]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mfd/db8500-prcmu.c
Merge remote-tracking branch 'arm-soc/for-next'
[karo-tx-linux.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE           0x2FC
42 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
55
56 #define PRCM_AVS_VOLTAGE                0
57 #define PRCM_AVS_VOLTAGE_MASK           0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP          6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE           7
61 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
62
63 #define PRCM_BOOT_STATUS        0xFFF
64 #define PRCM_ROMCODE_A2P        0xFFE
65 #define PRCM_ROMCODE_P2A        0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
67
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69
70 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
78
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
86
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS          0
97 #define MB0H_CONFIG_WAKEUPS_EXE         1
98 #define MB0H_READ_WAKEUP_ACK            3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
100
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
111
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
120
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF    0x1
134 #define PLL_SOC0_ON     0x2
135 #define PLL_SOC1_OFF    0x4
136 #define PLL_SOC1_ON     0x8
137
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
143
144 /* Mailbox 2 headers */
145 #define MB2H_DPS        0x0
146 #define MB2H_AUTO_PWR   0x1
147
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
159
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163
164 /* Mailbox 3 headers */
165 #define MB3H_ANC        0x0
166 #define MB3H_SIDETONE   0x1
167 #define MB3H_SYSCLK     0xE
168
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
177
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT   0x0
180 #define MB4H_MEM_ST     0x1
181 #define MB4H_HOTDOG     0x12
182 #define MB4H_HOTMON     0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN   0x17
186 #define MB4H_A9WDOG_DIS  0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW                       BIT(0)
200 #define HOTMON_CONFIG_HIGH                      BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS                     0
207 #define A9WDOG_ID_MASK                          0xf
208
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN               BIT(3)
217
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227
228 /*
229  * Wakeups/IRQs
230  */
231
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261
262 static struct {
263         bool valid;
264         struct prcmu_fw_version version;
265 } fw_info;
266
267 static struct irq_domain *db8500_irq_domain;
268
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306         IRQ_ENTRY(RTC),
307         IRQ_ENTRY(RTT0),
308         IRQ_ENTRY(RTT1),
309         IRQ_ENTRY(HSI0),
310         IRQ_ENTRY(HSI1),
311         IRQ_ENTRY(CA_WAKE),
312         IRQ_ENTRY(USB),
313         IRQ_ENTRY(ABB),
314         IRQ_ENTRY(ABB_FIFO),
315         IRQ_ENTRY(CA_SLEEP),
316         IRQ_ENTRY(ARM),
317         IRQ_ENTRY(HOTMON_LOW),
318         IRQ_ENTRY(HOTMON_HIGH),
319         IRQ_ENTRY(MODEM_SW_RESET_REQ),
320         IRQ_ENTRY(GPIO0),
321         IRQ_ENTRY(GPIO1),
322         IRQ_ENTRY(GPIO2),
323         IRQ_ENTRY(GPIO3),
324         IRQ_ENTRY(GPIO4),
325         IRQ_ENTRY(GPIO5),
326         IRQ_ENTRY(GPIO6),
327         IRQ_ENTRY(GPIO7),
328         IRQ_ENTRY(GPIO8)
329 };
330
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334         WAKEUP_ENTRY(RTC),
335         WAKEUP_ENTRY(RTT0),
336         WAKEUP_ENTRY(RTT1),
337         WAKEUP_ENTRY(HSI0),
338         WAKEUP_ENTRY(HSI1),
339         WAKEUP_ENTRY(USB),
340         WAKEUP_ENTRY(ABB),
341         WAKEUP_ENTRY(ABB_FIFO),
342         WAKEUP_ENTRY(ARM)
343 };
344
345 /*
346  * mb0_transfer - state needed for mailbox 0 communication.
347  * @lock:               The transaction lock.
348  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
349  *                      the request data.
350  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
351  * @req:                Request data that need to persist between requests.
352  */
353 static struct {
354         spinlock_t lock;
355         spinlock_t dbb_irqs_lock;
356         struct work_struct mask_work;
357         struct mutex ac_wake_lock;
358         struct completion ac_wake_work;
359         struct {
360                 u32 dbb_irqs;
361                 u32 dbb_wakeups;
362                 u32 abb_events;
363         } req;
364 } mb0_transfer;
365
366 /*
367  * mb1_transfer - state needed for mailbox 1 communication.
368  * @lock:       The transaction lock.
369  * @work:       The transaction completion structure.
370  * @ape_opp:    The current APE OPP.
371  * @ack:        Reply ("acknowledge") data.
372  */
373 static struct {
374         struct mutex lock;
375         struct completion work;
376         u8 ape_opp;
377         struct {
378                 u8 header;
379                 u8 arm_opp;
380                 u8 ape_opp;
381                 u8 ape_voltage_status;
382         } ack;
383 } mb1_transfer;
384
385 /*
386  * mb2_transfer - state needed for mailbox 2 communication.
387  * @lock:            The transaction lock.
388  * @work:            The transaction completion structure.
389  * @auto_pm_lock:    The autonomous power management configuration lock.
390  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391  * @req:             Request data that need to persist between requests.
392  * @ack:             Reply ("acknowledge") data.
393  */
394 static struct {
395         struct mutex lock;
396         struct completion work;
397         spinlock_t auto_pm_lock;
398         bool auto_pm_enabled;
399         struct {
400                 u8 status;
401         } ack;
402 } mb2_transfer;
403
404 /*
405  * mb3_transfer - state needed for mailbox 3 communication.
406  * @lock:               The request lock.
407  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
408  * @sysclk_work:        Work structure used for sysclk requests.
409  */
410 static struct {
411         spinlock_t lock;
412         struct mutex sysclk_lock;
413         struct completion sysclk_work;
414 } mb3_transfer;
415
416 /*
417  * mb4_transfer - state needed for mailbox 4 communication.
418  * @lock:       The transaction lock.
419  * @work:       The transaction completion structure.
420  */
421 static struct {
422         struct mutex lock;
423         struct completion work;
424 } mb4_transfer;
425
426 /*
427  * mb5_transfer - state needed for mailbox 5 communication.
428  * @lock:       The transaction lock.
429  * @work:       The transaction completion structure.
430  * @ack:        Reply ("acknowledge") data.
431  */
432 static struct {
433         struct mutex lock;
434         struct completion work;
435         struct {
436                 u8 status;
437                 u8 value;
438         } ack;
439 } mb5_transfer;
440
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450
451 struct clk_mgt {
452         u32 offset;
453         u32 pllsw;
454         int branch;
455         bool clk38div;
456 };
457
458 enum {
459         PLL_RAW,
460         PLL_FIX,
461         PLL_DIV
462 };
463
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
498 };
499
500 struct dsiclk {
501         u32 divsel_mask;
502         u32 divsel_shift;
503         u32 divsel;
504 };
505
506 static struct dsiclk dsiclk[2] = {
507         {
508                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
511         },
512         {
513                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
516         }
517 };
518
519 struct dsiescclk {
520         u32 en;
521         u32 div_mask;
522         u32 div_shift;
523 };
524
525 static struct dsiescclk dsiescclk[3] = {
526         {
527                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
530         },
531         {
532                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
535         },
536         {
537                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
540         }
541 };
542
543
544 /*
545 * Used by MCDE to setup all necessary PRCMU registers
546 */
547 #define PRCMU_RESET_DSIPLL              0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
549
550 #define PRCMU_CLK_PLL_DIV_SHIFT         0
551 #define PRCMU_CLK_PLL_SW_SHIFT          5
552 #define PRCMU_CLK_38                    (1 << 9)
553 #define PRCMU_CLK_38_SRC                (1 << 10)
554 #define PRCMU_CLK_38_DIV                (1 << 11)
555
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
558
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
563
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
566
567 #define PRCMU_ENABLE_PLLDSI             0x00000001
568 #define PRCMU_DISABLE_PLLDSI            0x00000000
569 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
574 #define PRCMU_DSI_RESET_SW              0x00000007
575
576 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
577
578 int db8500_prcmu_enable_dsipll(void)
579 {
580         int i;
581
582         /* Clear DSIPLL_RESETN */
583         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584         /* Unclamp DSIPLL in/out */
585         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
586
587         /* Set DSI PLL FREQ */
588         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590         /* Enable Escape clocks */
591         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
592
593         /* Start DSI PLL */
594         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595         /* Reset DSI PLL */
596         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597         for (i = 0; i < 10; i++) {
598                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
600                         break;
601                 udelay(100);
602         }
603         /* Set DSIPLL_RESETN */
604         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605         return 0;
606 }
607
608 int db8500_prcmu_disable_dsipll(void)
609 {
610         /* Disable dsi pll */
611         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612         /* Disable  escapeclock */
613         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614         return 0;
615 }
616
617 int db8500_prcmu_set_display_clocks(void)
618 {
619         unsigned long flags;
620
621         spin_lock_irqsave(&clk_mgt_lock, flags);
622
623         /* Grab the HW semaphore. */
624         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625                 cpu_relax();
626
627         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
630
631         /* Release the HW semaphore. */
632         writel(0, PRCM_SEM);
633
634         spin_unlock_irqrestore(&clk_mgt_lock, flags);
635
636         return 0;
637 }
638
639 u32 db8500_prcmu_read(unsigned int reg)
640 {
641         return readl(prcmu_base + reg);
642 }
643
644 void db8500_prcmu_write(unsigned int reg, u32 value)
645 {
646         unsigned long flags;
647
648         spin_lock_irqsave(&prcmu_lock, flags);
649         writel(value, (prcmu_base + reg));
650         spin_unlock_irqrestore(&prcmu_lock, flags);
651 }
652
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
654 {
655         u32 val;
656         unsigned long flags;
657
658         spin_lock_irqsave(&prcmu_lock, flags);
659         val = readl(prcmu_base + reg);
660         val = ((val & ~mask) | (value & mask));
661         writel(val, (prcmu_base + reg));
662         spin_unlock_irqrestore(&prcmu_lock, flags);
663 }
664
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
666 {
667         return fw_info.valid ? &fw_info.version : NULL;
668 }
669
670 bool prcmu_has_arm_maxopp(void)
671 {
672         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
674 }
675
676 /**
677  * prcmu_get_boot_status - PRCMU boot status checking
678  * Returns: the current PRCMU boot status
679  */
680 int prcmu_get_boot_status(void)
681 {
682         return readb(tcdm_base + PRCM_BOOT_STATUS);
683 }
684
685 /**
686  * prcmu_set_rc_a2p - This function is used to run few power state sequences
687  * @val: Value to be set, i.e. transition requested
688  * Returns: 0 on success, -EINVAL on invalid argument
689  *
690  * This function is used to run the following power state sequences -
691  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
692  */
693 int prcmu_set_rc_a2p(enum romcode_write val)
694 {
695         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
696                 return -EINVAL;
697         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
698         return 0;
699 }
700
701 /**
702  * prcmu_get_rc_p2a - This function is used to get power state sequences
703  * Returns: the power transition that has last happened
704  *
705  * This function can return the following transitions-
706  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
707  */
708 enum romcode_read prcmu_get_rc_p2a(void)
709 {
710         return readb(tcdm_base + PRCM_ROMCODE_P2A);
711 }
712
713 /**
714  * prcmu_get_current_mode - Return the current XP70 power mode
715  * Returns: Returns the current AP(ARM) power mode: init,
716  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
717  */
718 enum ap_pwrst prcmu_get_xp70_current_state(void)
719 {
720         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
721 }
722
723 /**
724  * prcmu_config_clkout - Configure one of the programmable clock outputs.
