]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/scsi/hpsa.c
Merge remote-tracking branch 'scsi/for-next'
[karo-tx-linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334D},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
124                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
125         {0,}
126 };
127
128 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
129
130 /*  board_id = Subsystem Device ID & Vendor ID
131  *  product = Marketing Name for the board
132  *  access = Address of the struct of function pointers
133  */
134 static struct board_type products[] = {
135         {0x3241103C, "Smart Array P212", &SA5_access},
136         {0x3243103C, "Smart Array P410", &SA5_access},
137         {0x3245103C, "Smart Array P410i", &SA5_access},
138         {0x3247103C, "Smart Array P411", &SA5_access},
139         {0x3249103C, "Smart Array P812", &SA5_access},
140         {0x324A103C, "Smart Array P712m", &SA5_access},
141         {0x324B103C, "Smart Array P711m", &SA5_access},
142         {0x3350103C, "Smart Array P222", &SA5_access},
143         {0x3351103C, "Smart Array P420", &SA5_access},
144         {0x3352103C, "Smart Array P421", &SA5_access},
145         {0x3353103C, "Smart Array P822", &SA5_access},
146         {0x334D103C, "Smart Array P822se", &SA5_access},
147         {0x3354103C, "Smart Array P420i", &SA5_access},
148         {0x3355103C, "Smart Array P220i", &SA5_access},
149         {0x3356103C, "Smart Array P721m", &SA5_access},
150         {0x1921103C, "Smart Array P830i", &SA5_access},
151         {0x1922103C, "Smart Array P430", &SA5_access},
152         {0x1923103C, "Smart Array P431", &SA5_access},
153         {0x1924103C, "Smart Array P830", &SA5_access},
154         {0x1926103C, "Smart Array P731m", &SA5_access},
155         {0x1928103C, "Smart Array P230i", &SA5_access},
156         {0x1929103C, "Smart Array P530", &SA5_access},
157         {0x21BD103C, "Smart Array", &SA5_access},
158         {0x21BE103C, "Smart Array", &SA5_access},
159         {0x21BF103C, "Smart Array", &SA5_access},
160         {0x21C0103C, "Smart Array", &SA5_access},
161         {0x21C1103C, "Smart Array", &SA5_access},
162         {0x21C2103C, "Smart Array", &SA5_access},
163         {0x21C3103C, "Smart Array", &SA5_access},
164         {0x21C4103C, "Smart Array", &SA5_access},
165         {0x21C5103C, "Smart Array", &SA5_access},
166         {0x21C7103C, "Smart Array", &SA5_access},
167         {0x21C8103C, "Smart Array", &SA5_access},
168         {0x21C9103C, "Smart Array", &SA5_access},
169         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
170 };
171
172 static int number_of_controllers;
173
174 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
175 static spinlock_t lockup_detector_lock;
176 static struct task_struct *hpsa_lockup_detector;
177
178 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
180 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
181 static void start_io(struct ctlr_info *h);
182
183 #ifdef CONFIG_COMPAT
184 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
185 #endif
186
187 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
188 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
189 static struct CommandList *cmd_alloc(struct ctlr_info *h);
190 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
191 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
192         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
193         int cmd_type);
194
195 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
196 static void hpsa_scan_start(struct Scsi_Host *);
197 static int hpsa_scan_finished(struct Scsi_Host *sh,
198         unsigned long elapsed_time);
199 static int hpsa_change_queue_depth(struct scsi_device *sdev,
200         int qdepth, int reason);
201
202 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
203 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_slave_alloc(struct scsi_device *sdev);
205 static void hpsa_slave_destroy(struct scsi_device *sdev);
206
207 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
208 static int check_for_unit_attention(struct ctlr_info *h,
209         struct CommandList *c);
210 static void check_ioctl_unit_attention(struct ctlr_info *h,
211         struct CommandList *c);
212 /* performant mode helper functions */
213 static void calc_bucket_map(int *bucket, int num_buckets,
214         int nsgs, int *bucket_map);
215 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
216 static inline u32 next_command(struct ctlr_info *h, u8 q);
217 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
218                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
219                                u64 *cfg_offset);
220 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
221                                     unsigned long *memory_bar);
222 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
223 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
224                                      int wait_for_ready);
225 static inline void finish_cmd(struct CommandList *c);
226 #define BOARD_NOT_READY 0
227 #define BOARD_READY 1
228
229 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
230 {
231         unsigned long *priv = shost_priv(sdev->host);
232         return (struct ctlr_info *) *priv;
233 }
234
235 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
236 {
237         unsigned long *priv = shost_priv(sh);
238         return (struct ctlr_info *) *priv;
239 }
240
241 static int check_for_unit_attention(struct ctlr_info *h,
242         struct CommandList *c)
243 {
244         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
245                 return 0;
246
247         switch (c->err_info->SenseInfo[12]) {
248         case STATE_CHANGED:
249                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
250                         "detected, command retried\n", h->ctlr);
251                 break;
252         case LUN_FAILED:
253                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
254                         "detected, action required\n", h->ctlr);
255                 break;
256         case REPORT_LUNS_CHANGED:
257                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
258                         "changed, action required\n", h->ctlr);
259         /*
260          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
261          * target (array) devices.
262          */
263                 break;
264         case POWER_OR_RESET:
265                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
266                         "or device reset detected\n", h->ctlr);
267                 break;
268         case UNIT_ATTENTION_CLEARED:
269                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
270                     "cleared by another initiator\n", h->ctlr);
271                 break;
272         default:
273                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
274                         "unit attention detected\n", h->ctlr);
275                 break;
276         }
277         return 1;
278 }
279
280 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
281 {
282         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
283                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
284                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
285                 return 0;
286         dev_warn(&h->pdev->dev, HPSA "device busy");
287         return 1;
288 }
289
290 static ssize_t host_store_rescan(struct device *dev,
291                                  struct device_attribute *attr,
292                                  const char *buf, size_t count)
293 {
294         struct ctlr_info *h;
295         struct Scsi_Host *shost = class_to_shost(dev);
296         h = shost_to_hba(shost);
297         hpsa_scan_start(h->scsi_host);
298         return count;
299 }
300
301 static ssize_t host_show_firmware_revision(struct device *dev,
302              struct device_attribute *attr, char *buf)
303 {
304         struct ctlr_info *h;
305         struct Scsi_Host *shost = class_to_shost(dev);
306         unsigned char *fwrev;
307
308         h = shost_to_hba(shost);
309         if (!h->hba_inquiry_data)
310                 return 0;
311         fwrev = &h->hba_inquiry_data[32];
312         return snprintf(buf, 20, "%c%c%c%c\n",
313                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
314 }
315
316 static ssize_t host_show_commands_outstanding(struct device *dev,
317              struct device_attribute *attr, char *buf)
318 {
319         struct Scsi_Host *shost = class_to_shost(dev);
320         struct ctlr_info *h = shost_to_hba(shost);
321
322         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
323 }
324
325 static ssize_t host_show_transport_mode(struct device *dev,
326         struct device_attribute *attr, char *buf)
327 {
328         struct ctlr_info *h;
329         struct Scsi_Host *shost = class_to_shost(dev);
330
331         h = shost_to_hba(shost);
332         return snprintf(buf, 20, "%s\n",
333                 h->transMethod & CFGTBL_Trans_Performant ?
334                         "performant" : "simple");
335 }
336
337 /* List of controllers which cannot be hard reset on kexec with reset_devices */
338 static u32 unresettable_controller[] = {
339         0x324a103C, /* Smart Array P712m */
340         0x324b103C, /* SmartArray P711m */
341         0x3223103C, /* Smart Array P800 */
342         0x3234103C, /* Smart Array P400 */
343         0x3235103C, /* Smart Array P400i */
344         0x3211103C, /* Smart Array E200i */
345         0x3212103C, /* Smart Array E200 */
346         0x3213103C, /* Smart Array E200i */
347         0x3214103C, /* Smart Array E200i */
348         0x3215103C, /* Smart Array E200i */
349         0x3237103C, /* Smart Array E500 */
350         0x323D103C, /* Smart Array P700m */
351         0x40800E11, /* Smart Array 5i */
352         0x409C0E11, /* Smart Array 6400 */
353         0x409D0E11, /* Smart Array 6400 EM */
354         0x40700E11, /* Smart Array 5300 */
355         0x40820E11, /* Smart Array 532 */
356         0x40830E11, /* Smart Array 5312 */
357         0x409A0E11, /* Smart Array 641 */
358         0x409B0E11, /* Smart Array 642 */
359         0x40910E11, /* Smart Array 6i */
360 };
361
362 /* List of controllers which cannot even be soft reset */
363 static u32 soft_unresettable_controller[] = {
364         0x40800E11, /* Smart Array 5i */
365         0x40700E11, /* Smart Array 5300 */
366         0x40820E11, /* Smart Array 532 */
367         0x40830E11, /* Smart Array 5312 */
368         0x409A0E11, /* Smart Array 641 */
369         0x409B0E11, /* Smart Array 642 */
370         0x40910E11, /* Smart Array 6i */
371         /* Exclude 640x boards.  These are two pci devices in one slot
372          * which share a battery backed cache module.  One controls the
373          * cache, the other accesses the cache through the one that controls
374          * it.  If we reset the one controlling the cache, the other will
375          * likely not be happy.  Just forbid resetting this conjoined mess.
376          * The 640x isn't really supported by hpsa anyway.
377          */
378         0x409C0E11, /* Smart Array 6400 */
379         0x409D0E11, /* Smart Array 6400 EM */
380 };
381
382 static int ctlr_is_hard_resettable(u32 board_id)
383 {
384         int i;
385
386         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
387                 if (unresettable_controller[i] == board_id)
388                         return 0;
389         return 1;
390 }
391
392 static int ctlr_is_soft_resettable(u32 board_id)
393 {
394         int i;
395
396         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
397                 if (soft_unresettable_controller[i] == board_id)
398                         return 0;
399         return 1;
400 }
401
402 static int ctlr_is_resettable(u32 board_id)
403 {
404         return ctlr_is_hard_resettable(board_id) ||
405                 ctlr_is_soft_resettable(board_id);
406 }
407
408 static ssize_t host_show_resettable(struct device *dev,
409         struct device_attribute *attr, char *buf)
410 {
411         struct ctlr_info *h;
412         struct Scsi_Host *shost = class_to_shost(dev);
413
414         h = shost_to_hba(shost);
415         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
416 }
417
418 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
419 {
420         return (scsi3addr[3] & 0xC0) == 0x40;
421 }
422
423 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
424         "1(ADM)", "UNKNOWN"
425 };
426 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
427
428 static ssize_t raid_level_show(struct device *dev,
429              struct device_attribute *attr, char *buf)
430 {
431         ssize_t l = 0;
432         unsigned char rlevel;
433         struct ctlr_info *h;
434         struct scsi_device *sdev;
435         struct hpsa_scsi_dev_t *hdev;
436         unsigned long flags;
437
438         sdev = to_scsi_device(dev);
439         h = sdev_to_hba(sdev);
440         spin_lock_irqsave(&h->lock, flags);
441         hdev = sdev->hostdata;
442         if (!hdev) {
443                 spin_unlock_irqrestore(&h->lock, flags);
444                 return -ENODEV;
445         }
446
447         /* Is this even a logical drive? */
448         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
449                 spin_unlock_irqrestore(&h->lock, flags);
450                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
451                 return l;
452         }
453
454         rlevel = hdev->raid_level;
455         spin_unlock_irqrestore(&h->lock, flags);
456         if (rlevel > RAID_UNKNOWN)
457                 rlevel = RAID_UNKNOWN;
458         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
459         return l;
460 }
461
462 static ssize_t lunid_show(struct device *dev,
463              struct device_attribute *attr, char *buf)
464 {
465         struct ctlr_info *h;
466         struct scsi_device *sdev;
467         struct hpsa_scsi_dev_t *hdev;
468         unsigned long flags;
469         unsigned char lunid[8];
470
471         sdev = to_scsi_device(dev);
472         h = sdev_to_hba(sdev);
473         spin_lock_irqsave(&h->lock, flags);
474         hdev = sdev->hostdata;
475         if (!hdev) {
476                 spin_unlock_irqrestore(&h->lock, flags);
477                 return -ENODEV;
478         }
479         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
480         spin_unlock_irqrestore(&h->lock, flags);
481         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
482                 lunid[0], lunid[1], lunid[2], lunid[3],
483                 lunid[4], lunid[5], lunid[6], lunid[7]);
484 }
485
486 static ssize_t unique_id_show(struct device *dev,
487              struct device_attribute *attr, char *buf)
488 {
489         struct ctlr_info *h;
490         struct scsi_device *sdev;
491         struct hpsa_scsi_dev_t *hdev;
492         unsigned long flags;
493         unsigned char sn[16];
494
495         sdev = to_scsi_device(dev);
496         h = sdev_to_hba(sdev);
497         spin_lock_irqsave(&h->lock, flags);
498         hdev = sdev->hostdata;
499         if (!hdev) {
500                 spin_unlock_irqrestore(&h->lock, flags);
501                 return -ENODEV;
502         }
503         memcpy(sn, hdev->device_id, sizeof(sn));
504         spin_unlock_irqrestore(&h->lock, flags);
505         return snprintf(buf, 16 * 2 + 2,
506                         "%02X%02X%02X%02X%02X%02X%02X%02X"
507                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
508                         sn[0], sn[1], sn[2], sn[3],
509                         sn[4], sn[5], sn[6], sn[7],
510                         sn[8], sn[9], sn[10], sn[11],
511                         sn[12], sn[13], sn[14], sn[15]);
512 }
513
514 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
515 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
516 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
517 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
518 static DEVICE_ATTR(firmware_revision, S_IRUGO,
519         host_show_firmware_revision, NULL);
520 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
521         host_show_commands_outstanding, NULL);
522 static DEVICE_ATTR(transport_mode, S_IRUGO,
523         host_show_transport_mode, NULL);
524 static DEVICE_ATTR(resettable, S_IRUGO,
525         host_show_resettable, NULL);
526
527 static struct device_attribute *hpsa_sdev_attrs[] = {
528         &dev_attr_raid_level,
529         &dev_attr_lunid,
530         &dev_attr_unique_id,
531         NULL,
532 };
533
534 static struct device_attribute *hpsa_shost_attrs[] = {
535         &dev_attr_rescan,
536         &dev_attr_firmware_revision,
537         &dev_attr_commands_outstanding,
538         &dev_attr_transport_mode,
539         &dev_attr_resettable,
540         NULL,
541 };
542
543 static struct scsi_host_template hpsa_driver_template = {
544         .module                 = THIS_MODULE,
545         .name                   = HPSA,
546         .proc_name              = HPSA,
547         .queuecommand           = hpsa_scsi_queue_command,
548         .scan_start             = hpsa_scan_start,
549         .scan_finished          = hpsa_scan_finished,
550         .change_queue_depth     = hpsa_change_queue_depth,
551         .this_id                = -1,
552         .use_clustering         = ENABLE_CLUSTERING,
553         .eh_abort_handler       = hpsa_eh_abort_handler,
554         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
555         .ioctl                  = hpsa_ioctl,
556         .slave_alloc            = hpsa_slave_alloc,
557         .slave_destroy          = hpsa_slave_destroy,
558 #ifdef CONFIG_COMPAT
559         .compat_ioctl           = hpsa_compat_ioctl,
560 #endif
561         .sdev_attrs = hpsa_sdev_attrs,
562         .shost_attrs = hpsa_shost_attrs,
563         .max_sectors = 8192,
564 };
565
566
567 /* Enqueuing and dequeuing functions for cmdlists. */
568 static inline void addQ(struct list_head *list, struct CommandList *c)
569 {
570         list_add_tail(&c->list, list);
571 }
572
573 static inline u32 next_command(struct ctlr_info *h, u8 q)
574 {
575         u32 a;
576         struct reply_pool *rq = &h->reply_queue[q];
577         unsigned long flags;
578
579         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
580                 return h->access.command_completed(h, q);
581
582         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
583                 a = rq->head[rq->current_entry];
584                 rq->current_entry++;
585                 spin_lock_irqsave(&h->lock, flags);
586                 h->commands_outstanding--;
587                 spin_unlock_irqrestore(&h->lock, flags);
588         } else {
589                 a = FIFO_EMPTY;
590         }
591         /* Check for wraparound */
592         if (rq->current_entry == h->max_commands) {
593                 rq->current_entry = 0;
594                 rq->wraparound ^= 1;
595         }
596         return a;
597 }
598
599 /* set_performant_mode: Modify the tag for cciss performant
600  * set bit 0 for pull model, bits 3-1 for block fetch
601  * register number
602  */
603 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
604 {
605         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
606                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
607                 if (likely(h->msix_vector))
608                         c->Header.ReplyQueue =
609                                 raw_smp_processor_id() % h->nreply_queues;
610         }
611 }
612
613 static int is_firmware_flash_cmd(u8 *cdb)
614 {
615         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
616 }
617
618 /*
619  * During firmware flash, the heartbeat register may not update as frequently
620  * as it should.  So we dial down lockup detection during firmware flash. and
621  * dial it back up when firmware flash completes.
622  */
623 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
624 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
625 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
626                 struct CommandList *c)
627 {
628         if (!is_firmware_flash_cmd(c->Request.CDB))
629                 return;
630         atomic_inc(&h->firmware_flash_in_progress);
631         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
632 }
633
634 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
635                 struct CommandList *c)
636 {
637         if (is_firmware_flash_cmd(c->Request.CDB) &&
638                 atomic_dec_and_test(&h->firmware_flash_in_progress))
639                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
640 }
641
642 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
643         struct CommandList *c)
644 {
645         unsigned long flags;
646
647         set_performant_mode(h, c);
648         dial_down_lockup_detection_during_fw_flash(h, c);
649         spin_lock_irqsave(&h->lock, flags);
650         addQ(&h->reqQ, c);
651         h->Qdepth++;
652         spin_unlock_irqrestore(&h->lock, flags);
653         start_io(h);
654 }
655
656 static inline void removeQ(struct CommandList *c)
657 {
658         if (WARN_ON(list_empty(&c->list)))
659                 return;
660         list_del_init(&c->list);
661 }
662
663 static inline int is_hba_lunid(unsigned char scsi3addr[])
664 {
665         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
666 }
667
668 static inline int is_scsi_rev_5(struct ctlr_info *h)
669 {
670         if (!h->hba_inquiry_data)
671                 return 0;
672         if ((h->hba_inquiry_data[2] & 0x07) == 5)
673                 return 1;
674         return 0;
675 }
676
677 static int hpsa_find_target_lun(struct ctlr_info *h,
678         unsigned char scsi3addr[], int bus, int *target, int *lun)
679 {
680         /* finds an unused bus, target, lun for a new physical device
681          * assumes h->devlock is held
682          */
683         int i, found = 0;
684         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
685
686         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
687
688         for (i = 0; i < h->ndevices; i++) {
689                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
690                         __set_bit(h->dev[i]->target, lun_taken);
691         }
692
693         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
694         if (i < HPSA_MAX_DEVICES) {
695                 /* *bus = 1; */
696                 *target = i;
697                 *lun = 0;
698                 found = 1;
699         }
700         return !found;
701 }
702
703 /* Add an entry into h->dev[] array. */
704 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
705                 struct hpsa_scsi_dev_t *device,
706                 struct hpsa_scsi_dev_t *added[], int *nadded)
707 {
708         /* assumes h->devlock is held */
709         int n = h->ndevices;
710         int i;
711         unsigned char addr1[8], addr2[8];
712         struct hpsa_scsi_dev_t *sd;
713
714         if (n >= HPSA_MAX_DEVICES) {
715                 dev_err(&h->pdev->dev, "too many devices, some will be "
716                         "inaccessible.\n");
717                 return -1;
718         }
719
720         /* physical devices do not have lun or target assigned until now. */
721         if (device->lun != -1)
722                 /* Logical device, lun is already assigned. */
723                 goto lun_assigned;
724
725         /* If this device a non-zero lun of a multi-lun device
726          * byte 4 of the 8-byte LUN addr will contain the logical
727          * unit no, zero otherise.
728          */
729         if (device->scsi3addr[4] == 0) {
730                 /* This is not a non-zero lun of a multi-lun device */
731                 if (hpsa_find_target_lun(h, device->scsi3addr,
732                         device->bus, &device->target, &device->lun) != 0)
733                         return -1;
734                 goto lun_assigned;
735         }
736
737         /* This is a non-zero lun of a multi-lun device.
