]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/nvme/host/pci.c
56a315bd4d9627213e8a49a13ade68da74007a88
[karo-tx-linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/blk-mq-pci.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dmi.h>
23 #include <linux/errno.h>
24 #include <linux/fs.h>
25 #include <linux/genhd.h>
26 #include <linux/hdreg.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kernel.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/mutex.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/ptrace.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/t10-pi.h>
43 #include <linux/timer.h>
44 #include <linux/types.h>
45 #include <linux/io-64-nonatomic-lo-hi.h>
46 #include <asm/unaligned.h>
47 #include <linux/sed-opal.h>
48
49 #include "nvme.h"
50
51 #define NVME_Q_DEPTH            1024
52 #define NVME_AQ_DEPTH           256
53 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
54 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
55
56 /*
57  * We handle AEN commands ourselves and don't even let the
58  * block layer know about them.
59  */
60 #define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
61
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
64
65 static bool use_cmb_sqes = true;
66 module_param(use_cmb_sqes, bool, 0644);
67 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
68
69 static struct workqueue_struct *nvme_workq;
70
71 struct nvme_dev;
72 struct nvme_queue;
73
74 static int nvme_reset(struct nvme_dev *dev);
75 static void nvme_process_cq(struct nvme_queue *nvmeq);
76 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
77
78 /*
79  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
80  */
81 struct nvme_dev {
82         struct nvme_queue **queues;
83         struct blk_mq_tag_set tagset;
84         struct blk_mq_tag_set admin_tagset;
85         u32 __iomem *dbs;
86         struct device *dev;
87         struct dma_pool *prp_page_pool;
88         struct dma_pool *prp_small_pool;
89         unsigned queue_count;
90         unsigned online_queues;
91         unsigned max_qid;
92         int q_depth;
93         u32 db_stride;
94         void __iomem *bar;
95         struct work_struct reset_work;
96         struct work_struct remove_work;
97         struct timer_list watchdog_timer;
98         struct mutex shutdown_lock;
99         bool subsystem;
100         void __iomem *cmb;
101         dma_addr_t cmb_dma_addr;
102         u64 cmb_size;
103         u32 cmbsz;
104         u32 cmbloc;
105         struct nvme_ctrl ctrl;
106         struct completion ioq_wait;
107         u32 *dbbuf_dbs;
108         dma_addr_t dbbuf_dbs_dma_addr;
109         u32 *dbbuf_eis;
110         dma_addr_t dbbuf_eis_dma_addr;
111 };
112
113 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
114 {
115         return qid * 2 * stride;
116 }
117
118 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
119 {
120         return (qid * 2 + 1) * stride;
121 }
122
123 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
124 {
125         return container_of(ctrl, struct nvme_dev, ctrl);
126 }
127
128 /*
129  * An NVM Express queue.  Each device has at least two (one for admin
130  * commands and one for I/O commands).
131  */
132 struct nvme_queue {
133         struct device *q_dmadev;
134         struct nvme_dev *dev;
135         char irqname[24];       /* nvme4294967295-65535\0 */
136         spinlock_t q_lock;
137         struct nvme_command *sq_cmds;
138         struct nvme_command __iomem *sq_cmds_io;
139         volatile struct nvme_completion *cqes;
140         struct blk_mq_tags **tags;
141         dma_addr_t sq_dma_addr;
142         dma_addr_t cq_dma_addr;
143         u32 __iomem *q_db;
144         u16 q_depth;
145         s16 cq_vector;
146         u16 sq_tail;
147         u16 cq_head;
148         u16 qid;
149         u8 cq_phase;
150         u8 cqe_seen;
151         u32 *dbbuf_sq_db;
152         u32 *dbbuf_cq_db;
153         u32 *dbbuf_sq_ei;
154         u32 *dbbuf_cq_ei;
155 };
156
157 /*
158  * The nvme_iod describes the data in an I/O, including the list of PRP
159  * entries.  You can't see it in this data structure because C doesn't let
160  * me express that.  Use nvme_init_iod to ensure there's enough space
161  * allocated to store the PRP list.
162  */
163 struct nvme_iod {
164         struct nvme_request req;
165         struct nvme_queue *nvmeq;
166         int aborted;
167         int npages;             /* In the PRP list. 0 means small pool in use */
168         int nents;              /* Used in scatterlist */
169         int length;             /* Of data, in bytes */
170         dma_addr_t first_dma;
171         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
172         struct scatterlist *sg;
173         struct scatterlist inline_sg[0];
174 };
175
176 /*
177  * Check we didin't inadvertently grow the command struct
178  */
179 static inline void _nvme_check_size(void)
180 {
181         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
186         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
187         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
188         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
192         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
193         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
194 }
195
196 static inline unsigned int nvme_dbbuf_size(u32 stride)
197 {
198         return ((num_possible_cpus() + 1) * 8 * stride);
199 }
200
201 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
202 {
203         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
204
205         if (dev->dbbuf_dbs)
206                 return 0;
207
208         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
209                                             &dev->dbbuf_dbs_dma_addr,
210                                             GFP_KERNEL);
211         if (!dev->dbbuf_dbs)
212                 return -ENOMEM;
213         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
214                                             &dev->dbbuf_eis_dma_addr,
215                                             GFP_KERNEL);
216         if (!dev->dbbuf_eis) {
217                 dma_free_coherent(dev->dev, mem_size,
218                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
219                 dev->dbbuf_dbs = NULL;
220                 return -ENOMEM;
221         }
222
223         return 0;
224 }
225
226 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
227 {
228         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
229
230         if (dev->dbbuf_dbs) {
231                 dma_free_coherent(dev->dev, mem_size,
232                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
233                 dev->dbbuf_dbs = NULL;
234         }
235         if (dev->dbbuf_eis) {
236                 dma_free_coherent(dev->dev, mem_size,
237                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
238                 dev->dbbuf_eis = NULL;
239         }
240 }
241
242 static void nvme_dbbuf_init(struct nvme_dev *dev,
243                             struct nvme_queue *nvmeq, int qid)
244 {
245         if (!dev->dbbuf_dbs || !qid)
246                 return;
247
248         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
249         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
250         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
251         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
252 }
253
254 static void nvme_dbbuf_set(struct nvme_dev *dev)
255 {
256         struct nvme_command c;
257
258         if (!dev->dbbuf_dbs)
259                 return;
260
261         memset(&c, 0, sizeof(c));
262         c.dbbuf.opcode = nvme_admin_dbbuf;
263         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
264         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
265
266         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
267                 dev_warn(dev->dev, "unable to set dbbuf\n");
268                 /* Free memory and continue on */
269                 nvme_dbbuf_dma_free(dev);
270         }
271 }
272
273 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
274 {
275         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
276 }
277
278 /* Update dbbuf and return true if an MMIO is required */
279 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
280                                               volatile u32 *dbbuf_ei)
281 {
282         if (dbbuf_db) {
283                 u16 old_value;
284
285                 /*
286                  * Ensure that the queue is written before updating
287                  * the doorbell in memory
288                  */
289                 wmb();
290
291                 old_value = *dbbuf_db;
292                 *dbbuf_db = value;
293
294                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
295                         return false;
296         }
297
298         return true;
299 }
300
301 /*
302  * Max size of iod being embedded in the request payload
303  */
304 #define NVME_INT_PAGES          2
305 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
306
307 /*
308  * Will slightly overestimate the number of pages needed.  This is OK
309  * as it only leads to a small amount of wasted memory for the lifetime of
310  * the I/O.