725  * @clkout:     The CLKOUT number (0 or 1).
726  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
727  * @div:        The divider to be applied.
728  *
729  * Configures one of the programmable clock outputs (CLKOUTs).
730  * @div should be in the range [1,63] to request a configuration, or 0 to
731  * inform that the configuration is no longer requested.
732  */
733 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
734 {
735         static int requests[2];
736         int r = 0;
737         unsigned long flags;
738         u32 val;
739         u32 bits;
740         u32 mask;
741         u32 div_mask;
742
743         BUG_ON(clkout > 1);
744         BUG_ON(div > 63);
745         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
746
747         if (!div && !requests[clkout])
748                 return -EINVAL;
749
750         switch (clkout) {
751         case 0:
752                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756                 break;
757         case 1:
758                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
759                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
760                         PRCM_CLKOCR_CLK1TYPE);
761                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
762                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
763                 break;
764         }
765         bits &= mask;
766
767         spin_lock_irqsave(&clkout_lock, flags);
768
769         val = readl(PRCM_CLKOCR);
770         if (val & div_mask) {
771                 if (div) {
772                         if ((val & mask) != bits) {
773                                 r = -EBUSY;
774                                 goto unlock_and_return;
775                         }
776                 } else {
777                         if ((val & mask & ~div_mask) != bits) {
778                                 r = -EINVAL;
779                                 goto unlock_and_return;
780                         }
781                 }
782         }
783         writel((bits | (val & ~mask)), PRCM_CLKOCR);
784         requests[clkout] += (div ? 1 : -1);
785
786 unlock_and_return:
787         spin_unlock_irqrestore(&clkout_lock, flags);
788
789         return r;
790 }
791
792 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
793 {
794         unsigned long flags;
795
796         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
797
798         spin_lock_irqsave(&mb0_transfer.lock, flags);
799
800         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
801                 cpu_relax();
802
803         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
804         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
805         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
806         writeb((keep_ulp_clk ? 1 : 0),
807                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
808         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
809         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
810
811         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
812
813         return 0;
814 }
815
816 u8 db8500_prcmu_get_power_state_result(void)
817 {
818         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
819 }
820
821 /* This function should only be called while mb0_transfer.lock is held. */
822 static void config_wakeups(void)
823 {
824         const u8 header[2] = {
825                 MB0H_CONFIG_WAKEUPS_EXE,
826                 MB0H_CONFIG_WAKEUPS_SLEEP
827         };
828         static u32 last_dbb_events;
829         static u32 last_abb_events;
830         u32 dbb_events;
831         u32 abb_events;
832         unsigned int i;
833
834         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
835         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
836
837         abb_events = mb0_transfer.req.abb_events;
838
839         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
840                 return;
841
842         for (i = 0; i < 2; i++) {
843                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
844                         cpu_relax();
845                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
846                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
847                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
848                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
849         }
850         last_dbb_events = dbb_events;
851         last_abb_events = abb_events;
852 }
853
854 void db8500_prcmu_enable_wakeups(u32 wakeups)
855 {
856         unsigned long flags;
857         u32 bits;
858         int i;
859
860         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
861
862         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
863                 if (wakeups & BIT(i))
864                         bits |= prcmu_wakeup_bit[i];
865         }
866
867         spin_lock_irqsave(&mb0_transfer.lock, flags);
868
869         mb0_transfer.req.dbb_wakeups = bits;
870         config_wakeups();
871
872         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
873 }
874
875 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
876 {
877         unsigned long flags;
878
879         spin_lock_irqsave(&mb0_transfer.lock, flags);
880
881         mb0_transfer.req.abb_events = abb_events;
882         config_wakeups();
883
884         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
885 }
886
887 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
888 {
889         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
890                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
891         else
892                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
893 }
894
895 /**
896  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
897  * @opp: The new ARM operating point to which transition is to be made
898  * Returns: 0 on success, non-zero on failure
899  *
900  * This function sets the the operating point of the ARM.
901  */
902 int db8500_prcmu_set_arm_opp(u8 opp)
903 {
904         int r;
905
906         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
907                 return -EINVAL;
908
909         r = 0;
910
911         mutex_lock(&mb1_transfer.lock);
912
913         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
914                 cpu_relax();
915
916         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
917         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
918         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
919
920         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
921         wait_for_completion(&mb1_transfer.work);
922
923         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
924                 (mb1_transfer.ack.arm_opp != opp))
925                 r = -EIO;
926
927         mutex_unlock(&mb1_transfer.lock);
928
929         return r;
930 }
931
932 /**
933  * db8500_prcmu_get_arm_opp - get the current ARM OPP
934  *
935  * Returns: the current ARM OPP
936  */
937 int db8500_prcmu_get_arm_opp(void)
938 {
939         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
940 }
941
942 /**
943  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
944  *
945  * Returns: the current DDR OPP
946  */
947 int db8500_prcmu_get_ddr_opp(void)
948 {
949         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
950 }
951
952 /**
953  * db8500_set_ddr_opp - set the appropriate DDR OPP
954  * @opp: The new DDR operating point to which transition is to be made
955  * Returns: 0 on success, non-zero on failure
956  *
957  * This function sets the operating point of the DDR.
958  */
959 static bool enable_set_ddr_opp;
960 int db8500_prcmu_set_ddr_opp(u8 opp)
961 {
962         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
963                 return -EINVAL;
964         /* Changing the DDR OPP can hang the hardware pre-v21 */
965         if (enable_set_ddr_opp)
966                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
967
968         return 0;
969 }
970
971 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
972 static void request_even_slower_clocks(bool enable)
973 {
974         u32 clock_reg[] = {
975                 PRCM_ACLK_MGT,
976                 PRCM_DMACLK_MGT
977         };
978         unsigned long flags;
979         unsigned int i;
980
981         spin_lock_irqsave(&clk_mgt_lock, flags);
982
983         /* Grab the HW semaphore. */
984         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
985                 cpu_relax();
986
987         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
988                 u32 val;
989                 u32 div;
990
991                 val = readl(prcmu_base + clock_reg[i]);
992                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
993                 if (enable) {
994                         if ((div <= 1) || (div > 15)) {
995                                 pr_err("prcmu: Bad clock divider %d in %s\n",
996                                         div, __func__);
997                                 goto unlock_and_return;
998                         }
999                         div <<= 1;
1000                 } else {
1001                         if (div <= 2)
1002                                 goto unlock_and_return;
1003                         div >>= 1;
1004                 }
1005                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1006                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1007                 writel(val, prcmu_base + clock_reg[i]);
1008         }
1009
1010 unlock_and_return:
1011         /* Release the HW semaphore. */
1012         writel(0, PRCM_SEM);
1013
1014         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1015 }
1016
1017 /**
1018  * db8500_set_ape_opp - set the appropriate APE OPP
1019  * @opp: The new APE operating point to which transition is to be made
1020  * Returns: 0 on success, non-zero on failure
1021  *
1022  * This function sets the operating point of the APE.
1023  */
1024 int db8500_prcmu_set_ape_opp(u8 opp)
1025 {
1026         int r = 0;
1027
1028         if (opp == mb1_transfer.ape_opp)
1029                 return 0;
1030
1031         mutex_lock(&mb1_transfer.lock);
1032
1033         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1034                 request_even_slower_clocks(false);
1035
1036         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1037                 goto skip_message;
1038
1039         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1040                 cpu_relax();
1041
1042         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1043         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1044         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1045                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1046
1047         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1048         wait_for_completion(&mb1_transfer.work);
1049
1050         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1051                 (mb1_transfer.ack.ape_opp != opp))
1052                 r = -EIO;
1053
1054 skip_message:
1055         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1056                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1057                 request_even_slower_clocks(true);
1058         if (!r)
1059                 mb1_transfer.ape_opp = opp;
1060
1061         mutex_unlock(&mb1_transfer.lock);
1062
1063         return r;
1064 }
1065
1066 /**
1067  * db8500_prcmu_get_ape_opp - get the current APE OPP
1068  *
1069  * Returns: the current APE OPP
1070  */
1071 int db8500_prcmu_get_ape_opp(void)
1072 {
1073         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1074 }
1075
1076 /**
1077  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1078  * @enable: true to request the higher voltage, false to drop a request.
