]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/nand_base.c
mtd: nand: silence some shift wrap warnings
[karo-tx-linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/leds.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
48
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51         .eccbytes = 3,
52         .eccpos = {0, 1, 2},
53         .oobfree = {
54                 {.offset = 3,
55                  .length = 2},
56                 {.offset = 6,
57                  .length = 2} }
58 };
59
60 static struct nand_ecclayout nand_oob_16 = {
61         .eccbytes = 6,
62         .eccpos = {0, 1, 2, 3, 6, 7},
63         .oobfree = {
64                 {.offset = 8,
65                  . length = 8} }
66 };
67
68 static struct nand_ecclayout nand_oob_64 = {
69         .eccbytes = 24,
70         .eccpos = {
71                    40, 41, 42, 43, 44, 45, 46, 47,
72                    48, 49, 50, 51, 52, 53, 54, 55,
73                    56, 57, 58, 59, 60, 61, 62, 63},
74         .oobfree = {
75                 {.offset = 2,
76                  .length = 38} }
77 };
78
79 static struct nand_ecclayout nand_oob_128 = {
80         .eccbytes = 48,
81         .eccpos = {
82                    80, 81, 82, 83, 84, 85, 86, 87,
83                    88, 89, 90, 91, 92, 93, 94, 95,
84                    96, 97, 98, 99, 100, 101, 102, 103,
85                    104, 105, 106, 107, 108, 109, 110, 111,
86                    112, 113, 114, 115, 116, 117, 118, 119,
87                    120, 121, 122, 123, 124, 125, 126, 127},
88         .oobfree = {
89                 {.offset = 2,
90                  .length = 78} }
91 };
92
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
94
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96                              struct mtd_oob_ops *ops);
97
98 /*
99  * For devices which display every fart in the system on a separate LED. Is
100  * compiled away when LED support is disabled.
101  */
102 DEFINE_LED_TRIGGER(nand_led_trigger);
103
104 static int check_offs_len(struct mtd_info *mtd,
105                                         loff_t ofs, uint64_t len)
106 {
107         struct nand_chip *chip = mtd->priv;
108         int ret = 0;
109
110         /* Start address must align on block boundary */
111         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112                 pr_debug("%s: unaligned address\n", __func__);
113                 ret = -EINVAL;
114         }
115
116         /* Length must align on block boundary */
117         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118                 pr_debug("%s: length not block aligned\n", __func__);
119                 ret = -EINVAL;
120         }
121
122         return ret;
123 }
124
125 /**
126  * nand_release_device - [GENERIC] release chip
127  * @mtd: MTD device structure
128  *
129  * Release chip lock and wake up anyone waiting on the device.
130  */
131 static void nand_release_device(struct mtd_info *mtd)
132 {
133         struct nand_chip *chip = mtd->priv;
134
135         /* Release the controller and the chip */
136         spin_lock(&chip->controller->lock);
137         chip->controller->active = NULL;
138         chip->state = FL_READY;
139         wake_up(&chip->controller->wq);
140         spin_unlock(&chip->controller->lock);
141 }
142
143 /**
144  * nand_read_byte - [DEFAULT] read one byte from the chip
145  * @mtd: MTD device structure
146  *
147  * Default read function for 8bit buswidth
148  */
149 static uint8_t nand_read_byte(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readb(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
157  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
158  * @mtd: MTD device structure
159  *
160  * Default read function for 16bit buswidth with endianness conversion.
161  *
162  */
163 static uint8_t nand_read_byte16(struct mtd_info *mtd)
164 {
165         struct nand_chip *chip = mtd->priv;
166         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
167 }
168
169 /**
170  * nand_read_word - [DEFAULT] read one word from the chip
171  * @mtd: MTD device structure
172  *
173  * Default read function for 16bit buswidth without endianness conversion.
174  */
175 static u16 nand_read_word(struct mtd_info *mtd)
176 {
177         struct nand_chip *chip = mtd->priv;
178         return readw(chip->IO_ADDR_R);
179 }
180
181 /**
182  * nand_select_chip - [DEFAULT] control CE line
183  * @mtd: MTD device structure
184  * @chipnr: chipnumber to select, -1 for deselect
185  *
186  * Default select function for 1 chip devices.
187  */
188 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
189 {
190         struct nand_chip *chip = mtd->priv;
191
192         switch (chipnr) {
193         case -1:
194                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
195                 break;
196         case 0:
197                 break;
198
199         default:
200                 BUG();
201         }
202 }
203
204 /**
205  * nand_write_buf - [DEFAULT] write buffer to chip
206  * @mtd: MTD device structure
207  * @buf: data buffer
208  * @len: number of bytes to write
209  *
210  * Default write function for 8bit buswidth.
211  */
212 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
213 {
214         struct nand_chip *chip = mtd->priv;
215
216         iowrite8_rep(chip->IO_ADDR_W, buf, len);
217 }
218
219 /**
220  * nand_read_buf - [DEFAULT] read chip data into buffer
221  * @mtd: MTD device structure
222  * @buf: buffer to store date
223  * @len: number of bytes to read
224  *
225  * Default read function for 8bit buswidth.
226  */
227 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
228 {
229         struct nand_chip *chip = mtd->priv;
230
231         ioread8_rep(chip->IO_ADDR_R, buf, len);
232 }
233
234 /**
235  * nand_write_buf16 - [DEFAULT] write buffer to chip
236  * @mtd: MTD device structure
237  * @buf: data buffer
238  * @len: number of bytes to write
239  *
240  * Default write function for 16bit buswidth.
241  */
242 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
243 {
244         struct nand_chip *chip = mtd->priv;
245         u16 *p = (u16 *) buf;
246
247         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
248 }
249
250 /**
251  * nand_read_buf16 - [DEFAULT] read chip data into buffer
252  * @mtd: MTD device structure
253  * @buf: buffer to store date
254  * @len: number of bytes to read
255  *
256  * Default read function for 16bit buswidth.
257  */
258 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
259 {
260         struct nand_chip *chip = mtd->priv;
261         u16 *p = (u16 *) buf;
262
263         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
264 }
265
266 /**
267  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
268  * @mtd: MTD device structure
269  * @ofs: offset from device start
270  * @getchip: 0, if the chip is already selected
271  *
272  * Check, if the block is bad.
273  */
274 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
275 {
276         int page, chipnr, res = 0, i = 0;
277         struct nand_chip *chip = mtd->priv;
278         u16 bad;
279
280         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
281                 ofs += mtd->erasesize - mtd->writesize;
282
283         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
284
285         if (getchip) {
286                 chipnr = (int)(ofs >> chip->chip_shift);
287
288                 nand_get_device(mtd, FL_READING);
289
290                 /* Select the NAND device */
291                 chip->select_chip(mtd, chipnr);
292         }
293
294         do {
295                 if (chip->options & NAND_BUSWIDTH_16) {
296                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
297                                         chip->badblockpos & 0xFE, page);
298                         bad = cpu_to_le16(chip->read_word(mtd));
299                         if (chip->badblockpos & 0x1)
300                                 bad >>= 8;
301                         else
302                                 bad &= 0xFF;
303                 } else {
304                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
305                                         page);
306                         bad = chip->read_byte(mtd);
307                 }
308
309                 if (likely(chip->badblockbits == 8))
310                         res = bad != 0xFF;
311                 else
312                         res = hweight8(bad) < chip->badblockbits;
313                 ofs += mtd->writesize;
314                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
315                 i++;
316         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
317
318         if (getchip) {
319                 chip->select_chip(mtd, -1);
320                 nand_release_device(mtd);
321         }
322
323         return res;
324 }
325
326 /**
327  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
328  * @mtd: MTD device structure
329  * @ofs: offset from device start
330  *
331  * This is the default implementation, which can be overridden by a hardware
332  * specific driver. It provides the details for writing a bad block marker to a
333  * block.
334  */
335 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
336 {
337         struct nand_chip *chip = mtd->priv;
338         struct mtd_oob_ops ops;
339         uint8_t buf[2] = { 0, 0 };
340         int ret = 0, res, i = 0;
341
342         ops.datbuf = NULL;
343         ops.oobbuf = buf;
344         ops.ooboffs = chip->badblockpos;
345         if (chip->options & NAND_BUSWIDTH_16) {
346                 ops.ooboffs &= ~0x01;
347                 ops.len = ops.ooblen = 2;
348         } else {
349                 ops.len = ops.ooblen = 1;
350         }
351         ops.mode = MTD_OPS_PLACE_OOB;
352
353         /* Write to first/last page(s) if necessary */
354         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
355                 ofs += mtd->erasesize - mtd->writesize;
356         do {
357                 res = nand_do_write_oob(mtd, ofs, &ops);
358                 if (!ret)
359                         ret = res;
360
361                 i++;
362                 ofs += mtd->writesize;
363         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
364
365         return ret;
366 }
367
368 /**
369  * nand_block_markbad_lowlevel - mark a block bad
370  * @mtd: MTD device structure
371  * @ofs: offset from device start
372  *
373  * This function performs the generic NAND bad block marking steps (i.e., bad
374  * block table(s) and/or marker(s)). We only allow the hardware driver to
375  * specify how to write bad block markers to OOB (chip->block_markbad).
376  *
377  * We try operations in the following order:
378  *  (1) erase the affected block, to allow OOB marker to be written cleanly
379  *  (2) write bad block marker to OOB area of affected block (unless flag
380  *      NAND_BBT_NO_OOB_BBM is present)
381  *  (3) update the BBT
382  * Note that we retain the first error encountered in (2) or (3), finish the
383  * procedures, and dump the error in the end.
384 */
385 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
386 {
387         struct nand_chip *chip = mtd->priv;
388         int res, ret = 0;
389
390         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
391                 struct erase_info einfo;
392
393                 /* Attempt erase before marking OOB */
394                 memset(&einfo, 0, sizeof(einfo));
395                 einfo.mtd = mtd;
396                 einfo.addr = ofs;
397                 einfo.len = 1ULL << chip->phys_erase_shift;
398                 nand_erase_nand(mtd, &einfo, 0);
399
400                 /* Write bad block marker to OOB */
401                 nand_get_device(mtd, FL_WRITING);
402                 ret = chip->block_markbad(mtd, ofs);
403                 nand_release_device(mtd);
404         }
405
406         /* Mark block bad in BBT */
407         if (chip->bbt) {
408                 res = nand_markbad_bbt(mtd, ofs);
409                 if (!ret)
410                         ret = res;
411         }
412
413         if (!ret)
414                 mtd->ecc_stats.badblocks++;
415
416         return ret;
417 }
418
419 /**
420  * nand_check_wp - [GENERIC] check if the chip is write protected
421  * @mtd: MTD device structure
422  *
423  * Check, if the device is write protected. The function expects, that the
424  * device is already selected.
425  */
426 static int nand_check_wp(struct mtd_info *mtd)
427 {
428         struct nand_chip *chip = mtd->priv;
429
430         /* Broken xD cards report WP despite being writable */
431         if (chip->options & NAND_BROKEN_XD)
432                 return 0;
433
434         /* Check the WP bit */
435         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
436         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
437 }
438
439 /**
440  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
441  * @mtd: MTD device structure
442  * @ofs: offset from device start
443  * @getchip: 0, if the chip is already selected
444  * @allowbbt: 1, if its allowed to access the bbt area
445  *
446  * Check, if the block is bad. Either by reading the bad block table or
447  * calling of the scan function.
448  */
449 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
450                                int allowbbt)
451 {
452         struct nand_chip *chip = mtd->priv;
453
454         if (!chip->bbt)
455                 return chip->block_bad(mtd, ofs, getchip);
456
457         /* Return info from the table */
458         return nand_isbad_bbt(mtd, ofs, allowbbt);
459 }
460
461 /**
462  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
463  * @mtd: MTD device structure
464  * @timeo: Timeout
465  *
466  * Helper function for nand_wait_ready used when needing to wait in interrupt
467  * context.
468  */
469 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
470 {
471         struct nand_chip *chip = mtd->priv;
472         int i;
473
474         /* Wait for the device to get ready */
475         for (i = 0; i < timeo; i++) {
476                 if (chip->dev_ready(mtd))
477                         break;
478                 touch_softlockup_watchdog();
479                 mdelay(1);
480         }
481 }
482
483 /* Wait for the ready pin, after a command. The timeout is caught later. */
484 void nand_wait_ready(struct mtd_info *mtd)
485 {
486         struct nand_chip *chip = mtd->priv;
487         unsigned long timeo = jiffies + msecs_to_jiffies(20);
488
489         /* 400ms timeout */
490         if (in_interrupt() || oops_in_progress)
491                 return panic_nand_wait_ready(mtd, 400);
492
493         led_trigger_event(nand_led_trigger, LED_FULL);
494         /* Wait until command is processed or timeout occurs */
495         do {
496                 if (chip->dev_ready(mtd))
497                         break;
498                 touch_softlockup_watchdog();
499         } while (time_before(jiffies, timeo));
500         led_trigger_event(nand_led_trigger, LED_OFF);
501 }
502 EXPORT_SYMBOL_GPL(nand_wait_ready);
503
504 /**
505  * nand_command - [DEFAULT] Send command to NAND device
506  * @mtd: MTD device structure
507  * @command: the command to be sent
508  * @column: the column address for this command, -1 if none
509  * @page_addr: the page address for this command, -1 if none
510  *
511  * Send command to NAND device. This function is used for small page devices
512  * (512 Bytes per page).
