]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/net/wireless/ath/ath10k/htt_rx.c
Merge remote-tracking branch 'block/for-next'
[karo-tx-linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24
25 #include <linux/log2.h>
26
27 /* slightly larger than one large A-MPDU */
28 #define HTT_RX_RING_SIZE_MIN 128
29
30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
31 #define HTT_RX_RING_SIZE_MAX 2048
32
33 #define HTT_RX_AVG_FRM_BYTES 1000
34
35 /* ms, very conservative */
36 #define HTT_RX_HOST_LATENCY_MAX_MS 20
37
38 /* ms, conservative */
39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
40
41 /* when under memory pressure rx ring refill may fail and needs a retry */
42 #define HTT_RX_RING_REFILL_RETRY_MS 50
43
44
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46
47
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50         int size;
51
52         /*
53          * It is expected that the host CPU will typically be able to
54          * service the rx indication from one A-MPDU before the rx
55          * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56          * later. However, the rx ring should be sized very conservatively,
57          * to accomodate the worst reasonable delay before the host CPU
58          * services a rx indication interrupt.
59          *
60          * The rx ring need not be kept full of empty buffers. In theory,
61          * the htt host SW can dynamically track the low-water mark in the
62          * rx ring, and dynamically adjust the level to which the rx ring
63          * is filled with empty buffers, to dynamically meet the desired
64          * low-water mark.
65          *
66          * In contrast, it's difficult to resize the rx ring itself, once
67          * it's in use. Thus, the ring itself should be sized very
68          * conservatively, while the degree to which the ring is filled
69          * with empty buffers should be sized moderately conservatively.
70          */
71
72         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73         size =
74             htt->max_throughput_mbps +
75             1000  /
76             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77
78         if (size < HTT_RX_RING_SIZE_MIN)
79                 size = HTT_RX_RING_SIZE_MIN;
80
81         if (size > HTT_RX_RING_SIZE_MAX)
82                 size = HTT_RX_RING_SIZE_MAX;
83
84         size = roundup_pow_of_two(size);
85
86         return size;
87 }
88
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91         int size;
92
93         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94         size =
95             htt->max_throughput_mbps *
96             1000  /
97             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98
99         /*
100          * Make sure the fill level is at least 1 less than the ring size.
101          * Leaving 1 element empty allows the SW to easily distinguish
102          * between a full ring vs. an empty ring.
103          */
104         if (size >= htt->rx_ring.size)
105                 size = htt->rx_ring.size - 1;
106
107         return size;
108 }
109
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112         struct sk_buff *skb;
113         struct ath10k_skb_cb *cb;
114         int i;
115
116         for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117                 skb = htt->rx_ring.netbufs_ring[i];
118                 cb = ATH10K_SKB_CB(skb);
119                 dma_unmap_single(htt->ar->dev, cb->paddr,
120                                  skb->len + skb_tailroom(skb),
121                                  DMA_FROM_DEVICE);
122                 dev_kfree_skb_any(skb);
123         }
124
125         htt->rx_ring.fill_cnt = 0;
126 }
127
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130         struct htt_rx_desc *rx_desc;
131         struct sk_buff *skb;
132         dma_addr_t paddr;
133         int ret = 0, idx;
134
135         idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
136         while (num > 0) {
137                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138                 if (!skb) {
139                         ret = -ENOMEM;
140                         goto fail;
141                 }
142
143                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144                         skb_pull(skb,
145                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146                                  skb->data);
147
148                 /* Clear rx_desc attention word before posting to Rx ring */
149                 rx_desc = (struct htt_rx_desc *)skb->data;
150                 rx_desc->attention.flags = __cpu_to_le32(0);
151
152                 paddr = dma_map_single(htt->ar->dev, skb->data,
153                                        skb->len + skb_tailroom(skb),
154                                        DMA_FROM_DEVICE);
155
156                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157                         dev_kfree_skb_any(skb);
158                         ret = -ENOMEM;
159                         goto fail;
160                 }
161
162                 ATH10K_SKB_CB(skb)->paddr = paddr;
163                 htt->rx_ring.netbufs_ring[idx] = skb;
164                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165                 htt->rx_ring.fill_cnt++;
166
167                 num--;
168                 idx++;
169                 idx &= htt->rx_ring.size_mask;
170         }
171
172 fail:
173         *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
174         return ret;
175 }
176
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179         lockdep_assert_held(&htt->rx_ring.lock);
180         return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185         int ret, num_deficit, num_to_fill;
186
187         /* Refilling the whole RX ring buffer proves to be a bad idea. The
188          * reason is RX may take up significant amount of CPU cycles and starve
189          * other tasks, e.g. TX on an ethernet device while acting as a bridge
190          * with ath10k wlan interface. This ended up with very poor performance
191          * once CPU the host system was overwhelmed with RX on ath10k.