1079  *
1080  * Calls to this function to enable and disable requests must be balanced.
1081  */
1082 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1083 {
1084         int r = 0;
1085         u8 header;
1086         static unsigned int requests;
1087
1088         mutex_lock(&mb1_transfer.lock);
1089
1090         if (enable) {
1091                 if (0 != requests++)
1092                         goto unlock_and_return;
1093                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1094         } else {
1095                 if (requests == 0) {
1096                         r = -EIO;
1097                         goto unlock_and_return;
1098                 } else if (1 != requests--) {
1099                         goto unlock_and_return;
1100                 }
1101                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1102         }
1103
1104         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105                 cpu_relax();
1106
1107         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110         wait_for_completion(&mb1_transfer.work);
1111
1112         if ((mb1_transfer.ack.header != header) ||
1113                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114                 r = -EIO;
1115
1116 unlock_and_return:
1117         mutex_unlock(&mb1_transfer.lock);
1118
1119         return r;
1120 }
1121
1122 /**
1123  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1124  *
1125  * This function releases the power state requirements of a USB wakeup.
1126  */
1127 int prcmu_release_usb_wakeup_state(void)
1128 {
1129         int r = 0;
1130
1131         mutex_lock(&mb1_transfer.lock);
1132
1133         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134                 cpu_relax();
1135
1136         writeb(MB1H_RELEASE_USB_WAKEUP,
1137                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138
1139         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140         wait_for_completion(&mb1_transfer.work);
1141
1142         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1143                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1144                 r = -EIO;
1145
1146         mutex_unlock(&mb1_transfer.lock);
1147
1148         return r;
1149 }
1150
1151 static int request_pll(u8 clock, bool enable)
1152 {
1153         int r = 0;
1154
1155         if (clock == PRCMU_PLLSOC0)
1156                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1157         else if (clock == PRCMU_PLLSOC1)
1158                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1159         else
1160                 return -EINVAL;
1161
1162         mutex_lock(&mb1_transfer.lock);
1163
1164         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1165                 cpu_relax();
1166
1167         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1168         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1169
1170         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1171         wait_for_completion(&mb1_transfer.work);
1172
1173         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1174                 r = -EIO;
1175
1176         mutex_unlock(&mb1_transfer.lock);
1177
1178         return r;
1179 }
1180
1181 /**
1182  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1183  * @epod_id: The EPOD to set
1184  * @epod_state: The new EPOD state
1185  *
1186  * This function sets the state of a EPOD (power domain). It may not be called
1187  * from interrupt context.
1188  */
1189 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1190 {
1191         int r = 0;
1192         bool ram_retention = false;
1193         int i;
1194
1195         /* check argument */
1196         BUG_ON(epod_id >= NUM_EPOD_ID);
1197
1198         /* set flag if retention is possible */
1199         switch (epod_id) {
1200         case EPOD_ID_SVAMMDSP:
1201         case EPOD_ID_SIAMMDSP:
1202         case EPOD_ID_ESRAM12:
1203         case EPOD_ID_ESRAM34:
1204                 ram_retention = true;
1205                 break;
1206         }
1207
1208         /* check argument */
1209         BUG_ON(epod_state > EPOD_STATE_ON);
1210         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1211
1212         /* get lock */
1213         mutex_lock(&mb2_transfer.lock);
1214
1215         /* wait for mailbox */
1216         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1217                 cpu_relax();
1218
1219         /* fill in mailbox */
1220         for (i = 0; i < NUM_EPOD_ID; i++)
1221                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1222         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1223
1224         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1225
1226         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1227
1228         /*
1229          * The current firmware version does not handle errors correctly,
1230          * and we cannot recover if there is an error.
1231          * This is expected to change when the firmware is updated.
1232          */
1233         if (!wait_for_completion_timeout(&mb2_transfer.work,
1234                         msecs_to_jiffies(20000))) {
1235                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1236                         __func__);
1237                 r = -EIO;
1238                 goto unlock_and_return;
1239         }
1240
1241         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1242                 r = -EIO;
1243
1244 unlock_and_return:
1245         mutex_unlock(&mb2_transfer.lock);
1246         return r;
1247 }
1248
1249 /**
1250  * prcmu_configure_auto_pm - Configure autonomous power management.
1251  * @sleep: Configuration for ApSleep.
1252  * @idle:  Configuration for ApIdle.
1253  */
1254 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1255         struct prcmu_auto_pm_config *idle)
1256 {
1257         u32 sleep_cfg;
1258         u32 idle_cfg;
1259         unsigned long flags;
1260
1261         BUG_ON((sleep == NULL) || (idle == NULL));
1262
1263         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1264         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1265         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1266         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1267         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1268         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1269
1270         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1271         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1272         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1273         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1274         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1275         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1276
1277         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1278
1279         /*
1280          * The autonomous power management configuration is done through
1281          * fields in mailbox 2, but these fields are only used as shared
1282          * variables - i.e. there is no need to send a message.
1283          */
1284         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1285         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1286
1287         mb2_transfer.auto_pm_enabled =
1288                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1292
1293         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1294 }
1295 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1296
1297 bool prcmu_is_auto_pm_enabled(void)
1298 {
1299         return mb2_transfer.auto_pm_enabled;
1300 }
1301
1302 static int request_sysclk(bool enable)
1303 {
1304         int r;
1305         unsigned long flags;
1306
1307         r = 0;
1308
1309         mutex_lock(&mb3_transfer.sysclk_lock);
1310
1311         spin_lock_irqsave(&mb3_transfer.lock, flags);
1312
1313         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1314                 cpu_relax();
1315
1316         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1317
1318         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1319         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1320
1321         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1322
1323         /*
1324          * The firmware only sends an ACK if we want to enable the
1325          * SysClk, and it succeeds.
1326          */
1327         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1328                         msecs_to_jiffies(20000))) {
1329                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1330                         __func__);
1331                 r = -EIO;
1332         }
1333
1334         mutex_unlock(&mb3_transfer.sysclk_lock);
1335
1336         return r;
1337 }
1338
1339 static int request_timclk(bool enable)
1340 {
1341         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1342
1343         if (!enable)
1344                 val |= PRCM_TCR_STOP_TIMERS;
1345         writel(val, PRCM_TCR);
1346
1347         return 0;
1348 }
1349
1350 static int request_clock(u8 clock, bool enable)
1351 {
1352         u32 val;
1353         unsigned long flags;
1354
1355         spin_lock_irqsave(&clk_mgt_lock, flags);
1356
1357         /* Grab the HW semaphore. */
1358         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1359                 cpu_relax();
1360
1361         val = readl(prcmu_base + clk_mgt[clock].offset);
1362         if (enable) {
1363                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1364         } else {
1365                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1366                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1367         }
1368         writel(val, prcmu_base + clk_mgt[clock].offset);
1369
1370         /* Release the HW semaphore. */
1371         writel(0, PRCM_SEM);
1372
1373         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1374
1375         return 0;
1376 }
1377
1378 static int request_sga_clock(u8 clock, bool enable)
1379 {
1380         u32 val;
1381         int ret;
1382
1383         if (enable) {
1384                 val = readl(PRCM_CGATING_BYPASS);
1385                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1386         }
1387
1388         ret = request_clock(clock, enable);
1389
1390         if (!ret && !enable) {
1391                 val = readl(PRCM_CGATING_BYPASS);
1392                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1393         }
1394
1395         return ret;
1396 }
1397
1398 static inline bool plldsi_locked(void)
1399 {
1400         return (readl(PRCM_PLLDSI_LOCKP) &
1401                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1402                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1403                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1404                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1405 }
1406
1407 static int request_plldsi(bool enable)
1408 {
1409         int r = 0;
1410         u32 val;
1411
1412         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1413                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1414                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1415
1416         val = readl(PRCM_PLLDSI_ENABLE);
1417         if (enable)
1418                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1419         else
1420                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1421         writel(val, PRCM_PLLDSI_ENABLE);
1422
1423         if (enable) {
1424                 unsigned int i;
1425                 bool locked = plldsi_locked();
1426
1427                 for (i = 10; !locked && (i > 0); --i) {
1428                         udelay(100);
1429                         locked = plldsi_locked();
1430                 }
1431                 if (locked) {
1432                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1433                                 PRCM_APE_RESETN_SET);
1434                 } else {
1435                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1436                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1437                                 PRCM_MMIP_LS_CLAMP_SET);
1438                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1439                         writel(val, PRCM_PLLDSI_ENABLE);
1440                         r = -EAGAIN;
1441                 }
1442         } else {
1443                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1444         }
1445         return r;
1446 }
1447
1448 static int request_dsiclk(u8 n, bool enable)
1449 {
1450         u32 val;
1451
1452         val = readl(PRCM_DSI_PLLOUT_SEL);
1453         val &= ~dsiclk[n].divsel_mask;
1454         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1455                 dsiclk[n].divsel_shift);
1456         writel(val, PRCM_DSI_PLLOUT_SEL);
1457         return 0;
1458 }
1459
1460 static int request_dsiescclk(u8 n, bool enable)
1461 {
1462         u32 val;
1463
1464         val = readl(PRCM_DSITVCLK_DIV);
1465         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1466         writel(val, PRCM_DSITVCLK_DIV);
1467         return 0;
1468 }
1469
1470 /**
1471  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1472  * @clock:      The clock for which the request is made.