738          * Search through our list and find the device which
739          * has the same 8 byte LUN address, excepting byte 4.
740          * Assign the same bus and target for this new LUN.
741          * Use the logical unit number from the firmware.
742          */
743         memcpy(addr1, device->scsi3addr, 8);
744         addr1[4] = 0;
745         for (i = 0; i < n; i++) {
746                 sd = h->dev[i];
747                 memcpy(addr2, sd->scsi3addr, 8);
748                 addr2[4] = 0;
749                 /* differ only in byte 4? */
750                 if (memcmp(addr1, addr2, 8) == 0) {
751                         device->bus = sd->bus;
752                         device->target = sd->target;
753                         device->lun = device->scsi3addr[4];
754                         break;
755                 }
756         }
757         if (device->lun == -1) {
758                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
759                         " suspect firmware bug or unsupported hardware "
760                         "configuration.\n");
761                         return -1;
762         }
763
764 lun_assigned:
765
766         h->dev[n] = device;
767         h->ndevices++;
768         added[*nadded] = device;
769         (*nadded)++;
770
771         /* initially, (before registering with scsi layer) we don't
772          * know our hostno and we don't want to print anything first
773          * time anyway (the scsi layer's inquiries will show that info)
774          */
775         /* if (hostno != -1) */
776                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
777                         scsi_device_type(device->devtype), hostno,
778                         device->bus, device->target, device->lun);
779         return 0;
780 }
781
782 /* Update an entry in h->dev[] array. */
783 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
784         int entry, struct hpsa_scsi_dev_t *new_entry)
785 {
786         /* assumes h->devlock is held */
787         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
788
789         /* Raid level changed. */
790         h->dev[entry]->raid_level = new_entry->raid_level;
791         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
792                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
793                 new_entry->target, new_entry->lun);
794 }
795
796 /* Replace an entry from h->dev[] array. */
797 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
798         int entry, struct hpsa_scsi_dev_t *new_entry,
799         struct hpsa_scsi_dev_t *added[], int *nadded,
800         struct hpsa_scsi_dev_t *removed[], int *nremoved)
801 {
802         /* assumes h->devlock is held */
803         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
804         removed[*nremoved] = h->dev[entry];
805         (*nremoved)++;
806
807         /*
808          * New physical devices won't have target/lun assigned yet
809          * so we need to preserve the values in the slot we are replacing.
810          */
811         if (new_entry->target == -1) {
812                 new_entry->target = h->dev[entry]->target;
813                 new_entry->lun = h->dev[entry]->lun;
814         }
815
816         h->dev[entry] = new_entry;
817         added[*nadded] = new_entry;
818         (*nadded)++;
819         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
820                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
821                         new_entry->target, new_entry->lun);
822 }
823
824 /* Remove an entry from h->dev[] array. */
825 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
826         struct hpsa_scsi_dev_t *removed[], int *nremoved)
827 {
828         /* assumes h->devlock is held */
829         int i;
830         struct hpsa_scsi_dev_t *sd;
831
832         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
833
834         sd = h->dev[entry];
835         removed[*nremoved] = h->dev[entry];
836         (*nremoved)++;
837
838         for (i = entry; i < h->ndevices-1; i++)
839                 h->dev[i] = h->dev[i+1];
840         h->ndevices--;
841         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
842                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
843                 sd->lun);
844 }
845
846 #define SCSI3ADDR_EQ(a, b) ( \
847         (a)[7] == (b)[7] && \
848         (a)[6] == (b)[6] && \
849         (a)[5] == (b)[5] && \
850         (a)[4] == (b)[4] && \
851         (a)[3] == (b)[3] && \
852         (a)[2] == (b)[2] && \
853         (a)[1] == (b)[1] && \
854         (a)[0] == (b)[0])
855
856 static void fixup_botched_add(struct ctlr_info *h,
857         struct hpsa_scsi_dev_t *added)
858 {
859         /* called when scsi_add_device fails in order to re-adjust
860          * h->dev[] to match the mid layer's view.
861          */
862         unsigned long flags;
863         int i, j;
864
865         spin_lock_irqsave(&h->lock, flags);
866         for (i = 0; i < h->ndevices; i++) {
867                 if (h->dev[i] == added) {
868                         for (j = i; j < h->ndevices-1; j++)
869                                 h->dev[j] = h->dev[j+1];
870                         h->ndevices--;
871                         break;
872                 }
873         }
874         spin_unlock_irqrestore(&h->lock, flags);
875         kfree(added);
876 }
877
878 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
879         struct hpsa_scsi_dev_t *dev2)
880 {
881         /* we compare everything except lun and target as these
882          * are not yet assigned.  Compare parts likely
883          * to differ first
884          */
885         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
886                 sizeof(dev1->scsi3addr)) != 0)
887                 return 0;
888         if (memcmp(dev1->device_id, dev2->device_id,
889                 sizeof(dev1->device_id)) != 0)
890                 return 0;
891         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
892                 return 0;
893         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
894                 return 0;
895         if (dev1->devtype != dev2->devtype)
896                 return 0;
897         if (dev1->bus != dev2->bus)
898                 return 0;
899         return 1;
900 }
901
902 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
903         struct hpsa_scsi_dev_t *dev2)
904 {
905         /* Device attributes that can change, but don't mean
906          * that the device is a different device, nor that the OS
907          * needs to be told anything about the change.
908          */
909         if (dev1->raid_level != dev2->raid_level)
910                 return 1;
911         return 0;
912 }
913
914 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
915  * and return needle location in *index.  If scsi3addr matches, but not
916  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
917  * location in *index.
918  * In the case of a minor device attribute change, such as RAID level, just
919  * return DEVICE_UPDATED, along with the updated device's location in index.
920  * If needle not found, return DEVICE_NOT_FOUND.
921  */
922 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
923         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
924         int *index)
925 {
926         int i;
927 #define DEVICE_NOT_FOUND 0
928 #define DEVICE_CHANGED 1
929 #define DEVICE_SAME 2
930 #define DEVICE_UPDATED 3
931         for (i = 0; i < haystack_size; i++) {
932                 if (haystack[i] == NULL) /* previously removed. */
933                         continue;
934                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
935                         *index = i;
936                         if (device_is_the_same(needle, haystack[i])) {
937                                 if (device_updated(needle, haystack[i]))
938                                         return DEVICE_UPDATED;
939                                 return DEVICE_SAME;
940                         } else {
941                                 return DEVICE_CHANGED;
942                         }
943                 }
944         }
945         *index = -1;
946         return DEVICE_NOT_FOUND;
947 }
948
949 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
950         struct hpsa_scsi_dev_t *sd[], int nsds)
951 {
952         /* sd contains scsi3 addresses and devtypes, and inquiry
953          * data.  This function takes what's in sd to be the current
954          * reality and updates h->dev[] to reflect that reality.
955          */
956         int i, entry, device_change, changes = 0;
957         struct hpsa_scsi_dev_t *csd;
958         unsigned long flags;
959         struct hpsa_scsi_dev_t **added, **removed;
960         int nadded, nremoved;
961         struct Scsi_Host *sh = NULL;
962
963         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
964         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
965
966         if (!added || !removed) {
967                 dev_warn(&h->pdev->dev, "out of memory in "
968                         "adjust_hpsa_scsi_table\n");
969                 goto free_and_out;
970         }
971
972         spin_lock_irqsave(&h->devlock, flags);
973
974         /* find any devices in h->dev[] that are not in
975          * sd[] and remove them from h->dev[], and for any
976          * devices which have changed, remove the old device
977          * info and add the new device info.
978          * If minor device attributes change, just update
979          * the existing device structure.
980          */
981         i = 0;
982         nremoved = 0;
983         nadded = 0;
984         while (i < h->ndevices) {
985                 csd = h->dev[i];
986                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
987                 if (device_change == DEVICE_NOT_FOUND) {
988                         changes++;
989                         hpsa_scsi_remove_entry(h, hostno, i,
990                                 removed, &nremoved);
991                         continue; /* remove ^^^, hence i not incremented */
992                 } else if (device_change == DEVICE_CHANGED) {
993                         changes++;
994                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
995                                 added, &nadded, removed, &nremoved);
996                         /* Set it to NULL to prevent it from being freed
997                          * at the bottom of hpsa_update_scsi_devices()
998                          */
999                         sd[entry] = NULL;
1000                 } else if (device_change == DEVICE_UPDATED) {
1001                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1002                 }
1003                 i++;
1004         }
1005
1006         /* Now, make sure every device listed in sd[] is also
1007          * listed in h->dev[], adding them if they aren't found
1008          */
1009
1010         for (i = 0; i < nsds; i++) {
1011                 if (!sd[i]) /* if already added above. */
1012                         continue;
1013                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1014                                         h->ndevices, &entry);
1015                 if (device_change == DEVICE_NOT_FOUND) {
1016                         changes++;
1017                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1018                                 added, &nadded) != 0)
1019                                 break;
1020                         sd[i] = NULL; /* prevent from being freed later. */
1021                 } else if (device_change == DEVICE_CHANGED) {
1022                         /* should never happen... */
1023                         changes++;
1024                         dev_warn(&h->pdev->dev,
1025                                 "device unexpectedly changed.\n");
1026                         /* but if it does happen, we just ignore that device */
1027                 }
1028         }
1029         spin_unlock_irqrestore(&h->devlock, flags);
1030
1031         /* Don't notify scsi mid layer of any changes the first time through
1032          * (or if there are no changes) scsi_scan_host will do it later the
1033          * first time through.
1034          */
1035         if (hostno == -1 || !changes)
1036                 goto free_and_out;
1037
1038         sh = h->scsi_host;
1039         /* Notify scsi mid layer of any removed devices */
1040         for (i = 0; i < nremoved; i++) {
1041                 struct scsi_device *sdev =
1042                         scsi_device_lookup(sh, removed[i]->bus,
1043                                 removed[i]->target, removed[i]->lun);
1044                 if (sdev != NULL) {
1045                         scsi_remove_device(sdev);
1046                         scsi_device_put(sdev);
1047                 } else {
1048                         /* We don't expect to get here.
1049                          * future cmds to this device will get selection
1050                          * timeout as if the device was gone.
1051                          */
1052                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1053                                 " for removal.", hostno, removed[i]->bus,
1054                                 removed[i]->target, removed[i]->lun);
1055                 }
1056                 kfree(removed[i]);
1057                 removed[i] = NULL;
1058         }
1059
1060         /* Notify scsi mid layer of any added devices */
1061         for (i = 0; i < nadded; i++) {
1062                 if (scsi_add_device(sh, added[i]->bus,
1063                         added[i]->target, added[i]->lun) == 0)
1064                         continue;
1065                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1066                         "device not added.\n", hostno, added[i]->bus,
1067                         added[i]->target, added[i]->lun);
1068                 /* now we have to remove it from h->dev,
1069                  * since it didn't get added to scsi mid layer
1070                  */
1071                 fixup_botched_add(h, added[i]);
1072         }
1073
1074 free_and_out:
1075         kfree(added);
1076         kfree(removed);
1077 }
1078
1079 /*
1080  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1081  * Assume's h->devlock is held.
1082  */
1083 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1084         int bus, int target, int lun)
1085 {
1086         int i;
1087         struct hpsa_scsi_dev_t *sd;
1088
1089         for (i = 0; i < h->ndevices; i++) {
1090                 sd = h->dev[i];
1091                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1092                         return sd;
1093         }
1094         return NULL;
1095 }
1096
1097 /* link sdev->hostdata to our per-device structure. */
1098 static int hpsa_slave_alloc(struct scsi_device *sdev)
1099 {
1100         struct hpsa_scsi_dev_t *sd;
1101         unsigned long flags;
1102         struct ctlr_info *h;
1103
1104         h = sdev_to_hba(sdev);
1105         spin_lock_irqsave(&h->devlock, flags);
1106         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1107                 sdev_id(sdev), sdev->lun);
1108         if (sd != NULL)
1109                 sdev->hostdata = sd;
1110         spin_unlock_irqrestore(&h->devlock, flags);
1111         return 0;
1112 }
1113
1114 static void hpsa_slave_destroy(struct scsi_device *sdev)
1115 {
1116         /* nothing to do. */
1117 }
1118
1119 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1120 {
1121         int i;
1122
1123         if (!h->cmd_sg_list)
1124                 return;
1125         for (i = 0; i < h->nr_cmds; i++) {
1126                 kfree(h->cmd_sg_list[i]);
1127                 h->cmd_sg_list[i] = NULL;
1128         }
1129         kfree(h->cmd_sg_list);
1130         h->cmd_sg_list = NULL;
1131 }
1132
1133 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1134 {
1135         int i;
1136
1137         if (h->chainsize <= 0)
1138                 return 0;
1139
1140         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1141                                 GFP_KERNEL);
1142         if (!h->cmd_sg_list)
1143                 return -ENOMEM;
1144         for (i = 0; i < h->nr_cmds; i++) {
1145                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1146                                                 h->chainsize, GFP_KERNEL);
1147                 if (!h->cmd_sg_list[i])
1148                         goto clean;
1149         }
1150         return 0;
1151
1152 clean:
1153         hpsa_free_sg_chain_blocks(h);
1154         return -ENOMEM;
1155 }
1156
1157 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1158         struct CommandList *c)
1159 {
1160         struct SGDescriptor *chain_sg, *chain_block;
1161         u64 temp64;
1162
1163         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1164         chain_block = h->cmd_sg_list[c->cmdindex];
1165         chain_sg->Ext = HPSA_SG_CHAIN;
1166         chain_sg->Len = sizeof(*chain_sg) *
1167                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1168         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1169                                 PCI_DMA_TODEVICE);
1170         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1171                 /* prevent subsequent unmapping */
1172                 chain_sg->Addr.lower = 0;
1173                 chain_sg->Addr.upper = 0;
1174                 return -1;
1175         }
1176         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1177         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1178         return 0;
1179 }
1180
1181 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1182         struct CommandList *c)
1183 {
1184         struct SGDescriptor *chain_sg;
1185         union u64bit temp64;
1186
1187         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1188                 return;
1189
1190         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1191         temp64.val32.lower = chain_sg->Addr.lower;
1192         temp64.val32.upper = chain_sg->Addr.upper;
1193         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1194 }
1195
1196 static void complete_scsi_command(struct CommandList *cp)
1197 {
1198         struct scsi_cmnd *cmd;
1199         struct ctlr_info *h;
1200         struct ErrorInfo *ei;
1201
1202         unsigned char sense_key;
1203         unsigned char asc;      /* additional sense code */
1204         unsigned char ascq;     /* additional sense code qualifier */
1205         unsigned long sense_data_size;
1206
1207         ei = cp->err_info;
1208         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1209         h = cp->h;
1210
1211         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1212         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1213                 hpsa_unmap_sg_chain_block(h, cp);
1214
1215         cmd->result = (DID_OK << 16);           /* host byte */
1216         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1217         cmd->result |= ei->ScsiStatus;
1218
1219         /* copy the sense data whether we need to or not. */
1220         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1221                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1222         else
1223                 sense_data_size = sizeof(ei->SenseInfo);
1224         if (ei->SenseLen < sense_data_size)
1225                 sense_data_size = ei->SenseLen;
1226
1227         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1228         scsi_set_resid(cmd, ei->ResidualCnt);
1229
1230         if (ei->CommandStatus == 0) {
1231                 cmd_free(h, cp);
1232                 cmd->scsi_done(cmd);
1233                 return;
1234         }
1235
1236         /* an error has occurred */
1237         switch (ei->CommandStatus) {
1238
1239         case CMD_TARGET_STATUS:
1240                 if (ei->ScsiStatus) {
1241                         /* Get sense key */
1242                         sense_key = 0xf & ei->SenseInfo[2];
1243                         /* Get additional sense code */
1244                         asc = ei->SenseInfo[12];
1245                         /* Get addition sense code qualifier */
1246                         ascq = ei->SenseInfo[13];
1247                 }
1248
1249                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1250                         if (check_for_unit_attention(h, cp)) {
1251                                 cmd->result = DID_SOFT_ERROR << 16;
1252                                 break;
1253                         }
1254                         if (sense_key == ILLEGAL_REQUEST) {
1255                                 /*
1256                                  * SCSI REPORT_LUNS is commonly unsupported on
1257                                  * Smart Array.  Suppress noisy complaint.
1258                                  */
1259                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1260                                         break;
1261
1262                                 /* If ASC/ASCQ indicate Logical Unit
1263                                  * Not Supported condition,
1264                                  */
1265                                 if ((asc == 0x25) && (ascq == 0x0)) {
1266                                         dev_warn(&h->pdev->dev, "cp %p "
1267                                                 "has check condition\n", cp);
1268                                         break;
1269                                 }
1270                         }
1271
1272                         if (sense_key == NOT_READY) {
1273                                 /* If Sense is Not Ready, Logical Unit
1274                                  * Not ready, Manual Intervention
1275                                  * required
1276                                  */
1277                                 if ((asc == 0x04) && (ascq == 0x03)) {
1278                                         dev_warn(&h->pdev->dev, "cp %p "
1279                                                 "has check condition: unit "
1280                                                 "not ready, manual "
1281                                                 "intervention required\n", cp);
1282                                         break;
1283                                 }
1284                         }
1285                         if (sense_key == ABORTED_COMMAND) {
1286                                 /* Aborted command is retryable */
1287                                 dev_warn(&h->pdev->dev, "cp %p "
1288                                         "has check condition: aborted command: "
1289                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1290                                         cp, asc, ascq);
1291                                 cmd->result = DID_SOFT_ERROR << 16;
1292                                 break;
1293                         }
1294                         /* Must be some other type of check condition */
1295                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1296                                         "unknown type: "
1297                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1298                                         "Returning result: 0x%x, "
1299                                         "cmd=[%02x %02x %02x %02x %02x "
1300                                         "%02x %02x %02x %02x %02x %02x "
1301                                         "%02x %02x %02x %02x %02x]\n",
1302                                         cp, sense_key, asc, ascq,
1303                                         cmd->result,
1304                                         cmd->cmnd[0], cmd->cmnd[1],
1305                                         cmd->cmnd[2], cmd->cmnd[3],
1306                                         cmd->cmnd[4], cmd->cmnd[5],
1307                                         cmd->cmnd[6], cmd->cmnd[7],
1308                                         cmd->cmnd[8], cmd->cmnd[9],
1309                                         cmd->cmnd[10], cmd->cmnd[11],
1310                                         cmd->cmnd[12], cmd->cmnd[13],
1311                                         cmd->cmnd[14], cmd->cmnd[15]);
1312                         break;
1313                 }
1314
1315
1316                 /* Problem was not a check condition
1317                  * Pass it up to the upper layers...
1318                  */
1319                 if (ei->ScsiStatus) {
1320                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1321                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1322                                 "Returning result: 0x%x\n",
1323                                 cp, ei->ScsiStatus,
1324                                 sense_key, asc, ascq,
1325                                 cmd->result);
1326                 } else {  /* scsi status is zero??? How??? */
1327                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1328                                 "Returning no connection.\n", cp),
1329
1330                         /* Ordinarily, this case should never happen,
1331                          * but there is a bug in some released firmware
1332                          * revisions that allows it to happen if, for
1333                          * example, a 4100 backplane loses power and
1334                          * the tape drive is in it.  We assume that
1335                          * it's a fatal error of some kind because we
1336                          * can't show that it wasn't. We will make it
1337                          * look like selection timeout since that is
1338                          * the most common reason for this to occur,
1339                          * and it's severe enough.
1340                          */
1341
1342                         cmd->result = DID_NO_CONNECT << 16;
1343                 }
1344                 break;
1345
1346         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1347                 break;
1348         case CMD_DATA_OVERRUN:
1349                 dev_warn(&h->pdev->dev, "cp %p has"
1350                         " completed with data overrun "
1351                         "reported\n", cp);
1352                 break;
1353         case CMD_INVALID: {
1354                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1355                 print_cmd(cp); */
1356                 /* We get CMD_INVALID if you address a non-existent device
1357                  * instead of a selection timeout (no response).  You will
1358                  * see this if you yank out a drive, then try to access it.
