNB_DISPLAY_SR_FIFO,
1005         SNB_DISPLAY_MAX_SRWM,
1006         SNB_DISPLAY_DFT_SRWM,
1007         2,
1008         SNB_FIFO_LINE_SIZE
1009 };
1010 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1011         SNB_CURSOR_SR_FIFO,
1012         SNB_CURSOR_MAX_SRWM,
1013         SNB_CURSOR_DFT_SRWM,
1014         2,
1015         SNB_FIFO_LINE_SIZE
1016 };
1017
1018
1019 /**
1020  * intel_calculate_wm - calculate watermark level
1021  * @clock_in_khz: pixel clock
1022  * @wm: chip FIFO params
1023  * @pixel_size: display pixel size
1024  * @latency_ns: memory latency for the platform
1025  *
1026  * Calculate the watermark level (the level at which the display plane will
1027  * start fetching from memory again).  Each chip has a different display
1028  * FIFO size and allocation, so the caller needs to figure that out and pass
1029  * in the correct intel_watermark_params structure.
1030  *
1031  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1032  * on the pixel size.  When it reaches the watermark level, it'll start
1033  * fetching FIFO line sized based chunks from memory until the FIFO fills
1034  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1035  * will occur, and a display engine hang could result.
1036  */
1037 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1038                                         const struct intel_watermark_params *wm,
1039                                         int fifo_size,
1040                                         int pixel_size,
1041                                         unsigned long latency_ns)
1042 {
1043         long entries_required, wm_size;
1044
1045         /*
1046          * Note: we need to make sure we don't overflow for various clock &
1047          * latency values.
1048          * clocks go from a few thousand to several hundred thousand.
1049          * latency is usually a few thousand
1050          */
1051         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1052                 1000;
1053         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1054
1055         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1056
1057         wm_size = fifo_size - (entries_required + wm->guard_size);
1058
1059         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1060
1061         /* Don't promote wm_size to unsigned... */
1062         if (wm_size > (long)wm->max_wm)
1063                 wm_size = wm->max_wm;
1064         if (wm_size <= 0)
1065                 wm_size = wm->default_wm;
1066         return wm_size;
1067 }
1068
1069 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1070 {
1071         struct drm_crtc *crtc, *enabled = NULL;
1072
1073         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1074                 if (intel_crtc_active(crtc)) {
1075                         if (enabled)
1076                                 return NULL;
1077                         enabled = crtc;
1078                 }
1079         }
1080
1081         return enabled;
1082 }
1083
1084 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1085 {
1086         struct drm_device *dev = unused_crtc->dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088         struct drm_crtc *crtc;
1089         const struct cxsr_latency *latency;
1090         u32 reg;
1091         unsigned long wm;
1092
1093         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1094                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1095         if (!latency) {
1096                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1097                 pineview_disable_cxsr(dev);
1098                 return;
1099         }
1100
1101         crtc = single_enabled_crtc(dev);
1102         if (crtc) {
1103                 int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
1104                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1105
1106                 /* Display SR */
1107                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1108                                         pineview_display_wm.fifo_size,
1109                                         pixel_size, latency->display_sr);
1110                 reg = I915_READ(DSPFW1);
1111                 reg &= ~DSPFW_SR_MASK;
1112                 reg |= wm << DSPFW_SR_SHIFT;
1113                 I915_WRITE(DSPFW1, reg);
1114                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1115
1116                 /* cursor SR */
1117                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1118                                         pineview_display_wm.fifo_size,
1119                                         pixel_size, latency->cursor_sr);
1120                 reg = I915_READ(DSPFW3);
1121                 reg &= ~DSPFW_CURSOR_SR_MASK;
1122                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1123                 I915_WRITE(DSPFW3, reg);
1124
1125                 /* Display HPLL off SR */
1126                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1127                                         pineview_display_hplloff_wm.fifo_size,
1128                                         pixel_size, latency->display_hpll_disable);
1129                 reg = I915_READ(DSPFW3);
1130                 reg &= ~DSPFW_HPLL_SR_MASK;
1131                 reg |= wm & DSPFW_HPLL_SR_MASK;
1132                 I915_WRITE(DSPFW3, reg);
1133
1134                 /* cursor HPLL off SR */
1135                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1136                                         pineview_display_hplloff_wm.fifo_size,
1137                                         pixel_size, latency->cursor_hpll_disable);
1138                 reg = I915_READ(DSPFW3);
1139                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1140                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1141                 I915_WRITE(DSPFW3, reg);
1142                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1143
1144                 /* activate cxsr */
1145                 I915_WRITE(DSPFW3,
1146                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1147                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1148         } else {
1149                 pineview_disable_cxsr(dev);
1150                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1151         }
1152 }
1153
1154 static bool g4x_compute_wm0(struct drm_device *dev,
1155                             int plane,
1156                             const struct intel_watermark_params *display,
1157                             int display_latency_ns,
1158                             const struct intel_watermark_params *cursor,
1159                             int cursor_latency_ns,
1160                             int *plane_wm,
1161                             int *cursor_wm)
1162 {
1163         struct drm_crtc *crtc;
1164         const struct drm_display_mode *adjusted_mode;
1165         int htotal, hdisplay, clock, pixel_size;
1166         int line_time_us, line_count;
1167         int entries, tlb_miss;
1168
1169         crtc = intel_get_crtc_for_plane(dev, plane);
1170         if (!intel_crtc_active(crtc)) {
1171                 *cursor_wm = cursor->guard_size;
1172                 *plane_wm = display->guard_size;
1173                 return false;
1174         }
1175
1176         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1177         clock = adjusted_mode->clock;
1178         htotal = adjusted_mode->htotal;
1179         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1180         pixel_size = crtc->fb->bits_per_pixel / 8;
1181
1182         /* Use the small buffer method to calculate plane watermark */
1183         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1184         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1185         if (tlb_miss > 0)
1186                 entries += tlb_miss;
1187         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1188         *plane_wm = entries + display->guard_size;
1189         if (*plane_wm > (int)display->max_wm)
1190                 *plane_wm = display->max_wm;
1191
1192         /* Use the large buffer method to calculate cursor watermark */
1193         line_time_us = ((htotal * 1000) / clock);
1194         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1195         entries = line_count * 64 * pixel_size;
1196         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1197         if (tlb_miss > 0)
1198                 entries += tlb_miss;
1199         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1200         *cursor_wm = entries + cursor->guard_size;
1201         if (*cursor_wm > (int)cursor->max_wm)
1202                 *cursor_wm = (int)cursor->max_wm;
1203
1204         return true;
1205 }
1206
1207 /*
1208  * Check the wm result.
1209  *
1210  * If any calculated watermark values is larger than the maximum value that
1211  * can be programmed into the associated watermark register, that watermark
1212  * must be disabled.
1213  */
1214 static bool g4x_check_srwm(struct drm_device *dev,
1215                            int display_wm, int cursor_wm,
1216                            const struct intel_watermark_params *display,
1217                            const struct intel_watermark_params *cursor)
1218 {
1219         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1220                       display_wm, cursor_wm);
1221
1222         if (display_wm > display->max_wm) {
1223                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1224                               display_wm, display->max_wm);
1225                 return false;
1226         }
1227
1228         if (cursor_wm > cursor->max_wm) {
1229                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1230                               cursor_wm, cursor->max_wm);
1231                 return false;
1232         }
1233
1234         if (!(display_wm || cursor_wm)) {
1235                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1236                 return false;
1237         }
1238
1239         return true;
1240 }
1241
1242 static bool g4x_compute_srwm(struct drm_device *dev,
1243                              int plane,
1244                              int latency_ns,
1245                              const struct intel_watermark_params *display,
1246                              const struct intel_watermark_params *cursor,
1247                              int *display_wm, int *cursor_wm)
1248 {
1249         struct drm_crtc *crtc;
1250         const struct drm_display_mode *adjusted_mode;
1251         int hdisplay, htotal, pixel_size, clock;
1252         unsigned long line_time_us;
1253         int line_count, line_size;
1254         int small, large;
1255         int entries;
1256
1257         if (!latency_ns) {
1258                 *display_wm = *cursor_wm = 0;
1259                 return false;
1260         }
1261
1262         crtc = intel_get_crtc_for_plane(dev, plane);
1263         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1264         clock = adjusted_mode->clock;
1265         htotal = adjusted_mode->htotal;
1266         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1267         pixel_size = crtc->fb->bits_per_pixel / 8;
1268
1269         line_time_us = (htotal * 1000) / clock;
1270         line_count = (latency_ns / line_time_us + 1000) / 1000;
1271         line_size = hdisplay * pixel_size;
1272
1273         /* Use the minimum of the small and large buffer method for primary */
1274         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1275         large = line_count * line_size;
1276
1277         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1278         *display_wm = entries + display->guard_size;
1279
1280         /* calculate the self-refresh watermark for display cursor */
1281         entries = line_count * pixel_size * 64;
1282         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1283         *cursor_wm = entries + cursor->guard_size;
1284
1285         return g4x_check_srwm(dev,
1286                               *display_wm, *cursor_wm,
1287                               display, cursor);
1288 }
1289
1290 static bool vlv_compute_drain_latency(struct drm_device *dev,
1291                                      int plane,
1292                                      int *plane_prec_mult,
1293                                      int *plane_dl,
1294                                      int *cursor_prec_mult,
1295                                      int *cursor_dl)
1296 {
1297         struct drm_crtc *crtc;
1298         int clock, pixel_size;
1299         int entries;
1300
1301         crtc = intel_get_crtc_for_plane(dev, plane);
1302         if (!intel_crtc_active(crtc))
1303                 return false;
1304
1305         clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
1306         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1307
1308         entries = (clock / 1000) * pixel_size;
1309         *plane_prec_mult = (entries > 256) ?
1310                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1311         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1312                                                      pixel_size);
1313
1314         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1315         *cursor_prec_mult = (entries > 256) ?
1316                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1317         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1318
1319         return true;
1320 }
1321
1322 /*
1323  * Update drain latency registers of memory arbiter
1324  *
1325  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1326  * to be programmed. Each plane has a drain latency multiplier and a drain
1327  * latency value.
1328  */
1329
1330 static void vlv_update_drain_latency(struct drm_device *dev)
1331 {
1332         struct drm_i915_private *dev_priv = dev->dev_private;
1333         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1334         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1335         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1336                                                         either 16 or 32 */
1337
1338         /* For plane A, Cursor A */
1339         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1340                                       &cursor_prec_mult, &cursora_dl)) {
1341                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1342                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1343                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1344                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1345
1346                 I915_WRITE(VLV_DDL1, cursora_prec |
1347                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1348                                 planea_prec | planea_dl);
1349         }
1350
1351         /* For plane B, Cursor B */
1352         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1353                                       &cursor_prec_mult, &cursorb_dl)) {
1354                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1355                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1356                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1357                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1358
1359                 I915_WRITE(VLV_DDL2, cursorb_prec |
1360                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1361                                 planeb_prec | planeb_dl);
1362         }
1363 }
1364
1365 #define single_plane_enabled(mask) is_power_of_2(mask)
1366
1367 static void valleyview_update_wm(struct drm_crtc *crtc)
1368 {
1369         struct drm_device *dev = crtc->dev;
1370         static const int sr_latency_ns = 12000;
1371         struct drm_i915_private *dev_priv = dev->dev_private;
1372         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1373         int plane_sr, cursor_sr;
1374         int ignore_plane_sr, ignore_cursor_sr;
1375         unsigned int enabled = 0;
1376
1377         vlv_update_drain_latency(dev);
1378
1379         if (g4x_compute_wm0(dev, PIPE_A,
1380                             &valleyview_wm_info, latency_ns,
1381                             &valleyview_cursor_wm_info, latency_ns,
1382                             &planea_wm, &cursora_wm))
1383                 enabled |= 1 << PIPE_A;
1384
1385         if (g4x_compute_wm0(dev, PIPE_B,
1386                             &valleyview_wm_info, latency_ns,
1387                             &valleyview_cursor_wm_info, latency_ns,
1388                             &planeb_wm, &cursorb_wm))
1389                 enabled |= 1 << PIPE_B;
1390
1391         if (single_plane_enabled(enabled) &&
1392             g4x_compute_srwm(dev, ffs(enabled) - 1,
1393                              sr_latency_ns,
1394                              &valleyview_wm_info,
1395                              &valleyview_cursor_wm_info,
1396                              &plane_sr, &ignore_cursor_sr) &&
1397             g4x_compute_srwm(dev, ffs(enabled) - 1,
1398                              2*sr_latency_ns,
1399                              &valleyview_wm_info,
1400                              &valleyview_cursor_wm_info,
1401                              &ignore_plane_sr, &cursor_sr)) {
1402                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1403         } else {
1404                 I915_WRITE(FW_BLC_SELF_VLV,
1405                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1406                 plane_sr = cursor_sr = 0;
1407         }
1408
1409         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1410                       planea_wm, cursora_wm,
1411                       planeb_wm, cursorb_wm,
1412                       plane_sr, cursor_sr);
1413
1414         I915_WRITE(DSPFW1,
1415                    (plane_sr << DSPFW_SR_SHIFT) |
1416                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1417                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1418                    planea_wm);
1419         I915_WRITE(DSPFW2,
1420                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1421                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1422         I915_WRITE(DSPFW3,
1423                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1424                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425 }
1426
1427 static void g4x_update_wm(struct drm_crtc *crtc)
1428 {
1429         struct drm_device *dev = crtc->dev;
1430         static const int sr_latency_ns = 12000;
1431         struct drm_i915_private *dev_priv = dev->dev_private;
1432         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1433         int plane_sr, cursor_sr;
1434         unsigned int enabled = 0;
1435
1436         if (g4x_compute_wm0(dev, PIPE_A,
1437                             &g4x_wm_info, latency_ns,
1438                             &g4x_cursor_wm_info, latency_ns,
1439                             &planea_wm, &cursora_wm))
1440                 enabled |= 1 << PIPE_A;
1441
1442         if (g4x_compute_wm0(dev, PIPE_B,
1443                             &g4x_wm_info, latency_ns,
1444                             &g4x_cursor_wm_info, latency_ns,
1445                             &planeb_wm, &cursorb_wm))
1446                 enabled |= 1 << PIPE_B;
1447
1448         if (single_plane_enabled(enabled) &&
1449             g4x_compute_srwm(dev, ffs(enabled) - 1,
1450                              sr_latency_ns,
1451                              &g4x_wm_info,
1452                              &g4x_cursor_wm_info,
1453                              &plane_sr, &cursor_sr)) {
1454                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1455         } else {
1456                 I915_WRITE(FW_BLC_SELF,
1457                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1458                 plane_sr = cursor_sr = 0;
1459         }
1460
1461         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1462                       planea_wm, cursora_wm,
1463                       planeb_wm, cursorb_wm,
1464                       plane_sr, cursor_sr);
1465
1466         I915_WRITE(DSPFW1,
1467                    (plane_sr << DSPFW_SR_SHIFT) |
1468                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1469                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1470                    planea_wm);
1471         I915_WRITE(DSPFW2,
1472                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1473                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1474         /* HPLL off in SR has some issues on G4x... disable it */
1475         I915_WRITE(DSPFW3,
1476                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1477                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1478 }
1479
1480 static void i965_update_wm(struct drm_crtc *unused_crtc)
1481 {
1482         struct drm_device *dev = unused_crtc->dev;
1483         struct drm_i915_private *dev_priv = dev->dev_private;
1484         struct drm_crtc *crtc;
1485         int srwm = 1;
1486         int cursor_sr = 16;
1487
1488         /* Calc sr entries for one plane configs */
1489         crtc = single_enabled_crtc(dev);
1490         if (crtc) {
1491                 /* self-refresh has much higher latency */
1492                 static const int sr_latency_ns = 12000;
1493                 const struct drm_display_mode *adjusted_mode =
1494                         &to_intel_crtc(crtc)->config.adjusted_mode;
1495                 int clock = adjusted_mode->clock;
1496                 int htotal = adjusted_mode->htotal;
1497                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1498                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1499                 unsigned long line_time_us;
1500                 int entries;
1501
1502                 line_time_us = ((htotal * 1000) / clock);
1503
1504                 /* Use ns/us then divide to preserve precision */
1505                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1506                         pixel_size * hdisplay;
1507                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1508                 srwm = I965_FIFO_SIZE - entries;
1509                 if (srwm < 0)
1510                         srwm = 1;
1511                 srwm &= 0x1ff;
1512                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1513                               entries, srwm);
1514
1515                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1516                         pixel_size * 64;
1517                 entries = DIV_ROUND_UP(entries,
1518                                           i965_cursor_wm_info.cacheline_size);
1519                 cursor_sr = i965_cursor_wm_info.fifo_size -
1520                         (entries + i965_cursor_wm_info.guard_size);
1521
1522                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1523                         cursor_sr = i965_cursor_wm_info.max_wm;
1524
1525                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1526                               "cursor %d\n", srwm, cursor_sr);
1527
1528                 if (IS_CRESTLINE(dev))
1529                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1530         } else {
1531                 /* Turn off self refresh if both pipes are enabled */
1532                 if (IS_CRESTLINE(dev))
1533                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1534                                    & ~FW_BLC_SELF_EN);
1535         }
1536
1537         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1538                       srwm);
1539
1540         /* 965 has limitations... */
1541         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1542                    (8 << 16) | (8 << 8) | (8 << 0));
1543         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1544         /* update cursor SR watermark */
1545         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1546 }
1547
1548 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1549 {
1550         struct drm_device *dev = unused_crtc->dev;
1551         struct drm_i915_private *dev_priv = dev->dev_private;
1552         const struct intel_watermark_params *wm_info;
1553         uint32_t fwater_lo;
1554         uint32_t fwater_hi;
1555         int cwm, srwm = 1;
1556         int fifo_size;
1557         int planea_wm, planeb_wm;
1558         struct drm_crtc *crtc, *enabled = NULL;
1559
1560         if (IS_I945GM(dev))
1561                 wm_info = &i945_wm_info;
1562         else if (!IS_GEN2(dev))
1563                 wm_info = &i915_wm_info;
1564         else
1565                 wm_info = &i855_wm_info;
1566
1567         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1568         crtc = intel_get_crtc_for_plane(dev, 0);
1569         if (intel_crtc_active(crtc)) {
1570                 int cpp = crtc->fb->bits_per_pixel / 8;
1571                 if (IS_GEN2(dev))
1572                         cpp = 4;
1573
1574                 planea_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
1575                                                wm_info, fifo_size, cpp,
1576                                                latency_ns);
1577                 enabled = crtc;
1578         } else
1579                 planea_wm = fifo_size - wm_info->guard_size;
1580
1581         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1582         crtc = intel_get_crtc_for_plane(dev, 1);
1583         if (intel_crtc_active(crtc)) {
1584                 int cpp = crtc->fb->bits_per_pixel / 8;
1585                 if (IS_GEN2(dev))
1586                         cpp = 4;
1587
1588                 planeb_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
1589                                                wm_info, fifo_size, cpp,
1590                                                latency_ns);
1591                 if (enabled == NULL)
1592                         enabled = crtc;
1593                 else
1594                         enabled = NULL;
1595         } else
1596                 planeb_wm = fifo_size - wm_info->guard_size;
1597
1598         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1599
1600         /*
1601          * Overlay gets an aggressive default since video jitter is bad.