311  */
312 static int nvme_npages(unsigned size, struct nvme_dev *dev)
313 {
314         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
315                                       dev->ctrl.page_size);
316         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
317 }
318
319 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
320                 unsigned int size, unsigned int nseg)
321 {
322         return sizeof(__le64 *) * nvme_npages(size, dev) +
323                         sizeof(struct scatterlist) * nseg;
324 }
325
326 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
327 {
328         return sizeof(struct nvme_iod) +
329                 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
330 }
331
332 static int nvmeq_irq(struct nvme_queue *nvmeq)
333 {
334         return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector);
335 }
336
337 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
338                                 unsigned int hctx_idx)
339 {
340         struct nvme_dev *dev = data;
341         struct nvme_queue *nvmeq = dev->queues[0];
342
343         WARN_ON(hctx_idx != 0);
344         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
345         WARN_ON(nvmeq->tags);
346
347         hctx->driver_data = nvmeq;
348         nvmeq->tags = &dev->admin_tagset.tags[0];
349         return 0;
350 }
351
352 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
353 {
354         struct nvme_queue *nvmeq = hctx->driver_data;
355
356         nvmeq->tags = NULL;
357 }
358
359 static int nvme_admin_init_request(struct blk_mq_tag_set *set,
360                 struct request *req, unsigned int hctx_idx,
361                 unsigned int numa_node)
362 {
363         struct nvme_dev *dev = set->driver_data;
364         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
365         struct nvme_queue *nvmeq = dev->queues[0];
366
367         BUG_ON(!nvmeq);
368         iod->nvmeq = nvmeq;
369         return 0;
370 }
371
372 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
373                           unsigned int hctx_idx)
374 {
375         struct nvme_dev *dev = data;
376         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
377
378         if (!nvmeq->tags)
379                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
380
381         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
382         hctx->driver_data = nvmeq;
383         return 0;
384 }
385
386 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
387                 unsigned int hctx_idx, unsigned int numa_node)
388 {
389         struct nvme_dev *dev = set->driver_data;
390         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
391         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
392
393         BUG_ON(!nvmeq);
394         iod->nvmeq = nvmeq;
395         return 0;
396 }
397
398 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
399 {
400         struct nvme_dev *dev = set->driver_data;
401
402         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
403 }
404
405 /**
406  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
407  * @nvmeq: The queue to use
408  * @cmd: The command to send
409  *
410  * Safe to use from interrupt context
411  */
412 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
413                                                 struct nvme_command *cmd)
414 {
415         u16 tail = nvmeq->sq_tail;
416
417         if (nvmeq->sq_cmds_io)
418                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
419         else
420                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
421
422         if (++tail == nvmeq->q_depth)
423                 tail = 0;
424         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
425                                               nvmeq->dbbuf_sq_ei))
426                 writel(tail, nvmeq->q_db);
427         nvmeq->sq_tail = tail;
428 }
429
430 static __le64 **iod_list(struct request *req)
431 {
432         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
433         return (__le64 **)(iod->sg + blk_rq_nr_phys_segments(req));
434 }
435
436 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
437 {
438         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
439         int nseg = blk_rq_nr_phys_segments(rq);
440         unsigned int size = blk_rq_payload_bytes(rq);
441
442         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
443                 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
444                 if (!iod->sg)
445                         return BLK_MQ_RQ_QUEUE_BUSY;
446         } else {
447                 iod->sg = iod->inline_sg;
448         }
449
450         iod->aborted = 0;
451         iod->npages = -1;
452         iod->nents = 0;
453         iod->length = size;
454
455         return BLK_MQ_RQ_QUEUE_OK;
456 }
457
458 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
459 {
460         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
461         const int last_prp = dev->ctrl.page_size / 8 - 1;
462         int i;
463         __le64 **list = iod_list(req);
464         dma_addr_t prp_dma = iod->first_dma;
465
466         if (iod->npages == 0)
467                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
468         for (i = 0; i < iod->npages; i++) {
469                 __le64 *prp_list = list[i];
470                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
471                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
472                 prp_dma = next_prp_dma;
473         }
474
475         if (iod->sg != iod->inline_sg)
476                 kfree(iod->sg);
477 }
478
479 #ifdef CONFIG_BLK_DEV_INTEGRITY
480 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
481 {
482         if (be32_to_cpu(pi->ref_tag) == v)
483                 pi->ref_tag = cpu_to_be32(p);
484 }
485
486 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
487 {
488         if (be32_to_cpu(pi->ref_tag) == p)
489                 pi->ref_tag = cpu_to_be32(v);
490 }
491
492 /**
493  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
494  *
495  * The virtual start sector is the one that was originally submitted by the
496  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
497  * start sector may be different. Remap protection information to match the
498  * physical LBA on writes, and back to the original seed on reads.
499  *
500  * Type 0 and 3 do not have a ref tag, so no remapping required.
501  */
502 static void nvme_dif_remap(struct request *req,
503                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
504 {
505         struct nvme_ns *ns = req->rq_disk->private_data;
506         struct bio_integrity_payload *bip;
507         struct t10_pi_tuple *pi;
508         void *p, *pmap;
509         u32 i, nlb, ts, phys, virt;
510
511         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
512                 return;
513
514         bip = bio_integrity(req->bio);
515         if (!bip)
516                 return;
517
518         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
519
520         p = pmap;
521         virt = bip_get_seed(bip);
522         phys = nvme_block_nr(ns, blk_rq_pos(req));
523         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
524         ts = ns->disk->queue->integrity.tuple_size;
525
526         for (i = 0; i < nlb; i++, virt++, phys++) {
527                 pi = (struct t10_pi_tuple *)p;
528                 dif_swap(phys, virt, pi);
529                 p += ts;
530         }
531         kunmap_atomic(pmap);
532 }
533 #else /* CONFIG_BLK_DEV_INTEGRITY */
534 static void nvme_dif_remap(struct request *req,
535                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
536 {
537 }
538 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
539 {
540 }
541 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
542 {
543 }
544 #endif
545
546 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req)
547 {
548         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
549         struct dma_pool *pool;
550         int length = blk_rq_payload_bytes(req);
551         struct scatterlist *sg = iod->sg;
552         int dma_len = sg_dma_len(sg);
553         u64 dma_addr = sg_dma_address(sg);
554         u32 page_size = dev->ctrl.page_size;
555         int offset = dma_addr & (page_size - 1);
556         __le64 *prp_list;
557         __le64 **list = iod_list(req);
558         dma_addr_t prp_dma;
559         int nprps, i;
560
561         length -= (page_size - offset);
562         if (length <= 0)
563                 return true;
564
565         dma_len -= (page_size - offset);
566         if (dma_len) {
567                 dma_addr += (page_size - offset);
568         } else {
569                 sg = sg_next(sg);
570                 dma_addr = sg_dma_address(sg);
571                 dma_len = sg_dma_len(sg);
572         }
573
574         if (length <= page_size) {
575                 iod->first_dma = dma_addr;
576                 return true;
577         }
578
579         nprps = DIV_ROUND_UP(length, page_size);
580         if (nprps <= (256 / 8)) {
581                 pool = dev->prp_small_pool;
582                 iod->npages = 0;
583         } else {
584                 pool = dev->prp_page_pool;
585                 iod->npages = 1;
586         }
587
588         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
589         if (!prp_list) {
590                 iod->first_dma = dma_addr;
591                 iod->npages = -1;
592                 return false;
593         }
594         list[0] = prp_list;
595         iod->first_dma = prp_dma;
596         i = 0;
597         for (;;) {
598                 if (i == page_size >> 3) {
599                         __le64 *old_prp_list = prp_list;
600                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
601                         if (!prp_list)
602                                 return false;
603                         list[iod->npages++] = prp_list;
604                         prp_list[0] = old_prp_list[i - 1];
605                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
606                         i = 1;
607                 }
608                 prp_list[i++] = cpu_to_le64(dma_addr);
609                 dma_len -= page_size;
610                 dma_addr += page_size;
611                 length -= page_size;
612                 if (length <= 0)
613                         break;
614                 if (dma_len > 0)
615                         continue;
616                 BUG_ON(dma_len < 0);
617                 sg = sg_next(sg);
618                 dma_addr = sg_dma_address(sg);
619                 dma_len = sg_dma_len(sg);
620         }
621
622         return true;
623 }
624
625 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
626                 struct nvme_command *cmnd)
627 {
628         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
629         struct request_queue *q = req->q;
630         enum dma_data_direction dma_dir = rq_data_dir(req) ?
631                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
632         int ret = BLK_MQ_RQ_QUEUE_ERROR;
633
634         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
635         iod->nents = blk_rq_map_sg(q, req, iod->sg);
636         if (!iod->nents)
637                 goto out;
638
639         ret = BLK_MQ_RQ_QUEUE_BUSY;
640         if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
641                                 DMA_ATTR_NO_WARN))
642                 goto out;
643
644         if (!nvme_setup_prps(dev, req))
645                 goto out_unmap;
646
647         ret = BLK_MQ_RQ_QUEUE_ERROR;
648         if (blk_integrity_rq(req)) {
649                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
650                         goto out_unmap;
651
652                 sg_init_table(&iod->meta_sg, 1);
653                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
654                         goto out_unmap;
655
656                 if (rq_data_dir(req))
657                         nvme_dif_remap(req, nvme_dif_prep);
658
659                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
660                         goto out_unmap;
661         }
662
663         cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
664         cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma);
665         if (blk_integrity_rq(req))
666                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
667         return BLK_MQ_RQ_QUEUE_OK;
668
669 out_unmap:
670         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
671 out:
672         return ret;
673 }
674
675 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
676 {
677         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
678         enum dma_data_direction dma_dir = rq_data_dir(req) ?