513  */
514 static void nand_command(struct mtd_info *mtd, unsigned int command,
515                          int column, int page_addr)
516 {
517         register struct nand_chip *chip = mtd->priv;
518         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
519
520         /* Write out the command to the device */
521         if (command == NAND_CMD_SEQIN) {
522                 int readcmd;
523
524                 if (column >= mtd->writesize) {
525                         /* OOB area */
526                         column -= mtd->writesize;
527                         readcmd = NAND_CMD_READOOB;
528                 } else if (column < 256) {
529                         /* First 256 bytes --> READ0 */
530                         readcmd = NAND_CMD_READ0;
531                 } else {
532                         column -= 256;
533                         readcmd = NAND_CMD_READ1;
534                 }
535                 chip->cmd_ctrl(mtd, readcmd, ctrl);
536                 ctrl &= ~NAND_CTRL_CHANGE;
537         }
538         chip->cmd_ctrl(mtd, command, ctrl);
539
540         /* Address cycle, when necessary */
541         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
542         /* Serially input address */
543         if (column != -1) {
544                 /* Adjust columns for 16 bit buswidth */
545                 if (chip->options & NAND_BUSWIDTH_16)
546                         column >>= 1;
547                 chip->cmd_ctrl(mtd, column, ctrl);
548                 ctrl &= ~NAND_CTRL_CHANGE;
549         }
550         if (page_addr != -1) {
551                 chip->cmd_ctrl(mtd, page_addr, ctrl);
552                 ctrl &= ~NAND_CTRL_CHANGE;
553                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
554                 /* One more address cycle for devices > 32MiB */
555                 if (chip->chipsize > (32 << 20))
556                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
557         }
558         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
559
560         /*
561          * Program and erase have their own busy handlers status and sequential
562          * in needs no delay
563          */
564         switch (command) {
565
566         case NAND_CMD_PAGEPROG:
567         case NAND_CMD_ERASE1:
568         case NAND_CMD_ERASE2:
569         case NAND_CMD_SEQIN:
570         case NAND_CMD_STATUS:
571                 return;
572
573         case NAND_CMD_RESET:
574                 if (chip->dev_ready)
575                         break;
576                 udelay(chip->chip_delay);
577                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
578                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
579                 chip->cmd_ctrl(mtd,
580                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
581                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
582                                 ;
583                 return;
584
585                 /* This applies to read commands */
586         default:
587                 /*
588                  * If we don't have access to the busy pin, we apply the given
589                  * command delay
590                  */
591                 if (!chip->dev_ready) {
592                         udelay(chip->chip_delay);
593                         return;
594                 }
595         }
596         /*
597          * Apply this short delay always to ensure that we do wait tWB in
598          * any case on any machine.
599          */
600         ndelay(100);
601
602         nand_wait_ready(mtd);
603 }
604
605 /**
606  * nand_command_lp - [DEFAULT] Send command to NAND large page device
607  * @mtd: MTD device structure
608  * @command: the command to be sent
609  * @column: the column address for this command, -1 if none
610  * @page_addr: the page address for this command, -1 if none
611  *
612  * Send command to NAND device. This is the version for the new large page
613  * devices. We don't have the separate regions as we have in the small page
614  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
615  */
616 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
617                             int column, int page_addr)
618 {
619         register struct nand_chip *chip = mtd->priv;
620
621         /* Emulate NAND_CMD_READOOB */
622         if (command == NAND_CMD_READOOB) {
623                 column += mtd->writesize;
624                 command = NAND_CMD_READ0;
625         }
626
627         /* Command latch cycle */
628         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
629
630         if (column != -1 || page_addr != -1) {
631                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
632
633                 /* Serially input address */
634                 if (column != -1) {
635                         /* Adjust columns for 16 bit buswidth */
636                         if (chip->options & NAND_BUSWIDTH_16)
637                                 column >>= 1;
638                         chip->cmd_ctrl(mtd, column, ctrl);
639                         ctrl &= ~NAND_CTRL_CHANGE;
640                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
641                 }
642                 if (page_addr != -1) {
643                         chip->cmd_ctrl(mtd, page_addr, ctrl);
644                         chip->cmd_ctrl(mtd, page_addr >> 8,
645                                        NAND_NCE | NAND_ALE);
646                         /* One more address cycle for devices > 128MiB */
647                         if (chip->chipsize > (128 << 20))
648                                 chip->cmd_ctrl(mtd, page_addr >> 16,
649                                                NAND_NCE | NAND_ALE);
650                 }
651         }
652         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
653
654         /*
655          * Program and erase have their own busy handlers status, sequential
656          * in, and deplete1 need no delay.
657          */
658         switch (command) {
659
660         case NAND_CMD_CACHEDPROG:
661         case NAND_CMD_PAGEPROG:
662         case NAND_CMD_ERASE1:
663         case NAND_CMD_ERASE2:
664         case NAND_CMD_SEQIN:
665         case NAND_CMD_RNDIN:
666         case NAND_CMD_STATUS:
667                 return;
668
669         case NAND_CMD_RESET:
670                 if (chip->dev_ready)
671                         break;
672                 udelay(chip->chip_delay);
673                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
674                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
675                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
676                                NAND_NCE | NAND_CTRL_CHANGE);
677                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
678                                 ;
679                 return;
680
681         case NAND_CMD_RNDOUT:
682                 /* No ready / busy check necessary */
683                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
684                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
685                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
686                                NAND_NCE | NAND_CTRL_CHANGE);
687                 return;
688
689         case NAND_CMD_READ0:
690                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
691                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693                                NAND_NCE | NAND_CTRL_CHANGE);
694
695                 /* This applies to read commands */
696         default:
697                 /*
698                  * If we don't have access to the busy pin, we apply the given
699                  * command delay.
700                  */
701                 if (!chip->dev_ready) {
702                         udelay(chip->chip_delay);
703                         return;
704                 }
705         }
706
707         /*
708          * Apply this short delay always to ensure that we do wait tWB in
709          * any case on any machine.
710          */
711         ndelay(100);
712
713         nand_wait_ready(mtd);
714 }
715
716 /**
717  * panic_nand_get_device - [GENERIC] Get chip for selected access
718  * @chip: the nand chip descriptor
719  * @mtd: MTD device structure
720  * @new_state: the state which is requested
721  *
722  * Used when in panic, no locks are taken.
723  */
724 static void panic_nand_get_device(struct nand_chip *chip,
725                       struct mtd_info *mtd, int new_state)
726 {
727         /* Hardware controller shared among independent devices */
728         chip->controller->active = chip;
729         chip->state = new_state;
730 }
731
732 /**
733  * nand_get_device - [GENERIC] Get chip for selected access
734  * @mtd: MTD device structure
735  * @new_state: the state which is requested
736  *
737  * Get the device and lock it for exclusive access
738  */
739 static int
740 nand_get_device(struct mtd_info *mtd, int new_state)
741 {
742         struct nand_chip *chip = mtd->priv;
743         spinlock_t *lock = &chip->controller->lock;
744         wait_queue_head_t *wq = &chip->controller->wq;
745         DECLARE_WAITQUEUE(wait, current);
746 retry:
747         spin_lock(lock);
748
749         /* Hardware controller shared among independent devices */
750         if (!chip->controller->active)
751                 chip->controller->active = chip;
752
753         if (chip->controller->active == chip && chip->state == FL_READY) {
754                 chip->state = new_state;
755                 spin_unlock(lock);
756                 return 0;
757         }
758         if (new_state == FL_PM_SUSPENDED) {
759                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
760                         chip->state = FL_PM_SUSPENDED;
761                         spin_unlock(lock);
762                         return 0;
763                 }
764         }
765         set_current_state(TASK_UNINTERRUPTIBLE);
766         add_wait_queue(wq, &wait);
767         spin_unlock(lock);
768         schedule();
769         remove_wait_queue(wq, &wait);
770         goto retry;
771 }
772
773 /**
774  * panic_nand_wait - [GENERIC] wait until the command is done
775  * @mtd: MTD device structure
776  * @chip: NAND chip structure
777  * @timeo: timeout
778  *
779  * Wait for command done. This is a helper function for nand_wait used when
780  * we are in interrupt context. May happen when in panic and trying to write
781  * an oops through mtdoops.
782  */
783 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
784                             unsigned long timeo)
785 {
786         int i;
787         for (i = 0; i < timeo; i++) {
788                 if (chip->dev_ready) {
789                         if (chip->dev_ready(mtd))
790                                 break;
791                 } else {
792                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
793                                 break;
794                 }
795                 mdelay(1);
796         }
797 }
798
799 /**
800  * nand_wait - [DEFAULT] wait until the command is done
801  * @mtd: MTD device structure
802  * @chip: NAND chip structure
803  *
804  * Wait for command done. This applies to erase and program only. Erase can
805  * take up to 400ms and program up to 20ms according to general NAND and
806  * SmartMedia specs.
807  */
808 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
809 {
810
811         int status, state = chip->state;
812         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
813
814         led_trigger_event(nand_led_trigger, LED_FULL);
815
816         /*
817          * Apply this short delay always to ensure that we do wait tWB in any
818          * case on any machine.
819          */
820         ndelay(100);
821
822         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
823
824         if (in_interrupt() || oops_in_progress)
825                 panic_nand_wait(mtd, chip, timeo);
826         else {
827                 timeo = jiffies + msecs_to_jiffies(timeo);
828                 while (time_before(jiffies, timeo)) {
829                         if (chip->dev_ready) {
830                                 if (chip->dev_ready(mtd))
831                                         break;
832                         } else {
833                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834                                         break;
835                         }
836                         cond_resched();
837                 }
838         }
839         led_trigger_event(nand_led_trigger, LED_OFF);
840
841         status = (int)chip->read_byte(mtd);
842         /* This can happen if in case of timeout or buggy dev_ready */
843         WARN_ON(!(status & NAND_STATUS_READY));
844         return status;
845 }
846
847 /**
848  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
849  * @mtd: mtd info
850  * @ofs: offset to start unlock from
851  * @len: length to unlock
852  * @invert: when = 0, unlock the range of blocks within the lower and
853  *                    upper boundary address
854  *          when = 1, unlock the range of blocks outside the boundaries
855  *                    of the lower and upper boundary address
856  *
857  * Returs unlock status.
858  */
859 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
860                                         uint64_t len, int invert)
861 {
862         int ret = 0;
863         int status, page;
864         struct nand_chip *chip = mtd->priv;
865
866         /* Submit address of first page to unlock */
867         page = ofs >> chip->page_shift;
868         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
869
870         /* Submit address of last page to unlock */
871         page = (ofs + len) >> chip->page_shift;
872         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
873                                 (page | invert) & chip->pagemask);
874
875         /* Call wait ready function */
876         status = chip->waitfunc(mtd, chip);
877         /* See if device thinks it succeeded */
878         if (status & NAND_STATUS_FAIL) {
879                 pr_debug("%s: error status = 0x%08x\n",
880                                         __func__, status);
881                 ret = -EIO;
882         }
883
884         return ret;
885 }
886
887 /**
888  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
889  * @mtd: mtd info
890  * @ofs: offset to start unlock from
891  * @len: length to unlock
892  *
893  * Returns unlock status.
894  */
895 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
896 {
897         int ret = 0;
898         int chipnr;
899         struct nand_chip *chip = mtd->priv;
900
901         pr_debug("%s: start = 0x%012llx, len = %llu\n",
902                         __func__, (unsigned long long)ofs, len);
903
904         if (check_offs_len(mtd, ofs, len))
905                 ret = -EINVAL;
906
907         /* Align to last block address if size addresses end of the device */
908         if (ofs + len == mtd->size)
909                 len -= mtd->erasesize;
910
911         nand_get_device(mtd, FL_UNLOCKING);
912
913         /* Shift to get chip number */
914         chipnr = ofs >> chip->chip_shift;
915
916         chip->select_chip(mtd, chipnr);
917
918         /* Check, if it is write protected */
919         if (nand_check_wp(mtd)) {
920                 pr_debug("%s: device is write protected!\n",
921                                         __func__);
922                 ret = -EIO;
923                 goto out;
924         }
925
926         ret = __nand_unlock(mtd, ofs, len, 0);
927
928 out:
929         chip->select_chip(mtd, -1);
930         nand_release_device(mtd);
931
932         return ret;
933 }
934 EXPORT_SYMBOL(nand_unlock);
935
936 /**
937  * nand_lock - [REPLACEABLE] locks all blocks present in the device
938  * @mtd: mtd info
939  * @ofs: offset to start unlock from
940  * @len: length to unlock
941  *
942  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
943  * have this feature, but it allows only to lock all blocks, not for specified
944  * range for block. Implementing 'lock' feature by making use of 'unlock', for
945  * now.
946  *
947  * Returns lock status.
948  */
949 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
950 {
951         int ret = 0;
952         int chipnr, status, page;
953         struct nand_chip *chip = mtd->priv;
954
955         pr_debug("%s: start = 0x%012llx, len = %llu\n",
956                         __func__, (unsigned long long)ofs, len);
957
958         if (check_offs_len(mtd, ofs, len))
959                 ret = -EINVAL;
960
961         nand_get_device(mtd, FL_LOCKING);
962
963         /* Shift to get chip number */
964         chipnr = ofs >> chip->chip_shift;
965
966         chip->select_chip(mtd, chipnr);
967
968         /* Check, if it is write protected */
969         if (nand_check_wp(mtd)) {
970                 pr_debug("%s: device is write protected!\n",
971                                         __func__);
972                 status = MTD_ERASE_FAILED;
973                 ret = -EIO;
974                 goto out;
975         }
976
977         /* Submit address of first page to lock */
978         page = ofs >> chip->page_shift;
979         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
980
981         /* Call wait ready function */
982         status = chip->waitfunc(mtd, chip);
983         /* See if device thinks it succeeded */
984         if (status & NAND_STATUS_FAIL) {
985                 pr_debug("%s: error status = 0x%08x\n",
986                                         __func__, status);
987                 ret = -EIO;
988                 goto out;
989         }
990
991         ret = __nand_unlock(mtd, ofs, len, 0x1);
992
993 out:
994         chip->select_chip(mtd, -1);
995         nand_release_device(mtd);
996
997         return ret;
998 }
999 EXPORT_SYMBOL(nand_lock);
1000
1001 /**
1002  * nand_read_page_raw - [INTERN] read raw page data without ecc
1003  * @mtd: mtd info structure
1004  * @chip: nand chip info structure
1005  * @buf: buffer to store read data
1006  * @oob_required: caller requires OOB data read to chip->oob_poi
1007  * @page: page number to read
1008  *
1009  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1010  */
1011 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1012                               uint8_t *buf, int oob_required, int page)
1013 {
1014         chip->read_buf(mtd, buf, mtd->writesize);
1015         if (oob_required)
1016                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1017         return 0;
1018 }
1019
1020 /**
1021  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1022  * @mtd: mtd info structure
1023  * @chip: nand chip info structure
1024  * @buf: buffer to store read data
1025  * @oob_required: caller requires OOB data read to chip->oob_poi
1026  * @page: page number to read
1027  *
1028  * We need a special oob layout and handling even when OOB isn't used.
