]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/nand_base.c
ec1db1e19c053367c61a5428319c21f49ad44a5d
[karo-tx-linux.git] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *
8  *      Additional technical information is available on
9  *      http://www.linux-mtd.infradead.org/doc/nand.html
10  *
11  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
13  *
14  *  Credits:
15  *      David Woodhouse for adding multichip support
16  *
17  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18  *      rework for 2K page size chips
19  *
20  *  TODO:
21  *      Enable cached programming for 2k page size chips
22  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
23  *      if we have HW ECC support.
24  *      BBT table is not serialized, has to be fixed
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License version 2 as
28  * published by the Free Software Foundation.
29  *
30  */
31
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/nand.h>
41 #include <linux/mtd/nand_ecc.h>
42 #include <linux/mtd/nand_bch.h>
43 #include <linux/interrupt.h>
44 #include <linux/bitops.h>
45 #include <linux/leds.h>
46 #include <linux/io.h>
47 #include <linux/mtd/partitions.h>
48
49 /* Define default oob placement schemes for large and small page devices */
50 static struct nand_ecclayout nand_oob_8 = {
51         .eccbytes = 3,
52         .eccpos = {0, 1, 2},
53         .oobfree = {
54                 {.offset = 3,
55                  .length = 2},
56                 {.offset = 6,
57                  .length = 2} }
58 };
59
60 static struct nand_ecclayout nand_oob_16 = {
61         .eccbytes = 6,
62         .eccpos = {0, 1, 2, 3, 6, 7},
63         .oobfree = {
64                 {.offset = 8,
65                  . length = 8} }
66 };
67
68 static struct nand_ecclayout nand_oob_64 = {
69         .eccbytes = 24,
70         .eccpos = {
71                    40, 41, 42, 43, 44, 45, 46, 47,
72                    48, 49, 50, 51, 52, 53, 54, 55,
73                    56, 57, 58, 59, 60, 61, 62, 63},
74         .oobfree = {
75                 {.offset = 2,
76                  .length = 38} }
77 };
78
79 static struct nand_ecclayout nand_oob_128 = {
80         .eccbytes = 48,
81         .eccpos = {
82                    80, 81, 82, 83, 84, 85, 86, 87,
83                    88, 89, 90, 91, 92, 93, 94, 95,
84                    96, 97, 98, 99, 100, 101, 102, 103,
85                    104, 105, 106, 107, 108, 109, 110, 111,
86                    112, 113, 114, 115, 116, 117, 118, 119,
87                    120, 121, 122, 123, 124, 125, 126, 127},
88         .oobfree = {
89                 {.offset = 2,
90                  .length = 78} }
91 };
92
93 static int nand_get_device(struct mtd_info *mtd, int new_state);
94
95 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
96                              struct mtd_oob_ops *ops);
97
98 /*
99  * For devices which display every fart in the system on a separate LED. Is
100  * compiled away when LED support is disabled.
101  */
102 DEFINE_LED_TRIGGER(nand_led_trigger);
103
104 static int check_offs_len(struct mtd_info *mtd,
105                                         loff_t ofs, uint64_t len)
106 {
107         struct nand_chip *chip = mtd->priv;
108         int ret = 0;
109
110         /* Start address must align on block boundary */
111         if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
112                 pr_debug("%s: unaligned address\n", __func__);
113                 ret = -EINVAL;
114         }
115
116         /* Length must align on block boundary */
117         if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
118                 pr_debug("%s: length not block aligned\n", __func__);
119                 ret = -EINVAL;
120         }
121
122         return ret;
123 }
124
125 /**
126  * nand_release_device - [GENERIC] release chip
127  * @mtd: MTD device structure
128  *
129  * Release chip lock and wake up anyone waiting on the device.
130  */
131 static void nand_release_device(struct mtd_info *mtd)
132 {
133         struct nand_chip *chip = mtd->priv;
134
135         /* Release the controller and the chip */
136         spin_lock(&chip->controller->lock);
137         chip->controller->active = NULL;
138         chip->state = FL_READY;
139         wake_up(&chip->controller->wq);
140         spin_unlock(&chip->controller->lock);
141 }
142
143 /**
144  * nand_read_byte - [DEFAULT] read one byte from the chip
145  * @mtd: MTD device structure
146  *
147  * Default read function for 8bit buswidth
148  */
149 static uint8_t nand_read_byte(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readb(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
157  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
158  * @mtd: MTD device structure
159  *
160  * Default read function for 16bit buswidth with endianness conversion.
161  *
162  */
163 static uint8_t nand_read_byte16(struct mtd_info *mtd)
164 {
165         struct nand_chip *chip = mtd->priv;
166         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
167 }
168
169 /**
170  * nand_read_word - [DEFAULT] read one word from the chip
171  * @mtd: MTD device structure
172  *
173  * Default read function for 16bit buswidth without endianness conversion.
174  */
175 static u16 nand_read_word(struct mtd_info *mtd)
176 {
177         struct nand_chip *chip = mtd->priv;
178         return readw(chip->IO_ADDR_R);
179 }
180
181 /**
182  * nand_select_chip - [DEFAULT] control CE line
183  * @mtd: MTD device structure
184  * @chipnr: chipnumber to select, -1 for deselect
185  *
186  * Default select function for 1 chip devices.
187  */
188 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
189 {
190         struct nand_chip *chip = mtd->priv;
191
192         switch (chipnr) {
193         case -1:
194                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
195                 break;
196         case 0:
197                 break;
198
199         default:
200                 BUG();
201         }
202 }
203
204 /**
205  * nand_write_buf - [DEFAULT] write buffer to chip
206  * @mtd: MTD device structure
207  * @buf: data buffer
208  * @len: number of bytes to write
209  *
210  * Default write function for 8bit buswidth.
211  */
212 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
213 {
214         struct nand_chip *chip = mtd->priv;
215
216         iowrite8_rep(chip->IO_ADDR_W, buf, len);
217 }
218
219 /**
220  * nand_read_buf - [DEFAULT] read chip data into buffer
221  * @mtd: MTD device structure
222  * @buf: buffer to store date
223  * @len: number of bytes to read
224  *
225  * Default read function for 8bit buswidth.
226  */
227 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
228 {
229         struct nand_chip *chip = mtd->priv;
230
231         ioread8_rep(chip->IO_ADDR_R, buf, len);
232 }
233
234 /**
235  * nand_write_buf16 - [DEFAULT] write buffer to chip
236  * @mtd: MTD device structure
237  * @buf: data buffer
238  * @len: number of bytes to write
239  *
240  * Default write function for 16bit buswidth.
241  */
242 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
243 {
244         struct nand_chip *chip = mtd->priv;
245         u16 *p = (u16 *) buf;
246
247         iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
248 }
249
250 /**
251  * nand_read_buf16 - [DEFAULT] read chip data into buffer
252  * @mtd: MTD device structure
253  * @buf: buffer to store date
254  * @len: number of bytes to read
255  *
256  * Default read function for 16bit buswidth.
257  */
258 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
259 {
260         struct nand_chip *chip = mtd->priv;
261         u16 *p = (u16 *) buf;
262
263         ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
264 }
265
266 /**
267  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
268  * @mtd: MTD device structure
269  * @ofs: offset from device start
270  * @getchip: 0, if the chip is already selected
271  *
272  * Check, if the block is bad.
273  */
274 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
275 {
276         int page, chipnr, res = 0, i = 0;
277         struct nand_chip *chip = mtd->priv;
278         u16 bad;
279
280         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
281                 ofs += mtd->erasesize - mtd->writesize;
282
283         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
284
285         if (getchip) {
286                 chipnr = (int)(ofs >> chip->chip_shift);
287
288                 nand_get_device(mtd, FL_READING);
289
290                 /* Select the NAND device */
291                 chip->select_chip(mtd, chipnr);
292         }
293
294         do {
295                 if (chip->options & NAND_BUSWIDTH_16) {
296                         chip->cmdfunc(mtd, NAND_CMD_READOOB,
297                                         chip->badblockpos & 0xFE, page);
298                         bad = cpu_to_le16(chip->read_word(mtd));
299                         if (chip->badblockpos & 0x1)
300                                 bad >>= 8;
301                         else
302                                 bad &= 0xFF;
303                 } else {
304                         chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
305                                         page);
306                         bad = chip->read_byte(mtd);
307                 }
308
309                 if (likely(chip->badblockbits == 8))
310                         res = bad != 0xFF;
311                 else
312                         res = hweight8(bad) < chip->badblockbits;
313                 ofs += mtd->writesize;
314                 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
315                 i++;
316         } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
317
318         if (getchip) {
319                 chip->select_chip(mtd, -1);
320                 nand_release_device(mtd);
321         }
322
323         return res;
324 }
325
326 /**
327  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
328  * @mtd: MTD device structure
329  * @ofs: offset from device start
330  *
331  * This is the default implementation, which can be overridden by a hardware
332  * specific driver. It provides the details for writing a bad block marker to a
333  * block.
334  */
335 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
336 {
337         struct nand_chip *chip = mtd->priv;
338         struct mtd_oob_ops ops;
339         uint8_t buf[2] = { 0, 0 };
340         int ret = 0, res, i = 0;
341
342         ops.datbuf = NULL;
343         ops.oobbuf = buf;
344         ops.ooboffs = chip->badblockpos;
345         if (chip->options & NAND_BUSWIDTH_16) {
346                 ops.ooboffs &= ~0x01;
347                 ops.len = ops.ooblen = 2;
348         } else {
349                 ops.len = ops.ooblen = 1;
350         }
351         ops.mode = MTD_OPS_PLACE_OOB;
352
353         /* Write to first/last page(s) if necessary */
354         if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
355                 ofs += mtd->erasesize - mtd->writesize;
356         do {
357                 res = nand_do_write_oob(mtd, ofs, &ops);
358                 if (!ret)
359                         ret = res;
360
361                 i++;
362                 ofs += mtd->writesize;
363         } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
364
365         return ret;
366 }
367
368 /**
369  * nand_block_markbad_lowlevel - mark a block bad
370  * @mtd: MTD device structure
371  * @ofs: offset from device start
372  *
373  * This function performs the generic NAND bad block marking steps (i.e., bad
374  * block table(s) and/or marker(s)). We only allow the hardware driver to
375  * specify how to write bad block markers to OOB (chip->block_markbad).
376  *
377  * We try operations in the following order:
378  *  (1) erase the affected block, to allow OOB marker to be written cleanly
379  *  (2) write bad block marker to OOB area of affected block (unless flag
380  *      NAND_BBT_NO_OOB_BBM is present)
381  *  (3) update the BBT
382  * Note that we retain the first error encountered in (2) or (3), finish the
383  * procedures, and dump the error in the end.
384 */
385 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
386 {
387         struct nand_chip *chip = mtd->priv;
388         int res, ret = 0;
389
390         if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
391                 struct erase_info einfo;
392
393                 /* Attempt erase before marking OOB */
394                 memset(&einfo, 0, sizeof(einfo));
395                 einfo.mtd = mtd;
396                 einfo.addr = ofs;
397                 einfo.len = 1ULL << chip->phys_erase_shift;
398                 nand_erase_nand(mtd, &einfo, 0);
399
400                 /* Write bad block marker to OOB */
401                 nand_get_device(mtd, FL_WRITING);
402                 ret = chip->block_markbad(mtd, ofs);
403                 nand_release_device(mtd);
404         }
405
406         /* Mark block bad in BBT */
407         if (chip->bbt) {
408                 res = nand_markbad_bbt(mtd, ofs);
409                 if (!ret)
410                         ret = res;
411         }
412
413         if (!ret)
414                 mtd->ecc_stats.badblocks++;
415
416         return ret;
417 }
418
419 /**
420  * nand_check_wp - [GENERIC] check if the chip is write protected
421  * @mtd: MTD device structure
422  *
423  * Check, if the device is write protected. The function expects, that the
424  * device is already selected.
425  */
426 static int nand_check_wp(struct mtd_info *mtd)
427 {
428         struct nand_chip *chip = mtd->priv;
429
430         /* Broken xD cards report WP despite being writable */
431         if (chip->options & NAND_BROKEN_XD)
432                 return 0;
433
434         /* Check the WP bit */
435         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
436         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
437 }
438
439 /**
440  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
441  * @mtd: MTD device structure
442  * @ofs: offset from device start
443  * @getchip: 0, if the chip is already selected
444  * @allowbbt: 1, if its allowed to access the bbt area
445  *
446  * Check, if the block is bad. Either by reading the bad block table or
447  * calling of the scan function.
448  */
449 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
450                                int allowbbt)
451 {
452         struct nand_chip *chip = mtd->priv;
453
454         if (!chip->bbt)
455                 return chip->block_bad(mtd, ofs, getchip);
456
457         /* Return info from the table */
458         return nand_isbad_bbt(mtd, ofs, allowbbt);
459 }
460
461 /**
462  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
463  * @mtd: MTD device structure
464  * @timeo: Timeout
465  *
466  * Helper function for nand_wait_ready used when needing to wait in interrupt
467  * context.
468  */
469 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
470 {
471         struct nand_chip *chip = mtd->priv;
472         int i;
473
474         /* Wait for the device to get ready */
475         for (i = 0; i < timeo; i++) {
476                 if (chip->dev_ready(mtd))
477                         break;
478                 touch_softlockup_watchdog();
479                 mdelay(1);
480         }
481 }
482
483 /* Wait for the ready pin, after a command. The timeout is caught later. */
484 void nand_wait_ready(struct mtd_info *mtd)
485 {
486         struct nand_chip *chip = mtd->priv;
487         unsigned long timeo = jiffies + msecs_to_jiffies(20);
488
489         /* 400ms timeout */
490         if (in_interrupt() || oops_in_progress)
491                 return panic_nand_wait_ready(mtd, 400);
492
493         led_trigger_event(nand_led_trigger, LED_FULL);
494         /* Wait until command is processed or timeout occurs */
495         do {
496                 if (chip->dev_ready(mtd))
497                         break;
498                 touch_softlockup_watchdog();
499         } while (time_before(jiffies, timeo));
500         led_trigger_event(nand_led_trigger, LED_OFF);
501 }
502 EXPORT_SYMBOL_GPL(nand_wait_ready);
503
504 /**
505  * nand_command - [DEFAULT] Send command to NAND device
506  * @mtd: MTD device structure
507  * @command: the command to be sent
508  * @column: the column address for this command, -1 if none
509  * @page_addr: the page address for this command, -1 if none
510  *
511  * Send command to NAND device. This function is used for small page devices
512  * (512 Bytes per page).