1602          */
1603         cwm = 2;
1604
1605         /* Play safe and disable self-refresh before adjusting watermarks. */
1606         if (IS_I945G(dev) || IS_I945GM(dev))
1607                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1608         else if (IS_I915GM(dev))
1609                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1610
1611         /* Calc sr entries for one plane configs */
1612         if (HAS_FW_BLC(dev) && enabled) {
1613                 /* self-refresh has much higher latency */
1614                 static const int sr_latency_ns = 6000;
1615                 const struct drm_display_mode *adjusted_mode =
1616                         &to_intel_crtc(enabled)->config.adjusted_mode;
1617                 int clock = adjusted_mode->clock;
1618                 int htotal = adjusted_mode->htotal;
1619                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1620                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1621                 unsigned long line_time_us;
1622                 int entries;
1623
1624                 line_time_us = (htotal * 1000) / clock;
1625
1626                 /* Use ns/us then divide to preserve precision */
1627                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1628                         pixel_size * hdisplay;
1629                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1630                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1631                 srwm = wm_info->fifo_size - entries;
1632                 if (srwm < 0)
1633                         srwm = 1;
1634
1635                 if (IS_I945G(dev) || IS_I945GM(dev))
1636                         I915_WRITE(FW_BLC_SELF,
1637                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1638                 else if (IS_I915GM(dev))
1639                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1640         }
1641
1642         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1643                       planea_wm, planeb_wm, cwm, srwm);
1644
1645         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1646         fwater_hi = (cwm & 0x1f);
1647
1648         /* Set request length to 8 cachelines per fetch */
1649         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1650         fwater_hi = fwater_hi | (1 << 8);
1651
1652         I915_WRITE(FW_BLC, fwater_lo);
1653         I915_WRITE(FW_BLC2, fwater_hi);
1654
1655         if (HAS_FW_BLC(dev)) {
1656                 if (enabled) {
1657                         if (IS_I945G(dev) || IS_I945GM(dev))
1658                                 I915_WRITE(FW_BLC_SELF,
1659                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1660                         else if (IS_I915GM(dev))
1661                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1662                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1663                 } else
1664                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1665         }
1666 }
1667
1668 static void i830_update_wm(struct drm_crtc *unused_crtc)
1669 {
1670         struct drm_device *dev = unused_crtc->dev;
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         struct drm_crtc *crtc;
1673         uint32_t fwater_lo;
1674         int planea_wm;
1675
1676         crtc = single_enabled_crtc(dev);
1677         if (crtc == NULL)
1678                 return;
1679
1680         planea_wm = intel_calculate_wm(to_intel_crtc(crtc)->config.adjusted_mode.clock,
1681                                        &i830_wm_info,
1682                                        dev_priv->display.get_fifo_size(dev, 0),
1683                                        4, latency_ns);
1684         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1685         fwater_lo |= (3<<8) | planea_wm;
1686
1687         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1688
1689         I915_WRITE(FW_BLC, fwater_lo);
1690 }
1691
1692 /*
1693  * Check the wm result.
1694  *
1695  * If any calculated watermark values is larger than the maximum value that
1696  * can be programmed into the associated watermark register, that watermark
1697  * must be disabled.
1698  */
1699 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1700                                 int fbc_wm, int display_wm, int cursor_wm,
1701                                 const struct intel_watermark_params *display,
1702                                 const struct intel_watermark_params *cursor)
1703 {
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705
1706         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1707                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1708
1709         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1710                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1711                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1712
1713                 /* fbc has it's own way to disable FBC WM */
1714                 I915_WRITE(DISP_ARB_CTL,
1715                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1716                 return false;
1717         } else if (INTEL_INFO(dev)->gen >= 6) {
1718                 /* enable FBC WM (except on ILK, where it must remain off) */
1719                 I915_WRITE(DISP_ARB_CTL,
1720                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1721         }
1722
1723         if (display_wm > display->max_wm) {
1724                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1725                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1726                 return false;
1727         }
1728
1729         if (cursor_wm > cursor->max_wm) {
1730                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1731                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1732                 return false;
1733         }
1734
1735         if (!(fbc_wm || display_wm || cursor_wm)) {
1736                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1737                 return false;
1738         }
1739
1740         return true;
1741 }
1742
1743 /*
1744  * Compute watermark values of WM[1-3],
1745  */
1746 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1747                                   int latency_ns,
1748                                   const struct intel_watermark_params *display,
1749                                   const struct intel_watermark_params *cursor,
1750                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1751 {
1752         struct drm_crtc *crtc;
1753         const struct drm_display_mode *adjusted_mode;
1754         unsigned long line_time_us;
1755         int hdisplay, htotal, pixel_size, clock;
1756         int line_count, line_size;
1757         int small, large;
1758         int entries;
1759
1760         if (!latency_ns) {
1761                 *fbc_wm = *display_wm = *cursor_wm = 0;
1762                 return false;
1763         }
1764
1765         crtc = intel_get_crtc_for_plane(dev, plane);
1766         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1767         clock = adjusted_mode->clock;
1768         htotal = adjusted_mode->htotal;
1769         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1770         pixel_size = crtc->fb->bits_per_pixel / 8;
1771
1772         line_time_us = (htotal * 1000) / clock;
1773         line_count = (latency_ns / line_time_us + 1000) / 1000;
1774         line_size = hdisplay * pixel_size;
1775
1776         /* Use the minimum of the small and large buffer method for primary */
1777         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1778         large = line_count * line_size;
1779
1780         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1781         *display_wm = entries + display->guard_size;
1782
1783         /*
1784          * Spec says:
1785          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1786          */
1787         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1788
1789         /* calculate the self-refresh watermark for display cursor */
1790         entries = line_count * pixel_size * 64;
1791         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1792         *cursor_wm = entries + cursor->guard_size;
1793
1794         return ironlake_check_srwm(dev, level,
1795                                    *fbc_wm, *display_wm, *cursor_wm,
1796                                    display, cursor);
1797 }
1798
1799 static void ironlake_update_wm(struct drm_crtc *crtc)
1800 {
1801         struct drm_device *dev = crtc->dev;
1802         struct drm_i915_private *dev_priv = dev->dev_private;
1803         int fbc_wm, plane_wm, cursor_wm;
1804         unsigned int enabled;
1805
1806         enabled = 0;
1807         if (g4x_compute_wm0(dev, PIPE_A,
1808                             &ironlake_display_wm_info,
1809                             dev_priv->wm.pri_latency[0] * 100,
1810                             &ironlake_cursor_wm_info,
1811                             dev_priv->wm.cur_latency[0] * 100,
1812                             &plane_wm, &cursor_wm)) {
1813                 I915_WRITE(WM0_PIPEA_ILK,
1814                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1815                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1816                               " plane %d, " "cursor: %d\n",
1817                               plane_wm, cursor_wm);
1818                 enabled |= 1 << PIPE_A;
1819         }
1820
1821         if (g4x_compute_wm0(dev, PIPE_B,
1822                             &ironlake_display_wm_info,
1823                             dev_priv->wm.pri_latency[0] * 100,
1824                             &ironlake_cursor_wm_info,
1825                             dev_priv->wm.cur_latency[0] * 100,
1826                             &plane_wm, &cursor_wm)) {
1827                 I915_WRITE(WM0_PIPEB_ILK,
1828                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1829                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1830                               " plane %d, cursor: %d\n",
1831                               plane_wm, cursor_wm);
1832                 enabled |= 1 << PIPE_B;
1833         }
1834
1835         /*
1836          * Calculate and update the self-refresh watermark only when one
1837          * display plane is used.
1838          */
1839         I915_WRITE(WM3_LP_ILK, 0);
1840         I915_WRITE(WM2_LP_ILK, 0);
1841         I915_WRITE(WM1_LP_ILK, 0);
1842
1843         if (!single_plane_enabled(enabled))
1844                 return;
1845         enabled = ffs(enabled) - 1;
1846
1847         /* WM1 */
1848         if (!ironlake_compute_srwm(dev, 1, enabled,
1849                                    dev_priv->wm.pri_latency[1] * 500,
1850                                    &ironlake_display_srwm_info,
1851                                    &ironlake_cursor_srwm_info,
1852                                    &fbc_wm, &plane_wm, &cursor_wm))
1853                 return;
1854
1855         I915_WRITE(WM1_LP_ILK,
1856                    WM1_LP_SR_EN |
1857                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1858                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1859                    (plane_wm << WM1_LP_SR_SHIFT) |
1860                    cursor_wm);
1861
1862         /* WM2 */
1863         if (!ironlake_compute_srwm(dev, 2, enabled,
1864                                    dev_priv->wm.pri_latency[2] * 500,
1865                                    &ironlake_display_srwm_info,
1866                                    &ironlake_cursor_srwm_info,
1867                                    &fbc_wm, &plane_wm, &cursor_wm))
1868                 return;
1869
1870         I915_WRITE(WM2_LP_ILK,
1871                    WM2_LP_EN |
1872                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1873                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1874                    (plane_wm << WM1_LP_SR_SHIFT) |
1875                    cursor_wm);
1876
1877         /*
1878          * WM3 is unsupported on ILK, probably because we don't have latency
1879          * data for that power state
1880          */
1881 }
1882
1883 static void sandybridge_update_wm(struct drm_crtc *crtc)
1884 {
1885         struct drm_device *dev = crtc->dev;
1886         struct drm_i915_private *dev_priv = dev->dev_private;
1887         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
1888         u32 val;
1889         int fbc_wm, plane_wm, cursor_wm;
1890         unsigned int enabled;
1891
1892         enabled = 0;
1893         if (g4x_compute_wm0(dev, PIPE_A,
1894                             &sandybridge_display_wm_info, latency,
1895                             &sandybridge_cursor_wm_info, latency,
1896                             &plane_wm, &cursor_wm)) {
1897                 val = I915_READ(WM0_PIPEA_ILK);
1898                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1899                 I915_WRITE(WM0_PIPEA_ILK, val |
1900                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1901                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1902                               " plane %d, " "cursor: %d\n",
1903                               plane_wm, cursor_wm);
1904                 enabled |= 1 << PIPE_A;
1905         }
1906
1907         if (g4x_compute_wm0(dev, PIPE_B,
1908                             &sandybridge_display_wm_info, latency,
1909                             &sandybridge_cursor_wm_info, latency,
1910                             &plane_wm, &cursor_wm)) {
1911                 val = I915_READ(WM0_PIPEB_ILK);
1912                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1913                 I915_WRITE(WM0_PIPEB_ILK, val |
1914                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1915                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1916                               " plane %d, cursor: %d\n",
1917                               plane_wm, cursor_wm);
1918                 enabled |= 1 << PIPE_B;
1919         }
1920
1921         /*
1922          * Calculate and update the self-refresh watermark only when one
1923          * display plane is used.
1924          *
1925          * SNB support 3 levels of watermark.
1926          *
1927          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1928          * and disabled in the descending order
1929          *
1930          */
1931         I915_WRITE(WM3_LP_ILK, 0);
1932         I915_WRITE(WM2_LP_ILK, 0);
1933         I915_WRITE(WM1_LP_ILK, 0);
1934
1935         if (!single_plane_enabled(enabled) ||
1936             dev_priv->sprite_scaling_enabled)
1937                 return;
1938         enabled = ffs(enabled) - 1;
1939
1940         /* WM1 */
1941         if (!ironlake_compute_srwm(dev, 1, enabled,
1942                                    dev_priv->wm.pri_latency[1] * 500,
1943                                    &sandybridge_display_srwm_info,
1944                                    &sandybridge_cursor_srwm_info,
1945                                    &fbc_wm, &plane_wm, &cursor_wm))
1946                 return;
1947
1948         I915_WRITE(WM1_LP_ILK,
1949                    WM1_LP_SR_EN |
1950                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
1951                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1952                    (plane_wm << WM1_LP_SR_SHIFT) |
1953                    cursor_wm);
1954
1955         /* WM2 */
1956         if (!ironlake_compute_srwm(dev, 2, enabled,
1957                                    dev_priv->wm.pri_latency[2] * 500,
1958                                    &sandybridge_display_srwm_info,
1959                                    &sandybridge_cursor_srwm_info,
1960                                    &fbc_wm, &plane_wm, &cursor_wm))
1961                 return;
1962
1963         I915_WRITE(WM2_LP_ILK,
1964                    WM2_LP_EN |
1965                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
1966                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1967                    (plane_wm << WM1_LP_SR_SHIFT) |
1968                    cursor_wm);
1969
1970         /* WM3 */
1971         if (!ironlake_compute_srwm(dev, 3, enabled,
1972                                    dev_priv->wm.pri_latency[3] * 500,
1973                                    &sandybridge_display_srwm_info,
1974                                    &sandybridge_cursor_srwm_info,
1975                                    &fbc_wm, &plane_wm, &cursor_wm))
1976                 return;
1977
1978         I915_WRITE(WM3_LP_ILK,
1979                    WM3_LP_EN |
1980                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
1981                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1982                    (plane_wm << WM1_LP_SR_SHIFT) |
1983                    cursor_wm);
1984 }
1985
1986 static void ivybridge_update_wm(struct drm_crtc *crtc)
1987 {
1988         struct drm_device *dev = crtc->dev;
1989         struct drm_i915_private *dev_priv = dev->dev_private;
1990         int latency = dev_priv->wm.pri_latency[0] * 100;        /* In unit 0.1us */
1991         u32 val;
1992         int fbc_wm, plane_wm, cursor_wm;
1993         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1994         unsigned int enabled;
1995
1996         enabled = 0;
1997         if (g4x_compute_wm0(dev, PIPE_A,
1998                             &sandybridge_display_wm_info, latency,
1999                             &sandybridge_cursor_wm_info, latency,
2000                             &plane_wm, &cursor_wm)) {
2001                 val = I915_READ(WM0_PIPEA_ILK);
2002                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2003                 I915_WRITE(WM0_PIPEA_ILK, val |
2004                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2005                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
2006                               " plane %d, " "cursor: %d\n",
2007                               plane_wm, cursor_wm);
2008                 enabled |= 1 << PIPE_A;
2009         }
2010
2011         if (g4x_compute_wm0(dev, PIPE_B,
2012                             &sandybridge_display_wm_info, latency,
2013                             &sandybridge_cursor_wm_info, latency,
2014                             &plane_wm, &cursor_wm)) {
2015                 val = I915_READ(WM0_PIPEB_ILK);
2016                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2017                 I915_WRITE(WM0_PIPEB_ILK, val |
2018                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2019                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
2020                               " plane %d, cursor: %d\n",
2021                               plane_wm, cursor_wm);
2022                 enabled |= 1 << PIPE_B;
2023         }
2024
2025         if (g4x_compute_wm0(dev, PIPE_C,
2026                             &sandybridge_display_wm_info, latency,
2027                             &sandybridge_cursor_wm_info, latency,
2028                             &plane_wm, &cursor_wm)) {
2029                 val = I915_READ(WM0_PIPEC_IVB);
2030                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2031                 I915_WRITE(WM0_PIPEC_IVB, val |
2032                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2033                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2034                               " plane %d, cursor: %d\n",
2035                               plane_wm, cursor_wm);
2036                 enabled |= 1 << PIPE_C;
2037         }
2038
2039         /*
2040          * Calculate and update the self-refresh watermark only when one
2041          * display plane is used.
2042          *
2043          * SNB support 3 levels of watermark.
2044          *
2045          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2046          * and disabled in the descending order
2047          *
2048          */
2049         I915_WRITE(WM3_LP_ILK, 0);
2050         I915_WRITE(WM2_LP_ILK, 0);
2051         I915_WRITE(WM1_LP_ILK, 0);
2052
2053         if (!single_plane_enabled(enabled) ||
2054             dev_priv->sprite_scaling_enabled)
2055                 return;
2056         enabled = ffs(enabled) - 1;
2057
2058         /* WM1 */
2059         if (!ironlake_compute_srwm(dev, 1, enabled,
2060                                    dev_priv->wm.pri_latency[1] * 500,
2061                                    &sandybridge_display_srwm_info,
2062                                    &sandybridge_cursor_srwm_info,
2063                                    &fbc_wm, &plane_wm, &cursor_wm))
2064                 return;
2065
2066         I915_WRITE(WM1_LP_ILK,
2067                    WM1_LP_SR_EN |
2068                    (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
2069                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2070                    (plane_wm << WM1_LP_SR_SHIFT) |
2071                    cursor_wm);
2072
2073         /* WM2 */
2074         if (!ironlake_compute_srwm(dev, 2, enabled,
2075                                    dev_priv->wm.pri_latency[2] * 500,
2076                                    &sandybridge_display_srwm_info,
2077                                    &sandybridge_cursor_srwm_info,
2078                                    &fbc_wm, &plane_wm, &cursor_wm))
2079                 return;
2080
2081         I915_WRITE(WM2_LP_ILK,
2082                    WM2_LP_EN |
2083                    (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
2084                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2085                    (plane_wm << WM1_LP_SR_SHIFT) |
2086                    cursor_wm);
2087
2088         /* WM3, note we have to correct the cursor latency */
2089         if (!ironlake_compute_srwm(dev, 3, enabled,
2090                                    dev_priv->wm.pri_latency[3] * 500,
2091                                    &sandybridge_display_srwm_info,
2092                                    &sandybridge_cursor_srwm_info,
2093                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2094             !ironlake_compute_srwm(dev, 3, enabled,
2095                                    dev_priv->wm.cur_latency[3] * 500,
2096                                    &sandybridge_display_srwm_info,
2097                                    &sandybridge_cursor_srwm_info,
2098                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2099                 return;
2100
2101         I915_WRITE(WM3_LP_ILK,
2102                    WM3_LP_EN |
2103                    (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
2104                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2105                    (plane_wm << WM1_LP_SR_SHIFT) |
2106                    cursor_wm);
2107 }
2108
2109 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
2110                                     struct drm_crtc *crtc)
2111 {
2112         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2113         uint32_t pixel_rate;
2114
2115         pixel_rate = intel_crtc->config.adjusted_mode.clock;
2116
2117         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2118          * adjust the pixel_rate here. */
2119
2120         if (intel_crtc->config.pch_pfit.enabled) {
2121                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2122                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
2123
2124                 pipe_w = intel_crtc->config.pipe_src_w;
2125                 pipe_h = intel_crtc->config.pipe_src_h;
2126                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2127                 pfit_h = pfit_size & 0xFFFF;
2128                 if (pipe_w < pfit_w)
2129                         pipe_w = pfit_w;
2130                 if (pipe_h < pfit_h)
2131                         pipe_h = pfit_h;
2132
2133                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2134                                      pfit_w * pfit_h);
2135         }
2136
2137         return pixel_rate;
2138 }
2139
2140 /* latency must be in 0.1us units. */
2141 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2142                                uint32_t latency)
2143 {
2144         uint64_t ret;
2145
2146         if (WARN(latency == 0, "Latency value missing\n"))
2147                 return UINT_MAX;
2148
2149         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2150         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2151
2152         return ret;
2153 }
2154
2155 /* latency must be in 0.1us units. */
2156 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2157                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2158                                uint32_t latency)
2159 {
2160         uint32_t ret;
2161
2162         if (WARN(latency == 0, "Latency value missing\n"))
2163                 return UINT_MAX;
2164
2165         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2166         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2167         ret = DIV_ROUND_UP(ret, 64) + 2;
2168         return ret;
2169 }
2170
2171 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2172                            uint8_t bytes_per_pixel)
2173 {
2174         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2175 }
2176
2177 struct hsw_pipe_wm_parameters {
2178         bool active;
2179         uint32_t pipe_htotal;
2180         uint32_t pixel_rate;
2181         struct intel_plane_wm_parameters pri;
2182         struct intel_plane_wm_parameters spr;
2183         struct intel_plane_wm_parameters cur;
2184 };
2185
2186 struct hsw_wm_maximums {
2187         uint16_t pri;
2188         uint16_t spr;
2189         uint16_t cur;
2190         uint16_t fbc;
2191 };
2192
2193 struct hsw_wm_values {
2194         uint32_t wm_pipe[3];
2195         uint32_t wm_lp[3];
2196         uint32_t wm_lp_spr[3];
2197         uint32_t wm_linetime[3];
2198         bool enable_fbc_wm;
2199 };
2200
2201 /* used in computing the new watermarks state */
2202 struct intel_wm_config {
2203         unsigned int num_pipes_active;
2204         bool sprites_enabled;
2205         bool sprites_scaled;
2206         bool fbc_wm_enabled;
2207 };
2208
2209 /*
2210  * For both WM_PIPE and WM_LP.
