]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/ethernet/sfc/rx.c
Merge branch 'drm-tda998x-3.12-fixes' of git://ftp.arm.linux.org.uk/~rmk/linux-cubox...
[karo-tx-linux.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <linux/iommu.h>
20 #include <net/ip.h>
21 #include <net/checksum.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "filter.h"
25 #include "nic.h"
26 #include "selftest.h"
27 #include "workarounds.h"
28
29 /* Preferred number of descriptors to fill at once */
30 #define EFX_RX_PREFERRED_BATCH 8U
31
32 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
33  * ring, this number is divided by the number of buffers per page to calculate
34  * the number of pages to store in the RX page recycle ring.
35  */
36 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
37 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
38
39 /* Size of buffer allocated for skb header area. */
40 #define EFX_SKB_HEADERS  128u
41
42 /* This is the percentage fill level below which new RX descriptors
43  * will be added to the RX descriptor ring.
44  */
45 static unsigned int rx_refill_threshold;
46
47 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
48 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
49                                       EFX_RX_USR_BUF_SIZE)
50
51 /*
52  * RX maximum head room required.
53  *
54  * This must be at least 1 to prevent overflow, plus one packet-worth
55  * to allow pipelined receives.
56  */
57 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
58
59 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
60 {
61         return page_address(buf->page) + buf->page_offset;
62 }
63
64 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
65 {
66 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
67         return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
68 #else
69         const u8 *data = eh + efx->rx_packet_hash_offset;
70         return (u32)data[0]       |
71                (u32)data[1] << 8  |
72                (u32)data[2] << 16 |
73                (u32)data[3] << 24;
74 #endif
75 }
76
77 static inline struct efx_rx_buffer *
78 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
79 {
80         if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
81                 return efx_rx_buffer(rx_queue, 0);
82         else
83                 return rx_buf + 1;
84 }
85
86 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
87                                       struct efx_rx_buffer *rx_buf,
88                                       unsigned int len)
89 {
90         dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
91                                 DMA_FROM_DEVICE);
92 }
93
94 void efx_rx_config_page_split(struct efx_nic *efx)
95 {
96         efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN,
97                                       EFX_RX_BUF_ALIGNMENT);
98         efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
99                 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
100                  efx->rx_page_buf_step);
101         efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
102                 efx->rx_bufs_per_page;
103         efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
104                                                efx->rx_bufs_per_page);
105 }
106
107 /* Check the RX page recycle ring for a page that can be reused. */
108 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
109 {
110         struct efx_nic *efx = rx_queue->efx;
111         struct page *page;
112         struct efx_rx_page_state *state;
113         unsigned index;
114
115         index = rx_queue->page_remove & rx_queue->page_ptr_mask;
116         page = rx_queue->page_ring[index];
117         if (page == NULL)
118                 return NULL;
119
120         rx_queue->page_ring[index] = NULL;
121         /* page_remove cannot exceed page_add. */
122         if (rx_queue->page_remove != rx_queue->page_add)
123                 ++rx_queue->page_remove;
124
125         /* If page_count is 1 then we hold the only reference to this page. */
126         if (page_count(page) == 1) {
127                 ++rx_queue->page_recycle_count;
128                 return page;
129         } else {
130                 state = page_address(page);
131                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
132                                PAGE_SIZE << efx->rx_buffer_order,
133                                DMA_FROM_DEVICE);
134                 put_page(page);
135                 ++rx_queue->page_recycle_failed;
136         }
137
138         return NULL;
139 }
140
141 /**
142  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
143  *
144  * @rx_queue:           Efx RX queue
145  *
146  * This allocates a batch of pages, maps them for DMA, and populates
147  * struct efx_rx_buffers for each one. Return a negative error code or
148  * 0 on success. If a single page can be used for multiple buffers,
149  * then the page will either be inserted fully, or not at all.