1029  */
1030 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1031                                        struct nand_chip *chip, uint8_t *buf,
1032                                        int oob_required, int page)
1033 {
1034         int eccsize = chip->ecc.size;
1035         int eccbytes = chip->ecc.bytes;
1036         uint8_t *oob = chip->oob_poi;
1037         int steps, size;
1038
1039         for (steps = chip->ecc.steps; steps > 0; steps--) {
1040                 chip->read_buf(mtd, buf, eccsize);
1041                 buf += eccsize;
1042
1043                 if (chip->ecc.prepad) {
1044                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1045                         oob += chip->ecc.prepad;
1046                 }
1047
1048                 chip->read_buf(mtd, oob, eccbytes);
1049                 oob += eccbytes;
1050
1051                 if (chip->ecc.postpad) {
1052                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1053                         oob += chip->ecc.postpad;
1054                 }
1055         }
1056
1057         size = mtd->oobsize - (oob - chip->oob_poi);
1058         if (size)
1059                 chip->read_buf(mtd, oob, size);
1060
1061         return 0;
1062 }
1063
1064 /**
1065  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1066  * @mtd: mtd info structure
1067  * @chip: nand chip info structure
1068  * @buf: buffer to store read data
1069  * @oob_required: caller requires OOB data read to chip->oob_poi
1070  * @page: page number to read
1071  */
1072 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1073                                 uint8_t *buf, int oob_required, int page)
1074 {
1075         int i, eccsize = chip->ecc.size;
1076         int eccbytes = chip->ecc.bytes;
1077         int eccsteps = chip->ecc.steps;
1078         uint8_t *p = buf;
1079         uint8_t *ecc_calc = chip->buffers->ecccalc;
1080         uint8_t *ecc_code = chip->buffers->ecccode;
1081         uint32_t *eccpos = chip->ecc.layout->eccpos;
1082         unsigned int max_bitflips = 0;
1083
1084         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1085
1086         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1087                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1088
1089         for (i = 0; i < chip->ecc.total; i++)
1090                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1091
1092         eccsteps = chip->ecc.steps;
1093         p = buf;
1094
1095         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1096                 int stat;
1097
1098                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1099                 if (stat < 0) {
1100                         mtd->ecc_stats.failed++;
1101                 } else {
1102                         mtd->ecc_stats.corrected += stat;
1103                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1104                 }
1105         }
1106         return max_bitflips;
1107 }
1108
1109 /**
1110  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1111  * @mtd: mtd info structure
1112  * @chip: nand chip info structure
1113  * @data_offs: offset of requested data within the page
1114  * @readlen: data length
1115  * @bufpoi: buffer to store read data
1116  */
1117 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1118                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1119 {
1120         int start_step, end_step, num_steps;
1121         uint32_t *eccpos = chip->ecc.layout->eccpos;
1122         uint8_t *p;
1123         int data_col_addr, i, gaps = 0;
1124         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1125         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1126         int index = 0;
1127         unsigned int max_bitflips = 0;
1128
1129         /* Column address within the page aligned to ECC size (256bytes) */
1130         start_step = data_offs / chip->ecc.size;
1131         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1132         num_steps = end_step - start_step + 1;
1133
1134         /* Data size aligned to ECC ecc.size */
1135         datafrag_len = num_steps * chip->ecc.size;
1136         eccfrag_len = num_steps * chip->ecc.bytes;
1137
1138         data_col_addr = start_step * chip->ecc.size;
1139         /* If we read not a page aligned data */
1140         if (data_col_addr != 0)
1141                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1142
1143         p = bufpoi + data_col_addr;
1144         chip->read_buf(mtd, p, datafrag_len);
1145
1146         /* Calculate ECC */
1147         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1148                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1149
1150         /*
1151          * The performance is faster if we position offsets according to
1152          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1153          */
1154         for (i = 0; i < eccfrag_len - 1; i++) {
1155                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1156                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1157                         gaps = 1;
1158                         break;
1159                 }
1160         }
1161         if (gaps) {
1162                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1163                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1164         } else {
1165                 /*
1166                  * Send the command to read the particular ECC bytes take care
1167                  * about buswidth alignment in read_buf.
1168                  */
1169                 index = start_step * chip->ecc.bytes;
1170
1171                 aligned_pos = eccpos[index] & ~(busw - 1);
1172                 aligned_len = eccfrag_len;
1173                 if (eccpos[index] & (busw - 1))
1174                         aligned_len++;
1175                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1176                         aligned_len++;
1177
1178                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1179                                         mtd->writesize + aligned_pos, -1);
1180                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1181         }
1182
1183         for (i = 0; i < eccfrag_len; i++)
1184                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1185
1186         p = bufpoi + data_col_addr;
1187         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1188                 int stat;
1189
1190                 stat = chip->ecc.correct(mtd, p,
1191                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1192                 if (stat < 0) {
1193                         mtd->ecc_stats.failed++;
1194                 } else {
1195                         mtd->ecc_stats.corrected += stat;
1196                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1197                 }
1198         }
1199         return max_bitflips;
1200 }
1201
1202 /**
1203  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1204  * @mtd: mtd info structure
1205  * @chip: nand chip info structure
1206  * @buf: buffer to store read data
1207  * @oob_required: caller requires OOB data read to chip->oob_poi
1208  * @page: page number to read
1209  *
1210  * Not for syndrome calculating ECC controllers which need a special oob layout.
1211  */
1212 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1213                                 uint8_t *buf, int oob_required, int page)
1214 {
1215         int i, eccsize = chip->ecc.size;
1216         int eccbytes = chip->ecc.bytes;
1217         int eccsteps = chip->ecc.steps;
1218         uint8_t *p = buf;
1219         uint8_t *ecc_calc = chip->buffers->ecccalc;
1220         uint8_t *ecc_code = chip->buffers->ecccode;
1221         uint32_t *eccpos = chip->ecc.layout->eccpos;
1222         unsigned int max_bitflips = 0;
1223
1224         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1225                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1226                 chip->read_buf(mtd, p, eccsize);
1227                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1228         }
1229         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1230
1231         for (i = 0; i < chip->ecc.total; i++)
1232                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1233
1234         eccsteps = chip->ecc.steps;
1235         p = buf;
1236
1237         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1238                 int stat;
1239
1240                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1241                 if (stat < 0) {
1242                         mtd->ecc_stats.failed++;
1243                 } else {
1244                         mtd->ecc_stats.corrected += stat;
1245                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1246                 }
1247         }
1248         return max_bitflips;
1249 }
1250
1251 /**
1252  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1253  * @mtd: mtd info structure
1254  * @chip: nand chip info structure
1255  * @buf: buffer to store read data
1256  * @oob_required: caller requires OOB data read to chip->oob_poi
1257  * @page: page number to read
1258  *
1259  * Hardware ECC for large page chips, require OOB to be read first. For this
1260  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1261  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1262  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1263  * the data area, by overwriting the NAND manufacturer bad block markings.
1264  */
1265 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1266         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1267 {
1268         int i, eccsize = chip->ecc.size;
1269         int eccbytes = chip->ecc.bytes;
1270         int eccsteps = chip->ecc.steps;
1271         uint8_t *p = buf;
1272         uint8_t *ecc_code = chip->buffers->ecccode;
1273         uint32_t *eccpos = chip->ecc.layout->eccpos;
1274         uint8_t *ecc_calc = chip->buffers->ecccalc;
1275         unsigned int max_bitflips = 0;
1276
1277         /* Read the OOB area first */
1278         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1279         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1280         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1281
1282         for (i = 0; i < chip->ecc.total; i++)
1283                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1284
1285         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1286                 int stat;
1287
1288                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1289                 chip->read_buf(mtd, p, eccsize);
1290                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1291
1292                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1293                 if (stat < 0) {
1294                         mtd->ecc_stats.failed++;
1295                 } else {
1296                         mtd->ecc_stats.corrected += stat;
1297                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1298                 }
1299         }
1300         return max_bitflips;
1301 }
1302
1303 /**
1304  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1305  * @mtd: mtd info structure
1306  * @chip: nand chip info structure
1307  * @buf: buffer to store read data
1308  * @oob_required: caller requires OOB data read to chip->oob_poi
1309  * @page: page number to read
1310  *
1311  * The hw generator calculates the error syndrome automatically. Therefore we
1312  * need a special oob layout and handling.
1313  */
1314 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1315                                    uint8_t *buf, int oob_required, int page)
1316 {
1317         int i, eccsize = chip->ecc.size;
1318         int eccbytes = chip->ecc.bytes;
1319         int eccsteps = chip->ecc.steps;
1320         uint8_t *p = buf;
1321         uint8_t *oob = chip->oob_poi;
1322         unsigned int max_bitflips = 0;
1323
1324         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1325                 int stat;
1326
1327                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328                 chip->read_buf(mtd, p, eccsize);
1329
1330                 if (chip->ecc.prepad) {
1331                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1332                         oob += chip->ecc.prepad;
1333                 }
1334
1335                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1336                 chip->read_buf(mtd, oob, eccbytes);
1337                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1338
1339                 if (stat < 0) {
1340                         mtd->ecc_stats.failed++;
1341                 } else {
1342                         mtd->ecc_stats.corrected += stat;
1343                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1344                 }
1345
1346                 oob += eccbytes;
1347
1348                 if (chip->ecc.postpad) {
1349                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1350                         oob += chip->ecc.postpad;
1351                 }
1352         }
1353
1354         /* Calculate remaining oob bytes */
1355         i = mtd->oobsize - (oob - chip->oob_poi);
1356         if (i)
1357                 chip->read_buf(mtd, oob, i);
1358
1359         return max_bitflips;
1360 }
1361
1362 /**
1363  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1364  * @chip: nand chip structure
1365  * @oob: oob destination address
1366  * @ops: oob ops structure
1367  * @len: size of oob to transfer
1368  */
1369 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1370                                   struct mtd_oob_ops *ops, size_t len)
1371 {
1372         switch (ops->mode) {
1373
1374         case MTD_OPS_PLACE_OOB:
1375         case MTD_OPS_RAW:
1376                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1377                 return oob + len;
1378
1379         case MTD_OPS_AUTO_OOB: {
1380                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1381                 uint32_t boffs = 0, roffs = ops->ooboffs;
1382                 size_t bytes = 0;
1383
1384                 for (; free->length && len; free++, len -= bytes) {
1385                         /* Read request not from offset 0? */
1386                         if (unlikely(roffs)) {
1387                                 if (roffs >= free->length) {
1388                                         roffs -= free->length;
1389                                         continue;
1390                                 }
1391                                 boffs = free->offset + roffs;
1392                                 bytes = min_t(size_t, len,
1393                                               (free->length - roffs));
1394                                 roffs = 0;
1395                         } else {
1396                                 bytes = min_t(size_t, len, free->length);
1397                                 boffs = free->offset;
1398                         }
1399                         memcpy(oob, chip->oob_poi + boffs, bytes);
1400                         oob += bytes;
1401                 }
1402                 return oob;
1403         }
1404         default:
1405                 BUG();
1406         }
1407         return NULL;
1408 }
1409
1410 /**
1411  * nand_do_read_ops - [INTERN] Read data with ECC
1412  * @mtd: MTD device structure
1413  * @from: offset to read from
1414  * @ops: oob ops structure
1415  *
1416  * Internal function. Called with chip held.
1417  */
1418 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1419                             struct mtd_oob_ops *ops)
1420 {
1421         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1422         struct nand_chip *chip = mtd->priv;
1423         struct mtd_ecc_stats stats;
1424         int ret = 0;
1425         uint32_t readlen = ops->len;
1426         uint32_t oobreadlen = ops->ooblen;
1427         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1428                 mtd->oobavail : mtd->oobsize;
1429
1430         uint8_t *bufpoi, *oob, *buf;
1431         unsigned int max_bitflips = 0;
1432
1433         stats = mtd->ecc_stats;
1434
1435         chipnr = (int)(from >> chip->chip_shift);
1436         chip->select_chip(mtd, chipnr);
1437
1438         realpage = (int)(from >> chip->page_shift);
1439         page = realpage & chip->pagemask;
1440
1441         col = (int)(from & (mtd->writesize - 1));
1442
1443         buf = ops->datbuf;
1444         oob = ops->oobbuf;
1445         oob_required = oob ? 1 : 0;
1446
1447         while (1) {
1448                 bytes = min(mtd->writesize - col, readlen);
1449                 aligned = (bytes == mtd->writesize);
1450
1451                 /* Is the current page in the buffer? */
1452                 if (realpage != chip->pagebuf || oob) {
1453                         bufpoi = aligned ? buf : chip->buffers->databuf;
1454
1455                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1456
1457                         /*
1458                          * Now read the page into the buffer.  Absent an error,
1459                          * the read methods return max bitflips per ecc step.
1460                          */
1461                         if (unlikely(ops->mode == MTD_OPS_RAW))
1462                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1463                                                               oob_required,
1464                                                               page);
1465                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1466                                  !oob)
1467                                 ret = chip->ecc.read_subpage(mtd, chip,
1468                                                         col, bytes, bufpoi);
1469                         else
1470                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1471                                                           oob_required, page);
1472                         if (ret < 0) {
1473                                 if (!aligned)
1474                                         /* Invalidate page cache */
1475                                         chip->pagebuf = -1;
1476                                 break;
1477                         }
1478
1479                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1480
1481                         /* Transfer not aligned data */
1482                         if (!aligned) {
1483                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1484                                     !(mtd->ecc_stats.failed - stats.failed) &&
1485                                     (ops->mode != MTD_OPS_RAW)) {
1486                                         chip->pagebuf = realpage;
1487                                         chip->pagebuf_bitflips = ret;
1488                                 } else {
1489                                         /* Invalidate page cache */
1490                                         chip->pagebuf = -1;
1491                                 }
1492                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1493                         }
1494
1495                         buf += bytes;
1496
1497                         if (unlikely(oob)) {
1498                                 int toread = min(oobreadlen, max_oobsize);
1499
1500                                 if (toread) {
1501                                         oob = nand_transfer_oob(chip,
1502                                                 oob, ops, toread);
1503                                         oobreadlen -= toread;
1504                                 }
1505                         }
1506
1507                         if (chip->options & NAND_NEED_READRDY) {
1508                                 /* Apply delay or wait for ready/busy pin */
1509                                 if (!chip->dev_ready)
1510                                         udelay(chip->chip_delay);
1511                                 else
1512                                         nand_wait_ready(mtd);
1513                         }
1514                 } else {
1515                         memcpy(buf, chip->buffers->databuf + col, bytes);
1516                         buf += bytes;
1517                         max_bitflips = max_t(unsigned int, max_bitflips,
1518                                              chip->pagebuf_bitflips);
1519                 }
1520
1521                 readlen -= bytes;
1522
1523                 if (!readlen)
1524                         break;
1525
1526                 /* For subsequent reads align to page boundary */
1527                 col = 0;
1528                 /* Increment page address */
1529                 realpage++;
1530
1531                 page = realpage & chip->pagemask;
1532                 /* Check, if we cross a chip boundary */
1533                 if (!page) {
1534                         chipnr++;
1535                         chip->select_chip(mtd, -1);
1536                         chip->select_chip(mtd, chipnr);
1537                 }
1538         }
1539         chip->select_chip(mtd, -1);
1540
1541         ops->retlen = ops->len - (size_t) readlen;
1542         if (oob)
1543                 ops->oobretlen = ops->ooblen - oobreadlen;
1544
1545         if (ret < 0)
1546                 return ret;
1547
1548         if (mtd->ecc_stats.failed - stats.failed)
1549                 return -EBADMSG;
1550
1551         return max_bitflips;
1552 }
1553
1554 /**
1555  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1556  * @mtd: MTD device structure
1557  * @from: offset to read from
1558  * @len: number of bytes to read
1559  * @retlen: pointer to variable to store the number of read bytes
1560  * @buf: the databuffer to put data
1561  *
1562  * Get hold of the chip and call nand_do_read.
