]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge remote-tracking branch 'dt-rh/for-next'
[karo-tx-linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_address.h>
82 #include <linux/of_irq.h>
83 #include <linux/of_mdio.h>
84 #include <linux/of_platform.h>
85 #include <linux/ip.h>
86 #include <linux/tcp.h>
87 #include <linux/udp.h>
88 #include <linux/in.h>
89 #include <linux/net_tstamp.h>
90
91 #include <asm/io.h>
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #include <asm/irq.h>
95 #include <asm/uaccess.h>
96 #include <linux/module.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/crc32.h>
99 #include <linux/mii.h>
100 #include <linux/phy.h>
101 #include <linux/phy_fixed.h>
102 #include <linux/of.h>
103 #include <linux/of_net.h>
104
105 #include "gianfar.h"
106
107 #define TX_TIMEOUT      (1*HZ)
108
109 const char gfar_driver_version[] = "1.3";
110
111 static int gfar_enet_open(struct net_device *dev);
112 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
113 static void gfar_reset_task(struct work_struct *work);
114 static void gfar_timeout(struct net_device *dev);
115 static int gfar_close(struct net_device *dev);
116 struct sk_buff *gfar_new_skb(struct net_device *dev);
117 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
118                            struct sk_buff *skb);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *ofdev);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll(struct napi_struct *napi, int budget);
134 static int gfar_poll_sq(struct napi_struct *napi, int budget);
135 #ifdef CONFIG_NET_POLL_CONTROLLER
136 static void gfar_netpoll(struct net_device *dev);
137 #endif
138 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
139 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
140 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
141                                int amount_pull, struct napi_struct *napi);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
147                                   const u8 *addr);
148 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
149
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
153
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
155                             dma_addr_t buf)
156 {
157         u32 lstatus;
158
159         bdp->bufPtr = buf;
160
161         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
162         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
163                 lstatus |= BD_LFLAG(RXBD_WRAP);
164
165         eieio();
166
167         bdp->lstatus = lstatus;
168 }
169
170 static int gfar_init_bds(struct net_device *ndev)
171 {
172         struct gfar_private *priv = netdev_priv(ndev);
173         struct gfar_priv_tx_q *tx_queue = NULL;
174         struct gfar_priv_rx_q *rx_queue = NULL;
175         struct txbd8 *txbdp;
176         struct rxbd8 *rxbdp;
177         int i, j;
178
179         for (i = 0; i < priv->num_tx_queues; i++) {
180                 tx_queue = priv->tx_queue[i];
181                 /* Initialize some variables in our dev structure */
182                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
184                 tx_queue->cur_tx = tx_queue->tx_bd_base;
185                 tx_queue->skb_curtx = 0;
186                 tx_queue->skb_dirtytx = 0;
187
188                 /* Initialize Transmit Descriptor Ring */
189                 txbdp = tx_queue->tx_bd_base;
190                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
191                         txbdp->lstatus = 0;
192                         txbdp->bufPtr = 0;
193                         txbdp++;
194                 }
195
196                 /* Set the last descriptor in the ring to indicate wrap */
197                 txbdp--;
198                 txbdp->status |= TXBD_WRAP;
199         }
200
201         for (i = 0; i < priv->num_rx_queues; i++) {
202                 rx_queue = priv->rx_queue[i];
203                 rx_queue->cur_rx = rx_queue->rx_bd_base;
204                 rx_queue->skb_currx = 0;
205                 rxbdp = rx_queue->rx_bd_base;
206
207                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
208                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
209
210                         if (skb) {
211                                 gfar_init_rxbdp(rx_queue, rxbdp,
212                                                 rxbdp->bufPtr);
213                         } else {
214                                 skb = gfar_new_skb(ndev);
215                                 if (!skb) {
216                                         netdev_err(ndev, "Can't allocate RX buffers\n");
217                                         return -ENOMEM;
218                                 }
219                                 rx_queue->rx_skbuff[j] = skb;
220
221                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
222                         }
223
224                         rxbdp++;
225                 }
226
227         }
228
229         return 0;
230 }
231
232 static int gfar_alloc_skb_resources(struct net_device *ndev)
233 {
234         void *vaddr;
235         dma_addr_t addr;
236         int i, j, k;
237         struct gfar_private *priv = netdev_priv(ndev);
238         struct device *dev = priv->dev;
239         struct gfar_priv_tx_q *tx_queue = NULL;
240         struct gfar_priv_rx_q *rx_queue = NULL;
241
242         priv->total_tx_ring_size = 0;
243         for (i = 0; i < priv->num_tx_queues; i++)
244                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
245
246         priv->total_rx_ring_size = 0;
247         for (i = 0; i < priv->num_rx_queues; i++)
248                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
249
250         /* Allocate memory for the buffer descriptors */
251         vaddr = dma_alloc_coherent(dev,
252                                    (priv->total_tx_ring_size *
253                                     sizeof(struct txbd8)) +
254                                    (priv->total_rx_ring_size *
255                                     sizeof(struct rxbd8)),
256                                    &addr, GFP_KERNEL);
257         if (!vaddr)
258                 return -ENOMEM;
259
260         for (i = 0; i < priv->num_tx_queues; i++) {
261                 tx_queue = priv->tx_queue[i];
262                 tx_queue->tx_bd_base = vaddr;
263                 tx_queue->tx_bd_dma_base = addr;
264                 tx_queue->dev = ndev;
265                 /* enet DMA only understands physical addresses */
266                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
267                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
268         }
269
270         /* Start the rx descriptor ring where the tx ring leaves off */
271         for (i = 0; i < priv->num_rx_queues; i++) {
272                 rx_queue = priv->rx_queue[i];
273                 rx_queue->rx_bd_base = vaddr;
274                 rx_queue->rx_bd_dma_base = addr;
275                 rx_queue->dev = ndev;
276                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
277                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
278         }
279
280         /* Setup the skbuff rings */
281         for (i = 0; i < priv->num_tx_queues; i++) {
282                 tx_queue = priv->tx_queue[i];
283                 tx_queue->tx_skbuff =
284                         kmalloc_array(tx_queue->tx_ring_size,
285                                       sizeof(*tx_queue->tx_skbuff),
286                                       GFP_KERNEL);
287                 if (!tx_queue->tx_skbuff)
288                         goto cleanup;
289
290                 for (k = 0; k < tx_queue->tx_ring_size; k++)
291                         tx_queue->tx_skbuff[k] = NULL;
292         }
293
294         for (i = 0; i < priv->num_rx_queues; i++) {
295                 rx_queue = priv->rx_queue[i];
296                 rx_queue->rx_skbuff =
297                         kmalloc_array(rx_queue->rx_ring_size,
298                                       sizeof(*rx_queue->rx_skbuff),
299                                       GFP_KERNEL);
300                 if (!rx_queue->rx_skbuff)
301                         goto cleanup;
302
303                 for (j = 0; j < rx_queue->rx_ring_size; j++)
304                         rx_queue->rx_skbuff[j] = NULL;
305         }
306
307         if (gfar_init_bds(ndev))
308                 goto cleanup;
309
310         return 0;
311
312 cleanup:
313         free_skb_resources(priv);
314         return -ENOMEM;
315 }
316
317 static void gfar_init_tx_rx_base(struct gfar_private *priv)
318 {
319         struct gfar __iomem *regs = priv->gfargrp[0].regs;
320         u32 __iomem *baddr;
321         int i;
322
323         baddr = &regs->tbase0;
324         for (i = 0; i < priv->num_tx_queues; i++) {
325                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
326                 baddr += 2;
327         }
328
329         baddr = &regs->rbase0;
330         for (i = 0; i < priv->num_rx_queues; i++) {
331                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
332                 baddr += 2;
333         }
334 }
335
336 static void gfar_init_mac(struct net_device *ndev)
337 {
338         struct gfar_private *priv = netdev_priv(ndev);
339         struct gfar __iomem *regs = priv->gfargrp[0].regs;
340         u32 rctrl = 0;
341         u32 tctrl = 0;
342         u32 attrs = 0;
343
344         /* write the tx/rx base registers */
345         gfar_init_tx_rx_base(priv);
346
347         /* Configure the coalescing support */
348         gfar_configure_coalescing_all(priv);
349
350         /* set this when rx hw offload (TOE) functions are being used */
351         priv->uses_rxfcb = 0;
352
353         if (priv->rx_filer_enable) {
354                 rctrl |= RCTRL_FILREN;
355                 /* Program the RIR0 reg with the required distribution */
356                 gfar_write(&regs->rir0, DEFAULT_RIR0);
357         }
358
359         /* Restore PROMISC mode */
360         if (ndev->flags & IFF_PROMISC)
361                 rctrl |= RCTRL_PROM;
362
363         if (ndev->features & NETIF_F_RXCSUM) {
364                 rctrl |= RCTRL_CHECKSUMMING;
365                 priv->uses_rxfcb = 1;
366         }
367
368         if (priv->extended_hash) {
369                 rctrl |= RCTRL_EXTHASH;
370
371                 gfar_clear_exact_match(ndev);
372                 rctrl |= RCTRL_EMEN;
373         }
374
375         if (priv->padding) {
376                 rctrl &= ~RCTRL_PAL_MASK;
377                 rctrl |= RCTRL_PADDING(priv->padding);
378         }
379
380         /* Insert receive time stamps into padding alignment bytes */
381         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
382                 rctrl &= ~RCTRL_PAL_MASK;
383                 rctrl |= RCTRL_PADDING(8);
384                 priv->padding = 8;
385         }
386
387         /* Enable HW time stamping if requested from user space */
388         if (priv->hwts_rx_en) {
389                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
390                 priv->uses_rxfcb = 1;
391         }
392
393         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
394                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
395                 priv->uses_rxfcb = 1;
396         }
397
398         /* Init rctrl based on our settings */
399         gfar_write(&regs->rctrl, rctrl);
400
401         if (ndev->features & NETIF_F_IP_CSUM)
402                 tctrl |= TCTRL_INIT_CSUM;
403
404         if (priv->prio_sched_en)
405                 tctrl |= TCTRL_TXSCHED_PRIO;
406         else {
407                 tctrl |= TCTRL_TXSCHED_WRRS;
408                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
409                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
410         }
411
412         gfar_write(&regs->tctrl, tctrl);
413
414         /* Set the extraction length and index */
415         attrs = ATTRELI_EL(priv->rx_stash_size) |
416                 ATTRELI_EI(priv->rx_stash_index);
417
418         gfar_write(&regs->attreli, attrs);
419
420         /* Start with defaults, and add stashing or locking
421          * depending on the approprate variables
422          */
423         attrs = ATTR_INIT_SETTINGS;
424
425         if (priv->bd_stash_en)
426                 attrs |= ATTR_BDSTASH;
427
428         if (priv->rx_stash_size != 0)
429                 attrs |= ATTR_BUFSTASH;
430
431         gfar_write(&regs->attr, attrs);
432
433         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
434         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
435         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
436 }
437
438 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
439 {
440         struct gfar_private *priv = netdev_priv(dev);
441         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
442         unsigned long tx_packets = 0, tx_bytes = 0;
443         int i;
444
445         for (i = 0; i < priv->num_rx_queues; i++) {
446                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
447                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
448                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
449         }
450
451         dev->stats.rx_packets = rx_packets;
452         dev->stats.rx_bytes   = rx_bytes;
453         dev->stats.rx_dropped = rx_dropped;
454
455         for (i = 0; i < priv->num_tx_queues; i++) {
456                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
457                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
458         }
459
460         dev->stats.tx_bytes   = tx_bytes;
461         dev->stats.tx_packets = tx_packets;
462
463         return &dev->stats;
464 }
465
466 static const struct net_device_ops gfar_netdev_ops = {
467         .ndo_open = gfar_enet_open,
468         .ndo_start_xmit = gfar_start_xmit,
469         .ndo_stop = gfar_close,
470         .ndo_change_mtu = gfar_change_mtu,
471         .ndo_set_features = gfar_set_features,
472         .ndo_set_rx_mode = gfar_set_multi,
473         .ndo_tx_timeout = gfar_timeout,
474         .ndo_do_ioctl = gfar_ioctl,
475         .ndo_get_stats = gfar_get_stats,
476         .ndo_set_mac_address = eth_mac_addr,
477         .ndo_validate_addr = eth_validate_addr,
478 #ifdef CONFIG_NET_POLL_CONTROLLER
479         .ndo_poll_controller = gfar_netpoll,
480 #endif
481 };
482
483 void lock_rx_qs(struct gfar_private *priv)
484 {
485         int i;
486
487         for (i = 0; i < priv->num_rx_queues; i++)
488                 spin_lock(&priv->rx_queue[i]->rxlock);
489 }
490
491 void lock_tx_qs(struct gfar_private *priv)
492 {
493         int i;
494
495         for (i = 0; i < priv->num_tx_queues; i++)
496                 spin_lock(&priv->tx_queue[i]->txlock);
497 }
498
499 void unlock_rx_qs(struct gfar_private *priv)
500 {
501         int i;
502
503         for (i = 0; i < priv->num_rx_queues; i++)
504                 spin_unlock(&priv->rx_queue[i]->rxlock);
505 }
506
507 void unlock_tx_qs(struct gfar_private *priv)
508 {
509         int i;
510
511         for (i = 0; i < priv->num_tx_queues; i++)
512                 spin_unlock(&priv->tx_queue[i]->txlock);
513 }
514
515 static void free_tx_pointers(struct gfar_private *priv)
516 {
517         int i;
518
519         for (i = 0; i < priv->num_tx_queues; i++)
520                 kfree(priv->tx_queue[i]);
521 }
522
523 static void free_rx_pointers(struct gfar_private *priv)
524 {
525         int i;
526
527         for (i = 0; i < priv->num_rx_queues; i++)
528                 kfree(priv->rx_queue[i]);
529 }
530
531 static void unmap_group_regs(struct gfar_private *priv)
532 {
533         int i;
534
535         for (i = 0; i < MAXGROUPS; i++)
536                 if (priv->gfargrp[i].regs)
537                         iounmap(priv->gfargrp[i].regs);
538 }
539
540 static void free_gfar_dev(struct gfar_private *priv)
541 {
542         int i, j;
543
544         for (i = 0; i < priv->num_grps; i++)
545                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
546                         kfree(priv->gfargrp[i].irqinfo[j]);
547                         priv->gfargrp[i].irqinfo[j] = NULL;
548                 }
549
550         free_netdev(priv->ndev);
551 }
552
553 static void disable_napi(struct gfar_private *priv)
554 {
555         int i;
556
557         for (i = 0; i < priv->num_grps; i++)
558                 napi_disable(&priv->gfargrp[i].napi);
559 }
560
561 static void enable_napi(struct gfar_private *priv)
562 {
563         int i;
564
565         for (i = 0; i < priv->num_grps; i++)
566                 napi_enable(&priv->gfargrp[i].napi);
567 }
568
569 static int gfar_parse_group(struct device_node *np,
570                             struct gfar_private *priv, const char *model)
571 {
572         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
573         u32 *queue_mask;
574         int i;
575
576         for (i = 0; i < GFAR_NUM_IRQS; i++) {
577                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
578                                           GFP_KERNEL);
579                 if (!grp->irqinfo[i])
580                         return -ENOMEM;
581         }
582
583         grp->regs = of_iomap(np, 0);
584         if (!grp->regs)
585                 return -ENOMEM;
586
587         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
588
589         /* If we aren't the FEC we have multiple interrupts */
590         if (model && strcasecmp(model, "FEC")) {
591                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
592                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
593                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
594                     gfar_irq(grp, RX)->irq == NO_IRQ ||
595                     gfar_irq(grp, ER)->irq == NO_IRQ)
596                         return -EINVAL;
597         }
598
599         grp->priv = priv;
600         spin_lock_init(&grp->grplock);
601         if (priv->mode == MQ_MG_MODE) {
602                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
603                 grp->rx_bit_map = queue_mask ?