679                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
680
681         if (iod->nents) {
682                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
683                 if (blk_integrity_rq(req)) {
684                         if (!rq_data_dir(req))
685                                 nvme_dif_remap(req, nvme_dif_complete);
686                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
687                 }
688         }
689
690         nvme_cleanup_cmd(req);
691         nvme_free_iod(dev, req);
692 }
693
694 /*
695  * NOTE: ns is NULL when called on the admin queue.
696  */
697 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
698                          const struct blk_mq_queue_data *bd)
699 {
700         struct nvme_ns *ns = hctx->queue->queuedata;
701         struct nvme_queue *nvmeq = hctx->driver_data;
702         struct nvme_dev *dev = nvmeq->dev;
703         struct request *req = bd->rq;
704         struct nvme_command cmnd;
705         int ret = BLK_MQ_RQ_QUEUE_OK;
706
707         /*
708          * If formated with metadata, require the block layer provide a buffer
709          * unless this namespace is formated such that the metadata can be
710          * stripped/generated by the controller with PRACT=1.
711          */
712         if (ns && ns->ms && !blk_integrity_rq(req)) {
713                 if (!(ns->pi_type && ns->ms == 8) &&
714                     !blk_rq_is_passthrough(req)) {
715                         blk_mq_end_request(req, -EFAULT);
716                         return BLK_MQ_RQ_QUEUE_OK;
717                 }
718         }
719
720         ret = nvme_setup_cmd(ns, req, &cmnd);
721         if (ret != BLK_MQ_RQ_QUEUE_OK)
722                 return ret;
723
724         ret = nvme_init_iod(req, dev);
725         if (ret != BLK_MQ_RQ_QUEUE_OK)
726                 goto out_free_cmd;
727
728         if (blk_rq_nr_phys_segments(req))
729                 ret = nvme_map_data(dev, req, &cmnd);
730
731         if (ret != BLK_MQ_RQ_QUEUE_OK)
732                 goto out_cleanup_iod;
733
734         blk_mq_start_request(req);
735
736         spin_lock_irq(&nvmeq->q_lock);
737         if (unlikely(nvmeq->cq_vector < 0)) {
738                 ret = BLK_MQ_RQ_QUEUE_ERROR;
739                 spin_unlock_irq(&nvmeq->q_lock);
740                 goto out_cleanup_iod;
741         }
742         __nvme_submit_cmd(nvmeq, &cmnd);
743         nvme_process_cq(nvmeq);
744         spin_unlock_irq(&nvmeq->q_lock);
745         return BLK_MQ_RQ_QUEUE_OK;
746 out_cleanup_iod:
747         nvme_free_iod(dev, req);
748 out_free_cmd:
749         nvme_cleanup_cmd(req);
750         return ret;
751 }
752
753 static void nvme_pci_complete_rq(struct request *req)
754 {
755         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
756
757         nvme_unmap_data(iod->nvmeq->dev, req);
758         nvme_complete_rq(req);
759 }
760
761 /* We read the CQE phase first to check if the rest of the entry is valid */
762 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
763                 u16 phase)
764 {
765         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
766 }
767
768 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
769 {
770         u16 head, phase;
771
772         head = nvmeq->cq_head;
773         phase = nvmeq->cq_phase;
774
775         while (nvme_cqe_valid(nvmeq, head, phase)) {
776                 struct nvme_completion cqe = nvmeq->cqes[head];
777                 struct request *req;
778
779                 if (++head == nvmeq->q_depth) {
780                         head = 0;
781                         phase = !phase;
782                 }
783
784                 if (tag && *tag == cqe.command_id)
785                         *tag = -1;
786
787                 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
788                         dev_warn(nvmeq->dev->ctrl.device,
789                                 "invalid id %d completed on queue %d\n",
790                                 cqe.command_id, le16_to_cpu(cqe.sq_id));
791                         continue;
792                 }
793
794                 /*
795                  * AEN requests are special as they don't time out and can
796                  * survive any kind of queue freeze and often don't respond to
797                  * aborts.  We don't even bother to allocate a struct request
798                  * for them but rather special case them here.
799                  */
800                 if (unlikely(nvmeq->qid == 0 &&
801                                 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
802                         nvme_complete_async_event(&nvmeq->dev->ctrl,
803                                         cqe.status, &cqe.result);
804                         continue;
805                 }
806
807                 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
808                 nvme_end_request(req, cqe.status, cqe.result);
809         }
810
811         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
812                 return;
813
814         if (likely(nvmeq->cq_vector >= 0))
815                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
816                                                       nvmeq->dbbuf_cq_ei))
817                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
818         nvmeq->cq_head = head;
819         nvmeq->cq_phase = phase;
820
821         nvmeq->cqe_seen = 1;
822 }
823
824 static void nvme_process_cq(struct nvme_queue *nvmeq)
825 {
826         __nvme_process_cq(nvmeq, NULL);
827 }
828
829 static irqreturn_t nvme_irq(int irq, void *data)
830 {
831         irqreturn_t result;
832         struct nvme_queue *nvmeq = data;
833         spin_lock(&nvmeq->q_lock);
834         nvme_process_cq(nvmeq);
835         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
836         nvmeq->cqe_seen = 0;
837         spin_unlock(&nvmeq->q_lock);
838         return result;
839 }
840
841 static irqreturn_t nvme_irq_check(int irq, void *data)
842 {
843         struct nvme_queue *nvmeq = data;
844         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
845                 return IRQ_WAKE_THREAD;
846         return IRQ_NONE;
847 }
848
849 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
850 {
851         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
852                 spin_lock_irq(&nvmeq->q_lock);
853                 __nvme_process_cq(nvmeq, &tag);
854                 spin_unlock_irq(&nvmeq->q_lock);
855
856                 if (tag == -1)
857                         return 1;
858         }
859
860         return 0;
861 }
862
863 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
864 {
865         struct nvme_queue *nvmeq = hctx->driver_data;
866
867         return __nvme_poll(nvmeq, tag);
868 }
869
870 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
871 {
872         struct nvme_dev *dev = to_nvme_dev(ctrl);
873         struct nvme_queue *nvmeq = dev->queues[0];
874         struct nvme_command c;
875
876         memset(&c, 0, sizeof(c));
877         c.common.opcode = nvme_admin_async_event;
878         c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
879
880         spin_lock_irq(&nvmeq->q_lock);
881         __nvme_submit_cmd(nvmeq, &c);
882         spin_unlock_irq(&nvmeq->q_lock);
883 }
884
885 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
886 {
887         struct nvme_command c;
888
889         memset(&c, 0, sizeof(c));
890         c.delete_queue.opcode = opcode;
891         c.delete_queue.qid = cpu_to_le16(id);
892
893         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
894 }
895
896 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
897                                                 struct nvme_queue *nvmeq)
898 {
899         struct nvme_command c;
900         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
901
902         /*
903          * Note: we (ab)use the fact the the prp fields survive if no data
904          * is attached to the request.
905          */
906         memset(&c, 0, sizeof(c));
907         c.create_cq.opcode = nvme_admin_create_cq;
908         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
909         c.create_cq.cqid = cpu_to_le16(qid);
910         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
911         c.create_cq.cq_flags = cpu_to_le16(flags);
912         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
913
914         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
915 }
916
917 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
918                                                 struct nvme_queue *nvmeq)
919 {
920         struct nvme_command c;
921         int flags = NVME_QUEUE_PHYS_CONTIG;
922
923         /*
924          * Note: we (ab)use the fact the the prp fields survive if no data
925          * is attached to the request.
