]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/atmel_nand.c
input: gameport: convert bus code to use dev_groups
[karo-tx-linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  *  Add Nand Flash Controller support for SAMA5 SoC
22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29
30 #include <linux/dma-mapping.h>
31 #include <linux/slab.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/platform_device.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/partitions.h>
42
43 #include <linux/delay.h>
44 #include <linux/dmaengine.h>
45 #include <linux/gpio.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/platform_data/atmel.h>
49
50 static int use_dma = 1;
51 module_param(use_dma, int, 0);
52
53 static int on_flash_bbt = 0;
54 module_param(on_flash_bbt, int, 0);
55
56 /* Register access macros */
57 #define ecc_readl(add, reg)                             \
58         __raw_readl(add + ATMEL_ECC_##reg)
59 #define ecc_writel(add, reg, value)                     \
60         __raw_writel((value), add + ATMEL_ECC_##reg)
61
62 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
63 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
64
65 /* oob layout for large page size
66  * bad block info is on bytes 0 and 1
67  * the bytes have to be consecutives to avoid
68  * several NAND_CMD_RNDOUT during read
69  */
70 static struct nand_ecclayout atmel_oobinfo_large = {
71         .eccbytes = 4,
72         .eccpos = {60, 61, 62, 63},
73         .oobfree = {
74                 {2, 58}
75         },
76 };
77
78 /* oob layout for small page size
79  * bad block info is on bytes 4 and 5
80  * the bytes have to be consecutives to avoid
81  * several NAND_CMD_RNDOUT during read
82  */
83 static struct nand_ecclayout atmel_oobinfo_small = {
84         .eccbytes = 4,
85         .eccpos = {0, 1, 2, 3},
86         .oobfree = {
87                 {6, 10}
88         },
89 };
90
91 struct atmel_nfc {
92         void __iomem            *base_cmd_regs;
93         void __iomem            *hsmc_regs;
94         void __iomem            *sram_bank0;
95         dma_addr_t              sram_bank0_phys;
96         bool                    use_nfc_sram;
97         bool                    write_by_sram;
98
99         bool                    is_initialized;
100         struct completion       comp_nfc;
101
102         /* Point to the sram bank which include readed data via NFC */
103         void __iomem            *data_in_sram;
104         bool                    will_write_sram;
105 };
106 static struct atmel_nfc nand_nfc;
107
108 struct atmel_nand_host {
109         struct nand_chip        nand_chip;
110         struct mtd_info         mtd;
111         void __iomem            *io_base;
112         dma_addr_t              io_phys;
113         struct atmel_nand_data  board;
114         struct device           *dev;
115         void __iomem            *ecc;
116
117         struct completion       comp;
118         struct dma_chan         *dma_chan;
119
120         struct atmel_nfc        *nfc;
121
122         bool                    has_pmecc;
123         u8                      pmecc_corr_cap;
124         u16                     pmecc_sector_size;
125         u32                     pmecc_lookup_table_offset;
126         u32                     pmecc_lookup_table_offset_512;
127         u32                     pmecc_lookup_table_offset_1024;
128
129         int                     pmecc_bytes_per_sector;
130         int                     pmecc_sector_number;
131         int                     pmecc_degree;   /* Degree of remainders */
132         int                     pmecc_cw_len;   /* Length of codeword */
133
134         void __iomem            *pmerrloc_base;
135         void __iomem            *pmecc_rom_base;
136
137         /* lookup table for alpha_to and index_of */
138         void __iomem            *pmecc_alpha_to;
139         void __iomem            *pmecc_index_of;
140
141         /* data for pmecc computation */
142         int16_t                 *pmecc_partial_syn;
143         int16_t                 *pmecc_si;
144         int16_t                 *pmecc_smu;     /* Sigma table */
145         int16_t                 *pmecc_lmu;     /* polynomal order */
146         int                     *pmecc_mu;
147         int                     *pmecc_dmu;
148         int                     *pmecc_delta;
149 };
150
151 static struct nand_ecclayout atmel_pmecc_oobinfo;
152
153 /*
154  * Enable NAND.
155  */
156 static void atmel_nand_enable(struct atmel_nand_host *host)
157 {
158         if (gpio_is_valid(host->board.enable_pin))
159                 gpio_set_value(host->board.enable_pin, 0);
160 }
161
162 /*
163  * Disable NAND.
164  */
165 static void atmel_nand_disable(struct atmel_nand_host *host)
166 {
167         if (gpio_is_valid(host->board.enable_pin))
168                 gpio_set_value(host->board.enable_pin, 1);
169 }
170
171 /*
172  * Hardware specific access to control-lines
173  */
174 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
175 {
176         struct nand_chip *nand_chip = mtd->priv;
177         struct atmel_nand_host *host = nand_chip->priv;
178
179         if (ctrl & NAND_CTRL_CHANGE) {
180                 if (ctrl & NAND_NCE)
181                         atmel_nand_enable(host);
182                 else
183                         atmel_nand_disable(host);
184         }
185         if (cmd == NAND_CMD_NONE)
186                 return;
187
188         if (ctrl & NAND_CLE)
189                 writeb(cmd, host->io_base + (1 << host->board.cle));
190         else
191                 writeb(cmd, host->io_base + (1 << host->board.ale));
192 }
193
194 /*
195  * Read the Device Ready pin.
196  */
197 static int atmel_nand_device_ready(struct mtd_info *mtd)
198 {
199         struct nand_chip *nand_chip = mtd->priv;
200         struct atmel_nand_host *host = nand_chip->priv;
201
202         return gpio_get_value(host->board.rdy_pin) ^
203                 !!host->board.rdy_pin_active_low;
204 }
205
206 /* Set up for hardware ready pin and enable pin. */
207 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
208 {
209         struct nand_chip *chip = mtd->priv;
210         struct atmel_nand_host *host = chip->priv;
211         int res = 0;
212
213         if (gpio_is_valid(host->board.rdy_pin)) {
214                 res = devm_gpio_request(host->dev,
215                                 host->board.rdy_pin, "nand_rdy");
216                 if (res < 0) {
217                         dev_err(host->dev,
218                                 "can't request rdy gpio %d\n",
219                                 host->board.rdy_pin);
220                         return res;
221                 }
222
223                 res = gpio_direction_input(host->board.rdy_pin);
224                 if (res < 0) {
225                         dev_err(host->dev,
226                                 "can't request input direction rdy gpio %d\n",
227                                 host->board.rdy_pin);
228                         return res;
229                 }
230
231                 chip->dev_ready = atmel_nand_device_ready;
232         }
233
234         if (gpio_is_valid(host->board.enable_pin)) {
235                 res = devm_gpio_request(host->dev,
236                                 host->board.enable_pin, "nand_enable");
237                 if (res < 0) {
238                         dev_err(host->dev,
239                                 "can't request enable gpio %d\n",
240                                 host->board.enable_pin);
241                         return res;
242                 }
243
244                 res = gpio_direction_output(host->board.enable_pin, 1);
245                 if (res < 0) {
246                         dev_err(host->dev,
247                                 "can't request output direction enable gpio %d\n",
248                                 host->board.enable_pin);
249                         return res;
250                 }
251         }
252
253         return res;
254 }
255
256 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
257 {
258         int i;
259         u32 *t = trg;
260         const __iomem u32 *s = src;
261
262         for (i = 0; i < (size >> 2); i++)
263                 *t++ = readl_relaxed(s++);
264 }
265
266 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
267 {
268         int i;
269         u32 __iomem *t = trg;
270         const u32 *s = src;
271
272         for (i = 0; i < (size >> 2); i++)
273                 writel_relaxed(*s++, t++);
274 }
275
276 /*
277  * Minimal-overhead PIO for data access.