1563  */
1564 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1565                      size_t *retlen, uint8_t *buf)
1566 {
1567         struct mtd_oob_ops ops;
1568         int ret;
1569
1570         nand_get_device(mtd, FL_READING);
1571         ops.len = len;
1572         ops.datbuf = buf;
1573         ops.oobbuf = NULL;
1574         ops.mode = MTD_OPS_PLACE_OOB;
1575         ret = nand_do_read_ops(mtd, from, &ops);
1576         *retlen = ops.retlen;
1577         nand_release_device(mtd);
1578         return ret;
1579 }
1580
1581 /**
1582  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1583  * @mtd: mtd info structure
1584  * @chip: nand chip info structure
1585  * @page: page number to read
1586  */
1587 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1588                              int page)
1589 {
1590         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1591         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1592         return 0;
1593 }
1594
1595 /**
1596  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1597  *                          with syndromes
1598  * @mtd: mtd info structure
1599  * @chip: nand chip info structure
1600  * @page: page number to read
1601  */
1602 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1603                                   int page)
1604 {
1605         uint8_t *buf = chip->oob_poi;
1606         int length = mtd->oobsize;
1607         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1608         int eccsize = chip->ecc.size;
1609         uint8_t *bufpoi = buf;
1610         int i, toread, sndrnd = 0, pos;
1611
1612         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1613         for (i = 0; i < chip->ecc.steps; i++) {
1614                 if (sndrnd) {
1615                         pos = eccsize + i * (eccsize + chunk);
1616                         if (mtd->writesize > 512)
1617                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1618                         else
1619                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1620                 } else
1621                         sndrnd = 1;
1622                 toread = min_t(int, length, chunk);
1623                 chip->read_buf(mtd, bufpoi, toread);
1624                 bufpoi += toread;
1625                 length -= toread;
1626         }
1627         if (length > 0)
1628                 chip->read_buf(mtd, bufpoi, length);
1629
1630         return 0;
1631 }
1632
1633 /**
1634  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1635  * @mtd: mtd info structure
1636  * @chip: nand chip info structure
1637  * @page: page number to write
1638  */
1639 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1640                               int page)
1641 {
1642         int status = 0;
1643         const uint8_t *buf = chip->oob_poi;
1644         int length = mtd->oobsize;
1645
1646         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1647         chip->write_buf(mtd, buf, length);
1648         /* Send command to program the OOB data */
1649         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1650
1651         status = chip->waitfunc(mtd, chip);
1652
1653         return status & NAND_STATUS_FAIL ? -EIO : 0;
1654 }
1655
1656 /**
1657  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1658  *                           with syndrome - only for large page flash
1659  * @mtd: mtd info structure
1660  * @chip: nand chip info structure
1661  * @page: page number to write
1662  */
1663 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1664                                    struct nand_chip *chip, int page)
1665 {
1666         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1667         int eccsize = chip->ecc.size, length = mtd->oobsize;
1668         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1669         const uint8_t *bufpoi = chip->oob_poi;
1670
1671         /*
1672          * data-ecc-data-ecc ... ecc-oob
1673          * or
1674          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1675          */
1676         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1677                 pos = steps * (eccsize + chunk);
1678                 steps = 0;
1679         } else
1680                 pos = eccsize;
1681
1682         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1683         for (i = 0; i < steps; i++) {
1684                 if (sndcmd) {
1685                         if (mtd->writesize <= 512) {
1686                                 uint32_t fill = 0xFFFFFFFF;
1687
1688                                 len = eccsize;
1689                                 while (len > 0) {
1690                                         int num = min_t(int, len, 4);
1691                                         chip->write_buf(mtd, (uint8_t *)&fill,
1692                                                         num);
1693                                         len -= num;
1694                                 }
1695                         } else {
1696                                 pos = eccsize + i * (eccsize + chunk);
1697                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1698                         }
1699                 } else
1700                         sndcmd = 1;
1701                 len = min_t(int, length, chunk);
1702                 chip->write_buf(mtd, bufpoi, len);
1703                 bufpoi += len;
1704                 length -= len;
1705         }
1706         if (length > 0)
1707                 chip->write_buf(mtd, bufpoi, length);
1708
1709         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1710         status = chip->waitfunc(mtd, chip);
1711
1712         return status & NAND_STATUS_FAIL ? -EIO : 0;
1713 }
1714
1715 /**
1716  * nand_do_read_oob - [INTERN] NAND read out-of-band
1717  * @mtd: MTD device structure
1718  * @from: offset to read from
1719  * @ops: oob operations description structure
1720  *
1721  * NAND read out-of-band data from the spare area.
1722  */
1723 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1724                             struct mtd_oob_ops *ops)
1725 {
1726         int page, realpage, chipnr;
1727         struct nand_chip *chip = mtd->priv;
1728         struct mtd_ecc_stats stats;
1729         int readlen = ops->ooblen;
1730         int len;
1731         uint8_t *buf = ops->oobbuf;
1732         int ret = 0;
1733
1734         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1735                         __func__, (unsigned long long)from, readlen);
1736
1737         stats = mtd->ecc_stats;
1738
1739         if (ops->mode == MTD_OPS_AUTO_OOB)
1740                 len = chip->ecc.layout->oobavail;
1741         else
1742                 len = mtd->oobsize;
1743
1744         if (unlikely(ops->ooboffs >= len)) {
1745                 pr_debug("%s: attempt to start read outside oob\n",
1746                                 __func__);
1747                 return -EINVAL;
1748         }
1749
1750         /* Do not allow reads past end of device */
1751         if (unlikely(from >= mtd->size ||
1752                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1753                                         (from >> chip->page_shift)) * len)) {
1754                 pr_debug("%s: attempt to read beyond end of device\n",
1755                                 __func__);
1756                 return -EINVAL;
1757         }
1758
1759         chipnr = (int)(from >> chip->chip_shift);
1760         chip->select_chip(mtd, chipnr);
1761
1762         /* Shift to get page */
1763         realpage = (int)(from >> chip->page_shift);
1764         page = realpage & chip->pagemask;
1765
1766         while (1) {
1767                 if (ops->mode == MTD_OPS_RAW)
1768                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1769                 else
1770                         ret = chip->ecc.read_oob(mtd, chip, page);
1771
1772                 if (ret < 0)
1773                         break;
1774
1775                 len = min(len, readlen);
1776                 buf = nand_transfer_oob(chip, buf, ops, len);
1777
1778                 if (chip->options & NAND_NEED_READRDY) {
1779                         /* Apply delay or wait for ready/busy pin */
1780                         if (!chip->dev_ready)
1781                                 udelay(chip->chip_delay);
1782                         else
1783                                 nand_wait_ready(mtd);
1784                 }
1785
1786                 readlen -= len;
1787                 if (!readlen)
1788                         break;
1789
1790                 /* Increment page address */
1791                 realpage++;
1792
1793                 page = realpage & chip->pagemask;
1794                 /* Check, if we cross a chip boundary */
1795                 if (!page) {
1796                         chipnr++;
1797                         chip->select_chip(mtd, -1);
1798                         chip->select_chip(mtd, chipnr);
1799                 }
1800         }
1801         chip->select_chip(mtd, -1);
1802
1803         ops->oobretlen = ops->ooblen - readlen;
1804
1805         if (ret < 0)
1806                 return ret;
1807
1808         if (mtd->ecc_stats.failed - stats.failed)
1809                 return -EBADMSG;
1810
1811         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1812 }
1813
1814 /**
1815  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1816  * @mtd: MTD device structure
1817  * @from: offset to read from
1818  * @ops: oob operation description structure
1819  *
1820  * NAND read data and/or out-of-band data.
1821  */
1822 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1823                          struct mtd_oob_ops *ops)
1824 {
1825         int ret = -ENOTSUPP;
1826
1827         ops->retlen = 0;
1828
1829         /* Do not allow reads past end of device */
1830         if (ops->datbuf && (from + ops->len) > mtd->size) {
1831                 pr_debug("%s: attempt to read beyond end of device\n",
1832                                 __func__);
1833                 return -EINVAL;
1834         }
1835
1836         nand_get_device(mtd, FL_READING);
1837
1838         switch (ops->mode) {
1839         case MTD_OPS_PLACE_OOB:
1840         case MTD_OPS_AUTO_OOB:
1841         case MTD_OPS_RAW:
1842                 break;
1843
1844         default:
1845                 goto out;
1846         }
1847
1848         if (!ops->datbuf)
1849                 ret = nand_do_read_oob(mtd, from, ops);
1850         else
1851                 ret = nand_do_read_ops(mtd, from, ops);
1852
1853 out:
1854         nand_release_device(mtd);
1855         return ret;
1856 }
1857
1858
1859 /**
1860  * nand_write_page_raw - [INTERN] raw page write function
1861  * @mtd: mtd info structure
1862  * @chip: nand chip info structure
1863  * @buf: data buffer
1864  * @oob_required: must write chip->oob_poi to OOB
1865  *
1866  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1867  */
1868 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1869                                 const uint8_t *buf, int oob_required)
1870 {
1871         chip->write_buf(mtd, buf, mtd->writesize);
1872         if (oob_required)
1873                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1874
1875         return 0;
1876 }
1877
1878 /**
1879  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1880  * @mtd: mtd info structure
1881  * @chip: nand chip info structure
1882  * @buf: data buffer
1883  * @oob_required: must write chip->oob_poi to OOB
1884  *
1885  * We need a special oob layout and handling even when ECC isn't checked.
1886  */
1887 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1888                                         struct nand_chip *chip,
1889                                         const uint8_t *buf, int oob_required)
1890 {
1891         int eccsize = chip->ecc.size;
1892         int eccbytes = chip->ecc.bytes;
1893         uint8_t *oob = chip->oob_poi;
1894         int steps, size;
1895
1896         for (steps = chip->ecc.steps; steps > 0; steps--) {
1897                 chip->write_buf(mtd, buf, eccsize);
1898                 buf += eccsize;
1899
1900                 if (chip->ecc.prepad) {
1901                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1902                         oob += chip->ecc.prepad;
1903                 }
1904
1905                 chip->read_buf(mtd, oob, eccbytes);
1906                 oob += eccbytes;
1907
1908                 if (chip->ecc.postpad) {
1909                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1910                         oob += chip->ecc.postpad;
1911                 }
1912         }
1913
1914         size = mtd->oobsize - (oob - chip->oob_poi);
1915         if (size)
1916                 chip->write_buf(mtd, oob, size);
1917
1918         return 0;
1919 }
1920 /**
1921  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1922  * @mtd: mtd info structure
1923  * @chip: nand chip info structure
1924  * @buf: data buffer
1925  * @oob_required: must write chip->oob_poi to OOB
1926  */
1927 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1928                                   const uint8_t *buf, int oob_required)
1929 {
1930         int i, eccsize = chip->ecc.size;
1931         int eccbytes = chip->ecc.bytes;
1932         int eccsteps = chip->ecc.steps;
1933         uint8_t *ecc_calc = chip->buffers->ecccalc;
1934         const uint8_t *p = buf;
1935         uint32_t *eccpos = chip->ecc.layout->eccpos;
1936
1937         /* Software ECC calculation */
1938         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1939                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1940
1941         for (i = 0; i < chip->ecc.total; i++)
1942                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1943
1944         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1945 }
1946
1947 /**
1948  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1949  * @mtd: mtd info structure
1950  * @chip: nand chip info structure
1951  * @buf: data buffer
1952  * @oob_required: must write chip->oob_poi to OOB
1953  */
1954 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1955                                   const uint8_t *buf, int oob_required)
1956 {
1957         int i, eccsize = chip->ecc.size;
1958         int eccbytes = chip->ecc.bytes;
1959         int eccsteps = chip->ecc.steps;
1960         uint8_t *ecc_calc = chip->buffers->ecccalc;
1961         const uint8_t *p = buf;
1962         uint32_t *eccpos = chip->ecc.layout->eccpos;
1963
1964         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1965                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1966                 chip->write_buf(mtd, p, eccsize);
1967                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1968         }
1969
1970         for (i = 0; i < chip->ecc.total; i++)
1971                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1972
1973         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1974
1975         return 0;
1976 }
1977
1978
1979 /**
1980  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1981  * @mtd:        mtd info structure
1982  * @chip:       nand chip info structure
1983  * @column:     column address of subpage within the page
1984  * @data_len:   data length
1985  * @oob_required: must write chip->oob_poi to OOB
1986  */
1987 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1988                                 struct nand_chip *chip, uint32_t offset,
1989                                 uint32_t data_len, const uint8_t *data_buf,
1990                                 int oob_required)
1991 {
1992         uint8_t *oob_buf  = chip->oob_poi;
1993         uint8_t *ecc_calc = chip->buffers->ecccalc;
1994         int ecc_size      = chip->ecc.size;
1995         int ecc_bytes     = chip->ecc.bytes;
1996         int ecc_steps     = chip->ecc.steps;
1997         uint32_t *eccpos  = chip->ecc.layout->eccpos;
1998         uint32_t start_step = offset / ecc_size;
1999         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2000         int oob_bytes       = mtd->oobsize / ecc_steps;
2001         int step, i;
2002
2003         for (step = 0; step < ecc_steps; step++) {
2004                 /* configure controller for WRITE access */
2005                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2006
2007                 /* write data (untouched subpages already masked by 0xFF) */
2008                 chip->write_buf(mtd, data_buf, ecc_size);
2009
2010                 /* mask ECC of un-touched subpages by padding 0xFF */
2011                 if ((step < start_step) || (step > end_step))
2012                         memset(ecc_calc, 0xff, ecc_bytes);
2013                 else
2014                         chip->ecc.calculate(mtd, data_buf, ecc_calc);
2015
2016                 /* mask OOB of un-touched subpages by padding 0xFF */
2017                 /* if oob_required, preserve OOB metadata of written subpage */
2018                 if (!oob_required || (step < start_step) || (step > end_step))
2019                         memset(oob_buf, 0xff, oob_bytes);
2020
2021                 data_buf += ecc_size;
2022                 ecc_calc += ecc_bytes;
2023                 oob_buf  += oob_bytes;
2024         }
2025
2026         /* copy calculated ECC for whole page to chip->buffer->oob */
2027         /* this include masked-value(0xFF) for unwritten subpages */
2028         ecc_calc = chip->buffers->ecccalc;
2029         for (i = 0; i < chip->ecc.total; i++)
2030                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2031
2032         /* write OOB buffer to NAND device */
2033         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2034
2035         return 0;
2036 }
2037
2038
2039 /**
2040  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2041  * @mtd: mtd info structure
2042  * @chip: nand chip info structure
2043  * @buf: data buffer
2044  * @oob_required: must write chip->oob_poi to OOB
2045  *
2046  * The hw generator calculates the error syndrome automatically. Therefore we
2047  * need a special oob layout and handling.