604                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
606                 grp->tx_bit_map = queue_mask ?
607                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
608         } else {
609                 grp->rx_bit_map = 0xFF;
610                 grp->tx_bit_map = 0xFF;
611         }
612         priv->num_grps++;
613
614         return 0;
615 }
616
617 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
618 {
619         const char *model;
620         const char *ctype;
621         const void *mac_addr;
622         int err = 0, i;
623         struct net_device *dev = NULL;
624         struct gfar_private *priv = NULL;
625         struct device_node *np = ofdev->dev.of_node;
626         struct device_node *child = NULL;
627         const u32 *stash;
628         const u32 *stash_len;
629         const u32 *stash_idx;
630         unsigned int num_tx_qs, num_rx_qs;
631         u32 *tx_queues, *rx_queues;
632
633         if (!np || !of_device_is_available(np))
634                 return -ENODEV;
635
636         /* parse the num of tx and rx queues */
637         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
638         num_tx_qs = tx_queues ? *tx_queues : 1;
639
640         if (num_tx_qs > MAX_TX_QS) {
641                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
642                        num_tx_qs, MAX_TX_QS);
643                 pr_err("Cannot do alloc_etherdev, aborting\n");
644                 return -EINVAL;
645         }
646
647         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
648         num_rx_qs = rx_queues ? *rx_queues : 1;
649
650         if (num_rx_qs > MAX_RX_QS) {
651                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
652                        num_rx_qs, MAX_RX_QS);
653                 pr_err("Cannot do alloc_etherdev, aborting\n");
654                 return -EINVAL;
655         }
656
657         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
658         dev = *pdev;
659         if (NULL == dev)
660                 return -ENOMEM;
661
662         priv = netdev_priv(dev);
663         priv->ndev = dev;
664
665         priv->num_tx_queues = num_tx_qs;
666         netif_set_real_num_rx_queues(dev, num_rx_qs);
667         priv->num_rx_queues = num_rx_qs;
668         priv->num_grps = 0x0;
669
670         /* Init Rx queue filer rule set linked list */
671         INIT_LIST_HEAD(&priv->rx_list.list);
672         priv->rx_list.count = 0;
673         mutex_init(&priv->rx_queue_access);
674
675         model = of_get_property(np, "model", NULL);
676
677         for (i = 0; i < MAXGROUPS; i++)
678                 priv->gfargrp[i].regs = NULL;
679
680         /* Parse and initialize group specific information */
681         if (of_device_is_compatible(np, "fsl,etsec2")) {
682                 priv->mode = MQ_MG_MODE;
683                 for_each_child_of_node(np, child) {
684                         err = gfar_parse_group(child, priv, model);
685                         if (err)
686                                 goto err_grp_init;
687                 }
688         } else {
689                 priv->mode = SQ_SG_MODE;
690                 err = gfar_parse_group(np, priv, model);
691                 if (err)
692                         goto err_grp_init;
693         }
694
695         for (i = 0; i < priv->num_tx_queues; i++)
696                 priv->tx_queue[i] = NULL;
697         for (i = 0; i < priv->num_rx_queues; i++)
698                 priv->rx_queue[i] = NULL;
699
700         for (i = 0; i < priv->num_tx_queues; i++) {
701                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
702                                             GFP_KERNEL);
703                 if (!priv->tx_queue[i]) {
704                         err = -ENOMEM;
705                         goto tx_alloc_failed;
706                 }
707                 priv->tx_queue[i]->tx_skbuff = NULL;
708                 priv->tx_queue[i]->qindex = i;
709                 priv->tx_queue[i]->dev = dev;
710                 spin_lock_init(&(priv->tx_queue[i]->txlock));
711         }
712
713         for (i = 0; i < priv->num_rx_queues; i++) {
714                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
715                                             GFP_KERNEL);
716                 if (!priv->rx_queue[i]) {
717                         err = -ENOMEM;
718                         goto rx_alloc_failed;
719                 }
720                 priv->rx_queue[i]->rx_skbuff = NULL;
721                 priv->rx_queue[i]->qindex = i;
722                 priv->rx_queue[i]->dev = dev;
723                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
724         }
725
726
727         stash = of_get_property(np, "bd-stash", NULL);
728
729         if (stash) {
730                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
731                 priv->bd_stash_en = 1;
732         }
733
734         stash_len = of_get_property(np, "rx-stash-len", NULL);
735
736         if (stash_len)
737                 priv->rx_stash_size = *stash_len;
738
739         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
740
741         if (stash_idx)
742                 priv->rx_stash_index = *stash_idx;
743
744         if (stash_len || stash_idx)
745                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
746
747         mac_addr = of_get_mac_address(np);
748
749         if (mac_addr)
750                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
751
752         if (model && !strcasecmp(model, "TSEC"))
753                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
754                                      FSL_GIANFAR_DEV_HAS_COALESCE |
755                                      FSL_GIANFAR_DEV_HAS_RMON |
756                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
757
758         if (model && !strcasecmp(model, "eTSEC"))
759                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
760                                      FSL_GIANFAR_DEV_HAS_COALESCE |
761                                      FSL_GIANFAR_DEV_HAS_RMON |
762                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
763                                      FSL_GIANFAR_DEV_HAS_PADDING |
764                                      FSL_GIANFAR_DEV_HAS_CSUM |
765                                      FSL_GIANFAR_DEV_HAS_VLAN |
766                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
767                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
768                                      FSL_GIANFAR_DEV_HAS_TIMER;
769
770         ctype = of_get_property(np, "phy-connection-type", NULL);
771
772         /* We only care about rgmii-id.  The rest are autodetected */
773         if (ctype && !strcmp(ctype, "rgmii-id"))
774                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
775         else
776                 priv->interface = PHY_INTERFACE_MODE_MII;
777
778         if (of_get_property(np, "fsl,magic-packet", NULL))
779                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
780
781         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
782
783         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
784         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
785
786         return 0;
787
788 rx_alloc_failed:
789         free_rx_pointers(priv);
790 tx_alloc_failed:
791         free_tx_pointers(priv);
792 err_grp_init:
793         unmap_group_regs(priv);
794         free_gfar_dev(priv);
795         return err;
796 }
797
798 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
799                                struct ifreq *ifr, int cmd)
800 {
801         struct hwtstamp_config config;
802         struct gfar_private *priv = netdev_priv(netdev);
803
804         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
805                 return -EFAULT;
806
807         /* reserved for future extensions */
808         if (config.flags)
809                 return -EINVAL;
810
811         switch (config.tx_type) {
812         case HWTSTAMP_TX_OFF:
813                 priv->hwts_tx_en = 0;
814                 break;
815         case HWTSTAMP_TX_ON:
816                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
817                         return -ERANGE;
818                 priv->hwts_tx_en = 1;
819                 break;
820         default:
821                 return -ERANGE;
822         }
823
824         switch (config.rx_filter) {
825         case HWTSTAMP_FILTER_NONE:
826                 if (priv->hwts_rx_en) {
827                         stop_gfar(netdev);
828                         priv->hwts_rx_en = 0;
829                         startup_gfar(netdev);
830                 }
831                 break;
832         default:
833                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
834                         return -ERANGE;
835                 if (!priv->hwts_rx_en) {
836                         stop_gfar(netdev);
837                         priv->hwts_rx_en = 1;
838                         startup_gfar(netdev);
839                 }
840                 config.rx_filter = HWTSTAMP_FILTER_ALL;
841                 break;
842         }
843
844         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
845                 -EFAULT : 0;
846 }
847
848 /* Ioctl MII Interface */
849 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
850 {
851         struct gfar_private *priv = netdev_priv(dev);
852
853         if (!netif_running(dev))
854                 return -EINVAL;
855
856         if (cmd == SIOCSHWTSTAMP)
857                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
858
859         if (!priv->phydev)
860                 return -ENODEV;
861
862         return phy_mii_ioctl(priv->phydev, rq, cmd);
863 }
864
865 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
866 {
867         unsigned int new_bit_map = 0x0;
868         int mask = 0x1 << (max_qs - 1), i;
869
870         for (i = 0; i < max_qs; i++) {
871                 if (bit_map & mask)
872                         new_bit_map = new_bit_map + (1 << i);
873                 mask = mask >> 0x1;
874         }
875         return new_bit_map;
876 }
877
878 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
879                                    u32 class)
880 {
881         u32 rqfpr = FPR_FILER_MASK;
882         u32 rqfcr = 0x0;
883
884         rqfar--;
885         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
886         priv->ftp_rqfpr[rqfar] = rqfpr;
887         priv->ftp_rqfcr[rqfar] = rqfcr;
888         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
889
890         rqfar--;
891         rqfcr = RQFCR_CMP_NOMATCH;
892         priv->ftp_rqfpr[rqfar] = rqfpr;
893         priv->ftp_rqfcr[rqfar] = rqfcr;
894         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
895
896         rqfar--;
897         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
898         rqfpr = class;
899         priv->ftp_rqfcr[rqfar] = rqfcr;
900         priv->ftp_rqfpr[rqfar] = rqfpr;
901         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
902
903         rqfar--;
904         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
905         rqfpr = class;
906         priv->ftp_rqfcr[rqfar] = rqfcr;
907         priv->ftp_rqfpr[rqfar] = rqfpr;
908         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909
910         return rqfar;
911 }
912
913 static void gfar_init_filer_table(struct gfar_private *priv)
914 {
915         int i = 0x0;
916         u32 rqfar = MAX_FILER_IDX;
917         u32 rqfcr = 0x0;
918         u32 rqfpr = FPR_FILER_MASK;
919
920         /* Default rule */
921         rqfcr = RQFCR_CMP_MATCH;
922         priv->ftp_rqfcr[rqfar] = rqfcr;
923         priv->ftp_rqfpr[rqfar] = rqfpr;
924         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
925
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
929         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
930         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
931         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
932
933         /* cur_filer_idx indicated the first non-masked rule */
934         priv->cur_filer_idx = rqfar;
935
936         /* Rest are masked rules */
937         rqfcr = RQFCR_CMP_NOMATCH;
938         for (i = 0; i < rqfar; i++) {
939                 priv->ftp_rqfcr[i] = rqfcr;
940                 priv->ftp_rqfpr[i] = rqfpr;
941                 gfar_write_filer(priv, i, rqfcr, rqfpr);
942         }
943 }
944
945 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
946 {
947         unsigned int pvr = mfspr(SPRN_PVR);
948         unsigned int svr = mfspr(SPRN_SVR);
949         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
950         unsigned int rev = svr & 0xffff;
951
952         /* MPC8313 Rev 2.0 and higher; All MPC837x */
953         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
954             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
955                 priv->errata |= GFAR_ERRATA_74;
956
957         /* MPC8313 and MPC837x all rev */
958         if ((pvr == 0x80850010 && mod == 0x80b0) ||
959             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
960                 priv->errata |= GFAR_ERRATA_76;
961
962         /* MPC8313 Rev < 2.0 */
963         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
964                 priv->errata |= GFAR_ERRATA_12;
965 }
966
967 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
968 {
969         unsigned int svr = mfspr(SPRN_SVR);
970
971         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
972                 priv->errata |= GFAR_ERRATA_12;
973         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
974             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
975                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
976 }
977
978 static void gfar_detect_errata(struct gfar_private *priv)
979 {
980         struct device *dev = &priv->ofdev->dev;
981
982         /* no plans to fix */
983         priv->errata |= GFAR_ERRATA_A002;
984
985         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
986                 __gfar_detect_errata_85xx(priv);
987         else /* non-mpc85xx parts, i.e. e300 core based */
988                 __gfar_detect_errata_83xx(priv);
989
990         if (priv->errata)
991                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
992                          priv->errata);
993 }
994
995 /* Set up the ethernet device structure, private data,
996  * and anything else we need before we start
997  */
998 static int gfar_probe(struct platform_device *ofdev)
999 {
1000         u32 tempval;
1001         struct net_device *dev = NULL;
1002         struct gfar_private *priv = NULL;
1003         struct gfar __iomem *regs = NULL;
1004         int err = 0, i, grp_idx = 0;
1005         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
1006         u32 isrg = 0;
1007         u32 __iomem *baddr;
1008
1009         err = gfar_of_init(ofdev, &dev);
1010
1011         if (err)
1012                 return err;
1013
1014         priv = netdev_priv(dev);
1015         priv->ndev = dev;
1016         priv->ofdev = ofdev;
1017         priv->dev = &ofdev->dev;
1018         SET_NETDEV_DEV(dev, &ofdev->dev);
1019
1020         spin_lock_init(&priv->bflock);
1021         INIT_WORK(&priv->reset_task, gfar_reset_task);
1022
1023         platform_set_drvdata(ofdev, priv);
1024         regs = priv->gfargrp[0].regs;
1025
1026         gfar_detect_errata(priv);
1027
1028         /* Stop the DMA engine now, in case it was running before
1029          * (The firmware could have used it, and left it running).
