]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/fsl_elbc_nand.c
Merge remote-tracking branch 'dt-rh/for-next'
[karo-tx-linux.git] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright © 2006-2007, 2010 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *          Jack Lan <jack.lan@freescale.com>
8  *          Roy Zang <tie-fei.zang@freescale.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  */
24
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/nand.h>
39 #include <linux/mtd/nand_ecc.h>
40 #include <linux/mtd/partitions.h>
41
42 #include <asm/io.h>
43 #include <asm/fsl_lbc.h>
44
45 #define MAX_BANKS 8
46 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
47 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
48
49 /* mtd information per set */
50
51 struct fsl_elbc_mtd {
52         struct mtd_info mtd;
53         struct nand_chip chip;
54         struct fsl_lbc_ctrl *ctrl;
55
56         struct device *dev;
57         int bank;               /* Chip select bank number           */
58         u8 __iomem *vbase;      /* Chip select base virtual address  */
59         int page_size;          /* NAND page size (0=512, 1=2048)    */
60         unsigned int fmr;       /* FCM Flash Mode Register value     */
61 };
62
63 /* Freescale eLBC FCM controller information */
64
65 struct fsl_elbc_fcm_ctrl {
66         struct nand_hw_control controller;
67         struct fsl_elbc_mtd *chips[MAX_BANKS];
68
69         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
70         unsigned int page;       /* Last page written to / read from      */
71         unsigned int read_bytes; /* Number of bytes read during command   */
72         unsigned int column;     /* Saved column from SEQIN               */
73         unsigned int index;      /* Pointer to next byte to 'read'        */
74         unsigned int status;     /* status read from LTESR after last op  */
75         unsigned int mdr;        /* UPM/FCM Data Register value           */
76         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
77         unsigned int oob;        /* Non zero if operating on OOB data     */
78         unsigned int counter;    /* counter for the initializations       */
79         unsigned int max_bitflips;  /* Saved during READ0 cmd             */
80 };
81
82 /* These map to the positions used by the FCM hardware ECC generator */
83
84 /* Small Page FLASH with FMR[ECCM] = 0 */
85 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
86         .eccbytes = 3,
87         .eccpos = {6, 7, 8},
88         .oobfree = { {0, 5}, {9, 7} },
89 };
90
91 /* Small Page FLASH with FMR[ECCM] = 1 */
92 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
93         .eccbytes = 3,
94         .eccpos = {8, 9, 10},
95         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
96 };
97
98 /* Large Page FLASH with FMR[ECCM] = 0 */
99 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
100         .eccbytes = 12,
101         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
102         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
103 };
104
105 /* Large Page FLASH with FMR[ECCM] = 1 */
106 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
107         .eccbytes = 12,
108         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
109         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
110 };
111
112 /*
113  * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
114  * interfere with ECC positions, that's why we implement our own descriptors.
115  * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
116  */
117 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
118 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
119
120 static struct nand_bbt_descr bbt_main_descr = {
121         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
122                    NAND_BBT_2BIT | NAND_BBT_VERSION,
123         .offs = 11,
124         .len = 4,
125         .veroffs = 15,
126         .maxblocks = 4,
127         .pattern = bbt_pattern,
128 };
129
130 static struct nand_bbt_descr bbt_mirror_descr = {
131         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
132                    NAND_BBT_2BIT | NAND_BBT_VERSION,
133         .offs = 11,
134         .len = 4,
135         .veroffs = 15,
136         .maxblocks = 4,
137         .pattern = mirror_pattern,
138 };
139
140 /*=================================*/
141
142 /*
143  * Set up the FCM hardware block and page address fields, and the fcm
144  * structure addr field to point to the correct FCM buffer in memory
145  */
146 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
147 {
148         struct nand_chip *chip = mtd->priv;
149         struct fsl_elbc_mtd *priv = chip->priv;
150         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
151         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
152         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
153         int buf_num;
154
155         elbc_fcm_ctrl->page = page_addr;
156
157         if (priv->page_size) {
158                 /*
159                  * large page size chip : FPAR[PI] save the lowest 6 bits,
160                  *                        FBAR[BLK] save the other bits.