278  */
279 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
280 {
281         struct nand_chip        *nand_chip = mtd->priv;
282         struct atmel_nand_host *host = nand_chip->priv;
283
284         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
285                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
286                 host->nfc->data_in_sram += len;
287         } else {
288                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
289         }
290 }
291
292 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
293 {
294         struct nand_chip        *nand_chip = mtd->priv;
295         struct atmel_nand_host *host = nand_chip->priv;
296
297         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
298                 memcpy32_fromio(buf, host->nfc->data_in_sram, len);
299                 host->nfc->data_in_sram += len;
300         } else {
301                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
302         }
303 }
304
305 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
306 {
307         struct nand_chip        *nand_chip = mtd->priv;
308
309         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
310 }
311
312 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
313 {
314         struct nand_chip        *nand_chip = mtd->priv;
315
316         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
317 }
318
319 static void dma_complete_func(void *completion)
320 {
321         complete(completion);
322 }
323
324 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
325 {
326         /* NFC only has two banks. Must be 0 or 1 */
327         if (bank > 1)
328                 return -EINVAL;
329
330         if (bank) {
331                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
332                 if (host->mtd.writesize > 2048)
333                         return -EINVAL;
334                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
335         } else {
336                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
337         }
338
339         return 0;
340 }
341
342 static uint nfc_get_sram_off(struct atmel_nand_host *host)
343 {
344         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
345                 return NFC_SRAM_BANK1_OFFSET;
346         else
347                 return 0;
348 }
349
350 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
351 {
352         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
353                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
354         else
355                 return host->nfc->sram_bank0_phys;
356 }
357
358 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
359                                int is_read)
360 {
361         struct dma_device *dma_dev;
362         enum dma_ctrl_flags flags;
363         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
364         struct dma_async_tx_descriptor *tx = NULL;
365         dma_cookie_t cookie;
366         struct nand_chip *chip = mtd->priv;
367         struct atmel_nand_host *host = chip->priv;
368         void *p = buf;
369         int err = -EIO;
370         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
371         struct atmel_nfc *nfc = host->nfc;
372
373         if (buf >= high_memory)
374                 goto err_buf;
375
376         dma_dev = host->dma_chan->device;
377
378         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
379                 DMA_COMPL_SKIP_DEST_UNMAP;
380
381         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
382         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
383                 dev_err(host->dev, "Failed to dma_map_single\n");
384                 goto err_buf;
385         }
386
387         if (is_read) {
388                 if (nfc && nfc->data_in_sram)
389                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
390                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
391                 else
392                         dma_src_addr = host->io_phys;
393
394                 dma_dst_addr = phys_addr;
395         } else {
396                 dma_src_addr = phys_addr;
397
398                 if (nfc && nfc->write_by_sram)
399                         dma_dst_addr = nfc_sram_phys(host);
400                 else
401                         dma_dst_addr = host->io_phys;
402         }
403
404         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
405                                              dma_src_addr, len, flags);
406         if (!tx) {
407                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
408                 goto err_dma;
409         }
410
411         init_completion(&host->comp);
412         tx->callback = dma_complete_func;
413         tx->callback_param = &host->comp;
414
415         cookie = tx->tx_submit(tx);
416         if (dma_submit_error(cookie)) {
417                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
418                 goto err_dma;
419         }
420
421         dma_async_issue_pending(host->dma_chan);
422         wait_for_completion(&host->comp);
423
424         if (is_read && nfc && nfc->data_in_sram)
425                 /* After read data from SRAM, need to increase the position */
426                 nfc->data_in_sram += len;
427
428         err = 0;
429
430 err_dma:
431         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
432 err_buf:
433         if (err != 0)
434                 dev_warn(host->dev, "Fall back to CPU I/O\n");
435         return err;
436 }
437
438 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
439 {
440         struct nand_chip *chip = mtd->priv;
441         struct atmel_nand_host *host = chip->priv;
442
443         if (use_dma && len > mtd->oobsize)
444                 /* only use DMA for bigger than oob size: better performances */
445                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
446                         return;
447
448         if (host->board.bus_width_16)
449                 atmel_read_buf16(mtd, buf, len);
450         else
451                 atmel_read_buf8(mtd, buf, len);
452 }
453
454 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
455 {
456         struct nand_chip *chip = mtd->priv;
457         struct atmel_nand_host *host = chip->priv;
458
459         if (use_dma && len > mtd->oobsize)
460                 /* only use DMA for bigger than oob size: better performances */
461                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
462                         return;
463
464         if (host->board.bus_width_16)
465                 atmel_write_buf16(mtd, buf, len);
466         else
467                 atmel_write_buf8(mtd, buf, len);
468 }
469
470 /*
471  * Return number of ecc bytes per sector according to sector size and
472  * correction capability
473  *
474  * Following table shows what at91 PMECC supported:
475  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
476  * =====================        ================        =================
477  *                2-bits                 4-bytes                  4-bytes
478  *                4-bits                 7-bytes                  7-bytes
479  *                8-bits                13-bytes                 14-bytes
480  *               12-bits                20-bytes                 21-bytes
481  *               24-bits                39-bytes                 42-bytes
482  */
483 static int pmecc_get_ecc_bytes(int cap, int sector_size)
484 {
485         int m = 12 + sector_size / 512;
486         return (m * cap + 7) / 8;
487 }
488
489 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
490                                     int oobsize, int ecc_len)
491 {
492         int i;
493
494         layout->eccbytes = ecc_len;
495
496         /* ECC will occupy the last ecc_len bytes continuously */
497         for (i = 0; i < ecc_len; i++)
498                 layout->eccpos[i] = oobsize - ecc_len + i;
499
500         layout->oobfree[0].offset = 2;
501         layout->oobfree[0].length =
502                 oobsize - ecc_len - layout->oobfree[0].offset;
503 }
504
505 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
506 {
507         int table_size;
508
509         table_size = host->pmecc_sector_size == 512 ?
510                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
511
512         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
513                         table_size * sizeof(int16_t);
514 }
515
516 static int pmecc_data_alloc(struct atmel_nand_host *host)
517 {
518         const int cap = host->pmecc_corr_cap;
519         int size;
520
521         size = (2 * cap + 1) * sizeof(int16_t);
522         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
523         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
524         host->pmecc_lmu = devm_kzalloc(host->dev,
525                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
526         host->pmecc_smu = devm_kzalloc(host->dev,
527                         (cap + 2) * size, GFP_KERNEL);
528
529         size = (cap + 1) * sizeof(int);
530         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
531         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
532         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
533
534         if (!host->pmecc_partial_syn ||
535                 !host->pmecc_si ||
536                 !host->pmecc_lmu ||
537                 !host->pmecc_smu ||
538                 !host->pmecc_mu ||
539                 !host->pmecc_dmu ||
540                 !host->pmecc_delta)
541                 return -ENOMEM;
542
543         return 0;
544 }
545
546 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
547 {
548         struct nand_chip *nand_chip = mtd->priv;
549         struct atmel_nand_host *host = nand_chip->priv;
550         int i;
551         uint32_t value;
552
553         /* Fill odd syndromes */
554         for (i = 0; i < host->pmecc_corr_cap; i++) {
555                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
556                 if (i & 1)
557                         value >>= 16;
558                 value &= 0xffff;
559                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
560         }
561 }
562
563 static void pmecc_substitute(struct mtd_info *mtd)
564 {
565         struct nand_chip *nand_chip = mtd->priv;
566         struct atmel_nand_host *host = nand_chip->priv;
567         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
568         int16_t __iomem *index_of = host->pmecc_index_of;
569         int16_t *partial_syn = host->pmecc_partial_syn;
570         const int cap = host->pmecc_corr_cap;
571         int16_t *si;
572         int i, j;
573
574         /* si[] is a table that holds the current syndrome value,
575          * an element of that table belongs to the field
576          */
577         si = host->pmecc_si;
578
579         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
580
581         /* Computation 2t syndromes based on S(x) */
582         /* Odd syndromes */
583         for (i = 1; i < 2 * cap; i += 2) {
584                 for (j = 0; j < host->pmecc_degree; j++) {
585                         if (partial_syn[i] & ((unsigned short)0x1 << j))
586                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
587                 }
588         }
589         /* Even syndrome = (Odd syndrome) ** 2 */
590         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
591                 if (si[j] == 0) {
592                         si[i] = 0;
593                 } else {
594                         int16_t tmp;
595
596                         tmp = readw_relaxed(index_of + si[j]);
597                         tmp = (tmp * 2) % host->pmecc_cw_len;
598                         si[i] = readw_relaxed(alpha_to + tmp);
599                 }
600         }
601
602         return;
603 }
604
605 static void pmecc_get_sigma(struct mtd_info *mtd)
606 {
607         struct nand_chip *nand_chip = mtd->priv;