1359                  * This is kind of a shame because it means that any other
1360                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1361                  * missing target. */
1362                 cmd->result = DID_NO_CONNECT << 16;
1363         }
1364                 break;
1365         case CMD_PROTOCOL_ERR:
1366                 cmd->result = DID_ERROR << 16;
1367                 dev_warn(&h->pdev->dev, "cp %p has "
1368                         "protocol error\n", cp);
1369                 break;
1370         case CMD_HARDWARE_ERR:
1371                 cmd->result = DID_ERROR << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1373                 break;
1374         case CMD_CONNECTION_LOST:
1375                 cmd->result = DID_ERROR << 16;
1376                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1377                 break;
1378         case CMD_ABORTED:
1379                 cmd->result = DID_ABORT << 16;
1380                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1381                                 cp, ei->ScsiStatus);
1382                 break;
1383         case CMD_ABORT_FAILED:
1384                 cmd->result = DID_ERROR << 16;
1385                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1386                 break;
1387         case CMD_UNSOLICITED_ABORT:
1388                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1389                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1390                         "abort\n", cp);
1391                 break;
1392         case CMD_TIMEOUT:
1393                 cmd->result = DID_TIME_OUT << 16;
1394                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1395                 break;
1396         case CMD_UNABORTABLE:
1397                 cmd->result = DID_ERROR << 16;
1398                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1399                 break;
1400         default:
1401                 cmd->result = DID_ERROR << 16;
1402                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1403                                 cp, ei->CommandStatus);
1404         }
1405         cmd_free(h, cp);
1406         cmd->scsi_done(cmd);
1407 }
1408
1409 static void hpsa_pci_unmap(struct pci_dev *pdev,
1410         struct CommandList *c, int sg_used, int data_direction)
1411 {
1412         int i;
1413         union u64bit addr64;
1414
1415         for (i = 0; i < sg_used; i++) {
1416                 addr64.val32.lower = c->SG[i].Addr.lower;
1417                 addr64.val32.upper = c->SG[i].Addr.upper;
1418                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1419                         data_direction);
1420         }
1421 }
1422
1423 static int hpsa_map_one(struct pci_dev *pdev,
1424                 struct CommandList *cp,
1425                 unsigned char *buf,
1426                 size_t buflen,
1427                 int data_direction)
1428 {
1429         u64 addr64;
1430
1431         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1432                 cp->Header.SGList = 0;
1433                 cp->Header.SGTotal = 0;
1434                 return 0;
1435         }
1436
1437         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1438         if (dma_mapping_error(&pdev->dev, addr64)) {
1439                 /* Prevent subsequent unmap of something never mapped */
1440                 cp->Header.SGList = 0;
1441                 cp->Header.SGTotal = 0;
1442                 return -1;
1443         }
1444         cp->SG[0].Addr.lower =
1445           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1446         cp->SG[0].Addr.upper =
1447           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1448         cp->SG[0].Len = buflen;
1449         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1450         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1451         return 0;
1452 }
1453
1454 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1455         struct CommandList *c)
1456 {
1457         DECLARE_COMPLETION_ONSTACK(wait);
1458
1459         c->waiting = &wait;
1460         enqueue_cmd_and_start_io(h, c);
1461         wait_for_completion(&wait);
1462 }
1463
1464 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1465         struct CommandList *c)
1466 {
1467         unsigned long flags;
1468
1469         /* If controller lockup detected, fake a hardware error. */
1470         spin_lock_irqsave(&h->lock, flags);
1471         if (unlikely(h->lockup_detected)) {
1472                 spin_unlock_irqrestore(&h->lock, flags);
1473                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1474         } else {
1475                 spin_unlock_irqrestore(&h->lock, flags);
1476                 hpsa_scsi_do_simple_cmd_core(h, c);
1477         }
1478 }
1479
1480 #define MAX_DRIVER_CMD_RETRIES 25
1481 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1482         struct CommandList *c, int data_direction)
1483 {
1484         int backoff_time = 10, retry_count = 0;
1485
1486         do {
1487                 memset(c->err_info, 0, sizeof(*c->err_info));
1488                 hpsa_scsi_do_simple_cmd_core(h, c);
1489                 retry_count++;
1490                 if (retry_count > 3) {
1491                         msleep(backoff_time);
1492                         if (backoff_time < 1000)
1493                                 backoff_time *= 2;
1494                 }
1495         } while ((check_for_unit_attention(h, c) ||
1496                         check_for_busy(h, c)) &&
1497                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1498         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1499 }
1500
1501 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1502 {
1503         struct ErrorInfo *ei;
1504         struct device *d = &cp->h->pdev->dev;
1505
1506         ei = cp->err_info;
1507         switch (ei->CommandStatus) {
1508         case CMD_TARGET_STATUS:
1509                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1510                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1511                                 ei->ScsiStatus);
1512                 if (ei->ScsiStatus == 0)
1513                         dev_warn(d, "SCSI status is abnormally zero.  "
1514                         "(probably indicates selection timeout "
1515                         "reported incorrectly due to a known "
1516                         "firmware bug, circa July, 2001.)\n");
1517                 break;
1518         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1519                         dev_info(d, "UNDERRUN\n");
1520                 break;
1521         case CMD_DATA_OVERRUN:
1522                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1523                 break;
1524         case CMD_INVALID: {
1525                 /* controller unfortunately reports SCSI passthru's
1526                  * to non-existent targets as invalid commands.
1527                  */
1528                 dev_warn(d, "cp %p is reported invalid (probably means "
1529                         "target device no longer present)\n", cp);
1530                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1531                 print_cmd(cp);  */
1532                 }
1533                 break;
1534         case CMD_PROTOCOL_ERR:
1535                 dev_warn(d, "cp %p has protocol error \n", cp);
1536                 break;
1537         case CMD_HARDWARE_ERR:
1538                 /* cmd->result = DID_ERROR << 16; */
1539                 dev_warn(d, "cp %p had hardware error\n", cp);
1540                 break;
1541         case CMD_CONNECTION_LOST:
1542                 dev_warn(d, "cp %p had connection lost\n", cp);
1543                 break;
1544         case CMD_ABORTED:
1545                 dev_warn(d, "cp %p was aborted\n", cp);
1546                 break;
1547         case CMD_ABORT_FAILED:
1548                 dev_warn(d, "cp %p reports abort failed\n", cp);
1549                 break;
1550         case CMD_UNSOLICITED_ABORT:
1551                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1552                 break;
1553         case CMD_TIMEOUT:
1554                 dev_warn(d, "cp %p timed out\n", cp);
1555                 break;
1556         case CMD_UNABORTABLE:
1557                 dev_warn(d, "Command unabortable\n");
1558                 break;
1559         default:
1560                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1561                                 ei->CommandStatus);
1562         }
1563 }
1564
1565 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1566                         unsigned char page, unsigned char *buf,
1567                         unsigned char bufsize)
1568 {
1569         int rc = IO_OK;
1570         struct CommandList *c;
1571         struct ErrorInfo *ei;
1572
1573         c = cmd_special_alloc(h);
1574
1575         if (c == NULL) {                        /* trouble... */
1576                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1577                 return -ENOMEM;
1578         }
1579
1580         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1581                         page, scsi3addr, TYPE_CMD)) {
1582                 rc = -1;
1583                 goto out;
1584         }
1585         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1586         ei = c->err_info;
1587         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1588                 hpsa_scsi_interpret_error(c);
1589                 rc = -1;
1590         }
1591 out:
1592         cmd_special_free(h, c);
1593         return rc;
1594 }
1595
1596 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1597 {
1598         int rc = IO_OK;
1599         struct CommandList *c;
1600         struct ErrorInfo *ei;
1601
1602         c = cmd_special_alloc(h);
1603
1604         if (c == NULL) {                        /* trouble... */
1605                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1606                 return -ENOMEM;
1607         }
1608
1609         /* fill_cmd can't fail here, no data buffer to map. */
1610         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1611                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1612         hpsa_scsi_do_simple_cmd_core(h, c);
1613         /* no unmap needed here because no data xfer. */
1614
1615         ei = c->err_info;
1616         if (ei->CommandStatus != 0) {
1617                 hpsa_scsi_interpret_error(c);
1618                 rc = -1;
1619         }
1620         cmd_special_free(h, c);
1621         return rc;
1622 }
1623
1624 static void hpsa_get_raid_level(struct ctlr_info *h,
1625         unsigned char *scsi3addr, unsigned char *raid_level)
1626 {
1627         int rc;
1628         unsigned char *buf;
1629
1630         *raid_level = RAID_UNKNOWN;
1631         buf = kzalloc(64, GFP_KERNEL);
1632         if (!buf)
1633                 return;
1634         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1635         if (rc == 0)
1636                 *raid_level = buf[8];
1637         if (*raid_level > RAID_UNKNOWN)
1638                 *raid_level = RAID_UNKNOWN;
1639         kfree(buf);
1640         return;
1641 }
1642
1643 /* Get the device id from inquiry page 0x83 */
1644 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1645         unsigned char *device_id, int buflen)
1646 {
1647         int rc;
1648         unsigned char *buf;
1649
1650         if (buflen > 16)
1651                 buflen = 16;
1652         buf = kzalloc(64, GFP_KERNEL);
1653         if (!buf)
1654                 return -1;
1655         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1656         if (rc == 0)
1657                 memcpy(device_id, &buf[8], buflen);
1658         kfree(buf);
1659         return rc != 0;
1660 }
1661
1662 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1663                 struct ReportLUNdata *buf, int bufsize,
1664                 int extended_response)
1665 {
1666         int rc = IO_OK;
1667         struct CommandList *c;
1668         unsigned char scsi3addr[8];
1669         struct ErrorInfo *ei;
1670
1671         c = cmd_special_alloc(h);
1672         if (c == NULL) {                        /* trouble... */
1673                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1674                 return -1;
1675         }
1676         /* address the controller */
1677         memset(scsi3addr, 0, sizeof(scsi3addr));
1678         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1679                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1680                 rc = -1;
1681                 goto out;
1682         }
1683         if (extended_response)
1684                 c->Request.CDB[1] = extended_response;
1685         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1686         ei = c->err_info;
1687         if (ei->CommandStatus != 0 &&
1688             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1689                 hpsa_scsi_interpret_error(c);
1690                 rc = -1;
1691         }
1692 out:
1693         cmd_special_free(h, c);
1694         return rc;
1695 }
1696
1697 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1698                 struct ReportLUNdata *buf,
1699                 int bufsize, int extended_response)
1700 {
1701         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1702 }
1703
1704 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1705                 struct ReportLUNdata *buf, int bufsize)
1706 {
1707         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1708 }
1709
1710 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1711         int bus, int target, int lun)
1712 {
1713         device->bus = bus;
1714         device->target = target;
1715         device->lun = lun;
1716 }
1717
1718 static int hpsa_update_device_info(struct ctlr_info *h,
1719         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1720         unsigned char *is_OBDR_device)
1721 {
1722
1723 #define OBDR_SIG_OFFSET 43
1724 #define OBDR_TAPE_SIG "$DR-10"
1725 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1726 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1727
1728         unsigned char *inq_buff;
1729         unsigned char *obdr_sig;
1730
1731         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1732         if (!inq_buff)
1733                 goto bail_out;
1734
1735         /* Do an inquiry to the device to see what it is. */
1736         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1737                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1738                 /* Inquiry failed (msg printed already) */
1739                 dev_err(&h->pdev->dev,
1740                         "hpsa_update_device_info: inquiry failed\n");
1741                 goto bail_out;
1742         }
1743
1744         this_device->devtype = (inq_buff[0] & 0x1f);
1745         memcpy(this_device->scsi3addr, scsi3addr, 8);
1746         memcpy(this_device->vendor, &inq_buff[8],
1747                 sizeof(this_device->vendor));
1748         memcpy(this_device->model, &inq_buff[16],
1749                 sizeof(this_device->model));
1750         memset(this_device->device_id, 0,
1751                 sizeof(this_device->device_id));
1752         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1753                 sizeof(this_device->device_id));
1754
1755         if (this_device->devtype == TYPE_DISK &&
1756                 is_logical_dev_addr_mode(scsi3addr))
1757                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1758         else
1759                 this_device->raid_level = RAID_UNKNOWN;
1760
1761         if (is_OBDR_device) {
1762                 /* See if this is a One-Button-Disaster-Recovery device
1763                  * by looking for "$DR-10" at offset 43 in inquiry data.
1764                  */
1765                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1766                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1767                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1768                                                 OBDR_SIG_LEN) == 0);
1769         }
1770
1771         kfree(inq_buff);
1772         return 0;
1773
1774 bail_out:
1775         kfree(inq_buff);
1776         return 1;
1777 }
1778
1779 static unsigned char *ext_target_model[] = {
1780         "MSA2012",
1781         "MSA2024",
1782         "MSA2312",
1783         "MSA2324",
1784         "P2000 G3 SAS",
1785         NULL,
1786 };
1787
1788 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1789 {
1790         int i;
1791
1792         for (i = 0; ext_target_model[i]; i++)
1793                 if (strncmp(device->model, ext_target_model[i],
1794                         strlen(ext_target_model[i])) == 0)
1795                         return 1;
1796         return 0;
1797 }
1798
1799 /* Helper function to assign bus, target, lun mapping of devices.
1800  * Puts non-external target logical volumes on bus 0, external target logical
1801  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1802  * Logical drive target and lun are assigned at this time, but
1803  * physical device lun and target assignment are deferred (assigned
1804  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1805  */
1806 static void figure_bus_target_lun(struct ctlr_info *h,
1807         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1808 {
1809         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1810
1811         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1812                 /* physical device, target and lun filled in later */
1813                 if (is_hba_lunid(lunaddrbytes))
1814                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1815                 else
1816                         /* defer target, lun assignment for physical devices */
1817                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1818                 return;
1819         }
1820         /* It's a logical device */
1821         if (is_ext_target(h, device)) {
1822                 /* external target way, put logicals on bus 1
1823                  * and match target/lun numbers box
1824                  * reports, other smart array, bus 0, target 0, match lunid
1825                  */
1826                 hpsa_set_bus_target_lun(device,
1827                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1828                 return;
1829         }
1830         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1831 }
1832
1833 /*
1834  * If there is no lun 0 on a target, linux won't find any devices.
1835  * For the external targets (arrays), we have to manually detect the enclosure
1836  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1837  * it for some reason.  *tmpdevice is the target we're adding,
1838  * this_device is a pointer into the current element of currentsd[]
1839  * that we're building up in update_scsi_devices(), below.
1840  * lunzerobits is a bitmap that tracks which targets already have a
1841  * lun 0 assigned.
1842  * Returns 1 if an enclosure was added, 0 if not.
1843  */
1844 static int add_ext_target_dev(struct ctlr_info *h,
1845         struct hpsa_scsi_dev_t *tmpdevice,
1846         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1847         unsigned long lunzerobits[], int *n_ext_target_devs)
1848 {
1849         unsigned char scsi3addr[8];
1850
1851         if (test_bit(tmpdevice->target, lunzerobits))
1852                 return 0; /* There is already a lun 0 on this target. */
1853
1854         if (!is_logical_dev_addr_mode(lunaddrbytes))
1855                 return 0; /* It's the logical targets that may lack lun 0. */
1856
1857         if (!is_ext_target(h, tmpdevice))
1858                 return 0; /* Only external target devices have this problem. */
1859
1860         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1861                 return 0;
1862
1863         memset(scsi3addr, 0, 8);
1864         scsi3addr[3] = tmpdevice->target;
1865         if (is_hba_lunid(scsi3addr))
1866                 return 0; /* Don't add the RAID controller here. */
1867
1868         if (is_scsi_rev_5(h))
1869                 return 0; /* p1210m doesn't need to do this. */
1870
1871         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1872                 dev_warn(&h->pdev->dev, "Maximum number of external "
1873                         "target devices exceeded.  Check your hardware "
1874                         "configuration.");
1875                 return 0;
1876         }
1877
1878         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1879                 return 0;
1880         (*n_ext_target_devs)++;
1881         hpsa_set_bus_target_lun(this_device,
1882                                 tmpdevice->bus, tmpdevice->target, 0);
1883         set_bit(tmpdevice->target, lunzerobits);
1884         return 1;
1885 }
1886
1887 /*
1888  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1889  * logdev.  The number of luns in physdev and logdev are returned in
1890  * *nphysicals and *nlogicals, respectively.
1891  * Returns 0 on success, -1 otherwise.
1892  */
1893 static int hpsa_gather_lun_info(struct ctlr_info *h,
1894         int reportlunsize,
1895         struct ReportLUNdata *physdev, u32 *nphysicals,
1896         struct ReportLUNdata *logdev, u32 *nlogicals)
1897 {
1898         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1899                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1900                 return -1;
1901         }
1902         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1903         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1904                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1905                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1906                         *nphysicals - HPSA_MAX_PHYS_LUN);
1907                 *nphysicals = HPSA_MAX_PHYS_LUN;
1908         }
1909         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1910                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1911                 return -1;
1912         }
1913         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1914         /* Reject Logicals in excess of our max capability. */
1915         if (*nlogicals > HPSA_MAX_LUN) {
1916                 dev_warn(&h->pdev->dev,
1917                         "maximum logical LUNs (%d) exceeded.  "
1918                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1919                         *nlogicals - HPSA_MAX_LUN);
1920                         *nlogicals = HPSA_MAX_LUN;
1921         }
1922         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1923                 dev_warn(&h->pdev->dev,
1924                         "maximum logical + physical LUNs (%d) exceeded. "
1925                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1926                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1927                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1928         }
1929         return 0;
1930 }
1931
1932 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1933         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1934         struct ReportLUNdata *logdev_list)
1935 {
1936         /* Helper function, figure out where the LUN ID info is coming from
1937          * given index i, lists of physical and logical devices, where in
1938          * the list the raid controller is supposed to appear (first or last)
1939          */
1940
1941         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1942         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1943
1944         if (i == raid_ctlr_position)
1945                 return RAID_CTLR_LUNID;
1946
1947         if (i < logicals_start)
1948                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1949
1950         if (i < last_device)
1951                 return &logdev_list->LUN[i - nphysicals -
1952                         (raid_ctlr_position == 0)][0];
1953         BUG();
1954         return NULL;
1955 }
1956
1957 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1958 {
1959         /* the idea here is we could get notified
1960          * that some devices have changed, so we do a report
1961          * physical luns and report logical luns cmd, and adjust
1962          * our list of devices accordingly.
1963          *
1964          * The scsi3addr's of devices won't change so long as the
1965          * adapter is not reset.  That means we can rescan and
1966          * tell which devices we already know about, vs. new
1967          * devices, vs.  disappearing devices.
1968          */
1969         struct ReportLUNdata *physdev_list = NULL;
1970         struct ReportLUNdata *logdev_list = NULL;
1971         u32 nphysicals = 0;
1972         u32 nlogicals = 0;
1973         u32 ndev_allocated = 0;
1974         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1975         int ncurrent = 0;
1976         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1977         int i, n_ext_target_devs, ndevs_to_allocate;
1978         int raid_ctlr_position;
1979         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1980
1981         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1982         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1983         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1985
1986         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1987                 dev_err(&h->pdev->dev, "out of memory\n");
1988                 goto out;
1989         }
1990         memset(lunzerobits, 0, sizeof(lunzerobits));
1991
1992         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1993                         logdev_list, &nlogicals))
1994                 goto out;
1995
1996         /* We might see up to the maximum number of logical and physical disks
1997          * plus external target devices, and a device for the local RAID
1998          * controller.
1999          */
2000         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2001
2002         /* Allocate the per device structures */
2003         for (i = 0; i < ndevs_to_allocate; i++) {
2004                 if (i >= HPSA_MAX_DEVICES) {
2005                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2006                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2007                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2008                         break;
2009                 }
2010
2011                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2012                 if (!currentsd[i]) {
2013                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2014                                 __FILE__, __LINE__);
2015                         goto out;
2016                 }
2017                 ndev_allocated++;
2018         }
2019
2020         if (unlikely(is_scsi_rev_5(h)))
2021                 raid_ctlr_position = 0;
2022         else
2023                 raid_ctlr_position = nphysicals + nlogicals;
2024
2025         /* adjust our table of devices */
2026         n_ext_target_devs = 0;
2027         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2028                 u8 *lunaddrbytes, is_OBDR = 0;
2029
2030                 /* Figure out where the LUN ID info is coming from */
2031                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2032                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2033                 /* skip masked physical devices. */
2034                 if (lunaddrbytes[3] & 0xC0 &&
2035                         i < nphysicals + (raid_ctlr_position == 0))
2036                         continue;
2037
2038                 /* Get device type, vendor, model, device id */
2039                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2040                                                         &is_OBDR))
2041                         continue; /* skip it if we can't talk to it. */
2042                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2043                 this_device = currentsd[ncurrent];
2044
2045                 /*
2046                  * For external target devices, we have to insert a LUN 0 which
2047                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2048                  * is nonetheless an enclosure device there.  We have to
2049                  * present that otherwise linux won't find anything if
2050                  * there is no lun 0.