161                  */
162                 out_be32(&lbc->fbar, page_addr >> 6);
163                 out_be32(&lbc->fpar,
164                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
165                          (oob ? FPAR_LP_MS : 0) | column);
166                 buf_num = (page_addr & 1) << 2;
167         } else {
168                 /*
169                  * small page size chip : FPAR[PI] save the lowest 5 bits,
170                  *                        FBAR[BLK] save the other bits.
171                  */
172                 out_be32(&lbc->fbar, page_addr >> 5);
173                 out_be32(&lbc->fpar,
174                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
175                          (oob ? FPAR_SP_MS : 0) | column);
176                 buf_num = page_addr & 7;
177         }
178
179         elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
180         elbc_fcm_ctrl->index = column;
181
182         /* for OOB data point to the second half of the buffer */
183         if (oob)
184                 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
185
186         dev_vdbg(priv->dev, "set_addr: bank=%d, "
187                             "elbc_fcm_ctrl->addr=0x%p (0x%p), "
188                             "index %x, pes %d ps %d\n",
189                  buf_num, elbc_fcm_ctrl->addr, priv->vbase,
190                  elbc_fcm_ctrl->index,
191                  chip->phys_erase_shift, chip->page_shift);
192 }
193
194 /*
195  * execute FCM command and wait for it to complete
196  */
197 static int fsl_elbc_run_command(struct mtd_info *mtd)
198 {
199         struct nand_chip *chip = mtd->priv;
200         struct fsl_elbc_mtd *priv = chip->priv;
201         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
202         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
203         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
204
205         /* Setup the FMR[OP] to execute without write protection */
206         out_be32(&lbc->fmr, priv->fmr | 3);
207         if (elbc_fcm_ctrl->use_mdr)
208                 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
209
210         dev_vdbg(priv->dev,
211                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
212                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
213         dev_vdbg(priv->dev,
214                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
215                  "fbcr=%08x bank=%d\n",
216                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
217                  in_be32(&lbc->fbcr), priv->bank);
218
219         ctrl->irq_status = 0;
220         /* execute special operation */
221         out_be32(&lbc->lsor, priv->bank);
222
223         /* wait for FCM complete flag or timeout */
224         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
225                            FCM_TIMEOUT_MSECS * HZ/1000);
226         elbc_fcm_ctrl->status = ctrl->irq_status;
227         /* store mdr value in case it was needed */
228         if (elbc_fcm_ctrl->use_mdr)
229                 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
230
231         elbc_fcm_ctrl->use_mdr = 0;
232
233         if (elbc_fcm_ctrl->status != LTESR_CC) {
234                 dev_info(priv->dev,
235                          "command failed: fir %x fcr %x status %x mdr %x\n",
236                          in_be32(&lbc->fir), in_be32(&lbc->fcr),
237                          elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
238                 return -EIO;
239         }
240
241         if (chip->ecc.mode != NAND_ECC_HW)
242                 return 0;
243
244         elbc_fcm_ctrl->max_bitflips = 0;
245
246         if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
247                 uint32_t lteccr = in_be32(&lbc->lteccr);
248                 /*
249                  * if command was a full page read and the ELBC
250                  * has the LTECCR register, then bits 12-15 (ppc order) of
251                  * LTECCR indicates which 512 byte sub-pages had fixed errors.
252                  * bits 28-31 are uncorrectable errors, marked elsewhere.
253                  * for small page nand only 1 bit is used.
254                  * if the ELBC doesn't have the lteccr register it reads 0
255                  * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
256                  * count the number of sub-pages with bitflips and update
257                  * ecc_stats.corrected accordingly.