2211  * mem_value must be in 0.1us units.
2212  */
2213 static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
2214                                    uint32_t mem_value,
2215                                    bool is_lp)
2216 {
2217         uint32_t method1, method2;
2218
2219         if (!params->active || !params->pri.enabled)
2220                 return 0;
2221
2222         method1 = ilk_wm_method1(params->pixel_rate,
2223                                  params->pri.bytes_per_pixel,
2224                                  mem_value);
2225
2226         if (!is_lp)
2227                 return method1;
2228
2229         method2 = ilk_wm_method2(params->pixel_rate,
2230                                  params->pipe_htotal,
2231                                  params->pri.horiz_pixels,
2232                                  params->pri.bytes_per_pixel,
2233                                  mem_value);
2234
2235         return min(method1, method2);
2236 }
2237
2238 /*
2239  * For both WM_PIPE and WM_LP.
2240  * mem_value must be in 0.1us units.
2241  */
2242 static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
2243                                    uint32_t mem_value)
2244 {
2245         uint32_t method1, method2;
2246
2247         if (!params->active || !params->spr.enabled)
2248                 return 0;
2249
2250         method1 = ilk_wm_method1(params->pixel_rate,
2251                                  params->spr.bytes_per_pixel,
2252                                  mem_value);
2253         method2 = ilk_wm_method2(params->pixel_rate,
2254                                  params->pipe_htotal,
2255                                  params->spr.horiz_pixels,
2256                                  params->spr.bytes_per_pixel,
2257                                  mem_value);
2258         return min(method1, method2);
2259 }
2260
2261 /*
2262  * For both WM_PIPE and WM_LP.
2263  * mem_value must be in 0.1us units.
2264  */
2265 static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
2266                                    uint32_t mem_value)
2267 {
2268         if (!params->active || !params->cur.enabled)
2269                 return 0;
2270
2271         return ilk_wm_method2(params->pixel_rate,
2272                               params->pipe_htotal,
2273                               params->cur.horiz_pixels,
2274                               params->cur.bytes_per_pixel,
2275                               mem_value);
2276 }
2277
2278 /* Only for WM_LP. */
2279 static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
2280                                    uint32_t pri_val)
2281 {
2282         if (!params->active || !params->pri.enabled)
2283                 return 0;
2284
2285         return ilk_wm_fbc(pri_val,
2286                           params->pri.horiz_pixels,
2287                           params->pri.bytes_per_pixel);
2288 }
2289
2290 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
2291 {
2292         if (INTEL_INFO(dev)->gen >= 7)
2293                 return 768;
2294         else
2295                 return 512;
2296 }
2297
2298 /* Calculate the maximum primary/sprite plane watermark */
2299 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2300                                      int level,
2301                                      const struct intel_wm_config *config,
2302                                      enum intel_ddb_partitioning ddb_partitioning,
2303                                      bool is_sprite)
2304 {
2305         unsigned int fifo_size = ilk_display_fifo_size(dev);
2306         unsigned int max;
2307
2308         /* if sprites aren't enabled, sprites get nothing */
2309         if (is_sprite && !config->sprites_enabled)
2310                 return 0;
2311
2312         /* HSW allows LP1+ watermarks even with multiple pipes */
2313         if (level == 0 || config->num_pipes_active > 1) {
2314                 fifo_size /= INTEL_INFO(dev)->num_pipes;
2315
2316                 /*
2317                  * For some reason the non self refresh
2318                  * FIFO size is only half of the self
2319                  * refresh FIFO size on ILK/SNB.
2320                  */
2321                 if (INTEL_INFO(dev)->gen <= 6)
2322                         fifo_size /= 2;
2323         }
2324
2325         if (config->sprites_enabled) {
2326                 /* level 0 is always calculated with 1:1 split */
2327                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2328                         if (is_sprite)
2329                                 fifo_size *= 5;
2330                         fifo_size /= 6;
2331                 } else {
2332                         fifo_size /= 2;
2333                 }
2334         }
2335
2336         /* clamp to max that the registers can hold */
2337         if (INTEL_INFO(dev)->gen >= 7)
2338                 /* IVB/HSW primary/sprite plane watermarks */
2339                 max = level == 0 ? 127 : 1023;
2340         else if (!is_sprite)
2341                 /* ILK/SNB primary plane watermarks */
2342                 max = level == 0 ? 127 : 511;
2343         else
2344                 /* ILK/SNB sprite plane watermarks */
2345                 max = level == 0 ? 63 : 255;
2346
2347         return min(fifo_size, max);
2348 }
2349
2350 /* Calculate the maximum cursor plane watermark */
2351 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2352                                       int level,
2353                                       const struct intel_wm_config *config)
2354 {
2355         /* HSW LP1+ watermarks w/ multiple pipes */
2356         if (level > 0 && config->num_pipes_active > 1)
2357                 return 64;
2358
2359         /* otherwise just report max that registers can hold */
2360         if (INTEL_INFO(dev)->gen >= 7)
2361                 return level == 0 ? 63 : 255;
2362         else
2363                 return level == 0 ? 31 : 63;
2364 }
2365
2366 /* Calculate the maximum FBC watermark */
2367 static unsigned int ilk_fbc_wm_max(void)
2368 {
2369         /* max that registers can hold */
2370         return 15;
2371 }
2372
2373 static void ilk_wm_max(struct drm_device *dev,
2374                        int level,
2375                        const struct intel_wm_config *config,
2376                        enum intel_ddb_partitioning ddb_partitioning,
2377                        struct hsw_wm_maximums *max)
2378 {
2379         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2380         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2381         max->cur = ilk_cursor_wm_max(dev, level, config);
2382         max->fbc = ilk_fbc_wm_max();
2383 }
2384
2385 static bool ilk_check_wm(int level,
2386                          const struct hsw_wm_maximums *max,
2387                          struct intel_wm_level *result)
2388 {
2389         bool ret;
2390
2391         /* already determined to be invalid? */
2392         if (!result->enable)
2393                 return false;
2394
2395         result->enable = result->pri_val <= max->pri &&
2396                          result->spr_val <= max->spr &&
2397                          result->cur_val <= max->cur;
2398
2399         ret = result->enable;
2400
2401         /*
2402          * HACK until we can pre-compute everything,
2403          * and thus fail gracefully if LP0 watermarks
2404          * are exceeded...
2405          */
2406         if (level == 0 && !result->enable) {
2407                 if (result->pri_val > max->pri)
2408                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2409                                       level, result->pri_val, max->pri);
2410                 if (result->spr_val > max->spr)
2411                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2412                                       level, result->spr_val, max->spr);
2413                 if (result->cur_val > max->cur)
2414                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2415                                       level, result->cur_val, max->cur);
2416
2417                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2418                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2419                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2420                 result->enable = true;
2421         }
2422
2423         DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
2424
2425         return ret;
2426 }
2427
2428 static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
2429                                  int level,
2430                                  const struct hsw_pipe_wm_parameters *p,
2431                                  struct intel_wm_level *result)
2432 {
2433         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2434         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2435         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2436
2437         /* WM1+ latency values stored in 0.5us units */
2438         if (level > 0) {
2439                 pri_latency *= 5;
2440                 spr_latency *= 5;
2441                 cur_latency *= 5;
2442         }
2443
2444         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2445         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2446         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2447         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2448         result->enable = true;
2449 }
2450
2451 static bool hsw_compute_lp_wm(struct drm_i915_private *dev_priv,
2452                               int level, const struct hsw_wm_maximums *max,
2453                               const struct hsw_pipe_wm_parameters *params,
2454                               struct intel_wm_level *result)
2455 {
2456         enum pipe pipe;
2457         struct intel_wm_level res[3];
2458
2459         for (pipe = PIPE_A; pipe <= PIPE_C; pipe++)
2460                 ilk_compute_wm_level(dev_priv, level, &params[pipe], &res[pipe]);
2461
2462         result->pri_val = max3(res[0].pri_val, res[1].pri_val, res[2].pri_val);
2463         result->spr_val = max3(res[0].spr_val, res[1].spr_val, res[2].spr_val);
2464         result->cur_val = max3(res[0].cur_val, res[1].cur_val, res[2].cur_val);
2465         result->fbc_val = max3(res[0].fbc_val, res[1].fbc_val, res[2].fbc_val);
2466         result->enable = true;
2467
2468         return ilk_check_wm(level, max, result);
2469 }
2470
2471
2472 static uint32_t hsw_compute_wm_pipe(struct drm_device *dev,
2473                                     const struct hsw_pipe_wm_parameters *params)
2474 {
2475         struct drm_i915_private *dev_priv = dev->dev_private;
2476         struct intel_wm_config config = {
2477                 .num_pipes_active = 1,
2478                 .sprites_enabled = params->spr.enabled,
2479                 .sprites_scaled = params->spr.scaled,
2480         };
2481         struct hsw_wm_maximums max;
2482         struct intel_wm_level res;
2483
2484         if (!params->active)
2485                 return 0;
2486
2487         ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2488
2489         ilk_compute_wm_level(dev_priv, 0, params, &res);
2490
2491         ilk_check_wm(0, &max, &res);
2492
2493         return (res.pri_val << WM0_PIPE_PLANE_SHIFT) |
2494                (res.spr_val << WM0_PIPE_SPRITE_SHIFT) |
2495                res.cur_val;
2496 }
2497
2498 static uint32_t
2499 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2500 {
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2504         u32 linetime, ips_linetime;
2505
2506         if (!intel_crtc_active(crtc))
2507                 return 0;
2508
2509         /* The WM are computed with base on how long it takes to fill a single
2510          * row at the given clock rate, multiplied by 8.
2511          * */
2512         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2513         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2514                                          intel_ddi_get_cdclk_freq(dev_priv));
2515
2516         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2517                PIPE_WM_LINETIME_TIME(linetime);
2518 }
2519
2520 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2521 {
2522         struct drm_i915_private *dev_priv = dev->dev_private;
2523
2524         if (IS_HASWELL(dev)) {
2525                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2526
2527                 wm[0] = (sskpd >> 56) & 0xFF;
2528                 if (wm[0] == 0)
2529                         wm[0] = sskpd & 0xF;
2530                 wm[1] = (sskpd >> 4) & 0xFF;
2531                 wm[2] = (sskpd >> 12) & 0xFF;
2532                 wm[3] = (sskpd >> 20) & 0x1FF;
2533                 wm[4] = (sskpd >> 32) & 0x1FF;
2534         } else if (INTEL_INFO(dev)->gen >= 6) {
2535                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2536
2537                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2538                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2539                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2540                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2541         } else if (INTEL_INFO(dev)->gen >= 5) {
2542                 uint32_t mltr = I915_READ(MLTR_ILK);
2543
2544                 /* ILK primary LP0 latency is 700 ns */
2545                 wm[0] = 7;
2546                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2547                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2548         }
2549 }
2550
2551 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2552 {
2553         /* ILK sprite LP0 latency is 1300 ns */
2554         if (INTEL_INFO(dev)->gen == 5)
2555                 wm[0] = 13;
2556 }
2557
2558 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2559 {
2560         /* ILK cursor LP0 latency is 1300 ns */
2561         if (INTEL_INFO(dev)->gen == 5)
2562                 wm[0] = 13;
2563
2564         /* WaDoubleCursorLP3Latency:ivb */
2565         if (IS_IVYBRIDGE(dev))
2566                 wm[3] *= 2;
2567 }
2568
2569 static int ilk_wm_max_level(const struct drm_device *dev)
2570 {
2571         /* how many WM levels are we expecting */
2572         if (IS_HASWELL(dev))
2573                 return 4;
2574         else if (INTEL_INFO(dev)->gen >= 6)
2575                 return 3;
2576         else
2577                 return 2;
2578 }
2579
2580 static void intel_print_wm_latency(struct drm_device *dev,
2581                                    const char *name,
2582                                    const uint16_t wm[5])
2583 {
2584         int level, max_level = ilk_wm_max_level(dev);
2585
2586         for (level = 0; level <= max_level; level++) {
2587                 unsigned int latency = wm[level];
2588
2589                 if (latency == 0) {
2590                         DRM_ERROR("%s WM%d latency not provided\n",
2591                                   name, level);
2592                         continue;
2593                 }
2594
2595                 /* WM1+ latency values in 0.5us units */
2596                 if (level > 0)
2597                         latency *= 5;
2598
2599                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2600                               name, level, wm[level],
2601                               latency / 10, latency % 10);
2602         }
2603 }
2604
2605 static void intel_setup_wm_latency(struct drm_device *dev)
2606 {
2607         struct drm_i915_private *dev_priv = dev->dev_private;
2608
2609         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2610
2611         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2612                sizeof(dev_priv->wm.pri_latency));
2613         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2614                sizeof(dev_priv->wm.pri_latency));
2615
2616         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2617         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2618
2619         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2620         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2621         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2622 }
2623
2624 static void hsw_compute_wm_parameters(struct drm_device *dev,
2625                                       struct hsw_pipe_wm_parameters *params,
2626                                       struct hsw_wm_maximums *lp_max_1_2,
2627                                       struct hsw_wm_maximums *lp_max_5_6)
2628 {
2629         struct drm_crtc *crtc;
2630         struct drm_plane *plane;
2631         enum pipe pipe;
2632         struct intel_wm_config config = {};
2633
2634         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2635                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2636                 struct hsw_pipe_wm_parameters *p;
2637
2638                 pipe = intel_crtc->pipe;
2639                 p = &params[pipe];
2640
2641                 p->active = intel_crtc_active(crtc);
2642                 if (!p->active)
2643                         continue;
2644
2645                 config.num_pipes_active++;
2646
2647                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2648                 p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2649                 p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2650                 p->cur.bytes_per_pixel = 4;
2651                 p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2652                 p->cur.horiz_pixels = 64;
2653                 /* TODO: for now, assume primary and cursor planes are always enabled. */
2654                 p->pri.enabled = true;
2655                 p->cur.enabled = true;
2656         }
2657
2658         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2659                 struct intel_plane *intel_plane = to_intel_plane(plane);
2660                 struct hsw_pipe_wm_parameters *p;
2661
2662                 pipe = intel_plane->pipe;
2663                 p = &params[pipe];
2664
2665                 p->spr = intel_plane->wm;
2666
2667                 config.sprites_enabled |= p->spr.enabled;
2668                 config.sprites_scaled |= p->spr.scaled;
2669         }
2670
2671         ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
2672
2673         /* 5/6 split only in single pipe config on IVB+ */
2674         if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
2675                 ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
2676         else
2677                 *lp_max_5_6 = *lp_max_1_2;
2678 }
2679
2680 static void hsw_compute_wm_results(struct drm_device *dev,
2681                                    const struct hsw_pipe_wm_parameters *params,
2682                                    const struct hsw_wm_maximums *lp_maximums,
2683                                    struct hsw_wm_values *results)
2684 {
2685         struct drm_i915_private *dev_priv = dev->dev_private;
2686         struct drm_crtc *crtc;
2687         struct intel_wm_level lp_results[4] = {};
2688         enum pipe pipe;
2689         int level, max_level, wm_lp;
2690
2691         for (level = 1; level <= 4; level++)
2692                 if (!hsw_compute_lp_wm(dev_priv, level,
2693                                        lp_maximums, params,
2694                                        &lp_results[level - 1]))
2695                         break;
2696         max_level = level - 1;
2697
2698         memset(results, 0, sizeof(*results));
2699
2700         /* The spec says it is preferred to disable FBC WMs instead of disabling
2701          * a WM level. */
2702         results->enable_fbc_wm = true;
2703         for (level = 1; level <= max_level; level++) {
2704                 if (lp_results[level - 1].fbc_val > lp_maximums->fbc) {
2705                         results->enable_fbc_wm = false;
2706                         lp_results[level - 1].fbc_val = 0;
2707                 }
2708         }
2709
2710         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2711                 const struct intel_wm_level *r;
2712
2713                 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2714                 if (level > max_level)
2715                         break;
2716
2717                 r = &lp_results[level - 1];
2718                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2719                                                           r->fbc_val,
2720                                                           r->pri_val,
2721                                                           r->cur_val);
2722                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2723         }
2724
2725         for_each_pipe(pipe)
2726                 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev,
2727                                                              &params[pipe]);
2728
2729         for_each_pipe(pipe) {
2730                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2731                 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2732         }
2733 }
2734
2735 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2736  * case both are at the same level. Prefer r1 in case they're the same. */
2737 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2738                                                   struct hsw_wm_values *r2)
2739 {
2740         int i, val_r1 = 0, val_r2 = 0;
2741
2742         for (i = 0; i < 3; i++) {
2743                 if (r1->wm_lp[i] & WM3_LP_EN)
2744                         val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2745                 if (r2->wm_lp[i] & WM3_LP_EN)
2746                         val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2747         }
2748
2749         if (val_r1 == val_r2) {
2750                 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2751                         return r2;
2752                 else
2753                         return r1;
2754         } else if (val_r1 > val_r2) {
2755                 return r1;
2756         } else {
2757                 return r2;
2758         }
2759 }
2760
2761 /*
2762  * The spec says we shouldn't write when we don't need, because every write
2763  * causes WMs to be re-evaluated, expending some power.