192          *
193          * By limiting the number of refills the replenishing occurs
194          * progressively. This in turns makes use of the fact tasklets are
195          * processed in FIFO order. This means actual RX processing can starve
196          * out refilling. If there's not enough buffers on RX ring FW will not
197          * report RX until it is refilled with enough buffers. This
198          * automatically balances load wrt to CPU power.
199          *
200          * This probably comes at a cost of lower maximum throughput but
201          * improves the avarage and stability. */
202         spin_lock_bh(&htt->rx_ring.lock);
203         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205         num_deficit -= num_to_fill;
206         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207         if (ret == -ENOMEM) {
208                 /*
209                  * Failed to fill it to the desired level -
210                  * we'll start a timer and try again next time.
211                  * As long as enough buffers are left in the ring for
212                  * another A-MPDU rx, no special recovery is needed.
213                  */
214                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216         } else if (num_deficit > 0) {
217                 tasklet_schedule(&htt->rx_replenish_task);
218         }
219         spin_unlock_bh(&htt->rx_ring.lock);
220 }
221
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225         ath10k_htt_rx_msdu_buff_replenish(htt);
226 }
227
228 static unsigned ath10k_htt_rx_ring_elems(struct ath10k_htt *htt)
229 {
230         return (__le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr) -
231                 htt->rx_ring.sw_rd_idx.msdu_payld) & htt->rx_ring.size_mask;
232 }
233
234 void ath10k_htt_rx_detach(struct ath10k_htt *htt)
235 {
236         int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld;
237
238         del_timer_sync(&htt->rx_ring.refill_retry_timer);
239         tasklet_kill(&htt->rx_replenish_task);
240
241         while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) {
242                 struct sk_buff *skb =
243                                 htt->rx_ring.netbufs_ring[sw_rd_idx];
244                 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
245
246                 dma_unmap_single(htt->ar->dev, cb->paddr,
247                                  skb->len + skb_tailroom(skb),
248                                  DMA_FROM_DEVICE);
249                 dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]);
250                 sw_rd_idx++;
251                 sw_rd_idx &= htt->rx_ring.size_mask;
252         }
253
254         dma_free_coherent(htt->ar->dev,
255                           (htt->rx_ring.size *
256                            sizeof(htt->rx_ring.paddrs_ring)),
257                           htt->rx_ring.paddrs_ring,
258                           htt->rx_ring.base_paddr);
259
260         dma_free_coherent(htt->ar->dev,
261                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
262                           htt->rx_ring.alloc_idx.vaddr,
263                           htt->rx_ring.alloc_idx.paddr);
264
265         kfree(htt->rx_ring.netbufs_ring);
266 }
267
268 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
269 {
270         int idx;
271         struct sk_buff *msdu;
272
273         spin_lock_bh(&htt->rx_ring.lock);
274
275         if (ath10k_htt_rx_ring_elems(htt) == 0)
276                 ath10k_warn("htt rx ring is empty!\n");
277
278         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
279         msdu = htt->rx_ring.netbufs_ring[idx];
280
281         idx++;
282         idx &= htt->rx_ring.size_mask;
283         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
284         htt->rx_ring.fill_cnt--;
285
286         spin_unlock_bh(&htt->rx_ring.lock);
287         return msdu;
288 }
289
290 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
291 {
292         struct sk_buff *next;
293
294         while (skb) {
295                 next = skb->next;
296                 dev_kfree_skb_any(skb);
297                 skb = next;
298         }
299 }
300
301 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
302                                    u8 **fw_desc, int *fw_desc_len,
303                                    struct sk_buff **head_msdu,
304                                    struct sk_buff **tail_msdu)
305 {
306         int msdu_len, msdu_chaining = 0;
307         struct sk_buff *msdu;
308         struct htt_rx_desc *rx_desc;
309
310         if (ath10k_htt_rx_ring_elems(htt) == 0)
311                 ath10k_warn("htt rx ring is empty!\n");
312
313         if (htt->rx_confused) {
314                 ath10k_warn("htt is confused. refusing rx\n");
315                 return 0;
316         }
317
318         msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
319         while (msdu) {
320                 int last_msdu, msdu_len_invalid, msdu_chained;
321
322                 dma_unmap_single(htt->ar->dev,
323                                  ATH10K_SKB_CB(msdu)->paddr,
324                                  msdu->len + skb_tailroom(msdu),
325                                  DMA_FROM_DEVICE);
326
327                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
328                                 msdu->data, msdu->len + skb_tailroom(msdu));
329
330                 rx_desc = (struct htt_rx_desc *)msdu->data;
331
332                 /* FIXME: we must report msdu payload since this is what caller
333                  *        expects now */
334                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
335                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
336
337                 /*
338                  * Sanity check - confirm the HW is finished filling in the
339                  * rx data.
340                  * If the HW and SW are working correctly, then it's guaranteed
341                  * that the HW's MAC DMA is done before this point in the SW.
342                  * To prevent the case that we handle a stale Rx descriptor,
343                  * just assert for now until we have a way to recover.
