]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge remote-tracking branch 'dlm/next'
[karo-tx-linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/mpc85xx.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102
103 #include "gianfar.h"
104
105 #define TX_TIMEOUT      (1*HZ)
106
107 const char gfar_driver_version[] = "1.3";
108
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116                            struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 static int gfar_poll_sq(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139                                int amount_pull, struct napi_struct *napi);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145                                   const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153                             dma_addr_t buf)
154 {
155         u32 lstatus;
156
157         bdp->bufPtr = buf;
158
159         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161                 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163         eieio();
164
165         bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170         struct gfar_private *priv = netdev_priv(ndev);
171         struct gfar_priv_tx_q *tx_queue = NULL;
172         struct gfar_priv_rx_q *rx_queue = NULL;
173         struct txbd8 *txbdp;
174         struct rxbd8 *rxbdp;
175         int i, j;
176
177         for (i = 0; i < priv->num_tx_queues; i++) {
178                 tx_queue = priv->tx_queue[i];
179                 /* Initialize some variables in our dev structure */
180                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182                 tx_queue->cur_tx = tx_queue->tx_bd_base;
183                 tx_queue->skb_curtx = 0;
184                 tx_queue->skb_dirtytx = 0;
185
186                 /* Initialize Transmit Descriptor Ring */
187                 txbdp = tx_queue->tx_bd_base;
188                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189                         txbdp->lstatus = 0;
190                         txbdp->bufPtr = 0;
191                         txbdp++;
192                 }
193
194                 /* Set the last descriptor in the ring to indicate wrap */
195                 txbdp--;
196                 txbdp->status |= TXBD_WRAP;
197         }
198
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201                 rx_queue->cur_rx = rx_queue->rx_bd_base;
202                 rx_queue->skb_currx = 0;
203                 rxbdp = rx_queue->rx_bd_base;
204
205                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208                         if (skb) {
209                                 gfar_init_rxbdp(rx_queue, rxbdp,
210                                                 rxbdp->bufPtr);
211                         } else {
212                                 skb = gfar_new_skb(ndev);
213                                 if (!skb) {
214                                         netdev_err(ndev, "Can't allocate RX buffers\n");
215                                         return -ENOMEM;
216                                 }
217                                 rx_queue->rx_skbuff[j] = skb;
218
219                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220                         }
221
222                         rxbdp++;
223                 }
224
225         }
226
227         return 0;
228 }
229
230 static int gfar_alloc_skb_resources(struct net_device *ndev)
231 {
232         void *vaddr;
233         dma_addr_t addr;
234         int i, j, k;
235         struct gfar_private *priv = netdev_priv(ndev);
236         struct device *dev = priv->dev;
237         struct gfar_priv_tx_q *tx_queue = NULL;
238         struct gfar_priv_rx_q *rx_queue = NULL;
239
240         priv->total_tx_ring_size = 0;
241         for (i = 0; i < priv->num_tx_queues; i++)
242                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
243
244         priv->total_rx_ring_size = 0;
245         for (i = 0; i < priv->num_rx_queues; i++)
246                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
247
248         /* Allocate memory for the buffer descriptors */
249         vaddr = dma_alloc_coherent(dev,
250                                    (priv->total_tx_ring_size *
251                                     sizeof(struct txbd8)) +
252                                    (priv->total_rx_ring_size *
253                                     sizeof(struct rxbd8)),
254                                    &addr, GFP_KERNEL);
255         if (!vaddr)
256                 return -ENOMEM;
257
258         for (i = 0; i < priv->num_tx_queues; i++) {
259                 tx_queue = priv->tx_queue[i];
260                 tx_queue->tx_bd_base = vaddr;
261                 tx_queue->tx_bd_dma_base = addr;
262                 tx_queue->dev = ndev;
263                 /* enet DMA only understands physical addresses */
264                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266         }
267
268         /* Start the rx descriptor ring where the tx ring leaves off */
269         for (i = 0; i < priv->num_rx_queues; i++) {
270                 rx_queue = priv->rx_queue[i];
271                 rx_queue->rx_bd_base = vaddr;
272                 rx_queue->rx_bd_dma_base = addr;
273                 rx_queue->dev = ndev;
274                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276         }
277
278         /* Setup the skbuff rings */
279         for (i = 0; i < priv->num_tx_queues; i++) {
280                 tx_queue = priv->tx_queue[i];
281                 tx_queue->tx_skbuff =
282                         kmalloc_array(tx_queue->tx_ring_size,
283                                       sizeof(*tx_queue->tx_skbuff),
284                                       GFP_KERNEL);
285                 if (!tx_queue->tx_skbuff)
286                         goto cleanup;
287
288                 for (k = 0; k < tx_queue->tx_ring_size; k++)
289                         tx_queue->tx_skbuff[k] = NULL;
290         }
291
292         for (i = 0; i < priv->num_rx_queues; i++) {
293                 rx_queue = priv->rx_queue[i];
294                 rx_queue->rx_skbuff =
295                         kmalloc_array(rx_queue->rx_ring_size,
296                                       sizeof(*rx_queue->rx_skbuff),
297                                       GFP_KERNEL);
298                 if (!rx_queue->rx_skbuff)
299                         goto cleanup;
300
301                 for (j = 0; j < rx_queue->rx_ring_size; j++)
302                         rx_queue->rx_skbuff[j] = NULL;
303         }
304
305         if (gfar_init_bds(ndev))
306                 goto cleanup;
307
308         return 0;
309
310 cleanup:
311         free_skb_resources(priv);
312         return -ENOMEM;
313 }
314
315 static void gfar_init_tx_rx_base(struct gfar_private *priv)
316 {
317         struct gfar __iomem *regs = priv->gfargrp[0].regs;
318         u32 __iomem *baddr;
319         int i;
320
321         baddr = &regs->tbase0;
322         for (i = 0; i < priv->num_tx_queues; i++) {
323                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
324                 baddr += 2;
325         }
326
327         baddr = &regs->rbase0;
328         for (i = 0; i < priv->num_rx_queues; i++) {
329                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
330                 baddr += 2;
331         }
332 }
333
334 static void gfar_init_mac(struct net_device *ndev)
335 {
336         struct gfar_private *priv = netdev_priv(ndev);
337         struct gfar __iomem *regs = priv->gfargrp[0].regs;
338         u32 rctrl = 0;
339         u32 tctrl = 0;
340         u32 attrs = 0;
341
342         /* write the tx/rx base registers */
343         gfar_init_tx_rx_base(priv);
344
345         /* Configure the coalescing support */
346         gfar_configure_coalescing_all(priv);
347
348         /* set this when rx hw offload (TOE) functions are being used */
349         priv->uses_rxfcb = 0;
350
351         if (priv->rx_filer_enable) {
352                 rctrl |= RCTRL_FILREN;
353                 /* Program the RIR0 reg with the required distribution */
354                 gfar_write(&regs->rir0, DEFAULT_RIR0);
355         }
356
357         /* Restore PROMISC mode */
358         if (ndev->flags & IFF_PROMISC)
359                 rctrl |= RCTRL_PROM;
360
361         if (ndev->features & NETIF_F_RXCSUM) {
362                 rctrl |= RCTRL_CHECKSUMMING;
363                 priv->uses_rxfcb = 1;
364         }
365
366         if (priv->extended_hash) {
367                 rctrl |= RCTRL_EXTHASH;
368
369                 gfar_clear_exact_match(ndev);
370                 rctrl |= RCTRL_EMEN;
371         }
372
373         if (priv->padding) {
374                 rctrl &= ~RCTRL_PAL_MASK;
375                 rctrl |= RCTRL_PADDING(priv->padding);
376         }
377
378         /* Insert receive time stamps into padding alignment bytes */
379         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
380                 rctrl &= ~RCTRL_PAL_MASK;
381                 rctrl |= RCTRL_PADDING(8);
382                 priv->padding = 8;
383         }
384
385         /* Enable HW time stamping if requested from user space */
386         if (priv->hwts_rx_en) {
387                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
388                 priv->uses_rxfcb = 1;
389         }
390
391         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
392                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
393                 priv->uses_rxfcb = 1;
394         }
395
396         /* Init rctrl based on our settings */
397         gfar_write(&regs->rctrl, rctrl);
398
399         if (ndev->features & NETIF_F_IP_CSUM)
400                 tctrl |= TCTRL_INIT_CSUM;
401
402         if (priv->prio_sched_en)
403                 tctrl |= TCTRL_TXSCHED_PRIO;
404         else {
405                 tctrl |= TCTRL_TXSCHED_WRRS;
406                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
407                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
408         }
409
410         gfar_write(&regs->tctrl, tctrl);
411
412         /* Set the extraction length and index */
413         attrs = ATTRELI_EL(priv->rx_stash_size) |
414                 ATTRELI_EI(priv->rx_stash_index);
415
416         gfar_write(&regs->attreli, attrs);
417
418         /* Start with defaults, and add stashing or locking
419          * depending on the approprate variables
420          */
421         attrs = ATTR_INIT_SETTINGS;
422
423         if (priv->bd_stash_en)
424                 attrs |= ATTR_BDSTASH;
425
426         if (priv->rx_stash_size != 0)
427                 attrs |= ATTR_BUFSTASH;
428
429         gfar_write(&regs->attr, attrs);
430
431         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
432         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
433         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
434 }
435
436 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
437 {
438         struct gfar_private *priv = netdev_priv(dev);
439         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
440         unsigned long tx_packets = 0, tx_bytes = 0;
441         int i;
442
443         for (i = 0; i < priv->num_rx_queues; i++) {
444                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
445                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
446                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
447         }
448
449         dev->stats.rx_packets = rx_packets;
450         dev->stats.rx_bytes   = rx_bytes;
451         dev->stats.rx_dropped = rx_dropped;
452
453         for (i = 0; i < priv->num_tx_queues; i++) {
454                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
455                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
456         }
457
458         dev->stats.tx_bytes   = tx_bytes;
459         dev->stats.tx_packets = tx_packets;
460
461         return &dev->stats;
462 }
463
464 static const struct net_device_ops gfar_netdev_ops = {
465         .ndo_open = gfar_enet_open,
466         .ndo_start_xmit = gfar_start_xmit,
467         .ndo_stop = gfar_close,
468         .ndo_change_mtu = gfar_change_mtu,
469         .ndo_set_features = gfar_set_features,
470         .ndo_set_rx_mode = gfar_set_multi,
471         .ndo_tx_timeout = gfar_timeout,
472         .ndo_do_ioctl = gfar_ioctl,
473         .ndo_get_stats = gfar_get_stats,
474         .ndo_set_mac_address = eth_mac_addr,
475         .ndo_validate_addr = eth_validate_addr,
476 #ifdef CONFIG_NET_POLL_CONTROLLER
477         .ndo_poll_controller = gfar_netpoll,
478 #endif
479 };
480
481 void lock_rx_qs(struct gfar_private *priv)
482 {
483         int i;
484
485         for (i = 0; i < priv->num_rx_queues; i++)
486                 spin_lock(&priv->rx_queue[i]->rxlock);
487 }
488
489 void lock_tx_qs(struct gfar_private *priv)
490 {
491         int i;
492
493         for (i = 0; i < priv->num_tx_queues; i++)
494                 spin_lock(&priv->tx_queue[i]->txlock);
495 }
496
497 void unlock_rx_qs(struct gfar_private *priv)
498 {
499         int i;
500
501         for (i = 0; i < priv->num_rx_queues; i++)
502                 spin_unlock(&priv->rx_queue[i]->rxlock);
503 }
504
505 void unlock_tx_qs(struct gfar_private *priv)
506 {
507         int i;
508
509         for (i = 0; i < priv->num_tx_queues; i++)
510                 spin_unlock(&priv->tx_queue[i]->txlock);
511 }
512
513 static void free_tx_pointers(struct gfar_private *priv)
514 {
515         int i;
516
517         for (i = 0; i < priv->num_tx_queues; i++)
518                 kfree(priv->tx_queue[i]);
519 }
520
521 static void free_rx_pointers(struct gfar_private *priv)
522 {
523         int i;
524
525         for (i = 0; i < priv->num_rx_queues; i++)
526                 kfree(priv->rx_queue[i]);
527 }
528
529 static void unmap_group_regs(struct gfar_private *priv)
530 {
531         int i;
532
533         for (i = 0; i < MAXGROUPS; i++)
534                 if (priv->gfargrp[i].regs)
535                         iounmap(priv->gfargrp[i].regs);
536 }
537
538 static void free_gfar_dev(struct gfar_private *priv)
539 {
540         int i, j;
541
542         for (i = 0; i < priv->num_grps; i++)
543                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
544                         kfree(priv->gfargrp[i].irqinfo[j]);
545                         priv->gfargrp[i].irqinfo[j] = NULL;
546                 }
547
548         free_netdev(priv->ndev);
549 }
550
551 static void disable_napi(struct gfar_private *priv)
552 {
553         int i;
554
555         for (i = 0; i < priv->num_grps; i++)
556                 napi_disable(&priv->gfargrp[i].napi);
557 }
558
559 static void enable_napi(struct gfar_private *priv)
560 {
561         int i;
562
563         for (i = 0; i < priv->num_grps; i++)
564                 napi_enable(&priv->gfargrp[i].napi);
565 }
566
567 static int gfar_parse_group(struct device_node *np,
568                             struct gfar_private *priv, const char *model)
569 {
570         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
571         u32 *queue_mask;
572         int i;
573
574         for (i = 0; i < GFAR_NUM_IRQS; i++) {
575                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
576                                           GFP_KERNEL);
577                 if (!grp->irqinfo[i])
578                         return -ENOMEM;
579         }
580
581         grp->regs = of_iomap(np, 0);
582         if (!grp->regs)
583                 return -ENOMEM;
584
585         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
586
587         /* If we aren't the FEC we have multiple interrupts */
588         if (model && strcasecmp(model, "FEC")) {
589                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
590                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
591                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
592                     gfar_irq(grp, RX)->irq == NO_IRQ ||
593                     gfar_irq(grp, ER)->irq == NO_IRQ)
594                         return -EINVAL;
595         }
596
597         grp->priv = priv;
598         spin_lock_init(&grp->grplock);
599         if (priv->mode == MQ_MG_MODE) {
600                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
601                 grp->rx_bit_map = queue_mask ?