1030          */
1031         gfar_halt(dev);
1032
1033         /* Reset MAC layer */
1034         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1035
1036         /* We need to delay at least 3 TX clocks */
1037         udelay(2);
1038
1039         tempval = 0;
1040         if (!priv->pause_aneg_en && priv->tx_pause_en)
1041                 tempval |= MACCFG1_TX_FLOW;
1042         if (!priv->pause_aneg_en && priv->rx_pause_en)
1043                 tempval |= MACCFG1_RX_FLOW;
1044         /* the soft reset bit is not self-resetting, so we need to
1045          * clear it before resuming normal operation
1046          */
1047         gfar_write(&regs->maccfg1, tempval);
1048
1049         /* Initialize MACCFG2. */
1050         tempval = MACCFG2_INIT_SETTINGS;
1051         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1052                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1053         gfar_write(&regs->maccfg2, tempval);
1054
1055         /* Initialize ECNTRL */
1056         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1057
1058         /* Set the dev->base_addr to the gfar reg region */
1059         dev->base_addr = (unsigned long) regs;
1060
1061         /* Fill in the dev structure */
1062         dev->watchdog_timeo = TX_TIMEOUT;
1063         dev->mtu = 1500;
1064         dev->netdev_ops = &gfar_netdev_ops;
1065         dev->ethtool_ops = &gfar_ethtool_ops;
1066
1067         /* Register for napi ...We are registering NAPI for each grp */
1068         if (priv->mode == SQ_SG_MODE)
1069                 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1070                                GFAR_DEV_WEIGHT);
1071         else
1072                 for (i = 0; i < priv->num_grps; i++)
1073                         netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1074                                        GFAR_DEV_WEIGHT);
1075
1076         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1077                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1078                                    NETIF_F_RXCSUM;
1079                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1080                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1081         }
1082
1083         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1084                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1085                                     NETIF_F_HW_VLAN_CTAG_RX;
1086                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1087         }
1088
1089         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1090                 priv->extended_hash = 1;
1091                 priv->hash_width = 9;
1092
1093                 priv->hash_regs[0] = &regs->igaddr0;
1094                 priv->hash_regs[1] = &regs->igaddr1;
1095                 priv->hash_regs[2] = &regs->igaddr2;
1096                 priv->hash_regs[3] = &regs->igaddr3;
1097                 priv->hash_regs[4] = &regs->igaddr4;
1098                 priv->hash_regs[5] = &regs->igaddr5;
1099                 priv->hash_regs[6] = &regs->igaddr6;
1100                 priv->hash_regs[7] = &regs->igaddr7;
1101                 priv->hash_regs[8] = &regs->gaddr0;
1102                 priv->hash_regs[9] = &regs->gaddr1;
1103                 priv->hash_regs[10] = &regs->gaddr2;
1104                 priv->hash_regs[11] = &regs->gaddr3;
1105                 priv->hash_regs[12] = &regs->gaddr4;
1106                 priv->hash_regs[13] = &regs->gaddr5;
1107                 priv->hash_regs[14] = &regs->gaddr6;
1108                 priv->hash_regs[15] = &regs->gaddr7;
1109
1110         } else {
1111                 priv->extended_hash = 0;
1112                 priv->hash_width = 8;
1113
1114                 priv->hash_regs[0] = &regs->gaddr0;
1115                 priv->hash_regs[1] = &regs->gaddr1;
1116                 priv->hash_regs[2] = &regs->gaddr2;
1117                 priv->hash_regs[3] = &regs->gaddr3;
1118                 priv->hash_regs[4] = &regs->gaddr4;
1119                 priv->hash_regs[5] = &regs->gaddr5;
1120                 priv->hash_regs[6] = &regs->gaddr6;
1121                 priv->hash_regs[7] = &regs->gaddr7;
1122         }
1123
1124         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1125                 priv->padding = DEFAULT_PADDING;
1126         else
1127                 priv->padding = 0;
1128
1129         if (dev->features & NETIF_F_IP_CSUM ||
1130             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1131                 dev->needed_headroom = GMAC_FCB_LEN;
1132
1133         /* Program the isrg regs only if number of grps > 1 */
1134         if (priv->num_grps > 1) {
1135                 baddr = &regs->isrg0;
1136                 for (i = 0; i < priv->num_grps; i++) {
1137                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1138                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1139                         gfar_write(baddr, isrg);
1140                         baddr++;
1141                         isrg = 0x0;
1142                 }
1143         }
1144
1145         /* Need to reverse the bit maps as  bit_map's MSB is q0
1146          * but, for_each_set_bit parses from right to left, which
1147          * basically reverses the queue numbers
1148          */
1149         for (i = 0; i< priv->num_grps; i++) {
1150                 priv->gfargrp[i].tx_bit_map =
1151                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1152                 priv->gfargrp[i].rx_bit_map =
1153                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1154         }
1155
1156         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1157          * also assign queues to groups
1158          */
1159         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1160                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1161
1162                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1163                                  priv->num_rx_queues) {
1164                         priv->gfargrp[grp_idx].num_rx_queues++;
1165                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1166                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1167                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1168                 }
1169                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1170
1171                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1172                                  priv->num_tx_queues) {
1173                         priv->gfargrp[grp_idx].num_tx_queues++;
1174                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1175                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1176                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1177                 }
1178                 priv->gfargrp[grp_idx].rstat = rstat;
1179                 priv->gfargrp[grp_idx].tstat = tstat;
1180                 rstat = tstat =0;
1181         }
1182
1183         gfar_write(&regs->rqueue, rqueue);
1184         gfar_write(&regs->tqueue, tqueue);
1185
1186         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1187
1188         /* Initializing some of the rx/tx queue level parameters */
1189         for (i = 0; i < priv->num_tx_queues; i++) {
1190                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1191                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1192                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1193                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1194         }
1195
1196         for (i = 0; i < priv->num_rx_queues; i++) {
1197                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1198                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1199                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1200         }
1201
1202         /* always enable rx filer */
1203         priv->rx_filer_enable = 1;
1204         /* Enable most messages by default */
1205         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1206         /* use pritority h/w tx queue scheduling for single queue devices */
1207         if (priv->num_tx_queues == 1)
1208                 priv->prio_sched_en = 1;
1209
1210         /* Carrier starts down, phylib will bring it up */
1211         netif_carrier_off(dev);
1212
1213         err = register_netdev(dev);
1214
1215         if (err) {
1216                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1217                 goto register_fail;
1218         }
1219
1220         device_init_wakeup(&dev->dev,
1221                            priv->device_flags &
1222                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1223
1224         /* fill out IRQ number and name fields */
1225         for (i = 0; i < priv->num_grps; i++) {
1226                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1227                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1228                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1229                                 dev->name, "_g", '0' + i, "_tx");
1230                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1231                                 dev->name, "_g", '0' + i, "_rx");
1232                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1233                                 dev->name, "_g", '0' + i, "_er");
1234                 } else
1235                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1236         }
1237
1238         /* Initialize the filer table */
1239         gfar_init_filer_table(priv);
1240
1241         /* Create all the sysfs files */
1242         gfar_init_sysfs(dev);
1243
1244         /* Print out the device info */
1245         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1246
1247         /* Even more device info helps when determining which kernel
1248          * provided which set of benchmarks.
1249          */
1250         netdev_info(dev, "Running with NAPI enabled\n");
1251         for (i = 0; i < priv->num_rx_queues; i++)
1252                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1253                             i, priv->rx_queue[i]->rx_ring_size);
1254         for (i = 0; i < priv->num_tx_queues; i++)
1255                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1256                             i, priv->tx_queue[i]->tx_ring_size);
1257
1258         return 0;
1259
1260 register_fail:
1261         unmap_group_regs(priv);
1262         free_tx_pointers(priv);
1263         free_rx_pointers(priv);
1264         if (priv->phy_node)
1265                 of_node_put(priv->phy_node);
1266         if (priv->tbi_node)
1267                 of_node_put(priv->tbi_node);
1268         free_gfar_dev(priv);
1269         return err;
1270 }
1271
1272 static int gfar_remove(struct platform_device *ofdev)
1273 {
1274         struct gfar_private *priv = platform_get_drvdata(ofdev);
1275
1276         if (priv->phy_node)
1277                 of_node_put(priv->phy_node);
1278         if (priv->tbi_node)
1279                 of_node_put(priv->tbi_node);
1280
1281         unregister_netdev(priv->ndev);
1282         unmap_group_regs(priv);
1283         free_gfar_dev(priv);
1284
1285         return 0;
1286 }
1287
1288 #ifdef CONFIG_PM
1289
1290 static int gfar_suspend(struct device *dev)
1291 {
1292         struct gfar_private *priv = dev_get_drvdata(dev);
1293         struct net_device *ndev = priv->ndev;
1294         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1295         unsigned long flags;
1296         u32 tempval;
1297
1298         int magic_packet = priv->wol_en &&
1299                            (priv->device_flags &
1300                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1301
1302         netif_device_detach(ndev);
1303
1304         if (netif_running(ndev)) {
1305
1306                 local_irq_save(flags);
1307                 lock_tx_qs(priv);
1308                 lock_rx_qs(priv);
1309
1310                 gfar_halt_nodisable(ndev);
1311
1312                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1313                 tempval = gfar_read(&regs->maccfg1);
1314
1315                 tempval &= ~MACCFG1_TX_EN;
1316
1317                 if (!magic_packet)
1318                         tempval &= ~MACCFG1_RX_EN;
1319
1320                 gfar_write(&regs->maccfg1, tempval);
1321
1322                 unlock_rx_qs(priv);
1323                 unlock_tx_qs(priv);
1324                 local_irq_restore(flags);
1325
1326                 disable_napi(priv);
1327
1328                 if (magic_packet) {
1329                         /* Enable interrupt on Magic Packet */
1330                         gfar_write(&regs->imask, IMASK_MAG);
1331
1332                         /* Enable Magic Packet mode */
1333                         tempval = gfar_read(&regs->maccfg2);
1334                         tempval |= MACCFG2_MPEN;
1335                         gfar_write(&regs->maccfg2, tempval);
1336                 } else {
1337                         phy_stop(priv->phydev);
1338                 }
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int gfar_resume(struct device *dev)
1345 {
1346         struct gfar_private *priv = dev_get_drvdata(dev);
1347         struct net_device *ndev = priv->ndev;
1348         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1349         unsigned long flags;
1350         u32 tempval;
1351         int magic_packet = priv->wol_en &&
1352                            (priv->device_flags &
1353                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1354
1355         if (!netif_running(ndev)) {
1356                 netif_device_attach(ndev);
1357                 return 0;
1358         }
1359
1360         if (!magic_packet && priv->phydev)
1361                 phy_start(priv->phydev);
1362
1363         /* Disable Magic Packet mode, in case something
1364          * else woke us up.