2764  */
2765 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2766                                 struct hsw_wm_values *results,
2767                                 enum intel_ddb_partitioning partitioning)
2768 {
2769         struct hsw_wm_values previous;
2770         uint32_t val;
2771         enum intel_ddb_partitioning prev_partitioning;
2772         bool prev_enable_fbc_wm;
2773
2774         previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2775         previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2776         previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2777         previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2778         previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2779         previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2780         previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2781         previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2782         previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2783         previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2784         previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2785         previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2786
2787         prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2788                                 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2789
2790         prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2791
2792         if (memcmp(results->wm_pipe, previous.wm_pipe,
2793                    sizeof(results->wm_pipe)) == 0 &&
2794             memcmp(results->wm_lp, previous.wm_lp,
2795                    sizeof(results->wm_lp)) == 0 &&
2796             memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2797                    sizeof(results->wm_lp_spr)) == 0 &&
2798             memcmp(results->wm_linetime, previous.wm_linetime,
2799                    sizeof(results->wm_linetime)) == 0 &&
2800             partitioning == prev_partitioning &&
2801             results->enable_fbc_wm == prev_enable_fbc_wm)
2802                 return;
2803
2804         if (previous.wm_lp[2] != 0)
2805                 I915_WRITE(WM3_LP_ILK, 0);
2806         if (previous.wm_lp[1] != 0)
2807                 I915_WRITE(WM2_LP_ILK, 0);
2808         if (previous.wm_lp[0] != 0)
2809                 I915_WRITE(WM1_LP_ILK, 0);
2810
2811         if (previous.wm_pipe[0] != results->wm_pipe[0])
2812                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2813         if (previous.wm_pipe[1] != results->wm_pipe[1])
2814                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2815         if (previous.wm_pipe[2] != results->wm_pipe[2])
2816                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2817
2818         if (previous.wm_linetime[0] != results->wm_linetime[0])
2819                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2820         if (previous.wm_linetime[1] != results->wm_linetime[1])
2821                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2822         if (previous.wm_linetime[2] != results->wm_linetime[2])
2823                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2824
2825         if (prev_partitioning != partitioning) {
2826                 val = I915_READ(WM_MISC);
2827                 if (partitioning == INTEL_DDB_PART_1_2)
2828                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2829                 else
2830                         val |= WM_MISC_DATA_PARTITION_5_6;
2831                 I915_WRITE(WM_MISC, val);
2832         }
2833
2834         if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2835                 val = I915_READ(DISP_ARB_CTL);
2836                 if (results->enable_fbc_wm)
2837                         val &= ~DISP_FBC_WM_DIS;
2838                 else
2839                         val |= DISP_FBC_WM_DIS;
2840                 I915_WRITE(DISP_ARB_CTL, val);
2841         }
2842
2843         if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2844                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2845         if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2846                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2847         if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2848                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2849
2850         if (results->wm_lp[0] != 0)
2851                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2852         if (results->wm_lp[1] != 0)
2853                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2854         if (results->wm_lp[2] != 0)
2855                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2856 }
2857
2858 static void haswell_update_wm(struct drm_crtc *crtc)
2859 {
2860         struct drm_device *dev = crtc->dev;
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2863         struct hsw_pipe_wm_parameters params[3];
2864         struct hsw_wm_values results_1_2, results_5_6, *best_results;
2865         enum intel_ddb_partitioning partitioning;
2866
2867         hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
2868
2869         hsw_compute_wm_results(dev, params,
2870                                &lp_max_1_2, &results_1_2);
2871         if (lp_max_1_2.pri != lp_max_5_6.pri) {
2872                 hsw_compute_wm_results(dev, params,
2873                                        &lp_max_5_6, &results_5_6);
2874                 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2875         } else {
2876                 best_results = &results_1_2;
2877         }
2878
2879         partitioning = (best_results == &results_1_2) ?
2880                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2881
2882         hsw_write_wm_values(dev_priv, best_results, partitioning);
2883 }
2884
2885 static void haswell_update_sprite_wm(struct drm_plane *plane,
2886                                      struct drm_crtc *crtc,
2887                                      uint32_t sprite_width, int pixel_size,
2888                                      bool enabled, bool scaled)
2889 {
2890         struct intel_plane *intel_plane = to_intel_plane(plane);
2891
2892         intel_plane->wm.enabled = enabled;
2893         intel_plane->wm.scaled = scaled;
2894         intel_plane->wm.horiz_pixels = sprite_width;
2895         intel_plane->wm.bytes_per_pixel = pixel_size;
2896
2897         haswell_update_wm(crtc);
2898 }
2899
2900 static bool
2901 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2902                               uint32_t sprite_width, int pixel_size,
2903                               const struct intel_watermark_params *display,
2904                               int display_latency_ns, int *sprite_wm)
2905 {
2906         struct drm_crtc *crtc;
2907         int clock;
2908         int entries, tlb_miss;
2909
2910         crtc = intel_get_crtc_for_plane(dev, plane);
2911         if (!intel_crtc_active(crtc)) {
2912                 *sprite_wm = display->guard_size;
2913                 return false;
2914         }
2915
2916         clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2917
2918         /* Use the small buffer method to calculate the sprite watermark */
2919         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2920         tlb_miss = display->fifo_size*display->cacheline_size -
2921                 sprite_width * 8;
2922         if (tlb_miss > 0)
2923                 entries += tlb_miss;
2924         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2925         *sprite_wm = entries + display->guard_size;
2926         if (*sprite_wm > (int)display->max_wm)
2927                 *sprite_wm = display->max_wm;
2928
2929         return true;
2930 }
2931
2932 static bool
2933 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2934                                 uint32_t sprite_width, int pixel_size,
2935                                 const struct intel_watermark_params *display,
2936                                 int latency_ns, int *sprite_wm)
2937 {
2938         struct drm_crtc *crtc;
2939         unsigned long line_time_us;
2940         int clock;
2941         int line_count, line_size;
2942         int small, large;
2943         int entries;
2944
2945         if (!latency_ns) {
2946                 *sprite_wm = 0;
2947                 return false;
2948         }
2949
2950         crtc = intel_get_crtc_for_plane(dev, plane);
2951         clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2952         if (!clock) {
2953                 *sprite_wm = 0;
2954                 return false;
2955         }
2956
2957         line_time_us = (sprite_width * 1000) / clock;
2958         if (!line_time_us) {
2959                 *sprite_wm = 0;
2960                 return false;
2961         }
2962
2963         line_count = (latency_ns / line_time_us + 1000) / 1000;
2964         line_size = sprite_width * pixel_size;
2965
2966         /* Use the minimum of the small and large buffer method for primary */
2967         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2968         large = line_count * line_size;
2969
2970         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2971         *sprite_wm = entries + display->guard_size;
2972
2973         return *sprite_wm > 0x3ff ? false : true;
2974 }
2975
2976 static void sandybridge_update_sprite_wm(struct drm_plane *plane,
2977                                          struct drm_crtc *crtc,
2978                                          uint32_t sprite_width, int pixel_size,
2979                                          bool enabled, bool scaled)
2980 {
2981         struct drm_device *dev = plane->dev;
2982         struct drm_i915_private *dev_priv = dev->dev_private;
2983         int pipe = to_intel_plane(plane)->pipe;
2984         int latency = dev_priv->wm.spr_latency[0] * 100;        /* In unit 0.1us */
2985         u32 val;
2986         int sprite_wm, reg;
2987         int ret;
2988
2989         if (!enabled)
2990                 return;
2991
2992         switch (pipe) {
2993         case 0:
2994                 reg = WM0_PIPEA_ILK;
2995                 break;
2996         case 1:
2997                 reg = WM0_PIPEB_ILK;
2998                 break;
2999         case 2:
3000                 reg = WM0_PIPEC_IVB;
3001                 break;
3002         default:
3003                 return; /* bad pipe */
3004         }
3005
3006         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
3007                                             &sandybridge_display_wm_info,
3008                                             latency, &sprite_wm);
3009         if (!ret) {
3010                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
3011                               pipe_name(pipe));
3012                 return;
3013         }
3014
3015         val = I915_READ(reg);
3016         val &= ~WM0_PIPE_SPRITE_MASK;
3017         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
3018         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
3019
3020
3021         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3022                                               pixel_size,
3023                                               &sandybridge_display_srwm_info,
3024                                               dev_priv->wm.spr_latency[1] * 500,
3025                                               &sprite_wm);
3026         if (!ret) {
3027                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
3028                               pipe_name(pipe));
3029                 return;
3030         }
3031         I915_WRITE(WM1S_LP_ILK, sprite_wm);
3032
3033         /* Only IVB has two more LP watermarks for sprite */
3034         if (!IS_IVYBRIDGE(dev))
3035                 return;
3036
3037         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3038                                               pixel_size,
3039                                               &sandybridge_display_srwm_info,
3040                                               dev_priv->wm.spr_latency[2] * 500,
3041                                               &sprite_wm);
3042         if (!ret) {
3043                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
3044                               pipe_name(pipe));
3045                 return;
3046         }
3047         I915_WRITE(WM2S_LP_IVB, sprite_wm);
3048
3049         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
3050                                               pixel_size,
3051                                               &sandybridge_display_srwm_info,
3052                                               dev_priv->wm.spr_latency[3] * 500,
3053                                               &sprite_wm);
3054         if (!ret) {
3055                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
3056                               pipe_name(pipe));
3057                 return;
3058         }
3059         I915_WRITE(WM3S_LP_IVB, sprite_wm);
3060 }
3061
3062 /**
3063  * intel_update_watermarks - update FIFO watermark values based on current modes
3064  *
3065  * Calculate watermark values for the various WM regs based on current mode
3066  * and plane configuration.
3067  *
3068  * There are several cases to deal with here:
3069  *   - normal (i.e. non-self-refresh)
3070  *   - self-refresh (SR) mode
3071  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3072  *   - lines are small relative to FIFO size (buffer can hold more than 2
3073  *     lines), so need to account for TLB latency
3074  *
3075  *   The normal calculation is:
3076  *     watermark = dotclock * bytes per pixel * latency
3077  *   where latency is platform & configuration dependent (we assume pessimal
3078  *   values here).
3079  *
3080  *   The SR calculation is:
3081  *     watermark = (trunc(latency/line time)+1) * surface width *
3082  *       bytes per pixel
3083  *   where
3084  *     line time = htotal / dotclock
3085  *     surface width = hdisplay for normal plane and 64 for cursor
3086  *   and latency is assumed to be high, as above.
3087  *
3088  * The final value programmed to the register should always be rounded up,
3089  * and include an extra 2 entries to account for clock crossings.
3090  *
3091  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3092  * to set the non-SR watermarks to 8.
3093  */
3094 void intel_update_watermarks(struct drm_crtc *crtc)
3095 {
3096         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3097
3098         if (dev_priv->display.update_wm)
3099                 dev_priv->display.update_wm(crtc);
3100 }
3101
3102 void intel_update_sprite_watermarks(struct drm_plane *plane,
3103                                     struct drm_crtc *crtc,
3104                                     uint32_t sprite_width, int pixel_size,
3105                                     bool enabled, bool scaled)
3106 {
3107         struct drm_i915_private *dev_priv = plane->dev->dev_private;
3108
3109         if (dev_priv->display.update_sprite_wm)
3110                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
3111                                                    pixel_size, enabled, scaled);
3112 }
3113
3114 static struct drm_i915_gem_object *
3115 intel_alloc_context_page(struct drm_device *dev)
3116 {
3117         struct drm_i915_gem_object *ctx;
3118         int ret;
3119
3120         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3121
3122         ctx = i915_gem_alloc_object(dev, 4096);
3123         if (!ctx) {
3124                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
3125                 return NULL;
3126         }
3127
3128         ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3129         if (ret) {
3130                 DRM_ERROR("failed to pin power context: %d\n", ret);
3131                 goto err_unref;
3132         }
3133
3134         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
3135         if (ret) {
3136                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
3137                 goto err_unpin;
3138         }
3139
3140         return ctx;
3141
3142 err_unpin:
3143         i915_gem_object_unpin(ctx);
3144 err_unref:
3145         drm_gem_object_unreference(&ctx->base);
3146         return NULL;
3147 }
3148
3149 /**
3150  * Lock protecting IPS related data structures
3151  */
3152 DEFINE_SPINLOCK(mchdev_lock);
3153
3154 /* Global for IPS driver to get at the current i915 device. Protected by
3155  * mchdev_lock. */
3156 static struct drm_i915_private *i915_mch_dev;
3157
3158 bool ironlake_set_drps(struct drm_device *dev, u8 val)
3159 {
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         u16 rgvswctl;
3162
3163         assert_spin_locked(&mchdev_lock);
3164
3165         rgvswctl = I915_READ16(MEMSWCTL);
3166         if (rgvswctl & MEMCTL_CMD_STS) {
3167                 DRM_DEBUG("gpu busy, RCS change rejected\n");
3168                 return false; /* still busy with another command */
3169         }
3170
3171         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3172                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3173         I915_WRITE16(MEMSWCTL, rgvswctl);
3174         POSTING_READ16(MEMSWCTL);
3175
3176         rgvswctl |= MEMCTL_CMD_STS;
3177         I915_WRITE16(MEMSWCTL, rgvswctl);
3178
3179         return true;
3180 }
3181
3182 static void ironlake_enable_drps(struct drm_device *dev)
3183 {
3184         struct drm_i915_private *dev_priv = dev->dev_private;
3185         u32 rgvmodectl = I915_READ(MEMMODECTL);
3186         u8 fmax, fmin, fstart, vstart;
3187
3188         spin_lock_irq(&mchdev_lock);
3189
3190         /* Enable temp reporting */
3191         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3192         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3193
3194         /* 100ms RC evaluation intervals */
3195         I915_WRITE(RCUPEI, 100000);
3196         I915_WRITE(RCDNEI, 100000);
3197
3198         /* Set max/min thresholds to 90ms and 80ms respectively */
3199         I915_WRITE(RCBMAXAVG, 90000);
3200         I915_WRITE(RCBMINAVG, 80000);
3201
3202         I915_WRITE(MEMIHYST, 1);
3203
3204         /* Set up min, max, and cur for interrupt handling */
3205         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3206         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3207         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3208                 MEMMODE_FSTART_SHIFT;
3209
3210         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3211                 PXVFREQ_PX_SHIFT;
3212
3213         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3214         dev_priv->ips.fstart = fstart;
3215
3216         dev_priv->ips.max_delay = fstart;
3217         dev_priv->ips.min_delay = fmin;
3218         dev_priv->ips.cur_delay = fstart;
3219
3220         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3221                          fmax, fmin, fstart);
3222
3223         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3224
3225         /*
3226          * Interrupts will be enabled in ironlake_irq_postinstall
3227          */
3228
3229         I915_WRITE(VIDSTART, vstart);
3230         POSTING_READ(VIDSTART);
3231
3232         rgvmodectl |= MEMMODE_SWMODE_EN;
3233         I915_WRITE(MEMMODECTL, rgvmodectl);
3234
3235         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3236                 DRM_ERROR("stuck trying to change perf mode\n");
3237         mdelay(1);
3238
3239         ironlake_set_drps(dev, fstart);
3240
3241         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3242                 I915_READ(0x112e0);
3243         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3244         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3245         getrawmonotonic(&dev_priv->ips.last_time2);
3246
3247         spin_unlock_irq(&mchdev_lock);
3248 }
3249
3250 static void ironlake_disable_drps(struct drm_device *dev)
3251 {
3252         struct drm_i915_private *dev_priv = dev->dev_private;
3253         u16 rgvswctl;
3254
3255         spin_lock_irq(&mchdev_lock);
3256
3257         rgvswctl = I915_READ16(MEMSWCTL);
3258
3259         /* Ack interrupts, disable EFC interrupt */
3260         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3261         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3262         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3263         I915_WRITE(DEIIR, DE_PCU_EVENT);
3264         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3265
3266         /* Go back to the starting frequency */
3267         ironlake_set_drps(dev, dev_priv->ips.fstart);
3268         mdelay(1);
3269         rgvswctl |= MEMCTL_CMD_STS;
3270         I915_WRITE(MEMSWCTL, rgvswctl);
3271         mdelay(1);
3272
3273         spin_unlock_irq(&mchdev_lock);
3274 }
3275
3276 /* There's a funny hw issue where the hw returns all 0 when reading from
3277  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3278  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3279  * all limits and the gpu stuck at whatever frequency it is at atm).
3280  */
3281 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3282 {
3283         u32 limits;
3284
3285         limits = 0;
3286
3287         if (*val >= dev_priv->rps.max_delay)
3288                 *val = dev_priv->rps.max_delay;
3289         limits |= dev_priv->rps.max_delay << 24;
3290
3291         /* Only set the down limit when we've reached the lowest level to avoid
3292          * getting more interrupts, otherwise leave this clear. This prevents a
3293          * race in the hw when coming out of rc6: There's a tiny window where
3294          * the hw runs at the minimal clock before selecting the desired
3295          * frequency, if the down threshold expires in that window we will not
3296          * receive a down interrupt. */
3297         if (*val <= dev_priv->rps.min_delay) {
3298                 *val = dev_priv->rps.min_delay;
3299                 limits |= dev_priv->rps.min_delay << 16;
3300         }
3301
3302         return limits;
3303 }
3304
3305 void gen6_set_rps(struct drm_device *dev, u8 val)
3306 {
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         u32 limits = gen6_rps_limits(dev_priv, &val);
3309
3310         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3311         WARN_ON(val > dev_priv->rps.max_delay);
3312         WARN_ON(val < dev_priv->rps.min_delay);
3313
3314         if (val == dev_priv->rps.cur_delay)
3315                 return;
3316
3317         if (IS_HASWELL(dev))
3318                 I915_WRITE(GEN6_RPNSWREQ,
3319                            HSW_FREQUENCY(val));
3320         else
3321                 I915_WRITE(GEN6_RPNSWREQ,
3322                            GEN6_FREQUENCY(val) |
3323                            GEN6_OFFSET(0) |
3324                            GEN6_AGGRESSIVE_TURBO);
3325
3326         /* Make sure we continue to get interrupts
3327          * until we hit the minimum or maximum frequencies.