344                  */
345                 if (!(__le32_to_cpu(rx_desc->attention.flags)
346                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
347                         ath10k_htt_rx_free_msdu_chain(*head_msdu);
348                         *head_msdu = NULL;
349                         msdu = NULL;
350                         ath10k_err("htt rx stopped. cannot recover\n");
351                         htt->rx_confused = true;
352                         break;
353                 }
354
355                 /*
356                  * Copy the FW rx descriptor for this MSDU from the rx
357                  * indication message into the MSDU's netbuf. HL uses the
358                  * same rx indication message definition as LL, and simply
359                  * appends new info (fields from the HW rx desc, and the
360                  * MSDU payload itself). So, the offset into the rx
361                  * indication message only has to account for the standard
362                  * offset of the per-MSDU FW rx desc info within the
363                  * message, and how many bytes of the per-MSDU FW rx desc
364                  * info have already been consumed. (And the endianness of
365                  * the host, since for a big-endian host, the rx ind
366                  * message contents, including the per-MSDU rx desc bytes,
367                  * were byteswapped during upload.)
368                  */
369                 if (*fw_desc_len > 0) {
370                         rx_desc->fw_desc.info0 = **fw_desc;
371                         /*
372                          * The target is expected to only provide the basic
373                          * per-MSDU rx descriptors. Just to be sure, verify
374                          * that the target has not attached extension data
375                          * (e.g. LRO flow ID).
376                          */
377
378                         /* or more, if there's extension data */
379                         (*fw_desc)++;
380                         (*fw_desc_len)--;
381                 } else {
382                         /*
383                          * When an oversized AMSDU happened, FW will lost
384                          * some of MSDU status - in this case, the FW
385                          * descriptors provided will be less than the
386                          * actual MSDUs inside this MPDU. Mark the FW
387                          * descriptors so that it will still deliver to
388                          * upper stack, if no CRC error for this MPDU.
389                          *
390                          * FIX THIS - the FW descriptors are actually for
391                          * MSDUs in the end of this A-MSDU instead of the
392                          * beginning.
393                          */
394                         rx_desc->fw_desc.info0 = 0;
395                 }
396
397                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
398                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
399                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
400                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
401                               RX_MSDU_START_INFO0_MSDU_LENGTH);
402                 msdu_chained = rx_desc->frag_info.ring2_more_count;
403
404                 if (msdu_len_invalid)
405                         msdu_len = 0;
406
407                 skb_trim(msdu, 0);
408                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
409                 msdu_len -= msdu->len;
410
411                 /* FIXME: Do chained buffers include htt_rx_desc or not? */
412                 while (msdu_chained--) {
413                         struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
414
415                         dma_unmap_single(htt->ar->dev,
416                                          ATH10K_SKB_CB(next)->paddr,
417                                          next->len + skb_tailroom(next),
418                                          DMA_FROM_DEVICE);
419
420                         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
421                                         next->data,
422                                         next->len + skb_tailroom(next));
423
424                         skb_trim(next, 0);
425                         skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
426                         msdu_len -= next->len;
427
428                         msdu->next = next;
429                         msdu = next;
430                         msdu_chaining = 1;
431                 }
432
433                 if (msdu_len > 0) {
434                         /* This may suggest FW bug? */
435                         ath10k_warn("htt rx msdu len not consumed (%d)\n",
436                                     msdu_len);
437                 }
438
439                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
440                                 RX_MSDU_END_INFO0_LAST_MSDU;
441
442                 if (last_msdu) {
443                         msdu->next = NULL;
444                         break;
445                 } else {
446                         struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
447                         msdu->next = next;
448                         msdu = next;
449                 }
450         }
451         *tail_msdu = msdu;
452
453         /*
454          * Don't refill the ring yet.
455          *
456          * First, the elements popped here are still in use - it is not
457          * safe to overwrite them until the matching call to
458          * mpdu_desc_list_next. Second, for efficiency it is preferable to
459          * refill the rx ring with 1 PPDU's worth of rx buffers (something
460          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
461          * (something like 3 buffers). Consequently, we'll rely on the txrx
462          * SW to tell us when it is done pulling all the PPDU's rx buffers
463          * out of the rx ring, and then refill it just once.
464          */
465
466         return msdu_chaining;
467 }
468
469 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
470 {
471         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
472         ath10k_htt_rx_msdu_buff_replenish(htt);
473 }
474
475 int ath10k_htt_rx_attach(struct ath10k_htt *htt)
476 {
477         dma_addr_t paddr;
478         void *vaddr;
479         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
480
481         htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
482         if (!is_power_of_2(htt->rx_ring.size)) {
483                 ath10k_warn("htt rx ring size is not power of 2\n");
484                 return -EINVAL;
485         }
486
487         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
488
489         /*
490          * Set the initial value for the level to which the rx ring
491          * should be filled, based on the max throughput and the
492          * worst likely latency for the host to fill the rx ring
493          * with new buffers. In theory, this fill level can be
494          * dynamically adjusted from the initial value set here, to
495          * reflect the actual host latency rather than a
496          * conservative assumption about the host latency.