1365          */
1366         local_irq_save(flags);
1367         lock_tx_qs(priv);
1368         lock_rx_qs(priv);
1369
1370         tempval = gfar_read(&regs->maccfg2);
1371         tempval &= ~MACCFG2_MPEN;
1372         gfar_write(&regs->maccfg2, tempval);
1373
1374         gfar_start(ndev);
1375
1376         unlock_rx_qs(priv);
1377         unlock_tx_qs(priv);
1378         local_irq_restore(flags);
1379
1380         netif_device_attach(ndev);
1381
1382         enable_napi(priv);
1383
1384         return 0;
1385 }
1386
1387 static int gfar_restore(struct device *dev)
1388 {
1389         struct gfar_private *priv = dev_get_drvdata(dev);
1390         struct net_device *ndev = priv->ndev;
1391
1392         if (!netif_running(ndev)) {
1393                 netif_device_attach(ndev);
1394
1395                 return 0;
1396         }
1397
1398         if (gfar_init_bds(ndev)) {
1399                 free_skb_resources(priv);
1400                 return -ENOMEM;
1401         }
1402
1403         init_registers(ndev);
1404         gfar_set_mac_address(ndev);
1405         gfar_init_mac(ndev);
1406         gfar_start(ndev);
1407
1408         priv->oldlink = 0;
1409         priv->oldspeed = 0;
1410         priv->oldduplex = -1;
1411
1412         if (priv->phydev)
1413                 phy_start(priv->phydev);
1414
1415         netif_device_attach(ndev);
1416         enable_napi(priv);
1417
1418         return 0;
1419 }
1420
1421 static struct dev_pm_ops gfar_pm_ops = {
1422         .suspend = gfar_suspend,
1423         .resume = gfar_resume,
1424         .freeze = gfar_suspend,
1425         .thaw = gfar_resume,
1426         .restore = gfar_restore,
1427 };
1428
1429 #define GFAR_PM_OPS (&gfar_pm_ops)
1430
1431 #else
1432
1433 #define GFAR_PM_OPS NULL
1434
1435 #endif
1436
1437 /* Reads the controller's registers to determine what interface
1438  * connects it to the PHY.
1439  */
1440 static phy_interface_t gfar_get_interface(struct net_device *dev)
1441 {
1442         struct gfar_private *priv = netdev_priv(dev);
1443         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1444         u32 ecntrl;
1445
1446         ecntrl = gfar_read(&regs->ecntrl);
1447
1448         if (ecntrl & ECNTRL_SGMII_MODE)
1449                 return PHY_INTERFACE_MODE_SGMII;
1450
1451         if (ecntrl & ECNTRL_TBI_MODE) {
1452                 if (ecntrl & ECNTRL_REDUCED_MODE)
1453                         return PHY_INTERFACE_MODE_RTBI;
1454                 else
1455                         return PHY_INTERFACE_MODE_TBI;
1456         }
1457
1458         if (ecntrl & ECNTRL_REDUCED_MODE) {
1459                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1460                         return PHY_INTERFACE_MODE_RMII;
1461                 }
1462                 else {
1463                         phy_interface_t interface = priv->interface;
1464
1465                         /* This isn't autodetected right now, so it must
1466                          * be set by the device tree or platform code.
1467                          */
1468                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1469                                 return PHY_INTERFACE_MODE_RGMII_ID;
1470
1471                         return PHY_INTERFACE_MODE_RGMII;
1472                 }
1473         }
1474
1475         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1476                 return PHY_INTERFACE_MODE_GMII;
1477
1478         return PHY_INTERFACE_MODE_MII;
1479 }
1480
1481
1482 /* Initializes driver's PHY state, and attaches to the PHY.
1483  * Returns 0 on success.
1484  */
1485 static int init_phy(struct net_device *dev)
1486 {
1487         struct gfar_private *priv = netdev_priv(dev);
1488         uint gigabit_support =
1489                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1490                 GFAR_SUPPORTED_GBIT : 0;
1491         phy_interface_t interface;
1492
1493         priv->oldlink = 0;
1494         priv->oldspeed = 0;
1495         priv->oldduplex = -1;
1496
1497         interface = gfar_get_interface(dev);
1498
1499         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1500                                       interface);
1501         if (!priv->phydev)
1502                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1503                                                          interface);
1504         if (!priv->phydev) {
1505                 dev_err(&dev->dev, "could not attach to PHY\n");
1506                 return -ENODEV;
1507         }
1508
1509         if (interface == PHY_INTERFACE_MODE_SGMII)
1510                 gfar_configure_serdes(dev);
1511
1512         /* Remove any features not supported by the controller */
1513         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1514         priv->phydev->advertising = priv->phydev->supported;
1515
1516         return 0;
1517 }
1518
1519 /* Initialize TBI PHY interface for communicating with the
1520  * SERDES lynx PHY on the chip.  We communicate with this PHY
1521  * through the MDIO bus on each controller, treating it as a
1522  * "normal" PHY at the address found in the TBIPA register.  We assume
1523  * that the TBIPA register is valid.  Either the MDIO bus code will set
1524  * it to a value that doesn't conflict with other PHYs on the bus, or the
1525  * value doesn't matter, as there are no other PHYs on the bus.
1526  */
1527 static void gfar_configure_serdes(struct net_device *dev)
1528 {
1529         struct gfar_private *priv = netdev_priv(dev);
1530         struct phy_device *tbiphy;
1531
1532         if (!priv->tbi_node) {
1533                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1534                                     "device tree specify a tbi-handle\n");
1535                 return;
1536         }
1537
1538         tbiphy = of_phy_find_device(priv->tbi_node);
1539         if (!tbiphy) {
1540                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1541                 return;
1542         }
1543
1544         /* If the link is already up, we must already be ok, and don't need to
1545          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1546          * everything for us?  Resetting it takes the link down and requires
1547          * several seconds for it to come back.
1548          */
1549         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1550                 return;
1551
1552         /* Single clk mode, mii mode off(for serdes communication) */
1553         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1554
1555         phy_write(tbiphy, MII_ADVERTISE,
1556                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1557                   ADVERTISE_1000XPSE_ASYM);
1558
1559         phy_write(tbiphy, MII_BMCR,
1560                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1561                   BMCR_SPEED1000);
1562 }
1563
1564 static void init_registers(struct net_device *dev)
1565 {
1566         struct gfar_private *priv = netdev_priv(dev);
1567         struct gfar __iomem *regs = NULL;
1568         int i;
1569
1570         for (i = 0; i < priv->num_grps; i++) {
1571                 regs = priv->gfargrp[i].regs;
1572                 /* Clear IEVENT */
1573                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1574
1575                 /* Initialize IMASK */
1576                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1577         }
1578
1579         regs = priv->gfargrp[0].regs;
1580         /* Init hash registers to zero */
1581         gfar_write(&regs->igaddr0, 0);
1582         gfar_write(&regs->igaddr1, 0);
1583         gfar_write(&regs->igaddr2, 0);
1584         gfar_write(&regs->igaddr3, 0);
1585         gfar_write(&regs->igaddr4, 0);
1586         gfar_write(&regs->igaddr5, 0);
1587         gfar_write(&regs->igaddr6, 0);
1588         gfar_write(&regs->igaddr7, 0);
1589
1590         gfar_write(&regs->gaddr0, 0);
1591         gfar_write(&regs->gaddr1, 0);
1592         gfar_write(&regs->gaddr2, 0);
1593         gfar_write(&regs->gaddr3, 0);
1594         gfar_write(&regs->gaddr4, 0);
1595         gfar_write(&regs->gaddr5, 0);
1596         gfar_write(&regs->gaddr6, 0);
1597         gfar_write(&regs->gaddr7, 0);
1598
1599         /* Zero out the rmon mib registers if it has them */
1600         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1601                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1602
1603                 /* Mask off the CAM interrupts */
1604                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1605                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1606         }
1607
1608         /* Initialize the max receive buffer length */
1609         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1610
1611         /* Initialize the Minimum Frame Length Register */
1612         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1613 }
1614
1615 static int __gfar_is_rx_idle(struct gfar_private *priv)
1616 {
1617         u32 res;
1618
1619         /* Normaly TSEC should not hang on GRS commands, so we should
1620          * actually wait for IEVENT_GRSC flag.
1621          */
1622         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1623                 return 0;
1624
1625         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1626          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1627          * and the Rx can be safely reset.
1628          */
1629         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1630         res &= 0x7f807f80;
1631         if ((res & 0xffff) == (res >> 16))
1632                 return 1;
1633
1634         return 0;
1635 }
1636
1637 /* Halt the receive and transmit queues */
1638 static void gfar_halt_nodisable(struct net_device *dev)
1639 {
1640         struct gfar_private *priv = netdev_priv(dev);
1641         struct gfar __iomem *regs = NULL;
1642         u32 tempval;
1643         int i;
1644
1645         for (i = 0; i < priv->num_grps; i++) {
1646                 regs = priv->gfargrp[i].regs;
1647                 /* Mask all interrupts */
1648                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1649
1650                 /* Clear all interrupts */
1651                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1652         }
1653
1654         regs = priv->gfargrp[0].regs;
1655         /* Stop the DMA, and wait for it to stop */
1656         tempval = gfar_read(&regs->dmactrl);
1657         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1658             (DMACTRL_GRS | DMACTRL_GTS)) {
1659                 int ret;
1660
1661                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1662                 gfar_write(&regs->dmactrl, tempval);
1663
1664                 do {
1665                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1666                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1667                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1668                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1669                                 ret = __gfar_is_rx_idle(priv);
1670                 } while (!ret);
1671         }
1672 }
1673
1674 /* Halt the receive and transmit queues */
1675 void gfar_halt(struct net_device *dev)
1676 {
1677         struct gfar_private *priv = netdev_priv(dev);
1678         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1679         u32 tempval;
1680
1681         gfar_halt_nodisable(dev);
1682
1683         /* Disable Rx and Tx */
1684         tempval = gfar_read(&regs->maccfg1);
1685         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1686         gfar_write(&regs->maccfg1, tempval);
1687 }
1688
1689 static void free_grp_irqs(struct gfar_priv_grp *grp)
1690 {
1691         free_irq(gfar_irq(grp, TX)->irq, grp);
1692         free_irq(gfar_irq(grp, RX)->irq, grp);
1693         free_irq(gfar_irq(grp, ER)->irq, grp);
1694 }
1695
1696 void stop_gfar(struct net_device *dev)
1697 {
1698         struct gfar_private *priv = netdev_priv(dev);
1699         unsigned long flags;
1700         int i;
1701
1702         phy_stop(priv->phydev);
1703
1704
1705         /* Lock it down */
1706         local_irq_save(flags);
1707         lock_tx_qs(priv);
1708         lock_rx_qs(priv);
1709
1710         gfar_halt(dev);
1711
1712         unlock_rx_qs(priv);
1713         unlock_tx_qs(priv);
1714         local_irq_restore(flags);
1715
1716         /* Free the IRQs */
1717         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1718                 for (i = 0; i < priv->num_grps; i++)
1719                         free_grp_irqs(&priv->gfargrp[i]);
1720         } else {
1721                 for (i = 0; i < priv->num_grps; i++)
1722                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1723                                  &priv->gfargrp[i]);
1724         }
1725
1726         free_skb_resources(priv);
1727 }
1728
1729 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1730 {
1731         struct txbd8 *txbdp;
1732         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1733         int i, j;
1734
1735         txbdp = tx_queue->tx_bd_base;
1736
1737         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1738                 if (!tx_queue->tx_skbuff[i])
1739                         continue;
1740
1741                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1742                                  txbdp->length, DMA_TO_DEVICE);
1743                 txbdp->lstatus = 0;
1744                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1745                      j++) {
1746                         txbdp++;
1747                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1748                                        txbdp->length, DMA_TO_DEVICE);
1749                 }
1750                 txbdp++;
1751                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1752                 tx_queue->tx_skbuff[i] = NULL;
1753         }
1754         kfree(tx_queue->tx_skbuff);
1755         tx_queue->tx_skbuff = NULL;
1756 }
1757
1758 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1759 {
1760         struct rxbd8 *rxbdp;
1761         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1762         int i;
1763
1764         rxbdp = rx_queue->rx_bd_base;
1765
1766         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1767                 if (rx_queue->rx_skbuff[i]) {
1768                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1769                                          priv->rx_buffer_size,
1770                                          DMA_FROM_DEVICE);
1771                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1772                         rx_queue->rx_skbuff[i] = NULL;
1773                 }
1774                 rxbdp->lstatus = 0;
1775                 rxbdp->bufPtr = 0;
1776                 rxbdp++;
1777         }
1778         kfree(rx_queue->rx_skbuff);
1779         rx_queue->rx_skbuff = NULL;
1780 }
1781
1782 /* If there are any tx skbs or rx skbs still around, free them.