3328          */
3329         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3330
3331         POSTING_READ(GEN6_RPNSWREQ);
3332
3333         dev_priv->rps.cur_delay = val;
3334
3335         trace_intel_gpu_freq_change(val * 50);
3336 }
3337
3338 /*
3339  * Wait until the previous freq change has completed,
3340  * or the timeout elapsed, and then update our notion
3341  * of the current GPU frequency.
3342  */
3343 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3344 {
3345         u32 pval;
3346
3347         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3348
3349         if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
3350                 DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3351
3352         pval >>= 8;
3353
3354         if (pval != dev_priv->rps.cur_delay)
3355                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3356                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3357                                  dev_priv->rps.cur_delay,
3358                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3359
3360         dev_priv->rps.cur_delay = pval;
3361 }
3362
3363 void valleyview_set_rps(struct drm_device *dev, u8 val)
3364 {
3365         struct drm_i915_private *dev_priv = dev->dev_private;
3366
3367         gen6_rps_limits(dev_priv, &val);
3368
3369         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3370         WARN_ON(val > dev_priv->rps.max_delay);
3371         WARN_ON(val < dev_priv->rps.min_delay);
3372
3373         vlv_update_rps_cur_delay(dev_priv);
3374
3375         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3376                          vlv_gpu_freq(dev_priv->mem_freq,
3377                                       dev_priv->rps.cur_delay),
3378                          dev_priv->rps.cur_delay,
3379                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3380
3381         if (val == dev_priv->rps.cur_delay)
3382                 return;
3383
3384         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3385
3386         dev_priv->rps.cur_delay = val;
3387
3388         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3389 }
3390
3391 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3392 {
3393         struct drm_i915_private *dev_priv = dev->dev_private;
3394
3395         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3396         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3397         /* Complete PM interrupt masking here doesn't race with the rps work
3398          * item again unmasking PM interrupts because that is using a different
3399          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3400          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3401
3402         spin_lock_irq(&dev_priv->irq_lock);
3403         dev_priv->rps.pm_iir = 0;
3404         spin_unlock_irq(&dev_priv->irq_lock);
3405
3406         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3407 }
3408
3409 static void gen6_disable_rps(struct drm_device *dev)
3410 {
3411         struct drm_i915_private *dev_priv = dev->dev_private;
3412
3413         I915_WRITE(GEN6_RC_CONTROL, 0);
3414         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3415
3416         gen6_disable_rps_interrupts(dev);
3417 }
3418
3419 static void valleyview_disable_rps(struct drm_device *dev)
3420 {
3421         struct drm_i915_private *dev_priv = dev->dev_private;
3422
3423         I915_WRITE(GEN6_RC_CONTROL, 0);
3424
3425         gen6_disable_rps_interrupts(dev);
3426
3427         if (dev_priv->vlv_pctx) {
3428                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3429                 dev_priv->vlv_pctx = NULL;
3430         }
3431 }
3432
3433 int intel_enable_rc6(const struct drm_device *dev)
3434 {
3435         /* No RC6 before Ironlake */
3436         if (INTEL_INFO(dev)->gen < 5)
3437                 return 0;
3438
3439         /* Respect the kernel parameter if it is set */
3440         if (i915_enable_rc6 >= 0)
3441                 return i915_enable_rc6;
3442
3443         /* Disable RC6 on Ironlake */
3444         if (INTEL_INFO(dev)->gen == 5)
3445                 return 0;
3446
3447         if (IS_HASWELL(dev)) {
3448                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3449                 return INTEL_RC6_ENABLE;
3450         }
3451
3452         /* snb/ivb have more than one rc6 state. */
3453         if (INTEL_INFO(dev)->gen == 6) {
3454                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3455                 return INTEL_RC6_ENABLE;
3456         }
3457
3458         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3459         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3460 }
3461
3462 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3463 {
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         u32 enabled_intrs;
3466
3467         spin_lock_irq(&dev_priv->irq_lock);
3468         WARN_ON(dev_priv->rps.pm_iir);
3469         snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3470         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3471         spin_unlock_irq(&dev_priv->irq_lock);
3472
3473         /* only unmask PM interrupts we need. Mask all others. */
3474         enabled_intrs = GEN6_PM_RPS_EVENTS;
3475
3476         /* IVB and SNB hard hangs on looping batchbuffer
3477          * if GEN6_PM_UP_EI_EXPIRED is masked.
3478          */
3479         if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3480                 enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3481
3482         I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3483 }
3484
3485 static void gen6_enable_rps(struct drm_device *dev)
3486 {
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_ring_buffer *ring;
3489         u32 rp_state_cap;
3490         u32 gt_perf_status;
3491         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3492         u32 gtfifodbg;
3493         int rc6_mode;
3494         int i, ret;
3495
3496         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3497
3498         /* Here begins a magic sequence of register writes to enable
3499          * auto-downclocking.
3500          *
3501          * Perhaps there might be some value in exposing these to
3502          * userspace...
3503          */
3504         I915_WRITE(GEN6_RC_STATE, 0);
3505
3506         /* Clear the DBG now so we don't confuse earlier errors */
3507         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3508                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3509                 I915_WRITE(GTFIFODBG, gtfifodbg);
3510         }
3511
3512         gen6_gt_force_wake_get(dev_priv);
3513
3514         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3515         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3516
3517         /* In units of 50MHz */
3518         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3519         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3520         dev_priv->rps.cur_delay = 0;
3521
3522         /* disable the counters and set deterministic thresholds */
3523         I915_WRITE(GEN6_RC_CONTROL, 0);
3524
3525         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3526         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3527         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3528         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3529         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3530
3531         for_each_ring(ring, dev_priv, i)
3532                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3533
3534         I915_WRITE(GEN6_RC_SLEEP, 0);
3535         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3536         if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
3537                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3538         else
3539                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3540         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3541         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3542
3543         /* Check if we are enabling RC6 */
3544         rc6_mode = intel_enable_rc6(dev_priv->dev);
3545         if (rc6_mode & INTEL_RC6_ENABLE)
3546                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3547
3548         /* We don't use those on Haswell */
3549         if (!IS_HASWELL(dev)) {
3550                 if (rc6_mode & INTEL_RC6p_ENABLE)
3551                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3552
3553                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3554                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3555         }
3556
3557         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3558                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3559                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3560                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3561
3562         I915_WRITE(GEN6_RC_CONTROL,
3563                    rc6_mask |
3564                    GEN6_RC_CTL_EI_MODE(1) |
3565                    GEN6_RC_CTL_HW_ENABLE);
3566
3567         if (IS_HASWELL(dev)) {
3568                 I915_WRITE(GEN6_RPNSWREQ,
3569                            HSW_FREQUENCY(10));
3570                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3571                            HSW_FREQUENCY(12));
3572         } else {
3573                 I915_WRITE(GEN6_RPNSWREQ,
3574                            GEN6_FREQUENCY(10) |
3575                            GEN6_OFFSET(0) |
3576                            GEN6_AGGRESSIVE_TURBO);
3577                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3578                            GEN6_FREQUENCY(12));
3579         }
3580
3581         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3582         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3583                    dev_priv->rps.max_delay << 24 |
3584                    dev_priv->rps.min_delay << 16);
3585
3586         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3587         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3588         I915_WRITE(GEN6_RP_UP_EI, 66000);
3589         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3590
3591         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3592         I915_WRITE(GEN6_RP_CONTROL,
3593                    GEN6_RP_MEDIA_TURBO |
3594                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3595                    GEN6_RP_MEDIA_IS_GFX |
3596                    GEN6_RP_ENABLE |
3597                    GEN6_RP_UP_BUSY_AVG |
3598                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3599
3600         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3601         if (!ret) {
3602                 pcu_mbox = 0;
3603                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3604                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3605                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3606                                          (dev_priv->rps.max_delay & 0xff) * 50,
3607                                          (pcu_mbox & 0xff) * 50);
3608                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3609                 }
3610         } else {
3611                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3612         }
3613
3614         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3615
3616         gen6_enable_rps_interrupts(dev);
3617
3618         rc6vids = 0;
3619         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3620         if (IS_GEN6(dev) && ret) {
3621                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3622         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3623                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3624                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3625                 rc6vids &= 0xffff00;
3626                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3627                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3628                 if (ret)
3629                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3630         }
3631
3632         gen6_gt_force_wake_put(dev_priv);
3633 }
3634
3635 void gen6_update_ring_freq(struct drm_device *dev)
3636 {
3637         struct drm_i915_private *dev_priv = dev->dev_private;
3638         int min_freq = 15;
3639         unsigned int gpu_freq;
3640         unsigned int max_ia_freq, min_ring_freq;
3641         int scaling_factor = 180;
3642
3643         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3644
3645         max_ia_freq = cpufreq_quick_get_max(0);
3646         /*
3647          * Default to measured freq if none found, PCU will ensure we don't go
3648          * over
3649          */
3650         if (!max_ia_freq)
3651                 max_ia_freq = tsc_khz;
3652
3653         /* Convert from kHz to MHz */
3654         max_ia_freq /= 1000;
3655
3656         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3657         /* convert DDR frequency from units of 133.3MHz to bandwidth */
3658         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3659
3660         /*
3661          * For each potential GPU frequency, load a ring frequency we'd like
3662          * to use for memory access.  We do this by specifying the IA frequency
3663          * the PCU should use as a reference to determine the ring frequency.
3664          */
3665         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3666              gpu_freq--) {
3667                 int diff = dev_priv->rps.max_delay - gpu_freq;
3668                 unsigned int ia_freq = 0, ring_freq = 0;
3669
3670                 if (IS_HASWELL(dev)) {
3671                         ring_freq = (gpu_freq * 5 + 3) / 4;
3672                         ring_freq = max(min_ring_freq, ring_freq);
3673                         /* leave ia_freq as the default, chosen by cpufreq */
3674                 } else {
3675                         /* On older processors, there is no separate ring
3676                          * clock domain, so in order to boost the bandwidth
3677                          * of the ring, we need to upclock the CPU (ia_freq).
3678                          *
3679                          * For GPU frequencies less than 750MHz,
3680                          * just use the lowest ring freq.
3681                          */
3682                         if (gpu_freq < min_freq)
3683                                 ia_freq = 800;
3684                         else
3685                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3686                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3687                 }
3688
3689                 sandybridge_pcode_write(dev_priv,
3690                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3691                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3692                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3693                                         gpu_freq);
3694         }
3695 }
3696
3697 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3698 {
3699         u32 val, rp0;
3700
3701         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3702
3703         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3704         /* Clamp to max */
3705         rp0 = min_t(u32, rp0, 0xea);
3706
3707         return rp0;
3708 }
3709
3710 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3711 {
3712         u32 val, rpe;
3713
3714         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3715         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3716         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3717         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3718
3719         return rpe;
3720 }
3721
3722 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3723 {
3724         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3725 }
3726
3727 static void vlv_rps_timer_work(struct work_struct *work)
3728 {
3729         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3730                                                     rps.vlv_work.work);
3731
3732         /*
3733          * Timer fired, we must be idle.  Drop to min voltage state.
3734          * Note: we use RPe here since it should match the
3735          * Vmin we were shooting for.  That should give us better
3736          * perf when we come back out of RC6 than if we used the
3737          * min freq available.
3738          */
3739         mutex_lock(&dev_priv->rps.hw_lock);
3740         if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3741                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3742         mutex_unlock(&dev_priv->rps.hw_lock);
3743 }
3744
3745 static void valleyview_setup_pctx(struct drm_device *dev)
3746 {
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748         struct drm_i915_gem_object *pctx;
3749         unsigned long pctx_paddr;
3750         u32 pcbr;
3751         int pctx_size = 24*1024;
3752
3753         pcbr = I915_READ(VLV_PCBR);
3754         if (pcbr) {
3755                 /* BIOS set it up already, grab the pre-alloc'd space */
3756                 int pcbr_offset;
3757
3758                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3759                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3760                                                                       pcbr_offset,
3761                                                                       I915_GTT_OFFSET_NONE,
3762                                                                       pctx_size);
3763                 goto out;
3764         }
3765
3766         /*
3767          * From the Gunit register HAS:
3768          * The Gfx driver is expected to program this register and ensure
3769          * proper allocation within Gfx stolen memory.  For example, this
3770          * register should be programmed such than the PCBR range does not
3771          * overlap with other ranges, such as the frame buffer, protected
3772          * memory, or any other relevant ranges.
3773          */
3774         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3775         if (!pctx) {
3776                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3777                 return;
3778         }
3779
3780         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3781         I915_WRITE(VLV_PCBR, pctx_paddr);
3782
3783 out:
3784         dev_priv->vlv_pctx = pctx;
3785 }
3786
3787 static void valleyview_enable_rps(struct drm_device *dev)
3788 {
3789         struct drm_i915_private *dev_priv = dev->dev_private;
3790         struct intel_ring_buffer *ring;
3791         u32 gtfifodbg, val, rc6_mode = 0;
3792         int i;
3793
3794         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3795
3796         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3797                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3798                 I915_WRITE(GTFIFODBG, gtfifodbg);
3799         }
3800
3801         valleyview_setup_pctx(dev);
3802
3803         gen6_gt_force_wake_get(dev_priv);
3804
3805         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3806         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3807         I915_WRITE(GEN6_RP_UP_EI, 66000);
3808         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3809
3810         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3811
3812         I915_WRITE(GEN6_RP_CONTROL,
3813                    GEN6_RP_MEDIA_TURBO |
3814                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3815                    GEN6_RP_MEDIA_IS_GFX |
3816                    GEN6_RP_ENABLE |
3817                    GEN6_RP_UP_BUSY_AVG |
3818                    GEN6_RP_DOWN_IDLE_CONT);
3819
3820         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3821         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3822         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3823
3824         for_each_ring(ring, dev_priv, i)
3825                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3826
3827         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3828
3829         /* allows RC6 residency counter to work */
3830         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3831         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3832                 rc6_mode = GEN7_RC_CTL_TO_MODE;
3833         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3834
3835         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3836         switch ((val >> 6) & 3) {
3837         case 0:
3838         case 1:
3839                 dev_priv->mem_freq = 800;
3840                 break;
3841         case 2:
3842                 dev_priv->mem_freq = 1066;
3843                 break;
3844         case 3:
3845                 dev_priv->mem_freq = 1333;
3846                 break;
3847         }
3848         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3849
3850         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3851         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3852
3853         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3854         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3855                          vlv_gpu_freq(dev_priv->mem_freq,
3856                                       dev_priv->rps.cur_delay),
3857                          dev_priv->rps.cur_delay);
3858
3859         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3860         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3861         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3862                          vlv_gpu_freq(dev_priv->mem_freq,
3863                                       dev_priv->rps.max_delay),
3864                          dev_priv->rps.max_delay);
3865
3866         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3867         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3868                          vlv_gpu_freq(dev_priv->mem_freq,
3869                                       dev_priv->rps.rpe_delay),
3870                          dev_priv->rps.rpe_delay);
3871
3872         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3873         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3874                          vlv_gpu_freq(dev_priv->mem_freq,
3875                                       dev_priv->rps.min_delay),
3876                          dev_priv->rps.min_delay);
3877
3878         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3879                          vlv_gpu_freq(dev_priv->mem_freq,
3880                                       dev_priv->rps.rpe_delay),
3881                          dev_priv->rps.rpe_delay);
3882
3883         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3884
3885         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3886
3887         gen6_enable_rps_interrupts(dev);
3888
3889         gen6_gt_force_wake_put(dev_priv);
3890 }
3891
3892 void ironlake_teardown_rc6(struct drm_device *dev)
3893 {
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895
3896         if (dev_priv->ips.renderctx) {
3897                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3898                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3899                 dev_priv->ips.renderctx = NULL;
3900         }
3901
3902         if (dev_priv->ips.pwrctx) {
3903                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3904                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3905                 dev_priv->ips.pwrctx = NULL;
3906         }
3907 }
3908
3909 static void ironlake_disable_rc6(struct drm_device *dev)
3910 {
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913         if (I915_READ(PWRCTXA)) {
3914                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3915                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3916                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3917                          50);
3918
3919                 I915_WRITE(PWRCTXA, 0);
3920                 POSTING_READ(PWRCTXA);
3921
3922                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3923                 POSTING_READ(RSTDBYCTL);
3924         }
3925 }
3926
3927 static int ironlake_setup_rc6(struct drm_device *dev)
3928 {
3929         struct drm_i915_private *dev_priv = dev->dev_private;
3930
3931         if (dev_priv->ips.renderctx == NULL)
3932                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3933         if (!dev_priv->ips.renderctx)
3934                 return -ENOMEM;
3935
3936         if (dev_priv->ips.pwrctx == NULL)
3937                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3938         if (!dev_priv->ips.pwrctx) {
3939                 ironlake_teardown_rc6(dev);
3940                 return -ENOMEM;
3941         }
3942
3943         return 0;
3944 }
3945
3946 static void ironlake_enable_rc6(struct drm_device *dev)
3947 {
3948         struct drm_i915_private *dev_priv = dev->dev_private;
3949         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3950         bool was_interruptible;
3951         int ret;
3952
3953         /* rc6 disabled by default due to repeated reports of hanging during
3954          * boot and resume.
3955          */
3956         if (!intel_enable_rc6(dev))
3957                 return;
3958
3959         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3960
3961         ret = ironlake_setup_rc6(dev);
3962         if (ret)
3963                 return;
3964
3965         was_interruptible = dev_priv->mm.interruptible;
3966         dev_priv->mm.interruptible = false;
3967
3968         /*
3969          * GPU can automatically power down the render unit if given a page
3970          * to save state.