2051                  */
2052                 if (add_ext_target_dev(h, tmpdevice, this_device,
2053                                 lunaddrbytes, lunzerobits,
2054                                 &n_ext_target_devs)) {
2055                         ncurrent++;
2056                         this_device = currentsd[ncurrent];
2057                 }
2058
2059                 *this_device = *tmpdevice;
2060
2061                 switch (this_device->devtype) {
2062                 case TYPE_ROM:
2063                         /* We don't *really* support actual CD-ROM devices,
2064                          * just "One Button Disaster Recovery" tape drive
2065                          * which temporarily pretends to be a CD-ROM drive.
2066                          * So we check that the device is really an OBDR tape
2067                          * device by checking for "$DR-10" in bytes 43-48 of
2068                          * the inquiry data.
2069                          */
2070                         if (is_OBDR)
2071                                 ncurrent++;
2072                         break;
2073                 case TYPE_DISK:
2074                         if (i < nphysicals)
2075                                 break;
2076                         ncurrent++;
2077                         break;
2078                 case TYPE_TAPE:
2079                 case TYPE_MEDIUM_CHANGER:
2080                         ncurrent++;
2081                         break;
2082                 case TYPE_RAID:
2083                         /* Only present the Smartarray HBA as a RAID controller.
2084                          * If it's a RAID controller other than the HBA itself
2085                          * (an external RAID controller, MSA500 or similar)
2086                          * don't present it.
2087                          */
2088                         if (!is_hba_lunid(lunaddrbytes))
2089                                 break;
2090                         ncurrent++;
2091                         break;
2092                 default:
2093                         break;
2094                 }
2095                 if (ncurrent >= HPSA_MAX_DEVICES)
2096                         break;
2097         }
2098         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2099 out:
2100         kfree(tmpdevice);
2101         for (i = 0; i < ndev_allocated; i++)
2102                 kfree(currentsd[i]);
2103         kfree(currentsd);
2104         kfree(physdev_list);
2105         kfree(logdev_list);
2106 }
2107
2108 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2109  * dma mapping  and fills in the scatter gather entries of the
2110  * hpsa command, cp.
2111  */
2112 static int hpsa_scatter_gather(struct ctlr_info *h,
2113                 struct CommandList *cp,
2114                 struct scsi_cmnd *cmd)
2115 {
2116         unsigned int len;
2117         struct scatterlist *sg;
2118         u64 addr64;
2119         int use_sg, i, sg_index, chained;
2120         struct SGDescriptor *curr_sg;
2121
2122         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2123
2124         use_sg = scsi_dma_map(cmd);
2125         if (use_sg < 0)
2126                 return use_sg;
2127
2128         if (!use_sg)
2129                 goto sglist_finished;
2130
2131         curr_sg = cp->SG;
2132         chained = 0;
2133         sg_index = 0;
2134         scsi_for_each_sg(cmd, sg, use_sg, i) {
2135                 if (i == h->max_cmd_sg_entries - 1 &&
2136                         use_sg > h->max_cmd_sg_entries) {
2137                         chained = 1;
2138                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2139                         sg_index = 0;
2140                 }
2141                 addr64 = (u64) sg_dma_address(sg);
2142                 len  = sg_dma_len(sg);
2143                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2144                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2145                 curr_sg->Len = len;
2146                 curr_sg->Ext = 0;  /* we are not chaining */
2147                 curr_sg++;
2148         }
2149
2150         if (use_sg + chained > h->maxSG)
2151                 h->maxSG = use_sg + chained;
2152
2153         if (chained) {
2154                 cp->Header.SGList = h->max_cmd_sg_entries;
2155                 cp->Header.SGTotal = (u16) (use_sg + 1);
2156                 if (hpsa_map_sg_chain_block(h, cp)) {
2157                         scsi_dma_unmap(cmd);
2158                         return -1;
2159                 }
2160                 return 0;
2161         }
2162
2163 sglist_finished:
2164
2165         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2166         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2167         return 0;
2168 }
2169
2170
2171 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2172         void (*done)(struct scsi_cmnd *))
2173 {
2174         struct ctlr_info *h;
2175         struct hpsa_scsi_dev_t *dev;
2176         unsigned char scsi3addr[8];
2177         struct CommandList *c;
2178         unsigned long flags;
2179
2180         /* Get the ptr to our adapter structure out of cmd->host. */
2181         h = sdev_to_hba(cmd->device);
2182         dev = cmd->device->hostdata;
2183         if (!dev) {
2184                 cmd->result = DID_NO_CONNECT << 16;
2185                 done(cmd);
2186                 return 0;
2187         }
2188         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2189
2190         spin_lock_irqsave(&h->lock, flags);
2191         if (unlikely(h->lockup_detected)) {
2192                 spin_unlock_irqrestore(&h->lock, flags);
2193                 cmd->result = DID_ERROR << 16;
2194                 done(cmd);
2195                 return 0;
2196         }
2197         spin_unlock_irqrestore(&h->lock, flags);
2198         c = cmd_alloc(h);
2199         if (c == NULL) {                        /* trouble... */
2200                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2201                 return SCSI_MLQUEUE_HOST_BUSY;
2202         }
2203
2204         /* Fill in the command list header */
2205
2206         cmd->scsi_done = done;    /* save this for use by completion code */
2207
2208         /* save c in case we have to abort it  */
2209         cmd->host_scribble = (unsigned char *) c;
2210
2211         c->cmd_type = CMD_SCSI;
2212         c->scsi_cmd = cmd;
2213         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2214         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2215         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2216         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2217
2218         /* Fill in the request block... */
2219
2220         c->Request.Timeout = 0;
2221         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2222         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2223         c->Request.CDBLen = cmd->cmd_len;
2224         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2225         c->Request.Type.Type = TYPE_CMD;
2226         c->Request.Type.Attribute = ATTR_SIMPLE;
2227         switch (cmd->sc_data_direction) {
2228         case DMA_TO_DEVICE:
2229                 c->Request.Type.Direction = XFER_WRITE;
2230                 break;
2231         case DMA_FROM_DEVICE:
2232                 c->Request.Type.Direction = XFER_READ;
2233                 break;
2234         case DMA_NONE:
2235                 c->Request.Type.Direction = XFER_NONE;
2236                 break;
2237         case DMA_BIDIRECTIONAL:
2238                 /* This can happen if a buggy application does a scsi passthru
2239                  * and sets both inlen and outlen to non-zero. ( see
2240                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2241                  */
2242
2243                 c->Request.Type.Direction = XFER_RSVD;
2244                 /* This is technically wrong, and hpsa controllers should
2245                  * reject it with CMD_INVALID, which is the most correct
2246                  * response, but non-fibre backends appear to let it
2247                  * slide by, and give the same results as if this field
2248                  * were set correctly.  Either way is acceptable for
2249                  * our purposes here.
2250                  */
2251
2252                 break;
2253
2254         default:
2255                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2256                         cmd->sc_data_direction);
2257                 BUG();
2258                 break;
2259         }
2260
2261         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2262                 cmd_free(h, c);
2263                 return SCSI_MLQUEUE_HOST_BUSY;
2264         }
2265         enqueue_cmd_and_start_io(h, c);
2266         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2267         return 0;
2268 }
2269
2270 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2271
2272 static void hpsa_scan_start(struct Scsi_Host *sh)
2273 {
2274         struct ctlr_info *h = shost_to_hba(sh);
2275         unsigned long flags;
2276
2277         /* wait until any scan already in progress is finished. */
2278         while (1) {
2279                 spin_lock_irqsave(&h->scan_lock, flags);
2280                 if (h->scan_finished)
2281                         break;
2282                 spin_unlock_irqrestore(&h->scan_lock, flags);
2283                 wait_event(h->scan_wait_queue, h->scan_finished);
2284                 /* Note: We don't need to worry about a race between this
2285                  * thread and driver unload because the midlayer will
2286                  * have incremented the reference count, so unload won't
2287                  * happen if we're in here.
2288                  */
2289         }
2290         h->scan_finished = 0; /* mark scan as in progress */
2291         spin_unlock_irqrestore(&h->scan_lock, flags);
2292
2293         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2294
2295         spin_lock_irqsave(&h->scan_lock, flags);
2296         h->scan_finished = 1; /* mark scan as finished. */
2297         wake_up_all(&h->scan_wait_queue);
2298         spin_unlock_irqrestore(&h->scan_lock, flags);
2299 }
2300
2301 static int hpsa_scan_finished(struct Scsi_Host *sh,
2302         unsigned long elapsed_time)
2303 {
2304         struct ctlr_info *h = shost_to_hba(sh);
2305         unsigned long flags;
2306         int finished;
2307
2308         spin_lock_irqsave(&h->scan_lock, flags);
2309         finished = h->scan_finished;
2310         spin_unlock_irqrestore(&h->scan_lock, flags);
2311         return finished;
2312 }
2313
2314 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2315         int qdepth, int reason)
2316 {
2317         struct ctlr_info *h = sdev_to_hba(sdev);
2318
2319         if (reason != SCSI_QDEPTH_DEFAULT)
2320                 return -ENOTSUPP;
2321
2322         if (qdepth < 1)
2323                 qdepth = 1;
2324         else
2325                 if (qdepth > h->nr_cmds)
2326                         qdepth = h->nr_cmds;
2327         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2328         return sdev->queue_depth;
2329 }
2330
2331 static void hpsa_unregister_scsi(struct ctlr_info *h)
2332 {
2333         /* we are being forcibly unloaded, and may not refuse. */
2334         scsi_remove_host(h->scsi_host);
2335         scsi_host_put(h->scsi_host);
2336         h->scsi_host = NULL;
2337 }
2338
2339 static int hpsa_register_scsi(struct ctlr_info *h)
2340 {
2341         struct Scsi_Host *sh;
2342         int error;
2343
2344         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2345         if (sh == NULL)
2346                 goto fail;
2347
2348         sh->io_port = 0;
2349         sh->n_io_port = 0;
2350         sh->this_id = -1;
2351         sh->max_channel = 3;
2352         sh->max_cmd_len = MAX_COMMAND_SIZE;
2353         sh->max_lun = HPSA_MAX_LUN;
2354         sh->max_id = HPSA_MAX_LUN;
2355         sh->can_queue = h->nr_cmds;
2356         sh->cmd_per_lun = h->nr_cmds;
2357         sh->sg_tablesize = h->maxsgentries;
2358         h->scsi_host = sh;
2359         sh->hostdata[0] = (unsigned long) h;
2360         sh->irq = h->intr[h->intr_mode];
2361         sh->unique_id = sh->irq;
2362         error = scsi_add_host(sh, &h->pdev->dev);
2363         if (error)
2364                 goto fail_host_put;
2365         scsi_scan_host(sh);
2366         return 0;
2367
2368  fail_host_put:
2369         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2370                 " failed for controller %d\n", __func__, h->ctlr);
2371         scsi_host_put(sh);
2372         return error;
2373  fail:
2374         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2375                 " failed for controller %d\n", __func__, h->ctlr);
2376         return -ENOMEM;
2377 }
2378
2379 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2380         unsigned char lunaddr[])
2381 {
2382         int rc = 0;
2383         int count = 0;
2384         int waittime = 1; /* seconds */
2385         struct CommandList *c;
2386
2387         c = cmd_special_alloc(h);
2388         if (!c) {
2389                 dev_warn(&h->pdev->dev, "out of memory in "
2390                         "wait_for_device_to_become_ready.\n");
2391                 return IO_ERROR;
2392         }
2393
2394         /* Send test unit ready until device ready, or give up. */
2395         while (count < HPSA_TUR_RETRY_LIMIT) {
2396
2397                 /* Wait for a bit.  do this first, because if we send
2398                  * the TUR right away, the reset will just abort it.
2399                  */
2400                 msleep(1000 * waittime);
2401                 count++;
2402
2403                 /* Increase wait time with each try, up to a point. */
2404                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2405                         waittime = waittime * 2;
2406
2407                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2408                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2409                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2410                 hpsa_scsi_do_simple_cmd_core(h, c);
2411                 /* no unmap needed here because no data xfer. */
2412
2413                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2414                         break;
2415
2416                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2417                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2418                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2419                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2420                         break;
2421
2422                 dev_warn(&h->pdev->dev, "waiting %d secs "
2423                         "for device to become ready.\n", waittime);
2424                 rc = 1; /* device not ready. */
2425         }
2426
2427         if (rc)
2428                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2429         else
2430                 dev_warn(&h->pdev->dev, "device is ready.\n");
2431
2432         cmd_special_free(h, c);
2433         return rc;
2434 }
2435
2436 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2437  * complaining.  Doing a host- or bus-reset can't do anything good here.
2438  */
2439 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2440 {
2441         int rc;
2442         struct ctlr_info *h;
2443         struct hpsa_scsi_dev_t *dev;
2444
2445         /* find the controller to which the command to be aborted was sent */
2446         h = sdev_to_hba(scsicmd->device);
2447         if (h == NULL) /* paranoia */
2448                 return FAILED;
2449         dev = scsicmd->device->hostdata;
2450         if (!dev) {
2451                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2452                         "device lookup failed.\n");
2453                 return FAILED;
2454         }
2455         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2456                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2457         /* send a reset to the SCSI LUN which the command was sent to */
2458         rc = hpsa_send_reset(h, dev->scsi3addr);
2459         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2460                 return SUCCESS;
2461
2462         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2463         return FAILED;
2464 }
2465
2466 static void swizzle_abort_tag(u8 *tag)
2467 {
2468         u8 original_tag[8];
2469
2470         memcpy(original_tag, tag, 8);
2471         tag[0] = original_tag[3];
2472         tag[1] = original_tag[2];
2473         tag[2] = original_tag[1];
2474         tag[3] = original_tag[0];
2475         tag[4] = original_tag[7];
2476         tag[5] = original_tag[6];
2477         tag[6] = original_tag[5];
2478         tag[7] = original_tag[4];
2479 }
2480
2481 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2482         struct CommandList *abort, int swizzle)
2483 {
2484         int rc = IO_OK;
2485         struct CommandList *c;
2486         struct ErrorInfo *ei;
2487
2488         c = cmd_special_alloc(h);
2489         if (c == NULL) {        /* trouble... */
2490                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2491                 return -ENOMEM;
2492         }
2493
2494         /* fill_cmd can't fail here, no buffer to map */
2495         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2496                 0, 0, scsi3addr, TYPE_MSG);
2497         if (swizzle)
2498                 swizzle_abort_tag(&c->Request.CDB[4]);
2499         hpsa_scsi_do_simple_cmd_core(h, c);
2500         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2501                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2502         /* no unmap needed here because no data xfer. */
2503
2504         ei = c->err_info;
2505         switch (ei->CommandStatus) {
2506         case CMD_SUCCESS:
2507                 break;
2508         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2509                 rc = -1;
2510                 break;
2511         default:
2512                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2513                         __func__, abort->Header.Tag.upper,
2514                         abort->Header.Tag.lower);
2515                 hpsa_scsi_interpret_error(c);
2516                 rc = -1;
2517                 break;
2518         }
2519         cmd_special_free(h, c);
2520         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2521                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2522         return rc;
2523 }
2524
2525 /*
2526  * hpsa_find_cmd_in_queue
2527  *
2528  * Used to determine whether a command (find) is still present
2529  * in queue_head.   Optionally excludes the last element of queue_head.
2530  *
2531  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2532  * not yet been submitted, and so can be aborted by the driver without
2533  * sending an abort to the hardware.
2534  *
2535  * Returns pointer to command if found in queue, NULL otherwise.
2536  */
2537 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2538                         struct scsi_cmnd *find, struct list_head *queue_head)
2539 {
2540         unsigned long flags;
2541         struct CommandList *c = NULL;   /* ptr into cmpQ */
2542
2543         if (!find)
2544                 return 0;
2545         spin_lock_irqsave(&h->lock, flags);
2546         list_for_each_entry(c, queue_head, list) {
2547                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2548                         continue;
2549                 if (c->scsi_cmd == find) {
2550                         spin_unlock_irqrestore(&h->lock, flags);
2551                         return c;
2552                 }
2553         }
2554         spin_unlock_irqrestore(&h->lock, flags);
2555         return NULL;
2556 }
2557
2558 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2559                                         u8 *tag, struct list_head *queue_head)
2560 {
2561         unsigned long flags;
2562         struct CommandList *c;
2563
2564         spin_lock_irqsave(&h->lock, flags);
2565         list_for_each_entry(c, queue_head, list) {
2566                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2567                         continue;
2568                 spin_unlock_irqrestore(&h->lock, flags);
2569                 return c;
2570         }
2571         spin_unlock_irqrestore(&h->lock, flags);
2572         return NULL;
2573 }
2574
2575 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2576  * tell which kind we're dealing with, so we send the abort both ways.  There
2577  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2578  * way we construct our tags but we check anyway in case the assumptions which
2579  * make this true someday become false.
2580  */
2581 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2582         unsigned char *scsi3addr, struct CommandList *abort)
2583 {
2584         u8 swizzled_tag[8];
2585         struct CommandList *c;
2586         int rc = 0, rc2 = 0;
2587
2588         /* we do not expect to find the swizzled tag in our queue, but
2589          * check anyway just to be sure the assumptions which make this
2590          * the case haven't become wrong.
2591          */
2592         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2593         swizzle_abort_tag(swizzled_tag);
2594         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2595         if (c != NULL) {
2596                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2597                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2598         }
2599         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2600
2601         /* if the command is still in our queue, we can't conclude that it was
2602          * aborted (it might have just completed normally) but in any case
2603          * we don't need to try to abort it another way.
2604          */
2605         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2606         if (c)
2607                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2608         return rc && rc2;
2609 }
2610
2611 /* Send an abort for the specified command.
2612  *      If the device and controller support it,
2613  *              send a task abort request.
2614  */
2615 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2616 {
2617
2618         int i, rc;
2619         struct ctlr_info *h;
2620         struct hpsa_scsi_dev_t *dev;
2621         struct CommandList *abort; /* pointer to command to be aborted */
2622         struct CommandList *found;
2623         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2624         char msg[256];          /* For debug messaging. */
2625         int ml = 0;
2626
2627         /* Find the controller of the command to be aborted */
2628         h = sdev_to_hba(sc->device);
2629         if (WARN(h == NULL,
2630                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2631                 return FAILED;
2632
2633         /* Check that controller supports some kind of task abort */
2634         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2635                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2636                 return FAILED;
2637
2638         memset(msg, 0, sizeof(msg));
2639         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2640                 h->scsi_host->host_no, sc->device->channel,
2641                 sc->device->id, sc->device->lun);
2642
2643         /* Find the device of the command to be aborted */
2644         dev = sc->device->hostdata;
2645         if (!dev) {
2646                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2647                                 msg);
2648                 return FAILED;
2649         }
2650
2651         /* Get SCSI command to be aborted */
2652         abort = (struct CommandList *) sc->host_scribble;
2653         if (abort == NULL) {
2654                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2655                                 msg);
2656                 return FAILED;
2657         }
2658
2659         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2660                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2661         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2662         if (as != NULL)
2663                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2664                         as->cmnd[0], as->serial_number);
2665         dev_dbg(&h->pdev->dev, "%s\n", msg);
2666         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2667                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2668
2669         /* Search reqQ to See if command is queued but not submitted,
2670          * if so, complete the command with aborted status and remove
2671          * it from the reqQ.