1783  * Then free tx_skbuff and rx_skbuff
1784  */
1785 static void free_skb_resources(struct gfar_private *priv)
1786 {
1787         struct gfar_priv_tx_q *tx_queue = NULL;
1788         struct gfar_priv_rx_q *rx_queue = NULL;
1789         int i;
1790
1791         /* Go through all the buffer descriptors and free their data buffers */
1792         for (i = 0; i < priv->num_tx_queues; i++) {
1793                 struct netdev_queue *txq;
1794
1795                 tx_queue = priv->tx_queue[i];
1796                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1797                 if (tx_queue->tx_skbuff)
1798                         free_skb_tx_queue(tx_queue);
1799                 netdev_tx_reset_queue(txq);
1800         }
1801
1802         for (i = 0; i < priv->num_rx_queues; i++) {
1803                 rx_queue = priv->rx_queue[i];
1804                 if (rx_queue->rx_skbuff)
1805                         free_skb_rx_queue(rx_queue);
1806         }
1807
1808         dma_free_coherent(priv->dev,
1809                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1810                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1811                           priv->tx_queue[0]->tx_bd_base,
1812                           priv->tx_queue[0]->tx_bd_dma_base);
1813 }
1814
1815 void gfar_start(struct net_device *dev)
1816 {
1817         struct gfar_private *priv = netdev_priv(dev);
1818         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1819         u32 tempval;
1820         int i = 0;
1821
1822         /* Enable Rx and Tx in MACCFG1 */
1823         tempval = gfar_read(&regs->maccfg1);
1824         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1825         gfar_write(&regs->maccfg1, tempval);
1826
1827         /* Initialize DMACTRL to have WWR and WOP */
1828         tempval = gfar_read(&regs->dmactrl);
1829         tempval |= DMACTRL_INIT_SETTINGS;
1830         gfar_write(&regs->dmactrl, tempval);
1831
1832         /* Make sure we aren't stopped */
1833         tempval = gfar_read(&regs->dmactrl);
1834         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1835         gfar_write(&regs->dmactrl, tempval);
1836
1837         for (i = 0; i < priv->num_grps; i++) {
1838                 regs = priv->gfargrp[i].regs;
1839                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1840                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1841                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1842                 /* Unmask the interrupts we look for */
1843                 gfar_write(&regs->imask, IMASK_DEFAULT);
1844         }
1845
1846         dev->trans_start = jiffies; /* prevent tx timeout */
1847 }
1848
1849 static void gfar_configure_coalescing(struct gfar_private *priv,
1850                                unsigned long tx_mask, unsigned long rx_mask)
1851 {
1852         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1853         u32 __iomem *baddr;
1854
1855         if (priv->mode == MQ_MG_MODE) {
1856                 int i = 0;
1857
1858                 baddr = &regs->txic0;
1859                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1860                         gfar_write(baddr + i, 0);
1861                         if (likely(priv->tx_queue[i]->txcoalescing))
1862                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1863                 }
1864
1865                 baddr = &regs->rxic0;
1866                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1867                         gfar_write(baddr + i, 0);
1868                         if (likely(priv->rx_queue[i]->rxcoalescing))
1869                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1870                 }
1871         } else {
1872                 /* Backward compatible case -- even if we enable
1873                  * multiple queues, there's only single reg to program
1874                  */
1875                 gfar_write(&regs->txic, 0);
1876                 if (likely(priv->tx_queue[0]->txcoalescing))
1877                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1878
1879                 gfar_write(&regs->rxic, 0);
1880                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1881                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1882         }
1883 }
1884
1885 void gfar_configure_coalescing_all(struct gfar_private *priv)
1886 {
1887         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1888 }
1889
1890 static int register_grp_irqs(struct gfar_priv_grp *grp)
1891 {
1892         struct gfar_private *priv = grp->priv;
1893         struct net_device *dev = priv->ndev;
1894         int err;
1895
1896         /* If the device has multiple interrupts, register for
1897          * them.  Otherwise, only register for the one
1898          */
1899         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1900                 /* Install our interrupt handlers for Error,
1901                  * Transmit, and Receive
1902                  */
1903                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1904                                   gfar_irq(grp, ER)->name, grp);
1905                 if (err < 0) {
1906                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1907                                   gfar_irq(grp, ER)->irq);
1908
1909                         goto err_irq_fail;
1910                 }
1911                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1912                                   gfar_irq(grp, TX)->name, grp);
1913                 if (err < 0) {
1914                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1915                                   gfar_irq(grp, TX)->irq);
1916                         goto tx_irq_fail;
1917                 }
1918                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1919                                   gfar_irq(grp, RX)->name, grp);
1920                 if (err < 0) {
1921                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1922                                   gfar_irq(grp, RX)->irq);
1923                         goto rx_irq_fail;
1924                 }
1925         } else {
1926                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1927                                   gfar_irq(grp, TX)->name, grp);
1928                 if (err < 0) {
1929                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1930                                   gfar_irq(grp, TX)->irq);
1931                         goto err_irq_fail;
1932                 }
1933         }
1934
1935         return 0;
1936
1937 rx_irq_fail:
1938         free_irq(gfar_irq(grp, TX)->irq, grp);
1939 tx_irq_fail:
1940         free_irq(gfar_irq(grp, ER)->irq, grp);
1941 err_irq_fail:
1942         return err;
1943
1944 }
1945
1946 /* Bring the controller up and running */
1947 int startup_gfar(struct net_device *ndev)
1948 {
1949         struct gfar_private *priv = netdev_priv(ndev);
1950         struct gfar __iomem *regs = NULL;
1951         int err, i, j;
1952
1953         for (i = 0; i < priv->num_grps; i++) {
1954                 regs= priv->gfargrp[i].regs;
1955                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1956         }
1957
1958         regs= priv->gfargrp[0].regs;
1959         err = gfar_alloc_skb_resources(ndev);
1960         if (err)
1961                 return err;
1962
1963         gfar_init_mac(ndev);
1964
1965         for (i = 0; i < priv->num_grps; i++) {
1966                 err = register_grp_irqs(&priv->gfargrp[i]);
1967                 if (err) {
1968                         for (j = 0; j < i; j++)
1969                                 free_grp_irqs(&priv->gfargrp[j]);
1970                         goto irq_fail;
1971                 }
1972         }
1973
1974         /* Start the controller */
1975         gfar_start(ndev);
1976
1977         phy_start(priv->phydev);
1978
1979         gfar_configure_coalescing_all(priv);
1980
1981         return 0;
1982
1983 irq_fail:
1984         free_skb_resources(priv);
1985         return err;
1986 }
1987
1988 /* Called when something needs to use the ethernet device
1989  * Returns 0 for success.
1990  */
1991 static int gfar_enet_open(struct net_device *dev)
1992 {
1993         struct gfar_private *priv = netdev_priv(dev);
1994         int err;
1995
1996         enable_napi(priv);
1997
1998         /* Initialize a bunch of registers */
1999         init_registers(dev);
2000
2001         gfar_set_mac_address(dev);
2002
2003         err = init_phy(dev);
2004
2005         if (err) {
2006                 disable_napi(priv);
2007                 return err;
2008         }
2009
2010         err = startup_gfar(dev);
2011         if (err) {
2012                 disable_napi(priv);
2013                 return err;
2014         }
2015
2016         netif_tx_start_all_queues(dev);
2017
2018         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2019
2020         return err;
2021 }
2022
2023 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2024 {
2025         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2026
2027         memset(fcb, 0, GMAC_FCB_LEN);
2028
2029         return fcb;
2030 }
2031
2032 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2033                                     int fcb_length)
2034 {
2035         /* If we're here, it's a IP packet with a TCP or UDP
2036          * payload.  We set it to checksum, using a pseudo-header
2037          * we provide
2038          */
2039         u8 flags = TXFCB_DEFAULT;
2040
2041         /* Tell the controller what the protocol is
2042          * And provide the already calculated phcs
2043          */
2044         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2045                 flags |= TXFCB_UDP;
2046                 fcb->phcs = udp_hdr(skb)->check;
2047         } else
2048                 fcb->phcs = tcp_hdr(skb)->check;
2049
2050         /* l3os is the distance between the start of the
2051          * frame (skb->data) and the start of the IP hdr.
2052          * l4os is the distance between the start of the
2053          * l3 hdr and the l4 hdr
2054          */
2055         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2056         fcb->l4os = skb_network_header_len(skb);
2057
2058         fcb->flags = flags;
2059 }
2060
2061 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2062 {
2063         fcb->flags |= TXFCB_VLN;
2064         fcb->vlctl = vlan_tx_tag_get(skb);
2065 }
2066
2067 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2068                                       struct txbd8 *base, int ring_size)
2069 {
2070         struct txbd8 *new_bd = bdp + stride;
2071
2072         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2073 }
2074
2075 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2076                                       int ring_size)
2077 {
2078         return skip_txbd(bdp, 1, base, ring_size);
2079 }
2080
2081 /* eTSEC12: csum generation not supported for some fcb offsets */
2082 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2083                                        unsigned long fcb_addr)
2084 {
2085         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2086                (fcb_addr % 0x20) > 0x18);
2087 }
2088
2089 /* eTSEC76: csum generation for frames larger than 2500 may
2090  * cause excess delays before start of transmission
2091  */
2092 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2093                                        unsigned int len)
2094 {
2095         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2096                (len > 2500));
2097 }
2098
2099 /* This is called by the kernel when a frame is ready for transmission.
2100  * It is pointed to by the dev->hard_start_xmit function pointer
2101  */
2102 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2103 {
2104         struct gfar_private *priv = netdev_priv(dev);
2105         struct gfar_priv_tx_q *tx_queue = NULL;
2106         struct netdev_queue *txq;
2107         struct gfar __iomem *regs = NULL;
2108         struct txfcb *fcb = NULL;
2109         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2110         u32 lstatus;
2111         int i, rq = 0;
2112         int do_tstamp, do_csum, do_vlan;
2113         u32 bufaddr;
2114         unsigned long flags;
2115         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2116
2117         rq = skb->queue_mapping;
2118         tx_queue = priv->tx_queue[rq];
2119         txq = netdev_get_tx_queue(dev, rq);
2120         base = tx_queue->tx_bd_base;
2121         regs = tx_queue->grp->regs;
2122
2123         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2124         do_vlan = vlan_tx_tag_present(skb);
2125         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2126                     priv->hwts_tx_en;
2127
2128         if (do_csum || do_vlan)
2129                 fcb_len = GMAC_FCB_LEN;
2130
2131         /* check if time stamp should be generated */
2132         if (unlikely(do_tstamp))
2133                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2134
2135         /* make space for additional header when fcb is needed */
2136         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2137                 struct sk_buff *skb_new;
2138
2139                 skb_new = skb_realloc_headroom(skb, fcb_len);
2140                 if (!skb_new) {
2141                         dev->stats.tx_errors++;
2142                         kfree_skb(skb);
2143                         return NETDEV_TX_OK;
2144                 }
2145
2146                 if (skb->sk)
2147                         skb_set_owner_w(skb_new, skb->sk);
2148                 consume_skb(skb);
2149                 skb = skb_new;
2150         }
2151
2152         /* total number of fragments in the SKB */
2153         nr_frags = skb_shinfo(skb)->nr_frags;
2154
2155         /* calculate the required number of TxBDs for this skb */
2156         if (unlikely(do_tstamp))
2157                 nr_txbds = nr_frags + 2;
2158         else
2159                 nr_txbds = nr_frags + 1;
2160
2161         /* check if there is space to queue this packet */
2162         if (nr_txbds > tx_queue->num_txbdfree) {
2163                 /* no space, stop the queue */
2164                 netif_tx_stop_queue(txq);
2165                 dev->stats.tx_fifo_errors++;
2166                 return NETDEV_TX_BUSY;
2167         }
2168
2169         /* Update transmit stats */
2170         bytes_sent = skb->len;
2171         tx_queue->stats.tx_bytes += bytes_sent;
2172         /* keep Tx bytes on wire for BQL accounting */
2173         GFAR_CB(skb)->bytes_sent = bytes_sent;
2174         tx_queue->stats.tx_packets++;
2175
2176         txbdp = txbdp_start = tx_queue->cur_tx;
2177         lstatus = txbdp->lstatus;
2178
2179         /* Time stamp insertion requires one additional TxBD */
2180         if (unlikely(do_tstamp))
2181                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2182                                                  tx_queue->tx_ring_size);
2183
2184         if (nr_frags == 0) {
2185                 if (unlikely(do_tstamp))
2186                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2187                                                           TXBD_INTERRUPT);
2188                 else
2189                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2190         } else {
2191                 /* Place the fragment addresses and lengths into the TxBDs */
2192                 for (i = 0; i < nr_frags; i++) {
2193                         unsigned int frag_len;
2194                         /* Point at the next BD, wrapping as needed */
2195                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2196
2197                         frag_len = skb_shinfo(skb)->frags[i].size;
2198
2199                         lstatus = txbdp->lstatus | frag_len |
2200                                   BD_LFLAG(TXBD_READY);
2201
2202                         /* Handle the last BD specially */
2203                         if (i == nr_frags - 1)
2204                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2205
2206                         bufaddr = skb_frag_dma_map(priv->dev,
2207                                                    &skb_shinfo(skb)->frags[i],
2208                                                    0,
2209                                                    frag_len,
2210                                                    DMA_TO_DEVICE);
2211
2212                         /* set the TxBD length and buffer pointer */
2213                         txbdp->bufPtr = bufaddr;
2214                         txbdp->lstatus = lstatus;
2215                 }
2216
2217                 lstatus = txbdp_start->lstatus;
2218         }
2219
2220         /* Add TxPAL between FCB and frame if required */
2221         if (unlikely(do_tstamp)) {
2222                 skb_push(skb, GMAC_TXPAL_LEN);
2223                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2224         }
2225
2226         /* Add TxFCB if required */
2227         if (fcb_len) {
2228                 fcb = gfar_add_fcb(skb);
2229                 lstatus |= BD_LFLAG(TXBD_TOE);
2230         }
2231
2232         /* Set up checksumming */
2233         if (do_csum) {
2234                 gfar_tx_checksum(skb, fcb, fcb_len);
2235
2236                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2237                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2238                         __skb_pull(skb, GMAC_FCB_LEN);
2239                         skb_checksum_help(skb);
2240                         if (do_vlan || do_tstamp) {
2241                                 /* put back a new fcb for vlan/tstamp TOE */
2242                                 fcb = gfar_add_fcb(skb);
2243                         } else {
2244                                 /* Tx TOE not used */
2245                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2246                                 fcb = NULL;
2247                         }
2248                 }
2249         }
2250
2251         if (do_vlan)
2252                 gfar_tx_vlan(skb, fcb);
2253
2254         /* Setup tx hardware time stamping if requested */
2255         if (unlikely(do_tstamp)) {
2256                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2257                 fcb->ptp = 1;
2258         }
2259
2260         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2261                                              skb_headlen(skb), DMA_TO_DEVICE);
2262
2263         /* If time stamping is requested one additional TxBD must be set up. The
2264          * first TxBD points to the FCB and must have a data length of
2265          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2266          * the full frame length.