3971          */
3972         ret = intel_ring_begin(ring, 6);
3973         if (ret) {
3974                 ironlake_teardown_rc6(dev);
3975                 dev_priv->mm.interruptible = was_interruptible;
3976                 return;
3977         }
3978
3979         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3980         intel_ring_emit(ring, MI_SET_CONTEXT);
3981         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3982                         MI_MM_SPACE_GTT |
3983                         MI_SAVE_EXT_STATE_EN |
3984                         MI_RESTORE_EXT_STATE_EN |
3985                         MI_RESTORE_INHIBIT);
3986         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3987         intel_ring_emit(ring, MI_NOOP);
3988         intel_ring_emit(ring, MI_FLUSH);
3989         intel_ring_advance(ring);
3990
3991         /*
3992          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3993          * does an implicit flush, combined with MI_FLUSH above, it should be
3994          * safe to assume that renderctx is valid
3995          */
3996         ret = intel_ring_idle(ring);
3997         dev_priv->mm.interruptible = was_interruptible;
3998         if (ret) {
3999                 DRM_ERROR("failed to enable ironlake power savings\n");
4000                 ironlake_teardown_rc6(dev);
4001                 return;
4002         }
4003
4004         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4005         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4006 }
4007
4008 static unsigned long intel_pxfreq(u32 vidfreq)
4009 {
4010         unsigned long freq;
4011         int div = (vidfreq & 0x3f0000) >> 16;
4012         int post = (vidfreq & 0x3000) >> 12;
4013         int pre = (vidfreq & 0x7);
4014
4015         if (!pre)
4016                 return 0;
4017
4018         freq = ((div * 133333) / ((1<<post) * pre));
4019
4020         return freq;
4021 }
4022
4023 static const struct cparams {
4024         u16 i;
4025         u16 t;
4026         u16 m;
4027         u16 c;
4028 } cparams[] = {
4029         { 1, 1333, 301, 28664 },
4030         { 1, 1066, 294, 24460 },
4031         { 1, 800, 294, 25192 },
4032         { 0, 1333, 276, 27605 },
4033         { 0, 1066, 276, 27605 },
4034         { 0, 800, 231, 23784 },
4035 };
4036
4037 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4038 {
4039         u64 total_count, diff, ret;
4040         u32 count1, count2, count3, m = 0, c = 0;
4041         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4042         int i;
4043
4044         assert_spin_locked(&mchdev_lock);
4045
4046         diff1 = now - dev_priv->ips.last_time1;
4047
4048         /* Prevent division-by-zero if we are asking too fast.
4049          * Also, we don't get interesting results if we are polling
4050          * faster than once in 10ms, so just return the saved value
4051          * in such cases.
4052          */
4053         if (diff1 <= 10)
4054                 return dev_priv->ips.chipset_power;
4055
4056         count1 = I915_READ(DMIEC);
4057         count2 = I915_READ(DDREC);
4058         count3 = I915_READ(CSIEC);
4059
4060         total_count = count1 + count2 + count3;
4061
4062         /* FIXME: handle per-counter overflow */
4063         if (total_count < dev_priv->ips.last_count1) {
4064                 diff = ~0UL - dev_priv->ips.last_count1;
4065                 diff += total_count;
4066         } else {
4067                 diff = total_count - dev_priv->ips.last_count1;
4068         }
4069
4070         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4071                 if (cparams[i].i == dev_priv->ips.c_m &&
4072                     cparams[i].t == dev_priv->ips.r_t) {
4073                         m = cparams[i].m;
4074                         c = cparams[i].c;
4075                         break;
4076                 }
4077         }
4078
4079         diff = div_u64(diff, diff1);
4080         ret = ((m * diff) + c);
4081         ret = div_u64(ret, 10);
4082
4083         dev_priv->ips.last_count1 = total_count;
4084         dev_priv->ips.last_time1 = now;
4085
4086         dev_priv->ips.chipset_power = ret;
4087
4088         return ret;
4089 }
4090
4091 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4092 {
4093         unsigned long val;
4094
4095         if (dev_priv->info->gen != 5)
4096                 return 0;
4097
4098         spin_lock_irq(&mchdev_lock);
4099
4100         val = __i915_chipset_val(dev_priv);
4101
4102         spin_unlock_irq(&mchdev_lock);
4103
4104         return val;
4105 }
4106
4107 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4108 {
4109         unsigned long m, x, b;
4110         u32 tsfs;
4111
4112         tsfs = I915_READ(TSFS);
4113
4114         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4115         x = I915_READ8(TR1);
4116
4117         b = tsfs & TSFS_INTR_MASK;
4118
4119         return ((m * x) / 127) - b;
4120 }
4121
4122 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4123 {
4124         static const struct v_table {
4125                 u16 vd; /* in .1 mil */
4126                 u16 vm; /* in .1 mil */
4127         } v_table[] = {
4128                 { 0, 0, },
4129                 { 375, 0, },
4130                 { 500, 0, },
4131                 { 625, 0, },
4132                 { 750, 0, },
4133                 { 875, 0, },
4134                 { 1000, 0, },
4135                 { 1125, 0, },
4136                 { 4125, 3000, },
4137                 { 4125, 3000, },
4138                 { 4125, 3000, },
4139                 { 4125, 3000, },
4140                 { 4125, 3000, },
4141                 { 4125, 3000, },
4142                 { 4125, 3000, },
4143                 { 4125, 3000, },
4144                 { 4125, 3000, },
4145                 { 4125, 3000, },
4146                 { 4125, 3000, },
4147                 { 4125, 3000, },
4148                 { 4125, 3000, },
4149                 { 4125, 3000, },
4150                 { 4125, 3000, },
4151                 { 4125, 3000, },
4152                 { 4125, 3000, },
4153                 { 4125, 3000, },
4154                 { 4125, 3000, },
4155                 { 4125, 3000, },
4156                 { 4125, 3000, },
4157                 { 4125, 3000, },
4158                 { 4125, 3000, },
4159                 { 4125, 3000, },
4160                 { 4250, 3125, },
4161                 { 4375, 3250, },
4162                 { 4500, 3375, },
4163                 { 4625, 3500, },
4164                 { 4750, 3625, },
4165                 { 4875, 3750, },
4166                 { 5000, 3875, },
4167                 { 5125, 4000, },
4168                 { 5250, 4125, },
4169                 { 5375, 4250, },
4170                 { 5500, 4375, },
4171                 { 5625, 4500, },
4172                 { 5750, 4625, },
4173                 { 5875, 4750, },
4174                 { 6000, 4875, },
4175                 { 6125, 5000, },
4176                 { 6250, 5125, },
4177                 { 6375, 5250, },
4178                 { 6500, 5375, },
4179                 { 6625, 5500, },
4180                 { 6750, 5625, },
4181                 { 6875, 5750, },
4182                 { 7000, 5875, },
4183                 { 7125, 6000, },
4184                 { 7250, 6125, },
4185                 { 7375, 6250, },
4186                 { 7500, 6375, },
4187                 { 7625, 6500, },
4188                 { 7750, 6625, },
4189                 { 7875, 6750, },
4190                 { 8000, 6875, },
4191                 { 8125, 7000, },
4192                 { 8250, 7125, },
4193                 { 8375, 7250, },
4194                 { 8500, 7375, },
4195                 { 8625, 7500, },
4196                 { 8750, 7625, },
4197                 { 8875, 7750, },
4198                 { 9000, 7875, },
4199                 { 9125, 8000, },
4200                 { 9250, 8125, },
4201                 { 9375, 8250, },
4202                 { 9500, 8375, },
4203                 { 9625, 8500, },
4204                 { 9750, 8625, },
4205                 { 9875, 8750, },
4206                 { 10000, 8875, },
4207                 { 10125, 9000, },
4208                 { 10250, 9125, },
4209                 { 10375, 9250, },
4210                 { 10500, 9375, },
4211                 { 10625, 9500, },
4212                 { 10750, 9625, },
4213                 { 10875, 9750, },
4214                 { 11000, 9875, },
4215                 { 11125, 10000, },
4216                 { 11250, 10125, },
4217                 { 11375, 10250, },
4218                 { 11500, 10375, },
4219                 { 11625, 10500, },
4220                 { 11750, 10625, },
4221                 { 11875, 10750, },
4222                 { 12000, 10875, },
4223                 { 12125, 11000, },
4224                 { 12250, 11125, },
4225                 { 12375, 11250, },
4226                 { 12500, 11375, },
4227                 { 12625, 11500, },
4228                 { 12750, 11625, },
4229                 { 12875, 11750, },
4230                 { 13000, 11875, },
4231                 { 13125, 12000, },
4232                 { 13250, 12125, },
4233                 { 13375, 12250, },
4234                 { 13500, 12375, },
4235                 { 13625, 12500, },
4236                 { 13750, 12625, },
4237                 { 13875, 12750, },
4238                 { 14000, 12875, },
4239                 { 14125, 13000, },
4240                 { 14250, 13125, },
4241                 { 14375, 13250, },
4242                 { 14500, 13375, },
4243                 { 14625, 13500, },
4244                 { 14750, 13625, },
4245                 { 14875, 13750, },
4246                 { 15000, 13875, },
4247                 { 15125, 14000, },
4248                 { 15250, 14125, },
4249                 { 15375, 14250, },
4250                 { 15500, 14375, },
4251                 { 15625, 14500, },
4252                 { 15750, 14625, },
4253                 { 15875, 14750, },
4254                 { 16000, 14875, },
4255                 { 16125, 15000, },
4256         };
4257         if (dev_priv->info->is_mobile)
4258                 return v_table[pxvid].vm;
4259         else
4260                 return v_table[pxvid].vd;
4261 }
4262
4263 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4264 {
4265         struct timespec now, diff1;
4266         u64 diff;
4267         unsigned long diffms;
4268         u32 count;
4269
4270         assert_spin_locked(&mchdev_lock);
4271
4272         getrawmonotonic(&now);
4273         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4274
4275         /* Don't divide by 0 */
4276         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4277         if (!diffms)
4278                 return;
4279
4280         count = I915_READ(GFXEC);
4281
4282         if (count < dev_priv->ips.last_count2) {
4283                 diff = ~0UL - dev_priv->ips.last_count2;
4284                 diff += count;
4285         } else {
4286                 diff = count - dev_priv->ips.last_count2;
4287         }
4288
4289         dev_priv->ips.last_count2 = count;
4290         dev_priv->ips.last_time2 = now;
4291
4292         /* More magic constants... */
4293         diff = diff * 1181;
4294         diff = div_u64(diff, diffms * 10);
4295         dev_priv->ips.gfx_power = diff;
4296 }
4297
4298 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4299 {
4300         if (dev_priv->info->gen != 5)
4301                 return;
4302
4303         spin_lock_irq(&mchdev_lock);
4304
4305         __i915_update_gfx_val(dev_priv);
4306
4307         spin_unlock_irq(&mchdev_lock);
4308 }
4309
4310 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4311 {
4312         unsigned long t, corr, state1, corr2, state2;
4313         u32 pxvid, ext_v;
4314
4315         assert_spin_locked(&mchdev_lock);
4316
4317         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4318         pxvid = (pxvid >> 24) & 0x7f;
4319         ext_v = pvid_to_extvid(dev_priv, pxvid);
4320
4321         state1 = ext_v;
4322
4323         t = i915_mch_val(dev_priv);
4324
4325         /* Revel in the empirically derived constants */
4326
4327         /* Correction factor in 1/100000 units */
4328         if (t > 80)
4329                 corr = ((t * 2349) + 135940);
4330         else if (t >= 50)
4331                 corr = ((t * 964) + 29317);
4332         else /* < 50 */
4333                 corr = ((t * 301) + 1004);
4334
4335         corr = corr * ((150142 * state1) / 10000 - 78642);
4336         corr /= 100000;
4337         corr2 = (corr * dev_priv->ips.corr);
4338
4339         state2 = (corr2 * state1) / 10000;
4340         state2 /= 100; /* convert to mW */
4341
4342         __i915_update_gfx_val(dev_priv);
4343
4344         return dev_priv->ips.gfx_power + state2;
4345 }
4346
4347 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4348 {
4349         unsigned long val;
4350
4351         if (dev_priv->info->gen != 5)
4352                 return 0;
4353
4354         spin_lock_irq(&mchdev_lock);
4355
4356         val = __i915_gfx_val(dev_priv);
4357
4358         spin_unlock_irq(&mchdev_lock);
4359
4360         return val;
4361 }
4362
4363 /**
4364  * i915_read_mch_val - return value for IPS use
4365  *
4366  * Calculate and return a value for the IPS driver to use when deciding whether
4367  * we have thermal and power headroom to increase CPU or GPU power budget.
4368  */
4369 unsigned long i915_read_mch_val(void)
4370 {
4371         struct drm_i915_private *dev_priv;
4372         unsigned long chipset_val, graphics_val, ret = 0;
4373
4374         spin_lock_irq(&mchdev_lock);
4375         if (!i915_mch_dev)
4376                 goto out_unlock;
4377         dev_priv = i915_mch_dev;
4378
4379         chipset_val = __i915_chipset_val(dev_priv);
4380         graphics_val = __i915_gfx_val(dev_priv);
4381
4382         ret = chipset_val + graphics_val;
4383
4384 out_unlock:
4385         spin_unlock_irq(&mchdev_lock);
4386
4387         return ret;
4388 }
4389 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4390
4391 /**
4392  * i915_gpu_raise - raise GPU frequency limit
4393  *
4394  * Raise the limit; IPS indicates we have thermal headroom.
4395  */
4396 bool i915_gpu_raise(void)
4397 {
4398         struct drm_i915_private *dev_priv;
4399         bool ret = true;
4400
4401         spin_lock_irq(&mchdev_lock);
4402         if (!i915_mch_dev) {
4403                 ret = false;
4404                 goto out_unlock;
4405         }
4406         dev_priv = i915_mch_dev;
4407
4408         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4409                 dev_priv->ips.max_delay--;
4410
4411 out_unlock:
4412         spin_unlock_irq(&mchdev_lock);
4413
4414         return ret;
4415 }
4416 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4417
4418 /**
4419  * i915_gpu_lower - lower GPU frequency limit
4420  *
4421  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4422  * frequency maximum.
4423  */
4424 bool i915_gpu_lower(void)
4425 {
4426         struct drm_i915_private *dev_priv;
4427         bool ret = true;
4428
4429         spin_lock_irq(&mchdev_lock);
4430         if (!i915_mch_dev) {
4431                 ret = false;
4432                 goto out_unlock;
4433         }
4434         dev_priv = i915_mch_dev;
4435
4436         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4437                 dev_priv->ips.max_delay++;
4438
4439 out_unlock:
4440         spin_unlock_irq(&mchdev_lock);
4441
4442         return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4445
4446 /**
4447  * i915_gpu_busy - indicate GPU business to IPS
4448  *
4449  * Tell the IPS driver whether or not the GPU is busy.
4450  */
4451 bool i915_gpu_busy(void)
4452 {
4453         struct drm_i915_private *dev_priv;
4454         struct intel_ring_buffer *ring;
4455         bool ret = false;
4456         int i;
4457
4458         spin_lock_irq(&mchdev_lock);
4459         if (!i915_mch_dev)
4460                 goto out_unlock;
4461         dev_priv = i915_mch_dev;
4462
4463         for_each_ring(ring, dev_priv, i)
4464                 ret |= !list_empty(&ring->request_list);
4465
4466 out_unlock:
4467         spin_unlock_irq(&mchdev_lock);
4468
4469         return ret;
4470 }
4471 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4472
4473 /**
4474  * i915_gpu_turbo_disable - disable graphics turbo
4475  *
4476  * Disable graphics turbo by resetting the max frequency and setting the
4477  * current frequency to the default.
4478  */
4479 bool i915_gpu_turbo_disable(void)
4480 {
4481         struct drm_i915_private *dev_priv;
4482         bool ret = true;
4483
4484         spin_lock_irq(&mchdev_lock);
4485         if (!i915_mch_dev) {
4486                 ret = false;
4487                 goto out_unlock;
4488         }
4489         dev_priv = i915_mch_dev;
4490
4491         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4492
4493         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4494                 ret = false;
4495
4496 out_unlock:
4497         spin_unlock_irq(&mchdev_lock);
4498
4499         return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4502
4503 /**
4504  * Tells the intel_ips driver that the i915 driver is now loaded, if
4505  * IPS got loaded first.
4506  *
4507  * This awkward dance is so that neither module has to depend on the
4508  * other in order for IPS to do the appropriate communication of
4509  * GPU turbo limits to i915.