150  */
151 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue)
152 {
153         struct efx_nic *efx = rx_queue->efx;
154         struct efx_rx_buffer *rx_buf;
155         struct page *page;
156         unsigned int page_offset;
157         struct efx_rx_page_state *state;
158         dma_addr_t dma_addr;
159         unsigned index, count;
160
161         count = 0;
162         do {
163                 page = efx_reuse_page(rx_queue);
164                 if (page == NULL) {
165                         page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
166                                            efx->rx_buffer_order);
167                         if (unlikely(page == NULL))
168                                 return -ENOMEM;
169                         dma_addr =
170                                 dma_map_page(&efx->pci_dev->dev, page, 0,
171                                              PAGE_SIZE << efx->rx_buffer_order,
172                                              DMA_FROM_DEVICE);
173                         if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174                                                        dma_addr))) {
175                                 __free_pages(page, efx->rx_buffer_order);
176                                 return -EIO;
177                         }
178                         state = page_address(page);
179                         state->dma_addr = dma_addr;
180                 } else {
181                         state = page_address(page);
182                         dma_addr = state->dma_addr;
183                 }
184
185                 dma_addr += sizeof(struct efx_rx_page_state);
186                 page_offset = sizeof(struct efx_rx_page_state);
187
188                 do {
189                         index = rx_queue->added_count & rx_queue->ptr_mask;
190                         rx_buf = efx_rx_buffer(rx_queue, index);
191                         rx_buf->dma_addr = dma_addr + NET_IP_ALIGN;
192                         rx_buf->page = page;
193                         rx_buf->page_offset = page_offset + NET_IP_ALIGN;
194                         rx_buf->len = efx->rx_dma_len;
195                         rx_buf->flags = 0;
196                         ++rx_queue->added_count;
197                         get_page(page);
198                         dma_addr += efx->rx_page_buf_step;
199                         page_offset += efx->rx_page_buf_step;
200                 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201
202                 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
203         } while (++count < efx->rx_pages_per_batch);
204
205         return 0;
206 }
207
208 /* Unmap a DMA-mapped page.  This function is only called for the final RX
209  * buffer in a page.
210  */
211 static void efx_unmap_rx_buffer(struct efx_nic *efx,
212                                 struct efx_rx_buffer *rx_buf)
213 {
214         struct page *page = rx_buf->page;
215
216         if (page) {
217                 struct efx_rx_page_state *state = page_address(page);
218                 dma_unmap_page(&efx->pci_dev->dev,
219                                state->dma_addr,
220                                PAGE_SIZE << efx->rx_buffer_order,
221                                DMA_FROM_DEVICE);
222         }
223 }
224
225 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
226 {
227         if (rx_buf->page) {
228                 put_page(rx_buf->page);
229                 rx_buf->page = NULL;
230         }
231 }
232
233 /* Attempt to recycle the page if there is an RX recycle ring; the page can
234  * only be added if this is the final RX buffer, to prevent pages being used in
235  * the descriptor ring and appearing in the recycle ring simultaneously.
236  */
237 static void efx_recycle_rx_page(struct efx_channel *channel,
238                                 struct efx_rx_buffer *rx_buf)
239 {
240         struct page *page = rx_buf->page;
241         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
242         struct efx_nic *efx = rx_queue->efx;
243         unsigned index;
244
245         /* Only recycle the page after processing the final buffer. */
246         if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
247                 return;
248
249         index = rx_queue->page_add & rx_queue->page_ptr_mask;
250         if (rx_queue->page_ring[index] == NULL) {
251                 unsigned read_index = rx_queue->page_remove &
252                         rx_queue->page_ptr_mask;
253
254                 /* The next slot in the recycle ring is available, but
255                  * increment page_remove if the read pointer currently
256                  * points here.