926          */
927         memset(&c, 0, sizeof(c));
928         c.create_sq.opcode = nvme_admin_create_sq;
929         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
930         c.create_sq.sqid = cpu_to_le16(qid);
931         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
932         c.create_sq.sq_flags = cpu_to_le16(flags);
933         c.create_sq.cqid = cpu_to_le16(qid);
934
935         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
936 }
937
938 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
939 {
940         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
941 }
942
943 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
944 {
945         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
946 }
947
948 static void abort_endio(struct request *req, int error)
949 {
950         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
951         struct nvme_queue *nvmeq = iod->nvmeq;
952
953         dev_warn(nvmeq->dev->ctrl.device,
954                  "Abort status: 0x%x", nvme_req(req)->status);
955         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
956         blk_mq_free_request(req);
957 }
958
959 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
960 {
961         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
962         struct nvme_queue *nvmeq = iod->nvmeq;
963         struct nvme_dev *dev = nvmeq->dev;
964         struct request *abort_req;
965         struct nvme_command cmd;
966
967         /*
968          * Did we miss an interrupt?
969          */
970         if (__nvme_poll(nvmeq, req->tag)) {
971                 dev_warn(dev->ctrl.device,
972                          "I/O %d QID %d timeout, completion polled\n",
973                          req->tag, nvmeq->qid);
974                 return BLK_EH_HANDLED;
975         }
976
977         /*
978          * Shutdown immediately if controller times out while starting. The
979          * reset work will see the pci device disabled when it gets the forced
980          * cancellation error. All outstanding requests are completed on
981          * shutdown, so we return BLK_EH_HANDLED.
982          */
983         if (dev->ctrl.state == NVME_CTRL_RESETTING) {
984                 dev_warn(dev->ctrl.device,
985                          "I/O %d QID %d timeout, disable controller\n",
986                          req->tag, nvmeq->qid);
987                 nvme_dev_disable(dev, false);
988                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
989                 return BLK_EH_HANDLED;
990         }
991
992         /*
993          * Shutdown the controller immediately and schedule a reset if the
994          * command was already aborted once before and still hasn't been
995          * returned to the driver, or if this is the admin queue.
996          */
997         if (!nvmeq->qid || iod->aborted) {
998                 dev_warn(dev->ctrl.device,
999                          "I/O %d QID %d timeout, reset controller\n",
1000                          req->tag, nvmeq->qid);
1001                 nvme_dev_disable(dev, false);
1002                 nvme_reset(dev);
1003
1004                 /*
1005                  * Mark the request as handled, since the inline shutdown
1006                  * forces all outstanding requests to complete.
1007                  */
1008                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1009                 return BLK_EH_HANDLED;
1010         }
1011
1012         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1013                 atomic_inc(&dev->ctrl.abort_limit);
1014                 return BLK_EH_RESET_TIMER;
1015         }
1016         iod->aborted = 1;
1017
1018         memset(&cmd, 0, sizeof(cmd));
1019         cmd.abort.opcode = nvme_admin_abort_cmd;
1020         cmd.abort.cid = req->tag;
1021         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1022
1023         dev_warn(nvmeq->dev->ctrl.device,
1024                 "I/O %d QID %d timeout, aborting\n",
1025                  req->tag, nvmeq->qid);
1026
1027         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1028                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1029         if (IS_ERR(abort_req)) {
1030                 atomic_inc(&dev->ctrl.abort_limit);
1031                 return BLK_EH_RESET_TIMER;
1032         }
1033
1034         abort_req->timeout = ADMIN_TIMEOUT;
1035         abort_req->end_io_data = NULL;
1036         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1037
1038         /*
1039          * The aborted req will be completed on receiving the abort req.
1040          * We enable the timer again. If hit twice, it'll cause a device reset,
1041          * as the device then is in a faulty state.
1042          */
1043         return BLK_EH_RESET_TIMER;
1044 }
1045
1046 static void nvme_free_queue(struct nvme_queue *nvmeq)
1047 {
1048         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1049                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1050         if (nvmeq->sq_cmds)
1051                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1052                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1053         kfree(nvmeq);
1054 }
1055
1056 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1057 {
1058         int i;
1059
1060         for (i = dev->queue_count - 1; i >= lowest; i--) {
1061                 struct nvme_queue *nvmeq = dev->queues[i];
1062                 dev->queue_count--;
1063                 dev->queues[i] = NULL;
1064                 nvme_free_queue(nvmeq);
1065         }
1066 }
1067
1068 /**
1069  * nvme_suspend_queue - put queue into suspended state
1070  * @nvmeq - queue to suspend
1071  */
1072 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1073 {
1074         int vector;
1075
1076         spin_lock_irq(&nvmeq->q_lock);
1077         if (nvmeq->cq_vector == -1) {
1078                 spin_unlock_irq(&nvmeq->q_lock);
1079                 return 1;
1080         }
1081         vector = nvmeq_irq(nvmeq);
1082         nvmeq->dev->online_queues--;
1083         nvmeq->cq_vector = -1;
1084         spin_unlock_irq(&nvmeq->q_lock);
1085
1086         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1087                 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1088
1089         free_irq(vector, nvmeq);
1090
1091         return 0;
1092 }
1093
1094 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1095 {
1096         struct nvme_queue *nvmeq = dev->queues[0];
1097
1098         if (!nvmeq)
1099                 return;
1100         if (nvme_suspend_queue(nvmeq))
1101                 return;
1102
1103         if (shutdown)
1104                 nvme_shutdown_ctrl(&dev->ctrl);
1105         else
1106                 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1107                                                 dev->bar + NVME_REG_CAP));
1108
1109         spin_lock_irq(&nvmeq->q_lock);
1110         nvme_process_cq(nvmeq);
1111         spin_unlock_irq(&nvmeq->q_lock);
1112 }
1113
1114 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1115                                 int entry_size)
1116 {
1117         int q_depth = dev->q_depth;
1118         unsigned q_size_aligned = roundup(q_depth * entry_size,
1119                                           dev->ctrl.page_size);
1120
1121         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1122                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1123                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1124                 q_depth = div_u64(mem_per_q, entry_size);
1125
1126                 /*
1127                  * Ensure the reduced q_depth is above some threshold where it
1128                  * would be better to map queues in system memory with the
1129                  * original depth
1130                  */
1131                 if (q_depth < 64)
1132                         return -ENOMEM;
1133         }
1134
1135         return q_depth;
1136 }
1137
1138 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1139                                 int qid, int depth)
1140 {
1141         if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1142                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1143                                                       dev->ctrl.page_size);
1144                 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1145                 nvmeq->sq_cmds_io = dev->cmb + offset;
1146         } else {
1147                 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1148                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1149                 if (!nvmeq->sq_cmds)
1150                         return -ENOMEM;
1151         }
1152
1153         return 0;
1154 }
1155
1156 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1157                                                         int depth, int node)
1158 {
1159         struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
1160                                                         node);
1161         if (!nvmeq)
1162                 return NULL;
1163
1164         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1165                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1166         if (!nvmeq->cqes)
1167                 goto free_nvmeq;
1168
1169         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1170                 goto free_cqdma;
1171
1172         nvmeq->q_dmadev = dev->dev;
1173         nvmeq->dev = dev;
1174         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1175                         dev->ctrl.instance, qid);
1176         spin_lock_init(&nvmeq->q_lock);
1177         nvmeq->cq_head = 0;
1178         nvmeq->cq_phase = 1;
1179         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1180         nvmeq->q_depth = depth;
1181         nvmeq->qid = qid;
1182         nvmeq->cq_vector = -1;
1183         dev->queues[qid] = nvmeq;
1184         dev->queue_count++;
1185
1186         return nvmeq;
1187
1188  free_cqdma:
1189         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1190                                                         nvmeq->cq_dma_addr);
1191  free_nvmeq:
1192         kfree(nvmeq);
1193         return NULL;
1194 }
1195
1196 static int queue_request_irq(struct nvme_queue *nvmeq)
1197 {
1198         if (use_threaded_interrupts)
1199                 return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check,
1200                                 nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq);
1201         else
1202                 return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED,
1203                                 nvmeq->irqname, nvmeq);
1204 }
1205
1206 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1207 {
1208         struct nvme_dev *dev = nvmeq->dev;
1209
1210         spin_lock_irq(&nvmeq->q_lock);
1211         nvmeq->sq_tail = 0;
1212         nvmeq->cq_head = 0;
1213         nvmeq->cq_phase = 1;
1214         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1215         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1216         nvme_dbbuf_init(dev, nvmeq, qid);
1217         dev->online_queues++;
1218         spin_unlock_irq(&nvmeq->q_lock);
1219 }
1220
1221 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1222 {
1223         struct nvme_dev *dev = nvmeq->dev;
1224         int result;
1225
1226         nvmeq->cq_vector = qid - 1;
1227         result = adapter_alloc_cq(dev, qid, nvmeq);
1228         if (result < 0)
1229                 return result;
1230
1231         result = adapter_alloc_sq(dev, qid, nvmeq);
1232         if (result < 0)
1233                 goto release_cq;
1234
1235         result = queue_request_irq(nvmeq);
1236         if (result < 0)
1237                 goto release_sq;
1238
1239         nvme_init_queue(nvmeq, qid);
1240         return result;
1241
1242  release_sq:
1243         adapter_delete_sq(dev, qid);
1244  release_cq:
1245         adapter_delete_cq(dev, qid);
1246         return result;
1247 }
1248
1249 static const struct blk_mq_ops nvme_mq_admin_ops = {
1250         .queue_rq       = nvme_queue_rq,
1251         .complete       = nvme_pci_complete_rq,
1252         .init_hctx      = nvme_admin_init_hctx,
1253         .exit_hctx      = nvme_admin_exit_hctx,
1254         .init_request   = nvme_admin_init_request,
1255         .timeout        = nvme_timeout,
1256 };
1257
1258 static const struct blk_mq_ops nvme_mq_ops = {
1259         .queue_rq       = nvme_queue_rq,
1260         .complete       = nvme_pci_complete_rq,
1261         .init_hctx      = nvme_init_hctx,
1262         .init_request   = nvme_init_request,
1263         .map_queues     = nvme_pci_map_queues,
1264         .timeout        = nvme_timeout,
1265         .poll           = nvme_poll,
1266 };
1267
1268 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1269 {
1270         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1271                 /*
1272                  * If the controller was reset during removal, it's possible
1273                  * user requests may be waiting on a stopped queue. Start the
1274                  * queue to flush these to completion.