513  */
514 static void nand_command(struct mtd_info *mtd, unsigned int command,
515                          int column, int page_addr)
516 {
517         register struct nand_chip *chip = mtd->priv;
518         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
519
520         /* Write out the command to the device */
521         if (command == NAND_CMD_SEQIN) {
522                 int readcmd;
523
524                 if (column >= mtd->writesize) {
525                         /* OOB area */
526                         column -= mtd->writesize;
527                         readcmd = NAND_CMD_READOOB;
528                 } else if (column < 256) {
529                         /* First 256 bytes --> READ0 */
530                         readcmd = NAND_CMD_READ0;
531                 } else {
532                         column -= 256;
533                         readcmd = NAND_CMD_READ1;
534                 }
535                 chip->cmd_ctrl(mtd, readcmd, ctrl);
536                 ctrl &= ~NAND_CTRL_CHANGE;
537         }
538         chip->cmd_ctrl(mtd, command, ctrl);
539
540         /* Address cycle, when necessary */
541         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
542         /* Serially input address */
543         if (column != -1) {
544                 /* Adjust columns for 16 bit buswidth */
545                 if (chip->options & NAND_BUSWIDTH_16)
546                         column >>= 1;
547                 chip->cmd_ctrl(mtd, column, ctrl);
548                 ctrl &= ~NAND_CTRL_CHANGE;
549         }
550         if (page_addr != -1) {
551                 chip->cmd_ctrl(mtd, page_addr, ctrl);
552                 ctrl &= ~NAND_CTRL_CHANGE;
553                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
554                 /* One more address cycle for devices > 32MiB */
555                 if (chip->chipsize > (32 << 20))
556                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
557         }
558         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
559
560         /*
561          * Program and erase have their own busy handlers status and sequential
562          * in needs no delay
563          */
564         switch (command) {
565
566         case NAND_CMD_PAGEPROG:
567         case NAND_CMD_ERASE1:
568         case NAND_CMD_ERASE2:
569         case NAND_CMD_SEQIN:
570         case NAND_CMD_STATUS:
571                 return;
572
573         case NAND_CMD_RESET:
574                 if (chip->dev_ready)
575                         break;
576                 udelay(chip->chip_delay);
577                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
578                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
579                 chip->cmd_ctrl(mtd,
580                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
581                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
582                                 ;
583                 return;
584
585                 /* This applies to read commands */
586         default:
587                 /*
588                  * If we don't have access to the busy pin, we apply the given
589                  * command delay
590                  */
591                 if (!chip->dev_ready) {
592                         udelay(chip->chip_delay);
593                         return;
594                 }
595         }
596         /*
597          * Apply this short delay always to ensure that we do wait tWB in
598          * any case on any machine.
599          */
600         ndelay(100);
601
602         nand_wait_ready(mtd);
603 }
604
605 /**
606  * nand_command_lp - [DEFAULT] Send command to NAND large page device
607  * @mtd: MTD device structure
608  * @command: the command to be sent
609  * @column: the column address for this command, -1 if none
610  * @page_addr: the page address for this command, -1 if none
611  *
612  * Send command to NAND device. This is the version for the new large page
613  * devices. We don't have the separate regions as we have in the small page
614  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
615  */
616 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
617                             int column, int page_addr)
618 {
619         register struct nand_chip *chip = mtd->priv;
620
621         /* Emulate NAND_CMD_READOOB */
622         if (command == NAND_CMD_READOOB) {
623                 column += mtd->writesize;
624                 command = NAND_CMD_READ0;
625         }
626
627         /* Command latch cycle */
628         chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
629
630         if (column != -1 || page_addr != -1) {
631                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
632
633                 /* Serially input address */
634                 if (column != -1) {
635                         /* Adjust columns for 16 bit buswidth */
636                         if (chip->options & NAND_BUSWIDTH_16)
637                                 column >>= 1;
638                         chip->cmd_ctrl(mtd, column, ctrl);
639                         ctrl &= ~NAND_CTRL_CHANGE;
640                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
641                 }
642                 if (page_addr != -1) {
643                         chip->cmd_ctrl(mtd, page_addr, ctrl);
644                         chip->cmd_ctrl(mtd, page_addr >> 8,
645                                        NAND_NCE | NAND_ALE);
646                         /* One more address cycle for devices > 128MiB */
647                         if (chip->chipsize > (128 << 20))
648                                 chip->cmd_ctrl(mtd, page_addr >> 16,
649                                                NAND_NCE | NAND_ALE);
650                 }
651         }
652         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
653
654         /*
655          * Program and erase have their own busy handlers status, sequential
656          * in, and deplete1 need no delay.
657          */
658         switch (command) {
659
660         case NAND_CMD_CACHEDPROG:
661         case NAND_CMD_PAGEPROG:
662         case NAND_CMD_ERASE1:
663         case NAND_CMD_ERASE2:
664         case NAND_CMD_SEQIN:
665         case NAND_CMD_RNDIN:
666         case NAND_CMD_STATUS:
667                 return;
668
669         case NAND_CMD_RESET:
670                 if (chip->dev_ready)
671                         break;
672                 udelay(chip->chip_delay);
673                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
674                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
675                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
676                                NAND_NCE | NAND_CTRL_CHANGE);
677                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
678                                 ;
679                 return;
680
681         case NAND_CMD_RNDOUT:
682                 /* No ready / busy check necessary */
683                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
684                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
685                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
686                                NAND_NCE | NAND_CTRL_CHANGE);
687                 return;
688
689         case NAND_CMD_READ0:
690                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
691                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
692                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
693                                NAND_NCE | NAND_CTRL_CHANGE);
694
695                 /* This applies to read commands */
696         default:
697                 /*
698                  * If we don't have access to the busy pin, we apply the given
699                  * command delay.
700                  */
701                 if (!chip->dev_ready) {
702                         udelay(chip->chip_delay);
703                         return;
704                 }
705         }
706
707         /*
708          * Apply this short delay always to ensure that we do wait tWB in
709          * any case on any machine.
710          */
711         ndelay(100);
712
713         nand_wait_ready(mtd);
714 }
715
716 /**
717  * panic_nand_get_device - [GENERIC] Get chip for selected access
718  * @chip: the nand chip descriptor
719  * @mtd: MTD device structure
720  * @new_state: the state which is requested
721  *
722  * Used when in panic, no locks are taken.
723  */
724 static void panic_nand_get_device(struct nand_chip *chip,
725                       struct mtd_info *mtd, int new_state)
726 {
727         /* Hardware controller shared among independent devices */
728         chip->controller->active = chip;
729         chip->state = new_state;
730 }
731
732 /**
733  * nand_get_device - [GENERIC] Get chip for selected access
734  * @mtd: MTD device structure
735  * @new_state: the state which is requested
736  *
737  * Get the device and lock it for exclusive access
738  */
739 static int
740 nand_get_device(struct mtd_info *mtd, int new_state)
741 {
742         struct nand_chip *chip = mtd->priv;
743         spinlock_t *lock = &chip->controller->lock;
744         wait_queue_head_t *wq = &chip->controller->wq;
745         DECLARE_WAITQUEUE(wait, current);
746 retry:
747         spin_lock(lock);
748
749         /* Hardware controller shared among independent devices */
750         if (!chip->controller->active)
751                 chip->controller->active = chip;
752
753         if (chip->controller->active == chip && chip->state == FL_READY) {
754                 chip->state = new_state;
755                 spin_unlock(lock);
756                 return 0;
757         }
758         if (new_state == FL_PM_SUSPENDED) {
759                 if (chip->controller->active->state == FL_PM_SUSPENDED) {
760                         chip->state = FL_PM_SUSPENDED;
761                         spin_unlock(lock);
762                         return 0;
763                 }
764         }
765         set_current_state(TASK_UNINTERRUPTIBLE);
766         add_wait_queue(wq, &wait);
767         spin_unlock(lock);
768         schedule();
769         remove_wait_queue(wq, &wait);
770         goto retry;
771 }
772
773 /**
774  * panic_nand_wait - [GENERIC] wait until the command is done
775  * @mtd: MTD device structure
776  * @chip: NAND chip structure
777  * @timeo: timeout
778  *
779  * Wait for command done. This is a helper function for nand_wait used when
780  * we are in interrupt context. May happen when in panic and trying to write
781  * an oops through mtdoops.
782  */
783 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
784                             unsigned long timeo)
785 {
786         int i;
787         for (i = 0; i < timeo; i++) {
788                 if (chip->dev_ready) {
789                         if (chip->dev_ready(mtd))
790                                 break;
791                 } else {
792                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
793                                 break;
794                 }
795                 mdelay(1);
796         }
797 }
798
799 /**
800  * nand_wait - [DEFAULT] wait until the command is done
801  * @mtd: MTD device structure
802  * @chip: NAND chip structure
803  *
804  * Wait for command done. This applies to erase and program only. Erase can
805  * take up to 400ms and program up to 20ms according to general NAND and
806  * SmartMedia specs.
807  */
808 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
809 {
810
811         int status, state = chip->state;
812         unsigned long timeo = (state == FL_ERASING ? 400 : 20);
813
814         led_trigger_event(nand_led_trigger, LED_FULL);
815
816         /*
817          * Apply this short delay always to ensure that we do wait tWB in any
818          * case on any machine.
819          */
820         ndelay(100);
821
822         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
823
824         if (in_interrupt() || oops_in_progress)
825                 panic_nand_wait(mtd, chip, timeo);
826         else {
827                 timeo = jiffies + msecs_to_jiffies(timeo);
828                 while (time_before(jiffies, timeo)) {
829                         if (chip->dev_ready) {
830                                 if (chip->dev_ready(mtd))
831                                         break;
832                         } else {
833                                 if (chip->read_byte(mtd) & NAND_STATUS_READY)
834                                         break;
835                         }
836                         cond_resched();
837                 }
838         }
839         led_trigger_event(nand_led_trigger, LED_OFF);
840
841         status = (int)chip->read_byte(mtd);
842         /* This can happen if in case of timeout or buggy dev_ready */
843         WARN_ON(!(status & NAND_STATUS_READY));
844         return status;
845 }
846
847 /**
848  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
849  * @mtd: mtd info
850  * @ofs: offset to start unlock from
851  * @len: length to unlock
852  * @invert: when = 0, unlock the range of blocks within the lower and
853  *                    upper boundary address
854  *          when = 1, unlock the range of blocks outside the boundaries
855  *                    of the lower and upper boundary address
856  *
857  * Returs unlock status.
858  */
859 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
860                                         uint64_t len, int invert)
861 {
862         int ret = 0;
863         int status, page;
864         struct nand_chip *chip = mtd->priv;
865
866         /* Submit address of first page to unlock */
867         page = ofs >> chip->page_shift;
868         chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
869
870         /* Submit address of last page to unlock */
871         page = (ofs + len) >> chip->page_shift;
872         chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
873                                 (page | invert) & chip->pagemask);
874
875         /* Call wait ready function */
876         status = chip->waitfunc(mtd, chip);
877         /* See if device thinks it succeeded */
878         if (status & NAND_STATUS_FAIL) {
879                 pr_debug("%s: error status = 0x%08x\n",
880                                         __func__, status);
881                 ret = -EIO;
882         }
883
884         return ret;
885 }
886
887 /**
888  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
889  * @mtd: mtd info
890  * @ofs: offset to start unlock from
891  * @len: length to unlock
892  *
893  * Returns unlock status.
894  */
895 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
896 {
897         int ret = 0;
898         int chipnr;
899         struct nand_chip *chip = mtd->priv;
900
901         pr_debug("%s: start = 0x%012llx, len = %llu\n",
902                         __func__, (unsigned long long)ofs, len);
903
904         if (check_offs_len(mtd, ofs, len))
905                 ret = -EINVAL;
906
907         /* Align to last block address if size addresses end of the device */
908         if (ofs + len == mtd->size)
909                 len -= mtd->erasesize;
910
911         nand_get_device(mtd, FL_UNLOCKING);
912
913         /* Shift to get chip number */
914         chipnr = ofs >> chip->chip_shift;
915
916         chip->select_chip(mtd, chipnr);
917
918         /* Check, if it is write protected */
919         if (nand_check_wp(mtd)) {
920                 pr_debug("%s: device is write protected!\n",
921                                         __func__);
922                 ret = -EIO;
923                 goto out;
924         }
925
926         ret = __nand_unlock(mtd, ofs, len, 0);
927
928 out:
929         chip->select_chip(mtd, -1);
930         nand_release_device(mtd);
931
932         return ret;
933 }
934 EXPORT_SYMBOL(nand_unlock);
935
936 /**
937  * nand_lock - [REPLACEABLE] locks all blocks present in the device
938  * @mtd: mtd info
939  * @ofs: offset to start unlock from
940  * @len: length to unlock
941  *
942  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
943  * have this feature, but it allows only to lock all blocks, not for specified
944  * range for block. Implementing 'lock' feature by making use of 'unlock', for
945  * now.
946  *
947  * Returns lock status.
948  */
949 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
950 {
951         int ret = 0;
952         int chipnr, status, page;
953         struct nand_chip *chip = mtd->priv;
954
955         pr_debug("%s: start = 0x%012llx, len = %llu\n",
956                         __func__, (unsigned long long)ofs, len);
957
958         if (check_offs_len(mtd, ofs, len))
959                 ret = -EINVAL;
960
961         nand_get_device(mtd, FL_LOCKING);
962
963         /* Shift to get chip number */
964         chipnr = ofs >> chip->chip_shift;
965
966         chip->select_chip(mtd, chipnr);
967
968         /* Check, if it is write protected */
969         if (nand_check_wp(mtd)) {
970                 pr_debug("%s: device is write protected!\n",
971                                         __func__);
972                 status = MTD_ERASE_FAILED;
973                 ret = -EIO;
974                 goto out;
975         }
976
977         /* Submit address of first page to lock */
978         page = ofs >> chip->page_shift;
979         chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
980
981         /* Call wait ready function */
982         status = chip->waitfunc(mtd, chip);
983         /* See if device thinks it succeeded */
984         if (status & NAND_STATUS_FAIL) {
985                 pr_debug("%s: error status = 0x%08x\n",
986                                         __func__, status);
987                 ret = -EIO;
988                 goto out;
989         }
990
991         ret = __nand_unlock(mtd, ofs, len, 0x1);
992
993 out:
994         chip->select_chip(mtd, -1);
995         nand_release_device(mtd);
996
997         return ret;
998 }
999 EXPORT_SYMBOL(nand_lock);
1000
1001 /**
1002  * nand_read_page_raw - [INTERN] read raw page data without ecc
1003  * @mtd: mtd info structure
1004  * @chip: nand chip info structure
1005  * @buf: buffer to store read data
1006  * @oob_required: caller requires OOB data read to chip->oob_poi
1007  * @page: page number to read
1008  *
1009  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1010  */
1011 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1012                               uint8_t *buf, int oob_required, int page)
1013 {
1014         chip->read_buf(mtd, buf, mtd->writesize);
1015         if (oob_required)
1016                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1017         return 0;
1018 }
1019
1020 /**
1021  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1022  * @mtd: mtd info structure
1023  * @chip: nand chip info structure
1024  * @buf: buffer to store read data
1025  * @oob_required: caller requires OOB data read to chip->oob_poi
1026  * @page: page number to read
1027  *
1028  * We need a special oob layout and handling even when OOB isn't used.