1473  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1474  *
1475  * This function should only be used by the clock implementation.
1476  * Do not use it from any other place!
1477  */
1478 int db8500_prcmu_request_clock(u8 clock, bool enable)
1479 {
1480         if (clock == PRCMU_SGACLK)
1481                 return request_sga_clock(clock, enable);
1482         else if (clock < PRCMU_NUM_REG_CLOCKS)
1483                 return request_clock(clock, enable);
1484         else if (clock == PRCMU_TIMCLK)
1485                 return request_timclk(enable);
1486         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1487                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1488         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1489                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1490         else if (clock == PRCMU_PLLDSI)
1491                 return request_plldsi(enable);
1492         else if (clock == PRCMU_SYSCLK)
1493                 return request_sysclk(enable);
1494         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1495                 return request_pll(clock, enable);
1496         else
1497                 return -EINVAL;
1498 }
1499
1500 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1501         int branch)
1502 {
1503         u64 rate;
1504         u32 val;
1505         u32 d;
1506         u32 div = 1;
1507
1508         val = readl(reg);
1509
1510         rate = src_rate;
1511         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1512
1513         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1514         if (d > 1)
1515                 div *= d;
1516
1517         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1518         if (d > 1)
1519                 div *= d;
1520
1521         if (val & PRCM_PLL_FREQ_SELDIV2)
1522                 div *= 2;
1523
1524         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1525                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1526                 ((reg == PRCM_PLLSOC0_FREQ) ||
1527                  (reg == PRCM_PLLARM_FREQ) ||
1528                  (reg == PRCM_PLLDDR_FREQ))))
1529                 div *= 2;
1530
1531         (void)do_div(rate, div);
1532
1533         return (unsigned long)rate;
1534 }
1535
1536 #define ROOT_CLOCK_RATE 38400000
1537
1538 static unsigned long clock_rate(u8 clock)
1539 {
1540         u32 val;
1541         u32 pllsw;
1542         unsigned long rate = ROOT_CLOCK_RATE;
1543
1544         val = readl(prcmu_base + clk_mgt[clock].offset);
1545
1546         if (val & PRCM_CLK_MGT_CLK38) {
1547                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1548                         rate /= 2;
1549                 return rate;
1550         }
1551
1552         val |= clk_mgt[clock].pllsw;
1553         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1554
1555         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1556                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1557         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1558                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1559         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1560                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1561         else
1562                 return 0;
1563
1564         if ((clock == PRCMU_SGACLK) &&
1565                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1566                 u64 r = (rate * 10);
1567
1568                 (void)do_div(r, 25);
1569                 return (unsigned long)r;
1570         }
1571         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1572         if (val)
1573                 return rate / val;
1574         else
1575                 return 0;
1576 }
1577
1578 static unsigned long armss_rate(void)
1579 {
1580         u32 r;
1581         unsigned long rate;
1582
1583         r = readl(PRCM_ARM_CHGCLKREQ);
1584
1585         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1586                 /* External ARMCLKFIX clock */
1587
1588                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1589
1590                 /* Check PRCM_ARM_CHGCLKREQ divider */
1591                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1592                         rate /= 2;
1593
1594                 /* Check PRCM_ARMCLKFIX_MGT divider */
1595                 r = readl(PRCM_ARMCLKFIX_MGT);
1596                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1597                 rate /= r;
1598
1599         } else {/* ARM PLL */
1600                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1601         }
1602
1603         return rate;
1604 }
1605
1606 static unsigned long dsiclk_rate(u8 n)
1607 {
1608         u32 divsel;
1609         u32 div = 1;
1610
1611         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1612         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1613
1614         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1615                 divsel = dsiclk[n].divsel;
1616         else
1617                 dsiclk[n].divsel = divsel;
1618
1619         switch (divsel) {
1620         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1621                 div *= 2;
1622         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1623                 div *= 2;
1624         case PRCM_DSI_PLLOUT_SEL_PHI:
1625                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1626                         PLL_RAW) / div;
1627         default:
1628                 return 0;
1629         }
1630 }
1631
1632 static unsigned long dsiescclk_rate(u8 n)
1633 {
1634         u32 div;
1635
1636         div = readl(PRCM_DSITVCLK_DIV);
1637         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1638         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1639 }
1640
1641 unsigned long prcmu_clock_rate(u8 clock)
1642 {
1643         if (clock < PRCMU_NUM_REG_CLOCKS)
1644                 return clock_rate(clock);
1645         else if (clock == PRCMU_TIMCLK)
1646                 return ROOT_CLOCK_RATE / 16;
1647         else if (clock == PRCMU_SYSCLK)
1648                 return ROOT_CLOCK_RATE;
1649         else if (clock == PRCMU_PLLSOC0)
1650                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1651         else if (clock == PRCMU_PLLSOC1)
1652                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1653         else if (clock == PRCMU_ARMSS)
1654                 return armss_rate();
1655         else if (clock == PRCMU_PLLDDR)
1656                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1657         else if (clock == PRCMU_PLLDSI)
1658                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1659                         PLL_RAW);
1660         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1661                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1662         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1663                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1664         else
1665                 return 0;
1666 }
1667
1668 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1669 {
1670         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1671                 return ROOT_CLOCK_RATE;
1672         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1673         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1674                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1675         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1676                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1677         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1678                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1679         else
1680                 return 0;
1681 }
1682
1683 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1684 {
1685         u32 div;
1686
1687         div = (src_rate / rate);
1688         if (div == 0)
1689                 return 1;
1690         if (rate < (src_rate / div))
1691                 div++;
1692         return div;
1693 }
1694
1695 static long round_clock_rate(u8 clock, unsigned long rate)
1696 {
1697         u32 val;
1698         u32 div;
1699         unsigned long src_rate;
1700         long rounded_rate;
1701
1702         val = readl(prcmu_base + clk_mgt[clock].offset);
1703         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1704                 clk_mgt[clock].branch);
1705         div = clock_divider(src_rate, rate);
1706         if (val & PRCM_CLK_MGT_CLK38) {
1707                 if (clk_mgt[clock].clk38div) {
1708                         if (div > 2)
1709                                 div = 2;
1710                 } else {
1711                         div = 1;
1712                 }
1713         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1714                 u64 r = (src_rate * 10);
1715
1716                 (void)do_div(r, 25);
1717                 if (r <= rate)
1718                         return (unsigned long)r;
1719         }
1720         rounded_rate = (src_rate / min(div, (u32)31));
1721
1722         return rounded_rate;
1723 }
1724
1725 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1726 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1727         { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1728         { .frequency = 400000, .driver_data = ARM_50_OPP,},
1729         { .frequency = 800000, .driver_data = ARM_100_OPP,},
1730         { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1731         { .frequency = CPUFREQ_TABLE_END,},
1732 };
1733
1734 static long round_armss_rate(unsigned long rate)
1735 {
1736         long freq = 0;
1737         int i = 0;
1738
1739         /* cpufreq table frequencies is in KHz. */
1740         rate = rate / 1000;
1741
1742         /* Find the corresponding arm opp from the cpufreq table. */
1743         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1744                 freq = db8500_cpufreq_table[i].frequency;
1745                 if (freq == rate)
1746                         break;
1747                 i++;
1748         }
1749
1750         /* Return the last valid value, even if a match was not found. */
1751         return freq * 1000;
1752 }
1753
1754 #define MIN_PLL_VCO_RATE 600000000ULL
1755 #define MAX_PLL_VCO_RATE 1680640000ULL
1756
1757 static long round_plldsi_rate(unsigned long rate)
1758 {
1759         long rounded_rate = 0;
1760         unsigned long src_rate;
1761         unsigned long rem;
1762         u32 r;
1763
1764         src_rate = clock_rate(PRCMU_HDMICLK);
1765         rem = rate;
1766
1767         for (r = 7; (rem > 0) && (r > 0); r--) {
1768                 u64 d;
1769
1770                 d = (r * rate);
1771                 (void)do_div(d, src_rate);
1772                 if (d < 6)
1773                         d = 6;
1774                 else if (d > 255)
1775                         d = 255;
1776                 d *= src_rate;
1777                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1778                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1779                         continue;
1780                 (void)do_div(d, r);
1781                 if (rate < d) {
1782                         if (rounded_rate == 0)
1783                                 rounded_rate = (long)d;
1784                         break;
1785                 }
1786                 if ((rate - d) < rem) {
1787                         rem = (rate - d);
1788                         rounded_rate = (long)d;
1789                 }
1790         }
1791         return rounded_rate;
1792 }
1793
1794 static long round_dsiclk_rate(unsigned long rate)
1795 {
1796         u32 div;
1797         unsigned long src_rate;
1798         long rounded_rate;
1799
1800         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1801                 PLL_RAW);
1802         div = clock_divider(src_rate, rate);
1803         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1804
1805         return rounded_rate;
1806 }
1807
1808 static long round_dsiescclk_rate(unsigned long rate)
1809 {
1810         u32 div;
1811         unsigned long src_rate;
1812         long rounded_rate;
1813
1814         src_rate = clock_rate(PRCMU_TVCLK);
1815         div = clock_divider(src_rate, rate);
1816         rounded_rate = (src_rate / min(div, (u32)255));
1817
1818         return rounded_rate;
1819 }
1820
1821 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1822 {
1823         if (clock < PRCMU_NUM_REG_CLOCKS)
1824                 return round_clock_rate(clock, rate);
1825         else if (clock == PRCMU_ARMSS)
1826                 return round_armss_rate(rate);
1827         else if (clock == PRCMU_PLLDSI)
1828                 return round_plldsi_rate(rate);
1829         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1830                 return round_dsiclk_rate(rate);