257                  */
258                 if (read_index == index)
259                         ++rx_queue->page_remove;
260                 rx_queue->page_ring[index] = page;
261                 ++rx_queue->page_add;
262                 return;
263         }
264         ++rx_queue->page_recycle_full;
265         efx_unmap_rx_buffer(efx, rx_buf);
266         put_page(rx_buf->page);
267 }
268
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270                                struct efx_rx_buffer *rx_buf)
271 {
272         /* Release the page reference we hold for the buffer. */
273         if (rx_buf->page)
274                 put_page(rx_buf->page);
275
276         /* If this is the last buffer in a page, unmap and free it. */
277         if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
278                 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
279                 efx_free_rx_buffer(rx_buf);
280         }
281         rx_buf->page = NULL;
282 }
283
284 /* Recycle the pages that are used by buffers that have just been received. */
285 static void efx_recycle_rx_pages(struct efx_channel *channel,
286                                  struct efx_rx_buffer *rx_buf,
287                                  unsigned int n_frags)
288 {
289         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
290
291         do {
292                 efx_recycle_rx_page(channel, rx_buf);
293                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
294         } while (--n_frags);
295 }
296
297 static void efx_discard_rx_packet(struct efx_channel *channel,
298                                   struct efx_rx_buffer *rx_buf,
299                                   unsigned int n_frags)
300 {
301         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
302
303         efx_recycle_rx_pages(channel, rx_buf, n_frags);
304
305         do {
306                 efx_free_rx_buffer(rx_buf);
307                 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
308         } while (--n_frags);
309 }
310
311 /**
312  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
313  * @rx_queue:           RX descriptor queue
314  *
315  * This will aim to fill the RX descriptor queue up to
316  * @rx_queue->@max_fill. If there is insufficient atomic
317  * memory to do so, a slow fill will be scheduled.
318  *
319  * The caller must provide serialisation (none is used here). In practise,
320  * this means this function must run from the NAPI handler, or be called
321  * when NAPI is disabled.
322  */
323 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
324 {
325         struct efx_nic *efx = rx_queue->efx;
326         unsigned int fill_level, batch_size;
327         int space, rc = 0;
328
329         if (!rx_queue->refill_enabled)
330                 return;
331
332         /* Calculate current fill level, and exit if we don't need to fill */
333         fill_level = (rx_queue->added_count - rx_queue->removed_count);
334         EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
335         if (fill_level >= rx_queue->fast_fill_trigger)
336                 goto out;
337
338         /* Record minimum fill level */
339         if (unlikely(fill_level < rx_queue->min_fill)) {
340                 if (fill_level)
341                         rx_queue->min_fill = fill_level;
342         }
343
344         batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
345         space = rx_queue->max_fill - fill_level;
346         EFX_BUG_ON_PARANOID(space < batch_size);
347
348         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
349                    "RX queue %d fast-filling descriptor ring from"
350                    " level %d to level %d\n",
351                    efx_rx_queue_index(rx_queue), fill_level,
352                    rx_queue->max_fill);
353
354
355         do {
356                 rc = efx_init_rx_buffers(rx_queue);
357                 if (unlikely(rc)) {
358                         /* Ensure that we don't leave the rx queue empty */
359                         if (rx_queue->added_count == rx_queue->removed_count)
360                                 efx_schedule_slow_fill(rx_queue);
361                         goto out;
362                 }
363         } while ((space -= batch_size) >= batch_size);
364
365         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
366                    "RX queue %d fast-filled descriptor ring "
367                    "to level %d\n", efx_rx_queue_index(rx_queue),
368                    rx_queue->added_count - rx_queue->removed_count);
369
370  out:
371         if (rx_queue->notified_count != rx_queue->added_count)
372                 efx_nic_notify_rx_desc(rx_queue);
373 }
374
375 void efx_rx_slow_fill(unsigned long context)
376 {
377         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
378
379         /* Post an event to cause NAPI to run and refill the queue */
380         efx_nic_generate_fill_event(rx_queue);
381         ++rx_queue->slow_fill_count;
382 }
383
384 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
385                                      struct efx_rx_buffer *rx_buf,
386                                      int len)
387 {
388         struct efx_nic *efx = rx_queue->efx;
389         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
390
391         if (likely(len <= max_len))
392                 return;
393
394         /* The packet must be discarded, but this is only a fatal error
395          * if the caller indicated it was
396          */
397         rx_buf->flags |= EFX_RX_PKT_DISCARD;
398
399         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
400                 if (net_ratelimit())
401                         netif_err(efx, rx_err, efx->net_dev,
402                                   " RX queue %d seriously overlength "
403                                   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
404                                   efx_rx_queue_index(rx_queue), len, max_len,
405                                   efx->type->rx_buffer_padding);
406                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
407         } else {
408                 if (net_ratelimit())
409                         netif_err(efx, rx_err, efx->net_dev,
410                                   " RX queue %d overlength RX event "
411                                   "(0x%x > 0x%x)\n",
412                                   efx_rx_queue_index(rx_queue), len, max_len);
413         }
414
415         efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
416 }
417
418 /* Pass a received packet up through GRO.  GRO can handle pages
419  * regardless of checksum state and skbs with a good checksum.