2048  */
2049 static int nand_write_page_syndrome(struct mtd_info *mtd,
2050                                     struct nand_chip *chip,
2051                                     const uint8_t *buf, int oob_required)
2052 {
2053         int i, eccsize = chip->ecc.size;
2054         int eccbytes = chip->ecc.bytes;
2055         int eccsteps = chip->ecc.steps;
2056         const uint8_t *p = buf;
2057         uint8_t *oob = chip->oob_poi;
2058
2059         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2060
2061                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2062                 chip->write_buf(mtd, p, eccsize);
2063
2064                 if (chip->ecc.prepad) {
2065                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2066                         oob += chip->ecc.prepad;
2067                 }
2068
2069                 chip->ecc.calculate(mtd, p, oob);
2070                 chip->write_buf(mtd, oob, eccbytes);
2071                 oob += eccbytes;
2072
2073                 if (chip->ecc.postpad) {
2074                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2075                         oob += chip->ecc.postpad;
2076                 }
2077         }
2078
2079         /* Calculate remaining oob bytes */
2080         i = mtd->oobsize - (oob - chip->oob_poi);
2081         if (i)
2082                 chip->write_buf(mtd, oob, i);
2083
2084         return 0;
2085 }
2086
2087 /**
2088  * nand_write_page - [REPLACEABLE] write one page
2089  * @mtd: MTD device structure
2090  * @chip: NAND chip descriptor
2091  * @offset: address offset within the page
2092  * @data_len: length of actual data to be written
2093  * @buf: the data to write
2094  * @oob_required: must write chip->oob_poi to OOB
2095  * @page: page number to write
2096  * @cached: cached programming
2097  * @raw: use _raw version of write_page
2098  */
2099 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2100                 uint32_t offset, int data_len, const uint8_t *buf,
2101                 int oob_required, int page, int cached, int raw)
2102 {
2103         int status, subpage;
2104
2105         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2106                 chip->ecc.write_subpage)
2107                 subpage = offset || (data_len < mtd->writesize);
2108         else
2109                 subpage = 0;
2110
2111         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2112
2113         if (unlikely(raw))
2114                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2115                                                         oob_required);
2116         else if (subpage)
2117                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2118                                                          buf, oob_required);
2119         else
2120                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2121
2122         if (status < 0)
2123                 return status;
2124
2125         /*
2126          * Cached progamming disabled for now. Not sure if it's worth the
2127          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2128          */
2129         cached = 0;
2130
2131         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2132
2133                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2134                 status = chip->waitfunc(mtd, chip);
2135                 /*
2136                  * See if operation failed and additional status checks are
2137                  * available.
2138                  */
2139                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2140                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2141                                                page);
2142
2143                 if (status & NAND_STATUS_FAIL)
2144                         return -EIO;
2145         } else {
2146                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2147                 status = chip->waitfunc(mtd, chip);
2148         }
2149
2150         return 0;
2151 }
2152
2153 /**
2154  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2155  * @mtd: MTD device structure
2156  * @oob: oob data buffer
2157  * @len: oob data write length
2158  * @ops: oob ops structure
2159  */
2160 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2161                               struct mtd_oob_ops *ops)
2162 {
2163         struct nand_chip *chip = mtd->priv;
2164
2165         /*
2166          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2167          * data from a previous OOB read.
2168          */
2169         memset(chip->oob_poi, 0xff, mtd->oobsize);
2170
2171         switch (ops->mode) {
2172
2173         case MTD_OPS_PLACE_OOB:
2174         case MTD_OPS_RAW:
2175                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2176                 return oob + len;
2177
2178         case MTD_OPS_AUTO_OOB: {
2179                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2180                 uint32_t boffs = 0, woffs = ops->ooboffs;
2181                 size_t bytes = 0;
2182
2183                 for (; free->length && len; free++, len -= bytes) {
2184                         /* Write request not from offset 0? */
2185                         if (unlikely(woffs)) {
2186                                 if (woffs >= free->length) {
2187                                         woffs -= free->length;
2188                                         continue;
2189                                 }
2190                                 boffs = free->offset + woffs;
2191                                 bytes = min_t(size_t, len,
2192                                               (free->length - woffs));
2193                                 woffs = 0;
2194                         } else {
2195                                 bytes = min_t(size_t, len, free->length);
2196                                 boffs = free->offset;
2197                         }
2198                         memcpy(chip->oob_poi + boffs, oob, bytes);
2199                         oob += bytes;
2200                 }
2201                 return oob;
2202         }
2203         default:
2204                 BUG();
2205         }
2206         return NULL;
2207 }
2208
2209 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2210
2211 /**
2212  * nand_do_write_ops - [INTERN] NAND write with ECC
2213  * @mtd: MTD device structure
2214  * @to: offset to write to
2215  * @ops: oob operations description structure
2216  *
2217  * NAND write with ECC.
2218  */
2219 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2220                              struct mtd_oob_ops *ops)
2221 {
2222         int chipnr, realpage, page, blockmask, column;
2223         struct nand_chip *chip = mtd->priv;
2224         uint32_t writelen = ops->len;
2225
2226         uint32_t oobwritelen = ops->ooblen;
2227         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2228                                 mtd->oobavail : mtd->oobsize;
2229
2230         uint8_t *oob = ops->oobbuf;
2231         uint8_t *buf = ops->datbuf;
2232         int ret;
2233         int oob_required = oob ? 1 : 0;
2234
2235         ops->retlen = 0;
2236         if (!writelen)
2237                 return 0;
2238
2239         /* Reject writes, which are not page aligned */
2240         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2241                 pr_notice("%s: attempt to write non page aligned data\n",
2242                            __func__);
2243                 return -EINVAL;
2244         }
2245
2246         column = to & (mtd->writesize - 1);
2247
2248         chipnr = (int)(to >> chip->chip_shift);
2249         chip->select_chip(mtd, chipnr);
2250
2251         /* Check, if it is write protected */
2252         if (nand_check_wp(mtd)) {
2253                 ret = -EIO;
2254                 goto err_out;
2255         }
2256
2257         realpage = (int)(to >> chip->page_shift);
2258         page = realpage & chip->pagemask;
2259         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2260
2261         /* Invalidate the page cache, when we write to the cached page */
2262         if (to <= (chip->pagebuf << chip->page_shift) &&
2263             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2264                 chip->pagebuf = -1;
2265
2266         /* Don't allow multipage oob writes with offset */
2267         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2268                 ret = -EINVAL;
2269                 goto err_out;
2270         }
2271
2272         while (1) {
2273                 int bytes = mtd->writesize;
2274                 int cached = writelen > bytes && page != blockmask;
2275                 uint8_t *wbuf = buf;
2276
2277                 /* Partial page write? */
2278                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2279                         cached = 0;
2280                         bytes = min_t(int, bytes - column, (int) writelen);
2281                         chip->pagebuf = -1;
2282                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2283                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2284                         wbuf = chip->buffers->databuf;
2285                 }
2286
2287                 if (unlikely(oob)) {
2288                         size_t len = min(oobwritelen, oobmaxlen);
2289                         oob = nand_fill_oob(mtd, oob, len, ops);
2290                         oobwritelen -= len;
2291                 } else {
2292                         /* We still need to erase leftover OOB data */
2293                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2294                 }
2295                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2296                                         oob_required, page, cached,
2297                                         (ops->mode == MTD_OPS_RAW));
2298                 if (ret)
2299                         break;
2300
2301                 writelen -= bytes;
2302                 if (!writelen)
2303                         break;
2304
2305                 column = 0;
2306                 buf += bytes;
2307                 realpage++;
2308
2309                 page = realpage & chip->pagemask;
2310                 /* Check, if we cross a chip boundary */
2311                 if (!page) {
2312                         chipnr++;
2313                         chip->select_chip(mtd, -1);
2314                         chip->select_chip(mtd, chipnr);
2315                 }
2316         }
2317
2318         ops->retlen = ops->len - writelen;
2319         if (unlikely(oob))
2320                 ops->oobretlen = ops->ooblen;
2321
2322 err_out:
2323         chip->select_chip(mtd, -1);
2324         return ret;
2325 }
2326
2327 /**
2328  * panic_nand_write - [MTD Interface] NAND write with ECC
2329  * @mtd: MTD device structure
2330  * @to: offset to write to
2331  * @len: number of bytes to write
2332  * @retlen: pointer to variable to store the number of written bytes
2333  * @buf: the data to write
2334  *
2335  * NAND write with ECC. Used when performing writes in interrupt context, this
2336  * may for example be called by mtdoops when writing an oops while in panic.
2337  */
2338 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2339                             size_t *retlen, const uint8_t *buf)
2340 {
2341         struct nand_chip *chip = mtd->priv;
2342         struct mtd_oob_ops ops;
2343         int ret;
2344
2345         /* Wait for the device to get ready */
2346         panic_nand_wait(mtd, chip, 400);
2347
2348         /* Grab the device */
2349         panic_nand_get_device(chip, mtd, FL_WRITING);
2350
2351         ops.len = len;
2352         ops.datbuf = (uint8_t *)buf;
2353         ops.oobbuf = NULL;
2354         ops.mode = MTD_OPS_PLACE_OOB;
2355
2356         ret = nand_do_write_ops(mtd, to, &ops);
2357
2358         *retlen = ops.retlen;
2359         return ret;
2360 }
2361
2362 /**
2363  * nand_write - [MTD Interface] NAND write with ECC
2364  * @mtd: MTD device structure
2365  * @to: offset to write to
2366  * @len: number of bytes to write
2367  * @retlen: pointer to variable to store the number of written bytes
2368  * @buf: the data to write
2369  *
2370  * NAND write with ECC.
2371  */
2372 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2373                           size_t *retlen, const uint8_t *buf)
2374 {
2375         struct mtd_oob_ops ops;
2376         int ret;
2377
2378         nand_get_device(mtd, FL_WRITING);
2379         ops.len = len;
2380         ops.datbuf = (uint8_t *)buf;
2381         ops.oobbuf = NULL;
2382         ops.mode = MTD_OPS_PLACE_OOB;
2383         ret = nand_do_write_ops(mtd, to, &ops);
2384         *retlen = ops.retlen;
2385         nand_release_device(mtd);
2386         return ret;
2387 }
2388
2389 /**
2390  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2391  * @mtd: MTD device structure
2392  * @to: offset to write to
2393  * @ops: oob operation description structure
2394  *
2395  * NAND write out-of-band.
2396  */
2397 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2398                              struct mtd_oob_ops *ops)
2399 {
2400         int chipnr, page, status, len;
2401         struct nand_chip *chip = mtd->priv;
2402
2403         pr_debug("%s: to = 0x%08x, len = %i\n",
2404                          __func__, (unsigned int)to, (int)ops->ooblen);
2405
2406         if (ops->mode == MTD_OPS_AUTO_OOB)
2407                 len = chip->ecc.layout->oobavail;
2408         else
2409                 len = mtd->oobsize;
2410
2411         /* Do not allow write past end of page */
2412         if ((ops->ooboffs + ops->ooblen) > len) {
2413                 pr_debug("%s: attempt to write past end of page\n",
2414                                 __func__);
2415                 return -EINVAL;
2416         }
2417
2418         if (unlikely(ops->ooboffs >= len)) {
2419                 pr_debug("%s: attempt to start write outside oob\n",
2420                                 __func__);
2421                 return -EINVAL;
2422         }
2423
2424         /* Do not allow write past end of device */
2425         if (unlikely(to >= mtd->size ||
2426                      ops->ooboffs + ops->ooblen >
2427                         ((mtd->size >> chip->page_shift) -
2428                          (to >> chip->page_shift)) * len)) {
2429                 pr_debug("%s: attempt to write beyond end of device\n",
2430                                 __func__);
2431                 return -EINVAL;
2432         }
2433
2434         chipnr = (int)(to >> chip->chip_shift);
2435         chip->select_chip(mtd, chipnr);
2436
2437         /* Shift to get page */
2438         page = (int)(to >> chip->page_shift);
2439
2440         /*
2441          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2442          * of my DiskOnChip 2000 test units) will clear the whole data page too
2443          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2444          * it in the doc2000 driver in August 1999.  dwmw2.
2445          */
2446         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2447
2448         /* Check, if it is write protected */
2449         if (nand_check_wp(mtd)) {
2450                 chip->select_chip(mtd, -1);
2451                 return -EROFS;
2452         }
2453
2454         /* Invalidate the page cache, if we write to the cached page */
2455         if (page == chip->pagebuf)
2456                 chip->pagebuf = -1;
2457
2458         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2459
2460         if (ops->mode == MTD_OPS_RAW)
2461                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2462         else
2463                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2464
2465         chip->select_chip(mtd, -1);
2466
2467         if (status)
2468                 return status;
2469
2470         ops->oobretlen = ops->ooblen;
2471
2472         return 0;
2473 }
2474
2475 /**
2476  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2477  * @mtd: MTD device structure
2478  * @to: offset to write to
2479  * @ops: oob operation description structure
2480  */
2481 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2482                           struct mtd_oob_ops *ops)
2483 {
2484         int ret = -ENOTSUPP;
2485
2486         ops->retlen = 0;
2487
2488         /* Do not allow writes past end of device */
2489         if (ops->datbuf && (to + ops->len) > mtd->size) {
2490                 pr_debug("%s: attempt to write beyond end of device\n",
2491                                 __func__);
2492                 return -EINVAL;
2493         }
2494
2495         nand_get_device(mtd, FL_WRITING);
2496
2497         switch (ops->mode) {
2498         case MTD_OPS_PLACE_OOB:
2499         case MTD_OPS_AUTO_OOB:
2500         case MTD_OPS_RAW:
2501                 break;
2502
2503         default:
2504                 goto out;
2505         }
2506
2507         if (!ops->datbuf)
2508                 ret = nand_do_write_oob(mtd, to, ops);
2509         else
2510                 ret = nand_do_write_ops(mtd, to, ops);
2511
2512 out:
2513         nand_release_device(mtd);
2514         return ret;
2515 }
2516
2517 /**
2518  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2519  * @mtd: MTD device structure
2520  * @page: the page address of the block which will be erased
2521  *
2522  * Standard erase command for NAND chips.