1029  */
1030 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1031                                        struct nand_chip *chip, uint8_t *buf,
1032                                        int oob_required, int page)
1033 {
1034         int eccsize = chip->ecc.size;
1035         int eccbytes = chip->ecc.bytes;
1036         uint8_t *oob = chip->oob_poi;
1037         int steps, size;
1038
1039         for (steps = chip->ecc.steps; steps > 0; steps--) {
1040                 chip->read_buf(mtd, buf, eccsize);
1041                 buf += eccsize;
1042
1043                 if (chip->ecc.prepad) {
1044                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1045                         oob += chip->ecc.prepad;
1046                 }
1047
1048                 chip->read_buf(mtd, oob, eccbytes);
1049                 oob += eccbytes;
1050
1051                 if (chip->ecc.postpad) {
1052                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1053                         oob += chip->ecc.postpad;
1054                 }
1055         }
1056
1057         size = mtd->oobsize - (oob - chip->oob_poi);
1058         if (size)
1059                 chip->read_buf(mtd, oob, size);
1060
1061         return 0;
1062 }
1063
1064 /**
1065  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1066  * @mtd: mtd info structure
1067  * @chip: nand chip info structure
1068  * @buf: buffer to store read data
1069  * @oob_required: caller requires OOB data read to chip->oob_poi
1070  * @page: page number to read
1071  */
1072 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1073                                 uint8_t *buf, int oob_required, int page)
1074 {
1075         int i, eccsize = chip->ecc.size;
1076         int eccbytes = chip->ecc.bytes;
1077         int eccsteps = chip->ecc.steps;
1078         uint8_t *p = buf;
1079         uint8_t *ecc_calc = chip->buffers->ecccalc;
1080         uint8_t *ecc_code = chip->buffers->ecccode;
1081         uint32_t *eccpos = chip->ecc.layout->eccpos;
1082         unsigned int max_bitflips = 0;
1083
1084         chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1085
1086         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1087                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1088
1089         for (i = 0; i < chip->ecc.total; i++)
1090                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1091
1092         eccsteps = chip->ecc.steps;
1093         p = buf;
1094
1095         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1096                 int stat;
1097
1098                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1099                 if (stat < 0) {
1100                         mtd->ecc_stats.failed++;
1101                 } else {
1102                         mtd->ecc_stats.corrected += stat;
1103                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1104                 }
1105         }
1106         return max_bitflips;
1107 }
1108
1109 /**
1110  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1111  * @mtd: mtd info structure
1112  * @chip: nand chip info structure
1113  * @data_offs: offset of requested data within the page
1114  * @readlen: data length
1115  * @bufpoi: buffer to store read data
1116  */
1117 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1118                         uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1119 {
1120         int start_step, end_step, num_steps;
1121         uint32_t *eccpos = chip->ecc.layout->eccpos;
1122         uint8_t *p;
1123         int data_col_addr, i, gaps = 0;
1124         int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1125         int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1126         int index = 0;
1127         unsigned int max_bitflips = 0;
1128
1129         /* Column address within the page aligned to ECC size (256bytes) */
1130         start_step = data_offs / chip->ecc.size;
1131         end_step = (data_offs + readlen - 1) / chip->ecc.size;
1132         num_steps = end_step - start_step + 1;
1133
1134         /* Data size aligned to ECC ecc.size */
1135         datafrag_len = num_steps * chip->ecc.size;
1136         eccfrag_len = num_steps * chip->ecc.bytes;
1137
1138         data_col_addr = start_step * chip->ecc.size;
1139         /* If we read not a page aligned data */
1140         if (data_col_addr != 0)
1141                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1142
1143         p = bufpoi + data_col_addr;
1144         chip->read_buf(mtd, p, datafrag_len);
1145
1146         /* Calculate ECC */
1147         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1148                 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1149
1150         /*
1151          * The performance is faster if we position offsets according to
1152          * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1153          */
1154         for (i = 0; i < eccfrag_len - 1; i++) {
1155                 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1156                         eccpos[i + start_step * chip->ecc.bytes + 1]) {
1157                         gaps = 1;
1158                         break;
1159                 }
1160         }
1161         if (gaps) {
1162                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1163                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1164         } else {
1165                 /*
1166                  * Send the command to read the particular ECC bytes take care
1167                  * about buswidth alignment in read_buf.
1168                  */
1169                 index = start_step * chip->ecc.bytes;
1170
1171                 aligned_pos = eccpos[index] & ~(busw - 1);
1172                 aligned_len = eccfrag_len;
1173                 if (eccpos[index] & (busw - 1))
1174                         aligned_len++;
1175                 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1176                         aligned_len++;
1177
1178                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1179                                         mtd->writesize + aligned_pos, -1);
1180                 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1181         }
1182
1183         for (i = 0; i < eccfrag_len; i++)
1184                 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1185
1186         p = bufpoi + data_col_addr;
1187         for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1188                 int stat;
1189
1190                 stat = chip->ecc.correct(mtd, p,
1191                         &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1192                 if (stat < 0) {
1193                         mtd->ecc_stats.failed++;
1194                 } else {
1195                         mtd->ecc_stats.corrected += stat;
1196                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1197                 }
1198         }
1199         return max_bitflips;
1200 }
1201
1202 /**
1203  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1204  * @mtd: mtd info structure
1205  * @chip: nand chip info structure
1206  * @buf: buffer to store read data
1207  * @oob_required: caller requires OOB data read to chip->oob_poi
1208  * @page: page number to read
1209  *
1210  * Not for syndrome calculating ECC controllers which need a special oob layout.
1211  */
1212 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1213                                 uint8_t *buf, int oob_required, int page)
1214 {
1215         int i, eccsize = chip->ecc.size;
1216         int eccbytes = chip->ecc.bytes;
1217         int eccsteps = chip->ecc.steps;
1218         uint8_t *p = buf;
1219         uint8_t *ecc_calc = chip->buffers->ecccalc;
1220         uint8_t *ecc_code = chip->buffers->ecccode;
1221         uint32_t *eccpos = chip->ecc.layout->eccpos;
1222         unsigned int max_bitflips = 0;
1223
1224         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1225                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1226                 chip->read_buf(mtd, p, eccsize);
1227                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1228         }
1229         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1230
1231         for (i = 0; i < chip->ecc.total; i++)
1232                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1233
1234         eccsteps = chip->ecc.steps;
1235         p = buf;
1236
1237         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1238                 int stat;
1239
1240                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1241                 if (stat < 0) {
1242                         mtd->ecc_stats.failed++;
1243                 } else {
1244                         mtd->ecc_stats.corrected += stat;
1245                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1246                 }
1247         }
1248         return max_bitflips;
1249 }
1250
1251 /**
1252  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1253  * @mtd: mtd info structure
1254  * @chip: nand chip info structure
1255  * @buf: buffer to store read data
1256  * @oob_required: caller requires OOB data read to chip->oob_poi
1257  * @page: page number to read
1258  *
1259  * Hardware ECC for large page chips, require OOB to be read first. For this
1260  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1261  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1262  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1263  * the data area, by overwriting the NAND manufacturer bad block markings.
1264  */
1265 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1266         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1267 {
1268         int i, eccsize = chip->ecc.size;
1269         int eccbytes = chip->ecc.bytes;
1270         int eccsteps = chip->ecc.steps;
1271         uint8_t *p = buf;
1272         uint8_t *ecc_code = chip->buffers->ecccode;
1273         uint32_t *eccpos = chip->ecc.layout->eccpos;
1274         uint8_t *ecc_calc = chip->buffers->ecccalc;
1275         unsigned int max_bitflips = 0;
1276
1277         /* Read the OOB area first */
1278         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1279         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1280         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1281
1282         for (i = 0; i < chip->ecc.total; i++)
1283                 ecc_code[i] = chip->oob_poi[eccpos[i]];
1284
1285         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1286                 int stat;
1287
1288                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1289                 chip->read_buf(mtd, p, eccsize);
1290                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1291
1292                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1293                 if (stat < 0) {
1294                         mtd->ecc_stats.failed++;
1295                 } else {
1296                         mtd->ecc_stats.corrected += stat;
1297                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1298                 }
1299         }
1300         return max_bitflips;
1301 }
1302
1303 /**
1304  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1305  * @mtd: mtd info structure
1306  * @chip: nand chip info structure
1307  * @buf: buffer to store read data
1308  * @oob_required: caller requires OOB data read to chip->oob_poi
1309  * @page: page number to read
1310  *
1311  * The hw generator calculates the error syndrome automatically. Therefore we
1312  * need a special oob layout and handling.
1313  */
1314 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1315                                    uint8_t *buf, int oob_required, int page)
1316 {
1317         int i, eccsize = chip->ecc.size;
1318         int eccbytes = chip->ecc.bytes;
1319         int eccsteps = chip->ecc.steps;
1320         uint8_t *p = buf;
1321         uint8_t *oob = chip->oob_poi;
1322         unsigned int max_bitflips = 0;
1323
1324         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1325                 int stat;
1326
1327                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1328                 chip->read_buf(mtd, p, eccsize);
1329
1330                 if (chip->ecc.prepad) {
1331                         chip->read_buf(mtd, oob, chip->ecc.prepad);
1332                         oob += chip->ecc.prepad;
1333                 }
1334
1335                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1336                 chip->read_buf(mtd, oob, eccbytes);
1337                 stat = chip->ecc.correct(mtd, p, oob, NULL);
1338
1339                 if (stat < 0) {
1340                         mtd->ecc_stats.failed++;
1341                 } else {
1342                         mtd->ecc_stats.corrected += stat;
1343                         max_bitflips = max_t(unsigned int, max_bitflips, stat);
1344                 }
1345
1346                 oob += eccbytes;
1347
1348                 if (chip->ecc.postpad) {
1349                         chip->read_buf(mtd, oob, chip->ecc.postpad);
1350                         oob += chip->ecc.postpad;
1351                 }
1352         }
1353
1354         /* Calculate remaining oob bytes */
1355         i = mtd->oobsize - (oob - chip->oob_poi);
1356         if (i)
1357                 chip->read_buf(mtd, oob, i);
1358
1359         return max_bitflips;
1360 }
1361
1362 /**
1363  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1364  * @chip: nand chip structure
1365  * @oob: oob destination address
1366  * @ops: oob ops structure
1367  * @len: size of oob to transfer
1368  */
1369 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1370                                   struct mtd_oob_ops *ops, size_t len)
1371 {
1372         switch (ops->mode) {
1373
1374         case MTD_OPS_PLACE_OOB:
1375         case MTD_OPS_RAW:
1376                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1377                 return oob + len;
1378
1379         case MTD_OPS_AUTO_OOB: {
1380                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1381                 uint32_t boffs = 0, roffs = ops->ooboffs;
1382                 size_t bytes = 0;
1383
1384                 for (; free->length && len; free++, len -= bytes) {
1385                         /* Read request not from offset 0? */
1386                         if (unlikely(roffs)) {
1387                                 if (roffs >= free->length) {
1388                                         roffs -= free->length;
1389                                         continue;
1390                                 }
1391                                 boffs = free->offset + roffs;
1392                                 bytes = min_t(size_t, len,
1393                                               (free->length - roffs));
1394                                 roffs = 0;
1395                         } else {
1396                                 bytes = min_t(size_t, len, free->length);
1397                                 boffs = free->offset;
1398                         }
1399                         memcpy(oob, chip->oob_poi + boffs, bytes);
1400                         oob += bytes;
1401                 }
1402                 return oob;
1403         }
1404         default:
1405                 BUG();
1406         }
1407         return NULL;
1408 }
1409
1410 /**
1411  * nand_do_read_ops - [INTERN] Read data with ECC
1412  * @mtd: MTD device structure
1413  * @from: offset to read from
1414  * @ops: oob ops structure
1415  *
1416  * Internal function. Called with chip held.
1417  */
1418 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1419                             struct mtd_oob_ops *ops)
1420 {
1421         int chipnr, page, realpage, col, bytes, aligned, oob_required;
1422         struct nand_chip *chip = mtd->priv;
1423         struct mtd_ecc_stats stats;
1424         int ret = 0;
1425         uint32_t readlen = ops->len;
1426         uint32_t oobreadlen = ops->ooblen;
1427         uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1428                 mtd->oobavail : mtd->oobsize;
1429
1430         uint8_t *bufpoi, *oob, *buf;
1431         unsigned int max_bitflips = 0;
1432
1433         stats = mtd->ecc_stats;
1434
1435         chipnr = (int)(from >> chip->chip_shift);
1436         chip->select_chip(mtd, chipnr);
1437
1438         realpage = (int)(from >> chip->page_shift);
1439         page = realpage & chip->pagemask;
1440
1441         col = (int)(from & (mtd->writesize - 1));
1442
1443         buf = ops->datbuf;
1444         oob = ops->oobbuf;
1445         oob_required = oob ? 1 : 0;
1446
1447         while (1) {
1448                 bytes = min(mtd->writesize - col, readlen);
1449                 aligned = (bytes == mtd->writesize);
1450
1451                 /* Is the current page in the buffer? */
1452                 if (realpage != chip->pagebuf || oob) {
1453                         bufpoi = aligned ? buf : chip->buffers->databuf;
1454
1455                         chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1456
1457                         /*
1458                          * Now read the page into the buffer.  Absent an error,
1459                          * the read methods return max bitflips per ecc step.
1460                          */
1461                         if (unlikely(ops->mode == MTD_OPS_RAW))
1462                                 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1463                                                               oob_required,
1464                                                               page);
1465                         else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1466                                  !oob)
1467                                 ret = chip->ecc.read_subpage(mtd, chip,
1468                                                         col, bytes, bufpoi);
1469                         else
1470                                 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1471                                                           oob_required, page);
1472                         if (ret < 0) {
1473                                 if (!aligned)
1474                                         /* Invalidate page cache */
1475                                         chip->pagebuf = -1;
1476                                 break;
1477                         }
1478
1479                         max_bitflips = max_t(unsigned int, max_bitflips, ret);
1480
1481                         /* Transfer not aligned data */
1482                         if (!aligned) {
1483                                 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1484                                     !(mtd->ecc_stats.failed - stats.failed) &&
1485                                     (ops->mode != MTD_OPS_RAW)) {
1486                                         chip->pagebuf = realpage;
1487                                         chip->pagebuf_bitflips = ret;
1488                                 } else {
1489                                         /* Invalidate page cache */
1490                                         chip->pagebuf = -1;
1491                                 }
1492                                 memcpy(buf, chip->buffers->databuf + col, bytes);
1493                         }
1494
1495                         buf += bytes;
1496
1497                         if (unlikely(oob)) {
1498                                 int toread = min(oobreadlen, max_oobsize);
1499
1500                                 if (toread) {
1501                                         oob = nand_transfer_oob(chip,
1502                                                 oob, ops, toread);
1503                                         oobreadlen -= toread;
1504                                 }
1505                         }
1506
1507                         if (chip->options & NAND_NEED_READRDY) {
1508                                 /* Apply delay or wait for ready/busy pin */
1509                                 if (!chip->dev_ready)
1510                                         udelay(chip->chip_delay);
1511                                 else
1512                                         nand_wait_ready(mtd);
1513                         }
1514                 } else {
1515                         memcpy(buf, chip->buffers->databuf + col, bytes);
1516                         buf += bytes;
1517                         max_bitflips = max_t(unsigned int, max_bitflips,
1518                                              chip->pagebuf_bitflips);
1519                 }
1520
1521                 readlen -= bytes;
1522
1523                 if (!readlen)
1524                         break;
1525
1526                 /* For subsequent reads align to page boundary */
1527                 col = 0;
1528                 /* Increment page address */
1529                 realpage++;
1530
1531                 page = realpage & chip->pagemask;
1532                 /* Check, if we cross a chip boundary */
1533                 if (!page) {
1534                         chipnr++;
1535                         chip->select_chip(mtd, -1);
1536                         chip->select_chip(mtd, chipnr);
1537                 }
1538         }
1539         chip->select_chip(mtd, -1);
1540
1541         ops->retlen = ops->len - (size_t) readlen;
1542         if (oob)
1543                 ops->oobretlen = ops->ooblen - oobreadlen;
1544
1545         if (ret < 0)
1546                 return ret;
1547
1548         if (mtd->ecc_stats.failed - stats.failed)
1549                 return -EBADMSG;
1550
1551         return max_bitflips;
1552 }
1553
1554 /**
1555  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1556  * @mtd: MTD device structure
1557  * @from: offset to read from
1558  * @len: number of bytes to read
1559  * @retlen: pointer to variable to store the number of read bytes
1560  * @buf: the databuffer to put data
1561  *
1562  * Get hold of the chip and call nand_do_read.