420  */
421 static void
422 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
423                   unsigned int n_frags, u8 *eh)
424 {
425         struct napi_struct *napi = &channel->napi_str;
426         gro_result_t gro_result;
427         struct efx_nic *efx = channel->efx;
428         struct sk_buff *skb;
429
430         skb = napi_get_frags(napi);
431         if (unlikely(!skb)) {
432                 while (n_frags--) {
433                         put_page(rx_buf->page);
434                         rx_buf->page = NULL;
435                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
436                 }
437                 return;
438         }
439
440         if (efx->net_dev->features & NETIF_F_RXHASH)
441                 skb->rxhash = efx_rx_buf_hash(efx, eh);
442         skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
443                           CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
444
445         for (;;) {
446                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
447                                    rx_buf->page, rx_buf->page_offset,
448                                    rx_buf->len);
449                 rx_buf->page = NULL;
450                 skb->len += rx_buf->len;
451                 if (skb_shinfo(skb)->nr_frags == n_frags)
452                         break;
453
454                 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
455         }
456
457         skb->data_len = skb->len;
458         skb->truesize += n_frags * efx->rx_buffer_truesize;
459
460         skb_record_rx_queue(skb, channel->rx_queue.core_index);
461
462         gro_result = napi_gro_frags(napi);
463         if (gro_result != GRO_DROP)
464                 channel->irq_mod_score += 2;
465 }
466
467 /* Allocate and construct an SKB around page fragments */
468 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
469                                      struct efx_rx_buffer *rx_buf,
470                                      unsigned int n_frags,
471                                      u8 *eh, int hdr_len)
472 {
473         struct efx_nic *efx = channel->efx;
474         struct sk_buff *skb;
475
476         /* Allocate an SKB to store the headers */
477         skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN);
478         if (unlikely(skb == NULL))
479                 return NULL;
480
481         EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
482
483         skb_reserve(skb, EFX_PAGE_SKB_ALIGN);
484         memcpy(__skb_put(skb, hdr_len), eh, hdr_len);
485
486         /* Append the remaining page(s) onto the frag list */
487         if (rx_buf->len > hdr_len) {
488                 rx_buf->page_offset += hdr_len;
489                 rx_buf->len -= hdr_len;
490
491                 for (;;) {
492                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
493                                            rx_buf->page, rx_buf->page_offset,
494                                            rx_buf->len);
495                         rx_buf->page = NULL;
496                         skb->len += rx_buf->len;
497                         skb->data_len += rx_buf->len;
498                         if (skb_shinfo(skb)->nr_frags == n_frags)
499                                 break;
500
501                         rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
502                 }
503         } else {
504                 __free_pages(rx_buf->page, efx->rx_buffer_order);
505                 rx_buf->page = NULL;
506                 n_frags = 0;
507         }
508
509         skb->truesize += n_frags * efx->rx_buffer_truesize;
510
511         /* Move past the ethernet header */
512         skb->protocol = eth_type_trans(skb, efx->net_dev);
513
514         return skb;
515 }
516
517 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
518                    unsigned int n_frags, unsigned int len, u16 flags)
519 {
520         struct efx_nic *efx = rx_queue->efx;
521         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
522         struct efx_rx_buffer *rx_buf;
523
524         rx_buf = efx_rx_buffer(rx_queue, index);
525         rx_buf->flags |= flags;
526
527         /* Validate the number of fragments and completed length */
528         if (n_frags == 1) {
529                 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
530                         efx_rx_packet__check_len(rx_queue, rx_buf, len);
531         } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
532                    unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
533                    unlikely(len > n_frags * efx->rx_dma_len) ||
534                    unlikely(!efx->rx_scatter)) {
535                 /* If this isn't an explicit discard request, either
536                  * the hardware or the driver is broken.