497          */
498         htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
499
500         htt->rx_ring.netbufs_ring =
501                 kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
502                         GFP_KERNEL);
503         if (!htt->rx_ring.netbufs_ring)
504                 goto err_netbuf;
505
506         vaddr = dma_alloc_coherent(htt->ar->dev,
507                    (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
508                    &paddr, GFP_DMA);
509         if (!vaddr)
510                 goto err_dma_ring;
511
512         htt->rx_ring.paddrs_ring = vaddr;
513         htt->rx_ring.base_paddr = paddr;
514
515         vaddr = dma_alloc_coherent(htt->ar->dev,
516                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
517                                    &paddr, GFP_DMA);
518         if (!vaddr)
519                 goto err_dma_idx;
520
521         htt->rx_ring.alloc_idx.vaddr = vaddr;
522         htt->rx_ring.alloc_idx.paddr = paddr;
523         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
524         *htt->rx_ring.alloc_idx.vaddr = 0;
525
526         /* Initialize the Rx refill retry timer */
527         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
528
529         spin_lock_init(&htt->rx_ring.lock);
530
531         htt->rx_ring.fill_cnt = 0;
532         if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
533                 goto err_fill_ring;
534
535         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
536                      (unsigned long)htt);
537
538         ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
539                    htt->rx_ring.size, htt->rx_ring.fill_level);
540         return 0;
541
542 err_fill_ring:
543         ath10k_htt_rx_ring_free(htt);
544         dma_free_coherent(htt->ar->dev,
545                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
546                           htt->rx_ring.alloc_idx.vaddr,
547                           htt->rx_ring.alloc_idx.paddr);
548 err_dma_idx:
549         dma_free_coherent(htt->ar->dev,
550                           (htt->rx_ring.size *
551                            sizeof(htt->rx_ring.paddrs_ring)),
552                           htt->rx_ring.paddrs_ring,
553                           htt->rx_ring.base_paddr);
554 err_dma_ring:
555         kfree(htt->rx_ring.netbufs_ring);
556 err_netbuf:
557         return -ENOMEM;
558 }
559
560 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
561 {
562         switch (type) {
563         case HTT_RX_MPDU_ENCRYPT_WEP40:
564         case HTT_RX_MPDU_ENCRYPT_WEP104:
565                 return 4;
566         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
567         case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
568         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
569         case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
570         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
571                 return 8;
572         case HTT_RX_MPDU_ENCRYPT_NONE:
573                 return 0;
574         }
575
576         ath10k_warn("unknown encryption type %d\n", type);
577         return 0;
578 }
579
580 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
581 {
582         switch (type) {
583         case HTT_RX_MPDU_ENCRYPT_NONE:
584         case HTT_RX_MPDU_ENCRYPT_WEP40:
585         case HTT_RX_MPDU_ENCRYPT_WEP104:
586         case HTT_RX_MPDU_ENCRYPT_WEP128:
587         case HTT_RX_MPDU_ENCRYPT_WAPI:
588                 return 0;
589         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
590         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
591                 return 4;
592         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
593                 return 8;
594         }
595
596         ath10k_warn("unknown encryption type %d\n", type);
597         return 0;
598 }
599
600 /* Applies for first msdu in chain, before altering it. */
601 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
602 {
603         struct htt_rx_desc *rxd;
604         enum rx_msdu_decap_format fmt;
605
606         rxd = (void *)skb->data - sizeof(*rxd);
607         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
608                         RX_MSDU_START_INFO1_DECAP_FORMAT);
609
610         if (fmt == RX_MSDU_DECAP_RAW)
611                 return (void *)skb->data;
612         else
613                 return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
614 }
615
616 /* This function only applies for first msdu in an msdu chain */
617 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
618 {
619         if (ieee80211_is_data_qos(hdr->frame_control)) {
620                 u8 *qc = ieee80211_get_qos_ctl(hdr);
621                 if (qc[0] & 0x80)
622                         return true;
623         }
624         return false;
625 }
626
627 struct rfc1042_hdr {
628         u8 llc_dsap;
629         u8 llc_ssap;
630         u8 llc_ctrl;
631         u8 snap_oui[3];
632         __be16 snap_type;
633 } __packed;
634
635 struct amsdu_subframe_hdr {
636         u8 dst[ETH_ALEN];
637         u8 src[ETH_ALEN];
638         __be16 len;
639 } __packed;
640
641 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
642                                 struct htt_rx_info *info)
643 {
644         struct htt_rx_desc *rxd;
645         struct sk_buff *first;
646         struct sk_buff *skb = info->skb;
647         enum rx_msdu_decap_format fmt;
648         enum htt_rx_mpdu_encrypt_type enctype;
649         struct ieee80211_hdr *hdr;
650         u8 hdr_buf[64], addr[ETH_ALEN], *qos;
651         unsigned int hdr_len;
652
653         rxd = (void *)skb->data - sizeof(*rxd);
654         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
655                         RX_MPDU_START_INFO0_ENCRYPT_TYPE);
656
657         hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
658         hdr_len = ieee80211_hdrlen(hdr->frame_control);
659         memcpy(hdr_buf, hdr, hdr_len);
660         hdr = (struct ieee80211_hdr *)hdr_buf;
661
662         /* FIXME: Hopefully this is a temporary measure.