1563  */
1564 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1565                      size_t *retlen, uint8_t *buf)
1566 {
1567         struct mtd_oob_ops ops;
1568         int ret;
1569
1570         nand_get_device(mtd, FL_READING);
1571         ops.len = len;
1572         ops.datbuf = buf;
1573         ops.oobbuf = NULL;
1574         ops.mode = MTD_OPS_PLACE_OOB;
1575         ret = nand_do_read_ops(mtd, from, &ops);
1576         *retlen = ops.retlen;
1577         nand_release_device(mtd);
1578         return ret;
1579 }
1580
1581 /**
1582  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1583  * @mtd: mtd info structure
1584  * @chip: nand chip info structure
1585  * @page: page number to read
1586  */
1587 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1588                              int page)
1589 {
1590         chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1591         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1592         return 0;
1593 }
1594
1595 /**
1596  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1597  *                          with syndromes
1598  * @mtd: mtd info structure
1599  * @chip: nand chip info structure
1600  * @page: page number to read
1601  */
1602 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1603                                   int page)
1604 {
1605         uint8_t *buf = chip->oob_poi;
1606         int length = mtd->oobsize;
1607         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1608         int eccsize = chip->ecc.size;
1609         uint8_t *bufpoi = buf;
1610         int i, toread, sndrnd = 0, pos;
1611
1612         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1613         for (i = 0; i < chip->ecc.steps; i++) {
1614                 if (sndrnd) {
1615                         pos = eccsize + i * (eccsize + chunk);
1616                         if (mtd->writesize > 512)
1617                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1618                         else
1619                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1620                 } else
1621                         sndrnd = 1;
1622                 toread = min_t(int, length, chunk);
1623                 chip->read_buf(mtd, bufpoi, toread);
1624                 bufpoi += toread;
1625                 length -= toread;
1626         }
1627         if (length > 0)
1628                 chip->read_buf(mtd, bufpoi, length);
1629
1630         return 0;
1631 }
1632
1633 /**
1634  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1635  * @mtd: mtd info structure
1636  * @chip: nand chip info structure
1637  * @page: page number to write
1638  */
1639 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1640                               int page)
1641 {
1642         int status = 0;
1643         const uint8_t *buf = chip->oob_poi;
1644         int length = mtd->oobsize;
1645
1646         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1647         chip->write_buf(mtd, buf, length);
1648         /* Send command to program the OOB data */
1649         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1650
1651         status = chip->waitfunc(mtd, chip);
1652
1653         return status & NAND_STATUS_FAIL ? -EIO : 0;
1654 }
1655
1656 /**
1657  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1658  *                           with syndrome - only for large page flash
1659  * @mtd: mtd info structure
1660  * @chip: nand chip info structure
1661  * @page: page number to write
1662  */
1663 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1664                                    struct nand_chip *chip, int page)
1665 {
1666         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1667         int eccsize = chip->ecc.size, length = mtd->oobsize;
1668         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1669         const uint8_t *bufpoi = chip->oob_poi;
1670
1671         /*
1672          * data-ecc-data-ecc ... ecc-oob
1673          * or
1674          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1675          */
1676         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1677                 pos = steps * (eccsize + chunk);
1678                 steps = 0;
1679         } else
1680                 pos = eccsize;
1681
1682         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1683         for (i = 0; i < steps; i++) {
1684                 if (sndcmd) {
1685                         if (mtd->writesize <= 512) {
1686                                 uint32_t fill = 0xFFFFFFFF;
1687
1688                                 len = eccsize;
1689                                 while (len > 0) {
1690                                         int num = min_t(int, len, 4);
1691                                         chip->write_buf(mtd, (uint8_t *)&fill,
1692                                                         num);
1693                                         len -= num;
1694                                 }
1695                         } else {
1696                                 pos = eccsize + i * (eccsize + chunk);
1697                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1698                         }
1699                 } else
1700                         sndcmd = 1;
1701                 len = min_t(int, length, chunk);
1702                 chip->write_buf(mtd, bufpoi, len);
1703                 bufpoi += len;
1704                 length -= len;
1705         }
1706         if (length > 0)
1707                 chip->write_buf(mtd, bufpoi, length);
1708
1709         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1710         status = chip->waitfunc(mtd, chip);
1711
1712         return status & NAND_STATUS_FAIL ? -EIO : 0;
1713 }
1714
1715 /**
1716  * nand_do_read_oob - [INTERN] NAND read out-of-band
1717  * @mtd: MTD device structure
1718  * @from: offset to read from
1719  * @ops: oob operations description structure
1720  *
1721  * NAND read out-of-band data from the spare area.
1722  */
1723 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1724                             struct mtd_oob_ops *ops)
1725 {
1726         int page, realpage, chipnr;
1727         struct nand_chip *chip = mtd->priv;
1728         struct mtd_ecc_stats stats;
1729         int readlen = ops->ooblen;
1730         int len;
1731         uint8_t *buf = ops->oobbuf;
1732         int ret = 0;
1733
1734         pr_debug("%s: from = 0x%08Lx, len = %i\n",
1735                         __func__, (unsigned long long)from, readlen);
1736
1737         stats = mtd->ecc_stats;
1738
1739         if (ops->mode == MTD_OPS_AUTO_OOB)
1740                 len = chip->ecc.layout->oobavail;
1741         else
1742                 len = mtd->oobsize;
1743
1744         if (unlikely(ops->ooboffs >= len)) {
1745                 pr_debug("%s: attempt to start read outside oob\n",
1746                                 __func__);
1747                 return -EINVAL;
1748         }
1749
1750         /* Do not allow reads past end of device */
1751         if (unlikely(from >= mtd->size ||
1752                      ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1753                                         (from >> chip->page_shift)) * len)) {
1754                 pr_debug("%s: attempt to read beyond end of device\n",
1755                                 __func__);
1756                 return -EINVAL;
1757         }
1758
1759         chipnr = (int)(from >> chip->chip_shift);
1760         chip->select_chip(mtd, chipnr);
1761
1762         /* Shift to get page */
1763         realpage = (int)(from >> chip->page_shift);
1764         page = realpage & chip->pagemask;
1765
1766         while (1) {
1767                 if (ops->mode == MTD_OPS_RAW)
1768                         ret = chip->ecc.read_oob_raw(mtd, chip, page);
1769                 else
1770                         ret = chip->ecc.read_oob(mtd, chip, page);
1771
1772                 if (ret < 0)
1773                         break;
1774
1775                 len = min(len, readlen);
1776                 buf = nand_transfer_oob(chip, buf, ops, len);
1777
1778                 if (chip->options & NAND_NEED_READRDY) {
1779                         /* Apply delay or wait for ready/busy pin */
1780                         if (!chip->dev_ready)
1781                                 udelay(chip->chip_delay);
1782                         else
1783                                 nand_wait_ready(mtd);
1784                 }
1785
1786                 readlen -= len;
1787                 if (!readlen)
1788                         break;
1789
1790                 /* Increment page address */
1791                 realpage++;
1792
1793                 page = realpage & chip->pagemask;
1794                 /* Check, if we cross a chip boundary */
1795                 if (!page) {
1796                         chipnr++;
1797                         chip->select_chip(mtd, -1);
1798                         chip->select_chip(mtd, chipnr);
1799                 }
1800         }
1801         chip->select_chip(mtd, -1);
1802
1803         ops->oobretlen = ops->ooblen - readlen;
1804
1805         if (ret < 0)
1806                 return ret;
1807
1808         if (mtd->ecc_stats.failed - stats.failed)
1809                 return -EBADMSG;
1810
1811         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1812 }
1813
1814 /**
1815  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1816  * @mtd: MTD device structure
1817  * @from: offset to read from
1818  * @ops: oob operation description structure
1819  *
1820  * NAND read data and/or out-of-band data.
1821  */
1822 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1823                          struct mtd_oob_ops *ops)
1824 {
1825         int ret = -ENOTSUPP;
1826
1827         ops->retlen = 0;
1828
1829         /* Do not allow reads past end of device */
1830         if (ops->datbuf && (from + ops->len) > mtd->size) {
1831                 pr_debug("%s: attempt to read beyond end of device\n",
1832                                 __func__);
1833                 return -EINVAL;
1834         }
1835
1836         nand_get_device(mtd, FL_READING);
1837
1838         switch (ops->mode) {
1839         case MTD_OPS_PLACE_OOB:
1840         case MTD_OPS_AUTO_OOB:
1841         case MTD_OPS_RAW:
1842                 break;
1843
1844         default:
1845                 goto out;
1846         }
1847
1848         if (!ops->datbuf)
1849                 ret = nand_do_read_oob(mtd, from, ops);
1850         else
1851                 ret = nand_do_read_ops(mtd, from, ops);
1852
1853 out:
1854         nand_release_device(mtd);
1855         return ret;
1856 }
1857
1858
1859 /**
1860  * nand_write_page_raw - [INTERN] raw page write function
1861  * @mtd: mtd info structure
1862  * @chip: nand chip info structure
1863  * @buf: data buffer
1864  * @oob_required: must write chip->oob_poi to OOB
1865  *
1866  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1867  */
1868 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1869                                 const uint8_t *buf, int oob_required)
1870 {
1871         chip->write_buf(mtd, buf, mtd->writesize);
1872         if (oob_required)
1873                 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1874
1875         return 0;
1876 }
1877
1878 /**
1879  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1880  * @mtd: mtd info structure
1881  * @chip: nand chip info structure
1882  * @buf: data buffer
1883  * @oob_required: must write chip->oob_poi to OOB
1884  *
1885  * We need a special oob layout and handling even when ECC isn't checked.
1886  */
1887 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1888                                         struct nand_chip *chip,
1889                                         const uint8_t *buf, int oob_required)
1890 {
1891         int eccsize = chip->ecc.size;
1892         int eccbytes = chip->ecc.bytes;
1893         uint8_t *oob = chip->oob_poi;
1894         int steps, size;
1895
1896         for (steps = chip->ecc.steps; steps > 0; steps--) {
1897                 chip->write_buf(mtd, buf, eccsize);
1898                 buf += eccsize;
1899
1900                 if (chip->ecc.prepad) {
1901                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1902                         oob += chip->ecc.prepad;
1903                 }
1904
1905                 chip->read_buf(mtd, oob, eccbytes);
1906                 oob += eccbytes;
1907
1908                 if (chip->ecc.postpad) {
1909                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1910                         oob += chip->ecc.postpad;
1911                 }
1912         }
1913
1914         size = mtd->oobsize - (oob - chip->oob_poi);
1915         if (size)
1916                 chip->write_buf(mtd, oob, size);
1917
1918         return 0;
1919 }
1920 /**
1921  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1922  * @mtd: mtd info structure
1923  * @chip: nand chip info structure
1924  * @buf: data buffer
1925  * @oob_required: must write chip->oob_poi to OOB
1926  */
1927 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1928                                   const uint8_t *buf, int oob_required)
1929 {
1930         int i, eccsize = chip->ecc.size;
1931         int eccbytes = chip->ecc.bytes;
1932         int eccsteps = chip->ecc.steps;
1933         uint8_t *ecc_calc = chip->buffers->ecccalc;
1934         const uint8_t *p = buf;
1935         uint32_t *eccpos = chip->ecc.layout->eccpos;
1936
1937         /* Software ECC calculation */
1938         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1939                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1940
1941         for (i = 0; i < chip->ecc.total; i++)
1942                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1943
1944         return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1945 }
1946
1947 /**
1948  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1949  * @mtd: mtd info structure
1950  * @chip: nand chip info structure
1951  * @buf: data buffer
1952  * @oob_required: must write chip->oob_poi to OOB
1953  */
1954 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1955                                   const uint8_t *buf, int oob_required)
1956 {
1957         int i, eccsize = chip->ecc.size;
1958         int eccbytes = chip->ecc.bytes;
1959         int eccsteps = chip->ecc.steps;
1960         uint8_t *ecc_calc = chip->buffers->ecccalc;
1961         const uint8_t *p = buf;
1962         uint32_t *eccpos = chip->ecc.layout->eccpos;
1963
1964         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1965                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1966                 chip->write_buf(mtd, p, eccsize);
1967                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1968         }
1969
1970         for (i = 0; i < chip->ecc.total; i++)
1971                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1972
1973         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1974
1975         return 0;
1976 }
1977
1978
1979 /**
1980  * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
1981  * @mtd:        mtd info structure
1982  * @chip:       nand chip info structure
1983  * @offset:     column address of subpage within the page
1984  * @data_len:   data length
1985  * @buf:        data buffer
1986  * @oob_required: must write chip->oob_poi to OOB
1987  */
1988 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
1989                                 struct nand_chip *chip, uint32_t offset,
1990                                 uint32_t data_len, const uint8_t *buf,
1991                                 int oob_required)
1992 {
1993         uint8_t *oob_buf  = chip->oob_poi;
1994         uint8_t *ecc_calc = chip->buffers->ecccalc;
1995         int ecc_size      = chip->ecc.size;
1996         int ecc_bytes     = chip->ecc.bytes;
1997         int ecc_steps     = chip->ecc.steps;
1998         uint32_t *eccpos  = chip->ecc.layout->eccpos;
1999         uint32_t start_step = offset / ecc_size;
2000         uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2001         int oob_bytes       = mtd->oobsize / ecc_steps;
2002         int step, i;
2003
2004         for (step = 0; step < ecc_steps; step++) {
2005                 /* configure controller for WRITE access */
2006                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2007
2008                 /* write data (untouched subpages already masked by 0xFF) */
2009                 chip->write_buf(mtd, buf, ecc_size);
2010
2011                 /* mask ECC of un-touched subpages by padding 0xFF */
2012                 if ((step < start_step) || (step > end_step))
2013                         memset(ecc_calc, 0xff, ecc_bytes);
2014                 else
2015                         chip->ecc.calculate(mtd, buf, ecc_calc);
2016
2017                 /* mask OOB of un-touched subpages by padding 0xFF */
2018                 /* if oob_required, preserve OOB metadata of written subpage */
2019                 if (!oob_required || (step < start_step) || (step > end_step))
2020                         memset(oob_buf, 0xff, oob_bytes);
2021
2022                 buf += ecc_size;
2023                 ecc_calc += ecc_bytes;
2024                 oob_buf  += oob_bytes;
2025         }
2026
2027         /* copy calculated ECC for whole page to chip->buffer->oob */
2028         /* this include masked-value(0xFF) for unwritten subpages */
2029         ecc_calc = chip->buffers->ecccalc;
2030         for (i = 0; i < chip->ecc.total; i++)
2031                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2032
2033         /* write OOB buffer to NAND device */
2034         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2035
2036         return 0;
2037 }
2038
2039
2040 /**
2041  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2042  * @mtd: mtd info structure
2043  * @chip: nand chip info structure
2044  * @buf: data buffer
2045  * @oob_required: must write chip->oob_poi to OOB
2046  *
2047  * The hw generator calculates the error syndrome automatically. Therefore we
2048  * need a special oob layout and handling.