537                  */
538                 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
539                 rx_buf->flags |= EFX_RX_PKT_DISCARD;
540         }
541
542         netif_vdbg(efx, rx_status, efx->net_dev,
543                    "RX queue %d received ids %x-%x len %d %s%s\n",
544                    efx_rx_queue_index(rx_queue), index,
545                    (index + n_frags - 1) & rx_queue->ptr_mask, len,
546                    (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
547                    (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
548
549         /* Discard packet, if instructed to do so.  Process the
550          * previous receive first.
551          */
552         if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
553                 efx_rx_flush_packet(channel);
554                 efx_discard_rx_packet(channel, rx_buf, n_frags);
555                 return;
556         }
557
558         if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
559                 rx_buf->len = len;
560
561         /* Release and/or sync the DMA mapping - assumes all RX buffers
562          * consumed in-order per RX queue.
563          */
564         efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
565
566         /* Prefetch nice and early so data will (hopefully) be in cache by
567          * the time we look at it.
568          */
569         prefetch(efx_rx_buf_va(rx_buf));
570
571         rx_buf->page_offset += efx->rx_prefix_size;
572         rx_buf->len -= efx->rx_prefix_size;
573
574         if (n_frags > 1) {
575                 /* Release/sync DMA mapping for additional fragments.
576                  * Fix length for last fragment.
577                  */
578                 unsigned int tail_frags = n_frags - 1;
579
580                 for (;;) {
581                         rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
582                         if (--tail_frags == 0)
583                                 break;
584                         efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
585                 }
586                 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
587                 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
588         }
589
590         /* All fragments have been DMA-synced, so recycle pages. */
591         rx_buf = efx_rx_buffer(rx_queue, index);
592         efx_recycle_rx_pages(channel, rx_buf, n_frags);
593
594         /* Pipeline receives so that we give time for packet headers to be
595          * prefetched into cache.
596          */
597         efx_rx_flush_packet(channel);
598         channel->rx_pkt_n_frags = n_frags;
599         channel->rx_pkt_index = index;
600 }
601
602 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
603                            struct efx_rx_buffer *rx_buf,
604                            unsigned int n_frags)
605 {
606         struct sk_buff *skb;
607         u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
608
609         skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
610         if (unlikely(skb == NULL)) {
611                 efx_free_rx_buffer(rx_buf);
612                 return;
613         }
614         skb_record_rx_queue(skb, channel->rx_queue.core_index);
615
616         /* Set the SKB flags */
617         skb_checksum_none_assert(skb);
618         if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
619                 skb->ip_summed = CHECKSUM_UNNECESSARY;
620
621         if (channel->type->receive_skb)
622                 if (channel->type->receive_skb(channel, skb))
623                         return;
624
625         /* Pass the packet up */
626         netif_receive_skb(skb);
627 }
628
629 /* Handle a received packet.  Second half: Touches packet payload. */
630 void __efx_rx_packet(struct efx_channel *channel)
631 {
632         struct efx_nic *efx = channel->efx;
633         struct efx_rx_buffer *rx_buf =
634                 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
635         u8 *eh = efx_rx_buf_va(rx_buf);
636
637         /* Read length from the prefix if necessary.  This already
638          * excludes the length of the prefix itself.