2267          */
2268         if (unlikely(do_tstamp)) {
2269                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2270                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2271                                          (skb_headlen(skb) - fcb_len);
2272                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2273         } else {
2274                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2275         }
2276
2277         netdev_tx_sent_queue(txq, bytes_sent);
2278
2279         /* We can work in parallel with gfar_clean_tx_ring(), except
2280          * when modifying num_txbdfree. Note that we didn't grab the lock
2281          * when we were reading the num_txbdfree and checking for available
2282          * space, that's because outside of this function it can only grow,
2283          * and once we've got needed space, it cannot suddenly disappear.
2284          *
2285          * The lock also protects us from gfar_error(), which can modify
2286          * regs->tstat and thus retrigger the transfers, which is why we
2287          * also must grab the lock before setting ready bit for the first
2288          * to be transmitted BD.
2289          */
2290         spin_lock_irqsave(&tx_queue->txlock, flags);
2291
2292         /* The powerpc-specific eieio() is used, as wmb() has too strong
2293          * semantics (it requires synchronization between cacheable and
2294          * uncacheable mappings, which eieio doesn't provide and which we
2295          * don't need), thus requiring a more expensive sync instruction.  At
2296          * some point, the set of architecture-independent barrier functions
2297          * should be expanded to include weaker barriers.
2298          */
2299         eieio();
2300
2301         txbdp_start->lstatus = lstatus;
2302
2303         eieio(); /* force lstatus write before tx_skbuff */
2304
2305         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2306
2307         /* Update the current skb pointer to the next entry we will use
2308          * (wrapping if necessary)
2309          */
2310         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2311                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2312
2313         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2314
2315         /* reduce TxBD free count */
2316         tx_queue->num_txbdfree -= (nr_txbds);
2317
2318         /* If the next BD still needs to be cleaned up, then the bds
2319          * are full.  We need to tell the kernel to stop sending us stuff.
2320          */
2321         if (!tx_queue->num_txbdfree) {
2322                 netif_tx_stop_queue(txq);
2323
2324                 dev->stats.tx_fifo_errors++;
2325         }
2326
2327         /* Tell the DMA to go go go */
2328         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2329
2330         /* Unlock priv */
2331         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2332
2333         return NETDEV_TX_OK;
2334 }
2335
2336 /* Stops the kernel queue, and halts the controller */
2337 static int gfar_close(struct net_device *dev)
2338 {
2339         struct gfar_private *priv = netdev_priv(dev);
2340
2341         disable_napi(priv);
2342
2343         cancel_work_sync(&priv->reset_task);
2344         stop_gfar(dev);
2345
2346         /* Disconnect from the PHY */
2347         phy_disconnect(priv->phydev);
2348         priv->phydev = NULL;
2349
2350         netif_tx_stop_all_queues(dev);
2351
2352         return 0;
2353 }
2354
2355 /* Changes the mac address if the controller is not running. */
2356 static int gfar_set_mac_address(struct net_device *dev)
2357 {
2358         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2359
2360         return 0;
2361 }
2362
2363 /* Check if rx parser should be activated */
2364 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2365 {
2366         struct gfar __iomem *regs;
2367         u32 tempval;
2368
2369         regs = priv->gfargrp[0].regs;
2370
2371         tempval = gfar_read(&regs->rctrl);
2372         /* If parse is no longer required, then disable parser */
2373         if (tempval & RCTRL_REQ_PARSER) {
2374                 tempval |= RCTRL_PRSDEP_INIT;
2375                 priv->uses_rxfcb = 1;
2376         } else {
2377                 tempval &= ~RCTRL_PRSDEP_INIT;
2378                 priv->uses_rxfcb = 0;
2379         }
2380         gfar_write(&regs->rctrl, tempval);
2381 }
2382
2383 /* Enables and disables VLAN insertion/extraction */
2384 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2385 {
2386         struct gfar_private *priv = netdev_priv(dev);
2387         struct gfar __iomem *regs = NULL;
2388         unsigned long flags;
2389         u32 tempval;
2390
2391         regs = priv->gfargrp[0].regs;
2392         local_irq_save(flags);
2393         lock_rx_qs(priv);
2394
2395         if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2396                 /* Enable VLAN tag insertion */
2397                 tempval = gfar_read(&regs->tctrl);
2398                 tempval |= TCTRL_VLINS;
2399                 gfar_write(&regs->tctrl, tempval);
2400         } else {
2401                 /* Disable VLAN tag insertion */
2402                 tempval = gfar_read(&regs->tctrl);
2403                 tempval &= ~TCTRL_VLINS;
2404                 gfar_write(&regs->tctrl, tempval);
2405         }
2406
2407         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2408                 /* Enable VLAN tag extraction */
2409                 tempval = gfar_read(&regs->rctrl);
2410                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2411                 gfar_write(&regs->rctrl, tempval);
2412                 priv->uses_rxfcb = 1;
2413         } else {
2414                 /* Disable VLAN tag extraction */
2415                 tempval = gfar_read(&regs->rctrl);
2416                 tempval &= ~RCTRL_VLEX;
2417                 gfar_write(&regs->rctrl, tempval);
2418
2419                 gfar_check_rx_parser_mode(priv);
2420         }
2421
2422         gfar_change_mtu(dev, dev->mtu);
2423
2424         unlock_rx_qs(priv);
2425         local_irq_restore(flags);
2426 }
2427
2428 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2429 {
2430         int tempsize, tempval;
2431         struct gfar_private *priv = netdev_priv(dev);
2432         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2433         int oldsize = priv->rx_buffer_size;
2434         int frame_size = new_mtu + ETH_HLEN;
2435
2436         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2437                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2438                 return -EINVAL;
2439         }
2440
2441         if (priv->uses_rxfcb)
2442                 frame_size += GMAC_FCB_LEN;
2443
2444         frame_size += priv->padding;
2445
2446         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2447                    INCREMENTAL_BUFFER_SIZE;
2448
2449         /* Only stop and start the controller if it isn't already
2450          * stopped, and we changed something
2451          */
2452         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2453                 stop_gfar(dev);
2454
2455         priv->rx_buffer_size = tempsize;
2456
2457         dev->mtu = new_mtu;
2458
2459         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2460         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2461
2462         /* If the mtu is larger than the max size for standard
2463          * ethernet frames (ie, a jumbo frame), then set maccfg2
2464          * to allow huge frames, and to check the length
2465          */
2466         tempval = gfar_read(&regs->maccfg2);
2467
2468         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2469             gfar_has_errata(priv, GFAR_ERRATA_74))
2470                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2471         else
2472                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2473
2474         gfar_write(&regs->maccfg2, tempval);
2475
2476         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2477                 startup_gfar(dev);
2478
2479         return 0;
2480 }
2481
2482 /* gfar_reset_task gets scheduled when a packet has not been
2483  * transmitted after a set amount of time.
2484  * For now, assume that clearing out all the structures, and
2485  * starting over will fix the problem.
2486  */
2487 static void gfar_reset_task(struct work_struct *work)
2488 {
2489         struct gfar_private *priv = container_of(work, struct gfar_private,
2490                                                  reset_task);
2491         struct net_device *dev = priv->ndev;
2492
2493         if (dev->flags & IFF_UP) {
2494                 netif_tx_stop_all_queues(dev);
2495                 stop_gfar(dev);
2496                 startup_gfar(dev);
2497                 netif_tx_start_all_queues(dev);
2498         }
2499
2500         netif_tx_schedule_all(dev);
2501 }
2502
2503 static void gfar_timeout(struct net_device *dev)
2504 {
2505         struct gfar_private *priv = netdev_priv(dev);
2506
2507         dev->stats.tx_errors++;
2508         schedule_work(&priv->reset_task);
2509 }
2510
2511 static void gfar_align_skb(struct sk_buff *skb)
2512 {
2513         /* We need the data buffer to be aligned properly.  We will reserve
2514          * as many bytes as needed to align the data properly
2515          */
2516         skb_reserve(skb, RXBUF_ALIGNMENT -
2517                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2518 }
2519
2520 /* Interrupt Handler for Transmit complete */
2521 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2522 {
2523         struct net_device *dev = tx_queue->dev;
2524         struct netdev_queue *txq;
2525         struct gfar_private *priv = netdev_priv(dev);
2526         struct txbd8 *bdp, *next = NULL;
2527         struct txbd8 *lbdp = NULL;
2528         struct txbd8 *base = tx_queue->tx_bd_base;
2529         struct sk_buff *skb;
2530         int skb_dirtytx;
2531         int tx_ring_size = tx_queue->tx_ring_size;
2532         int frags = 0, nr_txbds = 0;
2533         int i;
2534         int howmany = 0;
2535         int tqi = tx_queue->qindex;
2536         unsigned int bytes_sent = 0;
2537         u32 lstatus;
2538         size_t buflen;
2539
2540         txq = netdev_get_tx_queue(dev, tqi);
2541         bdp = tx_queue->dirty_tx;
2542         skb_dirtytx = tx_queue->skb_dirtytx;
2543
2544         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2545                 unsigned long flags;
2546
2547                 frags = skb_shinfo(skb)->nr_frags;
2548
2549                 /* When time stamping, one additional TxBD must be freed.
2550                  * Also, we need to dma_unmap_single() the TxPAL.
2551                  */
2552                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2553                         nr_txbds = frags + 2;
2554                 else
2555                         nr_txbds = frags + 1;
2556
2557                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2558
2559                 lstatus = lbdp->lstatus;
2560
2561                 /* Only clean completed frames */
2562                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2563                     (lstatus & BD_LENGTH_MASK))
2564                         break;
2565
2566                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2567                         next = next_txbd(bdp, base, tx_ring_size);
2568                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2569                 } else
2570                         buflen = bdp->length;
2571
2572                 dma_unmap_single(priv->dev, bdp->bufPtr,
2573                                  buflen, DMA_TO_DEVICE);
2574
2575                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2576                         struct skb_shared_hwtstamps shhwtstamps;
2577                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2578
2579                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2580                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2581                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2582                         skb_tstamp_tx(skb, &shhwtstamps);
2583                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2584                         bdp = next;
2585                 }
2586
2587                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2588                 bdp = next_txbd(bdp, base, tx_ring_size);
2589
2590                 for (i = 0; i < frags; i++) {
2591                         dma_unmap_page(priv->dev, bdp->bufPtr,
2592                                        bdp->length, DMA_TO_DEVICE);
2593                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2594                         bdp = next_txbd(bdp, base, tx_ring_size);
2595                 }
2596
2597                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2598
2599                 dev_kfree_skb_any(skb);
2600
2601                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2602
2603                 skb_dirtytx = (skb_dirtytx + 1) &
2604                               TX_RING_MOD_MASK(tx_ring_size);
2605
2606                 howmany++;
2607                 spin_lock_irqsave(&tx_queue->txlock, flags);
2608                 tx_queue->num_txbdfree += nr_txbds;
2609                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2610         }
2611
2612         /* If we freed a buffer, we can restart transmission, if necessary */
2613         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2614                 netif_wake_subqueue(dev, tqi);
2615
2616         /* Update dirty indicators */
2617         tx_queue->skb_dirtytx = skb_dirtytx;
2618         tx_queue->dirty_tx = bdp;
2619
2620         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2621 }
2622
2623 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2624 {
2625         unsigned long flags;
2626
2627         spin_lock_irqsave(&gfargrp->grplock, flags);
2628         if (napi_schedule_prep(&gfargrp->napi)) {
2629                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2630                 __napi_schedule(&gfargrp->napi);
2631         } else {
2632                 /* Clear IEVENT, so interrupts aren't called again
2633                  * because of the packets that have already arrived.