602                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
603                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
604                 grp->tx_bit_map = queue_mask ?
605                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
606         } else {
607                 grp->rx_bit_map = 0xFF;
608                 grp->tx_bit_map = 0xFF;
609         }
610         priv->num_grps++;
611
612         return 0;
613 }
614
615 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
616 {
617         const char *model;
618         const char *ctype;
619         const void *mac_addr;
620         int err = 0, i;
621         struct net_device *dev = NULL;
622         struct gfar_private *priv = NULL;
623         struct device_node *np = ofdev->dev.of_node;
624         struct device_node *child = NULL;
625         const u32 *stash;
626         const u32 *stash_len;
627         const u32 *stash_idx;
628         unsigned int num_tx_qs, num_rx_qs;
629         u32 *tx_queues, *rx_queues;
630
631         if (!np || !of_device_is_available(np))
632                 return -ENODEV;
633
634         /* parse the num of tx and rx queues */
635         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
636         num_tx_qs = tx_queues ? *tx_queues : 1;
637
638         if (num_tx_qs > MAX_TX_QS) {
639                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
640                        num_tx_qs, MAX_TX_QS);
641                 pr_err("Cannot do alloc_etherdev, aborting\n");
642                 return -EINVAL;
643         }
644
645         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
646         num_rx_qs = rx_queues ? *rx_queues : 1;
647
648         if (num_rx_qs > MAX_RX_QS) {
649                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
650                        num_rx_qs, MAX_RX_QS);
651                 pr_err("Cannot do alloc_etherdev, aborting\n");
652                 return -EINVAL;
653         }
654
655         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
656         dev = *pdev;
657         if (NULL == dev)
658                 return -ENOMEM;
659
660         priv = netdev_priv(dev);
661         priv->ndev = dev;
662
663         priv->num_tx_queues = num_tx_qs;
664         netif_set_real_num_rx_queues(dev, num_rx_qs);
665         priv->num_rx_queues = num_rx_qs;
666         priv->num_grps = 0x0;
667
668         /* Init Rx queue filer rule set linked list */
669         INIT_LIST_HEAD(&priv->rx_list.list);
670         priv->rx_list.count = 0;
671         mutex_init(&priv->rx_queue_access);
672
673         model = of_get_property(np, "model", NULL);
674
675         for (i = 0; i < MAXGROUPS; i++)
676                 priv->gfargrp[i].regs = NULL;
677
678         /* Parse and initialize group specific information */
679         if (of_device_is_compatible(np, "fsl,etsec2")) {
680                 priv->mode = MQ_MG_MODE;
681                 for_each_child_of_node(np, child) {
682                         err = gfar_parse_group(child, priv, model);
683                         if (err)
684                                 goto err_grp_init;
685                 }
686         } else {
687                 priv->mode = SQ_SG_MODE;
688                 err = gfar_parse_group(np, priv, model);
689                 if (err)
690                         goto err_grp_init;
691         }
692
693         for (i = 0; i < priv->num_tx_queues; i++)
694                 priv->tx_queue[i] = NULL;
695         for (i = 0; i < priv->num_rx_queues; i++)
696                 priv->rx_queue[i] = NULL;
697
698         for (i = 0; i < priv->num_tx_queues; i++) {
699                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
700                                             GFP_KERNEL);
701                 if (!priv->tx_queue[i]) {
702                         err = -ENOMEM;
703                         goto tx_alloc_failed;
704                 }
705                 priv->tx_queue[i]->tx_skbuff = NULL;
706                 priv->tx_queue[i]->qindex = i;
707                 priv->tx_queue[i]->dev = dev;
708                 spin_lock_init(&(priv->tx_queue[i]->txlock));
709         }
710
711         for (i = 0; i < priv->num_rx_queues; i++) {
712                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
713                                             GFP_KERNEL);
714                 if (!priv->rx_queue[i]) {
715                         err = -ENOMEM;
716                         goto rx_alloc_failed;
717                 }
718                 priv->rx_queue[i]->rx_skbuff = NULL;
719                 priv->rx_queue[i]->qindex = i;
720                 priv->rx_queue[i]->dev = dev;
721                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
722         }
723
724
725         stash = of_get_property(np, "bd-stash", NULL);
726
727         if (stash) {
728                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
729                 priv->bd_stash_en = 1;
730         }
731
732         stash_len = of_get_property(np, "rx-stash-len", NULL);
733
734         if (stash_len)
735                 priv->rx_stash_size = *stash_len;
736
737         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
738
739         if (stash_idx)
740                 priv->rx_stash_index = *stash_idx;
741
742         if (stash_len || stash_idx)
743                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
744
745         mac_addr = of_get_mac_address(np);
746
747         if (mac_addr)
748                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
749
750         if (model && !strcasecmp(model, "TSEC"))
751                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
752                                      FSL_GIANFAR_DEV_HAS_COALESCE |
753                                      FSL_GIANFAR_DEV_HAS_RMON |
754                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
755
756         if (model && !strcasecmp(model, "eTSEC"))
757                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
758                                      FSL_GIANFAR_DEV_HAS_COALESCE |
759                                      FSL_GIANFAR_DEV_HAS_RMON |
760                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
761                                      FSL_GIANFAR_DEV_HAS_PADDING |
762                                      FSL_GIANFAR_DEV_HAS_CSUM |
763                                      FSL_GIANFAR_DEV_HAS_VLAN |
764                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
765                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
766                                      FSL_GIANFAR_DEV_HAS_TIMER;
767
768         ctype = of_get_property(np, "phy-connection-type", NULL);
769
770         /* We only care about rgmii-id.  The rest are autodetected */
771         if (ctype && !strcmp(ctype, "rgmii-id"))
772                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
773         else
774                 priv->interface = PHY_INTERFACE_MODE_MII;
775
776         if (of_get_property(np, "fsl,magic-packet", NULL))
777                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
778
779         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
780
781         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
782         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
783
784         return 0;
785
786 rx_alloc_failed:
787         free_rx_pointers(priv);
788 tx_alloc_failed:
789         free_tx_pointers(priv);
790 err_grp_init:
791         unmap_group_regs(priv);
792         free_gfar_dev(priv);
793         return err;
794 }
795
796 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
797                                struct ifreq *ifr, int cmd)
798 {
799         struct hwtstamp_config config;
800         struct gfar_private *priv = netdev_priv(netdev);
801
802         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
803                 return -EFAULT;
804
805         /* reserved for future extensions */
806         if (config.flags)
807                 return -EINVAL;
808
809         switch (config.tx_type) {
810         case HWTSTAMP_TX_OFF:
811                 priv->hwts_tx_en = 0;
812                 break;
813         case HWTSTAMP_TX_ON:
814                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
815                         return -ERANGE;
816                 priv->hwts_tx_en = 1;
817                 break;
818         default:
819                 return -ERANGE;
820         }
821
822         switch (config.rx_filter) {
823         case HWTSTAMP_FILTER_NONE:
824                 if (priv->hwts_rx_en) {
825                         stop_gfar(netdev);
826                         priv->hwts_rx_en = 0;
827                         startup_gfar(netdev);
828                 }
829                 break;
830         default:
831                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
832                         return -ERANGE;
833                 if (!priv->hwts_rx_en) {
834                         stop_gfar(netdev);
835                         priv->hwts_rx_en = 1;
836                         startup_gfar(netdev);
837                 }
838                 config.rx_filter = HWTSTAMP_FILTER_ALL;
839                 break;
840         }
841
842         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
843                 -EFAULT : 0;
844 }
845
846 /* Ioctl MII Interface */
847 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
848 {
849         struct gfar_private *priv = netdev_priv(dev);
850
851         if (!netif_running(dev))
852                 return -EINVAL;
853
854         if (cmd == SIOCSHWTSTAMP)
855                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
856
857         if (!priv->phydev)
858                 return -ENODEV;
859
860         return phy_mii_ioctl(priv->phydev, rq, cmd);
861 }
862
863 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
864 {
865         unsigned int new_bit_map = 0x0;
866         int mask = 0x1 << (max_qs - 1), i;
867
868         for (i = 0; i < max_qs; i++) {
869                 if (bit_map & mask)
870                         new_bit_map = new_bit_map + (1 << i);
871                 mask = mask >> 0x1;
872         }
873         return new_bit_map;
874 }
875
876 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
877                                    u32 class)
878 {
879         u32 rqfpr = FPR_FILER_MASK;
880         u32 rqfcr = 0x0;
881
882         rqfar--;
883         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
884         priv->ftp_rqfpr[rqfar] = rqfpr;
885         priv->ftp_rqfcr[rqfar] = rqfcr;
886         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887
888         rqfar--;
889         rqfcr = RQFCR_CMP_NOMATCH;
890         priv->ftp_rqfpr[rqfar] = rqfpr;
891         priv->ftp_rqfcr[rqfar] = rqfcr;
892         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893
894         rqfar--;
895         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
896         rqfpr = class;
897         priv->ftp_rqfcr[rqfar] = rqfcr;
898         priv->ftp_rqfpr[rqfar] = rqfpr;
899         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900
901         rqfar--;
902         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
903         rqfpr = class;
904         priv->ftp_rqfcr[rqfar] = rqfcr;
905         priv->ftp_rqfpr[rqfar] = rqfpr;
906         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
907
908         return rqfar;
909 }
910
911 static void gfar_init_filer_table(struct gfar_private *priv)
912 {
913         int i = 0x0;
914         u32 rqfar = MAX_FILER_IDX;
915         u32 rqfcr = 0x0;
916         u32 rqfpr = FPR_FILER_MASK;
917
918         /* Default rule */
919         rqfcr = RQFCR_CMP_MATCH;
920         priv->ftp_rqfcr[rqfar] = rqfcr;
921         priv->ftp_rqfpr[rqfar] = rqfpr;
922         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
923
924         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
929         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
930
931         /* cur_filer_idx indicated the first non-masked rule */
932         priv->cur_filer_idx = rqfar;
933
934         /* Rest are masked rules */
935         rqfcr = RQFCR_CMP_NOMATCH;
936         for (i = 0; i < rqfar; i++) {
937                 priv->ftp_rqfcr[i] = rqfcr;
938                 priv->ftp_rqfpr[i] = rqfpr;
939                 gfar_write_filer(priv, i, rqfcr, rqfpr);
940         }
941 }
942
943 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
944 {
945         unsigned int pvr = mfspr(SPRN_PVR);
946         unsigned int svr = mfspr(SPRN_SVR);
947         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948         unsigned int rev = svr & 0xffff;
949
950         /* MPC8313 Rev 2.0 and higher; All MPC837x */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_74;
954
955         /* MPC8313 and MPC837x all rev */
956         if ((pvr == 0x80850010 && mod == 0x80b0) ||
957             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958                 priv->errata |= GFAR_ERRATA_76;
959
960         /* MPC8313 Rev < 2.0 */
961         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
962                 priv->errata |= GFAR_ERRATA_12;
963 }
964
965 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
966 {
967         unsigned int svr = mfspr(SPRN_SVR);
968
969         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
970                 priv->errata |= GFAR_ERRATA_12;
971         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
972             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
973                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
974 }
975
976 static void gfar_detect_errata(struct gfar_private *priv)
977 {
978         struct device *dev = &priv->ofdev->dev;
979
980         /* no plans to fix */
981         priv->errata |= GFAR_ERRATA_A002;
982
983         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
984                 __gfar_detect_errata_85xx(priv);
985         else /* non-mpc85xx parts, i.e. e300 core based */
986                 __gfar_detect_errata_83xx(priv);
987
988         if (priv->errata)
989                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
990                          priv->errata);
991 }
992
993 /* Set up the ethernet device structure, private data,
994  * and anything else we need before we start
995  */
996 static int gfar_probe(struct platform_device *ofdev)
997 {
998         u32 tempval;
999         struct net_device *dev = NULL;
1000         struct gfar_private *priv = NULL;
1001         struct gfar __iomem *regs = NULL;
1002         int err = 0, i, grp_idx = 0;
1003         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
1004         u32 isrg = 0;
1005         u32 __iomem *baddr;
1006
1007         err = gfar_of_init(ofdev, &dev);
1008
1009         if (err)
1010                 return err;
1011
1012         priv = netdev_priv(dev);
1013         priv->ndev = dev;
1014         priv->ofdev = ofdev;
1015         priv->dev = &ofdev->dev;
1016         SET_NETDEV_DEV(dev, &ofdev->dev);
1017
1018         spin_lock_init(&priv->bflock);
1019         INIT_WORK(&priv->reset_task, gfar_reset_task);
1020
1021         platform_set_drvdata(ofdev, priv);
1022         regs = priv->gfargrp[0].regs;
1023
1024         gfar_detect_errata(priv);
1025
1026         /* Stop the DMA engine now, in case it was running before
1027          * (The firmware could have used it, and left it running).