639          */
640         if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
641                 rx_buf->len = le16_to_cpup((__le16 *)
642                                            (eh + efx->rx_packet_len_offset));
643
644         /* If we're in loopback test, then pass the packet directly to the
645          * loopback layer, and free the rx_buf here
646          */
647         if (unlikely(efx->loopback_selftest)) {
648                 efx_loopback_rx_packet(efx, eh, rx_buf->len);
649                 efx_free_rx_buffer(rx_buf);
650                 goto out;
651         }
652
653         if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
654                 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
655
656         if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
657                 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
658         else
659                 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
660 out:
661         channel->rx_pkt_n_frags = 0;
662 }
663
664 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
665 {
666         struct efx_nic *efx = rx_queue->efx;
667         unsigned int entries;
668         int rc;
669
670         /* Create the smallest power-of-two aligned ring */
671         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
672         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
673         rx_queue->ptr_mask = entries - 1;
674
675         netif_dbg(efx, probe, efx->net_dev,
676                   "creating RX queue %d size %#x mask %#x\n",
677                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
678                   rx_queue->ptr_mask);
679
680         /* Allocate RX buffers */
681         rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
682                                    GFP_KERNEL);
683         if (!rx_queue->buffer)
684                 return -ENOMEM;
685
686         rc = efx_nic_probe_rx(rx_queue);
687         if (rc) {
688                 kfree(rx_queue->buffer);
689                 rx_queue->buffer = NULL;
690         }
691
692         return rc;
693 }
694
695 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
696                                      struct efx_rx_queue *rx_queue)
697 {
698         unsigned int bufs_in_recycle_ring, page_ring_size;
699
700         /* Set the RX recycle ring size */
701 #ifdef CONFIG_PPC64
702         bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
703 #else
704         if (iommu_present(&pci_bus_type))
705                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
706         else
707                 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
708 #endif /* CONFIG_PPC64 */
709
710         page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
711                                             efx->rx_bufs_per_page);
712         rx_queue->page_ring = kcalloc(page_ring_size,
713                                       sizeof(*rx_queue->page_ring), GFP_KERNEL);
714         rx_queue->page_ptr_mask = page_ring_size - 1;
715 }
716
717 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
718 {
719         struct efx_nic *efx = rx_queue->efx;
720         unsigned int max_fill, trigger, max_trigger;
721
722         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
724
725         /* Initialise ptr fields */
726         rx_queue->added_count = 0;
727         rx_queue->notified_count = 0;
728         rx_queue->removed_count = 0;
729         rx_queue->min_fill = -1U;
730         efx_init_rx_recycle_ring(efx, rx_queue);
731
732         rx_queue->page_remove = 0;
733         rx_queue->page_add = rx_queue->page_ptr_mask + 1;
734         rx_queue->page_recycle_count = 0;
735         rx_queue->page_recycle_failed = 0;
736         rx_queue->page_recycle_full = 0;
737
738         /* Initialise limit fields */
739         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
740         max_trigger =
741                 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
742         if (rx_refill_threshold != 0) {
743                 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
744                 if (trigger > max_trigger)
745                         trigger = max_trigger;
746         } else {
747                 trigger = max_trigger;
748         }
749
750         rx_queue->max_fill = max_fill;
751         rx_queue->fast_fill_trigger = trigger;
752         rx_queue->refill_enabled = true;
753
754         /* Set up RX descriptor ring */
755         efx_nic_init_rx(rx_queue);
756 }
757
758 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
759 {
760         int i;
761         struct efx_nic *efx = rx_queue->efx;
762         struct efx_rx_buffer *rx_buf;
763
764         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
765                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
766
767         del_timer_sync(&rx_queue->slow_fill);
768
769         /* Release RX buffers from the current read ptr to the write ptr */
770         if (rx_queue->buffer) {
771                 for (i = rx_queue->removed_count; i < rx_queue->added_count;
772                      i++) {
773                         unsigned index = i & rx_queue->ptr_mask;
774                         rx_buf = efx_rx_buffer(rx_queue, index);
775                         efx_fini_rx_buffer(rx_queue, rx_buf);
776                 }
777         }
778
779         /* Unmap and release the pages in the recycle ring. Remove the ring. */
780         for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
781                 struct page *page = rx_queue->page_ring[i];
782                 struct efx_rx_page_state *state;
783
784                 if (page == NULL)
785                         continue;
786
787                 state = page_address(page);
788                 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
789                                PAGE_SIZE << efx->rx_buffer_order,
790                                DMA_FROM_DEVICE);
791                 put_page(page);
792         }
793         kfree(rx_queue->page_ring);
794         rx_queue->page_ring = NULL;
795 }
796
797 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
798 {
799         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
800                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
801
802         efx_nic_remove_rx(rx_queue);
803
804         kfree(rx_queue->buffer);
805         rx_queue->buffer = NULL;
806 }
807
808
809 module_param(rx_refill_threshold, uint, 0444);
810 MODULE_PARM_DESC(rx_refill_threshold,
811                  "RX descriptor ring refill threshold (%)");
812
813 #ifdef CONFIG_RFS_ACCEL
814
815 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
816                    u16 rxq_index, u32 flow_id)
817 {
818         struct efx_nic *efx = netdev_priv(net_dev);
819         struct efx_channel *channel;
820         struct efx_filter_spec spec;
821         const struct iphdr *ip;
822         const __be16 *ports;
823         int nhoff;
824         int rc;
825
826         nhoff = skb_network_offset(skb);
827
828         if (skb->protocol == htons(ETH_P_8021Q)) {
829                 EFX_BUG_ON_PARANOID(skb_headlen(skb) <
830                                     nhoff + sizeof(struct vlan_hdr));
831                 if (((const struct vlan_hdr *)skb->data + nhoff)->
832                     h_vlan_encapsulated_proto != htons(ETH_P_IP))
833                         return -EPROTONOSUPPORT;
834
835                 /* This is IP over 802.1q VLAN.  We can't filter on the
836                  * IP 5-tuple and the vlan together, so just strip the
837                  * vlan header and filter on the IP part.