2049  */
2050 static int nand_write_page_syndrome(struct mtd_info *mtd,
2051                                     struct nand_chip *chip,
2052                                     const uint8_t *buf, int oob_required)
2053 {
2054         int i, eccsize = chip->ecc.size;
2055         int eccbytes = chip->ecc.bytes;
2056         int eccsteps = chip->ecc.steps;
2057         const uint8_t *p = buf;
2058         uint8_t *oob = chip->oob_poi;
2059
2060         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2061
2062                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2063                 chip->write_buf(mtd, p, eccsize);
2064
2065                 if (chip->ecc.prepad) {
2066                         chip->write_buf(mtd, oob, chip->ecc.prepad);
2067                         oob += chip->ecc.prepad;
2068                 }
2069
2070                 chip->ecc.calculate(mtd, p, oob);
2071                 chip->write_buf(mtd, oob, eccbytes);
2072                 oob += eccbytes;
2073
2074                 if (chip->ecc.postpad) {
2075                         chip->write_buf(mtd, oob, chip->ecc.postpad);
2076                         oob += chip->ecc.postpad;
2077                 }
2078         }
2079
2080         /* Calculate remaining oob bytes */
2081         i = mtd->oobsize - (oob - chip->oob_poi);
2082         if (i)
2083                 chip->write_buf(mtd, oob, i);
2084
2085         return 0;
2086 }
2087
2088 /**
2089  * nand_write_page - [REPLACEABLE] write one page
2090  * @mtd: MTD device structure
2091  * @chip: NAND chip descriptor
2092  * @offset: address offset within the page
2093  * @data_len: length of actual data to be written
2094  * @buf: the data to write
2095  * @oob_required: must write chip->oob_poi to OOB
2096  * @page: page number to write
2097  * @cached: cached programming
2098  * @raw: use _raw version of write_page
2099  */
2100 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2101                 uint32_t offset, int data_len, const uint8_t *buf,
2102                 int oob_required, int page, int cached, int raw)
2103 {
2104         int status, subpage;
2105
2106         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2107                 chip->ecc.write_subpage)
2108                 subpage = offset || (data_len < mtd->writesize);
2109         else
2110                 subpage = 0;
2111
2112         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2113
2114         if (unlikely(raw))
2115                 status = chip->ecc.write_page_raw(mtd, chip, buf,
2116                                                         oob_required);
2117         else if (subpage)
2118                 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2119                                                          buf, oob_required);
2120         else
2121                 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2122
2123         if (status < 0)
2124                 return status;
2125
2126         /*
2127          * Cached progamming disabled for now. Not sure if it's worth the
2128          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2129          */
2130         cached = 0;
2131
2132         if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2133
2134                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2135                 status = chip->waitfunc(mtd, chip);
2136                 /*
2137                  * See if operation failed and additional status checks are
2138                  * available.
2139                  */
2140                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2141                         status = chip->errstat(mtd, chip, FL_WRITING, status,
2142                                                page);
2143
2144                 if (status & NAND_STATUS_FAIL)
2145                         return -EIO;
2146         } else {
2147                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2148                 status = chip->waitfunc(mtd, chip);
2149         }
2150
2151         return 0;
2152 }
2153
2154 /**
2155  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2156  * @mtd: MTD device structure
2157  * @oob: oob data buffer
2158  * @len: oob data write length
2159  * @ops: oob ops structure
2160  */
2161 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2162                               struct mtd_oob_ops *ops)
2163 {
2164         struct nand_chip *chip = mtd->priv;
2165
2166         /*
2167          * Initialise to all 0xFF, to avoid the possibility of left over OOB
2168          * data from a previous OOB read.
2169          */
2170         memset(chip->oob_poi, 0xff, mtd->oobsize);
2171
2172         switch (ops->mode) {
2173
2174         case MTD_OPS_PLACE_OOB:
2175         case MTD_OPS_RAW:
2176                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2177                 return oob + len;
2178
2179         case MTD_OPS_AUTO_OOB: {
2180                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2181                 uint32_t boffs = 0, woffs = ops->ooboffs;
2182                 size_t bytes = 0;
2183
2184                 for (; free->length && len; free++, len -= bytes) {
2185                         /* Write request not from offset 0? */
2186                         if (unlikely(woffs)) {
2187                                 if (woffs >= free->length) {
2188                                         woffs -= free->length;
2189                                         continue;
2190                                 }
2191                                 boffs = free->offset + woffs;
2192                                 bytes = min_t(size_t, len,
2193                                               (free->length - woffs));
2194                                 woffs = 0;
2195                         } else {
2196                                 bytes = min_t(size_t, len, free->length);
2197                                 boffs = free->offset;
2198                         }
2199                         memcpy(chip->oob_poi + boffs, oob, bytes);
2200                         oob += bytes;
2201                 }
2202                 return oob;
2203         }
2204         default:
2205                 BUG();
2206         }
2207         return NULL;
2208 }
2209
2210 #define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2211
2212 /**
2213  * nand_do_write_ops - [INTERN] NAND write with ECC
2214  * @mtd: MTD device structure
2215  * @to: offset to write to
2216  * @ops: oob operations description structure
2217  *
2218  * NAND write with ECC.
2219  */
2220 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2221                              struct mtd_oob_ops *ops)
2222 {
2223         int chipnr, realpage, page, blockmask, column;
2224         struct nand_chip *chip = mtd->priv;
2225         uint32_t writelen = ops->len;
2226
2227         uint32_t oobwritelen = ops->ooblen;
2228         uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2229                                 mtd->oobavail : mtd->oobsize;
2230
2231         uint8_t *oob = ops->oobbuf;
2232         uint8_t *buf = ops->datbuf;
2233         int ret;
2234         int oob_required = oob ? 1 : 0;
2235
2236         ops->retlen = 0;
2237         if (!writelen)
2238                 return 0;
2239
2240         /* Reject writes, which are not page aligned */
2241         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2242                 pr_notice("%s: attempt to write non page aligned data\n",
2243                            __func__);
2244                 return -EINVAL;
2245         }
2246
2247         column = to & (mtd->writesize - 1);
2248
2249         chipnr = (int)(to >> chip->chip_shift);
2250         chip->select_chip(mtd, chipnr);
2251
2252         /* Check, if it is write protected */
2253         if (nand_check_wp(mtd)) {
2254                 ret = -EIO;
2255                 goto err_out;
2256         }
2257
2258         realpage = (int)(to >> chip->page_shift);
2259         page = realpage & chip->pagemask;
2260         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2261
2262         /* Invalidate the page cache, when we write to the cached page */
2263         if (to <= (chip->pagebuf << chip->page_shift) &&
2264             (chip->pagebuf << chip->page_shift) < (to + ops->len))
2265                 chip->pagebuf = -1;
2266
2267         /* Don't allow multipage oob writes with offset */
2268         if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2269                 ret = -EINVAL;
2270                 goto err_out;
2271         }
2272
2273         while (1) {
2274                 int bytes = mtd->writesize;
2275                 int cached = writelen > bytes && page != blockmask;
2276                 uint8_t *wbuf = buf;
2277
2278                 /* Partial page write? */
2279                 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2280                         cached = 0;
2281                         bytes = min_t(int, bytes - column, (int) writelen);
2282                         chip->pagebuf = -1;
2283                         memset(chip->buffers->databuf, 0xff, mtd->writesize);
2284                         memcpy(&chip->buffers->databuf[column], buf, bytes);
2285                         wbuf = chip->buffers->databuf;
2286                 }
2287
2288                 if (unlikely(oob)) {
2289                         size_t len = min(oobwritelen, oobmaxlen);
2290                         oob = nand_fill_oob(mtd, oob, len, ops);
2291                         oobwritelen -= len;
2292                 } else {
2293                         /* We still need to erase leftover OOB data */
2294                         memset(chip->oob_poi, 0xff, mtd->oobsize);
2295                 }
2296                 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2297                                         oob_required, page, cached,
2298                                         (ops->mode == MTD_OPS_RAW));
2299                 if (ret)
2300                         break;
2301
2302                 writelen -= bytes;
2303                 if (!writelen)
2304                         break;
2305
2306                 column = 0;
2307                 buf += bytes;
2308                 realpage++;
2309
2310                 page = realpage & chip->pagemask;
2311                 /* Check, if we cross a chip boundary */
2312                 if (!page) {
2313                         chipnr++;
2314                         chip->select_chip(mtd, -1);
2315                         chip->select_chip(mtd, chipnr);
2316                 }
2317         }
2318
2319         ops->retlen = ops->len - writelen;
2320         if (unlikely(oob))
2321                 ops->oobretlen = ops->ooblen;
2322
2323 err_out:
2324         chip->select_chip(mtd, -1);
2325         return ret;
2326 }
2327
2328 /**
2329  * panic_nand_write - [MTD Interface] NAND write with ECC
2330  * @mtd: MTD device structure
2331  * @to: offset to write to
2332  * @len: number of bytes to write
2333  * @retlen: pointer to variable to store the number of written bytes
2334  * @buf: the data to write
2335  *
2336  * NAND write with ECC. Used when performing writes in interrupt context, this
2337  * may for example be called by mtdoops when writing an oops while in panic.
2338  */
2339 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2340                             size_t *retlen, const uint8_t *buf)
2341 {
2342         struct nand_chip *chip = mtd->priv;
2343         struct mtd_oob_ops ops;
2344         int ret;
2345
2346         /* Wait for the device to get ready */
2347         panic_nand_wait(mtd, chip, 400);
2348
2349         /* Grab the device */
2350         panic_nand_get_device(chip, mtd, FL_WRITING);
2351
2352         ops.len = len;
2353         ops.datbuf = (uint8_t *)buf;
2354         ops.oobbuf = NULL;
2355         ops.mode = MTD_OPS_PLACE_OOB;
2356
2357         ret = nand_do_write_ops(mtd, to, &ops);
2358
2359         *retlen = ops.retlen;
2360         return ret;
2361 }
2362
2363 /**
2364  * nand_write - [MTD Interface] NAND write with ECC
2365  * @mtd: MTD device structure
2366  * @to: offset to write to
2367  * @len: number of bytes to write
2368  * @retlen: pointer to variable to store the number of written bytes
2369  * @buf: the data to write
2370  *
2371  * NAND write with ECC.
2372  */
2373 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2374                           size_t *retlen, const uint8_t *buf)
2375 {
2376         struct mtd_oob_ops ops;
2377         int ret;
2378
2379         nand_get_device(mtd, FL_WRITING);
2380         ops.len = len;
2381         ops.datbuf = (uint8_t *)buf;
2382         ops.oobbuf = NULL;
2383         ops.mode = MTD_OPS_PLACE_OOB;
2384         ret = nand_do_write_ops(mtd, to, &ops);
2385         *retlen = ops.retlen;
2386         nand_release_device(mtd);
2387         return ret;
2388 }
2389
2390 /**
2391  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2392  * @mtd: MTD device structure
2393  * @to: offset to write to
2394  * @ops: oob operation description structure
2395  *
2396  * NAND write out-of-band.
2397  */
2398 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2399                              struct mtd_oob_ops *ops)
2400 {
2401         int chipnr, page, status, len;
2402         struct nand_chip *chip = mtd->priv;
2403
2404         pr_debug("%s: to = 0x%08x, len = %i\n",
2405                          __func__, (unsigned int)to, (int)ops->ooblen);
2406
2407         if (ops->mode == MTD_OPS_AUTO_OOB)
2408                 len = chip->ecc.layout->oobavail;
2409         else
2410                 len = mtd->oobsize;
2411
2412         /* Do not allow write past end of page */
2413         if ((ops->ooboffs + ops->ooblen) > len) {
2414                 pr_debug("%s: attempt to write past end of page\n",
2415                                 __func__);
2416                 return -EINVAL;
2417         }
2418
2419         if (unlikely(ops->ooboffs >= len)) {
2420                 pr_debug("%s: attempt to start write outside oob\n",
2421                                 __func__);
2422                 return -EINVAL;
2423         }
2424
2425         /* Do not allow write past end of device */
2426         if (unlikely(to >= mtd->size ||
2427                      ops->ooboffs + ops->ooblen >
2428                         ((mtd->size >> chip->page_shift) -
2429                          (to >> chip->page_shift)) * len)) {
2430                 pr_debug("%s: attempt to write beyond end of device\n",
2431                                 __func__);
2432                 return -EINVAL;
2433         }
2434
2435         chipnr = (int)(to >> chip->chip_shift);
2436         chip->select_chip(mtd, chipnr);
2437
2438         /* Shift to get page */
2439         page = (int)(to >> chip->page_shift);
2440
2441         /*
2442          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2443          * of my DiskOnChip 2000 test units) will clear the whole data page too
2444          * if we don't do this. I have no clue why, but I seem to have 'fixed'
2445          * it in the doc2000 driver in August 1999.  dwmw2.
2446          */
2447         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2448
2449         /* Check, if it is write protected */
2450         if (nand_check_wp(mtd)) {
2451                 chip->select_chip(mtd, -1);
2452                 return -EROFS;
2453         }
2454
2455         /* Invalidate the page cache, if we write to the cached page */
2456         if (page == chip->pagebuf)
2457                 chip->pagebuf = -1;
2458
2459         nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2460
2461         if (ops->mode == MTD_OPS_RAW)
2462                 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2463         else
2464                 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2465
2466         chip->select_chip(mtd, -1);
2467
2468         if (status)
2469                 return status;
2470
2471         ops->oobretlen = ops->ooblen;
2472
2473         return 0;
2474 }
2475
2476 /**
2477  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2478  * @mtd: MTD device structure
2479  * @to: offset to write to
2480  * @ops: oob operation description structure
2481  */
2482 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2483                           struct mtd_oob_ops *ops)
2484 {
2485         int ret = -ENOTSUPP;
2486
2487         ops->retlen = 0;
2488
2489         /* Do not allow writes past end of device */
2490         if (ops->datbuf && (to + ops->len) > mtd->size) {
2491                 pr_debug("%s: attempt to write beyond end of device\n",
2492                                 __func__);
2493                 return -EINVAL;
2494         }
2495
2496         nand_get_device(mtd, FL_WRITING);
2497
2498         switch (ops->mode) {
2499         case MTD_OPS_PLACE_OOB:
2500         case MTD_OPS_AUTO_OOB:
2501         case MTD_OPS_RAW:
2502                 break;
2503
2504         default:
2505                 goto out;
2506         }
2507
2508         if (!ops->datbuf)
2509                 ret = nand_do_write_oob(mtd, to, ops);
2510         else
2511                 ret = nand_do_write_ops(mtd, to, ops);
2512
2513 out:
2514         nand_release_device(mtd);
2515         return ret;
2516 }
2517
2518 /**
2519  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2520  * @mtd: MTD device structure
2521  * @page: the page address of the block which will be erased
2522  *
2523  * Standard erase command for NAND chips.
2524  */
2525 static void single_erase_cmd(struct mtd_info *mtd, int page)
2526 {
2527         struct nand_chip *chip = mtd->priv;
2528         /* Send commands to erase a block */
2529         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2530         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2531 }
2532
2533 /**
2534  * nand_erase - [MTD Interface] erase block(s)
2535  * @mtd: MTD device structure
2536  * @instr: erase instruction
2537  *
2538  * Erase one ore more blocks.