258                  */
259                 if (lteccr & 0x000F000F)
260                         out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
261                 if (lteccr & 0x000F0000) {
262                         mtd->ecc_stats.corrected++;
263                         elbc_fcm_ctrl->max_bitflips = 1;
264                 }
265         }
266
267         return 0;
268 }
269
270 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
271 {
272         struct fsl_elbc_mtd *priv = chip->priv;
273         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
274         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
275
276         if (priv->page_size) {
277                 out_be32(&lbc->fir,
278                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
279                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
280                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
281                          (FIR_OP_CM1 << FIR_OP3_SHIFT) |
282                          (FIR_OP_RBW << FIR_OP4_SHIFT));
283
284                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
285                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
286         } else {
287                 out_be32(&lbc->fir,
288                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
289                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
290                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
291                          (FIR_OP_RBW << FIR_OP3_SHIFT));
292
293                 if (oob)
294                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
295                 else
296                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
297         }
298 }
299
300 /* cmdfunc send commands to the FCM */
301 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
302                              int column, int page_addr)
303 {
304         struct nand_chip *chip = mtd->priv;
305         struct fsl_elbc_mtd *priv = chip->priv;
306         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
307         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
308         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
309
310         elbc_fcm_ctrl->use_mdr = 0;
311
312         /* clear the read buffer */
313         elbc_fcm_ctrl->read_bytes = 0;
314         if (command != NAND_CMD_PAGEPROG)
315                 elbc_fcm_ctrl->index = 0;
316
317         switch (command) {
318         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
319         case NAND_CMD_READ1:
320                 column += 256;
321
322         /* fall-through */
323         case NAND_CMD_READ0:
324                 dev_dbg(priv->dev,
325                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
326                         " 0x%x, column: 0x%x.\n", page_addr, column);
327
328
329                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
330                 set_addr(mtd, 0, page_addr, 0);
331
332                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
333                 elbc_fcm_ctrl->index += column;
334
335                 fsl_elbc_do_read(chip, 0);
336                 fsl_elbc_run_command(mtd);
337                 return;
338
339         /* READOOB reads only the OOB because no ECC is performed. */
340         case NAND_CMD_READOOB:
341                 dev_vdbg(priv->dev,
342                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
343                          " 0x%x, column: 0x%x.\n", page_addr, column);
344
345                 out_be32(&lbc->fbcr, mtd->oobsize - column);
346                 set_addr(mtd, column, page_addr, 1);
347
348                 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
349
350                 fsl_elbc_do_read(chip, 1);
351                 fsl_elbc_run_command(mtd);
352                 return;
353
354         case NAND_CMD_READID:
355         case NAND_CMD_PARAM:
356                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
357
358                 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
359                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
360                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
361                 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
362                 /*
363                  * although currently it's 8 bytes for READID, we always read
364                  * the maximum 256 bytes(for PARAM)
365                  */
366                 out_be32(&lbc->fbcr, 256);
367                 elbc_fcm_ctrl->read_bytes = 256;
368                 elbc_fcm_ctrl->use_mdr = 1;
369                 elbc_fcm_ctrl->mdr = column;
370                 set_addr(mtd, 0, 0, 0);
371                 fsl_elbc_run_command(mtd);
372                 return;
373
374         /* ERASE1 stores the block and page address */
375         case NAND_CMD_ERASE1:
376                 dev_vdbg(priv->dev,
377                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
378                          "page_addr: 0x%x.\n", page_addr);
379                 set_addr(mtd, 0, page_addr, 0);
380                 return;
381
382         /* ERASE2 uses the block and page address from ERASE1 */
383         case NAND_CMD_ERASE2:
384                 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
385
386                 out_be32(&lbc->fir,
387                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
388                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
389                          (FIR_OP_CM2 << FIR_OP2_SHIFT) |
390                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
391                          (FIR_OP_RS  << FIR_OP4_SHIFT));
392
393                 out_be32(&lbc->fcr,
394                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