2672          */
2673         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2674         if (found) {
2675                 found->err_info->CommandStatus = CMD_ABORTED;
2676                 finish_cmd(found);
2677                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2678                                 msg);
2679                 return SUCCESS;
2680         }
2681
2682         /* not in reqQ, if also not in cmpQ, must have already completed */
2683         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2684         if (!found)  {
2685                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2686                                 msg);
2687                 return SUCCESS;
2688         }
2689
2690         /*
2691          * Command is in flight, or possibly already completed
2692          * by the firmware (but not to the scsi mid layer) but we can't
2693          * distinguish which.  Send the abort down.
2694          */
2695         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2696         if (rc != 0) {
2697                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2698                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2699                         h->scsi_host->host_no,
2700                         dev->bus, dev->target, dev->lun);
2701                 return FAILED;
2702         }
2703         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2704
2705         /* If the abort(s) above completed and actually aborted the
2706          * command, then the command to be aborted should already be
2707          * completed.  If not, wait around a bit more to see if they
2708          * manage to complete normally.
2709          */
2710 #define ABORT_COMPLETE_WAIT_SECS 30
2711         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2712                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2713                 if (!found)
2714                         return SUCCESS;
2715                 msleep(100);
2716         }
2717         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2718                 msg, ABORT_COMPLETE_WAIT_SECS);
2719         return FAILED;
2720 }
2721
2722
2723 /*
2724  * For operations that cannot sleep, a command block is allocated at init,
2725  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2726  * which ones are free or in use.  Lock must be held when calling this.
2727  * cmd_free() is the complement.
2728  */
2729 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2730 {
2731         struct CommandList *c;
2732         int i;
2733         union u64bit temp64;
2734         dma_addr_t cmd_dma_handle, err_dma_handle;
2735         unsigned long flags;
2736
2737         spin_lock_irqsave(&h->lock, flags);
2738         do {
2739                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2740                 if (i == h->nr_cmds) {
2741                         spin_unlock_irqrestore(&h->lock, flags);
2742                         return NULL;
2743                 }
2744         } while (test_and_set_bit
2745                  (i & (BITS_PER_LONG - 1),
2746                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2747         spin_unlock_irqrestore(&h->lock, flags);
2748
2749         c = h->cmd_pool + i;
2750         memset(c, 0, sizeof(*c));
2751         cmd_dma_handle = h->cmd_pool_dhandle
2752             + i * sizeof(*c);
2753         c->err_info = h->errinfo_pool + i;
2754         memset(c->err_info, 0, sizeof(*c->err_info));
2755         err_dma_handle = h->errinfo_pool_dhandle
2756             + i * sizeof(*c->err_info);
2757
2758         c->cmdindex = i;
2759
2760         INIT_LIST_HEAD(&c->list);
2761         c->busaddr = (u32) cmd_dma_handle;
2762         temp64.val = (u64) err_dma_handle;
2763         c->ErrDesc.Addr.lower = temp64.val32.lower;
2764         c->ErrDesc.Addr.upper = temp64.val32.upper;
2765         c->ErrDesc.Len = sizeof(*c->err_info);
2766
2767         c->h = h;
2768         return c;
2769 }
2770
2771 /* For operations that can wait for kmalloc to possibly sleep,
2772  * this routine can be called. Lock need not be held to call
2773  * cmd_special_alloc. cmd_special_free() is the complement.
2774  */
2775 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2776 {
2777         struct CommandList *c;
2778         union u64bit temp64;
2779         dma_addr_t cmd_dma_handle, err_dma_handle;
2780
2781         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2782         if (c == NULL)
2783                 return NULL;
2784         memset(c, 0, sizeof(*c));
2785
2786         c->cmdindex = -1;
2787
2788         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2789                     &err_dma_handle);
2790
2791         if (c->err_info == NULL) {
2792                 pci_free_consistent(h->pdev,
2793                         sizeof(*c), c, cmd_dma_handle);
2794                 return NULL;
2795         }
2796         memset(c->err_info, 0, sizeof(*c->err_info));
2797
2798         INIT_LIST_HEAD(&c->list);
2799         c->busaddr = (u32) cmd_dma_handle;
2800         temp64.val = (u64) err_dma_handle;
2801         c->ErrDesc.Addr.lower = temp64.val32.lower;
2802         c->ErrDesc.Addr.upper = temp64.val32.upper;
2803         c->ErrDesc.Len = sizeof(*c->err_info);
2804
2805         c->h = h;
2806         return c;
2807 }
2808
2809 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2810 {
2811         int i;
2812         unsigned long flags;
2813
2814         i = c - h->cmd_pool;
2815         spin_lock_irqsave(&h->lock, flags);
2816         clear_bit(i & (BITS_PER_LONG - 1),
2817                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2818         spin_unlock_irqrestore(&h->lock, flags);
2819 }
2820
2821 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2822 {
2823         union u64bit temp64;
2824
2825         temp64.val32.lower = c->ErrDesc.Addr.lower;
2826         temp64.val32.upper = c->ErrDesc.Addr.upper;
2827         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2828                             c->err_info, (dma_addr_t) temp64.val);
2829         pci_free_consistent(h->pdev, sizeof(*c),
2830                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2831 }
2832
2833 #ifdef CONFIG_COMPAT
2834
2835 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2836 {
2837         IOCTL32_Command_struct __user *arg32 =
2838             (IOCTL32_Command_struct __user *) arg;
2839         IOCTL_Command_struct arg64;
2840         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2841         int err;
2842         u32 cp;
2843
2844         memset(&arg64, 0, sizeof(arg64));
2845         err = 0;
2846         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2847                            sizeof(arg64.LUN_info));
2848         err |= copy_from_user(&arg64.Request, &arg32->Request,
2849                            sizeof(arg64.Request));
2850         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2851                            sizeof(arg64.error_info));
2852         err |= get_user(arg64.buf_size, &arg32->buf_size);
2853         err |= get_user(cp, &arg32->buf);
2854         arg64.buf = compat_ptr(cp);
2855         err |= copy_to_user(p, &arg64, sizeof(arg64));
2856
2857         if (err)
2858                 return -EFAULT;
2859
2860         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2861         if (err)
2862                 return err;
2863         err |= copy_in_user(&arg32->error_info, &p->error_info,
2864                          sizeof(arg32->error_info));
2865         if (err)
2866                 return -EFAULT;
2867         return err;
2868 }
2869
2870 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2871         int cmd, void *arg)
2872 {
2873         BIG_IOCTL32_Command_struct __user *arg32 =
2874             (BIG_IOCTL32_Command_struct __user *) arg;
2875         BIG_IOCTL_Command_struct arg64;
2876         BIG_IOCTL_Command_struct __user *p =
2877             compat_alloc_user_space(sizeof(arg64));
2878         int err;
2879         u32 cp;
2880
2881         memset(&arg64, 0, sizeof(arg64));
2882         err = 0;
2883         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2884                            sizeof(arg64.LUN_info));
2885         err |= copy_from_user(&arg64.Request, &arg32->Request,
2886                            sizeof(arg64.Request));
2887         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2888                            sizeof(arg64.error_info));
2889         err |= get_user(arg64.buf_size, &arg32->buf_size);
2890         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2891         err |= get_user(cp, &arg32->buf);
2892         arg64.buf = compat_ptr(cp);
2893         err |= copy_to_user(p, &arg64, sizeof(arg64));
2894
2895         if (err)
2896                 return -EFAULT;
2897
2898         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2899         if (err)
2900                 return err;
2901         err |= copy_in_user(&arg32->error_info, &p->error_info,
2902                          sizeof(arg32->error_info));
2903         if (err)
2904                 return -EFAULT;
2905         return err;
2906 }
2907
2908 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2909 {
2910         switch (cmd) {
2911         case CCISS_GETPCIINFO:
2912         case CCISS_GETINTINFO:
2913         case CCISS_SETINTINFO:
2914         case CCISS_GETNODENAME:
2915         case CCISS_SETNODENAME:
2916         case CCISS_GETHEARTBEAT:
2917         case CCISS_GETBUSTYPES:
2918         case CCISS_GETFIRMVER:
2919         case CCISS_GETDRIVVER:
2920         case CCISS_REVALIDVOLS:
2921         case CCISS_DEREGDISK:
2922         case CCISS_REGNEWDISK:
2923         case CCISS_REGNEWD:
2924         case CCISS_RESCANDISK:
2925         case CCISS_GETLUNINFO:
2926                 return hpsa_ioctl(dev, cmd, arg);
2927
2928         case CCISS_PASSTHRU32:
2929                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2930         case CCISS_BIG_PASSTHRU32:
2931                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2932
2933         default:
2934                 return -ENOIOCTLCMD;
2935         }
2936 }
2937 #endif
2938
2939 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2940 {
2941         struct hpsa_pci_info pciinfo;
2942
2943         if (!argp)
2944                 return -EINVAL;
2945         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2946         pciinfo.bus = h->pdev->bus->number;
2947         pciinfo.dev_fn = h->pdev->devfn;
2948         pciinfo.board_id = h->board_id;
2949         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2950                 return -EFAULT;
2951         return 0;
2952 }
2953
2954 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2955 {
2956         DriverVer_type DriverVer;
2957         unsigned char vmaj, vmin, vsubmin;
2958         int rc;
2959
2960         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2961                 &vmaj, &vmin, &vsubmin);
2962         if (rc != 3) {
2963                 dev_info(&h->pdev->dev, "driver version string '%s' "
2964                         "unrecognized.", HPSA_DRIVER_VERSION);
2965                 vmaj = 0;
2966                 vmin = 0;
2967                 vsubmin = 0;
2968         }
2969         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2970         if (!argp)
2971                 return -EINVAL;
2972         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2973                 return -EFAULT;
2974         return 0;
2975 }
2976
2977 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2978 {
2979         IOCTL_Command_struct iocommand;
2980         struct CommandList *c;
2981         char *buff = NULL;
2982         union u64bit temp64;
2983         int rc = 0;
2984
2985         if (!argp)
2986                 return -EINVAL;
2987         if (!capable(CAP_SYS_RAWIO))
2988                 return -EPERM;
2989         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2990                 return -EFAULT;
2991         if ((iocommand.buf_size < 1) &&
2992             (iocommand.Request.Type.Direction != XFER_NONE)) {
2993                 return -EINVAL;
2994         }
2995         if (iocommand.buf_size > 0) {
2996                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2997                 if (buff == NULL)
2998                         return -EFAULT;
2999                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
3000                         /* Copy the data into the buffer we created */
3001                         if (copy_from_user(buff, iocommand.buf,
3002                                 iocommand.buf_size)) {
3003                                 rc = -EFAULT;
3004                                 goto out_kfree;
3005                         }
3006                 } else {
3007                         memset(buff, 0, iocommand.buf_size);
3008                 }
3009         }
3010         c = cmd_special_alloc(h);
3011         if (c == NULL) {
3012                 rc = -ENOMEM;
3013                 goto out_kfree;
3014         }
3015         /* Fill in the command type */
3016         c->cmd_type = CMD_IOCTL_PEND;
3017         /* Fill in Command Header */
3018         c->Header.ReplyQueue = 0; /* unused in simple mode */
3019         if (iocommand.buf_size > 0) {   /* buffer to fill */
3020                 c->Header.SGList = 1;
3021                 c->Header.SGTotal = 1;
3022         } else  { /* no buffers to fill */
3023                 c->Header.SGList = 0;
3024                 c->Header.SGTotal = 0;
3025         }
3026         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3027         /* use the kernel address the cmd block for tag */
3028         c->Header.Tag.lower = c->busaddr;
3029
3030         /* Fill in Request block */
3031         memcpy(&c->Request, &iocommand.Request,
3032                 sizeof(c->Request));
3033
3034         /* Fill in the scatter gather information */
3035         if (iocommand.buf_size > 0) {
3036                 temp64.val = pci_map_single(h->pdev, buff,
3037                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3038                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3039                         c->SG[0].Addr.lower = 0;
3040                         c->SG[0].Addr.upper = 0;
3041                         c->SG[0].Len = 0;
3042                         rc = -ENOMEM;
3043                         goto out;
3044                 }
3045                 c->SG[0].Addr.lower = temp64.val32.lower;
3046                 c->SG[0].Addr.upper = temp64.val32.upper;
3047                 c->SG[0].Len = iocommand.buf_size;
3048                 c->SG[0].Ext = 0; /* we are not chaining*/
3049         }
3050         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3051         if (iocommand.buf_size > 0)
3052                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3053         check_ioctl_unit_attention(h, c);
3054
3055         /* Copy the error information out */
3056         memcpy(&iocommand.error_info, c->err_info,
3057                 sizeof(iocommand.error_info));
3058         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3059                 rc = -EFAULT;
3060                 goto out;
3061         }
3062         if (iocommand.Request.Type.Direction == XFER_READ &&
3063                 iocommand.buf_size > 0) {
3064                 /* Copy the data out of the buffer we created */
3065                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3066                         rc = -EFAULT;
3067                         goto out;
3068                 }
3069         }
3070 out:
3071         cmd_special_free(h, c);
3072 out_kfree:
3073         kfree(buff);
3074         return rc;
3075 }
3076
3077 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3078 {
3079         BIG_IOCTL_Command_struct *ioc;
3080         struct CommandList *c;
3081         unsigned char **buff = NULL;
3082         int *buff_size = NULL;
3083         union u64bit temp64;
3084         BYTE sg_used = 0;
3085         int status = 0;
3086         int i;
3087         u32 left;
3088         u32 sz;
3089         BYTE __user *data_ptr;
3090
3091         if (!argp)
3092                 return -EINVAL;
3093         if (!capable(CAP_SYS_RAWIO))
3094                 return -EPERM;
3095         ioc = (BIG_IOCTL_Command_struct *)
3096             kmalloc(sizeof(*ioc), GFP_KERNEL);
3097         if (!ioc) {
3098                 status = -ENOMEM;
3099                 goto cleanup1;
3100         }
3101         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3102                 status = -EFAULT;
3103                 goto cleanup1;
3104         }
3105         if ((ioc->buf_size < 1) &&
3106             (ioc->Request.Type.Direction != XFER_NONE)) {
3107                 status = -EINVAL;
3108                 goto cleanup1;
3109         }
3110         /* Check kmalloc limits  using all SGs */
3111         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3112                 status = -EINVAL;
3113                 goto cleanup1;
3114         }
3115         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3116                 status = -EINVAL;
3117                 goto cleanup1;
3118         }
3119         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3120         if (!buff) {
3121                 status = -ENOMEM;
3122                 goto cleanup1;
3123         }
3124         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3125         if (!buff_size) {
3126                 status = -ENOMEM;
3127                 goto cleanup1;
3128         }
3129         left = ioc->buf_size;
3130         data_ptr = ioc->buf;
3131         while (left) {
3132                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3133                 buff_size[sg_used] = sz;
3134                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3135                 if (buff[sg_used] == NULL) {
3136                         status = -ENOMEM;
3137                         goto cleanup1;
3138                 }
3139                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3140                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3141                                 status = -ENOMEM;
3142                                 goto cleanup1;
3143                         }
3144                 } else
3145                         memset(buff[sg_used], 0, sz);
3146                 left -= sz;
3147                 data_ptr += sz;
3148                 sg_used++;
3149         }
3150         c = cmd_special_alloc(h);
3151         if (c == NULL) {
3152                 status = -ENOMEM;
3153                 goto cleanup1;
3154         }
3155         c->cmd_type = CMD_IOCTL_PEND;
3156         c->Header.ReplyQueue = 0;
3157         c->Header.SGList = c->Header.SGTotal = sg_used;
3158         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3159         c->Header.Tag.lower = c->busaddr;
3160         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3161         if (ioc->buf_size > 0) {
3162                 int i;
3163                 for (i = 0; i < sg_used; i++) {
3164                         temp64.val = pci_map_single(h->pdev, buff[i],
3165                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3166                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3167                                 c->SG[i].Addr.lower = 0;
3168                                 c->SG[i].Addr.upper = 0;
3169                                 c->SG[i].Len = 0;
3170                                 hpsa_pci_unmap(h->pdev, c, i,
3171                                         PCI_DMA_BIDIRECTIONAL);
3172                                 status = -ENOMEM;
3173                                 goto cleanup1;
3174                         }
3175                         c->SG[i].Addr.lower = temp64.val32.lower;
3176                         c->SG[i].Addr.upper = temp64.val32.upper;
3177                         c->SG[i].Len = buff_size[i];
3178                         /* we are not chaining */
3179                         c->SG[i].Ext = 0;
3180                 }
3181         }
3182         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3183         if (sg_used)
3184                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3185         check_ioctl_unit_attention(h, c);
3186         /* Copy the error information out */
3187         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3188         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3189                 cmd_special_free(h, c);
3190                 status = -EFAULT;
3191                 goto cleanup1;
3192         }
3193         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3194                 /* Copy the data out of the buffer we created */
3195                 BYTE __user *ptr = ioc->buf;
3196                 for (i = 0; i < sg_used; i++) {
3197                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3198                                 cmd_special_free(h, c);
3199                                 status = -EFAULT;
3200                                 goto cleanup1;
3201                         }
3202                         ptr += buff_size[i];
3203                 }
3204         }
3205         cmd_special_free(h, c);
3206         status = 0;
3207 cleanup1:
3208         if (buff) {
3209                 for (i = 0; i < sg_used; i++)
3210                         kfree(buff[i]);
3211                 kfree(buff);
3212         }
3213         kfree(buff_size);
3214         kfree(ioc);
3215         return status;
3216 }
3217
3218 static void check_ioctl_unit_attention(struct ctlr_info *h,
3219         struct CommandList *c)
3220 {
3221         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3222                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3223                 (void) check_for_unit_attention(h, c);
3224 }
3225 /*
3226  * ioctl
3227  */
3228 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3229 {
3230         struct ctlr_info *h;
3231         void __user *argp = (void __user *)arg;
3232
3233         h = sdev_to_hba(dev);
3234
3235         switch (cmd) {
3236         case CCISS_DEREGDISK:
3237         case CCISS_REGNEWDISK:
3238         case CCISS_REGNEWD:
3239                 hpsa_scan_start(h->scsi_host);
3240                 return 0;
3241         case CCISS_GETPCIINFO:
3242                 return hpsa_getpciinfo_ioctl(h, argp);
3243         case CCISS_GETDRIVVER:
3244                 return hpsa_getdrivver_ioctl(h, argp);
3245         case CCISS_PASSTHRU:
3246                 return hpsa_passthru_ioctl(h, argp);
3247         case CCISS_BIG_PASSTHRU:
3248                 return hpsa_big_passthru_ioctl(h, argp);
3249         default:
3250                 return -ENOTTY;
3251         }
3252 }
3253
3254 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3255                                 u8 reset_type)
3256 {
3257         struct CommandList *c;
3258
3259         c = cmd_alloc(h);
3260         if (!c)
3261                 return -ENOMEM;
3262         /* fill_cmd can't fail here, no data buffer to map */
3263         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3264                 RAID_CTLR_LUNID, TYPE_MSG);
3265         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3266         c->waiting = NULL;
3267         enqueue_cmd_and_start_io(h, c);
3268         /* Don't wait for completion, the reset won't complete.  Don't free
3269          * the command either.  This is the last command we will send before
3270          * re-initializing everything, so it doesn't matter and won't leak.
3271          */
3272         return 0;
3273 }
3274
3275 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3276         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3277         int cmd_type)
3278 {
3279         int pci_dir = XFER_NONE;
3280         struct CommandList *a; /* for commands to be aborted */
3281
3282         c->cmd_type = CMD_IOCTL_PEND;
3283         c->Header.ReplyQueue = 0;
3284         if (buff != NULL && size > 0) {
3285                 c->Header.SGList = 1;
3286                 c->Header.SGTotal = 1;
3287         } else {
3288                 c->Header.SGList = 0;
3289                 c->Header.SGTotal = 0;
3290         }
3291         c->Header.Tag.lower = c->busaddr;
3292         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3293
3294         c->Request.Type.Type = cmd_type;
3295         if (cmd_type == TYPE_CMD) {
3296                 switch (cmd) {
3297                 case HPSA_INQUIRY:
3298                         /* are we trying to read a vital product page */
3299                         if (page_code != 0) {
3300                                 c->Request.CDB[1] = 0x01;
3301                                 c->Request.CDB[2] = page_code;
3302                         }
3303                         c->Request.CDBLen = 6;
3304                         c->Request.Type.Attribute = ATTR_SIMPLE;
3305                         c->Request.Type.Direction = XFER_READ;
3306                         c->Request.Timeout = 0;
3307                         c->Request.CDB[0] = HPSA_INQUIRY;
3308                         c->Request.CDB[4] = size & 0xFF;
3309                         break;
3310                 case HPSA_REPORT_LOG:
3311                 case HPSA_REPORT_PHYS:
3312                         /* Talking to controller so It's a physical command
3313                            mode = 00 target = 0.  Nothing to write.