1028          */
1029         gfar_halt(dev);
1030
1031         /* Reset MAC layer */
1032         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1033
1034         /* We need to delay at least 3 TX clocks */
1035         udelay(2);
1036
1037         tempval = 0;
1038         if (!priv->pause_aneg_en && priv->tx_pause_en)
1039                 tempval |= MACCFG1_TX_FLOW;
1040         if (!priv->pause_aneg_en && priv->rx_pause_en)
1041                 tempval |= MACCFG1_RX_FLOW;
1042         /* the soft reset bit is not self-resetting, so we need to
1043          * clear it before resuming normal operation
1044          */
1045         gfar_write(&regs->maccfg1, tempval);
1046
1047         /* Initialize MACCFG2. */
1048         tempval = MACCFG2_INIT_SETTINGS;
1049         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1050                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1051         gfar_write(&regs->maccfg2, tempval);
1052
1053         /* Initialize ECNTRL */
1054         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1055
1056         /* Set the dev->base_addr to the gfar reg region */
1057         dev->base_addr = (unsigned long) regs;
1058
1059         /* Fill in the dev structure */
1060         dev->watchdog_timeo = TX_TIMEOUT;
1061         dev->mtu = 1500;
1062         dev->netdev_ops = &gfar_netdev_ops;
1063         dev->ethtool_ops = &gfar_ethtool_ops;
1064
1065         /* Register for napi ...We are registering NAPI for each grp */
1066         if (priv->mode == SQ_SG_MODE)
1067                 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1068                                GFAR_DEV_WEIGHT);
1069         else
1070                 for (i = 0; i < priv->num_grps; i++)
1071                         netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1072                                        GFAR_DEV_WEIGHT);
1073
1074         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1075                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1076                                    NETIF_F_RXCSUM;
1077                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1078                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1079         }
1080
1081         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1082                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1083                                     NETIF_F_HW_VLAN_CTAG_RX;
1084                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1085         }
1086
1087         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1088                 priv->extended_hash = 1;
1089                 priv->hash_width = 9;
1090
1091                 priv->hash_regs[0] = &regs->igaddr0;
1092                 priv->hash_regs[1] = &regs->igaddr1;
1093                 priv->hash_regs[2] = &regs->igaddr2;
1094                 priv->hash_regs[3] = &regs->igaddr3;
1095                 priv->hash_regs[4] = &regs->igaddr4;
1096                 priv->hash_regs[5] = &regs->igaddr5;
1097                 priv->hash_regs[6] = &regs->igaddr6;
1098                 priv->hash_regs[7] = &regs->igaddr7;
1099                 priv->hash_regs[8] = &regs->gaddr0;
1100                 priv->hash_regs[9] = &regs->gaddr1;
1101                 priv->hash_regs[10] = &regs->gaddr2;
1102                 priv->hash_regs[11] = &regs->gaddr3;
1103                 priv->hash_regs[12] = &regs->gaddr4;
1104                 priv->hash_regs[13] = &regs->gaddr5;
1105                 priv->hash_regs[14] = &regs->gaddr6;
1106                 priv->hash_regs[15] = &regs->gaddr7;
1107
1108         } else {
1109                 priv->extended_hash = 0;
1110                 priv->hash_width = 8;
1111
1112                 priv->hash_regs[0] = &regs->gaddr0;
1113                 priv->hash_regs[1] = &regs->gaddr1;
1114                 priv->hash_regs[2] = &regs->gaddr2;
1115                 priv->hash_regs[3] = &regs->gaddr3;
1116                 priv->hash_regs[4] = &regs->gaddr4;
1117                 priv->hash_regs[5] = &regs->gaddr5;
1118                 priv->hash_regs[6] = &regs->gaddr6;
1119                 priv->hash_regs[7] = &regs->gaddr7;
1120         }
1121
1122         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1123                 priv->padding = DEFAULT_PADDING;
1124         else
1125                 priv->padding = 0;
1126
1127         if (dev->features & NETIF_F_IP_CSUM ||
1128             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1129                 dev->needed_headroom = GMAC_FCB_LEN;
1130
1131         /* Program the isrg regs only if number of grps > 1 */
1132         if (priv->num_grps > 1) {
1133                 baddr = &regs->isrg0;
1134                 for (i = 0; i < priv->num_grps; i++) {
1135                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1136                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1137                         gfar_write(baddr, isrg);
1138                         baddr++;
1139                         isrg = 0x0;
1140                 }
1141         }
1142
1143         /* Need to reverse the bit maps as  bit_map's MSB is q0
1144          * but, for_each_set_bit parses from right to left, which
1145          * basically reverses the queue numbers
1146          */
1147         for (i = 0; i< priv->num_grps; i++) {
1148                 priv->gfargrp[i].tx_bit_map =
1149                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1150                 priv->gfargrp[i].rx_bit_map =
1151                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1152         }
1153
1154         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1155          * also assign queues to groups
1156          */
1157         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1158                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1159
1160                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1161                                  priv->num_rx_queues) {
1162                         priv->gfargrp[grp_idx].num_rx_queues++;
1163                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1164                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1165                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1166                 }
1167                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1168
1169                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1170                                  priv->num_tx_queues) {
1171                         priv->gfargrp[grp_idx].num_tx_queues++;
1172                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1173                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1174                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1175                 }
1176                 priv->gfargrp[grp_idx].rstat = rstat;
1177                 priv->gfargrp[grp_idx].tstat = tstat;
1178                 rstat = tstat =0;
1179         }
1180
1181         gfar_write(&regs->rqueue, rqueue);
1182         gfar_write(&regs->tqueue, tqueue);
1183
1184         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1185
1186         /* Initializing some of the rx/tx queue level parameters */
1187         for (i = 0; i < priv->num_tx_queues; i++) {
1188                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1189                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1190                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1191                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1192         }
1193
1194         for (i = 0; i < priv->num_rx_queues; i++) {
1195                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1196                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1197                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1198         }
1199
1200         /* always enable rx filer */
1201         priv->rx_filer_enable = 1;
1202         /* Enable most messages by default */
1203         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1204         /* use pritority h/w tx queue scheduling for single queue devices */
1205         if (priv->num_tx_queues == 1)
1206                 priv->prio_sched_en = 1;
1207
1208         /* Carrier starts down, phylib will bring it up */
1209         netif_carrier_off(dev);
1210
1211         err = register_netdev(dev);
1212
1213         if (err) {
1214                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1215                 goto register_fail;
1216         }
1217
1218         device_init_wakeup(&dev->dev,
1219                            priv->device_flags &
1220                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1221
1222         /* fill out IRQ number and name fields */
1223         for (i = 0; i < priv->num_grps; i++) {
1224                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1225                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1226                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1227                                 dev->name, "_g", '0' + i, "_tx");
1228                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1229                                 dev->name, "_g", '0' + i, "_rx");
1230                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1231                                 dev->name, "_g", '0' + i, "_er");
1232                 } else
1233                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1234         }
1235
1236         /* Initialize the filer table */
1237         gfar_init_filer_table(priv);
1238
1239         /* Create all the sysfs files */
1240         gfar_init_sysfs(dev);
1241
1242         /* Print out the device info */
1243         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1244
1245         /* Even more device info helps when determining which kernel
1246          * provided which set of benchmarks.
1247          */
1248         netdev_info(dev, "Running with NAPI enabled\n");
1249         for (i = 0; i < priv->num_rx_queues; i++)
1250                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1251                             i, priv->rx_queue[i]->rx_ring_size);
1252         for (i = 0; i < priv->num_tx_queues; i++)
1253                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1254                             i, priv->tx_queue[i]->tx_ring_size);
1255
1256         return 0;
1257
1258 register_fail:
1259         unmap_group_regs(priv);
1260         free_tx_pointers(priv);
1261         free_rx_pointers(priv);
1262         if (priv->phy_node)
1263                 of_node_put(priv->phy_node);
1264         if (priv->tbi_node)
1265                 of_node_put(priv->tbi_node);
1266         free_gfar_dev(priv);
1267         return err;
1268 }
1269
1270 static int gfar_remove(struct platform_device *ofdev)
1271 {
1272         struct gfar_private *priv = platform_get_drvdata(ofdev);
1273
1274         if (priv->phy_node)
1275                 of_node_put(priv->phy_node);
1276         if (priv->tbi_node)
1277                 of_node_put(priv->tbi_node);
1278
1279         unregister_netdev(priv->ndev);
1280         unmap_group_regs(priv);
1281         free_gfar_dev(priv);
1282
1283         return 0;
1284 }
1285
1286 #ifdef CONFIG_PM
1287
1288 static int gfar_suspend(struct device *dev)
1289 {
1290         struct gfar_private *priv = dev_get_drvdata(dev);
1291         struct net_device *ndev = priv->ndev;
1292         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1293         unsigned long flags;
1294         u32 tempval;
1295
1296         int magic_packet = priv->wol_en &&
1297                            (priv->device_flags &
1298                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1299
1300         netif_device_detach(ndev);
1301
1302         if (netif_running(ndev)) {
1303
1304                 local_irq_save(flags);
1305                 lock_tx_qs(priv);
1306                 lock_rx_qs(priv);
1307
1308                 gfar_halt_nodisable(ndev);
1309
1310                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1311                 tempval = gfar_read(&regs->maccfg1);
1312
1313                 tempval &= ~MACCFG1_TX_EN;
1314
1315                 if (!magic_packet)
1316                         tempval &= ~MACCFG1_RX_EN;
1317
1318                 gfar_write(&regs->maccfg1, tempval);
1319
1320                 unlock_rx_qs(priv);
1321                 unlock_tx_qs(priv);
1322                 local_irq_restore(flags);
1323
1324                 disable_napi(priv);
1325
1326                 if (magic_packet) {
1327                         /* Enable interrupt on Magic Packet */
1328                         gfar_write(&regs->imask, IMASK_MAG);
1329
1330                         /* Enable Magic Packet mode */
1331                         tempval = gfar_read(&regs->maccfg2);
1332                         tempval |= MACCFG2_MPEN;
1333                         gfar_write(&regs->maccfg2, tempval);
1334                 } else {
1335                         phy_stop(priv->phydev);
1336                 }
1337         }
1338
1339         return 0;
1340 }
1341
1342 static int gfar_resume(struct device *dev)
1343 {
1344         struct gfar_private *priv = dev_get_drvdata(dev);
1345         struct net_device *ndev = priv->ndev;
1346         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1347         unsigned long flags;
1348         u32 tempval;
1349         int magic_packet = priv->wol_en &&
1350                            (priv->device_flags &
1351                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1352
1353         if (!netif_running(ndev)) {
1354                 netif_device_attach(ndev);
1355                 return 0;
1356         }
1357
1358         if (!magic_packet && priv->phydev)
1359                 phy_start(priv->phydev);
1360
1361         /* Disable Magic Packet mode, in case something
1362          * else woke us up.
1363          */
1364         local_irq_save(flags);
1365         lock_tx_qs(priv);
1366         lock_rx_qs(priv);
1367
1368         tempval = gfar_read(&regs->maccfg2);
1369         tempval &= ~MACCFG2_MPEN;
1370         gfar_write(&regs->maccfg2, tempval);
1371
1372         gfar_start(ndev);
1373
1374         unlock_rx_qs(priv);
1375         unlock_tx_qs(priv);
1376         local_irq_restore(flags);
1377
1378         netif_device_attach(ndev);
1379
1380         enable_napi(priv);
1381
1382         return 0;
1383 }
1384
1385 static int gfar_restore(struct device *dev)
1386 {
1387         struct gfar_private *priv = dev_get_drvdata(dev);
1388         struct net_device *ndev = priv->ndev;
1389
1390         if (!netif_running(ndev)) {
1391                 netif_device_attach(ndev);
1392
1393                 return 0;
1394         }
1395
1396         if (gfar_init_bds(ndev)) {
1397                 free_skb_resources(priv);
1398                 return -ENOMEM;
1399         }
1400
1401         init_registers(ndev);
1402         gfar_set_mac_address(ndev);
1403         gfar_init_mac(ndev);
1404         gfar_start(ndev);
1405
1406         priv->oldlink = 0;
1407         priv->oldspeed = 0;
1408         priv->oldduplex = -1;
1409
1410         if (priv->phydev)
1411                 phy_start(priv->phydev);
1412
1413         netif_device_attach(ndev);
1414         enable_napi(priv);
1415
1416         return 0;
1417 }
1418
1419 static struct dev_pm_ops gfar_pm_ops = {
1420         .suspend = gfar_suspend,
1421         .resume = gfar_resume,
1422         .freeze = gfar_suspend,
1423         .thaw = gfar_resume,
1424         .restore = gfar_restore,
1425 };
1426
1427 #define GFAR_PM_OPS (&gfar_pm_ops)
1428
1429 #else
1430
1431 #define GFAR_PM_OPS NULL
1432
1433 #endif
1434
1435 /* Reads the controller's registers to determine what interface
1436  * connects it to the PHY.