663          *
664          * Reporting individual A-MSDU subframes means each reported frame
665          * shares the same sequence number.
666          *
667          * mac80211 drops frames it recognizes as duplicates, i.e.
668          * retransmission flag is set and sequence number matches sequence
669          * number from a previous frame (as per IEEE 802.11-2012: 9.3.2.10
670          * "Duplicate detection and recovery")
671          *
672          * To avoid frames being dropped clear retransmission flag for all
673          * received A-MSDUs.
674          *
675          * Worst case: actual duplicate frames will be reported but this should
676          * still be handled gracefully by other OSI/ISO layers. */
677         hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_RETRY);
678
679         first = skb;
680         while (skb) {
681                 void *decap_hdr;
682                 int len;
683
684                 rxd = (void *)skb->data - sizeof(*rxd);
685                 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
686                          RX_MSDU_START_INFO1_DECAP_FORMAT);
687                 decap_hdr = (void *)rxd->rx_hdr_status;
688
689                 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
690
691                 /* First frame in an A-MSDU chain has more decapped data. */
692                 if (skb == first) {
693                         len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
694                         len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
695                                         4);
696                         decap_hdr += len;
697                 }
698
699                 switch (fmt) {
700                 case RX_MSDU_DECAP_RAW:
701                         /* remove trailing FCS */
702                         skb_trim(skb, skb->len - FCS_LEN);
703                         break;
704                 case RX_MSDU_DECAP_NATIVE_WIFI:
705                         /* pull decapped header and copy DA */
706                         hdr = (struct ieee80211_hdr *)skb->data;
707                         hdr_len = ieee80211_hdrlen(hdr->frame_control);
708                         memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
709                         skb_pull(skb, hdr_len);
710
711                         /* push original 802.11 header */
712                         hdr = (struct ieee80211_hdr *)hdr_buf;
713                         hdr_len = ieee80211_hdrlen(hdr->frame_control);
714                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
715
716                         /* original A-MSDU header has the bit set but we're
717                          * not including A-MSDU subframe header */
718                         hdr = (struct ieee80211_hdr *)skb->data;
719                         qos = ieee80211_get_qos_ctl(hdr);
720                         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
721
722                         /* original 802.11 header has a different DA */
723                         memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
724                         break;
725                 case RX_MSDU_DECAP_ETHERNET2_DIX:
726                         /* strip ethernet header and insert decapped 802.11
727                          * header, amsdu subframe header and rfc1042 header */
728
729                         len = 0;
730                         len += sizeof(struct rfc1042_hdr);
731                         len += sizeof(struct amsdu_subframe_hdr);
732
733                         skb_pull(skb, sizeof(struct ethhdr));
734                         memcpy(skb_push(skb, len), decap_hdr, len);
735                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
736                         break;
737                 case RX_MSDU_DECAP_8023_SNAP_LLC:
738                         /* insert decapped 802.11 header making a singly
739                          * A-MSDU */
740                         memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
741                         break;
742                 }
743
744                 info->skb = skb;
745                 info->encrypt_type = enctype;
746                 skb = skb->next;
747                 info->skb->next = NULL;
748
749                 ath10k_process_rx(htt->ar, info);
750         }
751
752         /* FIXME: It might be nice to re-assemble the A-MSDU when there's a
753          * monitor interface active for sniffing purposes. */
754 }
755
756 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info)
757 {
758         struct sk_buff *skb = info->skb;
759         struct htt_rx_desc *rxd;
760         struct ieee80211_hdr *hdr;
761         enum rx_msdu_decap_format fmt;
762         enum htt_rx_mpdu_encrypt_type enctype;
763         int hdr_len;
764         void *rfc1042;
765
766         /* This shouldn't happen. If it does than it may be a FW bug. */
767         if (skb->next) {
768                 ath10k_warn("received chained non A-MSDU frame\n");
769                 ath10k_htt_rx_free_msdu_chain(skb->next);
770                 skb->next = NULL;
771         }
772
773         rxd = (void *)skb->data - sizeof(*rxd);
774         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
775                         RX_MSDU_START_INFO1_DECAP_FORMAT);
776         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
777                         RX_MPDU_START_INFO0_ENCRYPT_TYPE);
778         hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
779         hdr_len = ieee80211_hdrlen(hdr->frame_control);
780
781         skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
782
783         switch (fmt) {
784         case RX_MSDU_DECAP_RAW:
785                 /* remove trailing FCS */
786                 skb_trim(skb, skb->len - FCS_LEN);
787                 break;
788         case RX_MSDU_DECAP_NATIVE_WIFI:
789                 /* Pull decapped header */
790                 hdr = (struct ieee80211_hdr *)skb->data;
791                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
792                 skb_pull(skb, hdr_len);
793
794                 /* Push original header */
795                 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
796                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
797                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
798                 break;
799         case RX_MSDU_DECAP_ETHERNET2_DIX:
800                 /* strip ethernet header and insert decapped 802.11 header and
801                  * rfc1042 header */