1275                  */
1276                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1277                 blk_cleanup_queue(dev->ctrl.admin_q);
1278                 blk_mq_free_tag_set(&dev->admin_tagset);
1279         }
1280 }
1281
1282 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1283 {
1284         if (!dev->ctrl.admin_q) {
1285                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1286                 dev->admin_tagset.nr_hw_queues = 1;
1287
1288                 /*
1289                  * Subtract one to leave an empty queue entry for 'Full Queue'
1290                  * condition. See NVM-Express 1.2 specification, section 4.1.2.
1291                  */
1292                 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1293                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1294                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1295                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1296                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1297                 dev->admin_tagset.driver_data = dev;
1298
1299                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1300                         return -ENOMEM;
1301
1302                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1303                 if (IS_ERR(dev->ctrl.admin_q)) {
1304                         blk_mq_free_tag_set(&dev->admin_tagset);
1305                         return -ENOMEM;
1306                 }
1307                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1308                         nvme_dev_remove_admin(dev);
1309                         dev->ctrl.admin_q = NULL;
1310                         return -ENODEV;
1311                 }
1312         } else
1313                 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1314
1315         return 0;
1316 }
1317
1318 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1319 {
1320         int result;
1321         u32 aqa;
1322         u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1323         struct nvme_queue *nvmeq;
1324
1325         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1326                                                 NVME_CAP_NSSRC(cap) : 0;
1327
1328         if (dev->subsystem &&
1329             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1330                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1331
1332         result = nvme_disable_ctrl(&dev->ctrl, cap);
1333         if (result < 0)
1334                 return result;
1335
1336         nvmeq = dev->queues[0];
1337         if (!nvmeq) {
1338                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
1339                                         dev_to_node(dev->dev));
1340                 if (!nvmeq)
1341                         return -ENOMEM;
1342         }
1343
1344         aqa = nvmeq->q_depth - 1;
1345         aqa |= aqa << 16;
1346
1347         writel(aqa, dev->bar + NVME_REG_AQA);
1348         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1349         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1350
1351         result = nvme_enable_ctrl(&dev->ctrl, cap);
1352         if (result)
1353                 return result;
1354
1355         nvmeq->cq_vector = 0;
1356         result = queue_request_irq(nvmeq);
1357         if (result) {
1358                 nvmeq->cq_vector = -1;
1359                 return result;
1360         }
1361
1362         return result;
1363 }
1364
1365 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1366 {
1367
1368         /* If true, indicates loss of adapter communication, possibly by a
1369          * NVMe Subsystem reset.
1370          */
1371         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1372
1373         /* If there is a reset ongoing, we shouldn't reset again. */
1374         if (work_busy(&dev->reset_work))
1375                 return false;
1376
1377         /* We shouldn't reset unless the controller is on fatal error state
1378          * _or_ if we lost the communication with it.
1379          */
1380         if (!(csts & NVME_CSTS_CFS) && !nssro)
1381                 return false;
1382
1383         /* If PCI error recovery process is happening, we cannot reset or
1384          * the recovery mechanism will surely fail.
1385          */
1386         if (pci_channel_offline(to_pci_dev(dev->dev)))
1387                 return false;
1388
1389         return true;
1390 }
1391
1392 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1393 {
1394         /* Read a config register to help see what died. */
1395         u16 pci_status;
1396         int result;
1397
1398         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1399                                       &pci_status);
1400         if (result == PCIBIOS_SUCCESSFUL)
1401                 dev_warn(dev->dev,
1402                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1403                          csts, pci_status);
1404         else
1405                 dev_warn(dev->dev,
1406                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1407                          csts, result);
1408 }
1409
1410 static void nvme_watchdog_timer(unsigned long data)
1411 {
1412         struct nvme_dev *dev = (struct nvme_dev *)data;
1413         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1414
1415         /* Skip controllers under certain specific conditions. */
1416         if (nvme_should_reset(dev, csts)) {
1417                 if (!nvme_reset(dev))
1418                         nvme_warn_reset(dev, csts);
1419                 return;
1420         }
1421
1422         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1423 }
1424
1425 static int nvme_create_io_queues(struct nvme_dev *dev)
1426 {
1427         unsigned i, max;
1428         int ret = 0;
1429
1430         for (i = dev->queue_count; i <= dev->max_qid; i++) {
1431                 /* vector == qid - 1, match nvme_create_queue */
1432                 if (!nvme_alloc_queue(dev, i, dev->q_depth,
1433                      pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
1434                         ret = -ENOMEM;
1435                         break;
1436                 }
1437         }
1438
1439         max = min(dev->max_qid, dev->queue_count - 1);
1440         for (i = dev->online_queues; i <= max; i++) {
1441                 ret = nvme_create_queue(dev->queues[i], i);
1442                 if (ret)
1443                         break;
1444         }
1445
1446         /*
1447          * Ignore failing Create SQ/CQ commands, we can continue with less
1448          * than the desired aount of queues, and even a controller without
1449          * I/O queues an still be used to issue admin commands.  This might
1450          * be useful to upgrade a buggy firmware for example.
1451          */
1452         return ret >= 0 ? 0 : ret;
1453 }
1454
1455 static ssize_t nvme_cmb_show(struct device *dev,
1456                              struct device_attribute *attr,
1457                              char *buf)
1458 {
1459         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1460
1461         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1462                        ndev->cmbloc, ndev->cmbsz);
1463 }
1464 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1465
1466 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1467 {
1468         u64 szu, size, offset;
1469         resource_size_t bar_size;
1470         struct pci_dev *pdev = to_pci_dev(dev->dev);
1471         void __iomem *cmb;
1472         dma_addr_t dma_addr;
1473
1474         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1475         if (!(NVME_CMB_SZ(dev->cmbsz)))
1476                 return NULL;
1477         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1478
1479         if (!use_cmb_sqes)
1480                 return NULL;
1481
1482         szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1483         size = szu * NVME_CMB_SZ(dev->cmbsz);
1484         offset = szu * NVME_CMB_OFST(dev->cmbloc);
1485         bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc));
1486
1487         if (offset > bar_size)
1488                 return NULL;
1489
1490         /*
1491          * Controllers may support a CMB size larger than their BAR,
1492          * for example, due to being behind a bridge. Reduce the CMB to
1493          * the reported size of the BAR
1494          */
1495         if (size > bar_size - offset)
1496                 size = bar_size - offset;
1497
1498         dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset;
1499         cmb = ioremap_wc(dma_addr, size);
1500         if (!cmb)
1501                 return NULL;
1502
1503         dev->cmb_dma_addr = dma_addr;
1504         dev->cmb_size = size;
1505         return cmb;
1506 }
1507
1508 static inline void nvme_release_cmb(struct nvme_dev *dev)
1509 {
1510         if (dev->cmb) {
1511                 iounmap(dev->cmb);
1512                 dev->cmb = NULL;
1513         }
1514 }
1515
1516 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1517 {
1518         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1519 }
1520
1521 static int nvme_setup_io_queues(struct nvme_dev *dev)
1522 {
1523         struct nvme_queue *adminq = dev->queues[0];
1524         struct pci_dev *pdev = to_pci_dev(dev->dev);
1525         int result, nr_io_queues, size;
1526
1527         nr_io_queues = num_online_cpus();
1528         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1529         if (result < 0)
1530                 return result;
1531
1532         if (nr_io_queues == 0)
1533                 return 0;
1534
1535         if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1536                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1537                                 sizeof(struct nvme_command));
1538                 if (result > 0)
1539                         dev->q_depth = result;
1540                 else
1541                         nvme_release_cmb(dev);
1542         }
1543
1544         size = db_bar_size(dev, nr_io_queues);
1545         if (size > 8192) {
1546                 iounmap(dev->bar);
1547                 do {
1548                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1549                         if (dev->bar)
1550                                 break;
1551                         if (!--nr_io_queues)
1552                                 return -ENOMEM;
1553                         size = db_bar_size(dev, nr_io_queues);
1554                 } while (1);
1555                 dev->dbs = dev->bar + 4096;
1556                 adminq->q_db = dev->dbs;
1557         }
1558
1559         /* Deregister the admin queue's interrupt */
1560         free_irq(pci_irq_vector(pdev, 0), adminq);
1561
1562         /*
1563          * If we enable msix early due to not intx, disable it again before
1564          * setting up the full range we need.