1437  */
1438 static phy_interface_t gfar_get_interface(struct net_device *dev)
1439 {
1440         struct gfar_private *priv = netdev_priv(dev);
1441         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1442         u32 ecntrl;
1443
1444         ecntrl = gfar_read(&regs->ecntrl);
1445
1446         if (ecntrl & ECNTRL_SGMII_MODE)
1447                 return PHY_INTERFACE_MODE_SGMII;
1448
1449         if (ecntrl & ECNTRL_TBI_MODE) {
1450                 if (ecntrl & ECNTRL_REDUCED_MODE)
1451                         return PHY_INTERFACE_MODE_RTBI;
1452                 else
1453                         return PHY_INTERFACE_MODE_TBI;
1454         }
1455
1456         if (ecntrl & ECNTRL_REDUCED_MODE) {
1457                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1458                         return PHY_INTERFACE_MODE_RMII;
1459                 }
1460                 else {
1461                         phy_interface_t interface = priv->interface;
1462
1463                         /* This isn't autodetected right now, so it must
1464                          * be set by the device tree or platform code.
1465                          */
1466                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1467                                 return PHY_INTERFACE_MODE_RGMII_ID;
1468
1469                         return PHY_INTERFACE_MODE_RGMII;
1470                 }
1471         }
1472
1473         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1474                 return PHY_INTERFACE_MODE_GMII;
1475
1476         return PHY_INTERFACE_MODE_MII;
1477 }
1478
1479
1480 /* Initializes driver's PHY state, and attaches to the PHY.
1481  * Returns 0 on success.
1482  */
1483 static int init_phy(struct net_device *dev)
1484 {
1485         struct gfar_private *priv = netdev_priv(dev);
1486         uint gigabit_support =
1487                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1488                 GFAR_SUPPORTED_GBIT : 0;
1489         phy_interface_t interface;
1490
1491         priv->oldlink = 0;
1492         priv->oldspeed = 0;
1493         priv->oldduplex = -1;
1494
1495         interface = gfar_get_interface(dev);
1496
1497         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1498                                       interface);
1499         if (!priv->phydev)
1500                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1501                                                          interface);
1502         if (!priv->phydev) {
1503                 dev_err(&dev->dev, "could not attach to PHY\n");
1504                 return -ENODEV;
1505         }
1506
1507         if (interface == PHY_INTERFACE_MODE_SGMII)
1508                 gfar_configure_serdes(dev);
1509
1510         /* Remove any features not supported by the controller */
1511         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1512         priv->phydev->advertising = priv->phydev->supported;
1513
1514         return 0;
1515 }
1516
1517 /* Initialize TBI PHY interface for communicating with the
1518  * SERDES lynx PHY on the chip.  We communicate with this PHY
1519  * through the MDIO bus on each controller, treating it as a
1520  * "normal" PHY at the address found in the TBIPA register.  We assume
1521  * that the TBIPA register is valid.  Either the MDIO bus code will set
1522  * it to a value that doesn't conflict with other PHYs on the bus, or the
1523  * value doesn't matter, as there are no other PHYs on the bus.
1524  */
1525 static void gfar_configure_serdes(struct net_device *dev)
1526 {
1527         struct gfar_private *priv = netdev_priv(dev);
1528         struct phy_device *tbiphy;
1529
1530         if (!priv->tbi_node) {
1531                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1532                                     "device tree specify a tbi-handle\n");
1533                 return;
1534         }
1535
1536         tbiphy = of_phy_find_device(priv->tbi_node);
1537         if (!tbiphy) {
1538                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1539                 return;
1540         }
1541
1542         /* If the link is already up, we must already be ok, and don't need to
1543          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1544          * everything for us?  Resetting it takes the link down and requires
1545          * several seconds for it to come back.
1546          */
1547         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1548                 return;
1549
1550         /* Single clk mode, mii mode off(for serdes communication) */
1551         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1552
1553         phy_write(tbiphy, MII_ADVERTISE,
1554                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1555                   ADVERTISE_1000XPSE_ASYM);
1556
1557         phy_write(tbiphy, MII_BMCR,
1558                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1559                   BMCR_SPEED1000);
1560 }
1561
1562 static void init_registers(struct net_device *dev)
1563 {
1564         struct gfar_private *priv = netdev_priv(dev);
1565         struct gfar __iomem *regs = NULL;
1566         int i;
1567
1568         for (i = 0; i < priv->num_grps; i++) {
1569                 regs = priv->gfargrp[i].regs;
1570                 /* Clear IEVENT */
1571                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1572
1573                 /* Initialize IMASK */
1574                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1575         }
1576
1577         regs = priv->gfargrp[0].regs;
1578         /* Init hash registers to zero */
1579         gfar_write(&regs->igaddr0, 0);
1580         gfar_write(&regs->igaddr1, 0);
1581         gfar_write(&regs->igaddr2, 0);
1582         gfar_write(&regs->igaddr3, 0);
1583         gfar_write(&regs->igaddr4, 0);
1584         gfar_write(&regs->igaddr5, 0);
1585         gfar_write(&regs->igaddr6, 0);
1586         gfar_write(&regs->igaddr7, 0);
1587
1588         gfar_write(&regs->gaddr0, 0);
1589         gfar_write(&regs->gaddr1, 0);
1590         gfar_write(&regs->gaddr2, 0);
1591         gfar_write(&regs->gaddr3, 0);
1592         gfar_write(&regs->gaddr4, 0);
1593         gfar_write(&regs->gaddr5, 0);
1594         gfar_write(&regs->gaddr6, 0);
1595         gfar_write(&regs->gaddr7, 0);
1596
1597         /* Zero out the rmon mib registers if it has them */
1598         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1599                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1600
1601                 /* Mask off the CAM interrupts */
1602                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1603                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1604         }
1605
1606         /* Initialize the max receive buffer length */
1607         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1608
1609         /* Initialize the Minimum Frame Length Register */
1610         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1611 }
1612
1613 static int __gfar_is_rx_idle(struct gfar_private *priv)
1614 {
1615         u32 res;
1616
1617         /* Normaly TSEC should not hang on GRS commands, so we should
1618          * actually wait for IEVENT_GRSC flag.
1619          */
1620         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1621                 return 0;
1622
1623         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1624          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1625          * and the Rx can be safely reset.
1626          */
1627         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1628         res &= 0x7f807f80;
1629         if ((res & 0xffff) == (res >> 16))
1630                 return 1;
1631
1632         return 0;
1633 }
1634
1635 /* Halt the receive and transmit queues */
1636 static void gfar_halt_nodisable(struct net_device *dev)
1637 {
1638         struct gfar_private *priv = netdev_priv(dev);
1639         struct gfar __iomem *regs = NULL;
1640         u32 tempval;
1641         int i;
1642
1643         for (i = 0; i < priv->num_grps; i++) {
1644                 regs = priv->gfargrp[i].regs;
1645                 /* Mask all interrupts */
1646                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1647
1648                 /* Clear all interrupts */
1649                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1650         }
1651
1652         regs = priv->gfargrp[0].regs;
1653         /* Stop the DMA, and wait for it to stop */
1654         tempval = gfar_read(&regs->dmactrl);
1655         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1656             (DMACTRL_GRS | DMACTRL_GTS)) {
1657                 int ret;
1658
1659                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1660                 gfar_write(&regs->dmactrl, tempval);
1661
1662                 do {
1663                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1664                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1665                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1666                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1667                                 ret = __gfar_is_rx_idle(priv);
1668                 } while (!ret);
1669         }
1670 }
1671
1672 /* Halt the receive and transmit queues */
1673 void gfar_halt(struct net_device *dev)
1674 {
1675         struct gfar_private *priv = netdev_priv(dev);
1676         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1677         u32 tempval;
1678
1679         gfar_halt_nodisable(dev);
1680
1681         /* Disable Rx and Tx */
1682         tempval = gfar_read(&regs->maccfg1);
1683         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1684         gfar_write(&regs->maccfg1, tempval);
1685 }
1686
1687 static void free_grp_irqs(struct gfar_priv_grp *grp)
1688 {
1689         free_irq(gfar_irq(grp, TX)->irq, grp);
1690         free_irq(gfar_irq(grp, RX)->irq, grp);
1691         free_irq(gfar_irq(grp, ER)->irq, grp);
1692 }
1693
1694 void stop_gfar(struct net_device *dev)
1695 {
1696         struct gfar_private *priv = netdev_priv(dev);
1697         unsigned long flags;
1698         int i;
1699
1700         phy_stop(priv->phydev);
1701
1702
1703         /* Lock it down */
1704         local_irq_save(flags);
1705         lock_tx_qs(priv);
1706         lock_rx_qs(priv);
1707
1708         gfar_halt(dev);
1709
1710         unlock_rx_qs(priv);
1711         unlock_tx_qs(priv);
1712         local_irq_restore(flags);
1713
1714         /* Free the IRQs */
1715         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1716                 for (i = 0; i < priv->num_grps; i++)
1717                         free_grp_irqs(&priv->gfargrp[i]);
1718         } else {
1719                 for (i = 0; i < priv->num_grps; i++)
1720                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1721                                  &priv->gfargrp[i]);
1722         }
1723
1724         free_skb_resources(priv);
1725 }
1726
1727 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1728 {
1729         struct txbd8 *txbdp;
1730         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1731         int i, j;
1732
1733         txbdp = tx_queue->tx_bd_base;
1734
1735         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1736                 if (!tx_queue->tx_skbuff[i])
1737                         continue;
1738
1739                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1740                                  txbdp->length, DMA_TO_DEVICE);
1741                 txbdp->lstatus = 0;
1742                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1743                      j++) {
1744                         txbdp++;
1745                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1746                                        txbdp->length, DMA_TO_DEVICE);
1747                 }
1748                 txbdp++;
1749                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1750                 tx_queue->tx_skbuff[i] = NULL;
1751         }
1752         kfree(tx_queue->tx_skbuff);
1753         tx_queue->tx_skbuff = NULL;
1754 }
1755
1756 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1757 {
1758         struct rxbd8 *rxbdp;
1759         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1760         int i;
1761
1762         rxbdp = rx_queue->rx_bd_base;
1763
1764         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1765                 if (rx_queue->rx_skbuff[i]) {
1766                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1767                                          priv->rx_buffer_size,
1768                                          DMA_FROM_DEVICE);
1769                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1770                         rx_queue->rx_skbuff[i] = NULL;
1771                 }
1772                 rxbdp->lstatus = 0;
1773                 rxbdp->bufPtr = 0;
1774                 rxbdp++;
1775         }
1776         kfree(rx_queue->rx_skbuff);
1777         rx_queue->rx_skbuff = NULL;
1778 }
1779
1780 /* If there are any tx skbs or rx skbs still around, free them.