802
803                 rfc1042 = hdr;
804                 rfc1042 += roundup(hdr_len, 4);
805                 rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
806
807                 skb_pull(skb, sizeof(struct ethhdr));
808                 memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
809                        rfc1042, sizeof(struct rfc1042_hdr));
810                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
811                 break;
812         case RX_MSDU_DECAP_8023_SNAP_LLC:
813                 /* remove A-MSDU subframe header and insert
814                  * decapped 802.11 header. rfc1042 header is already there */
815
816                 skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
817                 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
818                 break;
819         }
820
821         info->skb = skb;
822         info->encrypt_type = enctype;
823
824         ath10k_process_rx(htt->ar, info);
825 }
826
827 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb)
828 {
829         struct htt_rx_desc *rxd;
830         u32 flags;
831
832         rxd = (void *)skb->data - sizeof(*rxd);
833         flags = __le32_to_cpu(rxd->attention.flags);
834
835         if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR)
836                 return true;
837
838         return false;
839 }
840
841 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb)
842 {
843         struct htt_rx_desc *rxd;
844         u32 flags;
845
846         rxd = (void *)skb->data - sizeof(*rxd);
847         flags = __le32_to_cpu(rxd->attention.flags);
848
849         if (flags & RX_ATTENTION_FLAGS_FCS_ERR)
850                 return true;
851
852         return false;
853 }
854
855 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
856 {
857         struct htt_rx_desc *rxd;
858         u32 flags, info;
859         bool is_ip4, is_ip6;
860         bool is_tcp, is_udp;
861         bool ip_csum_ok, tcpudp_csum_ok;
862
863         rxd = (void *)skb->data - sizeof(*rxd);
864         flags = __le32_to_cpu(rxd->attention.flags);
865         info = __le32_to_cpu(rxd->msdu_start.info1);
866
867         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
868         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
869         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
870         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
871         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
872         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
873
874         if (!is_ip4 && !is_ip6)
875                 return CHECKSUM_NONE;
876         if (!is_tcp && !is_udp)
877                 return CHECKSUM_NONE;
878         if (!ip_csum_ok)
879                 return CHECKSUM_NONE;
880         if (!tcpudp_csum_ok)
881                 return CHECKSUM_NONE;
882
883         return CHECKSUM_UNNECESSARY;
884 }
885
886 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
887                                   struct htt_rx_indication *rx)
888 {
889         struct htt_rx_info info;
890         struct htt_rx_indication_mpdu_range *mpdu_ranges;
891         struct ieee80211_hdr *hdr;
892         int num_mpdu_ranges;
893         int fw_desc_len;
894         u8 *fw_desc;
895         int i, j;
896
897         memset(&info, 0, sizeof(info));
898
899         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
900         fw_desc = (u8 *)&rx->fw_desc;
901
902         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
903                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
904         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
905
906         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
907                         rx, sizeof(*rx) +
908                         (sizeof(struct htt_rx_indication_mpdu_range) *
909                                 num_mpdu_ranges));
910
911         for (i = 0; i < num_mpdu_ranges; i++) {
912                 info.status = mpdu_ranges[i].mpdu_range_status;
913
914                 for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
915                         struct sk_buff *msdu_head, *msdu_tail;
916                         enum htt_rx_mpdu_status status;
917                         int msdu_chaining;
918
919                         msdu_head = NULL;
920                         msdu_tail = NULL;
921                         msdu_chaining = ath10k_htt_rx_amsdu_pop(htt,
922                                                          &fw_desc,
923                                                          &fw_desc_len,
924                                                          &msdu_head,
925                                                          &msdu_tail);
926
927                         if (!msdu_head) {
928                                 ath10k_warn("htt rx no data!\n");
929                                 continue;
930                         }
931
932                         if (msdu_head->len == 0) {
933                                 ath10k_dbg(ATH10K_DBG_HTT,
934                                            "htt rx dropping due to zero-len\n");
935                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
936                                 continue;
937                         }
938
939                         if (ath10k_htt_rx_has_decrypt_err(msdu_head)) {
940                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
941                                 continue;
942                         }
943
944                         status = info.status;
945
946                         /* Skip mgmt frames while we handle this in WMI */
947                         if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL) {
948                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
949                                 continue;
950                         }
951
952                         if (status != HTT_RX_IND_MPDU_STATUS_OK &&
953                             status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
954                             !htt->ar->monitor_enabled) {
955                                 ath10k_dbg(ATH10K_DBG_HTT,
956                                            "htt rx ignoring frame w/ status %d\n",
957                                            status);
958                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
959                                 continue;
960                         }
961
962                         /* FIXME: we do not support chaining yet.