608         struct atmel_nand_host *host = nand_chip->priv;
609
610         int16_t *lmu = host->pmecc_lmu;
611         int16_t *si = host->pmecc_si;
612         int *mu = host->pmecc_mu;
613         int *dmu = host->pmecc_dmu;     /* Discrepancy */
614         int *delta = host->pmecc_delta; /* Delta order */
615         int cw_len = host->pmecc_cw_len;
616         const int16_t cap = host->pmecc_corr_cap;
617         const int num = 2 * cap + 1;
618         int16_t __iomem *index_of = host->pmecc_index_of;
619         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
620         int i, j, k;
621         uint32_t dmu_0_count, tmp;
622         int16_t *smu = host->pmecc_smu;
623
624         /* index of largest delta */
625         int ro;
626         int largest;
627         int diff;
628
629         dmu_0_count = 0;
630
631         /* First Row */
632
633         /* Mu */
634         mu[0] = -1;
635
636         memset(smu, 0, sizeof(int16_t) * num);
637         smu[0] = 1;
638
639         /* discrepancy set to 1 */
640         dmu[0] = 1;
641         /* polynom order set to 0 */
642         lmu[0] = 0;
643         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
644
645         /* Second Row */
646
647         /* Mu */
648         mu[1] = 0;
649         /* Sigma(x) set to 1 */
650         memset(&smu[num], 0, sizeof(int16_t) * num);
651         smu[num] = 1;
652
653         /* discrepancy set to S1 */
654         dmu[1] = si[1];
655
656         /* polynom order set to 0 */
657         lmu[1] = 0;
658
659         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
660
661         /* Init the Sigma(x) last row */
662         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
663
664         for (i = 1; i <= cap; i++) {
665                 mu[i + 1] = i << 1;
666                 /* Begin Computing Sigma (Mu+1) and L(mu) */
667                 /* check if discrepancy is set to 0 */
668                 if (dmu[i] == 0) {
669                         dmu_0_count++;
670
671                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
672                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
673                                 tmp += 2;
674                         else
675                                 tmp += 1;
676
677                         if (dmu_0_count == tmp) {
678                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
679                                         smu[(cap + 1) * num + j] =
680                                                         smu[i * num + j];
681
682                                 lmu[cap + 1] = lmu[i];
683                                 return;
684                         }
685
686                         /* copy polynom */
687                         for (j = 0; j <= lmu[i] >> 1; j++)
688                                 smu[(i + 1) * num + j] = smu[i * num + j];
689
690                         /* copy previous polynom order to the next */
691                         lmu[i + 1] = lmu[i];
692                 } else {
693                         ro = 0;
694                         largest = -1;
695                         /* find largest delta with dmu != 0 */
696                         for (j = 0; j < i; j++) {
697                                 if ((dmu[j]) && (delta[j] > largest)) {
698                                         largest = delta[j];
699                                         ro = j;
700                                 }
701                         }
702
703                         /* compute difference */
704                         diff = (mu[i] - mu[ro]);
705
706                         /* Compute degree of the new smu polynomial */
707                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
708                                 lmu[i + 1] = lmu[i];
709                         else
710                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
711
712                         /* Init smu[i+1] with 0 */
713                         for (k = 0; k < num; k++)
714                                 smu[(i + 1) * num + k] = 0;
715
716                         /* Compute smu[i+1] */
717                         for (k = 0; k <= lmu[ro] >> 1; k++) {
718                                 int16_t a, b, c;
719
720                                 if (!(smu[ro * num + k] && dmu[i]))
721                                         continue;
722                                 a = readw_relaxed(index_of + dmu[i]);
723                                 b = readw_relaxed(index_of + dmu[ro]);
724                                 c = readw_relaxed(index_of + smu[ro * num + k]);
725                                 tmp = a + (cw_len - b) + c;
726                                 a = readw_relaxed(alpha_to + tmp % cw_len);
727                                 smu[(i + 1) * num + (k + diff)] = a;
728                         }
729
730                         for (k = 0; k <= lmu[i] >> 1; k++)
731                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
732                 }
733
734                 /* End Computing Sigma (Mu+1) and L(mu) */
735                 /* In either case compute delta */
736                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
737
738                 /* Do not compute discrepancy for the last iteration */
739                 if (i >= cap)
740                         continue;
741
742                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
743                         tmp = 2 * (i - 1);
744                         if (k == 0) {
745                                 dmu[i + 1] = si[tmp + 3];
746                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
747                                 int16_t a, b, c;
748                                 a = readw_relaxed(index_of +
749                                                 smu[(i + 1) * num + k]);
750                                 b = si[2 * (i - 1) + 3 - k];
751                                 c = readw_relaxed(index_of + b);
752                                 tmp = a + c;
753                                 tmp %= cw_len;
754                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
755                                         dmu[i + 1];
756                         }
757                 }
758         }
759
760         return;
761 }
762
763 static int pmecc_err_location(struct mtd_info *mtd)
764 {
765         struct nand_chip *nand_chip = mtd->priv;
766         struct atmel_nand_host *host = nand_chip->priv;
767         unsigned long end_time;
768         const int cap = host->pmecc_corr_cap;
769         const int num = 2 * cap + 1;
770         int sector_size = host->pmecc_sector_size;
771         int err_nbr = 0;        /* number of error */
772         int roots_nbr;          /* number of roots */
773         int i;
774         uint32_t val;
775         int16_t *smu = host->pmecc_smu;
776
777         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
778
779         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
780                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
781                                       smu[(cap + 1) * num + i]);
782                 err_nbr++;
783         }
784
785         val = (err_nbr - 1) << 16;
786         if (sector_size == 1024)
787                 val |= 1;
788
789         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
790         pmerrloc_writel(host->pmerrloc_base, ELEN,
791                         sector_size * 8 + host->pmecc_degree * cap);
792
793         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
794         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
795                  & PMERRLOC_CALC_DONE)) {
796                 if (unlikely(time_after(jiffies, end_time))) {
797                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
798                         return -1;
799                 }
800                 cpu_relax();
801         }
802
803         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
804                 & PMERRLOC_ERR_NUM_MASK) >> 8;
805         /* Number of roots == degree of smu hence <= cap */
806         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
807                 return err_nbr - 1;
808
809         /* Number of roots does not match the degree of smu
810          * unable to correct error */
811         return -1;
812 }
813
814 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
815                 int sector_num, int extra_bytes, int err_nbr)
816 {
817         struct nand_chip *nand_chip = mtd->priv;
818         struct atmel_nand_host *host = nand_chip->priv;
819         int i = 0;
820         int byte_pos, bit_pos, sector_size, pos;
821         uint32_t tmp;
822         uint8_t err_byte;
823
824         sector_size = host->pmecc_sector_size;
825
826         while (err_nbr) {
827                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
828                 byte_pos = tmp / 8;
829                 bit_pos  = tmp % 8;
830
831                 if (byte_pos >= (sector_size + extra_bytes))
832                         BUG();  /* should never happen */
833
834                 if (byte_pos < sector_size) {
835                         err_byte = *(buf + byte_pos);
836                         *(buf + byte_pos) ^= (1 << bit_pos);
837
838                         pos = sector_num * host->pmecc_sector_size + byte_pos;
839                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
840                                 pos, bit_pos, err_byte, *(buf + byte_pos));
841                 } else {
842                         /* Bit flip in OOB area */
843                         tmp = sector_num * host->pmecc_bytes_per_sector
844                                         + (byte_pos - sector_size);
845                         err_byte = ecc[tmp];
846                         ecc[tmp] ^= (1 << bit_pos);
847
848                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
849                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
850                                 pos, bit_pos, err_byte, ecc[tmp]);
851                 }
852
853                 i++;
854                 err_nbr--;
855         }
856
857         return;
858 }
859
860 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
861         u8 *ecc)
862 {
863         struct nand_chip *nand_chip = mtd->priv;
864         struct atmel_nand_host *host = nand_chip->priv;
865         int i, err_nbr, eccbytes;
866         uint8_t *buf_pos;
867         int total_err = 0;
868
869         eccbytes = nand_chip->ecc.bytes;
870         for (i = 0; i < eccbytes; i++)
871                 if (ecc[i] != 0xff)
872                         goto normal_check;
873         /* Erased page, return OK */
874         return 0;
875
876 normal_check:
877         for (i = 0; i < host->pmecc_sector_number; i++) {
878                 err_nbr = 0;
879                 if (pmecc_stat & 0x1) {
880                         buf_pos = buf + i * host->pmecc_sector_size;
881
882                         pmecc_gen_syndrome(mtd, i);
883                         pmecc_substitute(mtd);
884                         pmecc_get_sigma(mtd);
885
886                         err_nbr = pmecc_err_location(mtd);
887                         if (err_nbr == -1) {
888                                 dev_err(host->dev, "PMECC: Too many errors\n");
889                                 mtd->ecc_stats.failed++;
890                                 return -EIO;
891                         } else {
892                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
893                                         host->pmecc_bytes_per_sector, err_nbr);
894                                 mtd->ecc_stats.corrected += err_nbr;
895                                 total_err += err_nbr;
896                         }
897                 }
898                 pmecc_stat >>= 1;
899         }
900
901         return total_err;
902 }
903
904 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
905 {
906         u32 val;