2523  */
2524 static void single_erase_cmd(struct mtd_info *mtd, int page)
2525 {
2526         struct nand_chip *chip = mtd->priv;
2527         /* Send commands to erase a block */
2528         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2529         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2530 }
2531
2532 /**
2533  * nand_erase - [MTD Interface] erase block(s)
2534  * @mtd: MTD device structure
2535  * @instr: erase instruction
2536  *
2537  * Erase one ore more blocks.
2538  */
2539 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2540 {
2541         return nand_erase_nand(mtd, instr, 0);
2542 }
2543
2544 /**
2545  * nand_erase_nand - [INTERN] erase block(s)
2546  * @mtd: MTD device structure
2547  * @instr: erase instruction
2548  * @allowbbt: allow erasing the bbt area
2549  *
2550  * Erase one ore more blocks.
2551  */
2552 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2553                     int allowbbt)
2554 {
2555         int page, status, pages_per_block, ret, chipnr;
2556         struct nand_chip *chip = mtd->priv;
2557         loff_t len;
2558
2559         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2560                         __func__, (unsigned long long)instr->addr,
2561                         (unsigned long long)instr->len);
2562
2563         if (check_offs_len(mtd, instr->addr, instr->len))
2564                 return -EINVAL;
2565
2566         /* Grab the lock and see if the device is available */
2567         nand_get_device(mtd, FL_ERASING);
2568
2569         /* Shift to get first page */
2570         page = (int)(instr->addr >> chip->page_shift);
2571         chipnr = (int)(instr->addr >> chip->chip_shift);
2572
2573         /* Calculate pages in each block */
2574         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2575
2576         /* Select the NAND device */
2577         chip->select_chip(mtd, chipnr);
2578
2579         /* Check, if it is write protected */
2580         if (nand_check_wp(mtd)) {
2581                 pr_debug("%s: device is write protected!\n",
2582                                 __func__);
2583                 instr->state = MTD_ERASE_FAILED;
2584                 goto erase_exit;
2585         }
2586
2587         /* Loop through the pages */
2588         len = instr->len;
2589
2590         instr->state = MTD_ERASING;
2591
2592         while (len) {
2593                 /* Check if we have a bad block, we do not erase bad blocks! */
2594                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2595                                         chip->page_shift, 0, allowbbt)) {
2596                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2597                                     __func__, page);
2598                         instr->state = MTD_ERASE_FAILED;
2599                         goto erase_exit;
2600                 }
2601
2602                 /*
2603                  * Invalidate the page cache, if we erase the block which
2604                  * contains the current cached page.
2605                  */
2606                 if (page <= chip->pagebuf && chip->pagebuf <
2607                     (page + pages_per_block))
2608                         chip->pagebuf = -1;
2609
2610                 chip->erase_cmd(mtd, page & chip->pagemask);
2611
2612                 status = chip->waitfunc(mtd, chip);
2613
2614                 /*
2615                  * See if operation failed and additional status checks are
2616                  * available
2617                  */
2618                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2619                         status = chip->errstat(mtd, chip, FL_ERASING,
2620                                                status, page);
2621
2622                 /* See if block erase succeeded */
2623                 if (status & NAND_STATUS_FAIL) {
2624                         pr_debug("%s: failed erase, page 0x%08x\n",
2625                                         __func__, page);
2626                         instr->state = MTD_ERASE_FAILED;
2627                         instr->fail_addr =
2628                                 ((loff_t)page << chip->page_shift);
2629                         goto erase_exit;
2630                 }
2631
2632                 /* Increment page address and decrement length */
2633                 len -= (1ULL << chip->phys_erase_shift);
2634                 page += pages_per_block;
2635
2636                 /* Check, if we cross a chip boundary */
2637                 if (len && !(page & chip->pagemask)) {
2638                         chipnr++;
2639                         chip->select_chip(mtd, -1);
2640                         chip->select_chip(mtd, chipnr);
2641                 }
2642         }
2643         instr->state = MTD_ERASE_DONE;
2644
2645 erase_exit:
2646
2647         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2648
2649         /* Deselect and wake up anyone waiting on the device */
2650         chip->select_chip(mtd, -1);
2651         nand_release_device(mtd);
2652
2653         /* Do call back function */
2654         if (!ret)
2655                 mtd_erase_callback(instr);
2656
2657         /* Return more or less happy */
2658         return ret;
2659 }
2660
2661 /**
2662  * nand_sync - [MTD Interface] sync
2663  * @mtd: MTD device structure
2664  *
2665  * Sync is actually a wait for chip ready function.
2666  */
2667 static void nand_sync(struct mtd_info *mtd)
2668 {
2669         pr_debug("%s: called\n", __func__);
2670
2671         /* Grab the lock and see if the device is available */
2672         nand_get_device(mtd, FL_SYNCING);
2673         /* Release it and go back */
2674         nand_release_device(mtd);
2675 }
2676
2677 /**
2678  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2679  * @mtd: MTD device structure
2680  * @offs: offset relative to mtd start
2681  */
2682 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2683 {
2684         return nand_block_checkbad(mtd, offs, 1, 0);
2685 }
2686
2687 /**
2688  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2689  * @mtd: MTD device structure
2690  * @ofs: offset relative to mtd start
2691  */
2692 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2693 {
2694         int ret;
2695
2696         ret = nand_block_isbad(mtd, ofs);
2697         if (ret) {
2698                 /* If it was bad already, return success and do nothing */
2699                 if (ret > 0)
2700                         return 0;
2701                 return ret;
2702         }
2703
2704         return nand_block_markbad_lowlevel(mtd, ofs);
2705 }
2706
2707 /**
2708  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2709  * @mtd: MTD device structure
2710  * @chip: nand chip info structure
2711  * @addr: feature address.
2712  * @subfeature_param: the subfeature parameters, a four bytes array.
2713  */
2714 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2715                         int addr, uint8_t *subfeature_param)
2716 {
2717         int status;
2718
2719         if (!chip->onfi_version ||
2720             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2721               & ONFI_OPT_CMD_SET_GET_FEATURES))
2722                 return -EINVAL;
2723
2724         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2725         chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2726         status = chip->waitfunc(mtd, chip);
2727         if (status & NAND_STATUS_FAIL)
2728                 return -EIO;
2729         return 0;
2730 }
2731
2732 /**
2733  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2734  * @mtd: MTD device structure
2735  * @chip: nand chip info structure
2736  * @addr: feature address.
2737  * @subfeature_param: the subfeature parameters, a four bytes array.
2738  */
2739 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2740                         int addr, uint8_t *subfeature_param)
2741 {
2742         if (!chip->onfi_version ||
2743             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2744               & ONFI_OPT_CMD_SET_GET_FEATURES))
2745                 return -EINVAL;
2746
2747         /* clear the sub feature parameters */
2748         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2749
2750         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2751         chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2752         return 0;
2753 }
2754
2755 /**
2756  * nand_suspend - [MTD Interface] Suspend the NAND flash
2757  * @mtd: MTD device structure
2758  */
2759 static int nand_suspend(struct mtd_info *mtd)
2760 {
2761         return nand_get_device(mtd, FL_PM_SUSPENDED);
2762 }
2763
2764 /**
2765  * nand_resume - [MTD Interface] Resume the NAND flash
2766  * @mtd: MTD device structure
2767  */
2768 static void nand_resume(struct mtd_info *mtd)
2769 {
2770         struct nand_chip *chip = mtd->priv;
2771
2772         if (chip->state == FL_PM_SUSPENDED)
2773                 nand_release_device(mtd);
2774         else
2775                 pr_err("%s called for a chip which is not in suspended state\n",
2776                         __func__);
2777 }
2778
2779 /* Set default functions */
2780 static void nand_set_defaults(struct nand_chip *chip, int busw)
2781 {
2782         /* check for proper chip_delay setup, set 20us if not */
2783         if (!chip->chip_delay)
2784                 chip->chip_delay = 20;
2785
2786         /* check, if a user supplied command function given */
2787         if (chip->cmdfunc == NULL)
2788                 chip->cmdfunc = nand_command;
2789
2790         /* check, if a user supplied wait function given */
2791         if (chip->waitfunc == NULL)
2792                 chip->waitfunc = nand_wait;
2793
2794         if (!chip->select_chip)
2795                 chip->select_chip = nand_select_chip;
2796
2797         /* If called twice, pointers that depend on busw may need to be reset */
2798         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2799                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2800         if (!chip->read_word)
2801                 chip->read_word = nand_read_word;
2802         if (!chip->block_bad)
2803                 chip->block_bad = nand_block_bad;
2804         if (!chip->block_markbad)
2805                 chip->block_markbad = nand_default_block_markbad;
2806         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2807                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2808         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2809                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2810         if (!chip->scan_bbt)
2811                 chip->scan_bbt = nand_default_bbt;
2812
2813         if (!chip->controller) {
2814                 chip->controller = &chip->hwcontrol;
2815                 spin_lock_init(&chip->controller->lock);
2816                 init_waitqueue_head(&chip->controller->wq);
2817         }
2818
2819 }
2820
2821 /* Sanitize ONFI strings so we can safely print them */
2822 static void sanitize_string(uint8_t *s, size_t len)
2823 {
2824         ssize_t i;
2825
2826         /* Null terminate */
2827         s[len - 1] = 0;
2828
2829         /* Remove non printable chars */
2830         for (i = 0; i < len - 1; i++) {
2831                 if (s[i] < ' ' || s[i] > 127)
2832                         s[i] = '?';
2833         }
2834
2835         /* Remove trailing spaces */
2836         strim(s);
2837 }
2838
2839 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2840 {
2841         int i;
2842         while (len--) {
2843                 crc ^= *p++ << 8;
2844                 for (i = 0; i < 8; i++)
2845                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2846         }
2847
2848         return crc;
2849 }
2850
2851 /* Parse the Extended Parameter Page. */
2852 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2853                 struct nand_chip *chip, struct nand_onfi_params *p)
2854 {
2855         struct onfi_ext_param_page *ep;
2856         struct onfi_ext_section *s;
2857         struct onfi_ext_ecc_info *ecc;
2858         uint8_t *cursor;
2859         int ret = -EINVAL;
2860         int len;
2861         int i;
2862
2863         len = le16_to_cpu(p->ext_param_page_length) * 16;
2864         ep = kmalloc(len, GFP_KERNEL);
2865         if (!ep) {
2866                 ret = -ENOMEM;
2867                 goto ext_out;
2868         }
2869
2870         /* Send our own NAND_CMD_PARAM. */
2871         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2872
2873         /* Use the Change Read Column command to skip the ONFI param pages. */
2874         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2875                         sizeof(*p) * p->num_of_param_pages , -1);
2876
2877         /* Read out the Extended Parameter Page. */
2878         chip->read_buf(mtd, (uint8_t *)ep, len);
2879         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2880                 != le16_to_cpu(ep->crc))) {
2881                 pr_debug("fail in the CRC.\n");
2882                 goto ext_out;
2883         }
2884
2885         /*
2886          * Check the signature.
2887          * Do not strictly follow the ONFI spec, maybe changed in future.
2888          */
2889         if (strncmp(ep->sig, "EPPS", 4)) {
2890                 pr_debug("The signature is invalid.\n");
2891                 goto ext_out;
2892         }
2893
2894         /* find the ECC section. */
2895         cursor = (uint8_t *)(ep + 1);
2896         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2897                 s = ep->sections + i;
2898                 if (s->type == ONFI_SECTION_TYPE_2)
2899                         break;
2900                 cursor += s->length * 16;
2901         }
2902         if (i == ONFI_EXT_SECTION_MAX) {
2903                 pr_debug("We can not find the ECC section.\n");
2904                 goto ext_out;
2905         }
2906
2907         /* get the info we want. */
2908         ecc = (struct onfi_ext_ecc_info *)cursor;
2909
2910         if (ecc->codeword_size) {
2911                 chip->ecc_strength_ds = ecc->ecc_bits;
2912                 chip->ecc_step_ds = 1 << ecc->codeword_size;
2913         }
2914
2915         pr_info("ONFI extended param page detected.\n");
2916         return 0;
2917
2918 ext_out:
2919         kfree(ep);
2920         return ret;
2921 }
2922
2923 /*
2924  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2925  */
2926 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2927                                         int *busw)
2928 {
2929         struct nand_onfi_params *p = &chip->onfi_params;
2930         int i;
2931         int val;
2932
2933         /* ONFI need to be probed in 8 bits mode, and 16 bits should be selected with NAND_BUSWIDTH_AUTO */
2934         if (chip->options & NAND_BUSWIDTH_16) {
2935                 pr_err("Trying ONFI probe in 16 bits mode, aborting !\n");
2936                 return 0;
2937         }
2938         /* Try ONFI for unknown chip or LP */
2939         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2940         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2941                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2942                 return 0;
2943
2944         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2945         for (i = 0; i < 3; i++) {
2946                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2947                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2948                                 le16_to_cpu(p->crc)) {
2949                         pr_info("ONFI param page %d valid\n", i);
2950                         break;
2951                 }
2952         }
2953
2954         if (i == 3)
2955                 return 0;
2956
2957         /* Check version */
2958         val = le16_to_cpu(p->revision);
2959         if (val & (1 << 5))
2960                 chip->onfi_version = 23;
2961         else if (val & (1 << 4))
2962                 chip->onfi_version = 22;
2963         else if (val & (1 << 3))
2964                 chip->onfi_version = 21;
2965         else if (val & (1 << 2))
2966                 chip->onfi_version = 20;
2967         else if (val & (1 << 1))
2968                 chip->onfi_version = 10;
2969
2970         if (!chip->onfi_version) {
2971                 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2972                 return 0;
2973         }
2974
2975         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2976         sanitize_string(p->model, sizeof(p->model));
2977         if (!mtd->name)
2978                 mtd->name = p->model;
2979         mtd->writesize = le32_to_cpu(p->byte_per_page);
2980         mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2981         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2982         chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2983         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2984
2985         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
2986                 *busw = NAND_BUSWIDTH_16;
2987         else
2988                 *busw = 0;
2989
2990         if (p->ecc_bits != 0xff) {
2991                 chip->ecc_strength_ds = p->ecc_bits;
2992                 chip->ecc_step_ds = 512;
2993         } else if (chip->onfi_version >= 21 &&
2994                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
2995
2996                 /*
2997                  * The nand_flash_detect_ext_param_page() uses the
2998                  * Change Read Column command which maybe not supported
2999                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3000                  * now. We do not replace user supplied command function.