1831         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1832                 return round_dsiescclk_rate(rate);
1833         else
1834                 return (long)prcmu_clock_rate(clock);
1835 }
1836
1837 static void set_clock_rate(u8 clock, unsigned long rate)
1838 {
1839         u32 val;
1840         u32 div;
1841         unsigned long src_rate;
1842         unsigned long flags;
1843
1844         spin_lock_irqsave(&clk_mgt_lock, flags);
1845
1846         /* Grab the HW semaphore. */
1847         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1848                 cpu_relax();
1849
1850         val = readl(prcmu_base + clk_mgt[clock].offset);
1851         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1852                 clk_mgt[clock].branch);
1853         div = clock_divider(src_rate, rate);
1854         if (val & PRCM_CLK_MGT_CLK38) {
1855                 if (clk_mgt[clock].clk38div) {
1856                         if (div > 1)
1857                                 val |= PRCM_CLK_MGT_CLK38DIV;
1858                         else
1859                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1860                 }
1861         } else if (clock == PRCMU_SGACLK) {
1862                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1863                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1864                 if (div == 3) {
1865                         u64 r = (src_rate * 10);
1866
1867                         (void)do_div(r, 25);
1868                         if (r <= rate) {
1869                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1870                                 div = 0;
1871                         }
1872                 }
1873                 val |= min(div, (u32)31);
1874         } else {
1875                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1876                 val |= min(div, (u32)31);
1877         }
1878         writel(val, prcmu_base + clk_mgt[clock].offset);
1879
1880         /* Release the HW semaphore. */
1881         writel(0, PRCM_SEM);
1882
1883         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1884 }
1885
1886 static int set_armss_rate(unsigned long rate)
1887 {
1888         int i = 0;
1889
1890         /* cpufreq table frequencies is in KHz. */
1891         rate = rate / 1000;
1892
1893         /* Find the corresponding arm opp from the cpufreq table. */
1894         while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1895                 if (db8500_cpufreq_table[i].frequency == rate)
1896                         break;
1897                 i++;
1898         }
1899
1900         if (db8500_cpufreq_table[i].frequency != rate)
1901                 return -EINVAL;
1902
1903         /* Set the new arm opp. */
1904         return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1905 }
1906
1907 static int set_plldsi_rate(unsigned long rate)
1908 {
1909         unsigned long src_rate;
1910         unsigned long rem;
1911         u32 pll_freq = 0;
1912         u32 r;
1913
1914         src_rate = clock_rate(PRCMU_HDMICLK);
1915         rem = rate;
1916
1917         for (r = 7; (rem > 0) && (r > 0); r--) {
1918                 u64 d;
1919                 u64 hwrate;
1920
1921                 d = (r * rate);
1922                 (void)do_div(d, src_rate);
1923                 if (d < 6)
1924                         d = 6;
1925                 else if (d > 255)
1926                         d = 255;
1927                 hwrate = (d * src_rate);
1928                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1929                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1930                         continue;
1931                 (void)do_div(hwrate, r);
1932                 if (rate < hwrate) {
1933                         if (pll_freq == 0)
1934                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1935                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1936                         break;
1937                 }
1938                 if ((rate - hwrate) < rem) {
1939                         rem = (rate - hwrate);
1940                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1941                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1942                 }
1943         }
1944         if (pll_freq == 0)
1945                 return -EINVAL;
1946
1947         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1948         writel(pll_freq, PRCM_PLLDSI_FREQ);
1949
1950         return 0;
1951 }
1952
1953 static void set_dsiclk_rate(u8 n, unsigned long rate)
1954 {
1955         u32 val;
1956         u32 div;
1957
1958         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1959                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1960
1961         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1962                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1963                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1964
1965         val = readl(PRCM_DSI_PLLOUT_SEL);
1966         val &= ~dsiclk[n].divsel_mask;
1967         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1968         writel(val, PRCM_DSI_PLLOUT_SEL);
1969 }
1970
1971 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1972 {
1973         u32 val;
1974         u32 div;
1975
1976         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1977         val = readl(PRCM_DSITVCLK_DIV);
1978         val &= ~dsiescclk[n].div_mask;
1979         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1980         writel(val, PRCM_DSITVCLK_DIV);
1981 }
1982
1983 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1984 {
1985         if (clock < PRCMU_NUM_REG_CLOCKS)
1986                 set_clock_rate(clock, rate);
1987         else if (clock == PRCMU_ARMSS)
1988                 return set_armss_rate(rate);
1989         else if (clock == PRCMU_PLLDSI)
1990                 return set_plldsi_rate(rate);
1991         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995         return 0;
1996 }
1997
1998 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1999 {
2000         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002                 return -EINVAL;
2003
2004         mutex_lock(&mb4_transfer.lock);
2005
2006         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007                 cpu_relax();
2008
2009         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012         writeb(DDR_PWR_STATE_ON,
2013                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2015
2016         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017         wait_for_completion(&mb4_transfer.work);
2018
2019         mutex_unlock(&mb4_transfer.lock);
2020
2021         return 0;
2022 }
2023
2024 int db8500_prcmu_config_hotdog(u8 threshold)
2025 {
2026         mutex_lock(&mb4_transfer.lock);
2027
2028         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029                 cpu_relax();
2030
2031         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2033
2034         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035         wait_for_completion(&mb4_transfer.work);
2036
2037         mutex_unlock(&mb4_transfer.lock);
2038
2039         return 0;
2040 }
2041
2042 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2043 {
2044         mutex_lock(&mb4_transfer.lock);
2045
2046         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047                 cpu_relax();
2048
2049         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054
2055         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056         wait_for_completion(&mb4_transfer.work);
2057
2058         mutex_unlock(&mb4_transfer.lock);
2059
2060         return 0;
2061 }
2062
2063 static int config_hot_period(u16 val)
2064 {
2065         mutex_lock(&mb4_transfer.lock);
2066
2067         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068                 cpu_relax();
2069
2070         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2072
2073         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074         wait_for_completion(&mb4_transfer.work);
2075
2076         mutex_unlock(&mb4_transfer.lock);
2077
2078         return 0;
2079 }
2080
2081 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2082 {
2083         if (cycles32k == 0xFFFF)
2084                 return -EINVAL;
2085
2086         return config_hot_period(cycles32k);
2087 }
2088
2089 int db8500_prcmu_stop_temp_sense(void)
2090 {
2091         return config_hot_period(0xFFFF);
2092 }
2093
2094 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2095 {
2096
2097         mutex_lock(&mb4_transfer.lock);
2098
2099         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100                 cpu_relax();
2101
2102         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2106
2107         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2108
2109         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110         wait_for_completion(&mb4_transfer.work);
2111
2112         mutex_unlock(&mb4_transfer.lock);
2113
2114         return 0;
2115
2116 }
2117
2118 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2119 {
2120         BUG_ON(num == 0 || num > 0xf);
2121         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123                             A9WDOG_AUTO_OFF_DIS);
2124 }
2125 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2126
2127 int db8500_prcmu_enable_a9wdog(u8 id)
2128 {
2129         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2130 }
2131 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2132
2133 int db8500_prcmu_disable_a9wdog(u8 id)
2134 {
2135         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2136 }
2137 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2138
2139 int db8500_prcmu_kick_a9wdog(u8 id)
2140 {
2141         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2142 }
2143 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2144
2145 /*
2146  * timeout is 28 bit, in ms.
2147  */
2148 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2149 {
2150         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2151                             (id & A9WDOG_ID_MASK) |
2152                             /*
2153                              * Put the lowest 28 bits of timeout at
2154                              * offset 4. Four first bits are used for id.
2155                              */
2156                             (u8)((timeout << 4) & 0xf0),
2157                             (u8)((timeout >> 4) & 0xff),
2158                             (u8)((timeout >> 12) & 0xff),
2159                             (u8)((timeout >> 20) & 0xff));
2160 }
2161 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2162
2163 /**
2164  * prcmu_abb_read() - Read register value(s) from the ABB.
2165  * @slave:      The I2C slave address.
2166  * @reg:        The (start) register address.
2167  * @value:      The read out value(s).
2168  * @size:       The number of registers to read.
2169  *
2170  * Reads register value(s) from the ABB.
2171  * @size has to be 1 for the current firmware version.
2172  */
2173 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2174 {
2175         int r;
2176
2177         if (size != 1)
2178                 return -EINVAL;
2179
2180         mutex_lock(&mb5_transfer.lock);
2181
2182         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2183                 cpu_relax();
2184
2185         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2186         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2187         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2188         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2189         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2190
2191         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2192
2193         if (!wait_for_completion_timeout(&mb5_transfer.work,
2194                                 msecs_to_jiffies(20000))) {
2195                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2196                         __func__);
2197                 r = -EIO;
2198         } else {
2199                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2200         }
2201
2202         if (!r)
2203                 *value = mb5_transfer.ack.value;
2204
2205         mutex_unlock(&mb5_transfer.lock);
2206
2207         return r;
2208 }
2209
2210 /**
2211  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2212  * @slave:      The I2C slave address.
2213  * @reg:        The (start) register address.
2214  * @value:      The value(s) to write.
2215  * @mask:       The mask(s) to use.
2216  * @size:       The number of registers to write.
2217  *
2218  * Writes masked register value(s) to the ABB.
2219  * For each @value, only the bits set to 1 in the corresponding @mask
2220  * will be written. The other bits are not changed.