963                          * this needs investigation */
964                         if (msdu_chaining) {
965                                 ath10k_warn("msdu_chaining is true\n");
966                                 ath10k_htt_rx_free_msdu_chain(msdu_head);
967                                 continue;
968                         }
969
970                         info.skb     = msdu_head;
971                         info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head);
972                         info.signal  = ATH10K_DEFAULT_NOISE_FLOOR;
973                         info.signal += rx->ppdu.combined_rssi;
974
975                         info.rate.info0 = rx->ppdu.info0;
976                         info.rate.info1 = __le32_to_cpu(rx->ppdu.info1);
977                         info.rate.info2 = __le32_to_cpu(rx->ppdu.info2);
978
979                         hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
980
981                         if (ath10k_htt_rx_hdr_is_amsdu(hdr))
982                                 ath10k_htt_rx_amsdu(htt, &info);
983                         else
984                                 ath10k_htt_rx_msdu(htt, &info);
985                 }
986         }
987
988         tasklet_schedule(&htt->rx_replenish_task);
989 }
990
991 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
992                                 struct htt_rx_fragment_indication *frag)
993 {
994         struct sk_buff *msdu_head, *msdu_tail;
995         struct htt_rx_desc *rxd;
996         enum rx_msdu_decap_format fmt;
997         struct htt_rx_info info = {};
998         struct ieee80211_hdr *hdr;
999         int msdu_chaining;
1000         bool tkip_mic_err;
1001         bool decrypt_err;
1002         u8 *fw_desc;
1003         int fw_desc_len, hdrlen, paramlen;
1004         int trim;
1005
1006         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1007         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1008
1009         msdu_head = NULL;
1010         msdu_tail = NULL;
1011         msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1012                                                 &msdu_head, &msdu_tail);
1013
1014         ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1015
1016         if (!msdu_head) {
1017                 ath10k_warn("htt rx frag no data\n");
1018                 return;
1019         }
1020
1021         if (msdu_chaining || msdu_head != msdu_tail) {
1022                 ath10k_warn("aggregation with fragmentation?!\n");
1023                 ath10k_htt_rx_free_msdu_chain(msdu_head);
1024                 return;
1025         }
1026
1027         /* FIXME: implement signal strength */
1028
1029         hdr = (struct ieee80211_hdr *)msdu_head->data;
1030         rxd = (void *)msdu_head->data - sizeof(*rxd);
1031         tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
1032                                 RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1033         decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
1034                                 RX_ATTENTION_FLAGS_DECRYPT_ERR);
1035         fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1036                         RX_MSDU_START_INFO1_DECAP_FORMAT);
1037
1038         if (fmt != RX_MSDU_DECAP_RAW) {
1039                 ath10k_warn("we dont support non-raw fragmented rx yet\n");
1040                 dev_kfree_skb_any(msdu_head);
1041                 goto end;
1042         }
1043
1044         info.skb = msdu_head;
1045         info.status = HTT_RX_IND_MPDU_STATUS_OK;
1046         info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1047                                 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1048         info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb);
1049
1050         if (tkip_mic_err) {
1051                 ath10k_warn("tkip mic error\n");
1052                 info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR;
1053         }
1054
1055         if (decrypt_err) {
1056                 ath10k_warn("decryption err in fragmented rx\n");
1057                 dev_kfree_skb_any(info.skb);
1058                 goto end;
1059         }
1060
1061         if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) {
1062                 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1063                 paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type);
1064
1065                 /* It is more efficient to move the header than the payload */
1066                 memmove((void *)info.skb->data + paramlen,
1067                         (void *)info.skb->data,
1068                         hdrlen);
1069                 skb_pull(info.skb, paramlen);
1070                 hdr = (struct ieee80211_hdr *)info.skb->data;
1071         }
1072
1073         /* remove trailing FCS */
1074         trim  = 4;
1075
1076         /* remove crypto trailer */
1077         trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type);
1078
1079         /* last fragment of TKIP frags has MIC */
1080         if (!ieee80211_has_morefrags(hdr->frame_control) &&
1081             info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1082                 trim += 8;
1083
1084         if (trim > info.skb->len) {
1085                 ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
1086                 dev_kfree_skb_any(info.skb);
1087                 goto end;
1088         }
1089
1090         skb_trim(info.skb, info.skb->len - trim);
1091
1092         ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt frag mpdu: ",
1093                         info.skb->data, info.skb->len);
1094         ath10k_process_rx(htt->ar, &info);
1095
1096 end:
1097         if (fw_desc_len > 0) {
1098                 ath10k_dbg(ATH10K_DBG_HTT,
1099                            "expecting more fragmented rx in one indication %d\n",
1100                            fw_desc_len);
1101         }
1102 }
1103