3314                          */
3315                         c->Request.CDBLen = 12;
3316                         c->Request.Type.Attribute = ATTR_SIMPLE;
3317                         c->Request.Type.Direction = XFER_READ;
3318                         c->Request.Timeout = 0;
3319                         c->Request.CDB[0] = cmd;
3320                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3321                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3322                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3323                         c->Request.CDB[9] = size & 0xFF;
3324                         break;
3325                 case HPSA_CACHE_FLUSH:
3326                         c->Request.CDBLen = 12;
3327                         c->Request.Type.Attribute = ATTR_SIMPLE;
3328                         c->Request.Type.Direction = XFER_WRITE;
3329                         c->Request.Timeout = 0;
3330                         c->Request.CDB[0] = BMIC_WRITE;
3331                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3332                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3333                         c->Request.CDB[8] = size & 0xFF;
3334                         break;
3335                 case TEST_UNIT_READY:
3336                         c->Request.CDBLen = 6;
3337                         c->Request.Type.Attribute = ATTR_SIMPLE;
3338                         c->Request.Type.Direction = XFER_NONE;
3339                         c->Request.Timeout = 0;
3340                         break;
3341                 default:
3342                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3343                         BUG();
3344                         return -1;
3345                 }
3346         } else if (cmd_type == TYPE_MSG) {
3347                 switch (cmd) {
3348
3349                 case  HPSA_DEVICE_RESET_MSG:
3350                         c->Request.CDBLen = 16;
3351                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3352                         c->Request.Type.Attribute = ATTR_SIMPLE;
3353                         c->Request.Type.Direction = XFER_NONE;
3354                         c->Request.Timeout = 0; /* Don't time out */
3355                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3356                         c->Request.CDB[0] =  cmd;
3357                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3358                         /* If bytes 4-7 are zero, it means reset the */
3359                         /* LunID device */
3360                         c->Request.CDB[4] = 0x00;
3361                         c->Request.CDB[5] = 0x00;
3362                         c->Request.CDB[6] = 0x00;
3363                         c->Request.CDB[7] = 0x00;
3364                         break;
3365                 case  HPSA_ABORT_MSG:
3366                         a = buff;       /* point to command to be aborted */
3367                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3368                                 a->Header.Tag.upper, a->Header.Tag.lower,
3369                                 c->Header.Tag.upper, c->Header.Tag.lower);
3370                         c->Request.CDBLen = 16;
3371                         c->Request.Type.Type = TYPE_MSG;
3372                         c->Request.Type.Attribute = ATTR_SIMPLE;
3373                         c->Request.Type.Direction = XFER_WRITE;
3374                         c->Request.Timeout = 0; /* Don't time out */
3375                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3376                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3377                         c->Request.CDB[2] = 0x00; /* reserved */
3378                         c->Request.CDB[3] = 0x00; /* reserved */
3379                         /* Tag to abort goes in CDB[4]-CDB[11] */
3380                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3381                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3382                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3383                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3384                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3385                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3386                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3387                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3388                         c->Request.CDB[12] = 0x00; /* reserved */
3389                         c->Request.CDB[13] = 0x00; /* reserved */
3390                         c->Request.CDB[14] = 0x00; /* reserved */
3391                         c->Request.CDB[15] = 0x00; /* reserved */
3392                 break;
3393                 default:
3394                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3395                                 cmd);
3396                         BUG();
3397                 }
3398         } else {
3399                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3400                 BUG();
3401         }
3402
3403         switch (c->Request.Type.Direction) {
3404         case XFER_READ:
3405                 pci_dir = PCI_DMA_FROMDEVICE;
3406                 break;
3407         case XFER_WRITE:
3408                 pci_dir = PCI_DMA_TODEVICE;
3409                 break;
3410         case XFER_NONE:
3411                 pci_dir = PCI_DMA_NONE;
3412                 break;
3413         default:
3414                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3415         }
3416         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3417                 return -1;
3418         return 0;
3419 }
3420
3421 /*
3422  * Map (physical) PCI mem into (virtual) kernel space
3423  */
3424 static void __iomem *remap_pci_mem(ulong base, ulong size)
3425 {
3426         ulong page_base = ((ulong) base) & PAGE_MASK;
3427         ulong page_offs = ((ulong) base) - page_base;
3428         void __iomem *page_remapped = ioremap_nocache(page_base,
3429                 page_offs + size);
3430
3431         return page_remapped ? (page_remapped + page_offs) : NULL;
3432 }
3433
3434 /* Takes cmds off the submission queue and sends them to the hardware,
3435  * then puts them on the queue of cmds waiting for completion.
3436  */
3437 static void start_io(struct ctlr_info *h)
3438 {
3439         struct CommandList *c;
3440         unsigned long flags;
3441
3442         spin_lock_irqsave(&h->lock, flags);
3443         while (!list_empty(&h->reqQ)) {
3444                 c = list_entry(h->reqQ.next, struct CommandList, list);
3445                 /* can't do anything if fifo is full */
3446                 if ((h->access.fifo_full(h))) {
3447                         dev_warn(&h->pdev->dev, "fifo full\n");
3448                         break;
3449                 }
3450
3451                 /* Get the first entry from the Request Q */
3452                 removeQ(c);
3453                 h->Qdepth--;
3454
3455                 /* Put job onto the completed Q */
3456                 addQ(&h->cmpQ, c);
3457
3458                 /* Must increment commands_outstanding before unlocking
3459                  * and submitting to avoid race checking for fifo full
3460                  * condition.
3461                  */
3462                 h->commands_outstanding++;
3463                 if (h->commands_outstanding > h->max_outstanding)
3464                         h->max_outstanding = h->commands_outstanding;
3465
3466                 /* Tell the controller execute command */
3467                 spin_unlock_irqrestore(&h->lock, flags);
3468                 h->access.submit_command(h, c);
3469                 spin_lock_irqsave(&h->lock, flags);
3470         }
3471         spin_unlock_irqrestore(&h->lock, flags);
3472 }
3473
3474 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3475 {
3476         return h->access.command_completed(h, q);
3477 }
3478
3479 static inline bool interrupt_pending(struct ctlr_info *h)
3480 {
3481         return h->access.intr_pending(h);
3482 }
3483
3484 static inline long interrupt_not_for_us(struct ctlr_info *h)
3485 {
3486         return (h->access.intr_pending(h) == 0) ||
3487                 (h->interrupts_enabled == 0);
3488 }
3489
3490 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3491         u32 raw_tag)
3492 {
3493         if (unlikely(tag_index >= h->nr_cmds)) {
3494                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3495                 return 1;
3496         }
3497         return 0;
3498 }
3499
3500 static inline void finish_cmd(struct CommandList *c)
3501 {
3502         unsigned long flags;
3503
3504         spin_lock_irqsave(&c->h->lock, flags);
3505         removeQ(c);
3506         spin_unlock_irqrestore(&c->h->lock, flags);
3507         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3508         if (likely(c->cmd_type == CMD_SCSI))
3509                 complete_scsi_command(c);
3510         else if (c->cmd_type == CMD_IOCTL_PEND)
3511                 complete(c->waiting);
3512 }
3513
3514 static inline u32 hpsa_tag_contains_index(u32 tag)
3515 {
3516         return tag & DIRECT_LOOKUP_BIT;
3517 }
3518
3519 static inline u32 hpsa_tag_to_index(u32 tag)
3520 {
3521         return tag >> DIRECT_LOOKUP_SHIFT;
3522 }
3523
3524
3525 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3526 {
3527 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3528 #define HPSA_SIMPLE_ERROR_BITS 0x03
3529         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3530                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3531         return tag & ~HPSA_PERF_ERROR_BITS;
3532 }
3533
3534 /* process completion of an indexed ("direct lookup") command */
3535 static inline void process_indexed_cmd(struct ctlr_info *h,
3536         u32 raw_tag)
3537 {
3538         u32 tag_index;
3539         struct CommandList *c;
3540
3541         tag_index = hpsa_tag_to_index(raw_tag);
3542         if (!bad_tag(h, tag_index, raw_tag)) {
3543                 c = h->cmd_pool + tag_index;
3544                 finish_cmd(c);
3545         }
3546 }
3547
3548 /* process completion of a non-indexed command */
3549 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3550         u32 raw_tag)
3551 {
3552         u32 tag;
3553         struct CommandList *c = NULL;
3554         unsigned long flags;
3555
3556         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3557         spin_lock_irqsave(&h->lock, flags);
3558         list_for_each_entry(c, &h->cmpQ, list) {
3559                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3560                         spin_unlock_irqrestore(&h->lock, flags);
3561                         finish_cmd(c);
3562                         return;
3563                 }
3564         }
3565         spin_unlock_irqrestore(&h->lock, flags);
3566         bad_tag(h, h->nr_cmds + 1, raw_tag);
3567 }
3568
3569 /* Some controllers, like p400, will give us one interrupt
3570  * after a soft reset, even if we turned interrupts off.
3571  * Only need to check for this in the hpsa_xxx_discard_completions
3572  * functions.
3573  */
3574 static int ignore_bogus_interrupt(struct ctlr_info *h)
3575 {
3576         if (likely(!reset_devices))
3577                 return 0;
3578
3579         if (likely(h->interrupts_enabled))
3580                 return 0;
3581
3582         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3583                 "(known firmware bug.)  Ignoring.\n");
3584
3585         return 1;
3586 }
3587
3588 /*
3589  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3590  * Relies on (h-q[x] == x) being true for x such that
3591  * 0 <= x < MAX_REPLY_QUEUES.
3592  */
3593 static struct ctlr_info *queue_to_hba(u8 *queue)
3594 {
3595         return container_of((queue - *queue), struct ctlr_info, q[0]);
3596 }
3597
3598 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3599 {
3600         struct ctlr_info *h = queue_to_hba(queue);
3601         u8 q = *(u8 *) queue;
3602         u32 raw_tag;
3603
3604         if (ignore_bogus_interrupt(h))
3605                 return IRQ_NONE;
3606
3607         if (interrupt_not_for_us(h))
3608                 return IRQ_NONE;
3609         h->last_intr_timestamp = get_jiffies_64();
3610         while (interrupt_pending(h)) {
3611                 raw_tag = get_next_completion(h, q);
3612                 while (raw_tag != FIFO_EMPTY)
3613                         raw_tag = next_command(h, q);
3614         }
3615         return IRQ_HANDLED;
3616 }
3617
3618 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3619 {
3620         struct ctlr_info *h = queue_to_hba(queue);
3621         u32 raw_tag;
3622         u8 q = *(u8 *) queue;
3623
3624         if (ignore_bogus_interrupt(h))
3625                 return IRQ_NONE;
3626
3627         h->last_intr_timestamp = get_jiffies_64();
3628         raw_tag = get_next_completion(h, q);
3629         while (raw_tag != FIFO_EMPTY)
3630                 raw_tag = next_command(h, q);
3631         return IRQ_HANDLED;
3632 }
3633
3634 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3635 {
3636         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3637         u32 raw_tag;
3638         u8 q = *(u8 *) queue;
3639
3640         if (interrupt_not_for_us(h))
3641                 return IRQ_NONE;
3642         h->last_intr_timestamp = get_jiffies_64();
3643         while (interrupt_pending(h)) {
3644                 raw_tag = get_next_completion(h, q);
3645                 while (raw_tag != FIFO_EMPTY) {
3646                         if (likely(hpsa_tag_contains_index(raw_tag)))
3647                                 process_indexed_cmd(h, raw_tag);
3648                         else
3649                                 process_nonindexed_cmd(h, raw_tag);
3650                         raw_tag = next_command(h, q);
3651                 }
3652         }
3653         return IRQ_HANDLED;
3654 }
3655
3656 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3657 {
3658         struct ctlr_info *h = queue_to_hba(queue);
3659         u32 raw_tag;
3660         u8 q = *(u8 *) queue;
3661
3662         h->last_intr_timestamp = get_jiffies_64();
3663         raw_tag = get_next_completion(h, q);
3664         while (raw_tag != FIFO_EMPTY) {
3665                 if (likely(hpsa_tag_contains_index(raw_tag)))
3666                         process_indexed_cmd(h, raw_tag);
3667                 else
3668                         process_nonindexed_cmd(h, raw_tag);
3669                 raw_tag = next_command(h, q);
3670         }
3671         return IRQ_HANDLED;
3672 }
3673
3674 /* Send a message CDB to the firmware. Careful, this only works
3675  * in simple mode, not performant mode due to the tag lookup.
3676  * We only ever use this immediately after a controller reset.
3677  */
3678 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3679                         unsigned char type)
3680 {
3681         struct Command {
3682                 struct CommandListHeader CommandHeader;
3683                 struct RequestBlock Request;
3684                 struct ErrDescriptor ErrorDescriptor;
3685         };
3686         struct Command *cmd;
3687         static const size_t cmd_sz = sizeof(*cmd) +
3688                                         sizeof(cmd->ErrorDescriptor);
3689         dma_addr_t paddr64;
3690         uint32_t paddr32, tag;
3691         void __iomem *vaddr;
3692         int i, err;
3693
3694         vaddr = pci_ioremap_bar(pdev, 0);
3695         if (vaddr == NULL)
3696                 return -ENOMEM;
3697
3698         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3699          * CCISS commands, so they must be allocated from the lower 4GiB of
3700          * memory.
3701          */
3702         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3703         if (err) {
3704                 iounmap(vaddr);
3705                 return -ENOMEM;
3706         }
3707
3708         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3709         if (cmd == NULL) {
3710                 iounmap(vaddr);
3711                 return -ENOMEM;
3712         }
3713
3714         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3715          * although there's no guarantee, we assume that the address is at
3716          * least 4-byte aligned (most likely, it's page-aligned).
3717          */
3718         paddr32 = paddr64;
3719
3720         cmd->CommandHeader.ReplyQueue = 0;
3721         cmd->CommandHeader.SGList = 0;
3722         cmd->CommandHeader.SGTotal = 0;
3723         cmd->CommandHeader.Tag.lower = paddr32;
3724         cmd->CommandHeader.Tag.upper = 0;
3725         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3726
3727         cmd->Request.CDBLen = 16;
3728         cmd->Request.Type.Type = TYPE_MSG;
3729         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3730         cmd->Request.Type.Direction = XFER_NONE;
3731         cmd->Request.Timeout = 0; /* Don't time out */
3732         cmd->Request.CDB[0] = opcode;
3733         cmd->Request.CDB[1] = type;
3734         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3735         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3736         cmd->ErrorDescriptor.Addr.upper = 0;
3737         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3738
3739         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3740
3741         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3742                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3743                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3744                         break;
3745                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3746         }
3747
3748         iounmap(vaddr);
3749
3750         /* we leak the DMA buffer here ... no choice since the controller could
3751          *  still complete the command.
3752          */
3753         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3754                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3755                         opcode, type);
3756                 return -ETIMEDOUT;
3757         }
3758
3759         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3760
3761         if (tag & HPSA_ERROR_BIT) {
3762                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3763                         opcode, type);
3764                 return -EIO;
3765         }
3766
3767         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3768                 opcode, type);
3769         return 0;
3770 }
3771
3772 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3773
3774 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3775         void * __iomem vaddr, u32 use_doorbell)
3776 {
3777         u16 pmcsr;
3778         int pos;
3779
3780         if (use_doorbell) {
3781                 /* For everything after the P600, the PCI power state method
3782                  * of resetting the controller doesn't work, so we have this
3783                  * other way using the doorbell register.
3784                  */
3785                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3786                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3787         } else { /* Try to do it the PCI power state way */
3788
3789                 /* Quoting from the Open CISS Specification: "The Power
3790                  * Management Control/Status Register (CSR) controls the power
3791                  * state of the device.  The normal operating state is D0,
3792                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3793                  * the controller, place the interface device in D3 then to D0,
3794                  * this causes a secondary PCI reset which will reset the
3795                  * controller." */
3796
3797                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3798                 if (pos == 0) {
3799                         dev_err(&pdev->dev,
3800                                 "hpsa_reset_controller: "
3801                                 "PCI PM not supported\n");
3802                         return -ENODEV;
3803                 }
3804                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3805                 /* enter the D3hot power management state */
3806                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3807                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3808                 pmcsr |= PCI_D3hot;
3809                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3810
3811                 msleep(500);
3812
3813                 /* enter the D0 power management state */
3814                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3815                 pmcsr |= PCI_D0;
3816                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3817
3818                 /*
3819                  * The P600 requires a small delay when changing states.
3820                  * Otherwise we may think the board did not reset and we bail.
3821                  * This for kdump only and is particular to the P600.
3822                  */
3823                 msleep(500);
3824         }
3825         return 0;
3826 }
3827
3828 static void init_driver_version(char *driver_version, int len)
3829 {
3830         memset(driver_version, 0, len);
3831         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3832 }
3833
3834 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3835 {
3836         char *driver_version;
3837         int i, size = sizeof(cfgtable->driver_version);
3838
3839         driver_version = kmalloc(size, GFP_KERNEL);
3840         if (!driver_version)
3841                 return -ENOMEM;
3842
3843         init_driver_version(driver_version, size);
3844         for (i = 0; i < size; i++)
3845                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3846         kfree(driver_version);
3847         return 0;
3848 }
3849
3850 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3851                                           unsigned char *driver_ver)
3852 {
3853         int i;
3854
3855         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3856                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3857 }
3858
3859 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3860 {
3861
3862         char *driver_ver, *old_driver_ver;
3863         int rc, size = sizeof(cfgtable->driver_version);
3864
3865         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3866         if (!old_driver_ver)
3867                 return -ENOMEM;
3868         driver_ver = old_driver_ver + size;
3869
3870         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3871          * should have been changed, otherwise we know the reset failed.
3872          */
3873         init_driver_version(old_driver_ver, size);
3874         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3875         rc = !memcmp(driver_ver, old_driver_ver, size);
3876         kfree(old_driver_ver);
3877         return rc;
3878 }
3879 /* This does a hard reset of the controller using PCI power management
3880  * states or the using the doorbell register.
3881  */
3882 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3883 {
3884         u64 cfg_offset;
3885         u32 cfg_base_addr;
3886         u64 cfg_base_addr_index;
3887         void __iomem *vaddr;
3888         unsigned long paddr;
3889         u32 misc_fw_support;
3890         int rc;
3891         struct CfgTable __iomem *cfgtable;
3892         u32 use_doorbell;
3893         u32 board_id;
3894         u16 command_register;
3895
3896         /* For controllers as old as the P600, this is very nearly
3897          * the same thing as
3898          *
3899          * pci_save_state(pci_dev);
3900          * pci_set_power_state(pci_dev, PCI_D3hot);
3901          * pci_set_power_state(pci_dev, PCI_D0);
3902          * pci_restore_state(pci_dev);
3903          *
3904          * For controllers newer than the P600, the pci power state
3905          * method of resetting doesn't work so we have another way
3906          * using the doorbell register.
3907          */
3908
3909         rc = hpsa_lookup_board_id(pdev, &board_id);
3910         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3911                 dev_warn(&pdev->dev, "Not resetting device.\n");
3912                 return -ENODEV;
3913         }
3914
3915         /* if controller is soft- but not hard resettable... */
3916         if (!ctlr_is_hard_resettable(board_id))
3917                 return -ENOTSUPP; /* try soft reset later. */
3918
3919         /* Save the PCI command register */
3920         pci_read_config_word(pdev, 4, &command_register);
3921         /* Turn the board off.  This is so that later pci_restore_state()
3922          * won't turn the board on before the rest of config space is ready.
3923          */
3924         pci_disable_device(pdev);
3925         pci_save_state(pdev);
3926
3927         /* find the first memory BAR, so we can find the cfg table */
3928         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3929         if (rc)
3930                 return rc;
3931         vaddr = remap_pci_mem(paddr, 0x250);
3932         if (!vaddr)
3933                 return -ENOMEM;
3934
3935         /* find cfgtable in order to check if reset via doorbell is supported */
3936         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3937                                         &cfg_base_addr_index, &cfg_offset);
3938         if (rc)
3939                 goto unmap_vaddr;
3940         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3941                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3942         if (!cfgtable) {
3943                 rc = -ENOMEM;
3944                 goto unmap_vaddr;
3945         }
3946         rc = write_driver_ver_to_cfgtable(cfgtable);
3947         if (rc)
3948                 goto unmap_vaddr;
3949
3950         /* If reset via doorbell register is supported, use that.