2221  * @size has to be 1 for the current firmware version.
2222  */
2223 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2224 {
2225         int r;
2226
2227         if (size != 1)
2228                 return -EINVAL;
2229
2230         mutex_lock(&mb5_transfer.lock);
2231
2232         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2233                 cpu_relax();
2234
2235         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2236         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2237         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2238         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2239         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2240
2241         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2242
2243         if (!wait_for_completion_timeout(&mb5_transfer.work,
2244                                 msecs_to_jiffies(20000))) {
2245                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2246                         __func__);
2247                 r = -EIO;
2248         } else {
2249                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2250         }
2251
2252         mutex_unlock(&mb5_transfer.lock);
2253
2254         return r;
2255 }
2256
2257 /**
2258  * prcmu_abb_write() - Write register value(s) to the ABB.
2259  * @slave:      The I2C slave address.
2260  * @reg:        The (start) register address.
2261  * @value:      The value(s) to write.
2262  * @size:       The number of registers to write.
2263  *
2264  * Writes register value(s) to the ABB.
2265  * @size has to be 1 for the current firmware version.
2266  */
2267 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2268 {
2269         u8 mask = ~0;
2270
2271         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2272 }
2273
2274 /**
2275  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2276  */
2277 int prcmu_ac_wake_req(void)
2278 {
2279         u32 val;
2280         int ret = 0;
2281
2282         mutex_lock(&mb0_transfer.ac_wake_lock);
2283
2284         val = readl(PRCM_HOSTACCESS_REQ);
2285         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2286                 goto unlock_and_return;
2287
2288         atomic_set(&ac_wake_req_state, 1);
2289
2290         /*
2291          * Force Modem Wake-up before hostaccess_req ping-pong.
2292          * It prevents Modem to enter in Sleep while acking the hostaccess
2293          * request. The 31us delay has been calculated by HWI.
2294          */
2295         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2296         writel(val, PRCM_HOSTACCESS_REQ);
2297
2298         udelay(31);
2299
2300         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2301         writel(val, PRCM_HOSTACCESS_REQ);
2302
2303         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2304                         msecs_to_jiffies(5000))) {
2305 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2306                 db8500_prcmu_debug_dump(__func__, true, true);
2307 #endif
2308                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2309                         __func__);
2310                 ret = -EFAULT;
2311         }
2312
2313 unlock_and_return:
2314         mutex_unlock(&mb0_transfer.ac_wake_lock);
2315         return ret;
2316 }
2317
2318 /**
2319  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2320  */
2321 void prcmu_ac_sleep_req(void)
2322 {
2323         u32 val;
2324
2325         mutex_lock(&mb0_transfer.ac_wake_lock);
2326
2327         val = readl(PRCM_HOSTACCESS_REQ);
2328         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2329                 goto unlock_and_return;
2330
2331         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2332                 PRCM_HOSTACCESS_REQ);
2333
2334         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2335                         msecs_to_jiffies(5000))) {
2336                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2337                         __func__);
2338         }
2339
2340         atomic_set(&ac_wake_req_state, 0);
2341
2342 unlock_and_return:
2343         mutex_unlock(&mb0_transfer.ac_wake_lock);
2344 }
2345
2346 bool db8500_prcmu_is_ac_wake_requested(void)
2347 {
2348         return (atomic_read(&ac_wake_req_state) != 0);
2349 }
2350
2351 /**
2352  * db8500_prcmu_system_reset - System reset
2353  *
2354  * Saves the reset reason code and then sets the APE_SOFTRST register which
2355  * fires interrupt to fw
2356  */
2357 void db8500_prcmu_system_reset(u16 reset_code)
2358 {
2359         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2360         writel(1, PRCM_APE_SOFTRST);
2361 }
2362
2363 /**
2364  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2365  *
2366  * Retrieves the reset reason code stored by prcmu_system_reset() before
2367  * last restart.
2368  */
2369 u16 db8500_prcmu_get_reset_code(void)
2370 {
2371         return readw(tcdm_base + PRCM_SW_RST_REASON);
2372 }
2373
2374 /**
2375  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2376  */
2377 void db8500_prcmu_modem_reset(void)
2378 {
2379         mutex_lock(&mb1_transfer.lock);
2380
2381         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2382                 cpu_relax();
2383
2384         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2385         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2386         wait_for_completion(&mb1_transfer.work);
2387
2388         /*
2389          * No need to check return from PRCMU as modem should go in reset state
2390          * This state is already managed by upper layer
2391          */
2392
2393         mutex_unlock(&mb1_transfer.lock);
2394 }
2395
2396 static void ack_dbb_wakeup(void)
2397 {
2398         unsigned long flags;
2399
2400         spin_lock_irqsave(&mb0_transfer.lock, flags);
2401
2402         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2403                 cpu_relax();
2404
2405         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2406         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2407
2408         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2409 }
2410
2411 static inline void print_unknown_header_warning(u8 n, u8 header)
2412 {
2413         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2414                 header, n);
2415 }
2416
2417 static bool read_mailbox_0(void)
2418 {
2419         bool r;
2420         u32 ev;
2421         unsigned int n;
2422         u8 header;
2423
2424         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2425         switch (header) {
2426         case MB0H_WAKEUP_EXE:
2427         case MB0H_WAKEUP_SLEEP:
2428                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2429                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2430                 else
2431                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2432
2433                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2434                         complete(&mb0_transfer.ac_wake_work);
2435                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2436                         complete(&mb3_transfer.sysclk_work);
2437
2438                 ev &= mb0_transfer.req.dbb_irqs;
2439
2440                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2441                         if (ev & prcmu_irq_bit[n])
2442                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2443                 }
2444                 r = true;
2445                 break;
2446         default:
2447                 print_unknown_header_warning(0, header);
2448                 r = false;
2449                 break;
2450         }
2451         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2452         return r;
2453 }
2454
2455 static bool read_mailbox_1(void)
2456 {
2457         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2458         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2459                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2460         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2461                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2462         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2463                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2464         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2465         complete(&mb1_transfer.work);
2466         return false;
2467 }
2468
2469 static bool read_mailbox_2(void)
2470 {
2471         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2472         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2473         complete(&mb2_transfer.work);
2474         return false;
2475 }
2476
2477 static bool read_mailbox_3(void)
2478 {
2479         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2480         return false;
2481 }
2482
2483 static bool read_mailbox_4(void)
2484 {
2485         u8 header;
2486         bool do_complete = true;
2487
2488         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2489         switch (header) {
2490         case MB4H_MEM_ST:
2491         case MB4H_HOTDOG:
2492         case MB4H_HOTMON:
2493         case MB4H_HOT_PERIOD:
2494         case MB4H_A9WDOG_CONF:
2495         case MB4H_A9WDOG_EN:
2496         case MB4H_A9WDOG_DIS:
2497         case MB4H_A9WDOG_LOAD:
2498         case MB4H_A9WDOG_KICK:
2499                 break;
2500         default:
2501                 print_unknown_header_warning(4, header);
2502                 do_complete = false;
2503                 break;
2504         }
2505
2506         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2507
2508         if (do_complete)
2509                 complete(&mb4_transfer.work);
2510
2511         return false;
2512 }
2513
2514 static bool read_mailbox_5(void)
2515 {
2516         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2517         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2518         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2519         complete(&mb5_transfer.work);
2520         return false;
2521 }
2522
2523 static bool read_mailbox_6(void)
2524 {
2525         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2526         return false;
2527 }
2528
2529 static bool read_mailbox_7(void)
2530 {
2531         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2532         return false;
2533 }
2534
2535 static bool (* const read_mailbox[NUM_MB])(void) = {
2536         read_mailbox_0,
2537         read_mailbox_1,
2538         read_mailbox_2,
2539         read_mailbox_3,
2540         read_mailbox_4,
2541         read_mailbox_5,
2542         read_mailbox_6,
2543         read_mailbox_7
2544 };
2545
2546 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2547 {
2548         u32 bits;
2549         u8 n;
2550         irqreturn_t r;
2551
2552         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2553         if (unlikely(!bits))
2554                 return IRQ_NONE;
2555
2556         r = IRQ_HANDLED;
2557         for (n = 0; bits; n++) {
2558                 if (bits & MBOX_BIT(n)) {
2559                         bits -= MBOX_BIT(n);
2560                         if (read_mailbox[n]())
2561                                 r = IRQ_WAKE_THREAD;
2562                 }
2563         }
2564         return r;
2565 }
2566
2567 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2568 {
2569         ack_dbb_wakeup();
2570         return IRQ_HANDLED;
2571 }
2572
2573 static void prcmu_mask_work(struct work_struct *work)
2574 {
2575         unsigned long flags;
2576
2577         spin_lock_irqsave(&mb0_transfer.lock, flags);
2578
2579         config_wakeups();
2580
2581         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2582 }
2583
2584 static void prcmu_irq_mask(struct irq_data *d)
2585 {
2586         unsigned long flags;
2587
2588         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2591
2592         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593
2594         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595                 schedule_work(&mb0_transfer.mask_work);
2596 }
2597
2598 static void prcmu_irq_unmask(struct irq_data *d)
2599 {
2600         unsigned long flags;
2601
2602         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2603
2604         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2605
2606         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2607
2608         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2609                 schedule_work(&mb0_transfer.mask_work);
2610 }
2611
2612 static void noop(struct irq_data *d)
2613 {
2614 }
2615
2616 static struct irq_chip prcmu_irq_chip = {