395                          (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
396                          (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
397
398                 out_be32(&lbc->fbcr, 0);
399                 elbc_fcm_ctrl->read_bytes = 0;
400                 elbc_fcm_ctrl->use_mdr = 1;
401
402                 fsl_elbc_run_command(mtd);
403                 return;
404
405         /* SEQIN sets up the addr buffer and all registers except the length */
406         case NAND_CMD_SEQIN: {
407                 __be32 fcr;
408                 dev_vdbg(priv->dev,
409                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
410                          "page_addr: 0x%x, column: 0x%x.\n",
411                          page_addr, column);
412
413                 elbc_fcm_ctrl->column = column;
414                 elbc_fcm_ctrl->use_mdr = 1;
415
416                 if (column >= mtd->writesize) {
417                         /* OOB area */
418                         column -= mtd->writesize;
419                         elbc_fcm_ctrl->oob = 1;
420                 } else {
421                         WARN_ON(column != 0);
422                         elbc_fcm_ctrl->oob = 0;
423                 }
424
425                 fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
426                       (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
427                       (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
428
429                 if (priv->page_size) {
430                         out_be32(&lbc->fir,
431                                  (FIR_OP_CM2 << FIR_OP0_SHIFT) |
432                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
433                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
434                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
435                                  (FIR_OP_CM3 << FIR_OP4_SHIFT) |
436                                  (FIR_OP_CW1 << FIR_OP5_SHIFT) |
437                                  (FIR_OP_RS  << FIR_OP6_SHIFT));
438                 } else {
439                         out_be32(&lbc->fir,
440                                  (FIR_OP_CM0 << FIR_OP0_SHIFT) |
441                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
442                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
443                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
444                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
445                                  (FIR_OP_CM3 << FIR_OP5_SHIFT) |
446                                  (FIR_OP_CW1 << FIR_OP6_SHIFT) |
447                                  (FIR_OP_RS  << FIR_OP7_SHIFT));
448
449                         if (elbc_fcm_ctrl->oob)
450                                 /* OOB area --> READOOB */
451                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
452                         else
453                                 /* First 256 bytes --> READ0 */
454                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
455                 }
456
457                 out_be32(&lbc->fcr, fcr);
458                 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
459                 return;
460         }
461
462         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
463         case NAND_CMD_PAGEPROG: {
464                 dev_vdbg(priv->dev,
465                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
466                          "writing %d bytes.\n", elbc_fcm_ctrl->index);
467
468                 /* if the write did not start at 0 or is not a full page
469                  * then set the exact length, otherwise use a full page
470                  * write so the HW generates the ECC.
471                  */
472                 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
473                     elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
474                         out_be32(&lbc->fbcr,
475                                 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
476                 else
477                         out_be32(&lbc->fbcr, 0);
478
479                 fsl_elbc_run_command(mtd);
480                 return;
481         }
482
483         /* CMD_STATUS must read the status byte while CEB is active */
484         /* Note - it does not wait for the ready line */
485         case NAND_CMD_STATUS:
486                 out_be32(&lbc->fir,
487                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
488                          (FIR_OP_RBW << FIR_OP1_SHIFT));
489                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
490                 out_be32(&lbc->fbcr, 1);
491                 set_addr(mtd, 0, 0, 0);
492                 elbc_fcm_ctrl->read_bytes = 1;
493
494                 fsl_elbc_run_command(mtd);
495
496                 /* The chip always seems to report that it is
497                  * write-protected, even when it is not.
498                  */
499                 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
500                 return;
501
502         /* RESET without waiting for the ready line */
503         case NAND_CMD_RESET:
504                 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
505                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
506                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
507                 fsl_elbc_run_command(mtd);
508                 return;
509
510         default:
511                 dev_err(priv->dev,
512                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
513                         command);
514         }
515 }
516
517 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
518 {
519         /* The hardware does not seem to support multiple
520          * chips per bank.