3001                  */
3002                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3003                         chip->cmdfunc = nand_command_lp;
3004
3005                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3006                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3007                         pr_info("Failed to detect the extended param page.\n");
3008         }
3009
3010         pr_info("ONFI flash detected\n");
3011         return 1;
3012 }
3013
3014 /*
3015  * nand_id_has_period - Check if an ID string has a given wraparound period
3016  * @id_data: the ID string
3017  * @arrlen: the length of the @id_data array
3018  * @period: the period of repitition
3019  *
3020  * Check if an ID string is repeated within a given sequence of bytes at
3021  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3022  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3023  * if the repetition has a period of @period; otherwise, returns zero.
3024  */
3025 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3026 {
3027         int i, j;
3028         for (i = 0; i < period; i++)
3029                 for (j = i + period; j < arrlen; j += period)
3030                         if (id_data[i] != id_data[j])
3031                                 return 0;
3032         return 1;
3033 }
3034
3035 /*
3036  * nand_id_len - Get the length of an ID string returned by CMD_READID
3037  * @id_data: the ID string
3038  * @arrlen: the length of the @id_data array
3039
3040  * Returns the length of the ID string, according to known wraparound/trailing
3041  * zero patterns. If no pattern exists, returns the length of the array.
3042  */
3043 static int nand_id_len(u8 *id_data, int arrlen)
3044 {
3045         int last_nonzero, period;
3046
3047         /* Find last non-zero byte */
3048         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3049                 if (id_data[last_nonzero])
3050                         break;
3051
3052         /* All zeros */
3053         if (last_nonzero < 0)
3054                 return 0;
3055
3056         /* Calculate wraparound period */
3057         for (period = 1; period < arrlen; period++)
3058                 if (nand_id_has_period(id_data, arrlen, period))
3059                         break;
3060
3061         /* There's a repeated pattern */
3062         if (period < arrlen)
3063                 return period;
3064
3065         /* There are trailing zeros */
3066         if (last_nonzero < arrlen - 1)
3067                 return last_nonzero + 1;
3068
3069         /* No pattern detected */
3070         return arrlen;
3071 }
3072
3073 /*
3074  * Many new NAND share similar device ID codes, which represent the size of the
3075  * chip. The rest of the parameters must be decoded according to generic or
3076  * manufacturer-specific "extended ID" decoding patterns.
3077  */
3078 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3079                                 u8 id_data[8], int *busw)
3080 {
3081         int extid, id_len;
3082         /* The 3rd id byte holds MLC / multichip data */
3083         chip->cellinfo = id_data[2];
3084         /* The 4th id byte is the important one */
3085         extid = id_data[3];
3086
3087         id_len = nand_id_len(id_data, 8);
3088
3089         /*
3090          * Field definitions are in the following datasheets:
3091          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3092          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3093          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3094          *
3095          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3096          * ID to decide what to do.
3097          */
3098         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3099                         (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3100                         id_data[5] != 0x00) {
3101                 /* Calc pagesize */
3102                 mtd->writesize = 2048 << (extid & 0x03);
3103                 extid >>= 2;
3104                 /* Calc oobsize */
3105                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3106                 case 1:
3107                         mtd->oobsize = 128;
3108                         break;
3109                 case 2:
3110                         mtd->oobsize = 218;
3111                         break;
3112                 case 3:
3113                         mtd->oobsize = 400;
3114                         break;
3115                 case 4:
3116                         mtd->oobsize = 436;
3117                         break;
3118                 case 5:
3119                         mtd->oobsize = 512;
3120                         break;
3121                 case 6:
3122                 default: /* Other cases are "reserved" (unknown) */
3123                         mtd->oobsize = 640;
3124                         break;
3125                 }
3126                 extid >>= 2;
3127                 /* Calc blocksize */
3128                 mtd->erasesize = (128 * 1024) <<
3129                         (((extid >> 1) & 0x04) | (extid & 0x03));
3130                 *busw = 0;
3131         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3132                         (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3133                 unsigned int tmp;
3134
3135                 /* Calc pagesize */
3136                 mtd->writesize = 2048 << (extid & 0x03);
3137                 extid >>= 2;
3138                 /* Calc oobsize */
3139                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3140                 case 0:
3141                         mtd->oobsize = 128;
3142                         break;
3143                 case 1:
3144                         mtd->oobsize = 224;
3145                         break;
3146                 case 2:
3147                         mtd->oobsize = 448;
3148                         break;
3149                 case 3:
3150                         mtd->oobsize = 64;
3151                         break;
3152                 case 4:
3153                         mtd->oobsize = 32;
3154                         break;
3155                 case 5:
3156                         mtd->oobsize = 16;
3157                         break;
3158                 default:
3159                         mtd->oobsize = 640;
3160                         break;
3161                 }
3162                 extid >>= 2;
3163                 /* Calc blocksize */
3164                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3165                 if (tmp < 0x03)
3166                         mtd->erasesize = (128 * 1024) << tmp;
3167                 else if (tmp == 0x03)
3168                         mtd->erasesize = 768 * 1024;
3169                 else
3170                         mtd->erasesize = (64 * 1024) << tmp;
3171                 *busw = 0;
3172         } else {
3173                 /* Calc pagesize */
3174                 mtd->writesize = 1024 << (extid & 0x03);
3175                 extid >>= 2;
3176                 /* Calc oobsize */
3177                 mtd->oobsize = (8 << (extid & 0x01)) *
3178                         (mtd->writesize >> 9);
3179                 extid >>= 2;
3180                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3181                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3182                 extid >>= 2;
3183                 /* Get buswidth information */
3184                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3185
3186                 /*
3187                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3188                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3189                  * follows:
3190                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3191                  *                         110b -> 24nm
3192                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3193                  */
3194                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3195                                 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3196                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3197                                 !(id_data[4] & 0x80) /* !BENAND */) {
3198                         mtd->oobsize = 32 * mtd->writesize >> 9;
3199                 }
3200
3201         }
3202 }
3203
3204 /*
3205  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3206  * decodes a matching ID table entry and assigns the MTD size parameters for
3207  * the chip.
3208  */
3209 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3210                                 struct nand_flash_dev *type, u8 id_data[8],
3211                                 int *busw)
3212 {
3213         int maf_id = id_data[0];
3214
3215         mtd->erasesize = type->erasesize;
3216         mtd->writesize = type->pagesize;
3217         mtd->oobsize = mtd->writesize / 32;
3218         *busw = type->options & NAND_BUSWIDTH_16;
3219
3220         /*
3221          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3222          * some Spansion chips have erasesize that conflicts with size
3223          * listed in nand_ids table.
3224          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3225          */
3226         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3227                         && id_data[6] == 0x00 && id_data[7] == 0x00
3228                         && mtd->writesize == 512) {
3229                 mtd->erasesize = 128 * 1024;
3230                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3231         }
3232 }
3233
3234 /*
3235  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3236  * heuristic patterns using various detected parameters (e.g., manufacturer,
3237  * page size, cell-type information).
3238  */
3239 static void nand_decode_bbm_options(struct mtd_info *mtd,
3240                                     struct nand_chip *chip, u8 id_data[8])
3241 {
3242         int maf_id = id_data[0];
3243
3244         /* Set the bad block position */
3245         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3246                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3247         else
3248                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3249
3250         /*
3251          * Bad block marker is stored in the last page of each block on Samsung
3252          * and Hynix MLC devices; stored in first two pages of each block on
3253          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3254          * AMD/Spansion, and Macronix.  All others scan only the first page.
3255          */
3256         if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3257                         (maf_id == NAND_MFR_SAMSUNG ||
3258                          maf_id == NAND_MFR_HYNIX))
3259                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3260         else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3261                                 (maf_id == NAND_MFR_SAMSUNG ||
3262                                  maf_id == NAND_MFR_HYNIX ||
3263                                  maf_id == NAND_MFR_TOSHIBA ||
3264                                  maf_id == NAND_MFR_AMD ||
3265                                  maf_id == NAND_MFR_MACRONIX)) ||
3266                         (mtd->writesize == 2048 &&
3267                          maf_id == NAND_MFR_MICRON))
3268                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3269 }
3270
3271 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3272 {
3273         return type->id_len;
3274 }
3275
3276 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3277                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3278 {
3279         if (!strncmp(type->id, id_data, type->id_len)) {
3280                 mtd->writesize = type->pagesize;
3281                 mtd->erasesize = type->erasesize;
3282                 mtd->oobsize = type->oobsize;
3283
3284                 chip->cellinfo = id_data[2];
3285                 chip->chipsize = (uint64_t)type->chipsize << 20;
3286                 chip->options |= type->options;
3287                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3288                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3289
3290                 *busw = type->options & NAND_BUSWIDTH_16;
3291
3292                 return true;
3293         }
3294         return false;
3295 }
3296
3297 /*
3298  * Get the flash and manufacturer id and lookup if the type is supported.
3299  */
3300 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3301                                                   struct nand_chip *chip,
3302                                                   int busw,
3303                                                   int *maf_id, int *dev_id,
3304                                                   struct nand_flash_dev *type)
3305 {
3306         int i, maf_idx;
3307         u8 id_data[8];
3308
3309         /* Select the device */
3310         chip->select_chip(mtd, 0);
3311
3312         /*
3313          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3314          * after power-up.
3315          */
3316         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3317
3318         /* Send the command for reading device ID */
3319         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3320
3321         /* Read manufacturer and device IDs */
3322         *maf_id = chip->read_byte(mtd);
3323         *dev_id = chip->read_byte(mtd);
3324
3325         /*
3326          * Try again to make sure, as some systems the bus-hold or other
3327          * interface concerns can cause random data which looks like a
3328          * possibly credible NAND flash to appear. If the two results do
3329          * not match, ignore the device completely.
3330          */
3331
3332         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3333
3334         /* Read entire ID string */
3335         for (i = 0; i < 8; i++)
3336                 id_data[i] = chip->read_byte(mtd);
3337
3338         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3339                 pr_info("%s: second ID read did not match "
3340                         "%02x,%02x against %02x,%02x\n", __func__,
3341                         *maf_id, *dev_id, id_data[0], id_data[1]);
3342                 return ERR_PTR(-ENODEV);
3343         }
3344
3345         if (!type)
3346                 type = nand_flash_ids;
3347
3348         for (; type->name != NULL; type++) {
3349                 if (is_full_id_nand(type)) {
3350                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3351                                 goto ident_done;
3352                 } else if (*dev_id == type->dev_id) {
3353                                 break;
3354                 }
3355         }
3356
3357         chip->onfi_version = 0;
3358         if (!type->name || !type->pagesize) {
3359                 /* Check is chip is ONFI compliant */
3360                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3361                         goto ident_done;
3362         }
3363
3364         if (!type->name)
3365                 return ERR_PTR(-ENODEV);
3366
3367         if (!mtd->name)
3368                 mtd->name = type->name;
3369
3370         chip->chipsize = (uint64_t)type->chipsize << 20;
3371
3372         if (!type->pagesize && chip->init_size) {
3373                 /* Set the pagesize, oobsize, erasesize by the driver */
3374                 busw = chip->init_size(mtd, chip, id_data);
3375         } else if (!type->pagesize) {
3376                 /* Decode parameters from extended ID */
3377                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3378         } else {
3379                 nand_decode_id(mtd, chip, type, id_data, &busw);
3380         }
3381         /* Get chip options */
3382         chip->options |= type->options;
3383
3384         /*
3385          * Check if chip is not a Samsung device. Do not clear the
3386          * options for chips which do not have an extended id.
3387          */
3388         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3389                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3390 ident_done:
3391
3392         /* Try to identify manufacturer */
3393         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3394                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3395                         break;
3396         }
3397
3398         if (chip->options & NAND_BUSWIDTH_AUTO) {
3399                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3400                 chip->options |= busw;
3401                 nand_set_defaults(chip, busw);
3402         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3403                 /*
3404                  * Check, if buswidth is correct. Hardware drivers should set
3405                  * chip correct!
3406                  */
3407                 pr_info("NAND device: Manufacturer ID:"
3408                         " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3409                         *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3410                 pr_warn("NAND bus width %d instead %d bit\n",
3411                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3412                            busw ? 16 : 8);
3413                 return ERR_PTR(-EINVAL);
3414         }
3415
3416         nand_decode_bbm_options(mtd, chip, id_data);
3417
3418         /* Calculate the address shift from the page size */
3419         chip->page_shift = ffs(mtd->writesize) - 1;
3420         /* Convert chipsize to number of pages per chip -1 */
3421         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3422
3423         chip->bbt_erase_shift = chip->phys_erase_shift =
3424                 ffs(mtd->erasesize) - 1;
3425         if (chip->chipsize & 0xffffffff)
3426                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3427         else {
3428                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3429                 chip->chip_shift += 32 - 1;
3430         }
3431
3432         chip->badblockbits = 8;
3433         chip->erase_cmd = single_erase_cmd;
3434
3435         /* Do not replace user supplied command function! */
3436         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3437                 chip->cmdfunc = nand_command_lp;
3438
3439         pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3440                 " %dMiB, page size: %d, OOB size: %d\n",
3441                 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3442                 chip->onfi_version ? chip->onfi_params.model : type->name,
3443                 (int)(chip->chipsize >> 20), mtd->writesize, mtd->oobsize);
3444
3445         return type;
3446 }
3447
3448 /**
3449  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3450  * @mtd: MTD device structure
3451  * @maxchips: number of chips to scan for
3452  * @table: alternative NAND ID table
3453  *
3454  * This is the first phase of the normal nand_scan() function. It reads the
3455  * flash ID and sets up MTD fields accordingly.
3456  *
3457  * The mtd->owner field must be set to the module of the caller.
3458  */
3459 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3460                     struct nand_flash_dev *table)
3461 {
3462         int i, busw, nand_maf_id, nand_dev_id;
3463         struct nand_chip *chip = mtd->priv;
3464         struct nand_flash_dev *type;
3465
3466         /* Get buswidth to select the correct functions */
3467         busw = chip->options & NAND_BUSWIDTH_16;
3468         /* Set the default functions */
3469         nand_set_defaults(chip, busw);
3470
3471         /* Read the flash type */
3472         type = nand_get_flash_type(mtd, chip, busw,
3473                                 &nand_maf_id, &nand_dev_id, table);
3474
3475         if (IS_ERR(type)) {
3476                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3477                         pr_warn("No NAND device found\n");
3478                 chip->select_chip(mtd, -1);
3479                 return PTR_ERR(type);
3480         }
3481
3482         chip->select_chip(mtd, -1);
3483
3484         /* Check for a chip array */
3485         for (i = 1; i < maxchips; i++) {
3486                 chip->select_chip(mtd, i);
3487                 /* See comment in nand_get_flash_type for reset */
3488                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3489                 /* Send the command for reading device ID */
3490                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3491                 /* Read manufacturer and device IDs */
3492                 if (nand_maf_id != chip->read_byte(mtd) ||
3493                     nand_dev_id != chip->read_byte(mtd)) {
3494                         chip->select_chip(mtd, -1);
3495                         break;
3496                 }
3497                 chip->select_chip(mtd, -1);
3498         }
3499         if (i > 1)
3500                 pr_info("%d NAND chips detected\n", i);
3501
3502         /* Store the number of chips and calc total size for mtd */
3503         chip->numchips = i;
3504         mtd->size = i * chip->chipsize;
3505
3506         return 0;
3507 }
3508 EXPORT_SYMBOL(nand_scan_ident);
3509
3510
3511 /**
3512  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3513  * @mtd: MTD device structure
3514  *
3515  * This is the second phase of the normal nand_scan() function. It fills out
3516  * all the uninitialized function pointers with the defaults and scans for a
3517  * bad block table if appropriate.