1565          */
1566         pci_free_irq_vectors(pdev);
1567         nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
1568                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
1569         if (nr_io_queues <= 0)
1570                 return -EIO;
1571         dev->max_qid = nr_io_queues;
1572
1573         /*
1574          * Should investigate if there's a performance win from allocating
1575          * more queues than interrupt vectors; it might allow the submission
1576          * path to scale better, even if the receive path is limited by the
1577          * number of interrupts.
1578          */
1579
1580         result = queue_request_irq(adminq);
1581         if (result) {
1582                 adminq->cq_vector = -1;
1583                 return result;
1584         }
1585         return nvme_create_io_queues(dev);
1586 }
1587
1588 static void nvme_del_queue_end(struct request *req, int error)
1589 {
1590         struct nvme_queue *nvmeq = req->end_io_data;
1591
1592         blk_mq_free_request(req);
1593         complete(&nvmeq->dev->ioq_wait);
1594 }
1595
1596 static void nvme_del_cq_end(struct request *req, int error)
1597 {
1598         struct nvme_queue *nvmeq = req->end_io_data;
1599
1600         if (!error) {
1601                 unsigned long flags;
1602
1603                 /*
1604                  * We might be called with the AQ q_lock held
1605                  * and the I/O queue q_lock should always
1606                  * nest inside the AQ one.
1607                  */
1608                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1609                                         SINGLE_DEPTH_NESTING);
1610                 nvme_process_cq(nvmeq);
1611                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1612         }
1613
1614         nvme_del_queue_end(req, error);
1615 }
1616
1617 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1618 {
1619         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1620         struct request *req;
1621         struct nvme_command cmd;
1622
1623         memset(&cmd, 0, sizeof(cmd));
1624         cmd.delete_queue.opcode = opcode;
1625         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1626
1627         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1628         if (IS_ERR(req))
1629                 return PTR_ERR(req);
1630
1631         req->timeout = ADMIN_TIMEOUT;
1632         req->end_io_data = nvmeq;
1633
1634         blk_execute_rq_nowait(q, NULL, req, false,
1635                         opcode == nvme_admin_delete_cq ?
1636                                 nvme_del_cq_end : nvme_del_queue_end);
1637         return 0;
1638 }
1639
1640 static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
1641 {
1642         int pass;
1643         unsigned long timeout;
1644         u8 opcode = nvme_admin_delete_sq;
1645
1646         for (pass = 0; pass < 2; pass++) {
1647                 int sent = 0, i = queues;
1648
1649                 reinit_completion(&dev->ioq_wait);
1650  retry:
1651                 timeout = ADMIN_TIMEOUT;
1652                 for (; i > 0; i--, sent++)
1653                         if (nvme_delete_queue(dev->queues[i], opcode))
1654                                 break;
1655
1656                 while (sent--) {
1657                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1658                         if (timeout == 0)
1659                                 return;
1660                         if (i)
1661                                 goto retry;
1662                 }
1663                 opcode = nvme_admin_delete_cq;
1664         }
1665 }
1666
1667 /*
1668  * Return: error value if an error occurred setting up the queues or calling
1669  * Identify Device.  0 if these succeeded, even if adding some of the
1670  * namespaces failed.  At the moment, these failures are silent.  TBD which
1671  * failures should be reported.
1672  */
1673 static int nvme_dev_add(struct nvme_dev *dev)
1674 {
1675         if (!dev->ctrl.tagset) {
1676                 dev->tagset.ops = &nvme_mq_ops;
1677                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1678                 dev->tagset.timeout = NVME_IO_TIMEOUT;
1679                 dev->tagset.numa_node = dev_to_node(dev->dev);
1680                 dev->tagset.queue_depth =
1681                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1682                 dev->tagset.cmd_size = nvme_cmd_size(dev);
1683                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1684                 dev->tagset.driver_data = dev;
1685
1686                 if (blk_mq_alloc_tag_set(&dev->tagset))
1687                         return 0;
1688                 dev->ctrl.tagset = &dev->tagset;
1689
1690                 nvme_dbbuf_set(dev);
1691         } else {
1692                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1693
1694                 /* Free previously allocated queues that are no longer usable */
1695                 nvme_free_queues(dev, dev->online_queues);
1696         }
1697
1698         return 0;
1699 }
1700
1701 static int nvme_pci_enable(struct nvme_dev *dev)
1702 {
1703         u64 cap;
1704         int result = -ENOMEM;
1705         struct pci_dev *pdev = to_pci_dev(dev->dev);
1706
1707         if (pci_enable_device_mem(pdev))
1708                 return result;
1709
1710         pci_set_master(pdev);
1711
1712         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1713             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1714                 goto disable;
1715
1716         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1717                 result = -ENODEV;
1718                 goto disable;
1719         }
1720
1721         /*
1722          * Some devices and/or platforms don't advertise or work with INTx
1723          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1724          * adjust this later.
1725          */
1726         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
1727         if (result < 0)
1728                 return result;
1729
1730         cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1731
1732         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1733         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1734         dev->dbs = dev->bar + 4096;
1735
1736         /*
1737          * Temporary fix for the Apple controller found in the MacBook8,1 and
1738          * some MacBook7,1 to avoid controller resets and data loss.
1739          */
1740         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1741                 dev->q_depth = 2;
1742                 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1743                         "queue depth=%u to work around controller resets\n",
1744                         dev->q_depth);
1745         }
1746
1747         /*
1748          * CMBs can currently only exist on >=1.2 PCIe devices. We only
1749          * populate sysfs if a CMB is implemented. Note that we add the
1750          * CMB attribute to the nvme_ctrl kobj which removes the need to remove
1751          * it on exit. Since nvme_dev_attrs_group has no name we can pass
1752          * NULL as final argument to sysfs_add_file_to_group.
1753          */
1754
1755         if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
1756                 dev->cmb = nvme_map_cmb(dev);
1757
1758                 if (dev->cmbsz) {
1759                         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1760                                                     &dev_attr_cmb.attr, NULL))
1761                                 dev_warn(dev->dev,
1762                                          "failed to add sysfs attribute for CMB\n");
1763                 }
1764         }
1765
1766         pci_enable_pcie_error_reporting(pdev);
1767         pci_save_state(pdev);
1768         return 0;
1769
1770  disable:
1771         pci_disable_device(pdev);
1772         return result;
1773 }
1774
1775 static void nvme_dev_unmap(struct nvme_dev *dev)
1776 {
1777         if (dev->bar)
1778                 iounmap(dev->bar);
1779         pci_release_mem_regions(to_pci_dev(dev->dev));
1780 }
1781
1782 static void nvme_pci_disable(struct nvme_dev *dev)
1783 {
1784         struct pci_dev *pdev = to_pci_dev(dev->dev);
1785
1786         pci_free_irq_vectors(pdev);
1787
1788         if (pci_is_enabled(pdev)) {
1789                 pci_disable_pcie_error_reporting(pdev);
1790                 pci_disable_device(pdev);
1791         }
1792 }
1793
1794 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1795 {
1796         int i, queues;
1797         bool dead = true;
1798         struct pci_dev *pdev = to_pci_dev(dev->dev);
1799
1800         del_timer_sync(&dev->watchdog_timer);
1801
1802         mutex_lock(&dev->shutdown_lock);
1803         if (pci_is_enabled(pdev)) {
1804                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1805
1806                 if (dev->ctrl.state == NVME_CTRL_LIVE)
1807                         nvme_start_freeze(&dev->ctrl);
1808                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
1809                         pdev->error_state  != pci_channel_io_normal);
1810         }
1811
1812         /*
1813          * Give the controller a chance to complete all entered requests if
1814          * doing a safe shutdown.