2634                  */
2635                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2636         }
2637         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2638
2639 }
2640
2641 /* Interrupt Handler for Transmit complete */
2642 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2643 {
2644         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2645         return IRQ_HANDLED;
2646 }
2647
2648 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2649                            struct sk_buff *skb)
2650 {
2651         struct net_device *dev = rx_queue->dev;
2652         struct gfar_private *priv = netdev_priv(dev);
2653         dma_addr_t buf;
2654
2655         buf = dma_map_single(priv->dev, skb->data,
2656                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2657         gfar_init_rxbdp(rx_queue, bdp, buf);
2658 }
2659
2660 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2661 {
2662         struct gfar_private *priv = netdev_priv(dev);
2663         struct sk_buff *skb;
2664
2665         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2666         if (!skb)
2667                 return NULL;
2668
2669         gfar_align_skb(skb);
2670
2671         return skb;
2672 }
2673
2674 struct sk_buff *gfar_new_skb(struct net_device *dev)
2675 {
2676         return gfar_alloc_skb(dev);
2677 }
2678
2679 static inline void count_errors(unsigned short status, struct net_device *dev)
2680 {
2681         struct gfar_private *priv = netdev_priv(dev);
2682         struct net_device_stats *stats = &dev->stats;
2683         struct gfar_extra_stats *estats = &priv->extra_stats;
2684
2685         /* If the packet was truncated, none of the other errors matter */
2686         if (status & RXBD_TRUNCATED) {
2687                 stats->rx_length_errors++;
2688
2689                 atomic64_inc(&estats->rx_trunc);
2690
2691                 return;
2692         }
2693         /* Count the errors, if there were any */
2694         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2695                 stats->rx_length_errors++;
2696
2697                 if (status & RXBD_LARGE)
2698                         atomic64_inc(&estats->rx_large);
2699                 else
2700                         atomic64_inc(&estats->rx_short);
2701         }
2702         if (status & RXBD_NONOCTET) {
2703                 stats->rx_frame_errors++;
2704                 atomic64_inc(&estats->rx_nonoctet);
2705         }
2706         if (status & RXBD_CRCERR) {
2707                 atomic64_inc(&estats->rx_crcerr);
2708                 stats->rx_crc_errors++;
2709         }
2710         if (status & RXBD_OVERRUN) {
2711                 atomic64_inc(&estats->rx_overrun);
2712                 stats->rx_crc_errors++;
2713         }
2714 }
2715
2716 irqreturn_t gfar_receive(int irq, void *grp_id)
2717 {
2718         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2719         return IRQ_HANDLED;
2720 }
2721
2722 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2723 {
2724         /* If valid headers were found, and valid sums
2725          * were verified, then we tell the kernel that no
2726          * checksumming is necessary.  Otherwise, it is [FIXME]
2727          */
2728         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2729                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2730         else
2731                 skb_checksum_none_assert(skb);
2732 }
2733
2734
2735 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2736 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2737                                int amount_pull, struct napi_struct *napi)
2738 {
2739         struct gfar_private *priv = netdev_priv(dev);
2740         struct rxfcb *fcb = NULL;
2741
2742         /* fcb is at the beginning if exists */
2743         fcb = (struct rxfcb *)skb->data;
2744
2745         /* Remove the FCB from the skb
2746          * Remove the padded bytes, if there are any
2747          */
2748         if (amount_pull) {
2749                 skb_record_rx_queue(skb, fcb->rq);
2750                 skb_pull(skb, amount_pull);
2751         }
2752
2753         /* Get receive timestamp from the skb */
2754         if (priv->hwts_rx_en) {
2755                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2756                 u64 *ns = (u64 *) skb->data;
2757
2758                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2759                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2760         }
2761
2762         if (priv->padding)
2763                 skb_pull(skb, priv->padding);
2764
2765         if (dev->features & NETIF_F_RXCSUM)
2766                 gfar_rx_checksum(skb, fcb);
2767
2768         /* Tell the skb what kind of packet this is */
2769         skb->protocol = eth_type_trans(skb, dev);
2770
2771         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2772          * Even if vlan rx accel is disabled, on some chips
2773          * RXFCB_VLN is pseudo randomly set.
2774          */
2775         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2776             fcb->flags & RXFCB_VLN)
2777                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2778
2779         /* Send the packet up the stack */
2780         napi_gro_receive(napi, skb);
2781
2782 }
2783
2784 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2785  * until the budget/quota has been reached. Returns the number
2786  * of frames handled
2787  */
2788 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2789 {
2790         struct net_device *dev = rx_queue->dev;
2791         struct rxbd8 *bdp, *base;
2792         struct sk_buff *skb;
2793         int pkt_len;
2794         int amount_pull;
2795         int howmany = 0;
2796         struct gfar_private *priv = netdev_priv(dev);
2797
2798         /* Get the first full descriptor */
2799         bdp = rx_queue->cur_rx;
2800         base = rx_queue->rx_bd_base;
2801
2802         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2803
2804         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2805                 struct sk_buff *newskb;
2806
2807                 rmb();
2808
2809                 /* Add another skb for the future */
2810                 newskb = gfar_new_skb(dev);
2811
2812                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2813
2814                 dma_unmap_single(priv->dev, bdp->bufPtr,
2815                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2816
2817                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2818                              bdp->length > priv->rx_buffer_size))
2819                         bdp->status = RXBD_LARGE;
2820
2821                 /* We drop the frame if we failed to allocate a new buffer */
2822                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2823                              bdp->status & RXBD_ERR)) {
2824                         count_errors(bdp->status, dev);
2825
2826                         if (unlikely(!newskb))
2827                                 newskb = skb;
2828                         else if (skb)
2829                                 dev_kfree_skb(skb);
2830                 } else {
2831                         /* Increment the number of packets */
2832                         rx_queue->stats.rx_packets++;
2833                         howmany++;
2834
2835                         if (likely(skb)) {
2836                                 pkt_len = bdp->length - ETH_FCS_LEN;
2837                                 /* Remove the FCS from the packet length */
2838                                 skb_put(skb, pkt_len);
2839                                 rx_queue->stats.rx_bytes += pkt_len;
2840                                 skb_record_rx_queue(skb, rx_queue->qindex);
2841                                 gfar_process_frame(dev, skb, amount_pull,
2842                                                    &rx_queue->grp->napi);
2843
2844                         } else {
2845                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2846                                 rx_queue->stats.rx_dropped++;
2847                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2848                         }
2849
2850                 }
2851
2852                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2853
2854                 /* Setup the new bdp */
2855                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2856
2857                 /* Update to the next pointer */
2858                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2859
2860                 /* update to point at the next skb */
2861                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2862                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2863         }
2864
2865         /* Update the current rxbd pointer to be the next one */
2866         rx_queue->cur_rx = bdp;
2867
2868         return howmany;
2869 }
2870
2871 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2872 {
2873         struct gfar_priv_grp *gfargrp =
2874                 container_of(napi, struct gfar_priv_grp, napi);
2875         struct gfar __iomem *regs = gfargrp->regs;
2876         struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2877         struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2878         int work_done = 0;
2879
2880         /* Clear IEVENT, so interrupts aren't called again
2881          * because of the packets that have already arrived
2882          */
2883         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2884
2885         /* run Tx cleanup to completion */
2886         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2887                 gfar_clean_tx_ring(tx_queue);
2888
2889         work_done = gfar_clean_rx_ring(rx_queue, budget);
2890
2891         if (work_done < budget) {
2892                 napi_complete(napi);
2893                 /* Clear the halt bit in RSTAT */
2894                 gfar_write(&regs->rstat, gfargrp->rstat);
2895
2896                 gfar_write(&regs->imask, IMASK_DEFAULT);
2897
2898                 /* If we are coalescing interrupts, update the timer
2899                  * Otherwise, clear it
2900                  */
2901                 gfar_write(&regs->txic, 0);
2902                 if (likely(tx_queue->txcoalescing))
2903                         gfar_write(&regs->txic, tx_queue->txic);
2904
2905                 gfar_write(&regs->rxic, 0);
2906                 if (unlikely(rx_queue->rxcoalescing))
2907                         gfar_write(&regs->rxic, rx_queue->rxic);
2908         }
2909
2910         return work_done;
2911 }
2912
2913 static int gfar_poll(struct napi_struct *napi, int budget)
2914 {
2915         struct gfar_priv_grp *gfargrp =
2916                 container_of(napi, struct gfar_priv_grp, napi);
2917         struct gfar_private *priv = gfargrp->priv;
2918         struct gfar __iomem *regs = gfargrp->regs;
2919         struct gfar_priv_tx_q *tx_queue = NULL;
2920         struct gfar_priv_rx_q *rx_queue = NULL;
2921         int work_done = 0, work_done_per_q = 0;
2922         int i, budget_per_q = 0;
2923         int has_tx_work = 0;
2924         unsigned long rstat_rxf;
2925         int num_act_queues;
2926
2927         /* Clear IEVENT, so interrupts aren't called again
2928          * because of the packets that have already arrived
2929          */
2930         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2931
2932         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2933
2934         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2935         if (num_act_queues)
2936                 budget_per_q = budget/num_act_queues;
2937
2938         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2939                 tx_queue = priv->tx_queue[i];
2940                 /* run Tx cleanup to completion */
2941                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2942                         gfar_clean_tx_ring(tx_queue);
2943                         has_tx_work = 1;
2944                 }
2945         }
2946
2947         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2948                 /* skip queue if not active */
2949                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2950                         continue;
2951
2952                 rx_queue = priv->rx_queue[i];
2953                 work_done_per_q =
2954                         gfar_clean_rx_ring(rx_queue, budget_per_q);
2955                 work_done += work_done_per_q;
2956
2957                 /* finished processing this queue */
2958                 if (work_done_per_q < budget_per_q) {
2959                         /* clear active queue hw indication */
2960                         gfar_write(&regs->rstat,
2961                                    RSTAT_CLEAR_RXF0 >> i);
2962                         num_act_queues--;
2963
2964                         if (!num_act_queues)
2965                                 break;
2966                 }
2967         }
2968
2969         if (!num_act_queues && !has_tx_work) {
2970
2971                 napi_complete(napi);
2972
2973                 /* Clear the halt bit in RSTAT */
2974                 gfar_write(&regs->rstat, gfargrp->rstat);
2975
2976                 gfar_write(&regs->imask, IMASK_DEFAULT);
2977
2978                 /* If we are coalescing interrupts, update the timer
2979                  * Otherwise, clear it
2980                  */
2981                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2982                                           gfargrp->tx_bit_map);
2983         }
2984
2985         return work_done;
2986 }
2987
2988 #ifdef CONFIG_NET_POLL_CONTROLLER
2989 /* Polling 'interrupt' - used by things like netconsole to send skbs
2990  * without having to re-enable interrupts. It's not called while
2991  * the interrupt routine is executing.
2992  */
2993 static void gfar_netpoll(struct net_device *dev)
2994 {
2995         struct gfar_private *priv = netdev_priv(dev);
2996         int i;
2997
2998         /* If the device has multiple interrupts, run tx/rx */
2999         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3000                 for (i = 0; i < priv->num_grps; i++) {
3001                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3002
3003                         disable_irq(gfar_irq(grp, TX)->irq);
3004                         disable_irq(gfar_irq(grp, RX)->irq);
3005                         disable_irq(gfar_irq(grp, ER)->irq);
3006                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3007                         enable_irq(gfar_irq(grp, ER)->irq);
3008                         enable_irq(gfar_irq(grp, RX)->irq);
3009                         enable_irq(gfar_irq(grp, TX)->irq);
3010                 }
3011         } else {
3012                 for (i = 0; i < priv->num_grps; i++) {
3013                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3014
3015                         disable_irq(gfar_irq(grp, TX)->irq);
3016                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3017                         enable_irq(gfar_irq(grp, TX)->irq);
3018                 }
3019         }
3020 }
3021 #endif
3022
3023 /* The interrupt handler for devices with one interrupt */
3024 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3025 {
3026         struct gfar_priv_grp *gfargrp = grp_id;
3027
3028         /* Save ievent for future reference */
3029         u32 events = gfar_read(&gfargrp->regs->ievent);
3030
3031         /* Check for reception */
3032         if (events & IEVENT_RX_MASK)
3033                 gfar_receive(irq, grp_id);
3034
3035         /* Check for transmit completion */
3036         if (events & IEVENT_TX_MASK)
3037                 gfar_transmit(irq, grp_id);
3038
3039         /* Check for errors */
3040         if (events & IEVENT_ERR_MASK)
3041                 gfar_error(irq, grp_id);
3042
3043         return IRQ_HANDLED;
3044 }
3045
3046 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3047 {
3048         struct phy_device *phydev = priv->phydev;
3049         u32 val = 0;
3050
3051         if (!phydev->duplex)
3052                 return val;
3053
3054         if (!priv->pause_aneg_en) {
3055                 if (priv->tx_pause_en)
3056                         val |= MACCFG1_TX_FLOW;
3057                 if (priv->rx_pause_en)
3058                         val |= MACCFG1_RX_FLOW;
3059         } else {
3060                 u16 lcl_adv, rmt_adv;
3061                 u8 flowctrl;
3062                 /* get link partner capabilities */
3063                 rmt_adv = 0;
3064                 if (phydev->pause)
3065                         rmt_adv = LPA_PAUSE_CAP;
3066                 if (phydev->asym_pause)
3067                         rmt_adv |= LPA_PAUSE_ASYM;
3068
3069                 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3070
3071                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3072                 if (flowctrl & FLOW_CTRL_TX)
3073                         val |= MACCFG1_TX_FLOW;
3074                 if (flowctrl & FLOW_CTRL_RX)
3075                         val |= MACCFG1_RX_FLOW;
3076         }
3077
3078         return val;
3079 }
3080
3081 /* Called every time the controller might need to be made
3082  * aware of new link state.  The PHY code conveys this
3083  * information through variables in the phydev structure, and this
3084  * function converts those variables into the appropriate
3085  * register values, and can bring down the device if needed.