3951          * There are two such methods.  Favor the newest method.
3952          */
3953         misc_fw_support = readl(&cfgtable->misc_fw_support);
3954         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3955         if (use_doorbell) {
3956                 use_doorbell = DOORBELL_CTLR_RESET2;
3957         } else {
3958                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3959                 if (use_doorbell) {
3960                         dev_warn(&pdev->dev, "Soft reset not supported. "
3961                                 "Firmware update is required.\n");
3962                         rc = -ENOTSUPP; /* try soft reset */
3963                         goto unmap_cfgtable;
3964                 }
3965         }
3966
3967         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3968         if (rc)
3969                 goto unmap_cfgtable;
3970
3971         pci_restore_state(pdev);
3972         rc = pci_enable_device(pdev);
3973         if (rc) {
3974                 dev_warn(&pdev->dev, "failed to enable device.\n");
3975                 goto unmap_cfgtable;
3976         }
3977         pci_write_config_word(pdev, 4, command_register);
3978
3979         /* Some devices (notably the HP Smart Array 5i Controller)
3980            need a little pause here */
3981         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3982
3983         /* Wait for board to become not ready, then ready. */
3984         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3985         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3986         if (rc) {
3987                 dev_warn(&pdev->dev,
3988                         "failed waiting for board to reset."
3989                         " Will try soft reset.\n");
3990                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3991                 goto unmap_cfgtable;
3992         }
3993         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3994         if (rc) {
3995                 dev_warn(&pdev->dev,
3996                         "failed waiting for board to become ready "
3997                         "after hard reset\n");
3998                 goto unmap_cfgtable;
3999         }
4000
4001         rc = controller_reset_failed(vaddr);
4002         if (rc < 0)
4003                 goto unmap_cfgtable;
4004         if (rc) {
4005                 dev_warn(&pdev->dev, "Unable to successfully reset "
4006                         "controller. Will try soft reset.\n");
4007                 rc = -ENOTSUPP;
4008         } else {
4009                 dev_info(&pdev->dev, "board ready after hard reset.\n");
4010         }
4011
4012 unmap_cfgtable:
4013         iounmap(cfgtable);
4014
4015 unmap_vaddr:
4016         iounmap(vaddr);
4017         return rc;
4018 }
4019
4020 /*
4021  *  We cannot read the structure directly, for portability we must use
4022  *   the io functions.
4023  *   This is for debug only.
4024  */
4025 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4026 {
4027 #ifdef HPSA_DEBUG
4028         int i;
4029         char temp_name[17];
4030
4031         dev_info(dev, "Controller Configuration information\n");
4032         dev_info(dev, "------------------------------------\n");
4033         for (i = 0; i < 4; i++)
4034                 temp_name[i] = readb(&(tb->Signature[i]));
4035         temp_name[4] = '\0';
4036         dev_info(dev, "   Signature = %s\n", temp_name);
4037         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4038         dev_info(dev, "   Transport methods supported = 0x%x\n",
4039                readl(&(tb->TransportSupport)));
4040         dev_info(dev, "   Transport methods active = 0x%x\n",
4041                readl(&(tb->TransportActive)));
4042         dev_info(dev, "   Requested transport Method = 0x%x\n",
4043                readl(&(tb->HostWrite.TransportRequest)));
4044         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4045                readl(&(tb->HostWrite.CoalIntDelay)));
4046         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4047                readl(&(tb->HostWrite.CoalIntCount)));
4048         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4049                readl(&(tb->CmdsOutMax)));
4050         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4051         for (i = 0; i < 16; i++)
4052                 temp_name[i] = readb(&(tb->ServerName[i]));
4053         temp_name[16] = '\0';
4054         dev_info(dev, "   Server Name = %s\n", temp_name);
4055         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4056                 readl(&(tb->HeartBeat)));
4057 #endif                          /* HPSA_DEBUG */
4058 }
4059
4060 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4061 {
4062         int i, offset, mem_type, bar_type;
4063
4064         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4065                 return 0;
4066         offset = 0;
4067         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4068                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4069                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4070                         offset += 4;
4071                 else {
4072                         mem_type = pci_resource_flags(pdev, i) &
4073                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4074                         switch (mem_type) {
4075                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4076                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4077                                 offset += 4;    /* 32 bit */
4078                                 break;
4079                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4080                                 offset += 8;
4081                                 break;
4082                         default:        /* reserved in PCI 2.2 */
4083                                 dev_warn(&pdev->dev,
4084                                        "base address is invalid\n");
4085                                 return -1;
4086                                 break;
4087                         }
4088                 }
4089                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4090                         return i + 1;
4091         }
4092         return -1;
4093 }
4094
4095 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4096  * controllers that are capable. If not, we use IO-APIC mode.
4097  */
4098
4099 static void hpsa_interrupt_mode(struct ctlr_info *h)
4100 {
4101 #ifdef CONFIG_PCI_MSI
4102         int err, i;
4103         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4104
4105         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4106                 hpsa_msix_entries[i].vector = 0;
4107                 hpsa_msix_entries[i].entry = i;
4108         }
4109
4110         /* Some boards advertise MSI but don't really support it */
4111         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4112             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4113                 goto default_int_mode;
4114         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4115                 dev_info(&h->pdev->dev, "MSIX\n");
4116                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4117                                                 MAX_REPLY_QUEUES);
4118                 if (!err) {
4119                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4120                                 h->intr[i] = hpsa_msix_entries[i].vector;
4121                         h->msix_vector = 1;
4122                         return;
4123                 }
4124                 if (err > 0) {
4125                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4126                                "available\n", err);
4127                         goto default_int_mode;
4128                 } else {
4129                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4130                                err);
4131                         goto default_int_mode;
4132                 }
4133         }
4134         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4135                 dev_info(&h->pdev->dev, "MSI\n");
4136                 if (!pci_enable_msi(h->pdev))
4137                         h->msi_vector = 1;
4138                 else
4139                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4140         }
4141 default_int_mode:
4142 #endif                          /* CONFIG_PCI_MSI */
4143         /* if we get here we're going to use the default interrupt mode */
4144         h->intr[h->intr_mode] = h->pdev->irq;
4145 }
4146
4147 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4148 {
4149         int i;
4150         u32 subsystem_vendor_id, subsystem_device_id;
4151
4152         subsystem_vendor_id = pdev->subsystem_vendor;
4153         subsystem_device_id = pdev->subsystem_device;
4154         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4155                     subsystem_vendor_id;
4156
4157         for (i = 0; i < ARRAY_SIZE(products); i++)
4158                 if (*board_id == products[i].board_id)
4159                         return i;
4160
4161         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4162                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4163                 !hpsa_allow_any) {
4164                 dev_warn(&pdev->dev, "unrecognized board ID: "
4165                         "0x%08x, ignoring.\n", *board_id);
4166                         return -ENODEV;
4167         }
4168         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4169 }
4170
4171 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4172                                     unsigned long *memory_bar)
4173 {
4174         int i;
4175
4176         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4177                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4178                         /* addressing mode bits already removed */
4179                         *memory_bar = pci_resource_start(pdev, i);
4180                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4181                                 *memory_bar);
4182                         return 0;
4183                 }
4184         dev_warn(&pdev->dev, "no memory BAR found\n");
4185         return -ENODEV;
4186 }
4187
4188 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4189                                      int wait_for_ready)
4190 {
4191         int i, iterations;
4192         u32 scratchpad;
4193         if (wait_for_ready)
4194                 iterations = HPSA_BOARD_READY_ITERATIONS;
4195         else
4196                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4197
4198         for (i = 0; i < iterations; i++) {
4199                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4200                 if (wait_for_ready) {
4201                         if (scratchpad == HPSA_FIRMWARE_READY)
4202                                 return 0;
4203                 } else {
4204                         if (scratchpad != HPSA_FIRMWARE_READY)
4205                                 return 0;
4206                 }
4207                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4208         }
4209         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4210         return -ENODEV;
4211 }
4212
4213 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4214                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4215                                u64 *cfg_offset)
4216 {
4217         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4218         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4219         *cfg_base_addr &= (u32) 0x0000ffff;
4220         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4221         if (*cfg_base_addr_index == -1) {
4222                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4223                 return -ENODEV;
4224         }
4225         return 0;
4226 }
4227
4228 static int hpsa_find_cfgtables(struct ctlr_info *h)
4229 {
4230         u64 cfg_offset;
4231         u32 cfg_base_addr;
4232         u64 cfg_base_addr_index;
4233         u32 trans_offset;
4234         int rc;
4235
4236         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4237                 &cfg_base_addr_index, &cfg_offset);
4238         if (rc)
4239                 return rc;
4240         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4241                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4242         if (!h->cfgtable)
4243                 return -ENOMEM;
4244         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4245         if (rc)
4246                 return rc;
4247         /* Find performant mode table. */
4248         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4249         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4250                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4251                                 sizeof(*h->transtable));
4252         if (!h->transtable)
4253                 return -ENOMEM;
4254         return 0;
4255 }
4256
4257 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4258 {
4259         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4260
4261         /* Limit commands in memory limited kdump scenario. */
4262         if (reset_devices && h->max_commands > 32)
4263                 h->max_commands = 32;
4264
4265         if (h->max_commands < 16) {
4266                 dev_warn(&h->pdev->dev, "Controller reports "
4267                         "max supported commands of %d, an obvious lie. "
4268                         "Using 16.  Ensure that firmware is up to date.\n",
4269                         h->max_commands);
4270                 h->max_commands = 16;
4271         }
4272 }
4273
4274 /* Interrogate the hardware for some limits:
4275  * max commands, max SG elements without chaining, and with chaining,
4276  * SG chain block size, etc.
4277  */
4278 static void hpsa_find_board_params(struct ctlr_info *h)
4279 {
4280         hpsa_get_max_perf_mode_cmds(h);
4281         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4282         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4283         /*
4284          * Limit in-command s/g elements to 32 save dma'able memory.
4285          * Howvever spec says if 0, use 31
4286          */
4287         h->max_cmd_sg_entries = 31;
4288         if (h->maxsgentries > 512) {
4289                 h->max_cmd_sg_entries = 32;
4290                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4291                 h->maxsgentries--; /* save one for chain pointer */
4292         } else {
4293                 h->maxsgentries = 31; /* default to traditional values */
4294                 h->chainsize = 0;
4295         }
4296
4297         /* Find out what task management functions are supported and cache */
4298         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4299 }
4300
4301 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4302 {
4303         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4304                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4305                 return false;
4306         }
4307         return true;
4308 }
4309
4310 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4311 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4312 {
4313 #ifdef CONFIG_X86
4314         u32 prefetch;
4315
4316         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4317         prefetch |= 0x100;
4318         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4319 #endif
4320 }
4321
4322 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4323  * in a prefetch beyond physical memory.
4324  */
4325 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4326 {
4327         u32 dma_prefetch;
4328
4329         if (h->board_id != 0x3225103C)
4330                 return;
4331         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4332         dma_prefetch |= 0x8000;
4333         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4334 }
4335
4336 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4337 {
4338         int i;
4339         u32 doorbell_value;
4340         unsigned long flags;
4341
4342         /* under certain very rare conditions, this can take awhile.
4343          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4344          * as we enter this code.)
4345          */
4346         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4347                 spin_lock_irqsave(&h->lock, flags);
4348                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4349                 spin_unlock_irqrestore(&h->lock, flags);
4350                 if (!(doorbell_value & CFGTBL_ChangeReq))
4351                         break;
4352                 /* delay and try again */
4353                 usleep_range(10000, 20000);
4354         }
4355 }
4356
4357 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4358 {
4359         u32 trans_support;
4360
4361         trans_support = readl(&(h->cfgtable->TransportSupport));
4362         if (!(trans_support & SIMPLE_MODE))
4363                 return -ENOTSUPP;
4364
4365         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4366         /* Update the field, and then ring the doorbell */
4367         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4368         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4369         hpsa_wait_for_mode_change_ack(h);
4370         print_cfg_table(&h->pdev->dev, h->cfgtable);
4371         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4372                 dev_warn(&h->pdev->dev,
4373                         "unable to get board into simple mode\n");
4374                 return -ENODEV;
4375         }
4376         h->transMethod = CFGTBL_Trans_Simple;
4377         return 0;
4378 }
4379
4380 static int hpsa_pci_init(struct ctlr_info *h)
4381 {
4382         int prod_index, err;
4383
4384         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4385         if (prod_index < 0)
4386                 return -ENODEV;
4387         h->product_name = products[prod_index].product_name;
4388         h->access = *(products[prod_index].access);
4389
4390         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4391                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4392
4393         err = pci_enable_device(h->pdev);
4394         if (err) {
4395                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4396                 return err;
4397         }
4398
4399         /* Enable bus mastering (pci_disable_device may disable this) */
4400         pci_set_master(h->pdev);
4401
4402         err = pci_request_regions(h->pdev, HPSA);
4403         if (err) {
4404                 dev_err(&h->pdev->dev,
4405                         "cannot obtain PCI resources, aborting\n");
4406                 return err;
4407         }
4408         hpsa_interrupt_mode(h);
4409         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4410         if (err)
4411                 goto err_out_free_res;
4412         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4413         if (!h->vaddr) {
4414                 err = -ENOMEM;
4415                 goto err_out_free_res;
4416         }
4417         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4418         if (err)
4419                 goto err_out_free_res;
4420         err = hpsa_find_cfgtables(h);
4421         if (err)
4422                 goto err_out_free_res;
4423         hpsa_find_board_params(h);
4424
4425         if (!hpsa_CISS_signature_present(h)) {
4426                 err = -ENODEV;
4427                 goto err_out_free_res;
4428         }
4429         hpsa_enable_scsi_prefetch(h);
4430         hpsa_p600_dma_prefetch_quirk(h);
4431         err = hpsa_enter_simple_mode(h);
4432         if (err)
4433                 goto err_out_free_res;
4434         return 0;
4435
4436 err_out_free_res:
4437         if (h->transtable)
4438                 iounmap(h->transtable);
4439         if (h->cfgtable)
4440                 iounmap(h->cfgtable);
4441         if (h->vaddr)
4442                 iounmap(h->vaddr);
4443         pci_disable_device(h->pdev);
4444         pci_release_regions(h->pdev);
4445         return err;
4446 }
4447
4448 static void hpsa_hba_inquiry(struct ctlr_info *h)
4449 {
4450         int rc;
4451
4452 #define HBA_INQUIRY_BYTE_COUNT 64
4453         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4454         if (!h->hba_inquiry_data)
4455                 return;
4456         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4457                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4458         if (rc != 0) {
4459                 kfree(h->hba_inquiry_data);
4460                 h->hba_inquiry_data = NULL;
4461         }
4462 }
4463
4464 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4465 {
4466         int rc, i;
4467
4468         if (!reset_devices)
4469                 return 0;
4470
4471         /* Reset the controller with a PCI power-cycle or via doorbell */
4472         rc = hpsa_kdump_hard_reset_controller(pdev);
4473
4474         /* -ENOTSUPP here means we cannot reset the controller
4475          * but it's already (and still) up and running in
4476          * "performant mode".  Or, it might be 640x, which can't reset
4477          * due to concerns about shared bbwc between 6402/6404 pair.
4478          */
4479         if (rc == -ENOTSUPP)
4480                 return rc; /* just try to do the kdump anyhow. */
4481         if (rc)
4482                 return -ENODEV;
4483
4484         /* Now try to get the controller to respond to a no-op */
4485         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4486         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4487                 if (hpsa_noop(pdev) == 0)
4488                         break;
4489                 else
4490                         dev_warn(&pdev->dev, "no-op failed%s\n",
4491                                         (i < 11 ? "; re-trying" : ""));
4492         }
4493         return 0;
4494 }
4495
4496 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4497 {
4498         h->cmd_pool_bits = kzalloc(
4499                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4500                 sizeof(unsigned long), GFP_KERNEL);
4501         h->cmd_pool = pci_alloc_consistent(h->pdev,
4502                     h->nr_cmds * sizeof(*h->cmd_pool),
4503                     &(h->cmd_pool_dhandle));
4504         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4505                     h->nr_cmds * sizeof(*h->errinfo_pool),
4506                     &(h->errinfo_pool_dhandle));
4507         if ((h->cmd_pool_bits == NULL)
4508             || (h->cmd_pool == NULL)
4509             || (h->errinfo_pool == NULL)) {
4510                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4511                 return -ENOMEM;
4512         }
4513         return 0;
4514 }
4515
4516 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4517 {
4518         kfree(h->cmd_pool_bits);
4519         if (h->cmd_pool)
4520                 pci_free_consistent(h->pdev,
4521                             h->nr_cmds * sizeof(struct CommandList),
4522                             h->cmd_pool, h->cmd_pool_dhandle);
4523         if (h->errinfo_pool)
4524                 pci_free_consistent(h->pdev,
4525                             h->nr_cmds * sizeof(struct ErrorInfo),
4526                             h->errinfo_pool,
4527                             h->errinfo_pool_dhandle);
4528 }
4529
4530 static int hpsa_request_irq(struct ctlr_info *h,
4531         irqreturn_t (*msixhandler)(int, void *),
4532         irqreturn_t (*intxhandler)(int, void *))
4533 {
4534         int rc, i;
4535
4536         /*
4537          * initialize h->q[x] = x so that interrupt handlers know which
4538          * queue to process.
4539          */
4540         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4541                 h->q[i] = (u8) i;
4542
4543         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4544                 /* If performant mode and MSI-X, use multiple reply queues */
4545                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4546                         rc = request_irq(h->intr[i], msixhandler,
4547                                         0, h->devname,
4548                                         &h->q[i]);
4549         } else {
4550                 /* Use single reply pool */
4551                 if (h->msix_vector || h->msi_vector) {
4552                         rc = request_irq(h->intr[h->intr_mode],
4553                                 msixhandler, 0, h->devname,
4554                                 &h->q[h->intr_mode]);
4555                 } else {
4556                         rc = request_irq(h->intr[h->intr_mode],
4557                                 intxhandler, IRQF_SHARED, h->devname,
4558                                 &h->q[h->intr_mode]);
4559                 }
4560         }
4561         if (rc) {
4562                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4563                        h->intr[h->intr_mode], h->devname);
4564                 return -ENODEV;
4565         }
4566         return 0;
4567 }
4568
4569 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4570 {
4571         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4572                 HPSA_RESET_TYPE_CONTROLLER)) {
4573                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4574                 return -EIO;
4575         }
4576
4577         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4578         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4579                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4580                 return -1;
4581         }
4582
4583         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4584         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4585                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4586                         "after soft reset.\n");
4587                 return -1;
4588         }
4589
4590         return 0;
4591 }
4592
4593 static void free_irqs(struct ctlr_info *h)
4594 {
4595         int i;
4596
4597         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4598                 /* Single reply queue, only one irq to free */
4599                 i = h->intr_mode;
4600                 free_irq(h->intr[i], &h->q[i]);
4601                 return;
4602         }
4603
4604         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4605                 free_irq(h->intr[i], &h->q[i]);
4606 }
4607
4608 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4609 {
4610         free_irqs(h);
4611 #ifdef CONFIG_PCI_MSI
4612         if (h->msix_vector) {
4613                 if (h->pdev->msix_enabled)
4614                         pci_disable_msix(h->pdev);
4615         } else if (h->msi_vector) {
4616                 if (h->pdev->msi_enabled)
4617                         pci_disable_msi(h->pdev);
4618         }
4619 #endif /* CONFIG_PCI_MSI */
4620 }
4621
4622 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4623 {
4624         hpsa_free_irqs_and_disable_msix(h);
4625         hpsa_free_sg_chain_blocks(h);
4626         hpsa_free_cmd_pool(h);
4627         kfree(h->blockFetchTable);
4628         pci_free_consistent(h->pdev, h->reply_pool_size,
4629                 h->reply_pool, h->reply_pool_dhandle);
4630         if (h->vaddr)
4631                 iounmap(h->vaddr);
4632         if (h->transtable)
4633                 iounmap(h->transtable);
4634         if (h->cfgtable)
4635                 iounmap(h->cfgtable);
4636         pci_release_regions(h->pdev);
4637         kfree(h);
4638 }
4639
4640 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4641 {
4642         assert_spin_locked(&lockup_detector_lock);
4643         if (!hpsa_lockup_detector)
4644                 return;
4645         if (h->lockup_detected)
4646                 return; /* already stopped the lockup detector */
4647         list_del(&h->lockup_list);
4648 }
4649
4650 /* Called when controller lockup detected. */
4651 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4652 {
4653         struct CommandList *c = NULL;
4654
4655         assert_spin_locked(&h->lock);
4656         /* Mark all outstanding commands as failed and complete them. */
4657         while (!list_empty(list)) {
4658                 c = list_entry(list->next, struct CommandList, list);
4659                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4660                 finish_cmd(c);
4661         }
4662 }
4663
4664 static void controller_lockup_detected(struct ctlr_info *h)
4665 {
4666         unsigned long flags;
4667
4668         assert_spin_locked(&lockup_detector_lock);
4669         remove_ctlr_from_lockup_detector_list(h);
4670         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4671         spin_lock_irqsave(&h->lock, flags);
4672         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4673         spin_unlock_irqrestore(&h->lock, flags);
4674         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4675                         h->lockup_detected);
4676         pci_disable_device(h->pdev);
4677         spin_lock_irqsave(&h->lock, flags);
4678         fail_all_cmds_on_list(h, &h->cmpQ);
4679         fail_all_cmds_on_list(h, &h->reqQ);
4680         spin_unlock_irqrestore(&h->lock, flags);
4681 }
4682
4683 static void detect_controller_lockup(struct ctlr_info *h)
4684 {
4685         u64 now;
4686         u32 heartbeat;
4687         unsigned long flags;
4688
4689         assert_spin_locked(&lockup_detector_lock);
4690         now = get_jiffies_64();
4691         /* If we've received an interrupt recently, we're ok. */
4692         if (time_after64(h->last_intr_timestamp +
4693                                 (h->heartbeat_sample_interval), now))
4694                 return;
4695
4696         /*
4697          * If we've already checked the heartbeat recently, we're ok.