1815          */
1816         if (!dead && shutdown)
1817                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
1818         nvme_stop_queues(&dev->ctrl);
1819
1820         queues = dev->online_queues - 1;
1821         for (i = dev->queue_count - 1; i > 0; i--)
1822                 nvme_suspend_queue(dev->queues[i]);
1823
1824         if (dead) {
1825                 /* A device might become IO incapable very soon during
1826                  * probe, before the admin queue is configured. Thus,
1827                  * queue_count can be 0 here.
1828                  */
1829                 if (dev->queue_count)
1830                         nvme_suspend_queue(dev->queues[0]);
1831         } else {
1832                 nvme_disable_io_queues(dev, queues);
1833                 nvme_disable_admin_queue(dev, shutdown);
1834         }
1835         nvme_pci_disable(dev);
1836
1837         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
1838         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
1839
1840         /*
1841          * The driver will not be starting up queues again if shutting down so
1842          * must flush all entered requests to their failed completion to avoid
1843          * deadlocking blk-mq hot-cpu notifier.
1844          */
1845         if (shutdown)
1846                 nvme_start_queues(&dev->ctrl);
1847         mutex_unlock(&dev->shutdown_lock);
1848 }
1849
1850 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1851 {
1852         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1853                                                 PAGE_SIZE, PAGE_SIZE, 0);
1854         if (!dev->prp_page_pool)
1855                 return -ENOMEM;
1856
1857         /* Optimisation for I/Os between 4k and 128k */
1858         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1859                                                 256, 256, 0);
1860         if (!dev->prp_small_pool) {
1861                 dma_pool_destroy(dev->prp_page_pool);
1862                 return -ENOMEM;
1863         }
1864         return 0;
1865 }
1866
1867 static void nvme_release_prp_pools(struct nvme_dev *dev)
1868 {
1869         dma_pool_destroy(dev->prp_page_pool);
1870         dma_pool_destroy(dev->prp_small_pool);
1871 }
1872
1873 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1874 {
1875         struct nvme_dev *dev = to_nvme_dev(ctrl);
1876
1877         nvme_dbbuf_dma_free(dev);
1878         put_device(dev->dev);
1879         if (dev->tagset.tags)
1880                 blk_mq_free_tag_set(&dev->tagset);
1881         if (dev->ctrl.admin_q)
1882                 blk_put_queue(dev->ctrl.admin_q);
1883         kfree(dev->queues);
1884         free_opal_dev(dev->ctrl.opal_dev);
1885         kfree(dev);
1886 }
1887
1888 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1889 {
1890         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1891
1892         kref_get(&dev->ctrl.kref);
1893         nvme_dev_disable(dev, false);
1894         if (!schedule_work(&dev->remove_work))
1895                 nvme_put_ctrl(&dev->ctrl);
1896 }
1897
1898 static void nvme_reset_work(struct work_struct *work)
1899 {
1900         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1901         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
1902         int result = -ENODEV;
1903
1904         if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1905                 goto out;
1906
1907         /*
1908          * If we're called to reset a live controller first shut it down before
1909          * moving on.
1910          */
1911         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1912                 nvme_dev_disable(dev, false);
1913
1914         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1915                 goto out;
1916
1917         result = nvme_pci_enable(dev);
1918         if (result)
1919                 goto out;
1920
1921         result = nvme_configure_admin_queue(dev);
1922         if (result)
1923                 goto out;
1924
1925         nvme_init_queue(dev->queues[0], 0);
1926         result = nvme_alloc_admin_tags(dev);
1927         if (result)
1928                 goto out;
1929
1930         result = nvme_init_identify(&dev->ctrl);
1931         if (result)
1932                 goto out;
1933
1934         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
1935                 if (!dev->ctrl.opal_dev)
1936                         dev->ctrl.opal_dev =
1937                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
1938                 else if (was_suspend)
1939                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
1940         } else {
1941                 free_opal_dev(dev->ctrl.opal_dev);
1942                 dev->ctrl.opal_dev = NULL;
1943         }
1944
1945         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
1946                 result = nvme_dbbuf_dma_alloc(dev);
1947                 if (result)
1948                         dev_warn(dev->dev,
1949                                  "unable to allocate dma for dbbuf\n");
1950         }
1951
1952         result = nvme_setup_io_queues(dev);
1953         if (result)
1954                 goto out;
1955
1956         /*
1957          * A controller that can not execute IO typically requires user
1958          * intervention to correct. For such degraded controllers, the driver
1959          * should not submit commands the user did not request, so skip
1960          * registering for asynchronous event notification on this condition.
1961          */
1962         if (dev->online_queues > 1)
1963                 nvme_queue_async_events(&dev->ctrl);
1964
1965         mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1966
1967         /*
1968          * Keep the controller around but remove all namespaces if we don't have
1969          * any working I/O queue.
1970          */
1971         if (dev->online_queues < 2) {
1972                 dev_warn(dev->ctrl.device, "IO queues not created\n");
1973                 nvme_kill_queues(&dev->ctrl);
1974                 nvme_remove_namespaces(&dev->ctrl);
1975         } else {
1976                 nvme_start_queues(&dev->ctrl);
1977                 nvme_wait_freeze(&dev->ctrl);
1978                 nvme_dev_add(dev);
1979                 nvme_unfreeze(&dev->ctrl);
1980         }
1981
1982         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1983                 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1984                 goto out;
1985         }
1986
1987         if (dev->online_queues > 1)
1988                 nvme_queue_scan(&dev->ctrl);
1989         return;
1990
1991  out:
1992         nvme_remove_dead_ctrl(dev, result);
1993 }
1994
1995 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1996 {
1997         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1998         struct pci_dev *pdev = to_pci_dev(dev->dev);
1999
2000         nvme_kill_queues(&dev->ctrl);
2001         if (pci_get_drvdata(pdev))
2002                 device_release_driver(&pdev->dev);
2003         nvme_put_ctrl(&dev->ctrl);
2004 }
2005
2006 static int nvme_reset(struct nvme_dev *dev)
2007 {
2008         if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2009                 return -ENODEV;
2010         if (work_busy(&dev->reset_work))
2011                 return -ENODEV;
2012         if (!queue_work(nvme_workq, &dev->reset_work))
2013                 return -EBUSY;
2014         return 0;
2015 }
2016
2017 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2018 {
2019         *val = readl(to_nvme_dev(ctrl)->bar + off);
2020         return 0;
2021 }
2022
2023 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2024 {
2025         writel(val, to_nvme_dev(ctrl)->bar + off);
2026         return 0;
2027 }
2028
2029 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2030 {
2031         *val = readq(to_nvme_dev(ctrl)->bar + off);
2032         return 0;
2033 }
2034
2035 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2036 {
2037         struct nvme_dev *dev = to_nvme_dev(ctrl);
2038         int ret = nvme_reset(dev);
2039
2040         if (!ret)
2041                 flush_work(&dev->reset_work);
2042         return ret;
2043 }
2044
2045 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2046         .name                   = "pcie",
2047         .module                 = THIS_MODULE,
2048         .reg_read32             = nvme_pci_reg_read32,
2049         .reg_write32            = nvme_pci_reg_write32,
2050         .reg_read64             = nvme_pci_reg_read64,
2051         .reset_ctrl             = nvme_pci_reset_ctrl,
2052         .free_ctrl              = nvme_pci_free_ctrl,
2053         .submit_async_event     = nvme_pci_submit_async_event,
2054 };
2055
2056 static int nvme_dev_map(struct nvme_dev *dev)
2057 {
2058         struct pci_dev *pdev = to_pci_dev(dev->dev);
2059
2060         if (pci_request_mem_regions(pdev, "nvme"))
2061                 return -ENODEV;
2062
2063         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2064         if (!dev->bar)
2065                 goto release;
2066
2067         return 0;
2068   release:
2069         pci_release_mem_regions(pdev);
2070         return -ENODEV;
2071 }
2072
2073 static unsigned long check_dell_samsung_bug(struct pci_dev *pdev)
2074 {
2075         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2076                 /*
2077                  * Several Samsung devices seem to drop off the PCIe bus
2078                  * randomly when APST is on and uses the deepest sleep state.