907
908         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
909                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
910                 return;
911         }
912
913         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
914         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
915         val = pmecc_readl_relaxed(host->ecc, CFG);
916
917         if (ecc_op == NAND_ECC_READ)
918                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
919                         | PMECC_CFG_AUTO_ENABLE);
920         else
921                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
922                         & ~PMECC_CFG_AUTO_ENABLE);
923
924         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
925         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
926 }
927
928 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
929         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
930 {
931         struct atmel_nand_host *host = chip->priv;
932         int eccsize = chip->ecc.size;
933         uint8_t *oob = chip->oob_poi;
934         uint32_t *eccpos = chip->ecc.layout->eccpos;
935         uint32_t stat;
936         unsigned long end_time;
937         int bitflips = 0;
938
939         if (!host->nfc || !host->nfc->use_nfc_sram)
940                 pmecc_enable(host, NAND_ECC_READ);
941
942         chip->read_buf(mtd, buf, eccsize);
943         chip->read_buf(mtd, oob, mtd->oobsize);
944
945         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
946         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
947                 if (unlikely(time_after(jiffies, end_time))) {
948                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
949                         return -EIO;
950                 }
951                 cpu_relax();
952         }
953
954         stat = pmecc_readl_relaxed(host->ecc, ISR);
955         if (stat != 0) {
956                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
957                 if (bitflips < 0)
958                         /* uncorrectable errors */
959                         return 0;
960         }
961
962         return bitflips;
963 }
964
965 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
966                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
967 {
968         struct atmel_nand_host *host = chip->priv;
969         uint32_t *eccpos = chip->ecc.layout->eccpos;
970         int i, j;
971         unsigned long end_time;
972
973         if (!host->nfc || !host->nfc->write_by_sram) {
974                 pmecc_enable(host, NAND_ECC_WRITE);
975                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
976         }
977
978         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
979         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
980                 if (unlikely(time_after(jiffies, end_time))) {
981                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
982                         return -EIO;
983                 }
984                 cpu_relax();
985         }
986
987         for (i = 0; i < host->pmecc_sector_number; i++) {
988                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
989                         int pos;
990
991                         pos = i * host->pmecc_bytes_per_sector + j;
992                         chip->oob_poi[eccpos[pos]] =
993                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
994                 }
995         }
996         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
997
998         return 0;
999 }
1000
1001 static void atmel_pmecc_core_init(struct mtd_info *mtd)
1002 {
1003         struct nand_chip *nand_chip = mtd->priv;
1004         struct atmel_nand_host *host = nand_chip->priv;
1005         uint32_t val = 0;
1006         struct nand_ecclayout *ecc_layout;
1007
1008         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1009         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1010
1011         switch (host->pmecc_corr_cap) {
1012         case 2:
1013                 val = PMECC_CFG_BCH_ERR2;
1014                 break;
1015         case 4:
1016                 val = PMECC_CFG_BCH_ERR4;
1017                 break;
1018         case 8:
1019                 val = PMECC_CFG_BCH_ERR8;
1020                 break;
1021         case 12:
1022                 val = PMECC_CFG_BCH_ERR12;
1023                 break;
1024         case 24:
1025                 val = PMECC_CFG_BCH_ERR24;
1026                 break;
1027         }
1028
1029         if (host->pmecc_sector_size == 512)
1030                 val |= PMECC_CFG_SECTOR512;
1031         else if (host->pmecc_sector_size == 1024)
1032                 val |= PMECC_CFG_SECTOR1024;
1033
1034         switch (host->pmecc_sector_number) {
1035         case 1:
1036                 val |= PMECC_CFG_PAGE_1SECTOR;
1037                 break;
1038         case 2:
1039                 val |= PMECC_CFG_PAGE_2SECTORS;
1040                 break;
1041         case 4:
1042                 val |= PMECC_CFG_PAGE_4SECTORS;
1043                 break;
1044         case 8:
1045                 val |= PMECC_CFG_PAGE_8SECTORS;
1046                 break;
1047         }
1048
1049         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1050                 | PMECC_CFG_AUTO_DISABLE);
1051         pmecc_writel(host->ecc, CFG, val);
1052
1053         ecc_layout = nand_chip->ecc.layout;
1054         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1055         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1056         pmecc_writel(host->ecc, EADDR,
1057                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1058         /* See datasheet about PMECC Clock Control Register */
1059         pmecc_writel(host->ecc, CLK, 2);
1060         pmecc_writel(host->ecc, IDR, 0xff);
1061         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1062 }
1063
1064 /*
1065  * Get ECC requirement in ONFI parameters, returns -1 if ONFI
1066  * parameters is not supported.
1067  * return 0 if success to get the ECC requirement.
1068  */
1069 static int get_onfi_ecc_param(struct nand_chip *chip,
1070                 int *ecc_bits, int *sector_size)
1071 {
1072         *ecc_bits = *sector_size = 0;
1073
1074         if (chip->onfi_params.ecc_bits == 0xff)
1075                 /* TODO: the sector_size and ecc_bits need to be find in
1076                  * extended ecc parameter, currently we don't support it.
1077                  */
1078                 return -1;
1079
1080         *ecc_bits = chip->onfi_params.ecc_bits;
1081
1082         /* The default sector size (ecc codeword size) is 512 */
1083         *sector_size = 512;
1084
1085         return 0;
1086 }
1087
1088 /*
1089  * Get ecc requirement from ONFI parameters ecc requirement.
1090  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1091  * will set them according to ONFI ecc requirement. Otherwise, use the
1092  * value in DTS file.
1093  * return 0 if success. otherwise return error code.
1094  */
1095 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1096                 int *cap, int *sector_size)
1097 {
1098         /* Get ECC requirement from ONFI parameters */
1099         *cap = *sector_size = 0;
1100         if (host->nand_chip.onfi_version) {
1101                 if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
1102                         dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
1103                                 *cap, *sector_size);
1104                 else
1105                         dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
1106         } else {
1107                 dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
1108         }
1109         if (*cap == 0 && *sector_size == 0) {
1110                 *cap = 2;
1111                 *sector_size = 512;
1112         }
1113
1114         /* If dts file doesn't specify then use the one in ONFI parameters */
1115         if (host->pmecc_corr_cap == 0) {
1116                 /* use the most fitable ecc bits (the near bigger one ) */
1117                 if (*cap <= 2)
1118                         host->pmecc_corr_cap = 2;
1119                 else if (*cap <= 4)
1120                         host->pmecc_corr_cap = 4;
1121                 else if (*cap <= 8)
1122                         host->pmecc_corr_cap = 8;
1123                 else if (*cap <= 12)
1124                         host->pmecc_corr_cap = 12;
1125                 else if (*cap <= 24)
1126                         host->pmecc_corr_cap = 24;
1127                 else
1128                         return -EINVAL;
1129         }
1130         if (host->pmecc_sector_size == 0) {
1131                 /* use the most fitable sector size (the near smaller one ) */
1132                 if (*sector_size >= 1024)
1133                         host->pmecc_sector_size = 1024;
1134                 else if (*sector_size >= 512)
1135                         host->pmecc_sector_size = 512;
1136                 else
1137                         return -EINVAL;
1138         }
1139         return 0;
1140 }
1141
1142 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1143                                          struct atmel_nand_host *host)
1144 {
1145         struct mtd_info *mtd = &host->mtd;
1146         struct nand_chip *nand_chip = &host->nand_chip;
1147         struct resource *regs, *regs_pmerr, *regs_rom;
1148         int cap, sector_size, err_no;
1149
1150         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1151         if (err_no) {
1152                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1153                 return err_no;
1154         }
1155
1156         if (cap > host->pmecc_corr_cap ||
1157                         sector_size != host->pmecc_sector_size)
1158                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1159
1160         cap = host->pmecc_corr_cap;
1161         sector_size = host->pmecc_sector_size;
1162         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1163                         host->pmecc_lookup_table_offset_512 :
1164                         host->pmecc_lookup_table_offset_1024;
1165
1166         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1167                  cap, sector_size);
1168
1169         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1170         if (!regs) {
1171                 dev_warn(host->dev,
1172                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1173                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1174                 return 0;
1175         }
1176
1177         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1178         if (IS_ERR(host->ecc)) {
1179                 dev_err(host->dev, "ioremap failed\n");
1180                 err_no = PTR_ERR(host->ecc);
1181                 goto err;
1182         }
1183
1184         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1185         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1186         if (IS_ERR(host->pmerrloc_base)) {
1187                 dev_err(host->dev,
1188                         "Can not get I/O resource for PMECC ERRLOC controller!\n");
1189                 err_no = PTR_ERR(host->pmerrloc_base);
1190                 goto err;
1191         }
1192
1193         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1194         host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1195         if (IS_ERR(host->pmecc_rom_base)) {
1196                 dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1197                 err_no = PTR_ERR(host->pmecc_rom_base);
1198                 goto err;
1199         }
1200
1201         /* ECC is calculated for the whole page (1 step) */
1202         nand_chip->ecc.size = mtd->writesize;
1203
1204         /* set ECC page size and oob layout */
1205         switch (mtd->writesize) {
1206         case 2048:
1207                 host->pmecc_degree = (sector_size == 512) ?