4510  */
4511 static void
4512 ips_ping_for_i915_load(void)
4513 {
4514         void (*link)(void);
4515
4516         link = symbol_get(ips_link_to_i915_driver);
4517         if (link) {
4518                 link();
4519                 symbol_put(ips_link_to_i915_driver);
4520         }
4521 }
4522
4523 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4524 {
4525         /* We only register the i915 ips part with intel-ips once everything is
4526          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4527         spin_lock_irq(&mchdev_lock);
4528         i915_mch_dev = dev_priv;
4529         spin_unlock_irq(&mchdev_lock);
4530
4531         ips_ping_for_i915_load();
4532 }
4533
4534 void intel_gpu_ips_teardown(void)
4535 {
4536         spin_lock_irq(&mchdev_lock);
4537         i915_mch_dev = NULL;
4538         spin_unlock_irq(&mchdev_lock);
4539 }
4540 static void intel_init_emon(struct drm_device *dev)
4541 {
4542         struct drm_i915_private *dev_priv = dev->dev_private;
4543         u32 lcfuse;
4544         u8 pxw[16];
4545         int i;
4546
4547         /* Disable to program */
4548         I915_WRITE(ECR, 0);
4549         POSTING_READ(ECR);
4550
4551         /* Program energy weights for various events */
4552         I915_WRITE(SDEW, 0x15040d00);
4553         I915_WRITE(CSIEW0, 0x007f0000);
4554         I915_WRITE(CSIEW1, 0x1e220004);
4555         I915_WRITE(CSIEW2, 0x04000004);
4556
4557         for (i = 0; i < 5; i++)
4558                 I915_WRITE(PEW + (i * 4), 0);
4559         for (i = 0; i < 3; i++)
4560                 I915_WRITE(DEW + (i * 4), 0);
4561
4562         /* Program P-state weights to account for frequency power adjustment */
4563         for (i = 0; i < 16; i++) {
4564                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4565                 unsigned long freq = intel_pxfreq(pxvidfreq);
4566                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4567                         PXVFREQ_PX_SHIFT;
4568                 unsigned long val;
4569
4570                 val = vid * vid;
4571                 val *= (freq / 1000);
4572                 val *= 255;
4573                 val /= (127*127*900);
4574                 if (val > 0xff)
4575                         DRM_ERROR("bad pxval: %ld\n", val);
4576                 pxw[i] = val;
4577         }
4578         /* Render standby states get 0 weight */
4579         pxw[14] = 0;
4580         pxw[15] = 0;
4581
4582         for (i = 0; i < 4; i++) {
4583                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4584                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4585                 I915_WRITE(PXW + (i * 4), val);
4586         }
4587
4588         /* Adjust magic regs to magic values (more experimental results) */
4589         I915_WRITE(OGW0, 0);
4590         I915_WRITE(OGW1, 0);
4591         I915_WRITE(EG0, 0x00007f00);
4592         I915_WRITE(EG1, 0x0000000e);
4593         I915_WRITE(EG2, 0x000e0000);
4594         I915_WRITE(EG3, 0x68000300);
4595         I915_WRITE(EG4, 0x42000000);
4596         I915_WRITE(EG5, 0x00140031);
4597         I915_WRITE(EG6, 0);
4598         I915_WRITE(EG7, 0);
4599
4600         for (i = 0; i < 8; i++)
4601                 I915_WRITE(PXWL + (i * 4), 0);
4602
4603         /* Enable PMON + select events */
4604         I915_WRITE(ECR, 0x80000019);
4605
4606         lcfuse = I915_READ(LCFUSE02);
4607
4608         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4609 }
4610
4611 void intel_disable_gt_powersave(struct drm_device *dev)
4612 {
4613         struct drm_i915_private *dev_priv = dev->dev_private;
4614
4615         /* Interrupts should be disabled already to avoid re-arming. */
4616         WARN_ON(dev->irq_enabled);
4617
4618         if (IS_IRONLAKE_M(dev)) {
4619                 ironlake_disable_drps(dev);
4620                 ironlake_disable_rc6(dev);
4621         } else if (INTEL_INFO(dev)->gen >= 6) {
4622                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4623                 cancel_work_sync(&dev_priv->rps.work);
4624                 if (IS_VALLEYVIEW(dev))
4625                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4626                 mutex_lock(&dev_priv->rps.hw_lock);
4627                 if (IS_VALLEYVIEW(dev))
4628                         valleyview_disable_rps(dev);
4629                 else
4630                         gen6_disable_rps(dev);
4631                 mutex_unlock(&dev_priv->rps.hw_lock);
4632         }
4633 }
4634
4635 static void intel_gen6_powersave_work(struct work_struct *work)
4636 {
4637         struct drm_i915_private *dev_priv =
4638                 container_of(work, struct drm_i915_private,
4639                              rps.delayed_resume_work.work);
4640         struct drm_device *dev = dev_priv->dev;
4641
4642         mutex_lock(&dev_priv->rps.hw_lock);
4643
4644         if (IS_VALLEYVIEW(dev)) {
4645                 valleyview_enable_rps(dev);
4646         } else {
4647                 gen6_enable_rps(dev);
4648                 gen6_update_ring_freq(dev);
4649         }
4650         mutex_unlock(&dev_priv->rps.hw_lock);
4651 }
4652
4653 void intel_enable_gt_powersave(struct drm_device *dev)
4654 {
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656
4657         if (IS_IRONLAKE_M(dev)) {
4658                 ironlake_enable_drps(dev);
4659                 ironlake_enable_rc6(dev);
4660                 intel_init_emon(dev);
4661         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4662                 /*
4663                  * PCU communication is slow and this doesn't need to be
4664                  * done at any specific time, so do this out of our fast path
4665                  * to make resume and init faster.
4666                  */
4667                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4668                                       round_jiffies_up_relative(HZ));
4669         }
4670 }
4671
4672 static void ibx_init_clock_gating(struct drm_device *dev)
4673 {
4674         struct drm_i915_private *dev_priv = dev->dev_private;
4675
4676         /*
4677          * On Ibex Peak and Cougar Point, we need to disable clock
4678          * gating for the panel power sequencer or it will fail to
4679          * start up when no ports are active.
4680          */
4681         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4682 }
4683
4684 static void g4x_disable_trickle_feed(struct drm_device *dev)
4685 {
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         int pipe;
4688
4689         for_each_pipe(pipe) {
4690                 I915_WRITE(DSPCNTR(pipe),
4691                            I915_READ(DSPCNTR(pipe)) |
4692                            DISPPLANE_TRICKLE_FEED_DISABLE);
4693                 intel_flush_display_plane(dev_priv, pipe);
4694         }
4695 }
4696
4697 static void ironlake_init_clock_gating(struct drm_device *dev)
4698 {
4699         struct drm_i915_private *dev_priv = dev->dev_private;
4700         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4701
4702         /*
4703          * Required for FBC
4704          * WaFbcDisableDpfcClockGating:ilk
4705          */
4706         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4707                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4708                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4709
4710         I915_WRITE(PCH_3DCGDIS0,
4711                    MARIUNIT_CLOCK_GATE_DISABLE |
4712                    SVSMUNIT_CLOCK_GATE_DISABLE);
4713         I915_WRITE(PCH_3DCGDIS1,
4714                    VFMUNIT_CLOCK_GATE_DISABLE);
4715
4716         /*
4717          * According to the spec the following bits should be set in
4718          * order to enable memory self-refresh
4719          * The bit 22/21 of 0x42004
4720          * The bit 5 of 0x42020
4721          * The bit 15 of 0x45000
4722          */
4723         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4724                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4725                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4726         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4727         I915_WRITE(DISP_ARB_CTL,
4728                    (I915_READ(DISP_ARB_CTL) |
4729                     DISP_FBC_WM_DIS));
4730         I915_WRITE(WM3_LP_ILK, 0);
4731         I915_WRITE(WM2_LP_ILK, 0);
4732         I915_WRITE(WM1_LP_ILK, 0);
4733
4734         /*
4735          * Based on the document from hardware guys the following bits
4736          * should be set unconditionally in order to enable FBC.
4737          * The bit 22 of 0x42000
4738          * The bit 22 of 0x42004
4739          * The bit 7,8,9 of 0x42020.
4740          */
4741         if (IS_IRONLAKE_M(dev)) {
4742                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4743                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4744                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4745                            ILK_FBCQ_DIS);
4746                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4747                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4748                            ILK_DPARB_GATE);
4749         }
4750
4751         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4752
4753         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4754                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4755                    ILK_ELPIN_409_SELECT);
4756         I915_WRITE(_3D_CHICKEN2,
4757                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4758                    _3D_CHICKEN2_WM_READ_PIPELINED);
4759
4760         /* WaDisableRenderCachePipelinedFlush:ilk */
4761         I915_WRITE(CACHE_MODE_0,
4762                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4763
4764         g4x_disable_trickle_feed(dev);
4765
4766         ibx_init_clock_gating(dev);
4767 }
4768
4769 static void cpt_init_clock_gating(struct drm_device *dev)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772         int pipe;
4773         uint32_t val;
4774
4775         /*
4776          * On Ibex Peak and Cougar Point, we need to disable clock
4777          * gating for the panel power sequencer or it will fail to
4778          * start up when no ports are active.
4779          */
4780         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4781         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4782                    DPLS_EDP_PPS_FIX_DIS);
4783         /* The below fixes the weird display corruption, a few pixels shifted
4784          * downward, on (only) LVDS of some HP laptops with IVY.
4785          */
4786         for_each_pipe(pipe) {
4787                 val = I915_READ(TRANS_CHICKEN2(pipe));
4788                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4789                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4790                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4791                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4792                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4793                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4794                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4795                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4796         }
4797         /* WADP0ClockGatingDisable */
4798         for_each_pipe(pipe) {
4799                 I915_WRITE(TRANS_CHICKEN1(pipe),
4800                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4801         }
4802 }
4803
4804 static void gen6_check_mch_setup(struct drm_device *dev)
4805 {
4806         struct drm_i915_private *dev_priv = dev->dev_private;
4807         uint32_t tmp;
4808
4809         tmp = I915_READ(MCH_SSKPD);
4810         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4811                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4812                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4813                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4814         }
4815 }
4816
4817 static void gen6_init_clock_gating(struct drm_device *dev)
4818 {
4819         struct drm_i915_private *dev_priv = dev->dev_private;
4820         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4821
4822         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4823
4824         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4825                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4826                    ILK_ELPIN_409_SELECT);
4827
4828         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4829         I915_WRITE(_3D_CHICKEN,
4830                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4831
4832         /* WaSetupGtModeTdRowDispatch:snb */
4833         if (IS_SNB_GT1(dev))
4834                 I915_WRITE(GEN6_GT_MODE,
4835                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4836
4837         I915_WRITE(WM3_LP_ILK, 0);
4838         I915_WRITE(WM2_LP_ILK, 0);
4839         I915_WRITE(WM1_LP_ILK, 0);
4840
4841         I915_WRITE(CACHE_MODE_0,
4842                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4843
4844         I915_WRITE(GEN6_UCGCTL1,
4845                    I915_READ(GEN6_UCGCTL1) |
4846                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4847                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4848
4849         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4850          * gating disable must be set.  Failure to set it results in
4851          * flickering pixels due to Z write ordering failures after
4852          * some amount of runtime in the Mesa "fire" demo, and Unigine
4853          * Sanctuary and Tropics, and apparently anything else with
4854          * alpha test or pixel discard.
4855          *
4856          * According to the spec, bit 11 (RCCUNIT) must also be set,
4857          * but we didn't debug actual testcases to find it out.
4858          *
4859          * Also apply WaDisableVDSUnitClockGating:snb and
4860          * WaDisableRCPBUnitClockGating:snb.
4861          */
4862         I915_WRITE(GEN6_UCGCTL2,
4863                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4864                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4865                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4866
4867         /* Bspec says we need to always set all mask bits. */
4868         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4869                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4870
4871         /*
4872          * According to the spec the following bits should be
4873          * set in order to enable memory self-refresh and fbc:
4874          * The bit21 and bit22 of 0x42000
4875          * The bit21 and bit22 of 0x42004
4876          * The bit5 and bit7 of 0x42020
4877          * The bit14 of 0x70180
4878          * The bit14 of 0x71180
4879          *
4880          * WaFbcAsynchFlipDisableFbcQueue:snb
4881          */
4882         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4883                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4884                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4885         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4886                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4887                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4888         I915_WRITE(ILK_DSPCLK_GATE_D,
4889                    I915_READ(ILK_DSPCLK_GATE_D) |
4890                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4891                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4892
4893         g4x_disable_trickle_feed(dev);
4894
4895         /* The default value should be 0x200 according to docs, but the two
4896          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4897         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4898         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4899
4900         cpt_init_clock_gating(dev);
4901
4902         gen6_check_mch_setup(dev);
4903 }
4904
4905 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4906 {
4907         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4908
4909         reg &= ~GEN7_FF_SCHED_MASK;
4910         reg |= GEN7_FF_TS_SCHED_HW;
4911         reg |= GEN7_FF_VS_SCHED_HW;
4912         reg |= GEN7_FF_DS_SCHED_HW;
4913
4914         if (IS_HASWELL(dev_priv->dev))
4915                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4916
4917         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4918 }
4919
4920 static void lpt_init_clock_gating(struct drm_device *dev)
4921 {
4922         struct drm_i915_private *dev_priv = dev->dev_private;
4923
4924         /*
4925          * TODO: this bit should only be enabled when really needed, then
4926          * disabled when not needed anymore in order to save power.
4927          */
4928         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4929                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4930                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4931                            PCH_LP_PARTITION_LEVEL_DISABLE);
4932
4933         /* WADPOClockGatingDisable:hsw */
4934         I915_WRITE(_TRANSA_CHICKEN1,
4935                    I915_READ(_TRANSA_CHICKEN1) |
4936                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4937 }
4938
4939 static void lpt_suspend_hw(struct drm_device *dev)
4940 {
4941         struct drm_i915_private *dev_priv = dev->dev_private;
4942
4943         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4944                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4945
4946                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4947                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4948         }
4949 }
4950
4951 static void haswell_init_clock_gating(struct drm_device *dev)
4952 {
4953         struct drm_i915_private *dev_priv = dev->dev_private;
4954
4955         I915_WRITE(WM3_LP_ILK, 0);
4956         I915_WRITE(WM2_LP_ILK, 0);
4957         I915_WRITE(WM1_LP_ILK, 0);
4958
4959         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4960          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4961          */
4962         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4963
4964         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4965         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4966                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4967
4968         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4969         I915_WRITE(GEN7_L3CNTLREG1,
4970                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4971         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4972                         GEN7_WA_L3_CHICKEN_MODE);
4973
4974         /* This is required by WaCatErrorRejectionIssue:hsw */
4975         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4976                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4977                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4978
4979         /* WaVSRefCountFullforceMissDisable:hsw */
4980         gen7_setup_fixed_func_scheduler(dev_priv);
4981
4982         /* WaDisable4x2SubspanOptimization:hsw */
4983         I915_WRITE(CACHE_MODE_1,
4984                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4985
4986         /* WaSwitchSolVfFArbitrationPriority:hsw */
4987         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4988
4989         /* WaRsPkgCStateDisplayPMReq:hsw */
4990         I915_WRITE(CHICKEN_PAR1_1,
4991                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4992
4993         lpt_init_clock_gating(dev);
4994 }
4995
4996 static void ivybridge_init_clock_gating(struct drm_device *dev)
4997 {
4998         struct drm_i915_private *dev_priv = dev->dev_private;
4999         uint32_t snpcr;
5000
5001         I915_WRITE(WM3_LP_ILK, 0);
5002         I915_WRITE(WM2_LP_ILK, 0);
5003         I915_WRITE(WM1_LP_ILK, 0);
5004
5005         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5006
5007         /* WaDisableEarlyCull:ivb */
5008         I915_WRITE(_3D_CHICKEN3,
5009                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5010
5011         /* WaDisableBackToBackFlipFix:ivb */
5012         I915_WRITE(IVB_CHICKEN3,
5013                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5014                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5015
5016         /* WaDisablePSDDualDispatchEnable:ivb */
5017         if (IS_IVB_GT1(dev))
5018                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5019                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5020         else
5021                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
5022                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5023
5024         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5025         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5026                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5027
5028         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5029         I915_WRITE(GEN7_L3CNTLREG1,
5030                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5031         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5032                    GEN7_WA_L3_CHICKEN_MODE);
5033         if (IS_IVB_GT1(dev))
5034                 I915_WRITE(GEN7_ROW_CHICKEN2,
5035                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5036         else
5037                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5038                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5039
5040
5041         /* WaForceL3Serialization:ivb */
5042         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5043                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5044
5045         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5046          * gating disable must be set.  Failure to set it results in
5047          * flickering pixels due to Z write ordering failures after
5048          * some amount of runtime in the Mesa "fire" demo, and Unigine
5049          * Sanctuary and Tropics, and apparently anything else with
5050          * alpha test or pixel discard.
5051          *
5052          * According to the spec, bit 11 (RCCUNIT) must also be set,
5053          * but we didn't debug actual testcases to find it out.
5054          *
5055          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5056          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5057          */
5058         I915_WRITE(GEN6_UCGCTL2,
5059                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5060                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5061
5062         /* This is required by WaCatErrorRejectionIssue:ivb */
5063         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5064                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5065                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5066
5067         g4x_disable_trickle_feed(dev);
5068
5069         /* WaVSRefCountFullforceMissDisable:ivb */
5070         gen7_setup_fixed_func_scheduler(dev_priv);
5071
5072         /* WaDisable4x2SubspanOptimization:ivb */
5073         I915_WRITE(CACHE_MODE_1,
5074                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5075
5076         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5077         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5078         snpcr |= GEN6_MBC_SNPCR_MED;
5079         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5080
5081         if (!HAS_PCH_NOP(dev))
5082                 cpt_init_clock_gating(dev);
5083
5084         gen6_check_mch_setup(dev);
5085 }
5086
5087 static void valleyview_init_clock_gating(struct drm_device *dev)
5088 {
5089         struct drm_i915_private *dev_priv = dev->dev_private;
5090
5091         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5092
5093         /* WaDisableEarlyCull:vlv */
5094         I915_WRITE(_3D_CHICKEN3,
5095                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5096
5097         /* WaDisableBackToBackFlipFix:vlv */
5098         I915_WRITE(IVB_CHICKEN3,
5099                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5100                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5101
5102         /* WaDisablePSDDualDispatchEnable:vlv */
5103         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5104                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5105                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5106
5107         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
5108         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5109                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5110
5111         /* WaApplyL3ControlAndL3ChickenMode:vlv */
5112         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
5113         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
5114
5115         /* WaForceL3Serialization:vlv */
5116         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5117                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5118
5119         /* WaDisableDopClockGating:vlv */
5120         I915_WRITE(GEN7_ROW_CHICKEN2,
5121                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5122
5123         /* This is required by WaCatErrorRejectionIssue:vlv */
5124         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5125                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5126                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5127
5128         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5129          * gating disable must be set.  Failure to set it results in
5130          * flickering pixels due to Z write ordering failures after
5131          * some amount of runtime in the Mesa "fire" demo, and Unigine
5132          * Sanctuary and Tropics, and apparently anything else with
5133          * alpha test or pixel discard.
5134          *
5135          * According to the spec, bit 11 (RCCUNIT) must also be set,
5136          * but we didn't debug actual testcases to find it out.
5137          *
5138          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5139          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5140          *
5141          * Also apply WaDisableVDSUnitClockGating:vlv and
5142          * WaDisableRCPBUnitClockGating:vlv.
5143          */
5144         I915_WRITE(GEN6_UCGCTL2,
5145                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
5146                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
5147                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
5148                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5149                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5150
5151         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5152
5153         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5154
5155         I915_WRITE(CACHE_MODE_1,
5156                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5157
5158         /*
5159          * WaDisableVLVClockGating_VBIIssue:vlv
5160          * Disable clock gating on th GCFG unit to prevent a delay
5161          * in the reporting of vblank events.