2079                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2080                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2081                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2082                  * laptops.
2083                  */
2084                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2085                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2086                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2087                         return NVME_QUIRK_NO_DEEPEST_PS;
2088         }
2089
2090         return 0;
2091 }
2092
2093 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2094 {
2095         int node, result = -ENOMEM;
2096         struct nvme_dev *dev;
2097         unsigned long quirks = id->driver_data;
2098
2099         node = dev_to_node(&pdev->dev);
2100         if (node == NUMA_NO_NODE)
2101                 set_dev_node(&pdev->dev, first_memory_node);
2102
2103         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2104         if (!dev)
2105                 return -ENOMEM;
2106         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2107                                                         GFP_KERNEL, node);
2108         if (!dev->queues)
2109                 goto free;
2110
2111         dev->dev = get_device(&pdev->dev);
2112         pci_set_drvdata(pdev, dev);
2113
2114         result = nvme_dev_map(dev);
2115         if (result)
2116                 goto free;
2117
2118         INIT_WORK(&dev->reset_work, nvme_reset_work);
2119         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2120         setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2121                 (unsigned long)dev);
2122         mutex_init(&dev->shutdown_lock);
2123         init_completion(&dev->ioq_wait);
2124
2125         result = nvme_setup_prp_pools(dev);
2126         if (result)
2127                 goto put_pci;
2128
2129         quirks |= check_dell_samsung_bug(pdev);
2130
2131         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2132                         quirks);
2133         if (result)
2134                 goto release_pools;
2135
2136         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2137
2138         queue_work(nvme_workq, &dev->reset_work);
2139         return 0;
2140
2141  release_pools:
2142         nvme_release_prp_pools(dev);
2143  put_pci:
2144         put_device(dev->dev);
2145         nvme_dev_unmap(dev);
2146  free:
2147         kfree(dev->queues);
2148         kfree(dev);
2149         return result;
2150 }
2151
2152 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2153 {
2154         struct nvme_dev *dev = pci_get_drvdata(pdev);
2155
2156         if (prepare)
2157                 nvme_dev_disable(dev, false);
2158         else
2159                 nvme_reset(dev);
2160 }
2161
2162 static void nvme_shutdown(struct pci_dev *pdev)
2163 {
2164         struct nvme_dev *dev = pci_get_drvdata(pdev);
2165         nvme_dev_disable(dev, true);
2166 }
2167
2168 /*
2169  * The driver's remove may be called on a device in a partially initialized
2170  * state. This function must not have any dependencies on the device state in
2171  * order to proceed.
2172  */
2173 static void nvme_remove(struct pci_dev *pdev)
2174 {
2175         struct nvme_dev *dev = pci_get_drvdata(pdev);
2176
2177         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2178
2179         pci_set_drvdata(pdev, NULL);
2180
2181         if (!pci_device_is_present(pdev)) {
2182                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2183                 nvme_dev_disable(dev, false);
2184         }
2185
2186         flush_work(&dev->reset_work);
2187         nvme_uninit_ctrl(&dev->ctrl);
2188         nvme_dev_disable(dev, true);
2189         nvme_dev_remove_admin(dev);
2190         nvme_free_queues(dev, 0);
2191         nvme_release_cmb(dev);
2192         nvme_release_prp_pools(dev);
2193         nvme_dev_unmap(dev);
2194         nvme_put_ctrl(&dev->ctrl);
2195 }
2196
2197 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2198 {
2199         int ret = 0;
2200
2201         if (numvfs == 0) {
2202                 if (pci_vfs_assigned(pdev)) {
2203                         dev_warn(&pdev->dev,
2204                                 "Cannot disable SR-IOV VFs while assigned\n");
2205                         return -EPERM;
2206                 }
2207                 pci_disable_sriov(pdev);
2208                 return 0;
2209         }
2210
2211         ret = pci_enable_sriov(pdev, numvfs);
2212         return ret ? ret : numvfs;
2213 }
2214
2215 #ifdef CONFIG_PM_SLEEP
2216 static int nvme_suspend(struct device *dev)
2217 {
2218         struct pci_dev *pdev = to_pci_dev(dev);
2219         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2220
2221         nvme_dev_disable(ndev, true);
2222         return 0;
2223 }
2224
2225 static int nvme_resume(struct device *dev)
2226 {
2227         struct pci_dev *pdev = to_pci_dev(dev);
2228         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2229
2230         nvme_reset(ndev);
2231         return 0;
2232 }
2233 #endif
2234
2235 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2236
2237 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2238                                                 pci_channel_state_t state)
2239 {
2240         struct nvme_dev *dev = pci_get_drvdata(pdev);
2241
2242         /*
2243          * A frozen channel requires a reset. When detected, this method will
2244          * shutdown the controller to quiesce. The controller will be restarted
2245          * after the slot reset through driver's slot_reset callback.
2246          */
2247         switch (state) {
2248         case pci_channel_io_normal:
2249                 return PCI_ERS_RESULT_CAN_RECOVER;
2250         case pci_channel_io_frozen:
2251                 dev_warn(dev->ctrl.device,
2252                         "frozen state error detected, reset controller\n");
2253                 nvme_dev_disable(dev, false);
2254                 return PCI_ERS_RESULT_NEED_RESET;
2255         case pci_channel_io_perm_failure:
2256                 dev_warn(dev->ctrl.device,
2257                         "failure state error detected, request disconnect\n");
2258                 return PCI_ERS_RESULT_DISCONNECT;
2259         }
2260         return PCI_ERS_RESULT_NEED_RESET;
2261 }
2262
2263 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2264 {
2265         struct nvme_dev *dev = pci_get_drvdata(pdev);
2266
2267         dev_info(dev->ctrl.device, "restart after slot reset\n");
2268         pci_restore_state(pdev);
2269         nvme_reset(dev);
2270         return PCI_ERS_RESULT_RECOVERED;
2271 }
2272
2273 static void nvme_error_resume(struct pci_dev *pdev)
2274 {
2275         pci_cleanup_aer_uncorrect_error_status(pdev);
2276 }
2277
2278 static const struct pci_error_handlers nvme_err_handler = {
2279         .error_detected = nvme_error_detected,
2280         .slot_reset     = nvme_slot_reset,
2281         .resume         = nvme_error_resume,
2282         .reset_notify   = nvme_reset_notify,
2283 };
2284
2285 static const struct pci_device_id nvme_id_table[] = {
2286         { PCI_VDEVICE(INTEL, 0x0953),
2287                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2288                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2289         { PCI_VDEVICE(INTEL, 0x0a53),
2290                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2291                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2292         { PCI_VDEVICE(INTEL, 0x0a54),
2293                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2294                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2295         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2296                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2297         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2298                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2299         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2300                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2301         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2302         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2303         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2304         { 0, }
2305 };
2306 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2307
2308 static struct pci_driver nvme_driver = {
2309         .name           = "nvme",
2310         .id_table       = nvme_id_table,
2311         .probe          = nvme_probe,
2312         .remove         = nvme_remove,
2313         .shutdown       = nvme_shutdown,
2314         .driver         = {
2315                 .pm     = &nvme_dev_pm_ops,
2316         },
2317         .sriov_configure = nvme_pci_sriov_configure,
2318         .err_handler    = &nvme_err_handler,
2319 };
2320
2321 static int __init nvme_init(void)
2322 {
2323         int result;
2324
2325         nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2326         if (!nvme_workq)
2327                 return -ENOMEM;
2328
2329         result = pci_register_driver(&nvme_driver);
2330         if (result)
2331                 destroy_workqueue(nvme_workq);
2332         return result;
2333 }
2334
2335 static void __exit nvme_exit(void)
2336 {
2337         pci_unregister_driver(&nvme_driver);
2338         destroy_workqueue(nvme_workq);
2339         _nvme_check_size();
2340 }
2341
2342 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2343 MODULE_LICENSE("GPL");
2344 MODULE_VERSION("1.0");
2345 module_init(nvme_init);
2346 module_exit(nvme_exit);