2539  */
2540 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2541 {
2542         return nand_erase_nand(mtd, instr, 0);
2543 }
2544
2545 /**
2546  * nand_erase_nand - [INTERN] erase block(s)
2547  * @mtd: MTD device structure
2548  * @instr: erase instruction
2549  * @allowbbt: allow erasing the bbt area
2550  *
2551  * Erase one ore more blocks.
2552  */
2553 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2554                     int allowbbt)
2555 {
2556         int page, status, pages_per_block, ret, chipnr;
2557         struct nand_chip *chip = mtd->priv;
2558         loff_t len;
2559
2560         pr_debug("%s: start = 0x%012llx, len = %llu\n",
2561                         __func__, (unsigned long long)instr->addr,
2562                         (unsigned long long)instr->len);
2563
2564         if (check_offs_len(mtd, instr->addr, instr->len))
2565                 return -EINVAL;
2566
2567         /* Grab the lock and see if the device is available */
2568         nand_get_device(mtd, FL_ERASING);
2569
2570         /* Shift to get first page */
2571         page = (int)(instr->addr >> chip->page_shift);
2572         chipnr = (int)(instr->addr >> chip->chip_shift);
2573
2574         /* Calculate pages in each block */
2575         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2576
2577         /* Select the NAND device */
2578         chip->select_chip(mtd, chipnr);
2579
2580         /* Check, if it is write protected */
2581         if (nand_check_wp(mtd)) {
2582                 pr_debug("%s: device is write protected!\n",
2583                                 __func__);
2584                 instr->state = MTD_ERASE_FAILED;
2585                 goto erase_exit;
2586         }
2587
2588         /* Loop through the pages */
2589         len = instr->len;
2590
2591         instr->state = MTD_ERASING;
2592
2593         while (len) {
2594                 /* Check if we have a bad block, we do not erase bad blocks! */
2595                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2596                                         chip->page_shift, 0, allowbbt)) {
2597                         pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2598                                     __func__, page);
2599                         instr->state = MTD_ERASE_FAILED;
2600                         goto erase_exit;
2601                 }
2602
2603                 /*
2604                  * Invalidate the page cache, if we erase the block which
2605                  * contains the current cached page.
2606                  */
2607                 if (page <= chip->pagebuf && chip->pagebuf <
2608                     (page + pages_per_block))
2609                         chip->pagebuf = -1;
2610
2611                 chip->erase_cmd(mtd, page & chip->pagemask);
2612
2613                 status = chip->waitfunc(mtd, chip);
2614
2615                 /*
2616                  * See if operation failed and additional status checks are
2617                  * available
2618                  */
2619                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2620                         status = chip->errstat(mtd, chip, FL_ERASING,
2621                                                status, page);
2622
2623                 /* See if block erase succeeded */
2624                 if (status & NAND_STATUS_FAIL) {
2625                         pr_debug("%s: failed erase, page 0x%08x\n",
2626                                         __func__, page);
2627                         instr->state = MTD_ERASE_FAILED;
2628                         instr->fail_addr =
2629                                 ((loff_t)page << chip->page_shift);
2630                         goto erase_exit;
2631                 }
2632
2633                 /* Increment page address and decrement length */
2634                 len -= (1ULL << chip->phys_erase_shift);
2635                 page += pages_per_block;
2636
2637                 /* Check, if we cross a chip boundary */
2638                 if (len && !(page & chip->pagemask)) {
2639                         chipnr++;
2640                         chip->select_chip(mtd, -1);
2641                         chip->select_chip(mtd, chipnr);
2642                 }
2643         }
2644         instr->state = MTD_ERASE_DONE;
2645
2646 erase_exit:
2647
2648         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2649
2650         /* Deselect and wake up anyone waiting on the device */
2651         chip->select_chip(mtd, -1);
2652         nand_release_device(mtd);
2653
2654         /* Do call back function */
2655         if (!ret)
2656                 mtd_erase_callback(instr);
2657
2658         /* Return more or less happy */
2659         return ret;
2660 }
2661
2662 /**
2663  * nand_sync - [MTD Interface] sync
2664  * @mtd: MTD device structure
2665  *
2666  * Sync is actually a wait for chip ready function.
2667  */
2668 static void nand_sync(struct mtd_info *mtd)
2669 {
2670         pr_debug("%s: called\n", __func__);
2671
2672         /* Grab the lock and see if the device is available */
2673         nand_get_device(mtd, FL_SYNCING);
2674         /* Release it and go back */
2675         nand_release_device(mtd);
2676 }
2677
2678 /**
2679  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2680  * @mtd: MTD device structure
2681  * @offs: offset relative to mtd start
2682  */
2683 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2684 {
2685         return nand_block_checkbad(mtd, offs, 1, 0);
2686 }
2687
2688 /**
2689  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2690  * @mtd: MTD device structure
2691  * @ofs: offset relative to mtd start
2692  */
2693 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2694 {
2695         int ret;
2696
2697         ret = nand_block_isbad(mtd, ofs);
2698         if (ret) {
2699                 /* If it was bad already, return success and do nothing */
2700                 if (ret > 0)
2701                         return 0;
2702                 return ret;
2703         }
2704
2705         return nand_block_markbad_lowlevel(mtd, ofs);
2706 }
2707
2708 /**
2709  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2710  * @mtd: MTD device structure
2711  * @chip: nand chip info structure
2712  * @addr: feature address.
2713  * @subfeature_param: the subfeature parameters, a four bytes array.
2714  */
2715 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2716                         int addr, uint8_t *subfeature_param)
2717 {
2718         int status;
2719
2720         if (!chip->onfi_version ||
2721             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2722               & ONFI_OPT_CMD_SET_GET_FEATURES))
2723                 return -EINVAL;
2724
2725         chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2726         chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2727         status = chip->waitfunc(mtd, chip);
2728         if (status & NAND_STATUS_FAIL)
2729                 return -EIO;
2730         return 0;
2731 }
2732
2733 /**
2734  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2735  * @mtd: MTD device structure
2736  * @chip: nand chip info structure
2737  * @addr: feature address.
2738  * @subfeature_param: the subfeature parameters, a four bytes array.
2739  */
2740 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2741                         int addr, uint8_t *subfeature_param)
2742 {
2743         if (!chip->onfi_version ||
2744             !(le16_to_cpu(chip->onfi_params.opt_cmd)
2745               & ONFI_OPT_CMD_SET_GET_FEATURES))
2746                 return -EINVAL;
2747
2748         /* clear the sub feature parameters */
2749         memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2750
2751         chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2752         chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2753         return 0;
2754 }
2755
2756 /**
2757  * nand_suspend - [MTD Interface] Suspend the NAND flash
2758  * @mtd: MTD device structure
2759  */
2760 static int nand_suspend(struct mtd_info *mtd)
2761 {
2762         return nand_get_device(mtd, FL_PM_SUSPENDED);
2763 }
2764
2765 /**
2766  * nand_resume - [MTD Interface] Resume the NAND flash
2767  * @mtd: MTD device structure
2768  */
2769 static void nand_resume(struct mtd_info *mtd)
2770 {
2771         struct nand_chip *chip = mtd->priv;
2772
2773         if (chip->state == FL_PM_SUSPENDED)
2774                 nand_release_device(mtd);
2775         else
2776                 pr_err("%s called for a chip which is not in suspended state\n",
2777                         __func__);
2778 }
2779
2780 /* Set default functions */
2781 static void nand_set_defaults(struct nand_chip *chip, int busw)
2782 {
2783         /* check for proper chip_delay setup, set 20us if not */
2784         if (!chip->chip_delay)
2785                 chip->chip_delay = 20;
2786
2787         /* check, if a user supplied command function given */
2788         if (chip->cmdfunc == NULL)
2789                 chip->cmdfunc = nand_command;
2790
2791         /* check, if a user supplied wait function given */
2792         if (chip->waitfunc == NULL)
2793                 chip->waitfunc = nand_wait;
2794
2795         if (!chip->select_chip)
2796                 chip->select_chip = nand_select_chip;
2797
2798         /* set for ONFI nand */
2799         if (!chip->onfi_set_features)
2800                 chip->onfi_set_features = nand_onfi_set_features;
2801         if (!chip->onfi_get_features)
2802                 chip->onfi_get_features = nand_onfi_get_features;
2803
2804         /* If called twice, pointers that depend on busw may need to be reset */
2805         if (!chip->read_byte || chip->read_byte == nand_read_byte)
2806                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2807         if (!chip->read_word)
2808                 chip->read_word = nand_read_word;
2809         if (!chip->block_bad)
2810                 chip->block_bad = nand_block_bad;
2811         if (!chip->block_markbad)
2812                 chip->block_markbad = nand_default_block_markbad;
2813         if (!chip->write_buf || chip->write_buf == nand_write_buf)
2814                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2815         if (!chip->read_buf || chip->read_buf == nand_read_buf)
2816                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2817         if (!chip->scan_bbt)
2818                 chip->scan_bbt = nand_default_bbt;
2819
2820         if (!chip->controller) {
2821                 chip->controller = &chip->hwcontrol;
2822                 spin_lock_init(&chip->controller->lock);
2823                 init_waitqueue_head(&chip->controller->wq);
2824         }
2825
2826 }
2827
2828 /* Sanitize ONFI strings so we can safely print them */
2829 static void sanitize_string(uint8_t *s, size_t len)
2830 {
2831         ssize_t i;
2832
2833         /* Null terminate */
2834         s[len - 1] = 0;
2835
2836         /* Remove non printable chars */
2837         for (i = 0; i < len - 1; i++) {
2838                 if (s[i] < ' ' || s[i] > 127)
2839                         s[i] = '?';
2840         }
2841
2842         /* Remove trailing spaces */
2843         strim(s);
2844 }
2845
2846 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2847 {
2848         int i;
2849         while (len--) {
2850                 crc ^= *p++ << 8;
2851                 for (i = 0; i < 8; i++)
2852                         crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2853         }
2854
2855         return crc;
2856 }
2857
2858 /* Parse the Extended Parameter Page. */
2859 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
2860                 struct nand_chip *chip, struct nand_onfi_params *p)
2861 {
2862         struct onfi_ext_param_page *ep;
2863         struct onfi_ext_section *s;
2864         struct onfi_ext_ecc_info *ecc;
2865         uint8_t *cursor;
2866         int ret = -EINVAL;
2867         int len;
2868         int i;
2869
2870         len = le16_to_cpu(p->ext_param_page_length) * 16;
2871         ep = kmalloc(len, GFP_KERNEL);
2872         if (!ep)
2873                 return -ENOMEM;
2874
2875         /* Send our own NAND_CMD_PARAM. */
2876         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2877
2878         /* Use the Change Read Column command to skip the ONFI param pages. */
2879         chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
2880                         sizeof(*p) * p->num_of_param_pages , -1);
2881
2882         /* Read out the Extended Parameter Page. */
2883         chip->read_buf(mtd, (uint8_t *)ep, len);
2884         if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
2885                 != le16_to_cpu(ep->crc))) {
2886                 pr_debug("fail in the CRC.\n");
2887                 goto ext_out;
2888         }
2889
2890         /*
2891          * Check the signature.
2892          * Do not strictly follow the ONFI spec, maybe changed in future.
2893          */
2894         if (strncmp(ep->sig, "EPPS", 4)) {
2895                 pr_debug("The signature is invalid.\n");
2896                 goto ext_out;
2897         }
2898
2899         /* find the ECC section. */
2900         cursor = (uint8_t *)(ep + 1);
2901         for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
2902                 s = ep->sections + i;
2903                 if (s->type == ONFI_SECTION_TYPE_2)
2904                         break;
2905                 cursor += s->length * 16;
2906         }
2907         if (i == ONFI_EXT_SECTION_MAX) {
2908                 pr_debug("We can not find the ECC section.\n");
2909                 goto ext_out;
2910         }
2911
2912         /* get the info we want. */
2913         ecc = (struct onfi_ext_ecc_info *)cursor;
2914
2915         if (!ecc->codeword_size) {
2916                 pr_debug("Invalid codeword size\n");
2917                 goto ext_out;
2918         }
2919
2920         chip->ecc_strength_ds = ecc->ecc_bits;
2921         chip->ecc_step_ds = 1 << ecc->codeword_size;
2922         ret = 0;
2923
2924 ext_out:
2925         kfree(ep);
2926         return ret;
2927 }
2928
2929 /*
2930  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2931  */
2932 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2933                                         int *busw)
2934 {
2935         struct nand_onfi_params *p = &chip->onfi_params;
2936         int i;
2937         int val;
2938
2939         /* Try ONFI for unknown chip or LP */
2940         chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2941         if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2942                 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2943                 return 0;
2944
2945         /*
2946          * ONFI must be probed in 8-bit mode or with NAND_BUSWIDTH_AUTO, not
2947          * with NAND_BUSWIDTH_16
2948          */
2949         if (chip->options & NAND_BUSWIDTH_16) {
2950                 pr_err("ONFI cannot be probed in 16-bit mode; aborting\n");
2951                 return 0;
2952         }
2953
2954         chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2955         for (i = 0; i < 3; i++) {
2956                 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2957                 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2958                                 le16_to_cpu(p->crc)) {
2959                         break;
2960                 }
2961         }
2962
2963         if (i == 3) {
2964                 pr_err("Could not find valid ONFI parameter page; aborting\n");
2965                 return 0;
2966         }
2967
2968         /* Check version */
2969         val = le16_to_cpu(p->revision);
2970         if (val & (1 << 5))
2971                 chip->onfi_version = 23;
2972         else if (val & (1 << 4))
2973                 chip->onfi_version = 22;
2974         else if (val & (1 << 3))
2975                 chip->onfi_version = 21;
2976         else if (val & (1 << 2))
2977                 chip->onfi_version = 20;
2978         else if (val & (1 << 1))
2979                 chip->onfi_version = 10;
2980
2981         if (!chip->onfi_version) {
2982                 pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2983                 return 0;
2984         }
2985
2986         sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2987         sanitize_string(p->model, sizeof(p->model));
2988         if (!mtd->name)
2989                 mtd->name = p->model;
2990
2991         mtd->writesize = le32_to_cpu(p->byte_per_page);
2992
2993         /*
2994          * pages_per_block and blocks_per_lun may not be a power-of-2 size
2995          * (don't ask me who thought of this...). MTD assumes that these
2996          * dimensions will be power-of-2, so just truncate the remaining area.
2997          */
2998         mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
2999         mtd->erasesize *= mtd->writesize;
3000
3001         mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3002
3003         /* See erasesize comment */
3004         chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3005         chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3006         chip->bits_per_cell = p->bits_per_cell;
3007
3008         if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3009                 *busw = NAND_BUSWIDTH_16;
3010         else
3011                 *busw = 0;
3012
3013         if (p->ecc_bits != 0xff) {
3014                 chip->ecc_strength_ds = p->ecc_bits;
3015                 chip->ecc_step_ds = 512;
3016         } else if (chip->onfi_version >= 21 &&
3017                 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3018
3019                 /*
3020                  * The nand_flash_detect_ext_param_page() uses the
3021                  * Change Read Column command which maybe not supported
3022                  * by the chip->cmdfunc. So try to update the chip->cmdfunc
3023                  * now. We do not replace user supplied command function.