1781  * Then free tx_skbuff and rx_skbuff
1782  */
1783 static void free_skb_resources(struct gfar_private *priv)
1784 {
1785         struct gfar_priv_tx_q *tx_queue = NULL;
1786         struct gfar_priv_rx_q *rx_queue = NULL;
1787         int i;
1788
1789         /* Go through all the buffer descriptors and free their data buffers */
1790         for (i = 0; i < priv->num_tx_queues; i++) {
1791                 struct netdev_queue *txq;
1792
1793                 tx_queue = priv->tx_queue[i];
1794                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1795                 if (tx_queue->tx_skbuff)
1796                         free_skb_tx_queue(tx_queue);
1797                 netdev_tx_reset_queue(txq);
1798         }
1799
1800         for (i = 0; i < priv->num_rx_queues; i++) {
1801                 rx_queue = priv->rx_queue[i];
1802                 if (rx_queue->rx_skbuff)
1803                         free_skb_rx_queue(rx_queue);
1804         }
1805
1806         dma_free_coherent(priv->dev,
1807                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1808                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1809                           priv->tx_queue[0]->tx_bd_base,
1810                           priv->tx_queue[0]->tx_bd_dma_base);
1811 }
1812
1813 void gfar_start(struct net_device *dev)
1814 {
1815         struct gfar_private *priv = netdev_priv(dev);
1816         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1817         u32 tempval;
1818         int i = 0;
1819
1820         /* Enable Rx and Tx in MACCFG1 */
1821         tempval = gfar_read(&regs->maccfg1);
1822         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1823         gfar_write(&regs->maccfg1, tempval);
1824
1825         /* Initialize DMACTRL to have WWR and WOP */
1826         tempval = gfar_read(&regs->dmactrl);
1827         tempval |= DMACTRL_INIT_SETTINGS;
1828         gfar_write(&regs->dmactrl, tempval);
1829
1830         /* Make sure we aren't stopped */
1831         tempval = gfar_read(&regs->dmactrl);
1832         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1833         gfar_write(&regs->dmactrl, tempval);
1834
1835         for (i = 0; i < priv->num_grps; i++) {
1836                 regs = priv->gfargrp[i].regs;
1837                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1838                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1839                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1840                 /* Unmask the interrupts we look for */
1841                 gfar_write(&regs->imask, IMASK_DEFAULT);
1842         }
1843
1844         dev->trans_start = jiffies; /* prevent tx timeout */
1845 }
1846
1847 static void gfar_configure_coalescing(struct gfar_private *priv,
1848                                unsigned long tx_mask, unsigned long rx_mask)
1849 {
1850         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1851         u32 __iomem *baddr;
1852
1853         if (priv->mode == MQ_MG_MODE) {
1854                 int i = 0;
1855
1856                 baddr = &regs->txic0;
1857                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1858                         gfar_write(baddr + i, 0);
1859                         if (likely(priv->tx_queue[i]->txcoalescing))
1860                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1861                 }
1862
1863                 baddr = &regs->rxic0;
1864                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1865                         gfar_write(baddr + i, 0);
1866                         if (likely(priv->rx_queue[i]->rxcoalescing))
1867                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1868                 }
1869         } else {
1870                 /* Backward compatible case -- even if we enable
1871                  * multiple queues, there's only single reg to program
1872                  */
1873                 gfar_write(&regs->txic, 0);
1874                 if (likely(priv->tx_queue[0]->txcoalescing))
1875                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1876
1877                 gfar_write(&regs->rxic, 0);
1878                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1879                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1880         }
1881 }
1882
1883 void gfar_configure_coalescing_all(struct gfar_private *priv)
1884 {
1885         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1886 }
1887
1888 static int register_grp_irqs(struct gfar_priv_grp *grp)
1889 {
1890         struct gfar_private *priv = grp->priv;
1891         struct net_device *dev = priv->ndev;
1892         int err;
1893
1894         /* If the device has multiple interrupts, register for
1895          * them.  Otherwise, only register for the one
1896          */
1897         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1898                 /* Install our interrupt handlers for Error,
1899                  * Transmit, and Receive
1900                  */
1901                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1902                                   gfar_irq(grp, ER)->name, grp);
1903                 if (err < 0) {
1904                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1905                                   gfar_irq(grp, ER)->irq);
1906
1907                         goto err_irq_fail;
1908                 }
1909                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1910                                   gfar_irq(grp, TX)->name, grp);
1911                 if (err < 0) {
1912                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1913                                   gfar_irq(grp, TX)->irq);
1914                         goto tx_irq_fail;
1915                 }
1916                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1917                                   gfar_irq(grp, RX)->name, grp);
1918                 if (err < 0) {
1919                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1920                                   gfar_irq(grp, RX)->irq);
1921                         goto rx_irq_fail;
1922                 }
1923         } else {
1924                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1925                                   gfar_irq(grp, TX)->name, grp);
1926                 if (err < 0) {
1927                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1928                                   gfar_irq(grp, TX)->irq);
1929                         goto err_irq_fail;
1930                 }
1931         }
1932
1933         return 0;
1934
1935 rx_irq_fail:
1936         free_irq(gfar_irq(grp, TX)->irq, grp);
1937 tx_irq_fail:
1938         free_irq(gfar_irq(grp, ER)->irq, grp);
1939 err_irq_fail:
1940         return err;
1941
1942 }
1943
1944 /* Bring the controller up and running */
1945 int startup_gfar(struct net_device *ndev)
1946 {
1947         struct gfar_private *priv = netdev_priv(ndev);
1948         struct gfar __iomem *regs = NULL;
1949         int err, i, j;
1950
1951         for (i = 0; i < priv->num_grps; i++) {
1952                 regs= priv->gfargrp[i].regs;
1953                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1954         }
1955
1956         regs= priv->gfargrp[0].regs;
1957         err = gfar_alloc_skb_resources(ndev);
1958         if (err)
1959                 return err;
1960
1961         gfar_init_mac(ndev);
1962
1963         for (i = 0; i < priv->num_grps; i++) {
1964                 err = register_grp_irqs(&priv->gfargrp[i]);
1965                 if (err) {
1966                         for (j = 0; j < i; j++)
1967                                 free_grp_irqs(&priv->gfargrp[j]);
1968                         goto irq_fail;
1969                 }
1970         }
1971
1972         /* Start the controller */
1973         gfar_start(ndev);
1974
1975         phy_start(priv->phydev);
1976
1977         gfar_configure_coalescing_all(priv);
1978
1979         return 0;
1980
1981 irq_fail:
1982         free_skb_resources(priv);
1983         return err;
1984 }
1985
1986 /* Called when something needs to use the ethernet device
1987  * Returns 0 for success.
1988  */
1989 static int gfar_enet_open(struct net_device *dev)
1990 {
1991         struct gfar_private *priv = netdev_priv(dev);
1992         int err;
1993
1994         enable_napi(priv);
1995
1996         /* Initialize a bunch of registers */
1997         init_registers(dev);
1998
1999         gfar_set_mac_address(dev);
2000
2001         err = init_phy(dev);
2002
2003         if (err) {
2004                 disable_napi(priv);
2005                 return err;
2006         }
2007
2008         err = startup_gfar(dev);
2009         if (err) {
2010                 disable_napi(priv);
2011                 return err;
2012         }
2013
2014         netif_tx_start_all_queues(dev);
2015
2016         device_set_wakeup_enable(&dev->dev, priv->wol_en);
2017
2018         return err;
2019 }
2020
2021 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2022 {
2023         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2024
2025         memset(fcb, 0, GMAC_FCB_LEN);
2026
2027         return fcb;
2028 }
2029
2030 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2031                                     int fcb_length)
2032 {
2033         /* If we're here, it's a IP packet with a TCP or UDP
2034          * payload.  We set it to checksum, using a pseudo-header
2035          * we provide
2036          */
2037         u8 flags = TXFCB_DEFAULT;
2038
2039         /* Tell the controller what the protocol is
2040          * And provide the already calculated phcs
2041          */
2042         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2043                 flags |= TXFCB_UDP;
2044                 fcb->phcs = udp_hdr(skb)->check;
2045         } else
2046                 fcb->phcs = tcp_hdr(skb)->check;
2047
2048         /* l3os is the distance between the start of the
2049          * frame (skb->data) and the start of the IP hdr.
2050          * l4os is the distance between the start of the
2051          * l3 hdr and the l4 hdr
2052          */
2053         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2054         fcb->l4os = skb_network_header_len(skb);
2055
2056         fcb->flags = flags;
2057 }
2058
2059 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2060 {
2061         fcb->flags |= TXFCB_VLN;
2062         fcb->vlctl = vlan_tx_tag_get(skb);
2063 }
2064
2065 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2066                                       struct txbd8 *base, int ring_size)
2067 {
2068         struct txbd8 *new_bd = bdp + stride;
2069
2070         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2071 }
2072
2073 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2074                                       int ring_size)
2075 {
2076         return skip_txbd(bdp, 1, base, ring_size);
2077 }
2078
2079 /* eTSEC12: csum generation not supported for some fcb offsets */
2080 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2081                                        unsigned long fcb_addr)
2082 {
2083         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2084                (fcb_addr % 0x20) > 0x18);
2085 }
2086
2087 /* eTSEC76: csum generation for frames larger than 2500 may
2088  * cause excess delays before start of transmission
2089  */
2090 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2091                                        unsigned int len)
2092 {
2093         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2094                (len > 2500));
2095 }
2096
2097 /* This is called by the kernel when a frame is ready for transmission.
2098  * It is pointed to by the dev->hard_start_xmit function pointer
2099  */
2100 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2101 {
2102         struct gfar_private *priv = netdev_priv(dev);
2103         struct gfar_priv_tx_q *tx_queue = NULL;
2104         struct netdev_queue *txq;
2105         struct gfar __iomem *regs = NULL;
2106         struct txfcb *fcb = NULL;
2107         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2108         u32 lstatus;
2109         int i, rq = 0;
2110         int do_tstamp, do_csum, do_vlan;
2111         u32 bufaddr;
2112         unsigned long flags;
2113         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2114
2115         rq = skb->queue_mapping;
2116         tx_queue = priv->tx_queue[rq];
2117         txq = netdev_get_tx_queue(dev, rq);
2118         base = tx_queue->tx_bd_base;
2119         regs = tx_queue->grp->regs;
2120
2121         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2122         do_vlan = vlan_tx_tag_present(skb);
2123         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2124                     priv->hwts_tx_en;
2125
2126         if (do_csum || do_vlan)
2127                 fcb_len = GMAC_FCB_LEN;
2128
2129         /* check if time stamp should be generated */
2130         if (unlikely(do_tstamp))
2131                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2132
2133         /* make space for additional header when fcb is needed */
2134         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2135                 struct sk_buff *skb_new;
2136
2137                 skb_new = skb_realloc_headroom(skb, fcb_len);
2138                 if (!skb_new) {
2139                         dev->stats.tx_errors++;
2140                         kfree_skb(skb);
2141                         return NETDEV_TX_OK;
2142                 }
2143
2144                 if (skb->sk)
2145                         skb_set_owner_w(skb_new, skb->sk);
2146                 consume_skb(skb);
2147                 skb = skb_new;
2148         }
2149
2150         /* total number of fragments in the SKB */
2151         nr_frags = skb_shinfo(skb)->nr_frags;
2152
2153         /* calculate the required number of TxBDs for this skb */
2154         if (unlikely(do_tstamp))
2155                 nr_txbds = nr_frags + 2;
2156         else
2157                 nr_txbds = nr_frags + 1;
2158
2159         /* check if there is space to queue this packet */
2160         if (nr_txbds > tx_queue->num_txbdfree) {
2161                 /* no space, stop the queue */
2162                 netif_tx_stop_queue(txq);
2163                 dev->stats.tx_fifo_errors++;
2164                 return NETDEV_TX_BUSY;
2165         }
2166
2167         /* Update transmit stats */
2168         bytes_sent = skb->len;
2169         tx_queue->stats.tx_bytes += bytes_sent;
2170         /* keep Tx bytes on wire for BQL accounting */
2171         GFAR_CB(skb)->bytes_sent = bytes_sent;
2172         tx_queue->stats.tx_packets++;
2173
2174         txbdp = txbdp_start = tx_queue->cur_tx;
2175         lstatus = txbdp->lstatus;
2176
2177         /* Time stamp insertion requires one additional TxBD */
2178         if (unlikely(do_tstamp))
2179                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2180                                                  tx_queue->tx_ring_size);
2181
2182         if (nr_frags == 0) {
2183                 if (unlikely(do_tstamp))
2184                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2185                                                           TXBD_INTERRUPT);
2186                 else
2187                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2188         } else {
2189                 /* Place the fragment addresses and lengths into the TxBDs */
2190                 for (i = 0; i < nr_frags; i++) {
2191                         unsigned int frag_len;
2192                         /* Point at the next BD, wrapping as needed */
2193                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2194
2195                         frag_len = skb_shinfo(skb)->frags[i].size;
2196
2197                         lstatus = txbdp->lstatus | frag_len |
2198                                   BD_LFLAG(TXBD_READY);
2199
2200                         /* Handle the last BD specially */
2201                         if (i == nr_frags - 1)
2202                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2203
2204                         bufaddr = skb_frag_dma_map(priv->dev,
2205                                                    &skb_shinfo(skb)->frags[i],
2206                                                    0,
2207                                                    frag_len,
2208                                                    DMA_TO_DEVICE);
2209
2210                         /* set the TxBD length and buffer pointer */
2211                         txbdp->bufPtr = bufaddr;
2212                         txbdp->lstatus = lstatus;
2213                 }
2214
2215                 lstatus = txbdp_start->lstatus;
2216         }
2217
2218         /* Add TxPAL between FCB and frame if required */
2219         if (unlikely(do_tstamp)) {
2220                 skb_push(skb, GMAC_TXPAL_LEN);
2221                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2222         }
2223
2224         /* Add TxFCB if required */
2225         if (fcb_len) {
2226                 fcb = gfar_add_fcb(skb);
2227                 lstatus |= BD_LFLAG(TXBD_TOE);
2228         }
2229
2230         /* Set up checksumming */
2231         if (do_csum) {
2232                 gfar_tx_checksum(skb, fcb, fcb_len);
2233
2234                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2235                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2236                         __skb_pull(skb, GMAC_FCB_LEN);
2237                         skb_checksum_help(skb);
2238                         if (do_vlan || do_tstamp) {
2239                                 /* put back a new fcb for vlan/tstamp TOE */
2240                                 fcb = gfar_add_fcb(skb);
2241                         } else {
2242                                 /* Tx TOE not used */
2243                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2244                                 fcb = NULL;
2245                         }
2246                 }
2247         }
2248
2249         if (do_vlan)
2250                 gfar_tx_vlan(skb, fcb);
2251
2252         /* Setup tx hardware time stamping if requested */
2253         if (unlikely(do_tstamp)) {
2254                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2255                 fcb->ptp = 1;
2256         }
2257
2258         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2259                                              skb_headlen(skb), DMA_TO_DEVICE);
2260
2261         /* If time stamping is requested one additional TxBD must be set up. The
2262          * first TxBD points to the FCB and must have a data length of
2263          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2264          * the full frame length.