1208                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1209                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1210                 host->pmecc_sector_number = mtd->writesize / sector_size;
1211                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1212                         cap, sector_size);
1213                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1214                 host->pmecc_index_of = host->pmecc_rom_base +
1215                         host->pmecc_lookup_table_offset;
1216
1217                 nand_chip->ecc.steps = 1;
1218                 nand_chip->ecc.strength = cap;
1219                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1220                                        host->pmecc_sector_number;
1221                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1222                         dev_err(host->dev, "No room for ECC bytes\n");
1223                         err_no = -EINVAL;
1224                         goto err;
1225                 }
1226                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1227                                         mtd->oobsize,
1228                                         nand_chip->ecc.bytes);
1229                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1230                 break;
1231         case 512:
1232         case 1024:
1233         case 4096:
1234                 /* TODO */
1235                 dev_warn(host->dev,
1236                         "Unsupported page size for PMECC, use Software ECC\n");
1237         default:
1238                 /* page size not handled by HW ECC */
1239                 /* switching back to soft ECC */
1240                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1241                 return 0;
1242         }
1243
1244         /* Allocate data for PMECC computation */
1245         err_no = pmecc_data_alloc(host);
1246         if (err_no) {
1247                 dev_err(host->dev,
1248                                 "Cannot allocate memory for PMECC computation!\n");
1249                 goto err;
1250         }
1251
1252         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1253         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1254
1255         atmel_pmecc_core_init(mtd);
1256
1257         return 0;
1258
1259 err:
1260         return err_no;
1261 }
1262
1263 /*
1264  * Calculate HW ECC
1265  *
1266  * function called after a write
1267  *
1268  * mtd:        MTD block structure
1269  * dat:        raw data (unused)
1270  * ecc_code:   buffer for ECC
1271  */
1272 static int atmel_nand_calculate(struct mtd_info *mtd,
1273                 const u_char *dat, unsigned char *ecc_code)
1274 {
1275         struct nand_chip *nand_chip = mtd->priv;
1276         struct atmel_nand_host *host = nand_chip->priv;
1277         unsigned int ecc_value;
1278
1279         /* get the first 2 ECC bytes */
1280         ecc_value = ecc_readl(host->ecc, PR);
1281
1282         ecc_code[0] = ecc_value & 0xFF;
1283         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1284
1285         /* get the last 2 ECC bytes */
1286         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1287
1288         ecc_code[2] = ecc_value & 0xFF;
1289         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1290
1291         return 0;
1292 }
1293
1294 /*
1295  * HW ECC read page function
1296  *
1297  * mtd:        mtd info structure
1298  * chip:       nand chip info structure
1299  * buf:        buffer to store read data
1300  * oob_required:    caller expects OOB data read to chip->oob_poi
1301  */
1302 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1303                                 uint8_t *buf, int oob_required, int page)
1304 {
1305         int eccsize = chip->ecc.size;
1306         int eccbytes = chip->ecc.bytes;
1307         uint32_t *eccpos = chip->ecc.layout->eccpos;
1308         uint8_t *p = buf;
1309         uint8_t *oob = chip->oob_poi;
1310         uint8_t *ecc_pos;
1311         int stat;
1312         unsigned int max_bitflips = 0;
1313
1314         /*
1315          * Errata: ALE is incorrectly wired up to the ECC controller
1316          * on the AP7000, so it will include the address cycles in the
1317          * ECC calculation.
1318          *
1319          * Workaround: Reset the parity registers before reading the
1320          * actual data.
1321          */
1322         struct atmel_nand_host *host = chip->priv;
1323         if (host->board.need_reset_workaround)
1324                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1325
1326         /* read the page */
1327         chip->read_buf(mtd, p, eccsize);
1328
1329         /* move to ECC position if needed */
1330         if (eccpos[0] != 0) {
1331                 /* This only works on large pages
1332                  * because the ECC controller waits for
1333                  * NAND_CMD_RNDOUTSTART after the
1334                  * NAND_CMD_RNDOUT.
1335                  * anyway, for small pages, the eccpos[0] == 0
1336                  */
1337                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1338                                 mtd->writesize + eccpos[0], -1);
1339         }
1340
1341         /* the ECC controller needs to read the ECC just after the data */
1342         ecc_pos = oob + eccpos[0];
1343         chip->read_buf(mtd, ecc_pos, eccbytes);
1344
1345         /* check if there's an error */
1346         stat = chip->ecc.correct(mtd, p, oob, NULL);
1347
1348         if (stat < 0) {
1349                 mtd->ecc_stats.failed++;
1350         } else {
1351                 mtd->ecc_stats.corrected += stat;
1352                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1353         }
1354
1355         /* get back to oob start (end of page) */
1356         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1357
1358         /* read the oob */
1359         chip->read_buf(mtd, oob, mtd->oobsize);
1360
1361         return max_bitflips;
1362 }
1363
1364 /*
1365  * HW ECC Correction
1366  *
1367  * function called after a read
1368  *
1369  * mtd:        MTD block structure
1370  * dat:        raw data read from the chip
1371  * read_ecc:   ECC from the chip (unused)
1372  * isnull:     unused
1373  *
1374  * Detect and correct a 1 bit error for a page
1375  */
1376 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1377                 u_char *read_ecc, u_char *isnull)
1378 {
1379         struct nand_chip *nand_chip = mtd->priv;
1380         struct atmel_nand_host *host = nand_chip->priv;
1381         unsigned int ecc_status;
1382         unsigned int ecc_word, ecc_bit;
1383
1384         /* get the status from the Status Register */
1385         ecc_status = ecc_readl(host->ecc, SR);
1386
1387         /* if there's no error */
1388         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1389                 return 0;
1390
1391         /* get error bit offset (4 bits) */
1392         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1393         /* get word address (12 bits) */
1394         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1395         ecc_word >>= 4;
1396
1397         /* if there are multiple errors */
1398         if (ecc_status & ATMEL_ECC_MULERR) {
1399                 /* check if it is a freshly erased block
1400                  * (filled with 0xff) */
1401                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1402                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1403                         /* the block has just been erased, return OK */
1404                         return 0;
1405                 }
1406                 /* it doesn't seems to be a freshly
1407                  * erased block.
1408                  * We can't correct so many errors */
1409                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1410                                 " Unable to correct.\n");
1411                 return -EIO;
1412         }
1413
1414         /* if there's a single bit error : we can correct it */
1415         if (ecc_status & ATMEL_ECC_ECCERR) {
1416                 /* there's nothing much to do here.
1417                  * the bit error is on the ECC itself.