3024                  */
3025                 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3026                         chip->cmdfunc = nand_command_lp;
3027
3028                 /* The Extended Parameter Page is supported since ONFI 2.1. */
3029                 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3030                         pr_warn("Failed to detect ONFI extended param page\n");
3031         } else {
3032                 pr_warn("Could not retrieve ONFI ECC requirements\n");
3033         }
3034
3035         return 1;
3036 }
3037
3038 /*
3039  * nand_id_has_period - Check if an ID string has a given wraparound period
3040  * @id_data: the ID string
3041  * @arrlen: the length of the @id_data array
3042  * @period: the period of repitition
3043  *
3044  * Check if an ID string is repeated within a given sequence of bytes at
3045  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3046  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3047  * if the repetition has a period of @period; otherwise, returns zero.
3048  */
3049 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3050 {
3051         int i, j;
3052         for (i = 0; i < period; i++)
3053                 for (j = i + period; j < arrlen; j += period)
3054                         if (id_data[i] != id_data[j])
3055                                 return 0;
3056         return 1;
3057 }
3058
3059 /*
3060  * nand_id_len - Get the length of an ID string returned by CMD_READID
3061  * @id_data: the ID string
3062  * @arrlen: the length of the @id_data array
3063
3064  * Returns the length of the ID string, according to known wraparound/trailing
3065  * zero patterns. If no pattern exists, returns the length of the array.
3066  */
3067 static int nand_id_len(u8 *id_data, int arrlen)
3068 {
3069         int last_nonzero, period;
3070
3071         /* Find last non-zero byte */
3072         for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3073                 if (id_data[last_nonzero])
3074                         break;
3075
3076         /* All zeros */
3077         if (last_nonzero < 0)
3078                 return 0;
3079
3080         /* Calculate wraparound period */
3081         for (period = 1; period < arrlen; period++)
3082                 if (nand_id_has_period(id_data, arrlen, period))
3083                         break;
3084
3085         /* There's a repeated pattern */
3086         if (period < arrlen)
3087                 return period;
3088
3089         /* There are trailing zeros */
3090         if (last_nonzero < arrlen - 1)
3091                 return last_nonzero + 1;
3092
3093         /* No pattern detected */
3094         return arrlen;
3095 }
3096
3097 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3098 static int nand_get_bits_per_cell(u8 cellinfo)
3099 {
3100         int bits;
3101
3102         bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3103         bits >>= NAND_CI_CELLTYPE_SHIFT;
3104         return bits + 1;
3105 }
3106
3107 /*
3108  * Many new NAND share similar device ID codes, which represent the size of the
3109  * chip. The rest of the parameters must be decoded according to generic or
3110  * manufacturer-specific "extended ID" decoding patterns.
3111  */
3112 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3113                                 u8 id_data[8], int *busw)
3114 {
3115         int extid, id_len;
3116         /* The 3rd id byte holds MLC / multichip data */
3117         chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3118         /* The 4th id byte is the important one */
3119         extid = id_data[3];
3120
3121         id_len = nand_id_len(id_data, 8);
3122
3123         /*
3124          * Field definitions are in the following datasheets:
3125          * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3126          * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3127          * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3128          *
3129          * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3130          * ID to decide what to do.
3131          */
3132         if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3133                         !nand_is_slc(chip) && id_data[5] != 0x00) {
3134                 /* Calc pagesize */
3135                 mtd->writesize = 2048 << (extid & 0x03);
3136                 extid >>= 2;
3137                 /* Calc oobsize */
3138                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3139                 case 1:
3140                         mtd->oobsize = 128;
3141                         break;
3142                 case 2:
3143                         mtd->oobsize = 218;
3144                         break;
3145                 case 3:
3146                         mtd->oobsize = 400;
3147                         break;
3148                 case 4:
3149                         mtd->oobsize = 436;
3150                         break;
3151                 case 5:
3152                         mtd->oobsize = 512;
3153                         break;
3154                 case 6:
3155                 default: /* Other cases are "reserved" (unknown) */
3156                         mtd->oobsize = 640;
3157                         break;
3158                 }
3159                 extid >>= 2;
3160                 /* Calc blocksize */
3161                 mtd->erasesize = (128 * 1024) <<
3162                         (((extid >> 1) & 0x04) | (extid & 0x03));
3163                 *busw = 0;
3164         } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3165                         !nand_is_slc(chip)) {
3166                 unsigned int tmp;
3167
3168                 /* Calc pagesize */
3169                 mtd->writesize = 2048 << (extid & 0x03);
3170                 extid >>= 2;
3171                 /* Calc oobsize */
3172                 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3173                 case 0:
3174                         mtd->oobsize = 128;
3175                         break;
3176                 case 1:
3177                         mtd->oobsize = 224;
3178                         break;
3179                 case 2:
3180                         mtd->oobsize = 448;
3181                         break;
3182                 case 3:
3183                         mtd->oobsize = 64;
3184                         break;
3185                 case 4:
3186                         mtd->oobsize = 32;
3187                         break;
3188                 case 5:
3189                         mtd->oobsize = 16;
3190                         break;
3191                 default:
3192                         mtd->oobsize = 640;
3193                         break;
3194                 }
3195                 extid >>= 2;
3196                 /* Calc blocksize */
3197                 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3198                 if (tmp < 0x03)
3199                         mtd->erasesize = (128 * 1024) << tmp;
3200                 else if (tmp == 0x03)
3201                         mtd->erasesize = 768 * 1024;
3202                 else
3203                         mtd->erasesize = (64 * 1024) << tmp;
3204                 *busw = 0;
3205         } else {
3206                 /* Calc pagesize */
3207                 mtd->writesize = 1024 << (extid & 0x03);
3208                 extid >>= 2;
3209                 /* Calc oobsize */
3210                 mtd->oobsize = (8 << (extid & 0x01)) *
3211                         (mtd->writesize >> 9);
3212                 extid >>= 2;
3213                 /* Calc blocksize. Blocksize is multiples of 64KiB */
3214                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3215                 extid >>= 2;
3216                 /* Get buswidth information */
3217                 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3218
3219                 /*
3220                  * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3221                  * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3222                  * follows:
3223                  * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3224                  *                         110b -> 24nm
3225                  * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3226                  */
3227                 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3228                                 nand_is_slc(chip) &&
3229                                 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3230                                 !(id_data[4] & 0x80) /* !BENAND */) {
3231                         mtd->oobsize = 32 * mtd->writesize >> 9;
3232                 }
3233
3234         }
3235 }
3236
3237 /*
3238  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3239  * decodes a matching ID table entry and assigns the MTD size parameters for
3240  * the chip.
3241  */
3242 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3243                                 struct nand_flash_dev *type, u8 id_data[8],
3244                                 int *busw)
3245 {
3246         int maf_id = id_data[0];
3247
3248         mtd->erasesize = type->erasesize;
3249         mtd->writesize = type->pagesize;
3250         mtd->oobsize = mtd->writesize / 32;
3251         *busw = type->options & NAND_BUSWIDTH_16;
3252
3253         /* All legacy ID NAND are small-page, SLC */
3254         chip->bits_per_cell = 1;
3255
3256         /*
3257          * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3258          * some Spansion chips have erasesize that conflicts with size
3259          * listed in nand_ids table.
3260          * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3261          */
3262         if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3263                         && id_data[6] == 0x00 && id_data[7] == 0x00
3264                         && mtd->writesize == 512) {
3265                 mtd->erasesize = 128 * 1024;
3266                 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3267         }
3268 }
3269
3270 /*
3271  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3272  * heuristic patterns using various detected parameters (e.g., manufacturer,
3273  * page size, cell-type information).
3274  */
3275 static void nand_decode_bbm_options(struct mtd_info *mtd,
3276                                     struct nand_chip *chip, u8 id_data[8])
3277 {
3278         int maf_id = id_data[0];
3279
3280         /* Set the bad block position */
3281         if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3282                 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3283         else
3284                 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3285
3286         /*
3287          * Bad block marker is stored in the last page of each block on Samsung
3288          * and Hynix MLC devices; stored in first two pages of each block on
3289          * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3290          * AMD/Spansion, and Macronix.  All others scan only the first page.
3291          */
3292         if (!nand_is_slc(chip) &&
3293                         (maf_id == NAND_MFR_SAMSUNG ||
3294                          maf_id == NAND_MFR_HYNIX))
3295                 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3296         else if ((nand_is_slc(chip) &&
3297                                 (maf_id == NAND_MFR_SAMSUNG ||
3298                                  maf_id == NAND_MFR_HYNIX ||
3299                                  maf_id == NAND_MFR_TOSHIBA ||
3300                                  maf_id == NAND_MFR_AMD ||
3301                                  maf_id == NAND_MFR_MACRONIX)) ||
3302                         (mtd->writesize == 2048 &&
3303                          maf_id == NAND_MFR_MICRON))
3304                 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3305 }
3306
3307 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3308 {
3309         return type->id_len;
3310 }
3311
3312 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3313                    struct nand_flash_dev *type, u8 *id_data, int *busw)
3314 {
3315         if (!strncmp(type->id, id_data, type->id_len)) {
3316                 mtd->writesize = type->pagesize;
3317                 mtd->erasesize = type->erasesize;
3318                 mtd->oobsize = type->oobsize;
3319
3320                 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3321                 chip->chipsize = (uint64_t)type->chipsize << 20;
3322                 chip->options |= type->options;
3323                 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3324                 chip->ecc_step_ds = NAND_ECC_STEP(type);
3325
3326                 *busw = type->options & NAND_BUSWIDTH_16;
3327
3328                 return true;
3329         }
3330         return false;
3331 }
3332
3333 /*
3334  * Get the flash and manufacturer id and lookup if the type is supported.
3335  */
3336 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3337                                                   struct nand_chip *chip,
3338                                                   int busw,
3339                                                   int *maf_id, int *dev_id,
3340                                                   struct nand_flash_dev *type)
3341 {
3342         int i, maf_idx;
3343         u8 id_data[8];
3344
3345         /* Select the device */
3346         chip->select_chip(mtd, 0);
3347
3348         /*
3349          * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3350          * after power-up.
3351          */
3352         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3353
3354         /* Send the command for reading device ID */
3355         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3356
3357         /* Read manufacturer and device IDs */
3358         *maf_id = chip->read_byte(mtd);
3359         *dev_id = chip->read_byte(mtd);
3360
3361         /*
3362          * Try again to make sure, as some systems the bus-hold or other
3363          * interface concerns can cause random data which looks like a
3364          * possibly credible NAND flash to appear. If the two results do
3365          * not match, ignore the device completely.
3366          */
3367
3368         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3369
3370         /* Read entire ID string */
3371         for (i = 0; i < 8; i++)
3372                 id_data[i] = chip->read_byte(mtd);
3373
3374         if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3375                 pr_info("%s: second ID read did not match "
3376                         "%02x,%02x against %02x,%02x\n", __func__,
3377                         *maf_id, *dev_id, id_data[0], id_data[1]);
3378                 return ERR_PTR(-ENODEV);
3379         }
3380
3381         if (!type)
3382                 type = nand_flash_ids;
3383
3384         for (; type->name != NULL; type++) {
3385                 if (is_full_id_nand(type)) {
3386                         if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3387                                 goto ident_done;
3388                 } else if (*dev_id == type->dev_id) {
3389                                 break;
3390                 }
3391         }
3392
3393         chip->onfi_version = 0;
3394         if (!type->name || !type->pagesize) {
3395                 /* Check is chip is ONFI compliant */
3396                 if (nand_flash_detect_onfi(mtd, chip, &busw))
3397                         goto ident_done;
3398         }
3399
3400         if (!type->name)
3401                 return ERR_PTR(-ENODEV);
3402
3403         if (!mtd->name)
3404                 mtd->name = type->name;
3405
3406         chip->chipsize = (uint64_t)type->chipsize << 20;
3407
3408         if (!type->pagesize && chip->init_size) {
3409                 /* Set the pagesize, oobsize, erasesize by the driver */
3410                 busw = chip->init_size(mtd, chip, id_data);
3411         } else if (!type->pagesize) {
3412                 /* Decode parameters from extended ID */
3413                 nand_decode_ext_id(mtd, chip, id_data, &busw);
3414         } else {
3415                 nand_decode_id(mtd, chip, type, id_data, &busw);
3416         }
3417         /* Get chip options */
3418         chip->options |= type->options;
3419
3420         /*
3421          * Check if chip is not a Samsung device. Do not clear the
3422          * options for chips which do not have an extended id.
3423          */
3424         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3425                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3426 ident_done:
3427
3428         /* Try to identify manufacturer */
3429         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3430                 if (nand_manuf_ids[maf_idx].id == *maf_id)
3431                         break;
3432         }
3433
3434         if (chip->options & NAND_BUSWIDTH_AUTO) {
3435                 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3436                 chip->options |= busw;
3437                 nand_set_defaults(chip, busw);
3438         } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3439                 /*
3440                  * Check, if buswidth is correct. Hardware drivers should set
3441                  * chip correct!
3442                  */
3443                 pr_info("NAND device: Manufacturer ID:"
3444                         " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3445                         *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3446                 pr_warn("NAND bus width %d instead %d bit\n",
3447                            (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3448                            busw ? 16 : 8);
3449                 return ERR_PTR(-EINVAL);
3450         }
3451
3452         nand_decode_bbm_options(mtd, chip, id_data);
3453
3454         /* Calculate the address shift from the page size */
3455         chip->page_shift = ffs(mtd->writesize) - 1;
3456         /* Convert chipsize to number of pages per chip -1 */
3457         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3458
3459         chip->bbt_erase_shift = chip->phys_erase_shift =
3460                 ffs(mtd->erasesize) - 1;
3461         if (chip->chipsize & 0xffffffff)
3462                 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3463         else {
3464                 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3465                 chip->chip_shift += 32 - 1;
3466         }
3467
3468         chip->badblockbits = 8;
3469         chip->erase_cmd = single_erase_cmd;
3470
3471         /* Do not replace user supplied command function! */
3472         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3473                 chip->cmdfunc = nand_command_lp;
3474
3475         pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s)\n",
3476                 *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3477                 chip->onfi_version ? chip->onfi_params.model : type->name);
3478
3479         pr_info("NAND device: %dMiB, %s, page size: %d, OOB size: %d\n",
3480                 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3481                 mtd->writesize, mtd->oobsize);
3482
3483         return type;
3484 }
3485
3486 /**
3487  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3488  * @mtd: MTD device structure
3489  * @maxchips: number of chips to scan for
3490  * @table: alternative NAND ID table
3491  *
3492  * This is the first phase of the normal nand_scan() function. It reads the
3493  * flash ID and sets up MTD fields accordingly.
3494  *
3495  * The mtd->owner field must be set to the module of the caller.