521          */
522 }
523
524 /*
525  * Write buf to the FCM Controller Data Buffer
526  */
527 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
528 {
529         struct nand_chip *chip = mtd->priv;
530         struct fsl_elbc_mtd *priv = chip->priv;
531         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
532         unsigned int bufsize = mtd->writesize + mtd->oobsize;
533
534         if (len <= 0) {
535                 dev_err(priv->dev, "write_buf of %d bytes", len);
536                 elbc_fcm_ctrl->status = 0;
537                 return;
538         }
539
540         if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
541                 dev_err(priv->dev,
542                         "write_buf beyond end of buffer "
543                         "(%d requested, %u available)\n",
544                         len, bufsize - elbc_fcm_ctrl->index);
545                 len = bufsize - elbc_fcm_ctrl->index;
546         }
547
548         memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
549         /*
550          * This is workaround for the weird elbc hangs during nand write,
551          * Scott Wood says: "...perhaps difference in how long it takes a
552          * write to make it through the localbus compared to a write to IMMR
553          * is causing problems, and sync isn't helping for some reason."
554          * Reading back the last byte helps though.
555          */
556         in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
557
558         elbc_fcm_ctrl->index += len;
559 }
560
561 /*
562  * read a byte from either the FCM hardware buffer if it has any data left
563  * otherwise issue a command to read a single byte.
564  */
565 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
566 {
567         struct nand_chip *chip = mtd->priv;
568         struct fsl_elbc_mtd *priv = chip->priv;
569         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
570
571         /* If there are still bytes in the FCM, then use the next byte. */
572         if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
573                 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
574
575         dev_err(priv->dev, "read_byte beyond end of buffer\n");
576         return ERR_BYTE;
577 }
578
579 /*
580  * Read from the FCM Controller Data Buffer
581  */
582 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
583 {
584         struct nand_chip *chip = mtd->priv;
585         struct fsl_elbc_mtd *priv = chip->priv;
586         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
587         int avail;
588
589         if (len < 0)
590                 return;
591
592         avail = min((unsigned int)len,
593                         elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
594         memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
595         elbc_fcm_ctrl->index += avail;
596
597         if (len > avail)
598                 dev_err(priv->dev,
599                         "read_buf beyond end of buffer "
600                         "(%d requested, %d available)\n",
601                         len, avail);
602 }
603
604 /* This function is called after Program and Erase Operations to
605  * check for success or failure.
606  */
607 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
608 {
609         struct fsl_elbc_mtd *priv = chip->priv;
610         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
611
612         if (elbc_fcm_ctrl->status != LTESR_CC)
613                 return NAND_STATUS_FAIL;
614
615         /* The chip always seems to report that it is
616          * write-protected, even when it is not.
617          */
618         return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
619 }
620
621 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
622 {
623         struct nand_chip *chip = mtd->priv;
624         struct fsl_elbc_mtd *priv = chip->priv;
625         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
626         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
627         unsigned int al;
628
629         /* calculate FMR Address Length field */
630         al = 0;
631         if (chip->pagemask & 0xffff0000)
632                 al++;
633         if (chip->pagemask & 0xff000000)
634                 al++;
635
636         priv->fmr |= al << FMR_AL_SHIFT;
637
638         dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
639                 chip->numchips);
640         dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
641                 chip->chipsize);
642         dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
643                 chip->pagemask);
644         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
645                 chip->chip_delay);
646         dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
647                 chip->badblockpos);
648         dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
649                 chip->chip_shift);
650         dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
651                 chip->page_shift);
652         dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
653                 chip->phys_erase_shift);
654         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
655                 chip->ecc.mode);
656         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
657                 chip->ecc.steps);
658         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
659                 chip->ecc.bytes);
660         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
661                 chip->ecc.total);
662         dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
663                 chip->ecc.layout);
664         dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
665         dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
666         dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
667                 mtd->erasesize);
668         dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
669                 mtd->writesize);
670         dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
671                 mtd->oobsize);
672
673         /* adjust Option Register and ECC to match Flash page size */
674         if (mtd->writesize == 512) {
675                 priv->page_size = 0;
676                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
677         } else if (mtd->writesize == 2048) {
678                 priv->page_size = 1;
679                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
680                 /* adjust ecc setup if needed */
681                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
682                     BR_DECC_CHK_GEN) {
683                         chip->ecc.size = 512;
684                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
685                                            &fsl_elbc_oob_lp_eccm1 :
686                                            &fsl_elbc_oob_lp_eccm0;
687                 }
688         } else {
689                 dev_err(priv->dev,
690                         "fsl_elbc_init: page size %d is not supported\n",
691                         mtd->writesize);
692                 return -1;
693         }
694
695         return 0;
696 }
697
698 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
699                               uint8_t *buf, int oob_required, int page)
700 {
701         struct fsl_elbc_mtd *priv = chip->priv;
702         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
703         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
704
705         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
706         if (oob_required)
707                 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
708
709         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
710                 mtd->ecc_stats.failed++;
711
712         return elbc_fcm_ctrl->max_bitflips;
713 }
714
715 /* ECC will be calculated automatically, and errors will be detected in
716  * waitfunc.