2617         .name           = "prcmu",
2618         .irq_disable    = prcmu_irq_mask,
2619         .irq_ack        = noop,
2620         .irq_mask       = prcmu_irq_mask,
2621         .irq_unmask     = prcmu_irq_unmask,
2622 };
2623
2624 static __init char *fw_project_name(u32 project)
2625 {
2626         switch (project) {
2627         case PRCMU_FW_PROJECT_U8500:
2628                 return "U8500";
2629         case PRCMU_FW_PROJECT_U8400:
2630                 return "U8400";
2631         case PRCMU_FW_PROJECT_U9500:
2632                 return "U9500";
2633         case PRCMU_FW_PROJECT_U8500_MBB:
2634                 return "U8500 MBB";
2635         case PRCMU_FW_PROJECT_U8500_C1:
2636                 return "U8500 C1";
2637         case PRCMU_FW_PROJECT_U8500_C2:
2638                 return "U8500 C2";
2639         case PRCMU_FW_PROJECT_U8500_C3:
2640                 return "U8500 C3";
2641         case PRCMU_FW_PROJECT_U8500_C4:
2642                 return "U8500 C4";
2643         case PRCMU_FW_PROJECT_U9500_MBL:
2644                 return "U9500 MBL";
2645         case PRCMU_FW_PROJECT_U8500_MBL:
2646                 return "U8500 MBL";
2647         case PRCMU_FW_PROJECT_U8500_MBL2:
2648                 return "U8500 MBL2";
2649         case PRCMU_FW_PROJECT_U8520:
2650                 return "U8520 MBL";
2651         case PRCMU_FW_PROJECT_U8420:
2652                 return "U8420";
2653         case PRCMU_FW_PROJECT_U9540:
2654                 return "U9540";
2655         case PRCMU_FW_PROJECT_A9420:
2656                 return "A9420";
2657         case PRCMU_FW_PROJECT_L8540:
2658                 return "L8540";
2659         case PRCMU_FW_PROJECT_L8580:
2660                 return "L8580";
2661         default:
2662                 return "Unknown";
2663         }
2664 }
2665
2666 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2667                                 irq_hw_number_t hwirq)
2668 {
2669         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2670                                 handle_simple_irq);
2671         set_irq_flags(virq, IRQF_VALID);
2672
2673         return 0;
2674 }
2675
2676 static struct irq_domain_ops db8500_irq_ops = {
2677         .map    = db8500_irq_map,
2678         .xlate  = irq_domain_xlate_twocell,
2679 };
2680
2681 static int db8500_irq_init(struct device_node *np, int irq_base)
2682 {
2683         int i;
2684
2685         /* In the device tree case, just take some IRQs */
2686         if (np)
2687                 irq_base = 0;
2688
2689         db8500_irq_domain = irq_domain_add_simple(
2690                 np, NUM_PRCMU_WAKEUPS, irq_base,
2691                 &db8500_irq_ops, NULL);
2692
2693         if (!db8500_irq_domain) {
2694                 pr_err("Failed to create irqdomain\n");
2695                 return -ENOSYS;
2696         }
2697
2698         /* All wakeups will be used, so create mappings for all */
2699         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2700                 irq_create_mapping(db8500_irq_domain, i);
2701
2702         return 0;
2703 }
2704
2705 static void dbx500_fw_version_init(struct platform_device *pdev,
2706                             u32 version_offset)
2707 {
2708         struct resource *res;
2709         void __iomem *tcpm_base;
2710         u32 version;
2711
2712         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2713                                            "prcmu-tcpm");
2714         if (!res) {
2715                 dev_err(&pdev->dev,
2716                         "Error: no prcmu tcpm memory region provided\n");
2717                 return;
2718         }
2719         tcpm_base = ioremap(res->start, resource_size(res));
2720         if (!tcpm_base) {
2721                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2722                 return;
2723         }
2724
2725         version = readl(tcpm_base + version_offset);
2726         fw_info.version.project = (version & 0xFF);
2727         fw_info.version.api_version = (version >> 8) & 0xFF;
2728         fw_info.version.func_version = (version >> 16) & 0xFF;
2729         fw_info.version.errata = (version >> 24) & 0xFF;
2730         strncpy(fw_info.version.project_name,
2731                 fw_project_name(fw_info.version.project),
2732                 PRCMU_FW_PROJECT_NAME_LEN);
2733         fw_info.valid = true;
2734         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2735                 fw_info.version.project_name,
2736                 fw_info.version.project,
2737                 fw_info.version.api_version,
2738                 fw_info.version.func_version,
2739                 fw_info.version.errata);
2740         iounmap(tcpm_base);
2741 }
2742
2743 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2744 {
2745         /*
2746          * This is a temporary remap to bring up the clocks. It is
2747          * subsequently replaces with a real remap. After the merge of
2748          * the mailbox subsystem all of this early code goes away, and the
2749          * clock driver can probe independently. An early initcall will
2750          * still be needed, but it can be diverted into drivers/clk/ux500.
2751          */
2752         prcmu_base = ioremap(phy_base, size);
2753         if (!prcmu_base)
2754                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2755
2756         spin_lock_init(&mb0_transfer.lock);
2757         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2758         mutex_init(&mb0_transfer.ac_wake_lock);
2759         init_completion(&mb0_transfer.ac_wake_work);
2760         mutex_init(&mb1_transfer.lock);
2761         init_completion(&mb1_transfer.work);
2762         mb1_transfer.ape_opp = APE_NO_CHANGE;
2763         mutex_init(&mb2_transfer.lock);
2764         init_completion(&mb2_transfer.work);
2765         spin_lock_init(&mb2_transfer.auto_pm_lock);
2766         spin_lock_init(&mb3_transfer.lock);
2767         mutex_init(&mb3_transfer.sysclk_lock);
2768         init_completion(&mb3_transfer.sysclk_work);
2769         mutex_init(&mb4_transfer.lock);
2770         init_completion(&mb4_transfer.work);
2771         mutex_init(&mb5_transfer.lock);
2772         init_completion(&mb5_transfer.work);
2773
2774         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2775 }
2776
2777 static void __init init_prcm_registers(void)
2778 {
2779         u32 val;
2780
2781         val = readl(PRCM_A9PL_FORCE_CLKEN);
2782         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2783                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2784         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2785 }
2786
2787 /*
2788  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2789  */
2790 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2791         REGULATOR_SUPPLY("v-ape", NULL),
2792         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2793         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2794         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2795         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2796         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2797         /* "v-mmc" changed to "vcore" in the mainline kernel */
2798         REGULATOR_SUPPLY("vcore", "sdi0"),
2799         REGULATOR_SUPPLY("vcore", "sdi1"),
2800         REGULATOR_SUPPLY("vcore", "sdi2"),
2801         REGULATOR_SUPPLY("vcore", "sdi3"),
2802         REGULATOR_SUPPLY("vcore", "sdi4"),
2803         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2804         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2805         /* "v-uart" changed to "vcore" in the mainline kernel */
2806         REGULATOR_SUPPLY("vcore", "uart0"),
2807         REGULATOR_SUPPLY("vcore", "uart1"),
2808         REGULATOR_SUPPLY("vcore", "uart2"),
2809         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2810         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2811         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2812 };
2813
2814 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2815         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2816         /* AV8100 regulator */
2817         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2818 };
2819
2820 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2821         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2822         REGULATOR_SUPPLY("vsupply", "mcde"),
2823 };
2824
2825 /* SVA MMDSP regulator switch */
2826 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2827         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2828 };
2829
2830 /* SVA pipe regulator switch */
2831 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2832         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2833 };
2834
2835 /* SIA MMDSP regulator switch */
2836 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2837         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2838 };
2839
2840 /* SIA pipe regulator switch */
2841 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2842         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2843 };
2844
2845 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2846         REGULATOR_SUPPLY("v-mali", NULL),
2847 };
2848
2849 /* ESRAM1 and 2 regulator switch */
2850 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2851         REGULATOR_SUPPLY("esram12", "cm_control"),
2852 };
2853
2854 /* ESRAM3 and 4 regulator switch */
2855 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2856         REGULATOR_SUPPLY("v-esram34", "mcde"),
2857         REGULATOR_SUPPLY("esram34", "cm_control"),
2858         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2859 };
2860
2861 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2862         [DB8500_REGULATOR_VAPE] = {
2863                 .constraints = {
2864                         .name = "db8500-vape",
2865                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866                         .always_on = true,
2867                 },
2868                 .consumer_supplies = db8500_vape_consumers,
2869                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2870         },
2871         [DB8500_REGULATOR_VARM] = {
2872                 .constraints = {
2873                         .name = "db8500-varm",
2874                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875                 },
2876         },
2877         [DB8500_REGULATOR_VMODEM] = {
2878                 .constraints = {
2879                         .name = "db8500-vmodem",
2880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                 },
2882         },
2883         [DB8500_REGULATOR_VPLL] = {
2884                 .constraints = {
2885                         .name = "db8500-vpll",
2886                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887                 },
2888         },
2889         [DB8500_REGULATOR_VSMPS1] = {
2890                 .constraints = {
2891                         .name = "db8500-vsmps1",
2892                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2893                 },
2894         },
2895         [DB8500_REGULATOR_VSMPS2] = {
2896                 .constraints = {
2897                         .name = "db8500-vsmps2",
2898                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899                 },
2900                 .consumer_supplies = db8500_vsmps2_consumers,
2901                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2902         },
2903         [DB8500_REGULATOR_VSMPS3] = {
2904                 .constraints = {
2905                         .name = "db8500-vsmps3",
2906                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907                 },
2908         },
2909         [DB8500_REGULATOR_VRF1] = {
2910                 .constraints = {
2911                         .name = "db8500-vrf1",
2912                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913                 },
2914         },
2915         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2916                 /* dependency to u8500-vape is handled outside regulator framework */
2917                 .constraints = {
2918                         .name = "db8500-sva-mmdsp",
2919                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920                 },
2921                 .consumer_supplies = db8500_svammdsp_consumers,
2922                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2923         },
2924         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2925                 .constraints = {
2926                         /* "ret" means "retention" */
2927                         .name = "db8500-sva-mmdsp-ret",