838                  */
839                 nhoff += sizeof(struct vlan_hdr);
840         } else if (skb->protocol != htons(ETH_P_IP)) {
841                 return -EPROTONOSUPPORT;
842         }
843
844         /* RFS must validate the IP header length before calling us */
845         EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
846         ip = (const struct iphdr *)(skb->data + nhoff);
847         if (ip_is_fragment(ip))
848                 return -EPROTONOSUPPORT;
849         EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
850         ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
851
852         efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
853                            efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
854                            rxq_index);
855         rc = efx_filter_set_ipv4_full(&spec, ip->protocol,
856                                       ip->daddr, ports[1], ip->saddr, ports[0]);
857         if (rc)
858                 return rc;
859
860         rc = efx->type->filter_rfs_insert(efx, &spec);
861         if (rc < 0)
862                 return rc;
863
864         /* Remember this so we can check whether to expire the filter later */
865         efx->rps_flow_id[rc] = flow_id;
866         channel = efx_get_channel(efx, skb_get_rx_queue(skb));
867         ++channel->rfs_filters_added;
868
869         netif_info(efx, rx_status, efx->net_dev,
870                    "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
871                    (ip->protocol == IPPROTO_TCP) ? "TCP" : "UDP",
872                    &ip->saddr, ntohs(ports[0]), &ip->daddr, ntohs(ports[1]),
873                    rxq_index, flow_id, rc);
874
875         return rc;
876 }
877
878 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
879 {
880         bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
881         unsigned int index, size;
882         u32 flow_id;
883
884         if (!spin_trylock_bh(&efx->filter_lock))
885                 return false;
886
887         expire_one = efx->type->filter_rfs_expire_one;
888         index = efx->rps_expire_index;
889         size = efx->type->max_rx_ip_filters;
890         while (quota--) {
891                 flow_id = efx->rps_flow_id[index];
892                 if (expire_one(efx, flow_id, index))
893                         netif_info(efx, rx_status, efx->net_dev,
894                                    "expired filter %d [flow %u]\n",
895                                    index, flow_id);
896                 if (++index == size)
897                         index = 0;
898         }
899         efx->rps_expire_index = index;
900
901         spin_unlock_bh(&efx->filter_lock);
902         return true;
903 }
904
905 #endif /* CONFIG_RFS_ACCEL */
906
907 /**
908  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
909  * @spec: Specification to test
910  *
911  * Return: %true if the specification is a non-drop RX filter that
912  * matches a local MAC address I/G bit value of 1 or matches a local
913  * IPv4 or IPv6 address value in the respective multicast address
914  * range.  Otherwise %false.
915  */
916 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
917 {
918         if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
919             spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
920                 return false;
921
922         if (spec->match_flags &
923             (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
924             is_multicast_ether_addr(spec->loc_mac))
925                 return true;
926
927         if ((spec->match_flags &
928              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
929             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
930                 if (spec->ether_type == htons(ETH_P_IP) &&
931                     ipv4_is_multicast(spec->loc_host[0]))
932                         return true;
933                 if (spec->ether_type == htons(ETH_P_IPV6) &&
934                     ((const u8 *)spec->loc_host)[0] == 0xff)
935                         return true;
936         }
937
938         return false;
939 }