717  */
718 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
719                                 const uint8_t *buf, int oob_required)
720 {
721         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
722         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
723
724         return 0;
725 }
726
727 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
728 {
729         struct fsl_lbc_ctrl *ctrl = priv->ctrl;
730         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
731         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
732         struct nand_chip *chip = &priv->chip;
733
734         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
735
736         /* Fill in fsl_elbc_mtd structure */
737         priv->mtd.priv = chip;
738         priv->mtd.owner = THIS_MODULE;
739
740         /* set timeout to maximum */
741         priv->fmr = 15 << FMR_CWTO_SHIFT;
742         if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
743                 priv->fmr |= FMR_ECCM;
744
745         /* fill in nand_chip structure */
746         /* set up function call table */
747         chip->read_byte = fsl_elbc_read_byte;
748         chip->write_buf = fsl_elbc_write_buf;
749         chip->read_buf = fsl_elbc_read_buf;
750         chip->select_chip = fsl_elbc_select_chip;
751         chip->cmdfunc = fsl_elbc_cmdfunc;
752         chip->waitfunc = fsl_elbc_wait;
753
754         chip->bbt_td = &bbt_main_descr;
755         chip->bbt_md = &bbt_mirror_descr;
756
757         /* set up nand options */
758         chip->bbt_options = NAND_BBT_USE_FLASH;
759
760         chip->controller = &elbc_fcm_ctrl->controller;
761         chip->priv = priv;
762
763         chip->ecc.read_page = fsl_elbc_read_page;
764         chip->ecc.write_page = fsl_elbc_write_page;
765
766         /* If CS Base Register selects full hardware ECC then use it */
767         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
768             BR_DECC_CHK_GEN) {
769                 chip->ecc.mode = NAND_ECC_HW;
770                 /* put in small page settings and adjust later if needed */
771                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
772                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
773                 chip->ecc.size = 512;
774                 chip->ecc.bytes = 3;
775                 chip->ecc.strength = 1;
776         } else {
777                 /* otherwise fall back to default software ECC */
778                 chip->ecc.mode = NAND_ECC_SOFT;
779         }
780
781         return 0;
782 }
783
784 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
785 {
786         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
787         nand_release(&priv->mtd);
788
789         kfree(priv->mtd.name);
790
791         if (priv->vbase)
792                 iounmap(priv->vbase);
793
794         elbc_fcm_ctrl->chips[priv->bank] = NULL;
795         kfree(priv);
796         return 0;
797 }
798
799 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
800
801 static int fsl_elbc_nand_probe(struct platform_device *pdev)
802 {
803         struct fsl_lbc_regs __iomem *lbc;
804         struct fsl_elbc_mtd *priv;
805         struct resource res;
806         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
807         static const char *part_probe_types[]
808                 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
809         int ret;
810         int bank;
811         struct device *dev;
812         struct device_node *node = pdev->dev.of_node;
813         struct mtd_part_parser_data ppdata;
814
815         ppdata.of_node = pdev->dev.of_node;
816         if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
817                 return -ENODEV;
818         lbc = fsl_lbc_ctrl_dev->regs;
819         dev = fsl_lbc_ctrl_dev->dev;
820
821         /* get, allocate and map the memory resource */
822         ret = of_address_to_resource(node, 0, &res);
823         if (ret) {
824                 dev_err(dev, "failed to get resource\n");
825                 return ret;
826         }
827
828         /* find which chip select it is connected to */
829         for (bank = 0; bank < MAX_BANKS; bank++)
830                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