4698          * This could happen if someone sends us a signal. We
4699          * otherwise don't care about signals in this thread.
4700          */
4701         if (time_after64(h->last_heartbeat_timestamp +
4702                                 (h->heartbeat_sample_interval), now))
4703                 return;
4704
4705         /* If heartbeat has not changed since we last looked, we're not ok. */
4706         spin_lock_irqsave(&h->lock, flags);
4707         heartbeat = readl(&h->cfgtable->HeartBeat);
4708         spin_unlock_irqrestore(&h->lock, flags);
4709         if (h->last_heartbeat == heartbeat) {
4710                 controller_lockup_detected(h);
4711                 return;
4712         }
4713
4714         /* We're ok. */
4715         h->last_heartbeat = heartbeat;
4716         h->last_heartbeat_timestamp = now;
4717 }
4718
4719 static int detect_controller_lockup_thread(void *notused)
4720 {
4721         struct ctlr_info *h;
4722         unsigned long flags;
4723
4724         while (1) {
4725                 struct list_head *this, *tmp;
4726
4727                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4728                 if (kthread_should_stop())
4729                         break;
4730                 spin_lock_irqsave(&lockup_detector_lock, flags);
4731                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4732                         h = list_entry(this, struct ctlr_info, lockup_list);
4733                         detect_controller_lockup(h);
4734                 }
4735                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4736         }
4737         return 0;
4738 }
4739
4740 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4741 {
4742         unsigned long flags;
4743
4744         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4745         spin_lock_irqsave(&lockup_detector_lock, flags);
4746         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4747         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4748 }
4749
4750 static void start_controller_lockup_detector(struct ctlr_info *h)
4751 {
4752         /* Start the lockup detector thread if not already started */
4753         if (!hpsa_lockup_detector) {
4754                 spin_lock_init(&lockup_detector_lock);
4755                 hpsa_lockup_detector =
4756                         kthread_run(detect_controller_lockup_thread,
4757                                                 NULL, HPSA);
4758         }
4759         if (!hpsa_lockup_detector) {
4760                 dev_warn(&h->pdev->dev,
4761                         "Could not start lockup detector thread\n");
4762                 return;
4763         }
4764         add_ctlr_to_lockup_detector_list(h);
4765 }
4766
4767 static void stop_controller_lockup_detector(struct ctlr_info *h)
4768 {
4769         unsigned long flags;
4770
4771         spin_lock_irqsave(&lockup_detector_lock, flags);
4772         remove_ctlr_from_lockup_detector_list(h);
4773         /* If the list of ctlr's to monitor is empty, stop the thread */
4774         if (list_empty(&hpsa_ctlr_list)) {
4775                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4776                 kthread_stop(hpsa_lockup_detector);
4777                 spin_lock_irqsave(&lockup_detector_lock, flags);
4778                 hpsa_lockup_detector = NULL;
4779         }
4780         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4781 }
4782
4783 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4784 {
4785         int dac, rc;
4786         struct ctlr_info *h;
4787         int try_soft_reset = 0;
4788         unsigned long flags;
4789
4790         if (number_of_controllers == 0)
4791                 printk(KERN_INFO DRIVER_NAME "\n");
4792
4793         rc = hpsa_init_reset_devices(pdev);
4794         if (rc) {
4795                 if (rc != -ENOTSUPP)
4796                         return rc;
4797                 /* If the reset fails in a particular way (it has no way to do
4798                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4799                  * a soft reset once we get the controller configured up to the
4800                  * point that it can accept a command.
4801                  */
4802                 try_soft_reset = 1;
4803                 rc = 0;
4804         }
4805
4806 reinit_after_soft_reset:
4807
4808         /* Command structures must be aligned on a 32-byte boundary because
4809          * the 5 lower bits of the address are used by the hardware. and by
4810          * the driver.  See comments in hpsa.h for more info.
4811          */
4812 #define COMMANDLIST_ALIGNMENT 32
4813         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4814         h = kzalloc(sizeof(*h), GFP_KERNEL);
4815         if (!h)
4816                 return -ENOMEM;
4817
4818         h->pdev = pdev;
4819         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4820         INIT_LIST_HEAD(&h->cmpQ);
4821         INIT_LIST_HEAD(&h->reqQ);
4822         spin_lock_init(&h->lock);
4823         spin_lock_init(&h->scan_lock);
4824         rc = hpsa_pci_init(h);
4825         if (rc != 0)
4826                 goto clean1;
4827
4828         sprintf(h->devname, HPSA "%d", number_of_controllers);
4829         h->ctlr = number_of_controllers;
4830         number_of_controllers++;
4831
4832         /* configure PCI DMA stuff */
4833         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4834         if (rc == 0) {
4835                 dac = 1;
4836         } else {
4837                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4838                 if (rc == 0) {
4839                         dac = 0;
4840                 } else {
4841                         dev_err(&pdev->dev, "no suitable DMA available\n");
4842                         goto clean1;
4843                 }
4844         }
4845
4846         /* make sure the board interrupts are off */
4847         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4848
4849         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4850                 goto clean2;
4851         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4852                h->devname, pdev->device,
4853                h->intr[h->intr_mode], dac ? "" : " not");
4854         if (hpsa_allocate_cmd_pool(h))
4855                 goto clean4;
4856         if (hpsa_allocate_sg_chain_blocks(h))
4857                 goto clean4;
4858         init_waitqueue_head(&h->scan_wait_queue);
4859         h->scan_finished = 1; /* no scan currently in progress */
4860
4861         pci_set_drvdata(pdev, h);
4862         h->ndevices = 0;
4863         h->scsi_host = NULL;
4864         spin_lock_init(&h->devlock);
4865         hpsa_put_ctlr_into_performant_mode(h);
4866
4867         /* At this point, the controller is ready to take commands.
4868          * Now, if reset_devices and the hard reset didn't work, try
4869          * the soft reset and see if that works.
4870          */
4871         if (try_soft_reset) {
4872
4873                 /* This is kind of gross.  We may or may not get a completion
4874                  * from the soft reset command, and if we do, then the value
4875                  * from the fifo may or may not be valid.  So, we wait 10 secs
4876                  * after the reset throwing away any completions we get during
4877                  * that time.  Unregister the interrupt handler and register
4878                  * fake ones to scoop up any residual completions.
4879                  */
4880                 spin_lock_irqsave(&h->lock, flags);
4881                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4882                 spin_unlock_irqrestore(&h->lock, flags);
4883                 free_irqs(h);
4884                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4885                                         hpsa_intx_discard_completions);
4886                 if (rc) {
4887                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4888                                 "soft reset.\n");
4889                         goto clean4;
4890                 }
4891
4892                 rc = hpsa_kdump_soft_reset(h);
4893                 if (rc)
4894                         /* Neither hard nor soft reset worked, we're hosed. */
4895                         goto clean4;
4896
4897                 dev_info(&h->pdev->dev, "Board READY.\n");
4898                 dev_info(&h->pdev->dev,
4899                         "Waiting for stale completions to drain.\n");
4900                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4901                 msleep(10000);
4902                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4903
4904                 rc = controller_reset_failed(h->cfgtable);
4905                 if (rc)
4906                         dev_info(&h->pdev->dev,
4907                                 "Soft reset appears to have failed.\n");
4908
4909                 /* since the controller's reset, we have to go back and re-init
4910                  * everything.  Easiest to just forget what we've done and do it
4911                  * all over again.
4912                  */
4913                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4914                 try_soft_reset = 0;
4915                 if (rc)
4916                         /* don't go to clean4, we already unallocated */
4917                         return -ENODEV;
4918
4919                 goto reinit_after_soft_reset;
4920         }
4921
4922         /* Turn the interrupts on so we can service requests */
4923         h->access.set_intr_mask(h, HPSA_INTR_ON);
4924
4925         hpsa_hba_inquiry(h);
4926         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4927         start_controller_lockup_detector(h);
4928         return 1;
4929
4930 clean4:
4931         hpsa_free_sg_chain_blocks(h);
4932         hpsa_free_cmd_pool(h);
4933         free_irqs(h);
4934 clean2:
4935 clean1:
4936         kfree(h);
4937         return rc;
4938 }
4939
4940 static void hpsa_flush_cache(struct ctlr_info *h)
4941 {
4942         char *flush_buf;
4943         struct CommandList *c;
4944
4945         flush_buf = kzalloc(4, GFP_KERNEL);
4946         if (!flush_buf)
4947                 return;
4948
4949         c = cmd_special_alloc(h);
4950         if (!c) {
4951                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4952                 goto out_of_memory;
4953         }
4954         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4955                 RAID_CTLR_LUNID, TYPE_CMD)) {
4956                 goto out;
4957         }
4958         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4959         if (c->err_info->CommandStatus != 0)
4960 out:
4961                 dev_warn(&h->pdev->dev,
4962                         "error flushing cache on controller\n");
4963         cmd_special_free(h, c);
4964 out_of_memory:
4965         kfree(flush_buf);
4966 }
4967
4968 static void hpsa_shutdown(struct pci_dev *pdev)
4969 {
4970         struct ctlr_info *h;
4971
4972         h = pci_get_drvdata(pdev);
4973         /* Turn board interrupts off  and send the flush cache command
4974          * sendcmd will turn off interrupt, and send the flush...
4975          * To write all data in the battery backed cache to disks
4976          */
4977         hpsa_flush_cache(h);
4978         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4979         hpsa_free_irqs_and_disable_msix(h);
4980 }
4981
4982 static void hpsa_free_device_info(struct ctlr_info *h)
4983 {
4984         int i;
4985
4986         for (i = 0; i < h->ndevices; i++)
4987                 kfree(h->dev[i]);
4988 }
4989
4990 static void hpsa_remove_one(struct pci_dev *pdev)
4991 {
4992         struct ctlr_info *h;
4993
4994         if (pci_get_drvdata(pdev) == NULL) {
4995                 dev_err(&pdev->dev, "unable to remove device\n");
4996                 return;
4997         }
4998         h = pci_get_drvdata(pdev);
4999         stop_controller_lockup_detector(h);
5000         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
5001         hpsa_shutdown(pdev);
5002         iounmap(h->vaddr);
5003         iounmap(h->transtable);
5004         iounmap(h->cfgtable);
5005         hpsa_free_device_info(h);
5006         hpsa_free_sg_chain_blocks(h);
5007         pci_free_consistent(h->pdev,
5008                 h->nr_cmds * sizeof(struct CommandList),
5009                 h->cmd_pool, h->cmd_pool_dhandle);
5010         pci_free_consistent(h->pdev,
5011                 h->nr_cmds * sizeof(struct ErrorInfo),
5012                 h->errinfo_pool, h->errinfo_pool_dhandle);
5013         pci_free_consistent(h->pdev, h->reply_pool_size,
5014                 h->reply_pool, h->reply_pool_dhandle);
5015         kfree(h->cmd_pool_bits);
5016         kfree(h->blockFetchTable);
5017         kfree(h->hba_inquiry_data);
5018         pci_disable_device(pdev);
5019         pci_release_regions(pdev);
5020         kfree(h);
5021 }
5022
5023 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5024         __attribute__((unused)) pm_message_t state)
5025 {
5026         return -ENOSYS;
5027 }
5028
5029 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5030 {
5031         return -ENOSYS;
5032 }
5033
5034 static struct pci_driver hpsa_pci_driver = {
5035         .name = HPSA,
5036         .probe = hpsa_init_one,
5037         .remove = hpsa_remove_one,
5038         .id_table = hpsa_pci_device_id, /* id_table */
5039         .shutdown = hpsa_shutdown,
5040         .suspend = hpsa_suspend,
5041         .resume = hpsa_resume,
5042 };
5043
5044 /* Fill in bucket_map[], given nsgs (the max number of
5045  * scatter gather elements supported) and bucket[],
5046  * which is an array of 8 integers.  The bucket[] array
5047  * contains 8 different DMA transfer sizes (in 16
5048  * byte increments) which the controller uses to fetch
5049  * commands.  This function fills in bucket_map[], which
5050  * maps a given number of scatter gather elements to one of
5051  * the 8 DMA transfer sizes.  The point of it is to allow the
5052  * controller to only do as much DMA as needed to fetch the
5053  * command, with the DMA transfer size encoded in the lower
5054  * bits of the command address.
5055  */
5056 static void  calc_bucket_map(int bucket[], int num_buckets,
5057         int nsgs, int *bucket_map)
5058 {
5059         int i, j, b, size;
5060
5061         /* even a command with 0 SGs requires 4 blocks */
5062 #define MINIMUM_TRANSFER_BLOCKS 4
5063 #define NUM_BUCKETS 8
5064         /* Note, bucket_map must have nsgs+1 entries. */
5065         for (i = 0; i <= nsgs; i++) {
5066                 /* Compute size of a command with i SG entries */
5067                 size = i + MINIMUM_TRANSFER_BLOCKS;
5068                 b = num_buckets; /* Assume the biggest bucket */
5069                 /* Find the bucket that is just big enough */
5070                 for (j = 0; j < 8; j++) {
5071                         if (bucket[j] >= size) {
5072                                 b = j;
5073                                 break;
5074                         }
5075                 }
5076                 /* for a command with i SG entries, use bucket b. */
5077                 bucket_map[i] = b;
5078         }
5079 }
5080
5081 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5082 {
5083         int i;
5084         unsigned long register_value;
5085
5086         /* This is a bit complicated.  There are 8 registers on
5087          * the controller which we write to to tell it 8 different
5088          * sizes of commands which there may be.  It's a way of
5089          * reducing the DMA done to fetch each command.  Encoded into
5090          * each command's tag are 3 bits which communicate to the controller
5091          * which of the eight sizes that command fits within.  The size of
5092          * each command depends on how many scatter gather entries there are.
5093          * Each SG entry requires 16 bytes.  The eight registers are programmed
5094          * with the number of 16-byte blocks a command of that size requires.
5095          * The smallest command possible requires 5 such 16 byte blocks.
5096          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5097          * blocks.  Note, this only extends to the SG entries contained
5098          * within the command block, and does not extend to chained blocks
5099          * of SG elements.   bft[] contains the eight values we write to
5100          * the registers.  They are not evenly distributed, but have more
5101          * sizes for small commands, and fewer sizes for larger commands.
5102          */
5103         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5104         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5105         /*  5 = 1 s/g entry or 4k
5106          *  6 = 2 s/g entry or 8k
5107          *  8 = 4 s/g entry or 16k
5108          * 10 = 6 s/g entry or 24k
5109          */
5110
5111         /* Controller spec: zero out this buffer. */
5112         memset(h->reply_pool, 0, h->reply_pool_size);
5113
5114         bft[7] = SG_ENTRIES_IN_CMD + 4;
5115         calc_bucket_map(bft, ARRAY_SIZE(bft),
5116                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5117         for (i = 0; i < 8; i++)
5118                 writel(bft[i], &h->transtable->BlockFetch[i]);
5119
5120         /* size of controller ring buffer */
5121         writel(h->max_commands, &h->transtable->RepQSize);
5122         writel(h->nreply_queues, &h->transtable->RepQCount);
5123         writel(0, &h->transtable->RepQCtrAddrLow32);
5124         writel(0, &h->transtable->RepQCtrAddrHigh32);
5125
5126         for (i = 0; i < h->nreply_queues; i++) {
5127                 writel(0, &h->transtable->RepQAddr[i].upper);
5128                 writel(h->reply_pool_dhandle +
5129                         (h->max_commands * sizeof(u64) * i),
5130                         &h->transtable->RepQAddr[i].lower);
5131         }
5132
5133         writel(CFGTBL_Trans_Performant | use_short_tags |
5134                 CFGTBL_Trans_enable_directed_msix,
5135                 &(h->cfgtable->HostWrite.TransportRequest));
5136         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5137         hpsa_wait_for_mode_change_ack(h);
5138         register_value = readl(&(h->cfgtable->TransportActive));
5139         if (!(register_value & CFGTBL_Trans_Performant)) {
5140                 dev_warn(&h->pdev->dev, "unable to get board into"
5141                                         " performant mode\n");
5142                 return;
5143         }
5144         /* Change the access methods to the performant access methods */
5145         h->access = SA5_performant_access;
5146         h->transMethod = CFGTBL_Trans_Performant;
5147 }
5148
5149 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5150 {
5151         u32 trans_support;
5152         int i;
5153
5154         if (hpsa_simple_mode)
5155                 return;
5156
5157         trans_support = readl(&(h->cfgtable->TransportSupport));
5158         if (!(trans_support & PERFORMANT_MODE))
5159                 return;
5160
5161         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5162         hpsa_get_max_perf_mode_cmds(h);
5163         /* Performant mode ring buffer and supporting data structures */
5164         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5165         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5166                                 &(h->reply_pool_dhandle));
5167
5168         for (i = 0; i < h->nreply_queues; i++) {
5169                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5170                 h->reply_queue[i].size = h->max_commands;
5171                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5172                 h->reply_queue[i].current_entry = 0;
5173         }
5174
5175         /* Need a block fetch table for performant mode */
5176         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5177                                 sizeof(u32)), GFP_KERNEL);
5178
5179         if ((h->reply_pool == NULL)
5180                 || (h->blockFetchTable == NULL))
5181                 goto clean_up;
5182
5183         hpsa_enter_performant_mode(h,
5184                 trans_support & CFGTBL_Trans_use_short_tags);
5185
5186         return;
5187
5188 clean_up:
5189         if (h->reply_pool)
5190                 pci_free_consistent(h->pdev, h->reply_pool_size,
5191                         h->reply_pool, h->reply_pool_dhandle);
5192         kfree(h->blockFetchTable);
5193 }
5194
5195 /*
5196  *  This is it.  Register the PCI driver information for the cards we control
5197  *  the OS will call our registered routines when it finds one of our cards.
5198  */
5199 static int __init hpsa_init(void)
5200 {
5201         return pci_register_driver(&hpsa_pci_driver);
5202 }
5203
5204 static void __exit hpsa_cleanup(void)
5205 {
5206         pci_unregister_driver(&hpsa_pci_driver);
5207 }
5208
5209 module_init(hpsa_init);
5210 module_exit(hpsa_cleanup);