3518  */
3519 int nand_scan_tail(struct mtd_info *mtd)
3520 {
3521         int i;
3522         struct nand_chip *chip = mtd->priv;
3523
3524         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3525         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3526                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3527
3528         if (!(chip->options & NAND_OWN_BUFFERS))
3529                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3530         if (!chip->buffers)
3531                 return -ENOMEM;
3532
3533         /* Set the internal oob buffer location, just after the page data */
3534         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3535
3536         /*
3537          * If no default placement scheme is given, select an appropriate one.
3538          */
3539         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3540                 switch (mtd->oobsize) {
3541                 case 8:
3542                         chip->ecc.layout = &nand_oob_8;
3543                         break;
3544                 case 16:
3545                         chip->ecc.layout = &nand_oob_16;
3546                         break;
3547                 case 64:
3548                         chip->ecc.layout = &nand_oob_64;
3549                         break;
3550                 case 128:
3551                         chip->ecc.layout = &nand_oob_128;
3552                         break;
3553                 default:
3554                         pr_warn("No oob scheme defined for oobsize %d\n",
3555                                    mtd->oobsize);
3556                         BUG();
3557                 }
3558         }
3559
3560         if (!chip->write_page)
3561                 chip->write_page = nand_write_page;
3562
3563         /* set for ONFI nand */
3564         if (!chip->onfi_set_features)
3565                 chip->onfi_set_features = nand_onfi_set_features;
3566         if (!chip->onfi_get_features)
3567                 chip->onfi_get_features = nand_onfi_get_features;
3568
3569         /*
3570          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3571          * selected and we have 256 byte pagesize fallback to software ECC
3572          */
3573
3574         switch (chip->ecc.mode) {
3575         case NAND_ECC_HW_OOB_FIRST:
3576                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3577                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3578                      !chip->ecc.hwctl) {
3579                         pr_warn("No ECC functions supplied; "
3580                                    "hardware ECC not possible\n");
3581                         BUG();
3582                 }
3583                 if (!chip->ecc.read_page)
3584                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3585
3586         case NAND_ECC_HW:
3587                 /* Use standard hwecc read page function? */
3588                 if (!chip->ecc.read_page)
3589                         chip->ecc.read_page = nand_read_page_hwecc;
3590                 if (!chip->ecc.write_page)
3591                         chip->ecc.write_page = nand_write_page_hwecc;
3592                 if (!chip->ecc.read_page_raw)
3593                         chip->ecc.read_page_raw = nand_read_page_raw;
3594                 if (!chip->ecc.write_page_raw)
3595                         chip->ecc.write_page_raw = nand_write_page_raw;
3596                 if (!chip->ecc.read_oob)
3597                         chip->ecc.read_oob = nand_read_oob_std;
3598                 if (!chip->ecc.write_oob)
3599                         chip->ecc.write_oob = nand_write_oob_std;
3600                 if (!chip->ecc.read_subpage)
3601                         chip->ecc.read_subpage = nand_read_subpage;
3602                 if (!chip->ecc.write_subpage)
3603                         chip->ecc.write_subpage = nand_write_subpage_hwecc;
3604
3605         case NAND_ECC_HW_SYNDROME:
3606                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3607                      !chip->ecc.hwctl) &&
3608                     (!chip->ecc.read_page ||
3609                      chip->ecc.read_page == nand_read_page_hwecc ||
3610                      !chip->ecc.write_page ||
3611                      chip->ecc.write_page == nand_write_page_hwecc)) {
3612                         pr_warn("No ECC functions supplied; "
3613                                    "hardware ECC not possible\n");
3614                         BUG();
3615                 }
3616                 /* Use standard syndrome read/write page function? */
3617                 if (!chip->ecc.read_page)
3618                         chip->ecc.read_page = nand_read_page_syndrome;
3619                 if (!chip->ecc.write_page)
3620                         chip->ecc.write_page = nand_write_page_syndrome;
3621                 if (!chip->ecc.read_page_raw)
3622                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3623                 if (!chip->ecc.write_page_raw)
3624                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3625                 if (!chip->ecc.read_oob)
3626                         chip->ecc.read_oob = nand_read_oob_syndrome;
3627                 if (!chip->ecc.write_oob)
3628                         chip->ecc.write_oob = nand_write_oob_syndrome;
3629
3630                 if (mtd->writesize >= chip->ecc.size) {
3631                         if (!chip->ecc.strength) {
3632                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3633                                 BUG();
3634                         }
3635                         break;
3636                 }
3637                 pr_warn("%d byte HW ECC not possible on "
3638                            "%d byte page size, fallback to SW ECC\n",
3639                            chip->ecc.size, mtd->writesize);
3640                 chip->ecc.mode = NAND_ECC_SOFT;
3641
3642         case NAND_ECC_SOFT:
3643                 chip->ecc.calculate = nand_calculate_ecc;
3644                 chip->ecc.correct = nand_correct_data;
3645                 chip->ecc.read_page = nand_read_page_swecc;
3646                 chip->ecc.read_subpage = nand_read_subpage;
3647                 chip->ecc.write_page = nand_write_page_swecc;
3648                 chip->ecc.read_page_raw = nand_read_page_raw;
3649                 chip->ecc.write_page_raw = nand_write_page_raw;
3650                 chip->ecc.read_oob = nand_read_oob_std;
3651                 chip->ecc.write_oob = nand_write_oob_std;
3652                 if (!chip->ecc.size)
3653                         chip->ecc.size = 256;
3654                 chip->ecc.bytes = 3;
3655                 chip->ecc.strength = 1;
3656                 break;
3657
3658         case NAND_ECC_SOFT_BCH:
3659                 if (!mtd_nand_has_bch()) {
3660                         pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3661                         BUG();
3662                 }
3663                 chip->ecc.calculate = nand_bch_calculate_ecc;
3664                 chip->ecc.correct = nand_bch_correct_data;
3665                 chip->ecc.read_page = nand_read_page_swecc;
3666                 chip->ecc.read_subpage = nand_read_subpage;
3667                 chip->ecc.write_page = nand_write_page_swecc;
3668                 chip->ecc.read_page_raw = nand_read_page_raw;
3669                 chip->ecc.write_page_raw = nand_write_page_raw;
3670                 chip->ecc.read_oob = nand_read_oob_std;
3671                 chip->ecc.write_oob = nand_write_oob_std;
3672                 /*
3673                  * Board driver should supply ecc.size and ecc.bytes values to
3674                  * select how many bits are correctable; see nand_bch_init()
3675                  * for details. Otherwise, default to 4 bits for large page
3676                  * devices.
3677                  */
3678                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3679                         chip->ecc.size = 512;
3680                         chip->ecc.bytes = 7;
3681                 }
3682                 chip->ecc.priv = nand_bch_init(mtd,
3683                                                chip->ecc.size,
3684                                                chip->ecc.bytes,
3685                                                &chip->ecc.layout);
3686                 if (!chip->ecc.priv) {
3687                         pr_warn("BCH ECC initialization failed!\n");
3688                         BUG();
3689                 }
3690                 chip->ecc.strength =
3691                         chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3692                 break;
3693
3694         case NAND_ECC_NONE:
3695                 pr_warn("NAND_ECC_NONE selected by board driver. "
3696                            "This is not recommended!\n");
3697                 chip->ecc.read_page = nand_read_page_raw;
3698                 chip->ecc.write_page = nand_write_page_raw;
3699                 chip->ecc.read_oob = nand_read_oob_std;
3700                 chip->ecc.read_page_raw = nand_read_page_raw;
3701                 chip->ecc.write_page_raw = nand_write_page_raw;
3702                 chip->ecc.write_oob = nand_write_oob_std;
3703                 chip->ecc.size = mtd->writesize;
3704                 chip->ecc.bytes = 0;
3705                 chip->ecc.strength = 0;
3706                 break;
3707
3708         default:
3709                 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3710                 BUG();
3711         }
3712
3713         /* For many systems, the standard OOB write also works for raw */
3714         if (!chip->ecc.read_oob_raw)
3715                 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3716         if (!chip->ecc.write_oob_raw)
3717                 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3718
3719         /*
3720          * The number of bytes available for a client to place data into
3721          * the out of band area.
3722          */
3723         chip->ecc.layout->oobavail = 0;
3724         for (i = 0; chip->ecc.layout->oobfree[i].length
3725                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3726                 chip->ecc.layout->oobavail +=
3727                         chip->ecc.layout->oobfree[i].length;
3728         mtd->oobavail = chip->ecc.layout->oobavail;
3729
3730         /*
3731          * Set the number of read / write steps for one page depending on ECC
3732          * mode.
3733          */
3734         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3735         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3736                 pr_warn("Invalid ECC parameters\n");
3737                 BUG();
3738         }
3739         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3740
3741         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3742         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3743             !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3744                 switch (chip->ecc.steps) {
3745                 case 2:
3746                         mtd->subpage_sft = 1;
3747                         break;
3748                 case 4:
3749                 case 8:
3750                 case 16:
3751                         mtd->subpage_sft = 2;
3752                         break;
3753                 }
3754         }
3755         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3756
3757         /* Initialize state */
3758         chip->state = FL_READY;
3759
3760         /* Invalidate the pagebuffer reference */
3761         chip->pagebuf = -1;
3762
3763         /* Large page NAND with SOFT_ECC should support subpage reads */
3764         if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3765                 chip->options |= NAND_SUBPAGE_READ;
3766
3767         /* Fill in remaining MTD driver data */
3768         mtd->type = MTD_NANDFLASH;
3769         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3770                                                 MTD_CAP_NANDFLASH;
3771         mtd->_erase = nand_erase;
3772         mtd->_point = NULL;
3773         mtd->_unpoint = NULL;
3774         mtd->_read = nand_read;
3775         mtd->_write = nand_write;
3776         mtd->_panic_write = panic_nand_write;
3777         mtd->_read_oob = nand_read_oob;
3778         mtd->_write_oob = nand_write_oob;
3779         mtd->_sync = nand_sync;
3780         mtd->_lock = NULL;
3781         mtd->_unlock = NULL;
3782         mtd->_suspend = nand_suspend;
3783         mtd->_resume = nand_resume;
3784         mtd->_block_isbad = nand_block_isbad;
3785         mtd->_block_markbad = nand_block_markbad;
3786         mtd->writebufsize = mtd->writesize;
3787
3788         /* propagate ecc info to mtd_info */
3789         mtd->ecclayout = chip->ecc.layout;
3790         mtd->ecc_strength = chip->ecc.strength;
3791         /*
3792          * Initialize bitflip_threshold to its default prior scan_bbt() call.
3793          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3794          * properly set.
3795          */
3796         if (!mtd->bitflip_threshold)
3797                 mtd->bitflip_threshold = mtd->ecc_strength;
3798
3799         /* Check, if we should skip the bad block table scan */
3800         if (chip->options & NAND_SKIP_BBTSCAN)
3801                 return 0;
3802
3803         /* Build bad block table */
3804         return chip->scan_bbt(mtd);
3805 }
3806 EXPORT_SYMBOL(nand_scan_tail);
3807
3808 /*
3809  * is_module_text_address() isn't exported, and it's mostly a pointless
3810  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3811  * to call us from in-kernel code if the core NAND support is modular.
3812  */
3813 #ifdef MODULE
3814 #define caller_is_module() (1)
3815 #else
3816 #define caller_is_module() \
3817         is_module_text_address((unsigned long)__builtin_return_address(0))
3818 #endif
3819
3820 /**
3821  * nand_scan - [NAND Interface] Scan for the NAND device
3822  * @mtd: MTD device structure
3823  * @maxchips: number of chips to scan for
3824  *
3825  * This fills out all the uninitialized function pointers with the defaults.
3826  * The flash ID is read and the mtd/chip structures are filled with the
3827  * appropriate values. The mtd->owner field must be set to the module of the
3828  * caller.
3829  */
3830 int nand_scan(struct mtd_info *mtd, int maxchips)
3831 {
3832         int ret;
3833
3834         /* Many callers got this wrong, so check for it for a while... */
3835         if (!mtd->owner && caller_is_module()) {
3836                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3837                 BUG();
3838         }
3839
3840         ret = nand_scan_ident(mtd, maxchips, NULL);
3841         if (!ret)
3842                 ret = nand_scan_tail(mtd);
3843         return ret;
3844 }
3845 EXPORT_SYMBOL(nand_scan);
3846
3847 /**
3848  * nand_release - [NAND Interface] Free resources held by the NAND device
3849  * @mtd: MTD device structure
3850  */
3851 void nand_release(struct mtd_info *mtd)
3852 {
3853         struct nand_chip *chip = mtd->priv;
3854
3855         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3856                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3857
3858         mtd_device_unregister(mtd);
3859
3860         /* Free bad block table memory */
3861         kfree(chip->bbt);
3862         if (!(chip->options & NAND_OWN_BUFFERS))
3863                 kfree(chip->buffers);
3864
3865         /* Free bad block descriptor memory */
3866         if (chip->badblock_pattern && chip->badblock_pattern->options
3867                         & NAND_BBT_DYNAMICSTRUCT)
3868                 kfree(chip->badblock_pattern);
3869 }
3870 EXPORT_SYMBOL_GPL(nand_release);
3871
3872 static int __init nand_base_init(void)
3873 {
3874         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3875         return 0;
3876 }
3877
3878 static void __exit nand_base_exit(void)
3879 {
3880         led_trigger_unregister_simple(nand_led_trigger);
3881 }
3882
3883 module_init(nand_base_init);
3884 module_exit(nand_base_exit);
3885
3886 MODULE_LICENSE("GPL");
3887 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3888 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3889 MODULE_DESCRIPTION("Generic NAND flash driver code");