3496  */
3497 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3498                     struct nand_flash_dev *table)
3499 {
3500         int i, busw, nand_maf_id, nand_dev_id;
3501         struct nand_chip *chip = mtd->priv;
3502         struct nand_flash_dev *type;
3503
3504         /* Get buswidth to select the correct functions */
3505         busw = chip->options & NAND_BUSWIDTH_16;
3506         /* Set the default functions */
3507         nand_set_defaults(chip, busw);
3508
3509         /* Read the flash type */
3510         type = nand_get_flash_type(mtd, chip, busw,
3511                                 &nand_maf_id, &nand_dev_id, table);
3512
3513         if (IS_ERR(type)) {
3514                 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3515                         pr_warn("No NAND device found\n");
3516                 chip->select_chip(mtd, -1);
3517                 return PTR_ERR(type);
3518         }
3519
3520         chip->select_chip(mtd, -1);
3521
3522         /* Check for a chip array */
3523         for (i = 1; i < maxchips; i++) {
3524                 chip->select_chip(mtd, i);
3525                 /* See comment in nand_get_flash_type for reset */
3526                 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3527                 /* Send the command for reading device ID */
3528                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3529                 /* Read manufacturer and device IDs */
3530                 if (nand_maf_id != chip->read_byte(mtd) ||
3531                     nand_dev_id != chip->read_byte(mtd)) {
3532                         chip->select_chip(mtd, -1);
3533                         break;
3534                 }
3535                 chip->select_chip(mtd, -1);
3536         }
3537         if (i > 1)
3538                 pr_info("%d NAND chips detected\n", i);
3539
3540         /* Store the number of chips and calc total size for mtd */
3541         chip->numchips = i;
3542         mtd->size = i * chip->chipsize;
3543
3544         return 0;
3545 }
3546 EXPORT_SYMBOL(nand_scan_ident);
3547
3548
3549 /**
3550  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3551  * @mtd: MTD device structure
3552  *
3553  * This is the second phase of the normal nand_scan() function. It fills out
3554  * all the uninitialized function pointers with the defaults and scans for a
3555  * bad block table if appropriate.
3556  */
3557 int nand_scan_tail(struct mtd_info *mtd)
3558 {
3559         int i;
3560         struct nand_chip *chip = mtd->priv;
3561
3562         /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3563         BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3564                         !(chip->bbt_options & NAND_BBT_USE_FLASH));
3565
3566         if (!(chip->options & NAND_OWN_BUFFERS))
3567                 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3568         if (!chip->buffers)
3569                 return -ENOMEM;
3570
3571         /* Set the internal oob buffer location, just after the page data */
3572         chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3573
3574         /*
3575          * If no default placement scheme is given, select an appropriate one.
3576          */
3577         if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3578                 switch (mtd->oobsize) {
3579                 case 8:
3580                         chip->ecc.layout = &nand_oob_8;
3581                         break;
3582                 case 16:
3583                         chip->ecc.layout = &nand_oob_16;
3584                         break;
3585                 case 64:
3586                         chip->ecc.layout = &nand_oob_64;
3587                         break;
3588                 case 128:
3589                         chip->ecc.layout = &nand_oob_128;
3590                         break;
3591                 default:
3592                         pr_warn("No oob scheme defined for oobsize %d\n",
3593                                    mtd->oobsize);
3594                         BUG();
3595                 }
3596         }
3597
3598         if (!chip->write_page)
3599                 chip->write_page = nand_write_page;
3600
3601         /*
3602          * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3603          * selected and we have 256 byte pagesize fallback to software ECC
3604          */
3605
3606         switch (chip->ecc.mode) {
3607         case NAND_ECC_HW_OOB_FIRST:
3608                 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3609                 if (!chip->ecc.calculate || !chip->ecc.correct ||
3610                      !chip->ecc.hwctl) {
3611                         pr_warn("No ECC functions supplied; "
3612                                    "hardware ECC not possible\n");
3613                         BUG();
3614                 }
3615                 if (!chip->ecc.read_page)
3616                         chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3617
3618         case NAND_ECC_HW:
3619                 /* Use standard hwecc read page function? */
3620                 if (!chip->ecc.read_page)
3621                         chip->ecc.read_page = nand_read_page_hwecc;
3622                 if (!chip->ecc.write_page)
3623                         chip->ecc.write_page = nand_write_page_hwecc;
3624                 if (!chip->ecc.read_page_raw)
3625                         chip->ecc.read_page_raw = nand_read_page_raw;
3626                 if (!chip->ecc.write_page_raw)
3627                         chip->ecc.write_page_raw = nand_write_page_raw;
3628                 if (!chip->ecc.read_oob)
3629                         chip->ecc.read_oob = nand_read_oob_std;
3630                 if (!chip->ecc.write_oob)
3631                         chip->ecc.write_oob = nand_write_oob_std;
3632                 if (!chip->ecc.read_subpage)
3633                         chip->ecc.read_subpage = nand_read_subpage;
3634                 if (!chip->ecc.write_subpage)
3635                         chip->ecc.write_subpage = nand_write_subpage_hwecc;
3636
3637         case NAND_ECC_HW_SYNDROME:
3638                 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3639                      !chip->ecc.hwctl) &&
3640                     (!chip->ecc.read_page ||
3641                      chip->ecc.read_page == nand_read_page_hwecc ||
3642                      !chip->ecc.write_page ||
3643                      chip->ecc.write_page == nand_write_page_hwecc)) {
3644                         pr_warn("No ECC functions supplied; "
3645                                    "hardware ECC not possible\n");
3646                         BUG();
3647                 }
3648                 /* Use standard syndrome read/write page function? */
3649                 if (!chip->ecc.read_page)
3650                         chip->ecc.read_page = nand_read_page_syndrome;
3651                 if (!chip->ecc.write_page)
3652                         chip->ecc.write_page = nand_write_page_syndrome;
3653                 if (!chip->ecc.read_page_raw)
3654                         chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3655                 if (!chip->ecc.write_page_raw)
3656                         chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3657                 if (!chip->ecc.read_oob)
3658                         chip->ecc.read_oob = nand_read_oob_syndrome;
3659                 if (!chip->ecc.write_oob)
3660                         chip->ecc.write_oob = nand_write_oob_syndrome;
3661
3662                 if (mtd->writesize >= chip->ecc.size) {
3663                         if (!chip->ecc.strength) {
3664                                 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3665                                 BUG();
3666                         }
3667                         break;
3668                 }
3669                 pr_warn("%d byte HW ECC not possible on "
3670                            "%d byte page size, fallback to SW ECC\n",
3671                            chip->ecc.size, mtd->writesize);
3672                 chip->ecc.mode = NAND_ECC_SOFT;
3673
3674         case NAND_ECC_SOFT:
3675                 chip->ecc.calculate = nand_calculate_ecc;
3676                 chip->ecc.correct = nand_correct_data;
3677                 chip->ecc.read_page = nand_read_page_swecc;
3678                 chip->ecc.read_subpage = nand_read_subpage;
3679                 chip->ecc.write_page = nand_write_page_swecc;
3680                 chip->ecc.read_page_raw = nand_read_page_raw;
3681                 chip->ecc.write_page_raw = nand_write_page_raw;
3682                 chip->ecc.read_oob = nand_read_oob_std;
3683                 chip->ecc.write_oob = nand_write_oob_std;
3684                 if (!chip->ecc.size)
3685                         chip->ecc.size = 256;
3686                 chip->ecc.bytes = 3;
3687                 chip->ecc.strength = 1;
3688                 break;
3689
3690         case NAND_ECC_SOFT_BCH:
3691                 if (!mtd_nand_has_bch()) {
3692                         pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3693                         BUG();
3694                 }
3695                 chip->ecc.calculate = nand_bch_calculate_ecc;
3696                 chip->ecc.correct = nand_bch_correct_data;
3697                 chip->ecc.read_page = nand_read_page_swecc;
3698                 chip->ecc.read_subpage = nand_read_subpage;
3699                 chip->ecc.write_page = nand_write_page_swecc;
3700                 chip->ecc.read_page_raw = nand_read_page_raw;
3701                 chip->ecc.write_page_raw = nand_write_page_raw;
3702                 chip->ecc.read_oob = nand_read_oob_std;
3703                 chip->ecc.write_oob = nand_write_oob_std;
3704                 /*
3705                  * Board driver should supply ecc.size and ecc.bytes values to
3706                  * select how many bits are correctable; see nand_bch_init()
3707                  * for details. Otherwise, default to 4 bits for large page
3708                  * devices.
3709                  */
3710                 if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3711                         chip->ecc.size = 512;
3712                         chip->ecc.bytes = 7;
3713                 }
3714                 chip->ecc.priv = nand_bch_init(mtd,
3715                                                chip->ecc.size,
3716                                                chip->ecc.bytes,
3717                                                &chip->ecc.layout);
3718                 if (!chip->ecc.priv) {
3719                         pr_warn("BCH ECC initialization failed!\n");
3720                         BUG();
3721                 }
3722                 chip->ecc.strength =
3723                         chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3724                 break;
3725
3726         case NAND_ECC_NONE:
3727                 pr_warn("NAND_ECC_NONE selected by board driver. "
3728                            "This is not recommended!\n");
3729                 chip->ecc.read_page = nand_read_page_raw;
3730                 chip->ecc.write_page = nand_write_page_raw;
3731                 chip->ecc.read_oob = nand_read_oob_std;
3732                 chip->ecc.read_page_raw = nand_read_page_raw;
3733                 chip->ecc.write_page_raw = nand_write_page_raw;
3734                 chip->ecc.write_oob = nand_write_oob_std;
3735                 chip->ecc.size = mtd->writesize;
3736                 chip->ecc.bytes = 0;
3737                 chip->ecc.strength = 0;
3738                 break;
3739
3740         default:
3741                 pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3742                 BUG();
3743         }
3744
3745         /* For many systems, the standard OOB write also works for raw */
3746         if (!chip->ecc.read_oob_raw)
3747                 chip->ecc.read_oob_raw = chip->ecc.read_oob;
3748         if (!chip->ecc.write_oob_raw)
3749                 chip->ecc.write_oob_raw = chip->ecc.write_oob;
3750
3751         /*
3752          * The number of bytes available for a client to place data into
3753          * the out of band area.
3754          */
3755         chip->ecc.layout->oobavail = 0;
3756         for (i = 0; chip->ecc.layout->oobfree[i].length
3757                         && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3758                 chip->ecc.layout->oobavail +=
3759                         chip->ecc.layout->oobfree[i].length;
3760         mtd->oobavail = chip->ecc.layout->oobavail;
3761
3762         /*
3763          * Set the number of read / write steps for one page depending on ECC
3764          * mode.
3765          */
3766         chip->ecc.steps = mtd->writesize / chip->ecc.size;
3767         if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3768                 pr_warn("Invalid ECC parameters\n");
3769                 BUG();
3770         }
3771         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3772
3773         /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3774         if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
3775                 switch (chip->ecc.steps) {
3776                 case 2:
3777                         mtd->subpage_sft = 1;
3778                         break;
3779                 case 4:
3780                 case 8:
3781                 case 16:
3782                         mtd->subpage_sft = 2;
3783                         break;
3784                 }
3785         }
3786         chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3787
3788         /* Initialize state */
3789         chip->state = FL_READY;
3790
3791         /* Invalidate the pagebuffer reference */
3792         chip->pagebuf = -1;
3793
3794         /* Large page NAND with SOFT_ECC should support subpage reads */
3795         if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3796                 chip->options |= NAND_SUBPAGE_READ;
3797
3798         /* Fill in remaining MTD driver data */
3799         mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
3800         mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3801                                                 MTD_CAP_NANDFLASH;
3802         mtd->_erase = nand_erase;
3803         mtd->_point = NULL;
3804         mtd->_unpoint = NULL;
3805         mtd->_read = nand_read;
3806         mtd->_write = nand_write;
3807         mtd->_panic_write = panic_nand_write;
3808         mtd->_read_oob = nand_read_oob;
3809         mtd->_write_oob = nand_write_oob;
3810         mtd->_sync = nand_sync;
3811         mtd->_lock = NULL;
3812         mtd->_unlock = NULL;
3813         mtd->_suspend = nand_suspend;
3814         mtd->_resume = nand_resume;
3815         mtd->_block_isbad = nand_block_isbad;
3816         mtd->_block_markbad = nand_block_markbad;
3817         mtd->writebufsize = mtd->writesize;
3818
3819         /* propagate ecc info to mtd_info */
3820         mtd->ecclayout = chip->ecc.layout;
3821         mtd->ecc_strength = chip->ecc.strength;
3822         mtd->ecc_step_size = chip->ecc.size;
3823         /*
3824          * Initialize bitflip_threshold to its default prior scan_bbt() call.
3825          * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3826          * properly set.
3827          */
3828         if (!mtd->bitflip_threshold)
3829                 mtd->bitflip_threshold = mtd->ecc_strength;
3830
3831         /* Check, if we should skip the bad block table scan */
3832         if (chip->options & NAND_SKIP_BBTSCAN)
3833                 return 0;
3834
3835         /* Build bad block table */
3836         return chip->scan_bbt(mtd);
3837 }
3838 EXPORT_SYMBOL(nand_scan_tail);
3839
3840 /*
3841  * is_module_text_address() isn't exported, and it's mostly a pointless
3842  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3843  * to call us from in-kernel code if the core NAND support is modular.
3844  */
3845 #ifdef MODULE
3846 #define caller_is_module() (1)
3847 #else
3848 #define caller_is_module() \
3849         is_module_text_address((unsigned long)__builtin_return_address(0))
3850 #endif
3851
3852 /**
3853  * nand_scan - [NAND Interface] Scan for the NAND device
3854  * @mtd: MTD device structure
3855  * @maxchips: number of chips to scan for
3856  *
3857  * This fills out all the uninitialized function pointers with the defaults.
3858  * The flash ID is read and the mtd/chip structures are filled with the
3859  * appropriate values. The mtd->owner field must be set to the module of the
3860  * caller.
3861  */
3862 int nand_scan(struct mtd_info *mtd, int maxchips)
3863 {
3864         int ret;
3865
3866         /* Many callers got this wrong, so check for it for a while... */
3867         if (!mtd->owner && caller_is_module()) {
3868                 pr_crit("%s called with NULL mtd->owner!\n", __func__);
3869                 BUG();
3870         }
3871
3872         ret = nand_scan_ident(mtd, maxchips, NULL);
3873         if (!ret)
3874                 ret = nand_scan_tail(mtd);
3875         return ret;
3876 }
3877 EXPORT_SYMBOL(nand_scan);
3878
3879 /**
3880  * nand_release - [NAND Interface] Free resources held by the NAND device
3881  * @mtd: MTD device structure
3882  */
3883 void nand_release(struct mtd_info *mtd)
3884 {
3885         struct nand_chip *chip = mtd->priv;
3886
3887         if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3888                 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3889
3890         mtd_device_unregister(mtd);
3891
3892         /* Free bad block table memory */
3893         kfree(chip->bbt);
3894         if (!(chip->options & NAND_OWN_BUFFERS))
3895                 kfree(chip->buffers);
3896
3897         /* Free bad block descriptor memory */
3898         if (chip->badblock_pattern && chip->badblock_pattern->options
3899                         & NAND_BBT_DYNAMICSTRUCT)
3900                 kfree(chip->badblock_pattern);
3901 }
3902 EXPORT_SYMBOL_GPL(nand_release);
3903
3904 static int __init nand_base_init(void)
3905 {
3906         led_trigger_register_simple("nand-disk", &nand_led_trigger);
3907         return 0;
3908 }
3909
3910 static void __exit nand_base_exit(void)
3911 {
3912         led_trigger_unregister_simple(nand_led_trigger);
3913 }
3914
3915 module_init(nand_base_init);
3916 module_exit(nand_base_exit);
3917
3918 MODULE_LICENSE("GPL");
3919 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3920 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3921 MODULE_DESCRIPTION("Generic NAND flash driver code");