3086  */
3087 static void adjust_link(struct net_device *dev)
3088 {
3089         struct gfar_private *priv = netdev_priv(dev);
3090         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3091         unsigned long flags;
3092         struct phy_device *phydev = priv->phydev;
3093         int new_state = 0;
3094
3095         local_irq_save(flags);
3096         lock_tx_qs(priv);
3097
3098         if (phydev->link) {
3099                 u32 tempval1 = gfar_read(&regs->maccfg1);
3100                 u32 tempval = gfar_read(&regs->maccfg2);
3101                 u32 ecntrl = gfar_read(&regs->ecntrl);
3102
3103                 /* Now we make sure that we can be in full duplex mode.
3104                  * If not, we operate in half-duplex mode.
3105                  */
3106                 if (phydev->duplex != priv->oldduplex) {
3107                         new_state = 1;
3108                         if (!(phydev->duplex))
3109                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3110                         else
3111                                 tempval |= MACCFG2_FULL_DUPLEX;
3112
3113                         priv->oldduplex = phydev->duplex;
3114                 }
3115
3116                 if (phydev->speed != priv->oldspeed) {
3117                         new_state = 1;
3118                         switch (phydev->speed) {
3119                         case 1000:
3120                                 tempval =
3121                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3122
3123                                 ecntrl &= ~(ECNTRL_R100);
3124                                 break;
3125                         case 100:
3126                         case 10:
3127                                 tempval =
3128                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3129
3130                                 /* Reduced mode distinguishes
3131                                  * between 10 and 100
3132                                  */
3133                                 if (phydev->speed == SPEED_100)
3134                                         ecntrl |= ECNTRL_R100;
3135                                 else
3136                                         ecntrl &= ~(ECNTRL_R100);
3137                                 break;
3138                         default:
3139                                 netif_warn(priv, link, dev,
3140                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3141                                            phydev->speed);
3142                                 break;
3143                         }
3144
3145                         priv->oldspeed = phydev->speed;
3146                 }
3147
3148                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3149                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3150
3151                 gfar_write(&regs->maccfg1, tempval1);
3152                 gfar_write(&regs->maccfg2, tempval);
3153                 gfar_write(&regs->ecntrl, ecntrl);
3154
3155                 if (!priv->oldlink) {
3156                         new_state = 1;
3157                         priv->oldlink = 1;
3158                 }
3159         } else if (priv->oldlink) {
3160                 new_state = 1;
3161                 priv->oldlink = 0;
3162                 priv->oldspeed = 0;
3163                 priv->oldduplex = -1;
3164         }
3165
3166         if (new_state && netif_msg_link(priv))
3167                 phy_print_status(phydev);
3168         unlock_tx_qs(priv);
3169         local_irq_restore(flags);
3170 }
3171
3172 /* Update the hash table based on the current list of multicast
3173  * addresses we subscribe to.  Also, change the promiscuity of
3174  * the device based on the flags (this function is called
3175  * whenever dev->flags is changed
3176  */
3177 static void gfar_set_multi(struct net_device *dev)
3178 {
3179         struct netdev_hw_addr *ha;
3180         struct gfar_private *priv = netdev_priv(dev);
3181         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3182         u32 tempval;
3183
3184         if (dev->flags & IFF_PROMISC) {
3185                 /* Set RCTRL to PROM */
3186                 tempval = gfar_read(&regs->rctrl);
3187                 tempval |= RCTRL_PROM;
3188                 gfar_write(&regs->rctrl, tempval);
3189         } else {
3190                 /* Set RCTRL to not PROM */
3191                 tempval = gfar_read(&regs->rctrl);
3192                 tempval &= ~(RCTRL_PROM);
3193                 gfar_write(&regs->rctrl, tempval);
3194         }
3195
3196         if (dev->flags & IFF_ALLMULTI) {
3197                 /* Set the hash to rx all multicast frames */
3198                 gfar_write(&regs->igaddr0, 0xffffffff);
3199                 gfar_write(&regs->igaddr1, 0xffffffff);
3200                 gfar_write(&regs->igaddr2, 0xffffffff);
3201                 gfar_write(&regs->igaddr3, 0xffffffff);
3202                 gfar_write(&regs->igaddr4, 0xffffffff);
3203                 gfar_write(&regs->igaddr5, 0xffffffff);
3204                 gfar_write(&regs->igaddr6, 0xffffffff);
3205                 gfar_write(&regs->igaddr7, 0xffffffff);
3206                 gfar_write(&regs->gaddr0, 0xffffffff);
3207                 gfar_write(&regs->gaddr1, 0xffffffff);
3208                 gfar_write(&regs->gaddr2, 0xffffffff);
3209                 gfar_write(&regs->gaddr3, 0xffffffff);
3210                 gfar_write(&regs->gaddr4, 0xffffffff);
3211                 gfar_write(&regs->gaddr5, 0xffffffff);
3212                 gfar_write(&regs->gaddr6, 0xffffffff);
3213                 gfar_write(&regs->gaddr7, 0xffffffff);
3214         } else {
3215                 int em_num;
3216                 int idx;
3217
3218                 /* zero out the hash */
3219                 gfar_write(&regs->igaddr0, 0x0);
3220                 gfar_write(&regs->igaddr1, 0x0);
3221                 gfar_write(&regs->igaddr2, 0x0);
3222                 gfar_write(&regs->igaddr3, 0x0);
3223                 gfar_write(&regs->igaddr4, 0x0);
3224                 gfar_write(&regs->igaddr5, 0x0);
3225                 gfar_write(&regs->igaddr6, 0x0);
3226                 gfar_write(&regs->igaddr7, 0x0);
3227                 gfar_write(&regs->gaddr0, 0x0);
3228                 gfar_write(&regs->gaddr1, 0x0);
3229                 gfar_write(&regs->gaddr2, 0x0);
3230                 gfar_write(&regs->gaddr3, 0x0);
3231                 gfar_write(&regs->gaddr4, 0x0);
3232                 gfar_write(&regs->gaddr5, 0x0);
3233                 gfar_write(&regs->gaddr6, 0x0);
3234                 gfar_write(&regs->gaddr7, 0x0);
3235
3236                 /* If we have extended hash tables, we need to
3237                  * clear the exact match registers to prepare for
3238                  * setting them
3239                  */
3240                 if (priv->extended_hash) {
3241                         em_num = GFAR_EM_NUM + 1;
3242                         gfar_clear_exact_match(dev);
3243                         idx = 1;
3244                 } else {
3245                         idx = 0;
3246                         em_num = 0;
3247                 }
3248
3249                 if (netdev_mc_empty(dev))
3250                         return;
3251
3252                 /* Parse the list, and set the appropriate bits */
3253                 netdev_for_each_mc_addr(ha, dev) {
3254                         if (idx < em_num) {
3255                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3256                                 idx++;
3257                         } else
3258                                 gfar_set_hash_for_addr(dev, ha->addr);
3259                 }
3260         }
3261 }
3262
3263
3264 /* Clears each of the exact match registers to zero, so they
3265  * don't interfere with normal reception
3266  */
3267 static void gfar_clear_exact_match(struct net_device *dev)
3268 {
3269         int idx;
3270         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3271
3272         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3273                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3274 }
3275
3276 /* Set the appropriate hash bit for the given addr */
3277 /* The algorithm works like so:
3278  * 1) Take the Destination Address (ie the multicast address), and
3279  * do a CRC on it (little endian), and reverse the bits of the
3280  * result.
3281  * 2) Use the 8 most significant bits as a hash into a 256-entry
3282  * table.  The table is controlled through 8 32-bit registers:
3283  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3284  * gaddr7.  This means that the 3 most significant bits in the
3285  * hash index which gaddr register to use, and the 5 other bits
3286  * indicate which bit (assuming an IBM numbering scheme, which
3287  * for PowerPC (tm) is usually the case) in the register holds
3288  * the entry.
3289  */
3290 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3291 {
3292         u32 tempval;
3293         struct gfar_private *priv = netdev_priv(dev);
3294         u32 result = ether_crc(ETH_ALEN, addr);
3295         int width = priv->hash_width;
3296         u8 whichbit = (result >> (32 - width)) & 0x1f;
3297         u8 whichreg = result >> (32 - width + 5);
3298         u32 value = (1 << (31-whichbit));
3299
3300         tempval = gfar_read(priv->hash_regs[whichreg]);
3301         tempval |= value;
3302         gfar_write(priv->hash_regs[whichreg], tempval);
3303 }
3304
3305
3306 /* There are multiple MAC Address register pairs on some controllers
3307  * This function sets the numth pair to a given address
3308  */
3309 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3310                                   const u8 *addr)
3311 {
3312         struct gfar_private *priv = netdev_priv(dev);
3313         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3314         int idx;
3315         char tmpbuf[ETH_ALEN];
3316         u32 tempval;
3317         u32 __iomem *macptr = &regs->macstnaddr1;
3318
3319         macptr += num*2;
3320
3321         /* Now copy it into the mac registers backwards, cuz
3322          * little endian is silly
3323          */
3324         for (idx = 0; idx < ETH_ALEN; idx++)
3325                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3326
3327         gfar_write(macptr, *((u32 *) (tmpbuf)));
3328
3329         tempval = *((u32 *) (tmpbuf + 4));
3330
3331         gfar_write(macptr+1, tempval);
3332 }
3333
3334 /* GFAR error interrupt handler */
3335 static irqreturn_t gfar_error(int irq, void *grp_id)
3336 {
3337         struct gfar_priv_grp *gfargrp = grp_id;
3338         struct gfar __iomem *regs = gfargrp->regs;
3339         struct gfar_private *priv= gfargrp->priv;
3340         struct net_device *dev = priv->ndev;
3341
3342         /* Save ievent for future reference */
3343         u32 events = gfar_read(&regs->ievent);
3344
3345         /* Clear IEVENT */
3346         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3347
3348         /* Magic Packet is not an error. */
3349         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3350             (events & IEVENT_MAG))
3351                 events &= ~IEVENT_MAG;
3352
3353         /* Hmm... */
3354         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3355                 netdev_dbg(dev,
3356                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3357                            events, gfar_read(&regs->imask));
3358
3359         /* Update the error counters */
3360         if (events & IEVENT_TXE) {
3361                 dev->stats.tx_errors++;
3362
3363                 if (events & IEVENT_LC)
3364                         dev->stats.tx_window_errors++;
3365                 if (events & IEVENT_CRL)
3366                         dev->stats.tx_aborted_errors++;
3367                 if (events & IEVENT_XFUN) {
3368                         unsigned long flags;
3369
3370                         netif_dbg(priv, tx_err, dev,
3371                                   "TX FIFO underrun, packet dropped\n");
3372                         dev->stats.tx_dropped++;
3373                         atomic64_inc(&priv->extra_stats.tx_underrun);
3374
3375                         local_irq_save(flags);
3376                         lock_tx_qs(priv);
3377
3378                         /* Reactivate the Tx Queues */
3379                         gfar_write(&regs->tstat, gfargrp->tstat);
3380
3381                         unlock_tx_qs(priv);
3382                         local_irq_restore(flags);
3383                 }
3384                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3385         }
3386         if (events & IEVENT_BSY) {
3387                 dev->stats.rx_errors++;
3388                 atomic64_inc(&priv->extra_stats.rx_bsy);
3389
3390                 gfar_receive(irq, grp_id);
3391
3392                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3393                           gfar_read(&regs->rstat));
3394         }
3395         if (events & IEVENT_BABR) {
3396                 dev->stats.rx_errors++;
3397                 atomic64_inc(&priv->extra_stats.rx_babr);
3398
3399                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3400         }
3401         if (events & IEVENT_EBERR) {
3402                 atomic64_inc(&priv->extra_stats.eberr);
3403                 netif_dbg(priv, rx_err, dev, "bus error\n");
3404         }
3405         if (events & IEVENT_RXC)
3406                 netif_dbg(priv, rx_status, dev, "control frame\n");
3407
3408         if (events & IEVENT_BABT) {
3409                 atomic64_inc(&priv->extra_stats.tx_babt);
3410                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3411         }
3412         return IRQ_HANDLED;
3413 }
3414
3415 static struct of_device_id gfar_match[] =
3416 {
3417         {
3418                 .type = "network",
3419                 .compatible = "gianfar",
3420         },
3421         {
3422                 .compatible = "fsl,etsec2",
3423         },
3424         {},
3425 };
3426 MODULE_DEVICE_TABLE(of, gfar_match);
3427
3428 /* Structure for a device driver */
3429 static struct platform_driver gfar_driver = {
3430         .driver = {
3431                 .name = "fsl-gianfar",
3432                 .owner = THIS_MODULE,
3433                 .pm = GFAR_PM_OPS,
3434                 .of_match_table = gfar_match,
3435         },
3436         .probe = gfar_probe,
3437         .remove = gfar_remove,
3438 };
3439
3440 module_platform_driver(gfar_driver);