1418                  */
1419                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1420                                 " Nothing to correct\n");
1421                 return 0;
1422         }
1423
1424         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1425                         " (word offset in the page :"
1426                         " 0x%x bit offset : 0x%x)\n",
1427                         ecc_word, ecc_bit);
1428         /* correct the error */
1429         if (nand_chip->options & NAND_BUSWIDTH_16) {
1430                 /* 16 bits words */
1431                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1432         } else {
1433                 /* 8 bits words */
1434                 dat[ecc_word] ^= (1 << ecc_bit);
1435         }
1436         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1437         return 1;
1438 }
1439
1440 /*
1441  * Enable HW ECC : unused on most chips
1442  */
1443 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1444 {
1445         struct nand_chip *nand_chip = mtd->priv;
1446         struct atmel_nand_host *host = nand_chip->priv;
1447
1448         if (host->board.need_reset_workaround)
1449                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1450 }
1451
1452 #if defined(CONFIG_OF)
1453 static int atmel_of_init_port(struct atmel_nand_host *host,
1454                               struct device_node *np)
1455 {
1456         u32 val;
1457         u32 offset[2];
1458         int ecc_mode;
1459         struct atmel_nand_data *board = &host->board;
1460         enum of_gpio_flags flags;
1461
1462         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1463                 if (val >= 32) {
1464                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1465                         return -EINVAL;
1466                 }
1467                 board->ale = val;
1468         }
1469
1470         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1471                 if (val >= 32) {
1472                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1473                         return -EINVAL;
1474                 }
1475                 board->cle = val;
1476         }
1477
1478         ecc_mode = of_get_nand_ecc_mode(np);
1479
1480         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1481
1482         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1483
1484         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1485
1486         if (of_get_nand_bus_width(np) == 16)
1487                 board->bus_width_16 = 1;
1488
1489         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1490         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1491
1492         board->enable_pin = of_get_gpio(np, 1);
1493         board->det_pin = of_get_gpio(np, 2);
1494
1495         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1496
1497         /* load the nfc driver if there is */
1498         of_platform_populate(np, NULL, NULL, host->dev);
1499
1500         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1501                 return 0;       /* Not using PMECC */
1502
1503         /* use PMECC, get correction capability, sector size and lookup
1504          * table offset.
1505          * If correction bits and sector size are not specified, then find
1506          * them from NAND ONFI parameters.
1507          */
1508         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1509                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1510                                 (val != 24)) {
1511                         dev_err(host->dev,
1512                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1513                                 val);
1514                         return -EINVAL;
1515                 }
1516                 host->pmecc_corr_cap = (u8)val;
1517         }
1518
1519         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1520                 if ((val != 512) && (val != 1024)) {
1521                         dev_err(host->dev,
1522                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1523                                 val);
1524                         return -EINVAL;
1525                 }
1526                 host->pmecc_sector_size = (u16)val;
1527         }
1528
1529         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1530                         offset, 2) != 0) {
1531                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1532                 return -EINVAL;
1533         }
1534         if (!offset[0] && !offset[1]) {
1535                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1536                 return -EINVAL;
1537         }
1538         host->pmecc_lookup_table_offset_512 = offset[0];
1539         host->pmecc_lookup_table_offset_1024 = offset[1];
1540
1541         return 0;
1542 }
1543 #else
1544 static int atmel_of_init_port(struct atmel_nand_host *host,
1545                               struct device_node *np)
1546 {
1547         return -EINVAL;
1548 }
1549 #endif
1550
1551 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1552                                          struct atmel_nand_host *host)
1553 {
1554         struct mtd_info *mtd = &host->mtd;
1555         struct nand_chip *nand_chip = &host->nand_chip;
1556         struct resource         *regs;
1557
1558         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1559         if (!regs) {
1560                 dev_err(host->dev,
1561                         "Can't get I/O resource regs, use software ECC\n");
1562                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1563                 return 0;
1564         }
1565
1566         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1567         if (IS_ERR(host->ecc)) {
1568                 dev_err(host->dev, "ioremap failed\n");
1569                 return PTR_ERR(host->ecc);
1570         }
1571
1572         /* ECC is calculated for the whole page (1 step) */
1573         nand_chip->ecc.size = mtd->writesize;
1574
1575         /* set ECC page size and oob layout */
1576         switch (mtd->writesize) {
1577         case 512:
1578                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1579                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1580                 break;
1581         case 1024:
1582                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1583                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1584                 break;
1585         case 2048:
1586                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1587                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1588                 break;
1589         case 4096:
1590                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1591                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1592                 break;
1593         default:
1594                 /* page size not handled by HW ECC */
1595                 /* switching back to soft ECC */
1596                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1597                 return 0;
1598         }
1599
1600         /* set up for HW ECC */
1601         nand_chip->ecc.calculate = atmel_nand_calculate;
1602         nand_chip->ecc.correct = atmel_nand_correct;
1603         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1604         nand_chip->ecc.read_page = atmel_nand_read_page;
1605         nand_chip->ecc.bytes = 4;
1606         nand_chip->ecc.strength = 1;
1607
1608         return 0;
1609 }
1610
1611 /* SMC interrupt service routine */
1612 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1613 {
1614         struct atmel_nand_host *host = dev_id;
1615         u32 status, mask, pending;
1616         irqreturn_t ret = IRQ_HANDLED;
1617
1618         status = nfc_readl(host->nfc->hsmc_regs, SR);
1619         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1620         pending = status & mask;
1621
1622         if (pending & NFC_SR_XFR_DONE) {
1623                 complete(&host->nfc->comp_nfc);
1624                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1625         } else if (pending & NFC_SR_RB_EDGE) {
1626                 complete(&host->nfc->comp_nfc);
1627                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1628         } else if (pending & NFC_SR_CMD_DONE) {
1629                 complete(&host->nfc->comp_nfc);
1630                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1631         } else {
1632                 ret = IRQ_NONE;
1633         }
1634
1635         return ret;
1636 }
1637
1638 /* NFC(Nand Flash Controller) related functions */
1639 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1640 {
1641         unsigned long timeout;
1642         init_completion(&host->nfc->comp_nfc);
1643
1644         /* Enable interrupt that need to wait for */
1645         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1646
1647         timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1648                         msecs_to_jiffies(NFC_TIME_OUT_MS));
1649         if (timeout)
1650                 return 0;
1651
1652         /* Time out to wait for the interrupt */
1653         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1654         return -ETIMEDOUT;
1655 }
1656
1657 static int nfc_send_command(struct atmel_nand_host *host,
1658         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1659 {
1660         unsigned long timeout;
1661         dev_dbg(host->dev,
1662                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1663                 cmd, addr, cycle0);
1664
1665         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1666         while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1667                         & NFCADDR_CMD_NFCBUSY) {
1668                 if (time_after(jiffies, timeout)) {
1669                         dev_err(host->dev,
1670                                 "Time out to wait CMD_NFCBUSY ready!\n");
1671                         return -ETIMEDOUT;
1672                 }
1673         }
1674         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1675         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1676         return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1677 }
1678
1679 static int nfc_device_ready(struct mtd_info *mtd)
1680 {
1681         struct nand_chip *nand_chip = mtd->priv;
1682         struct atmel_nand_host *host = nand_chip->priv;
1683         if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1684                 return 1;
1685         return 0;
1686 }
1687
1688 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1689 {
1690         struct nand_chip *nand_chip = mtd->priv;
1691         struct atmel_nand_host *host = nand_chip->priv;
1692
1693         if (chip == -1)
1694                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1695         else
1696                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1697 }
1698
1699 static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
1700                 unsigned int *addr1234, unsigned int *cycle0)
1701 {
1702         struct nand_chip *chip = mtd->priv;
1703
1704         int acycle = 0;
1705         unsigned char addr_bytes[8];
1706         int index = 0, bit_shift;
1707
1708         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1709
1710         *cycle0 = 0;
1711         *addr1234 = 0;
1712
1713         if (column != -1) {
1714                 if (chip->options & NAND_BUSWIDTH_16)
1715                         column >>= 1;
1716                 addr_bytes[acycle++] = column & 0xff;
1717                 if (mtd->writesize > 512)
1718                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1719         }
1720
1721         if (page_addr != -1) {
1722                 addr_bytes[acycle++] = page_addr & 0xff;
1723                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1724                 if (chip->chipsize > (128 << 20))
1725                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1726         }
1727
1728         if (acycle > 4)
1729                 *cycle0 = addr_bytes[index++];
1730
1731         for (bit_shift = 0; index < acycle; bit_shift += 8)
1732                 *addr1234 += addr_bytes[index++] << bit_shift;
1733
1734         /* return acycle in cmd register */
1735         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1736 }
1737
1738 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1739                                 int column, int page_addr)
1740 {
1741         struct nand_chip *chip = mtd->priv;
1742         struct atmel_nand_host *host = chip->priv;
1743         unsigned long timeout;
1744         unsigned int nfc_addr_cmd = 0;
1745
1746         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1747
1748         /* Set default settings: no cmd2, no addr cycle. read from nand */
1749         unsigned int cmd2 = 0;
1750         unsigned int vcmd2 = 0;
1751         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1752         int csid = NFCADDR_CMD_CSID_3;
1753         int dataen = NFCADDR_CMD_DATADIS;
1754         int nfcwr = NFCADDR_CMD_NFCRD;
1755         unsigned int addr1234 = 0;
1756         unsigned int cycle0 = 0;
1757         bool do_addr = true;
1758         host->nfc->data_in_sram = NULL;
1759
1760         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1761              __func__, command, column, page_addr);
1762
1763         switch (command) {
1764         case NAND_CMD_RESET:
1765                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1766                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1767                 udelay(chip->chip_delay);
1768
1769                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1770                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1771                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1772                         if (time_after(jiffies, timeout)) {
1773                                 dev_err(host->dev,
1774                                         "Time out to wait status ready!\n");
1775                                 break;
1776                         }
1777                 }
1778                 return;
1779         case NAND_CMD_STATUS:
1780                 do_addr = false;
1781                 break;
1782         case NAND_CMD_PARAM:
1783         case NAND_CMD_READID:
1784                 do_addr = false;
1785                 acycle = NFCADDR_CMD_ACYCLE_1;
1786                 if (column != -1)
1787                         addr1234 = column;
1788                 break;
1789         case NAND_CMD_RNDOUT:
1790                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1791                 vcmd2 = NFCADDR_CMD_VCMD2;
1792                 break;
1793         case NAND_CMD_READ0:
1794         case NAND_CMD_READOOB:
1795                 if (command == NAND_CMD_READOOB) {
1796                         column += mtd->writesize;
1797                         command = NAND_CMD_READ0; /* only READ0 is valid */
1798                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1799                 }
1800                 if (host->nfc->use_nfc_sram) {
1801                         /* Enable Data transfer to sram */
1802                         dataen = NFCADDR_CMD_DATAEN;
1803
1804                         /* Need enable PMECC now, since NFC will transfer
1805                          * data in bus after sending nfc read command.