5162          */
5163         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5164
5165         /* Conservative clock gating settings for now */
5166         I915_WRITE(0x9400, 0xffffffff);
5167         I915_WRITE(0x9404, 0xffffffff);
5168         I915_WRITE(0x9408, 0xffffffff);
5169         I915_WRITE(0x940c, 0xffffffff);
5170         I915_WRITE(0x9410, 0xffffffff);
5171         I915_WRITE(0x9414, 0xffffffff);
5172         I915_WRITE(0x9418, 0xffffffff);
5173 }
5174
5175 static void g4x_init_clock_gating(struct drm_device *dev)
5176 {
5177         struct drm_i915_private *dev_priv = dev->dev_private;
5178         uint32_t dspclk_gate;
5179
5180         I915_WRITE(RENCLK_GATE_D1, 0);
5181         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5182                    GS_UNIT_CLOCK_GATE_DISABLE |
5183                    CL_UNIT_CLOCK_GATE_DISABLE);
5184         I915_WRITE(RAMCLK_GATE_D, 0);
5185         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5186                 OVRUNIT_CLOCK_GATE_DISABLE |
5187                 OVCUNIT_CLOCK_GATE_DISABLE;
5188         if (IS_GM45(dev))
5189                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5190         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5191
5192         /* WaDisableRenderCachePipelinedFlush */
5193         I915_WRITE(CACHE_MODE_0,
5194                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5195
5196         g4x_disable_trickle_feed(dev);
5197 }
5198
5199 static void crestline_init_clock_gating(struct drm_device *dev)
5200 {
5201         struct drm_i915_private *dev_priv = dev->dev_private;
5202
5203         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5204         I915_WRITE(RENCLK_GATE_D2, 0);
5205         I915_WRITE(DSPCLK_GATE_D, 0);
5206         I915_WRITE(RAMCLK_GATE_D, 0);
5207         I915_WRITE16(DEUC, 0);
5208         I915_WRITE(MI_ARB_STATE,
5209                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5210 }
5211
5212 static void broadwater_init_clock_gating(struct drm_device *dev)
5213 {
5214         struct drm_i915_private *dev_priv = dev->dev_private;
5215
5216         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5217                    I965_RCC_CLOCK_GATE_DISABLE |
5218                    I965_RCPB_CLOCK_GATE_DISABLE |
5219                    I965_ISC_CLOCK_GATE_DISABLE |
5220                    I965_FBC_CLOCK_GATE_DISABLE);
5221         I915_WRITE(RENCLK_GATE_D2, 0);
5222         I915_WRITE(MI_ARB_STATE,
5223                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5224 }
5225
5226 static void gen3_init_clock_gating(struct drm_device *dev)
5227 {
5228         struct drm_i915_private *dev_priv = dev->dev_private;
5229         u32 dstate = I915_READ(D_STATE);
5230
5231         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5232                 DSTATE_DOT_CLOCK_GATING;
5233         I915_WRITE(D_STATE, dstate);
5234
5235         if (IS_PINEVIEW(dev))
5236                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5237
5238         /* IIR "flip pending" means done if this bit is set */
5239         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5240 }
5241
5242 static void i85x_init_clock_gating(struct drm_device *dev)
5243 {
5244         struct drm_i915_private *dev_priv = dev->dev_private;
5245
5246         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5247 }
5248
5249 static void i830_init_clock_gating(struct drm_device *dev)
5250 {
5251         struct drm_i915_private *dev_priv = dev->dev_private;
5252
5253         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5254 }
5255
5256 void intel_init_clock_gating(struct drm_device *dev)
5257 {
5258         struct drm_i915_private *dev_priv = dev->dev_private;
5259
5260         dev_priv->display.init_clock_gating(dev);
5261 }
5262
5263 void intel_suspend_hw(struct drm_device *dev)
5264 {
5265         if (HAS_PCH_LPT(dev))
5266                 lpt_suspend_hw(dev);
5267 }
5268
5269 /**
5270  * We should only use the power well if we explicitly asked the hardware to
5271  * enable it, so check if it's enabled and also check if we've requested it to
5272  * be enabled.
5273  */
5274 bool intel_display_power_enabled(struct drm_device *dev,
5275                                  enum intel_display_power_domain domain)
5276 {
5277         struct drm_i915_private *dev_priv = dev->dev_private;
5278
5279         if (!HAS_POWER_WELL(dev))
5280                 return true;
5281
5282         switch (domain) {
5283         case POWER_DOMAIN_PIPE_A:
5284         case POWER_DOMAIN_TRANSCODER_EDP:
5285                 return true;
5286         case POWER_DOMAIN_VGA:
5287         case POWER_DOMAIN_PIPE_B:
5288         case POWER_DOMAIN_PIPE_C:
5289         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5290         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5291         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5292         case POWER_DOMAIN_TRANSCODER_A:
5293         case POWER_DOMAIN_TRANSCODER_B:
5294         case POWER_DOMAIN_TRANSCODER_C:
5295                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5296                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5297         default:
5298                 BUG();
5299         }
5300 }
5301
5302 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5303 {
5304         struct drm_i915_private *dev_priv = dev->dev_private;
5305         bool is_enabled, enable_requested;
5306         uint32_t tmp;
5307
5308         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5309         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5310         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5311
5312         if (enable) {
5313                 if (!enable_requested)
5314                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5315                                    HSW_PWR_WELL_ENABLE_REQUEST);
5316
5317                 if (!is_enabled) {
5318                         DRM_DEBUG_KMS("Enabling power well\n");
5319                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5320                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5321                                 DRM_ERROR("Timeout enabling power well\n");
5322                 }
5323         } else {
5324                 if (enable_requested) {
5325                         unsigned long irqflags;
5326                         enum pipe p;
5327
5328                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5329                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5330                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5331
5332                         /*
5333                          * After this, the registers on the pipes that are part
5334                          * of the power well will become zero, so we have to
5335                          * adjust our counters according to that.
5336                          *
5337                          * FIXME: Should we do this in general in
5338                          * drm_vblank_post_modeset?
5339                          */
5340                         spin_lock_irqsave(&dev->vbl_lock, irqflags);
5341                         for_each_pipe(p)
5342                                 if (p != PIPE_A)
5343                                         dev->last_vblank[p] = 0;
5344                         spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5345                 }
5346         }
5347 }
5348
5349 static void __intel_power_well_get(struct i915_power_well *power_well)
5350 {
5351         if (!power_well->count++)
5352                 __intel_set_power_well(power_well->device, true);
5353 }
5354
5355 static void __intel_power_well_put(struct i915_power_well *power_well)
5356 {
5357         WARN_ON(!power_well->count);
5358         if (!--power_well->count)
5359                 __intel_set_power_well(power_well->device, false);
5360 }
5361
5362 void intel_display_power_get(struct drm_device *dev,
5363                              enum intel_display_power_domain domain)
5364 {
5365         struct drm_i915_private *dev_priv = dev->dev_private;
5366         struct i915_power_well *power_well = &dev_priv->power_well;
5367
5368         if (!HAS_POWER_WELL(dev))
5369                 return;
5370
5371         switch (domain) {
5372         case POWER_DOMAIN_PIPE_A:
5373         case POWER_DOMAIN_TRANSCODER_EDP:
5374                 return;
5375         case POWER_DOMAIN_VGA:
5376         case POWER_DOMAIN_PIPE_B:
5377         case POWER_DOMAIN_PIPE_C:
5378         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5379         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5380         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5381         case POWER_DOMAIN_TRANSCODER_A:
5382         case POWER_DOMAIN_TRANSCODER_B:
5383         case POWER_DOMAIN_TRANSCODER_C:
5384                 spin_lock_irq(&power_well->lock);
5385                 __intel_power_well_get(power_well);
5386                 spin_unlock_irq(&power_well->lock);
5387                 return;
5388         default:
5389                 BUG();
5390         }
5391 }
5392
5393 void intel_display_power_put(struct drm_device *dev,
5394                              enum intel_display_power_domain domain)
5395 {
5396         struct drm_i915_private *dev_priv = dev->dev_private;
5397         struct i915_power_well *power_well = &dev_priv->power_well;
5398
5399         if (!HAS_POWER_WELL(dev))
5400                 return;
5401
5402         switch (domain) {
5403         case POWER_DOMAIN_PIPE_A:
5404         case POWER_DOMAIN_TRANSCODER_EDP:
5405                 return;
5406         case POWER_DOMAIN_VGA:
5407         case POWER_DOMAIN_PIPE_B:
5408         case POWER_DOMAIN_PIPE_C:
5409         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5410         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5411         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5412         case POWER_DOMAIN_TRANSCODER_A:
5413         case POWER_DOMAIN_TRANSCODER_B:
5414         case POWER_DOMAIN_TRANSCODER_C:
5415                 spin_lock_irq(&power_well->lock);
5416                 __intel_power_well_put(power_well);
5417                 spin_unlock_irq(&power_well->lock);
5418                 return;
5419         default:
5420                 BUG();
5421         }
5422 }
5423
5424 static struct i915_power_well *hsw_pwr;
5425
5426 /* Display audio driver power well request */
5427 void i915_request_power_well(void)
5428 {
5429         if (WARN_ON(!hsw_pwr))
5430                 return;
5431
5432         spin_lock_irq(&hsw_pwr->lock);
5433         __intel_power_well_get(hsw_pwr);
5434         spin_unlock_irq(&hsw_pwr->lock);
5435 }
5436 EXPORT_SYMBOL_GPL(i915_request_power_well);
5437
5438 /* Display audio driver power well release */
5439 void i915_release_power_well(void)
5440 {
5441         if (WARN_ON(!hsw_pwr))
5442                 return;
5443
5444         spin_lock_irq(&hsw_pwr->lock);
5445         __intel_power_well_put(hsw_pwr);
5446         spin_unlock_irq(&hsw_pwr->lock);
5447 }
5448 EXPORT_SYMBOL_GPL(i915_release_power_well);
5449
5450 int i915_init_power_well(struct drm_device *dev)
5451 {
5452         struct drm_i915_private *dev_priv = dev->dev_private;
5453
5454         hsw_pwr = &dev_priv->power_well;
5455
5456         hsw_pwr->device = dev;
5457         spin_lock_init(&hsw_pwr->lock);
5458         hsw_pwr->count = 0;
5459
5460         return 0;
5461 }
5462
5463 void i915_remove_power_well(struct drm_device *dev)
5464 {
5465         hsw_pwr = NULL;
5466 }
5467
5468 void intel_set_power_well(struct drm_device *dev, bool enable)
5469 {
5470         struct drm_i915_private *dev_priv = dev->dev_private;
5471         struct i915_power_well *power_well = &dev_priv->power_well;
5472
5473         if (!HAS_POWER_WELL(dev))
5474                 return;
5475
5476         if (!i915_disable_power_well && !enable)
5477                 return;
5478
5479         spin_lock_irq(&power_well->lock);
5480
5481         /*
5482          * This function will only ever contribute one
5483          * to the power well reference count. i915_request
5484          * is what tracks whether we have or have not
5485          * added the one to the reference count.
5486          */
5487         if (power_well->i915_request == enable)
5488                 goto out;
5489
5490         power_well->i915_request = enable;
5491
5492         if (enable)
5493                 __intel_power_well_get(power_well);
5494         else
5495                 __intel_power_well_put(power_well);
5496
5497  out:
5498         spin_unlock_irq(&power_well->lock);
5499 }
5500
5501 void intel_resume_power_well(struct drm_device *dev)
5502 {
5503         struct drm_i915_private *dev_priv = dev->dev_private;
5504         struct i915_power_well *power_well = &dev_priv->power_well;
5505
5506         if (!HAS_POWER_WELL(dev))
5507                 return;
5508
5509         spin_lock_irq(&power_well->lock);
5510         __intel_set_power_well(dev, power_well->count > 0);
5511         spin_unlock_irq(&power_well->lock);
5512 }
5513
5514 /*
5515  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5516  * when not needed anymore. We have 4 registers that can request the power well
5517  * to be enabled, and it will only be disabled if none of the registers is
5518  * requesting it to be enabled.
5519  */
5520 void intel_init_power_well(struct drm_device *dev)
5521 {
5522         struct drm_i915_private *dev_priv = dev->dev_private;
5523
5524         if (!HAS_POWER_WELL(dev))
5525                 return;
5526
5527         /* For now, we need the power well to be always enabled. */
5528         intel_set_power_well(dev, true);
5529         intel_resume_power_well(dev);
5530
5531         /* We're taking over the BIOS, so clear any requests made by it since
5532          * the driver is in charge now. */
5533         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5534                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5535 }
5536
5537 /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5538 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5539 {
5540         hsw_disable_package_c8(dev_priv);
5541 }
5542
5543 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5544 {
5545         hsw_enable_package_c8(dev_priv);
5546 }
5547
5548 /* Set up chip specific power management-related functions */
5549 void intel_init_pm(struct drm_device *dev)
5550 {
5551         struct drm_i915_private *dev_priv = dev->dev_private;
5552
5553         if (I915_HAS_FBC(dev)) {
5554                 if (HAS_PCH_SPLIT(dev)) {
5555                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5556                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5557                                 dev_priv->display.enable_fbc =
5558                                         gen7_enable_fbc;
5559                         else
5560                                 dev_priv->display.enable_fbc =
5561                                         ironlake_enable_fbc;
5562                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5563                 } else if (IS_GM45(dev)) {
5564                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5565                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5566                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5567                 } else if (IS_CRESTLINE(dev)) {
5568                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5569                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5570                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5571                 }
5572                 /* 855GM needs testing */
5573         }
5574
5575         /* For cxsr */
5576         if (IS_PINEVIEW(dev))
5577                 i915_pineview_get_mem_freq(dev);
5578         else if (IS_GEN5(dev))
5579                 i915_ironlake_get_mem_freq(dev);
5580
5581         /* For FIFO watermark updates */
5582         if (HAS_PCH_SPLIT(dev)) {
5583                 intel_setup_wm_latency(dev);
5584
5585                 if (IS_GEN5(dev)) {
5586                         if (dev_priv->wm.pri_latency[1] &&
5587                             dev_priv->wm.spr_latency[1] &&
5588                             dev_priv->wm.cur_latency[1])
5589                                 dev_priv->display.update_wm = ironlake_update_wm;
5590                         else {
5591                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5592                                               "Disable CxSR\n");
5593                                 dev_priv->display.update_wm = NULL;
5594                         }
5595                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5596                 } else if (IS_GEN6(dev)) {
5597                         if (dev_priv->wm.pri_latency[0] &&
5598                             dev_priv->wm.spr_latency[0] &&
5599                             dev_priv->wm.cur_latency[0]) {
5600                                 dev_priv->display.update_wm = sandybridge_update_wm;
5601                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5602                         } else {
5603                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5604                                               "Disable CxSR\n");
5605                                 dev_priv->display.update_wm = NULL;
5606                         }
5607                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5608                 } else if (IS_IVYBRIDGE(dev)) {
5609                         if (dev_priv->wm.pri_latency[0] &&
5610                             dev_priv->wm.spr_latency[0] &&
5611                             dev_priv->wm.cur_latency[0]) {
5612                                 dev_priv->display.update_wm = ivybridge_update_wm;
5613                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5614                         } else {
5615                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5616                                               "Disable CxSR\n");
5617                                 dev_priv->display.update_wm = NULL;
5618                         }
5619                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5620                 } else if (IS_HASWELL(dev)) {
5621                         if (dev_priv->wm.pri_latency[0] &&
5622                             dev_priv->wm.spr_latency[0] &&
5623                             dev_priv->wm.cur_latency[0]) {
5624                                 dev_priv->display.update_wm = haswell_update_wm;
5625                                 dev_priv->display.update_sprite_wm =
5626                                         haswell_update_sprite_wm;
5627                         } else {
5628                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5629                                               "Disable CxSR\n");
5630                                 dev_priv->display.update_wm = NULL;
5631                         }
5632                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5633                 } else
5634                         dev_priv->display.update_wm = NULL;
5635         } else if (IS_VALLEYVIEW(dev)) {
5636                 dev_priv->display.update_wm = valleyview_update_wm;
5637                 dev_priv->display.init_clock_gating =
5638                         valleyview_init_clock_gating;
5639         } else if (IS_PINEVIEW(dev)) {
5640                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5641                                             dev_priv->is_ddr3,
5642                                             dev_priv->fsb_freq,
5643                                             dev_priv->mem_freq)) {
5644                         DRM_INFO("failed to find known CxSR latency "
5645                                  "(found ddr%s fsb freq %d, mem freq %d), "
5646                                  "disabling CxSR\n",
5647                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5648                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5649                         /* Disable CxSR and never update its watermark again */
5650                         pineview_disable_cxsr(dev);
5651                         dev_priv->display.update_wm = NULL;
5652                 } else
5653                         dev_priv->display.update_wm = pineview_update_wm;
5654                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5655         } else if (IS_G4X(dev)) {
5656                 dev_priv->display.update_wm = g4x_update_wm;
5657                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5658         } else if (IS_GEN4(dev)) {
5659                 dev_priv->display.update_wm = i965_update_wm;
5660                 if (IS_CRESTLINE(dev))
5661                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5662                 else if (IS_BROADWATER(dev))
5663                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5664         } else if (IS_GEN3(dev)) {
5665                 dev_priv->display.update_wm = i9xx_update_wm;
5666                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5667                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5668         } else if (IS_I865G(dev)) {
5669                 dev_priv->display.update_wm = i830_update_wm;
5670                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5671                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5672         } else if (IS_I85X(dev)) {
5673                 dev_priv->display.update_wm = i9xx_update_wm;
5674                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5675                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5676         } else {
5677                 dev_priv->display.update_wm = i830_update_wm;
5678                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5679                 if (IS_845G(dev))
5680                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5681                 else
5682                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5683         }
5684 }
5685
5686 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5687 {
5688         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5689
5690         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5691                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5692                 return -EAGAIN;
5693         }
5694
5695         I915_WRITE(GEN6_PCODE_DATA, *val);
5696         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5697
5698         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5699                      500)) {
5700                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5701                 return -ETIMEDOUT;
5702         }
5703
5704         *val = I915_READ(GEN6_PCODE_DATA);
5705         I915_WRITE(GEN6_PCODE_DATA, 0);
5706
5707         return 0;
5708 }
5709
5710 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5711 {
5712         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5713
5714         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5715                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5716                 return -EAGAIN;
5717         }
5718
5719         I915_WRITE(GEN6_PCODE_DATA, val);
5720         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5721
5722         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5723                      500)) {
5724                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5725                 return -ETIMEDOUT;
5726         }
5727
5728         I915_WRITE(GEN6_PCODE_DATA, 0);
5729
5730         return 0;
5731 }
5732
5733 int vlv_gpu_freq(int ddr_freq, int val)
5734 {
5735         int mult, base;
5736
5737         switch (ddr_freq) {
5738         case 800:
5739                 mult = 20;
5740                 base = 120;
5741                 break;
5742         case 1066:
5743                 mult = 22;
5744                 base = 133;
5745                 break;
5746         case 1333:
5747                 mult = 21;
5748                 base = 125;
5749                 break;
5750         default:
5751                 return -1;
5752         }
5753
5754         return ((val - 0xbd) * mult) + base;
5755 }
5756
5757 int vlv_freq_opcode(int ddr_freq, int val)
5758 {
5759         int mult, base;
5760
5761         switch (ddr_freq) {
5762         case 800:
5763                 mult = 20;
5764                 base = 120;
5765                 break;
5766         case 1066:
5767                 mult = 22;
5768                 base = 133;
5769                 break;
5770         case 1333:
5771                 mult = 21;
5772                 base = 125;
5773                 break;
5774         default:
5775                 return -1;
5776         }
5777
5778         val /= mult;
5779         val -= base / mult;
5780         val += 0xbd;
5781
5782         if (val > 0xea)
5783                 val = 0xea;
5784
5785         return val;
5786 }
5787
5788 void intel_pm_init(struct drm_device *dev)
5789 {
5790         struct drm_i915_private *dev_priv = dev->dev_private;
5791
5792         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5793                           intel_gen6_powersave_work);
5794 }
5795