2265          */
2266         if (unlikely(do_tstamp)) {
2267                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2268                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2269                                          (skb_headlen(skb) - fcb_len);
2270                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2271         } else {
2272                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2273         }
2274
2275         netdev_tx_sent_queue(txq, bytes_sent);
2276
2277         /* We can work in parallel with gfar_clean_tx_ring(), except
2278          * when modifying num_txbdfree. Note that we didn't grab the lock
2279          * when we were reading the num_txbdfree and checking for available
2280          * space, that's because outside of this function it can only grow,
2281          * and once we've got needed space, it cannot suddenly disappear.
2282          *
2283          * The lock also protects us from gfar_error(), which can modify
2284          * regs->tstat and thus retrigger the transfers, which is why we
2285          * also must grab the lock before setting ready bit for the first
2286          * to be transmitted BD.
2287          */
2288         spin_lock_irqsave(&tx_queue->txlock, flags);
2289
2290         /* The powerpc-specific eieio() is used, as wmb() has too strong
2291          * semantics (it requires synchronization between cacheable and
2292          * uncacheable mappings, which eieio doesn't provide and which we
2293          * don't need), thus requiring a more expensive sync instruction.  At
2294          * some point, the set of architecture-independent barrier functions
2295          * should be expanded to include weaker barriers.
2296          */
2297         eieio();
2298
2299         txbdp_start->lstatus = lstatus;
2300
2301         eieio(); /* force lstatus write before tx_skbuff */
2302
2303         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2304
2305         /* Update the current skb pointer to the next entry we will use
2306          * (wrapping if necessary)
2307          */
2308         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2309                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2310
2311         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2312
2313         /* reduce TxBD free count */
2314         tx_queue->num_txbdfree -= (nr_txbds);
2315
2316         /* If the next BD still needs to be cleaned up, then the bds
2317          * are full.  We need to tell the kernel to stop sending us stuff.
2318          */
2319         if (!tx_queue->num_txbdfree) {
2320                 netif_tx_stop_queue(txq);
2321
2322                 dev->stats.tx_fifo_errors++;
2323         }
2324
2325         /* Tell the DMA to go go go */
2326         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2327
2328         /* Unlock priv */
2329         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2330
2331         return NETDEV_TX_OK;
2332 }
2333
2334 /* Stops the kernel queue, and halts the controller */
2335 static int gfar_close(struct net_device *dev)
2336 {
2337         struct gfar_private *priv = netdev_priv(dev);
2338
2339         disable_napi(priv);
2340
2341         cancel_work_sync(&priv->reset_task);
2342         stop_gfar(dev);
2343
2344         /* Disconnect from the PHY */
2345         phy_disconnect(priv->phydev);
2346         priv->phydev = NULL;
2347
2348         netif_tx_stop_all_queues(dev);
2349
2350         return 0;
2351 }
2352
2353 /* Changes the mac address if the controller is not running. */
2354 static int gfar_set_mac_address(struct net_device *dev)
2355 {
2356         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2357
2358         return 0;
2359 }
2360
2361 /* Check if rx parser should be activated */
2362 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2363 {
2364         struct gfar __iomem *regs;
2365         u32 tempval;
2366
2367         regs = priv->gfargrp[0].regs;
2368
2369         tempval = gfar_read(&regs->rctrl);
2370         /* If parse is no longer required, then disable parser */
2371         if (tempval & RCTRL_REQ_PARSER) {
2372                 tempval |= RCTRL_PRSDEP_INIT;
2373                 priv->uses_rxfcb = 1;
2374         } else {
2375                 tempval &= ~RCTRL_PRSDEP_INIT;
2376                 priv->uses_rxfcb = 0;
2377         }
2378         gfar_write(&regs->rctrl, tempval);
2379 }
2380
2381 /* Enables and disables VLAN insertion/extraction */
2382 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2383 {
2384         struct gfar_private *priv = netdev_priv(dev);
2385         struct gfar __iomem *regs = NULL;
2386         unsigned long flags;
2387         u32 tempval;
2388
2389         regs = priv->gfargrp[0].regs;
2390         local_irq_save(flags);
2391         lock_rx_qs(priv);
2392
2393         if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2394                 /* Enable VLAN tag insertion */
2395                 tempval = gfar_read(&regs->tctrl);
2396                 tempval |= TCTRL_VLINS;
2397                 gfar_write(&regs->tctrl, tempval);
2398         } else {
2399                 /* Disable VLAN tag insertion */
2400                 tempval = gfar_read(&regs->tctrl);
2401                 tempval &= ~TCTRL_VLINS;
2402                 gfar_write(&regs->tctrl, tempval);
2403         }
2404
2405         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2406                 /* Enable VLAN tag extraction */
2407                 tempval = gfar_read(&regs->rctrl);
2408                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2409                 gfar_write(&regs->rctrl, tempval);
2410                 priv->uses_rxfcb = 1;
2411         } else {
2412                 /* Disable VLAN tag extraction */
2413                 tempval = gfar_read(&regs->rctrl);
2414                 tempval &= ~RCTRL_VLEX;
2415                 gfar_write(&regs->rctrl, tempval);
2416
2417                 gfar_check_rx_parser_mode(priv);
2418         }
2419
2420         gfar_change_mtu(dev, dev->mtu);
2421
2422         unlock_rx_qs(priv);
2423         local_irq_restore(flags);
2424 }
2425
2426 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2427 {
2428         int tempsize, tempval;
2429         struct gfar_private *priv = netdev_priv(dev);
2430         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2431         int oldsize = priv->rx_buffer_size;
2432         int frame_size = new_mtu + ETH_HLEN;
2433
2434         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2435                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2436                 return -EINVAL;
2437         }
2438
2439         if (priv->uses_rxfcb)
2440                 frame_size += GMAC_FCB_LEN;
2441
2442         frame_size += priv->padding;
2443
2444         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2445                    INCREMENTAL_BUFFER_SIZE;
2446
2447         /* Only stop and start the controller if it isn't already
2448          * stopped, and we changed something
2449          */
2450         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2451                 stop_gfar(dev);
2452
2453         priv->rx_buffer_size = tempsize;
2454
2455         dev->mtu = new_mtu;
2456
2457         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2458         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2459
2460         /* If the mtu is larger than the max size for standard
2461          * ethernet frames (ie, a jumbo frame), then set maccfg2
2462          * to allow huge frames, and to check the length
2463          */
2464         tempval = gfar_read(&regs->maccfg2);
2465
2466         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2467             gfar_has_errata(priv, GFAR_ERRATA_74))
2468                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2469         else
2470                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2471
2472         gfar_write(&regs->maccfg2, tempval);
2473
2474         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2475                 startup_gfar(dev);
2476
2477         return 0;
2478 }
2479
2480 /* gfar_reset_task gets scheduled when a packet has not been
2481  * transmitted after a set amount of time.
2482  * For now, assume that clearing out all the structures, and
2483  * starting over will fix the problem.
2484  */
2485 static void gfar_reset_task(struct work_struct *work)
2486 {
2487         struct gfar_private *priv = container_of(work, struct gfar_private,
2488                                                  reset_task);
2489         struct net_device *dev = priv->ndev;
2490
2491         if (dev->flags & IFF_UP) {
2492                 netif_tx_stop_all_queues(dev);
2493                 stop_gfar(dev);
2494                 startup_gfar(dev);
2495                 netif_tx_start_all_queues(dev);
2496         }
2497
2498         netif_tx_schedule_all(dev);
2499 }
2500
2501 static void gfar_timeout(struct net_device *dev)
2502 {
2503         struct gfar_private *priv = netdev_priv(dev);
2504
2505         dev->stats.tx_errors++;
2506         schedule_work(&priv->reset_task);
2507 }
2508
2509 static void gfar_align_skb(struct sk_buff *skb)
2510 {
2511         /* We need the data buffer to be aligned properly.  We will reserve
2512          * as many bytes as needed to align the data properly
2513          */
2514         skb_reserve(skb, RXBUF_ALIGNMENT -
2515                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2516 }
2517
2518 /* Interrupt Handler for Transmit complete */
2519 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2520 {
2521         struct net_device *dev = tx_queue->dev;
2522         struct netdev_queue *txq;
2523         struct gfar_private *priv = netdev_priv(dev);
2524         struct txbd8 *bdp, *next = NULL;
2525         struct txbd8 *lbdp = NULL;
2526         struct txbd8 *base = tx_queue->tx_bd_base;
2527         struct sk_buff *skb;
2528         int skb_dirtytx;
2529         int tx_ring_size = tx_queue->tx_ring_size;
2530         int frags = 0, nr_txbds = 0;
2531         int i;
2532         int howmany = 0;
2533         int tqi = tx_queue->qindex;
2534         unsigned int bytes_sent = 0;
2535         u32 lstatus;
2536         size_t buflen;
2537
2538         txq = netdev_get_tx_queue(dev, tqi);
2539         bdp = tx_queue->dirty_tx;
2540         skb_dirtytx = tx_queue->skb_dirtytx;
2541
2542         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2543                 unsigned long flags;
2544
2545                 frags = skb_shinfo(skb)->nr_frags;
2546
2547                 /* When time stamping, one additional TxBD must be freed.
2548                  * Also, we need to dma_unmap_single() the TxPAL.
2549                  */
2550                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2551                         nr_txbds = frags + 2;
2552                 else
2553                         nr_txbds = frags + 1;
2554
2555                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2556
2557                 lstatus = lbdp->lstatus;
2558
2559                 /* Only clean completed frames */
2560                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2561                     (lstatus & BD_LENGTH_MASK))
2562                         break;
2563
2564                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2565                         next = next_txbd(bdp, base, tx_ring_size);
2566                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2567                 } else
2568                         buflen = bdp->length;
2569
2570                 dma_unmap_single(priv->dev, bdp->bufPtr,
2571                                  buflen, DMA_TO_DEVICE);
2572
2573                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2574                         struct skb_shared_hwtstamps shhwtstamps;
2575                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2576
2577                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2578                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2579                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2580                         skb_tstamp_tx(skb, &shhwtstamps);
2581                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2582                         bdp = next;
2583                 }
2584
2585                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2586                 bdp = next_txbd(bdp, base, tx_ring_size);
2587
2588                 for (i = 0; i < frags; i++) {
2589                         dma_unmap_page(priv->dev, bdp->bufPtr,
2590                                        bdp->length, DMA_TO_DEVICE);
2591                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2592                         bdp = next_txbd(bdp, base, tx_ring_size);
2593                 }
2594
2595                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2596
2597                 dev_kfree_skb_any(skb);
2598
2599                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2600
2601                 skb_dirtytx = (skb_dirtytx + 1) &
2602                               TX_RING_MOD_MASK(tx_ring_size);
2603
2604                 howmany++;
2605                 spin_lock_irqsave(&tx_queue->txlock, flags);
2606                 tx_queue->num_txbdfree += nr_txbds;
2607                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2608         }
2609
2610         /* If we freed a buffer, we can restart transmission, if necessary */
2611         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2612                 netif_wake_subqueue(dev, tqi);
2613
2614         /* Update dirty indicators */
2615         tx_queue->skb_dirtytx = skb_dirtytx;
2616         tx_queue->dirty_tx = bdp;
2617
2618         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2619 }
2620
2621 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2622 {
2623         unsigned long flags;
2624
2625         spin_lock_irqsave(&gfargrp->grplock, flags);
2626         if (napi_schedule_prep(&gfargrp->napi)) {
2627                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2628                 __napi_schedule(&gfargrp->napi);
2629         } else {
2630                 /* Clear IEVENT, so interrupts aren't called again
2631                  * because of the packets that have already arrived.