1806                          */
1807                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1808                                 pmecc_enable(host, NAND_ECC_READ);
1809                 }
1810
1811                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1812                 vcmd2 = NFCADDR_CMD_VCMD2;
1813                 break;
1814         /* For prgramming command, the cmd need set to write enable */
1815         case NAND_CMD_PAGEPROG:
1816         case NAND_CMD_SEQIN:
1817         case NAND_CMD_RNDIN:
1818                 nfcwr = NFCADDR_CMD_NFCWR;
1819                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1820                         dataen = NFCADDR_CMD_DATAEN;
1821                 break;
1822         default:
1823                 break;
1824         }
1825
1826         if (do_addr)
1827                 acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
1828                                 &cycle0);
1829
1830         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1831         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1832
1833         if (dataen == NFCADDR_CMD_DATAEN)
1834                 if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1835                         dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1836
1837         /*
1838          * Program and erase have their own busy handlers status, sequential
1839          * in, and deplete1 need no delay.
1840          */
1841         switch (command) {
1842         case NAND_CMD_CACHEDPROG:
1843         case NAND_CMD_PAGEPROG:
1844         case NAND_CMD_ERASE1:
1845         case NAND_CMD_ERASE2:
1846         case NAND_CMD_RNDIN:
1847         case NAND_CMD_STATUS:
1848         case NAND_CMD_RNDOUT:
1849         case NAND_CMD_SEQIN:
1850         case NAND_CMD_READID:
1851                 return;
1852
1853         case NAND_CMD_READ0:
1854                 if (dataen == NFCADDR_CMD_DATAEN) {
1855                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1856                                 nfc_get_sram_off(host);
1857                         return;
1858                 }
1859                 /* fall through */
1860         default:
1861                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1862         }
1863 }
1864
1865 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1866                         uint32_t offset, int data_len, const uint8_t *buf,
1867                         int oob_required, int page, int cached, int raw)
1868 {
1869         int cfg, len;
1870         int status = 0;
1871         struct atmel_nand_host *host = chip->priv;
1872         void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1873
1874         /* Subpage write is not supported */
1875         if (offset || (data_len < mtd->writesize))
1876                 return -EINVAL;
1877
1878         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1879         len = mtd->writesize;
1880
1881         if (unlikely(raw)) {
1882                 len += mtd->oobsize;
1883                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1884         } else
1885                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1886
1887         /* Copy page data to sram that will write to nand via NFC */
1888         if (use_dma) {
1889                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1890                         /* Fall back to use cpu copy */
1891                         memcpy32_toio(sram, buf, len);
1892         } else {
1893                 memcpy32_toio(sram, buf, len);
1894         }
1895
1896         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1897                 /*
1898                  * When use NFC sram, need set up PMECC before send
1899                  * NAND_CMD_SEQIN command. Since when the nand command
1900                  * is sent, nfc will do transfer from sram and nand.
1901                  */
1902                 pmecc_enable(host, NAND_ECC_WRITE);
1903
1904         host->nfc->will_write_sram = true;
1905         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1906         host->nfc->will_write_sram = false;
1907
1908         if (likely(!raw))
1909                 /* Need to write ecc into oob */
1910                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1911
1912         if (status < 0)
1913                 return status;
1914
1915         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1916         status = chip->waitfunc(mtd, chip);
1917
1918         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1919                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1920
1921         if (status & NAND_STATUS_FAIL)
1922                 return -EIO;
1923
1924         return 0;
1925 }
1926
1927 static int nfc_sram_init(struct mtd_info *mtd)
1928 {
1929         struct nand_chip *chip = mtd->priv;
1930         struct atmel_nand_host *host = chip->priv;
1931         int res = 0;
1932
1933         /* Initialize the NFC CFG register */
1934         unsigned int cfg_nfc = 0;
1935
1936         /* set page size and oob layout */
1937         switch (mtd->writesize) {
1938         case 512:
1939                 cfg_nfc = NFC_CFG_PAGESIZE_512;
1940                 break;
1941         case 1024:
1942                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
1943                 break;
1944         case 2048:
1945                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
1946                 break;
1947         case 4096:
1948                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
1949                 break;
1950         case 8192:
1951                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
1952                 break;
1953         default:
1954                 dev_err(host->dev, "Unsupported page size for NFC.\n");
1955                 res = -ENXIO;
1956                 return res;
1957         }
1958
1959         /* oob bytes size = (NFCSPARESIZE + 1) * 4
1960          * Max support spare size is 512 bytes. */
1961         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1962                 & NFC_CFG_NFC_SPARESIZE);
1963         /* default set a max timeout */
1964         cfg_nfc |= NFC_CFG_RSPARE |
1965                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1966
1967         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1968
1969         host->nfc->will_write_sram = false;
1970         nfc_set_sram_bank(host, 0);
1971
1972         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1973         if (host->nfc->write_by_sram) {
1974                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1975                                 chip->ecc.mode == NAND_ECC_NONE)
1976                         chip->write_page = nfc_sram_write_page;
1977                 else
1978                         host->nfc->write_by_sram = false;
1979         }
1980
1981         dev_info(host->dev, "Using NFC Sram read %s\n",
1982                         host->nfc->write_by_sram ? "and write" : "");
1983         return 0;
1984 }
1985
1986 static struct platform_driver atmel_nand_nfc_driver;
1987 /*
1988  * Probe for the NAND device.
