]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/gpu/host1x/syncpt.c
Merge remote-tracking branch 'block/for-next'
[karo-tx-linux.git] / drivers / gpu / host1x / syncpt.c
1 /*
2  * Tegra host1x Syncpoints
3  *
4  * Copyright (c) 2010-2013, NVIDIA Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22
23 #include <trace/events/host1x.h>
24
25 #include "syncpt.h"
26 #include "dev.h"
27 #include "intr.h"
28 #include "debug.h"
29
30 #define SYNCPT_CHECK_PERIOD (2 * HZ)
31 #define MAX_STUCK_CHECK_COUNT 15
32
33 static struct host1x_syncpt *_host1x_syncpt_alloc(struct host1x *host,
34                                                   struct device *dev,
35                                                   bool client_managed)
36 {
37         int i;
38         struct host1x_syncpt *sp = host->syncpt;
39         char *name;
40
41         for (i = 0; i < host->info->nb_pts && sp->name; i++, sp++)
42                 ;
43
44         if (i >= host->info->nb_pts)
45                 return NULL;
46
47         name = kasprintf(GFP_KERNEL, "%02d-%s", sp->id,
48                         dev ? dev_name(dev) : NULL);
49         if (!name)
50                 return NULL;
51
52         sp->dev = dev;
53         sp->name = name;
54         sp->client_managed = client_managed;
55
56         return sp;
57 }
58
59 u32 host1x_syncpt_id(struct host1x_syncpt *sp)
60 {
61         return sp->id;
62 }
63
64 /*
65  * Updates the value sent to hardware.
66  */
67 u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
68 {
69         return (u32)atomic_add_return(incrs, &sp->max_val);
70 }
71
72  /*
73  * Write cached syncpoint and waitbase values to hardware.
74  */
75 void host1x_syncpt_restore(struct host1x *host)
76 {
77         struct host1x_syncpt *sp_base = host->syncpt;
78         u32 i;
79
80         for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
81                 host1x_hw_syncpt_restore(host, sp_base + i);
82         for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
83                 host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
84         wmb();
85 }
86
87 /*
88  * Update the cached syncpoint and waitbase values by reading them
89  * from the registers.
90   */
91 void host1x_syncpt_save(struct host1x *host)
92 {
93         struct host1x_syncpt *sp_base = host->syncpt;
94         u32 i;
95
96         for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
97                 if (host1x_syncpt_client_managed(sp_base + i))
98                         host1x_hw_syncpt_load(host, sp_base + i);
99                 else
100                         WARN_ON(!host1x_syncpt_idle(sp_base + i));
101         }
102
103         for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
104                 host1x_hw_syncpt_load_wait_base(host, sp_base + i);
105 }
106
107 /*
108  * Updates the cached syncpoint value by reading a new value from the hardware
109  * register
110  */
111 u32 host1x_syncpt_load(struct host1x_syncpt *sp)
112 {
113         u32 val;
114         val = host1x_hw_syncpt_load(sp->host, sp);
115         trace_host1x_syncpt_load_min(sp->id, val);
116
117         return val;
118 }
119
120 /*
121  * Get the current syncpoint base
122  */
123 u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
124 {
125         u32 val;
126         host1x_hw_syncpt_load_wait_base(sp->host, sp);
127         val = sp->base_val;
128         return val;
129 }
130
131 /*
132  * Increment syncpoint value from cpu, updating cache
133  */
134 int host1x_syncpt_incr(struct host1x_syncpt *sp)
135 {
136         return host1x_hw_syncpt_cpu_incr(sp->host, sp);
137 }
138
139 /*
140  * Updated sync point form hardware, and returns true if syncpoint is expired,
141  * false if we may need to wait
142  */
143 static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
144 {
145         host1x_hw_syncpt_load(sp->host, sp);
146         return host1x_syncpt_is_expired(sp, thresh);
147 }
148
149 /*
150  * Main entrypoint for syncpoint value waits.