2632                  */
2633                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2634         }
2635         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2636
2637 }
2638
2639 /* Interrupt Handler for Transmit complete */
2640 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2641 {
2642         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2643         return IRQ_HANDLED;
2644 }
2645
2646 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2647                            struct sk_buff *skb)
2648 {
2649         struct net_device *dev = rx_queue->dev;
2650         struct gfar_private *priv = netdev_priv(dev);
2651         dma_addr_t buf;
2652
2653         buf = dma_map_single(priv->dev, skb->data,
2654                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2655         gfar_init_rxbdp(rx_queue, bdp, buf);
2656 }
2657
2658 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2659 {
2660         struct gfar_private *priv = netdev_priv(dev);
2661         struct sk_buff *skb;
2662
2663         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2664         if (!skb)
2665                 return NULL;
2666
2667         gfar_align_skb(skb);
2668
2669         return skb;
2670 }
2671
2672 struct sk_buff *gfar_new_skb(struct net_device *dev)
2673 {
2674         return gfar_alloc_skb(dev);
2675 }
2676
2677 static inline void count_errors(unsigned short status, struct net_device *dev)
2678 {
2679         struct gfar_private *priv = netdev_priv(dev);
2680         struct net_device_stats *stats = &dev->stats;
2681         struct gfar_extra_stats *estats = &priv->extra_stats;
2682
2683         /* If the packet was truncated, none of the other errors matter */
2684         if (status & RXBD_TRUNCATED) {
2685                 stats->rx_length_errors++;
2686
2687                 atomic64_inc(&estats->rx_trunc);
2688
2689                 return;
2690         }
2691         /* Count the errors, if there were any */
2692         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2693                 stats->rx_length_errors++;
2694
2695                 if (status & RXBD_LARGE)
2696                         atomic64_inc(&estats->rx_large);
2697                 else
2698                         atomic64_inc(&estats->rx_short);
2699         }
2700         if (status & RXBD_NONOCTET) {
2701                 stats->rx_frame_errors++;
2702                 atomic64_inc(&estats->rx_nonoctet);
2703         }
2704         if (status & RXBD_CRCERR) {
2705                 atomic64_inc(&estats->rx_crcerr);
2706                 stats->rx_crc_errors++;
2707         }
2708         if (status & RXBD_OVERRUN) {
2709                 atomic64_inc(&estats->rx_overrun);
2710                 stats->rx_crc_errors++;
2711         }
2712 }
2713
2714 irqreturn_t gfar_receive(int irq, void *grp_id)
2715 {
2716         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2717         return IRQ_HANDLED;
2718 }
2719
2720 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2721 {
2722         /* If valid headers were found, and valid sums
2723          * were verified, then we tell the kernel that no
2724          * checksumming is necessary.  Otherwise, it is [FIXME]
2725          */
2726         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2727                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2728         else
2729                 skb_checksum_none_assert(skb);
2730 }
2731
2732
2733 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2734 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2735                                int amount_pull, struct napi_struct *napi)
2736 {
2737         struct gfar_private *priv = netdev_priv(dev);
2738         struct rxfcb *fcb = NULL;
2739
2740         /* fcb is at the beginning if exists */
2741         fcb = (struct rxfcb *)skb->data;
2742
2743         /* Remove the FCB from the skb
2744          * Remove the padded bytes, if there are any
2745          */
2746         if (amount_pull) {
2747                 skb_record_rx_queue(skb, fcb->rq);
2748                 skb_pull(skb, amount_pull);
2749         }
2750
2751         /* Get receive timestamp from the skb */
2752         if (priv->hwts_rx_en) {
2753                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2754                 u64 *ns = (u64 *) skb->data;
2755
2756                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2757                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2758         }
2759
2760         if (priv->padding)
2761                 skb_pull(skb, priv->padding);
2762
2763         if (dev->features & NETIF_F_RXCSUM)
2764                 gfar_rx_checksum(skb, fcb);
2765
2766         /* Tell the skb what kind of packet this is */
2767         skb->protocol = eth_type_trans(skb, dev);
2768
2769         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2770          * Even if vlan rx accel is disabled, on some chips
2771          * RXFCB_VLN is pseudo randomly set.
2772          */
2773         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2774             fcb->flags & RXFCB_VLN)
2775                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2776
2777         /* Send the packet up the stack */
2778         napi_gro_receive(napi, skb);
2779
2780 }
2781
2782 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2783  * until the budget/quota has been reached. Returns the number
2784  * of frames handled
2785  */
2786 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2787 {
2788         struct net_device *dev = rx_queue->dev;
2789         struct rxbd8 *bdp, *base;
2790         struct sk_buff *skb;
2791         int pkt_len;
2792         int amount_pull;
2793         int howmany = 0;
2794         struct gfar_private *priv = netdev_priv(dev);
2795
2796         /* Get the first full descriptor */
2797         bdp = rx_queue->cur_rx;
2798         base = rx_queue->rx_bd_base;
2799
2800         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2801
2802         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2803                 struct sk_buff *newskb;
2804
2805                 rmb();
2806
2807                 /* Add another skb for the future */
2808                 newskb = gfar_new_skb(dev);
2809
2810                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2811
2812                 dma_unmap_single(priv->dev, bdp->bufPtr,
2813                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2814
2815                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2816                              bdp->length > priv->rx_buffer_size))
2817                         bdp->status = RXBD_LARGE;
2818
2819                 /* We drop the frame if we failed to allocate a new buffer */
2820                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2821                              bdp->status & RXBD_ERR)) {
2822                         count_errors(bdp->status, dev);
2823
2824                         if (unlikely(!newskb))
2825                                 newskb = skb;
2826                         else if (skb)
2827                                 dev_kfree_skb(skb);
2828                 } else {
2829                         /* Increment the number of packets */
2830                         rx_queue->stats.rx_packets++;
2831                         howmany++;
2832
2833                         if (likely(skb)) {
2834                                 pkt_len = bdp->length - ETH_FCS_LEN;
2835                                 /* Remove the FCS from the packet length */
2836                                 skb_put(skb, pkt_len);
2837                                 rx_queue->stats.rx_bytes += pkt_len;
2838                                 skb_record_rx_queue(skb, rx_queue->qindex);
2839                                 gfar_process_frame(dev, skb, amount_pull,
2840                                                    &rx_queue->grp->napi);
2841
2842                         } else {
2843                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2844                                 rx_queue->stats.rx_dropped++;
2845                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2846                         }
2847
2848                 }
2849
2850                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2851
2852                 /* Setup the new bdp */
2853                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2854
2855                 /* Update to the next pointer */
2856                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2857
2858                 /* update to point at the next skb */
2859                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2860                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2861         }
2862
2863         /* Update the current rxbd pointer to be the next one */
2864         rx_queue->cur_rx = bdp;
2865
2866         return howmany;
2867 }
2868
2869 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2870 {
2871         struct gfar_priv_grp *gfargrp =
2872                 container_of(napi, struct gfar_priv_grp, napi);
2873         struct gfar __iomem *regs = gfargrp->regs;
2874         struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2875         struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2876         int work_done = 0;
2877
2878         /* Clear IEVENT, so interrupts aren't called again
2879          * because of the packets that have already arrived
2880          */
2881         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2882
2883         /* run Tx cleanup to completion */
2884         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2885                 gfar_clean_tx_ring(tx_queue);
2886
2887         work_done = gfar_clean_rx_ring(rx_queue, budget);
2888
2889         if (work_done < budget) {
2890                 napi_complete(napi);
2891                 /* Clear the halt bit in RSTAT */
2892                 gfar_write(&regs->rstat, gfargrp->rstat);
2893
2894                 gfar_write(&regs->imask, IMASK_DEFAULT);
2895
2896                 /* If we are coalescing interrupts, update the timer
2897                  * Otherwise, clear it
2898                  */
2899                 gfar_write(&regs->txic, 0);
2900                 if (likely(tx_queue->txcoalescing))
2901                         gfar_write(&regs->txic, tx_queue->txic);
2902
2903                 gfar_write(&regs->rxic, 0);
2904                 if (unlikely(rx_queue->rxcoalescing))
2905                         gfar_write(&regs->rxic, rx_queue->rxic);
2906         }
2907
2908         return work_done;
2909 }
2910
2911 static int gfar_poll(struct napi_struct *napi, int budget)
2912 {
2913         struct gfar_priv_grp *gfargrp =
2914                 container_of(napi, struct gfar_priv_grp, napi);
2915         struct gfar_private *priv = gfargrp->priv;
2916         struct gfar __iomem *regs = gfargrp->regs;
2917         struct gfar_priv_tx_q *tx_queue = NULL;
2918         struct gfar_priv_rx_q *rx_queue = NULL;
2919         int work_done = 0, work_done_per_q = 0;
2920         int i, budget_per_q = 0;
2921         int has_tx_work;
2922         unsigned long rstat_rxf;
2923         int num_act_queues;
2924
2925         /* Clear IEVENT, so interrupts aren't called again
2926          * because of the packets that have already arrived
2927          */
2928         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2929
2930         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2931
2932         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2933         if (num_act_queues)
2934                 budget_per_q = budget/num_act_queues;
2935
2936         while (1) {
2937                 has_tx_work = 0;
2938                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2939                         tx_queue = priv->tx_queue[i];
2940                         /* run Tx cleanup to completion */
2941                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2942                                 gfar_clean_tx_ring(tx_queue);
2943                                 has_tx_work = 1;
2944                         }
2945                 }
2946
2947                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2948                         /* skip queue if not active */
2949                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2950                                 continue;
2951
2952                         rx_queue = priv->rx_queue[i];
2953                         work_done_per_q =
2954                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2955                         work_done += work_done_per_q;
2956
2957                         /* finished processing this queue */
2958                         if (work_done_per_q < budget_per_q) {
2959                                 /* clear active queue hw indication */
2960                                 gfar_write(&regs->rstat,
2961                                            RSTAT_CLEAR_RXF0 >> i);
2962                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2963                                 num_act_queues--;
2964
2965                                 if (!num_act_queues)
2966                                         break;
2967                                 /* recompute budget per Rx queue */
2968                                 budget_per_q =
2969                                         (budget - work_done) / num_act_queues;
2970                         }
2971                 }
2972
2973                 if (work_done >= budget)
2974                         break;
2975
2976                 if (!num_act_queues && !has_tx_work) {
2977
2978                         napi_complete(napi);
2979
2980                         /* Clear the halt bit in RSTAT */
2981                         gfar_write(&regs->rstat, gfargrp->rstat);
2982
2983                         gfar_write(&regs->imask, IMASK_DEFAULT);
2984
2985                         /* If we are coalescing interrupts, update the timer
2986                          * Otherwise, clear it
2987                          */
2988                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2989                                                   gfargrp->tx_bit_map);
2990                         break;
2991                 }
2992         }
2993
2994         return work_done;
2995 }
2996
2997 #ifdef CONFIG_NET_POLL_CONTROLLER
2998 /* Polling 'interrupt' - used by things like netconsole to send skbs
2999  * without having to re-enable interrupts. It's not called while
3000  * the interrupt routine is executing.
3001  */
3002 static void gfar_netpoll(struct net_device *dev)
3003 {
3004         struct gfar_private *priv = netdev_priv(dev);
3005         int i;
3006
3007         /* If the device has multiple interrupts, run tx/rx */
3008         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3009                 for (i = 0; i < priv->num_grps; i++) {
3010                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3011
3012                         disable_irq(gfar_irq(grp, TX)->irq);
3013                         disable_irq(gfar_irq(grp, RX)->irq);
3014                         disable_irq(gfar_irq(grp, ER)->irq);
3015                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3016                         enable_irq(gfar_irq(grp, ER)->irq);
3017                         enable_irq(gfar_irq(grp, RX)->irq);
3018                         enable_irq(gfar_irq(grp, TX)->irq);
3019                 }
3020         } else {
3021                 for (i = 0; i < priv->num_grps; i++) {
3022                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3023
3024                         disable_irq(gfar_irq(grp, TX)->irq);
3025                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3026                         enable_irq(gfar_irq(grp, TX)->irq);
3027                 }
3028         }
3029 }
3030 #endif
3031
3032 /* The interrupt handler for devices with one interrupt */
3033 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3034 {
3035         struct gfar_priv_grp *gfargrp = grp_id;
3036
3037         /* Save ievent for future reference */
3038         u32 events = gfar_read(&gfargrp->regs->ievent);
3039
3040         /* Check for reception */
3041         if (events & IEVENT_RX_MASK)
3042                 gfar_receive(irq, grp_id);
3043
3044         /* Check for transmit completion */
3045         if (events & IEVENT_TX_MASK)
3046                 gfar_transmit(irq, grp_id);
3047
3048         /* Check for errors */
3049         if (events & IEVENT_ERR_MASK)
3050                 gfar_error(irq, grp_id);
3051
3052         return IRQ_HANDLED;
3053 }
3054
3055 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3056 {
3057         struct phy_device *phydev = priv->phydev;
3058         u32 val = 0;
3059
3060         if (!phydev->duplex)
3061                 return val;
3062
3063         if (!priv->pause_aneg_en) {
3064                 if (priv->tx_pause_en)
3065                         val |= MACCFG1_TX_FLOW;
3066                 if (priv->rx_pause_en)
3067                         val |= MACCFG1_RX_FLOW;
3068         } else {
3069                 u16 lcl_adv, rmt_adv;
3070                 u8 flowctrl;
3071                 /* get link partner capabilities */
3072                 rmt_adv = 0;
3073                 if (phydev->pause)
3074                         rmt_adv = LPA_PAUSE_CAP;
3075                 if (phydev->asym_pause)
3076                         rmt_adv |= LPA_PAUSE_ASYM;
3077
3078                 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3079
3080                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3081                 if (flowctrl & FLOW_CTRL_TX)
3082                         val |= MACCFG1_TX_FLOW;
3083                 if (flowctrl & FLOW_CTRL_RX)
3084                         val |= MACCFG1_RX_FLOW;
3085         }
3086
3087         return val;
3088 }
3089
3090 /* Called every time the controller might need to be made
3091  * aware of new link state.  The PHY code conveys this
3092  * information through variables in the phydev structure, and this
3093  * function converts those variables into the appropriate
3094  * register values, and can bring down the device if needed.