2928                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929                 },
2930         },
2931         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2932                 /* dependency to u8500-vape is handled outside regulator framework */
2933                 .constraints = {
2934                         .name = "db8500-sva-pipe",
2935                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936                 },
2937                 .consumer_supplies = db8500_svapipe_consumers,
2938                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2939         },
2940         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2941                 /* dependency to u8500-vape is handled outside regulator framework */
2942                 .constraints = {
2943                         .name = "db8500-sia-mmdsp",
2944                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2945                 },
2946                 .consumer_supplies = db8500_siammdsp_consumers,
2947                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2948         },
2949         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2950                 .constraints = {
2951                         .name = "db8500-sia-mmdsp-ret",
2952                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953                 },
2954         },
2955         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2956                 /* dependency to u8500-vape is handled outside regulator framework */
2957                 .constraints = {
2958                         .name = "db8500-sia-pipe",
2959                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960                 },
2961                 .consumer_supplies = db8500_siapipe_consumers,
2962                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2963         },
2964         [DB8500_REGULATOR_SWITCH_SGA] = {
2965                 .supply_regulator = "db8500-vape",
2966                 .constraints = {
2967                         .name = "db8500-sga",
2968                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969                 },
2970                 .consumer_supplies = db8500_sga_consumers,
2971                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2972
2973         },
2974         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2975                 .supply_regulator = "db8500-vape",
2976                 .constraints = {
2977                         .name = "db8500-b2r2-mcde",
2978                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979                 },
2980                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2981                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2982         },
2983         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2984                 /*
2985                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2986                  * no need to hold Vape
2987                  */
2988                 .constraints = {
2989                         .name = "db8500-esram12",
2990                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991                 },
2992                 .consumer_supplies = db8500_esram12_consumers,
2993                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2994         },
2995         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2996                 .constraints = {
2997                         .name = "db8500-esram12-ret",
2998                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2999                 },
3000         },
3001         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3002                 /*
3003                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
3004                  * no need to hold Vape
3005                  */
3006                 .constraints = {
3007                         .name = "db8500-esram34",
3008                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3009                 },
3010                 .consumer_supplies = db8500_esram34_consumers,
3011                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3012         },
3013         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3014                 .constraints = {
3015                         .name = "db8500-esram34-ret",
3016                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3017                 },
3018         },
3019 };
3020
3021 static struct ux500_wdt_data db8500_wdt_pdata = {
3022         .timeout = 600, /* 10 minutes */
3023         .has_28_bits_resolution = true,
3024 };
3025 /*
3026  * Thermal Sensor
3027  */
3028
3029 static struct resource db8500_thsens_resources[] = {
3030         {
3031                 .name = "IRQ_HOTMON_LOW",
3032                 .start  = IRQ_PRCMU_HOTMON_LOW,
3033                 .end    = IRQ_PRCMU_HOTMON_LOW,
3034                 .flags  = IORESOURCE_IRQ,
3035         },
3036         {
3037                 .name = "IRQ_HOTMON_HIGH",
3038                 .start  = IRQ_PRCMU_HOTMON_HIGH,
3039                 .end    = IRQ_PRCMU_HOTMON_HIGH,
3040                 .flags  = IORESOURCE_IRQ,
3041         },
3042 };
3043
3044 static struct db8500_thsens_platform_data db8500_thsens_data = {
3045         .trip_points[0] = {
3046                 .temp = 70000,
3047                 .type = THERMAL_TRIP_ACTIVE,
3048                 .cdev_name = {
3049                         [0] = "thermal-cpufreq-0",
3050                 },
3051         },
3052         .trip_points[1] = {
3053                 .temp = 75000,
3054                 .type = THERMAL_TRIP_ACTIVE,
3055                 .cdev_name = {
3056                         [0] = "thermal-cpufreq-0",
3057                 },
3058         },
3059         .trip_points[2] = {
3060                 .temp = 80000,
3061                 .type = THERMAL_TRIP_ACTIVE,
3062                 .cdev_name = {
3063                         [0] = "thermal-cpufreq-0",
3064                 },
3065         },
3066         .trip_points[3] = {
3067                 .temp = 85000,
3068                 .type = THERMAL_TRIP_CRITICAL,
3069         },
3070         .num_trips = 4,
3071 };
3072
3073 static struct mfd_cell common_prcmu_devs[] = {
3074         {
3075                 .name = "ux500_wdt",
3076                 .platform_data = &db8500_wdt_pdata,
3077                 .pdata_size = sizeof(db8500_wdt_pdata),
3078                 .id = -1,
3079         },
3080 };
3081
3082 static struct mfd_cell db8500_prcmu_devs[] = {
3083         {
3084                 .name = "db8500-prcmu-regulators",
3085                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3086                 .platform_data = &db8500_regulators,
3087                 .pdata_size = sizeof(db8500_regulators),
3088         },
3089         {
3090                 .name = "cpufreq-ux500",
3091                 .of_compatible = "stericsson,cpufreq-ux500",
3092                 .platform_data = &db8500_cpufreq_table,
3093                 .pdata_size = sizeof(db8500_cpufreq_table),
3094         },
3095         {
3096                 .name = "cpuidle-dbx500",
3097                 .of_compatible = "stericsson,cpuidle-dbx500",
3098         },
3099         {
3100                 .name = "db8500-thermal",
3101                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3102                 .resources = db8500_thsens_resources,
3103                 .platform_data = &db8500_thsens_data,
3104                 .pdata_size = sizeof(db8500_thsens_data),
3105         },
3106 };
3107
3108 static void db8500_prcmu_update_cpufreq(void)
3109 {
3110         if (prcmu_has_arm_maxopp()) {
3111                 db8500_cpufreq_table[3].frequency = 1000000;
3112                 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3113         }
3114 }
3115
3116 static int db8500_prcmu_register_ab8500(struct device *parent,
3117                                         struct ab8500_platform_data *pdata,
3118                                         int irq)
3119 {
3120         struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3121         struct mfd_cell ab8500_cell = {
3122                 .name = "ab8500-core",
3123                 .of_compatible = "stericsson,ab8500",
3124                 .id = AB8500_VERSION_AB8500,
3125                 .platform_data = pdata,
3126                 .pdata_size = sizeof(struct ab8500_platform_data),
3127                 .resources = &ab8500_resource,
3128                 .num_resources = 1,
3129         };
3130
3131         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3132 }
3133
3134 /**
3135  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3136  *
3137  */
3138 static int db8500_prcmu_probe(struct platform_device *pdev)
3139 {
3140         struct device_node *np = pdev->dev.of_node;
3141         struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3142         int irq = 0, err = 0;
3143         struct resource *res;
3144
3145         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3146         if (!res) {
3147                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3148                 return -ENOENT;
3149         }
3150         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3151         if (!prcmu_base) {
3152                 dev_err(&pdev->dev,
3153                         "failed to ioremap prcmu register memory\n");
3154                 return -ENOENT;
3155         }
3156         init_prcm_registers();
3157         dbx500_fw_version_init(pdev, pdata->version_offset);
3158         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159         if (!res) {
3160                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161                 return -ENOENT;
3162         }
3163         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164                         resource_size(res));
3165
3166         /* Clean up the mailbox interrupts after pre-kernel code. */
3167         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168
3169         irq = platform_get_irq(pdev, 0);
3170         if (irq <= 0) {
3171                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3172                 return -ENOENT;
3173         }
3174
3175         err = request_threaded_irq(irq, prcmu_irq_handler,
3176                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177         if (err < 0) {
3178                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179                 err = -EBUSY;
3180                 goto no_irq_return;
3181         }
3182
3183         db8500_irq_init(np, pdata->irq_base);
3184
3185         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3186
3187         db8500_prcmu_update_cpufreq();
3188
3189         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191         if (err) {
3192                 pr_err("prcmu: Failed to add subdevices\n");
3193                 return err;
3194         }
3195
3196         /* TODO: Remove restriction when clk definitions are available. */
3197         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200                                       db8500_irq_domain);
3201                 if (err) {
3202                         mfd_remove_devices(&pdev->dev);
3203                         pr_err("prcmu: Failed to add subdevices\n");
3204                         goto no_irq_return;
3205                 }
3206         }
3207
3208         err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3209                                            pdata->ab_irq);
3210         if (err) {
3211                 mfd_remove_devices(&pdev->dev);
3212                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3213                 goto no_irq_return;
3214         }
3215
3216         pr_info("DB8500 PRCMU initialized\n");
3217
3218 no_irq_return:
3219         return err;
3220 }
3221 static const struct of_device_id db8500_prcmu_match[] = {
3222         { .compatible = "stericsson,db8500-prcmu"},
3223         { },
3224 };
3225
3226 static struct platform_driver db8500_prcmu_driver = {
3227         .driver = {
3228                 .name = "db8500-prcmu",
3229                 .owner = THIS_MODULE,
3230                 .of_match_table = db8500_prcmu_match,
3231         },
3232         .probe = db8500_prcmu_probe,
3233 };
3234
3235 static int __init db8500_prcmu_init(void)
3236 {
3237         return platform_driver_register(&db8500_prcmu_driver);
3238 }
3239
3240 core_initcall(db8500_prcmu_init);
3241
3242 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3243 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3244 MODULE_LICENSE("GPL v2");