151  */
152 int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
153                         u32 *value)
154 {
155         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
156         void *ref;
157         struct host1x_waitlist *waiter;
158         int err = 0, check_count = 0;
159         u32 val;
160
161         if (value)
162                 *value = 0;
163
164         /* first check cache */
165         if (host1x_syncpt_is_expired(sp, thresh)) {
166                 if (value)
167                         *value = host1x_syncpt_load(sp);
168                 return 0;
169         }
170
171         /* try to read from register */
172         val = host1x_hw_syncpt_load(sp->host, sp);
173         if (host1x_syncpt_is_expired(sp, thresh)) {
174                 if (value)
175                         *value = val;
176                 goto done;
177         }
178
179         if (!timeout) {
180                 err = -EAGAIN;
181                 goto done;
182         }
183
184         /* allocate a waiter */
185         waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
186         if (!waiter) {
187                 err = -ENOMEM;
188                 goto done;
189         }
190
191         /* schedule a wakeup when the syncpoint value is reached */
192         err = host1x_intr_add_action(sp->host, sp->id, thresh,
193                                      HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
194                                      &wq, waiter, &ref);
195         if (err)
196                 goto done;
197
198         err = -EAGAIN;
199         /* Caller-specified timeout may be impractically low */
200         if (timeout < 0)
201                 timeout = LONG_MAX;
202
203         /* wait for the syncpoint, or timeout, or signal */
204         while (timeout) {
205                 long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
206                 int remain = wait_event_interruptible_timeout(wq,
207                                 syncpt_load_min_is_expired(sp, thresh),
208                                 check);
209                 if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
210                         if (value)
211                                 *value = host1x_syncpt_load(sp);
212                         err = 0;
213                         break;
214                 }
215                 if (remain < 0) {
216                         err = remain;
217                         break;
218                 }
219                 timeout -= check;
220                 if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
221                         dev_warn(sp->host->dev,
222                                 "%s: syncpoint id %d (%s) stuck waiting %d, timeout=%ld\n",
223                                  current->comm, sp->id, sp->name,
224                                  thresh, timeout);
225
226                         host1x_debug_dump_syncpts(sp->host);
227                         if (check_count == MAX_STUCK_CHECK_COUNT)
228                                 host1x_debug_dump(sp->host);
229                         check_count++;
230                 }
231         }
232         host1x_intr_put_ref(sp->host, sp->id, ref);
233
234 done:
235         return err;
236 }
237 EXPORT_SYMBOL(host1x_syncpt_wait);
238
239 /*
240  * Returns true if syncpoint is expired, false if we may need to wait
241  */
242 bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
243 {
244         u32 current_val;
245         u32 future_val;
246         smp_rmb();
247         current_val = (u32)atomic_read(&sp->min_val);
248         future_val = (u32)atomic_read(&sp->max_val);
249
250         /* Note the use of unsigned arithmetic here (mod 1<<32).
251          *
252          * c = current_val = min_val    = the current value of the syncpoint.
253          * t = thresh                   = the value we are checking
254          * f = future_val  = max_val    = the value c will reach when all
255          *                                outstanding increments have completed.
256          *
257          * Note that c always chases f until it reaches f.
258          *
259          * Dtf = (f - t)
260          * Dtc = (c - t)
261          *
262          *  Consider all cases:
263          *
264          *      A) .....c..t..f.....    Dtf < Dtc       need to wait
265          *      B) .....c.....f..t..    Dtf > Dtc       expired
266          *      C) ..t..c.....f.....    Dtf > Dtc       expired    (Dct very large)
267          *
268          *  Any case where f==c: always expired (for any t).    Dtf == Dcf
269          *  Any case where t==c: always expired (for any f).    Dtf >= Dtc (because Dtc==0)
270          *  Any case where t==f!=c: always wait.                Dtf <  Dtc (because Dtf==0,
271          *                                                      Dtc!=0)
272          *
273          *  Other cases:
274          *
275          *      A) .....t..f..c.....    Dtf < Dtc       need to wait
276          *      A) .....f..c..t.....    Dtf < Dtc       need to wait
277          *      A) .....f..t..c.....    Dtf > Dtc       expired
278          *
279          *   So:
280          *         Dtf >= Dtc implies EXPIRED   (return true)
281          *         Dtf <  Dtc implies WAIT      (return false)
282          *
283          * Note: If t is expired then we *cannot* wait on it. We would wait
284          * forever (hang the system).