3095  */
3096 static void adjust_link(struct net_device *dev)
3097 {
3098         struct gfar_private *priv = netdev_priv(dev);
3099         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3100         unsigned long flags;
3101         struct phy_device *phydev = priv->phydev;
3102         int new_state = 0;
3103
3104         local_irq_save(flags);
3105         lock_tx_qs(priv);
3106
3107         if (phydev->link) {
3108                 u32 tempval1 = gfar_read(&regs->maccfg1);
3109                 u32 tempval = gfar_read(&regs->maccfg2);
3110                 u32 ecntrl = gfar_read(&regs->ecntrl);
3111
3112                 /* Now we make sure that we can be in full duplex mode.
3113                  * If not, we operate in half-duplex mode.
3114                  */
3115                 if (phydev->duplex != priv->oldduplex) {
3116                         new_state = 1;
3117                         if (!(phydev->duplex))
3118                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3119                         else
3120                                 tempval |= MACCFG2_FULL_DUPLEX;
3121
3122                         priv->oldduplex = phydev->duplex;
3123                 }
3124
3125                 if (phydev->speed != priv->oldspeed) {
3126                         new_state = 1;
3127                         switch (phydev->speed) {
3128                         case 1000:
3129                                 tempval =
3130                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3131
3132                                 ecntrl &= ~(ECNTRL_R100);
3133                                 break;
3134                         case 100:
3135                         case 10:
3136                                 tempval =
3137                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3138
3139                                 /* Reduced mode distinguishes
3140                                  * between 10 and 100
3141                                  */
3142                                 if (phydev->speed == SPEED_100)
3143                                         ecntrl |= ECNTRL_R100;
3144                                 else
3145                                         ecntrl &= ~(ECNTRL_R100);
3146                                 break;
3147                         default:
3148                                 netif_warn(priv, link, dev,
3149                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3150                                            phydev->speed);
3151                                 break;
3152                         }
3153
3154                         priv->oldspeed = phydev->speed;
3155                 }
3156
3157                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3158                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3159
3160                 gfar_write(&regs->maccfg1, tempval1);
3161                 gfar_write(&regs->maccfg2, tempval);
3162                 gfar_write(&regs->ecntrl, ecntrl);
3163
3164                 if (!priv->oldlink) {
3165                         new_state = 1;
3166                         priv->oldlink = 1;
3167                 }
3168         } else if (priv->oldlink) {
3169                 new_state = 1;
3170                 priv->oldlink = 0;
3171                 priv->oldspeed = 0;
3172                 priv->oldduplex = -1;
3173         }
3174
3175         if (new_state && netif_msg_link(priv))
3176                 phy_print_status(phydev);
3177         unlock_tx_qs(priv);
3178         local_irq_restore(flags);
3179 }
3180
3181 /* Update the hash table based on the current list of multicast
3182  * addresses we subscribe to.  Also, change the promiscuity of
3183  * the device based on the flags (this function is called
3184  * whenever dev->flags is changed
3185  */
3186 static void gfar_set_multi(struct net_device *dev)
3187 {
3188         struct netdev_hw_addr *ha;
3189         struct gfar_private *priv = netdev_priv(dev);
3190         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3191         u32 tempval;
3192
3193         if (dev->flags & IFF_PROMISC) {
3194                 /* Set RCTRL to PROM */
3195                 tempval = gfar_read(&regs->rctrl);
3196                 tempval |= RCTRL_PROM;
3197                 gfar_write(&regs->rctrl, tempval);
3198         } else {
3199                 /* Set RCTRL to not PROM */
3200                 tempval = gfar_read(&regs->rctrl);
3201                 tempval &= ~(RCTRL_PROM);
3202                 gfar_write(&regs->rctrl, tempval);
3203         }
3204
3205         if (dev->flags & IFF_ALLMULTI) {
3206                 /* Set the hash to rx all multicast frames */
3207                 gfar_write(&regs->igaddr0, 0xffffffff);
3208                 gfar_write(&regs->igaddr1, 0xffffffff);
3209                 gfar_write(&regs->igaddr2, 0xffffffff);
3210                 gfar_write(&regs->igaddr3, 0xffffffff);
3211                 gfar_write(&regs->igaddr4, 0xffffffff);
3212                 gfar_write(&regs->igaddr5, 0xffffffff);
3213                 gfar_write(&regs->igaddr6, 0xffffffff);
3214                 gfar_write(&regs->igaddr7, 0xffffffff);
3215                 gfar_write(&regs->gaddr0, 0xffffffff);
3216                 gfar_write(&regs->gaddr1, 0xffffffff);
3217                 gfar_write(&regs->gaddr2, 0xffffffff);
3218                 gfar_write(&regs->gaddr3, 0xffffffff);
3219                 gfar_write(&regs->gaddr4, 0xffffffff);
3220                 gfar_write(&regs->gaddr5, 0xffffffff);
3221                 gfar_write(&regs->gaddr6, 0xffffffff);
3222                 gfar_write(&regs->gaddr7, 0xffffffff);
3223         } else {
3224                 int em_num;
3225                 int idx;
3226
3227                 /* zero out the hash */
3228                 gfar_write(&regs->igaddr0, 0x0);
3229                 gfar_write(&regs->igaddr1, 0x0);
3230                 gfar_write(&regs->igaddr2, 0x0);
3231                 gfar_write(&regs->igaddr3, 0x0);
3232                 gfar_write(&regs->igaddr4, 0x0);
3233                 gfar_write(&regs->igaddr5, 0x0);
3234                 gfar_write(&regs->igaddr6, 0x0);
3235                 gfar_write(&regs->igaddr7, 0x0);
3236                 gfar_write(&regs->gaddr0, 0x0);
3237                 gfar_write(&regs->gaddr1, 0x0);
3238                 gfar_write(&regs->gaddr2, 0x0);
3239                 gfar_write(&regs->gaddr3, 0x0);
3240                 gfar_write(&regs->gaddr4, 0x0);
3241                 gfar_write(&regs->gaddr5, 0x0);
3242                 gfar_write(&regs->gaddr6, 0x0);
3243                 gfar_write(&regs->gaddr7, 0x0);
3244
3245                 /* If we have extended hash tables, we need to
3246                  * clear the exact match registers to prepare for
3247                  * setting them
3248                  */
3249                 if (priv->extended_hash) {
3250                         em_num = GFAR_EM_NUM + 1;
3251                         gfar_clear_exact_match(dev);
3252                         idx = 1;
3253                 } else {
3254                         idx = 0;
3255                         em_num = 0;
3256                 }
3257
3258                 if (netdev_mc_empty(dev))
3259                         return;
3260
3261                 /* Parse the list, and set the appropriate bits */
3262                 netdev_for_each_mc_addr(ha, dev) {
3263                         if (idx < em_num) {
3264                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3265                                 idx++;
3266                         } else
3267                                 gfar_set_hash_for_addr(dev, ha->addr);
3268                 }
3269         }
3270 }
3271
3272
3273 /* Clears each of the exact match registers to zero, so they
3274  * don't interfere with normal reception
3275  */
3276 static void gfar_clear_exact_match(struct net_device *dev)
3277 {
3278         int idx;
3279         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3280
3281         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3282                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3283 }
3284
3285 /* Set the appropriate hash bit for the given addr */
3286 /* The algorithm works like so:
3287  * 1) Take the Destination Address (ie the multicast address), and
3288  * do a CRC on it (little endian), and reverse the bits of the
3289  * result.
3290  * 2) Use the 8 most significant bits as a hash into a 256-entry
3291  * table.  The table is controlled through 8 32-bit registers:
3292  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3293  * gaddr7.  This means that the 3 most significant bits in the
3294  * hash index which gaddr register to use, and the 5 other bits
3295  * indicate which bit (assuming an IBM numbering scheme, which
3296  * for PowerPC (tm) is usually the case) in the register holds
3297  * the entry.
3298  */
3299 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3300 {
3301         u32 tempval;
3302         struct gfar_private *priv = netdev_priv(dev);
3303         u32 result = ether_crc(ETH_ALEN, addr);
3304         int width = priv->hash_width;
3305         u8 whichbit = (result >> (32 - width)) & 0x1f;
3306         u8 whichreg = result >> (32 - width + 5);
3307         u32 value = (1 << (31-whichbit));
3308
3309         tempval = gfar_read(priv->hash_regs[whichreg]);
3310         tempval |= value;
3311         gfar_write(priv->hash_regs[whichreg], tempval);
3312 }
3313
3314
3315 /* There are multiple MAC Address register pairs on some controllers
3316  * This function sets the numth pair to a given address
3317  */
3318 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3319                                   const u8 *addr)
3320 {
3321         struct gfar_private *priv = netdev_priv(dev);
3322         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3323         int idx;
3324         char tmpbuf[ETH_ALEN];
3325         u32 tempval;
3326         u32 __iomem *macptr = &regs->macstnaddr1;
3327
3328         macptr += num*2;
3329
3330         /* Now copy it into the mac registers backwards, cuz
3331          * little endian is silly
3332          */
3333         for (idx = 0; idx < ETH_ALEN; idx++)
3334                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3335
3336         gfar_write(macptr, *((u32 *) (tmpbuf)));
3337
3338         tempval = *((u32 *) (tmpbuf + 4));
3339
3340         gfar_write(macptr+1, tempval);
3341 }
3342
3343 /* GFAR error interrupt handler */
3344 static irqreturn_t gfar_error(int irq, void *grp_id)
3345 {
3346         struct gfar_priv_grp *gfargrp = grp_id;
3347         struct gfar __iomem *regs = gfargrp->regs;
3348         struct gfar_private *priv= gfargrp->priv;
3349         struct net_device *dev = priv->ndev;
3350
3351         /* Save ievent for future reference */
3352         u32 events = gfar_read(&regs->ievent);
3353
3354         /* Clear IEVENT */
3355         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3356
3357         /* Magic Packet is not an error. */
3358         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3359             (events & IEVENT_MAG))
3360                 events &= ~IEVENT_MAG;
3361
3362         /* Hmm... */
3363         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3364                 netdev_dbg(dev,
3365                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3366                            events, gfar_read(&regs->imask));
3367
3368         /* Update the error counters */
3369         if (events & IEVENT_TXE) {
3370                 dev->stats.tx_errors++;
3371
3372                 if (events & IEVENT_LC)
3373                         dev->stats.tx_window_errors++;
3374                 if (events & IEVENT_CRL)
3375                         dev->stats.tx_aborted_errors++;
3376                 if (events & IEVENT_XFUN) {
3377                         unsigned long flags;
3378
3379                         netif_dbg(priv, tx_err, dev,
3380                                   "TX FIFO underrun, packet dropped\n");
3381                         dev->stats.tx_dropped++;
3382                         atomic64_inc(&priv->extra_stats.tx_underrun);
3383
3384                         local_irq_save(flags);
3385                         lock_tx_qs(priv);
3386
3387                         /* Reactivate the Tx Queues */
3388                         gfar_write(&regs->tstat, gfargrp->tstat);
3389
3390                         unlock_tx_qs(priv);
3391                         local_irq_restore(flags);
3392                 }
3393                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3394         }
3395         if (events & IEVENT_BSY) {
3396                 dev->stats.rx_errors++;
3397                 atomic64_inc(&priv->extra_stats.rx_bsy);
3398
3399                 gfar_receive(irq, grp_id);
3400
3401                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3402                           gfar_read(&regs->rstat));
3403         }
3404         if (events & IEVENT_BABR) {
3405                 dev->stats.rx_errors++;
3406                 atomic64_inc(&priv->extra_stats.rx_babr);
3407
3408                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3409         }
3410         if (events & IEVENT_EBERR) {
3411                 atomic64_inc(&priv->extra_stats.eberr);
3412                 netif_dbg(priv, rx_err, dev, "bus error\n");
3413         }
3414         if (events & IEVENT_RXC)
3415                 netif_dbg(priv, rx_status, dev, "control frame\n");
3416
3417         if (events & IEVENT_BABT) {
3418                 atomic64_inc(&priv->extra_stats.tx_babt);
3419                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3420         }
3421         return IRQ_HANDLED;
3422 }
3423
3424 static struct of_device_id gfar_match[] =
3425 {
3426         {
3427                 .type = "network",
3428                 .compatible = "gianfar",
3429         },
3430         {
3431                 .compatible = "fsl,etsec2",
3432         },
3433         {},
3434 };
3435 MODULE_DEVICE_TABLE(of, gfar_match);
3436
3437 /* Structure for a device driver */
3438 static struct platform_driver gfar_driver = {
3439         .driver = {
3440                 .name = "fsl-gianfar",
3441                 .owner = THIS_MODULE,
3442                 .pm = GFAR_PM_OPS,
3443                 .of_match_table = gfar_match,
3444         },
3445         .probe = gfar_probe,
3446         .remove = gfar_remove,
3447 };
3448
3449 module_platform_driver(gfar_driver);