831                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
832                     (in_be32(&lbc->bank[bank].br) &
833                      in_be32(&lbc->bank[bank].or) & BR_BA)
834                      == fsl_lbc_addr(res.start))
835                         break;
836
837         if (bank >= MAX_BANKS) {
838                 dev_err(dev, "address did not match any chip selects\n");
839                 return -ENODEV;
840         }
841
842         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
843         if (!priv)
844                 return -ENOMEM;
845
846         mutex_lock(&fsl_elbc_nand_mutex);
847         if (!fsl_lbc_ctrl_dev->nand) {
848                 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
849                 if (!elbc_fcm_ctrl) {
850                         dev_err(dev, "failed to allocate memory\n");
851                         mutex_unlock(&fsl_elbc_nand_mutex);
852                         ret = -ENOMEM;
853                         goto err;
854                 }
855                 elbc_fcm_ctrl->counter++;
856
857                 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
858                 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
859                 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
860         } else {
861                 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
862         }
863         mutex_unlock(&fsl_elbc_nand_mutex);
864
865         elbc_fcm_ctrl->chips[bank] = priv;
866         priv->bank = bank;
867         priv->ctrl = fsl_lbc_ctrl_dev;
868         priv->dev = &pdev->dev;
869         dev_set_drvdata(priv->dev, priv);
870
871         priv->vbase = ioremap(res.start, resource_size(&res));
872         if (!priv->vbase) {
873                 dev_err(dev, "failed to map chip region\n");
874                 ret = -ENOMEM;
875                 goto err;
876         }
877
878         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start);
879         if (!priv->mtd.name) {
880                 ret = -ENOMEM;
881                 goto err;
882         }
883
884         ret = fsl_elbc_chip_init(priv);
885         if (ret)
886                 goto err;
887
888         ret = nand_scan_ident(&priv->mtd, 1, NULL);
889         if (ret)
890                 goto err;
891
892         ret = fsl_elbc_chip_init_tail(&priv->mtd);
893         if (ret)
894                 goto err;
895
896         ret = nand_scan_tail(&priv->mtd);
897         if (ret)
898                 goto err;
899
900         /* First look for RedBoot table or partitions on the command
901          * line, these take precedence over device tree information */
902         mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
903                                   NULL, 0);
904
905         printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
906                (unsigned long long)res.start, priv->bank);
907         return 0;
908
909 err:
910         fsl_elbc_chip_remove(priv);
911         return ret;
912 }
913
914 static int fsl_elbc_nand_remove(struct platform_device *pdev)
915 {
916         struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
917         struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
918
919         fsl_elbc_chip_remove(priv);
920
921         mutex_lock(&fsl_elbc_nand_mutex);
922         elbc_fcm_ctrl->counter--;
923         if (!elbc_fcm_ctrl->counter) {
924                 fsl_lbc_ctrl_dev->nand = NULL;
925                 kfree(elbc_fcm_ctrl);
926         }
927         mutex_unlock(&fsl_elbc_nand_mutex);
928
929         return 0;
930
931 }
932
933 static const struct of_device_id fsl_elbc_nand_match[] = {
934         { .compatible = "fsl,elbc-fcm-nand", },
935         {}
936 };
937
938 static struct platform_driver fsl_elbc_nand_driver = {
939         .driver = {
940                 .name = "fsl,elbc-fcm-nand",
941                 .owner = THIS_MODULE,
942                 .of_match_table = fsl_elbc_nand_match,
943         },
944         .probe = fsl_elbc_nand_probe,
945         .remove = fsl_elbc_nand_remove,
946 };
947
948 module_platform_driver(fsl_elbc_nand_driver);
949
950 MODULE_LICENSE("GPL");
951 MODULE_AUTHOR("Freescale");
952 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");