1104 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1105 {
1106         struct ath10k_htt *htt = &ar->htt;
1107         struct htt_resp *resp = (struct htt_resp *)skb->data;
1108
1109         /* confirm alignment */
1110         if (!IS_ALIGNED((unsigned long)skb->data, 4))
1111                 ath10k_warn("unaligned htt message, expect trouble\n");
1112
1113         ath10k_dbg(ATH10K_DBG_HTT, "HTT RX, msg_type: 0x%0X\n",
1114                    resp->hdr.msg_type);
1115         switch (resp->hdr.msg_type) {
1116         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1117                 htt->target_version_major = resp->ver_resp.major;
1118                 htt->target_version_minor = resp->ver_resp.minor;
1119                 complete(&htt->target_version_received);
1120                 break;
1121         }
1122         case HTT_T2H_MSG_TYPE_RX_IND: {
1123                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
1124                 break;
1125         }
1126         case HTT_T2H_MSG_TYPE_PEER_MAP: {
1127                 struct htt_peer_map_event ev = {
1128                         .vdev_id = resp->peer_map.vdev_id,
1129                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1130                 };
1131                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1132                 ath10k_peer_map_event(htt, &ev);
1133                 break;
1134         }
1135         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1136                 struct htt_peer_unmap_event ev = {
1137                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1138                 };
1139                 ath10k_peer_unmap_event(htt, &ev);
1140                 break;
1141         }
1142         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1143                 struct htt_tx_done tx_done = {};
1144                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1145
1146                 tx_done.msdu_id =
1147                         __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1148
1149                 switch (status) {
1150                 case HTT_MGMT_TX_STATUS_OK:
1151                         break;
1152                 case HTT_MGMT_TX_STATUS_RETRY:
1153                         tx_done.no_ack = true;
1154                         break;
1155                 case HTT_MGMT_TX_STATUS_DROP:
1156                         tx_done.discard = true;
1157                         break;
1158                 }
1159
1160                 ath10k_txrx_tx_unref(htt, &tx_done);
1161                 break;
1162         }
1163         case HTT_T2H_MSG_TYPE_TX_COMPL_IND: {
1164                 struct htt_tx_done tx_done = {};
1165                 int status = MS(resp->data_tx_completion.flags,
1166                                 HTT_DATA_TX_STATUS);
1167                 __le16 msdu_id;
1168                 int i;
1169
1170                 switch (status) {
1171                 case HTT_DATA_TX_STATUS_NO_ACK:
1172                         tx_done.no_ack = true;
1173                         break;
1174                 case HTT_DATA_TX_STATUS_OK:
1175                         break;
1176                 case HTT_DATA_TX_STATUS_DISCARD:
1177                 case HTT_DATA_TX_STATUS_POSTPONE:
1178                 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1179                         tx_done.discard = true;
1180                         break;
1181                 default:
1182                         ath10k_warn("unhandled tx completion status %d\n",
1183                                     status);
1184                         tx_done.discard = true;
1185                         break;
1186                 }
1187
1188                 ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1189                            resp->data_tx_completion.num_msdus);
1190
1191                 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1192                         msdu_id = resp->data_tx_completion.msdus[i];
1193                         tx_done.msdu_id = __le16_to_cpu(msdu_id);
1194                         ath10k_txrx_tx_unref(htt, &tx_done);
1195                 }
1196                 break;
1197         }
1198         case HTT_T2H_MSG_TYPE_SEC_IND: {
1199                 struct ath10k *ar = htt->ar;
1200                 struct htt_security_indication *ev = &resp->security_indication;
1201
1202                 ath10k_dbg(ATH10K_DBG_HTT,
1203                            "sec ind peer_id %d unicast %d type %d\n",
1204                           __le16_to_cpu(ev->peer_id),
1205                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1206                           MS(ev->flags, HTT_SECURITY_TYPE));
1207                 complete(&ar->install_key_done);
1208                 break;
1209         }
1210         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1211                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1212                                 skb->data, skb->len);
1213                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1214                 break;
1215         }
1216         case HTT_T2H_MSG_TYPE_TEST:
1217                 /* FIX THIS */
1218                 break;
1219         case HTT_T2H_MSG_TYPE_STATS_CONF:
1220                 trace_ath10k_htt_stats(skb->data, skb->len);
1221                 break;
1222         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1223         case HTT_T2H_MSG_TYPE_RX_ADDBA:
1224         case HTT_T2H_MSG_TYPE_RX_DELBA:
1225         case HTT_T2H_MSG_TYPE_RX_FLUSH:
1226         default:
1227                 ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1228                            resp->hdr.msg_type);
1229                 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1230                                 skb->data, skb->len);
1231                 break;
1232         };
1233
1234         /* Free the indication buffer */
1235         dev_kfree_skb_any(skb);
1236 }