285          *
286          * Note: do NOT get clever and remove the -thresh from both sides. It
287          * is NOT the same.
288          *
289          * If future valueis zero, we have a client managed sync point. In that
290          * case we do a direct comparison.
291          */
292         if (!host1x_syncpt_client_managed(sp))
293                 return future_val - thresh >= current_val - thresh;
294         else
295                 return (s32)(current_val - thresh) >= 0;
296 }
297
298 /* remove a wait pointed to by patch_addr */
299 int host1x_syncpt_patch_wait(struct host1x_syncpt *sp, void *patch_addr)
300 {
301         return host1x_hw_syncpt_patch_wait(sp->host, sp, patch_addr);
302 }
303
304 int host1x_syncpt_init(struct host1x *host)
305 {
306         struct host1x_syncpt *syncpt;
307         int i;
308
309         syncpt = devm_kzalloc(host->dev, sizeof(*syncpt) * host->info->nb_pts,
310                 GFP_KERNEL);
311         if (!syncpt)
312                 return -ENOMEM;
313
314         for (i = 0; i < host->info->nb_pts; ++i) {
315                 syncpt[i].id = i;
316                 syncpt[i].host = host;
317         }
318
319         host->syncpt = syncpt;
320
321         host1x_syncpt_restore(host);
322
323         /* Allocate sync point to use for clearing waits for expired fences */
324         host->nop_sp = _host1x_syncpt_alloc(host, NULL, false);
325         if (!host->nop_sp)
326                 return -ENOMEM;
327
328         return 0;
329 }
330
331 struct host1x_syncpt *host1x_syncpt_request(struct device *dev,
332                                             bool client_managed)
333 {
334         struct host1x *host = dev_get_drvdata(dev->parent);
335         return _host1x_syncpt_alloc(host, dev, client_managed);
336 }
337
338 void host1x_syncpt_free(struct host1x_syncpt *sp)
339 {
340         if (!sp)
341                 return;
342
343         kfree(sp->name);
344         sp->dev = NULL;
345         sp->name = NULL;
346         sp->client_managed = false;
347 }
348
349 void host1x_syncpt_deinit(struct host1x *host)
350 {
351         int i;
352         struct host1x_syncpt *sp = host->syncpt;
353         for (i = 0; i < host->info->nb_pts; i++, sp++)
354                 kfree(sp->name);
355 }
356
357 /*
358  * Read max. It indicates how many operations there are in queue, either in
359  * channel or in a software thread.
360  * */
361 u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
362 {
363         smp_rmb();
364         return (u32)atomic_read(&sp->max_val);
365 }
366
367 /*
368  * Read min, which is a shadow of the current sync point value in hardware.
369  */
370 u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
371 {
372         smp_rmb();
373         return (u32)atomic_read(&sp->min_val);
374 }
375
376 int host1x_syncpt_nb_pts(struct host1x *host)
377 {
378         return host->info->nb_pts;
379 }
380
381 int host1x_syncpt_nb_bases(struct host1x *host)
382 {
383         return host->info->nb_bases;
384 }
385
386 int host1x_syncpt_nb_mlocks(struct host1x *host)
387 {
388         return host->info->nb_mlocks;
389 }
390
391 struct host1x_syncpt *host1x_syncpt_get(struct host1x *host, u32 id)
392 {
393         if (host->info->nb_pts < id)
394                 return NULL;
395         return host->syncpt + id;
396 }