1989  */
1990 static int atmel_nand_probe(struct platform_device *pdev)
1991 {
1992         struct atmel_nand_host *host;
1993         struct mtd_info *mtd;
1994         struct nand_chip *nand_chip;
1995         struct resource *mem;
1996         struct mtd_part_parser_data ppdata = {};
1997         int res, irq;
1998
1999         /* Allocate memory for the device structure (and zero it) */
2000         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2001         if (!host) {
2002                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
2003                 return -ENOMEM;
2004         }
2005
2006         res = platform_driver_register(&atmel_nand_nfc_driver);
2007         if (res)
2008                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2009
2010         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2011         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2012         if (IS_ERR(host->io_base)) {
2013                 dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
2014                 res = PTR_ERR(host->io_base);
2015                 goto err_nand_ioremap;
2016         }
2017         host->io_phys = (dma_addr_t)mem->start;
2018
2019         mtd = &host->mtd;
2020         nand_chip = &host->nand_chip;
2021         host->dev = &pdev->dev;
2022         if (pdev->dev.of_node) {
2023                 res = atmel_of_init_port(host, pdev->dev.of_node);
2024                 if (res)
2025                         goto err_nand_ioremap;
2026         } else {
2027                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2028                        sizeof(struct atmel_nand_data));
2029         }
2030
2031         nand_chip->priv = host;         /* link the private data structures */
2032         mtd->priv = nand_chip;
2033         mtd->owner = THIS_MODULE;
2034
2035         /* Set address of NAND IO lines */
2036         nand_chip->IO_ADDR_R = host->io_base;
2037         nand_chip->IO_ADDR_W = host->io_base;
2038
2039         if (nand_nfc.is_initialized) {
2040                 /* NFC driver is probed and initialized */
2041                 host->nfc = &nand_nfc;
2042
2043                 nand_chip->select_chip = nfc_select_chip;
2044                 nand_chip->dev_ready = nfc_device_ready;
2045                 nand_chip->cmdfunc = nfc_nand_command;
2046
2047                 /* Initialize the interrupt for NFC */
2048                 irq = platform_get_irq(pdev, 0);
2049                 if (irq < 0) {
2050                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2051                         res = irq;
2052                         goto err_nand_ioremap;
2053                 }
2054
2055                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2056                                 0, "hsmc", host);
2057                 if (res) {
2058                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2059                                 irq);
2060                         goto err_nand_ioremap;
2061                 }
2062         } else {
2063                 res = atmel_nand_set_enable_ready_pins(mtd);
2064                 if (res)
2065                         goto err_nand_ioremap;
2066
2067                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2068         }
2069
2070         nand_chip->ecc.mode = host->board.ecc_mode;
2071         nand_chip->chip_delay = 20;             /* 20us command delay time */
2072
2073         if (host->board.bus_width_16)   /* 16-bit bus width */
2074                 nand_chip->options |= NAND_BUSWIDTH_16;
2075
2076         nand_chip->read_buf = atmel_read_buf;
2077         nand_chip->write_buf = atmel_write_buf;
2078
2079         platform_set_drvdata(pdev, host);
2080         atmel_nand_enable(host);
2081
2082         if (gpio_is_valid(host->board.det_pin)) {
2083                 res = devm_gpio_request(&pdev->dev,
2084                                 host->board.det_pin, "nand_det");
2085                 if (res < 0) {
2086                         dev_err(&pdev->dev,
2087                                 "can't request det gpio %d\n",
2088                                 host->board.det_pin);
2089                         goto err_no_card;
2090                 }
2091
2092                 res = gpio_direction_input(host->board.det_pin);
2093                 if (res < 0) {
2094                         dev_err(&pdev->dev,
2095                                 "can't request input direction det gpio %d\n",
2096                                 host->board.det_pin);
2097                         goto err_no_card;
2098                 }
2099
2100                 if (gpio_get_value(host->board.det_pin)) {
2101                         printk(KERN_INFO "No SmartMedia card inserted.\n");
2102                         res = -ENXIO;
2103                         goto err_no_card;
2104                 }
2105         }
2106
2107         if (host->board.on_flash_bbt || on_flash_bbt) {
2108                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2109                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2110         }
2111
2112         if (!host->board.has_dma)
2113                 use_dma = 0;
2114
2115         if (use_dma) {
2116                 dma_cap_mask_t mask;
2117
2118                 dma_cap_zero(mask);
2119                 dma_cap_set(DMA_MEMCPY, mask);
2120                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2121                 if (!host->dma_chan) {
2122                         dev_err(host->dev, "Failed to request DMA channel\n");
2123                         use_dma = 0;
2124                 }
2125         }
2126         if (use_dma)
2127                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2128                                         dma_chan_name(host->dma_chan));
2129         else
2130                 dev_info(host->dev, "No DMA support for NAND access.\n");
2131
2132         /* first scan to find the device and get the page size */
2133         if (nand_scan_ident(mtd, 1, NULL)) {
2134                 res = -ENXIO;
2135                 goto err_scan_ident;
2136         }
2137
2138         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2139                 if (host->has_pmecc)
2140                         res = atmel_pmecc_nand_init_params(pdev, host);
2141                 else
2142                         res = atmel_hw_nand_init_params(pdev, host);
2143
2144                 if (res != 0)
2145                         goto err_hw_ecc;
2146         }
2147
2148         /* initialize the nfc configuration register */
2149         if (host->nfc && host->nfc->use_nfc_sram) {
2150                 res = nfc_sram_init(mtd);
2151                 if (res) {
2152                         host->nfc->use_nfc_sram = false;
2153                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2154                 }
2155         }
2156
2157         /* second phase scan */
2158         if (nand_scan_tail(mtd)) {
2159                 res = -ENXIO;
2160                 goto err_scan_tail;
2161         }
2162
2163         mtd->name = "atmel_nand";
2164         ppdata.of_node = pdev->dev.of_node;
2165         res = mtd_device_parse_register(mtd, NULL, &ppdata,
2166                         host->board.parts, host->board.num_parts);
2167         if (!res)
2168                 return res;
2169
2170 err_scan_tail:
2171         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2172                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2173 err_hw_ecc:
2174 err_scan_ident:
2175 err_no_card:
2176         atmel_nand_disable(host);
2177         if (host->dma_chan)
2178                 dma_release_channel(host->dma_chan);
2179 err_nand_ioremap:
2180         platform_driver_unregister(&atmel_nand_nfc_driver);
2181         return res;
2182 }
2183
2184 /*
2185  * Remove a NAND device.
2186  */
2187 static int atmel_nand_remove(struct platform_device *pdev)
2188 {
2189         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2190         struct mtd_info *mtd = &host->mtd;
2191
2192         nand_release(mtd);
2193
2194         atmel_nand_disable(host);
2195
2196         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2197                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2198                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2199                                 PMERRLOC_DISABLE);
2200         }
2201
2202         if (host->dma_chan)
2203                 dma_release_channel(host->dma_chan);
2204
2205         platform_driver_unregister(&atmel_nand_nfc_driver);
2206
2207         return 0;
2208 }
2209
2210 #if defined(CONFIG_OF)
2211 static const struct of_device_id atmel_nand_dt_ids[] = {
2212         { .compatible = "atmel,at91rm9200-nand" },
2213         { /* sentinel */ }
2214 };
2215
2216 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2217 #endif
2218
2219 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2220 {
2221         struct atmel_nfc *nfc = &nand_nfc;
2222         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2223
2224         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2225         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2226         if (IS_ERR(nfc->base_cmd_regs))
2227                 return PTR_ERR(nfc->base_cmd_regs);
2228
2229         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2230         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2231         if (IS_ERR(nfc->hsmc_regs))
2232                 return PTR_ERR(nfc->hsmc_regs);
2233
2234         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2235         if (nfc_sram) {
2236                 nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2237                 if (IS_ERR(nfc->sram_bank0)) {
2238                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2239                                         PTR_ERR(nfc->sram_bank0));
2240                 } else {
2241                         nfc->use_nfc_sram = true;
2242                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2243
2244                         if (pdev->dev.of_node)
2245                                 nfc->write_by_sram = of_property_read_bool(
2246                                                 pdev->dev.of_node,
2247                                                 "atmel,write-by-sram");
2248                 }
2249         }
2250
2251         nfc->is_initialized = true;
2252         dev_info(&pdev->dev, "NFC is probed.\n");
2253         return 0;
2254 }
2255
2256 #if defined(CONFIG_OF)
2257 static struct of_device_id atmel_nand_nfc_match[] = {
2258         { .compatible = "atmel,sama5d3-nfc" },
2259         { /* sentinel */ }
2260 };
2261 #endif
2262
2263 static struct platform_driver atmel_nand_nfc_driver = {
2264         .driver = {
2265                 .name = "atmel_nand_nfc",
2266                 .owner = THIS_MODULE,
2267                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2268         },
2269         .probe = atmel_nand_nfc_probe,
2270 };
2271
2272 static struct platform_driver atmel_nand_driver = {
2273         .probe          = atmel_nand_probe,
2274         .remove         = atmel_nand_remove,
2275         .driver         = {
2276                 .name   = "atmel_nand",
2277                 .owner  = THIS_MODULE,
2278                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2279         },
2280 };
2281
2282 module_platform_driver(atmel_nand_driver);
2283
2284 MODULE_LICENSE("GPL");
2285 MODULE_AUTHOR("Rick Bronson");
2286 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2287 MODULE_ALIAS("platform:atmel_nand");