]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/spi/spi-topcliff-pch.c
eaeeed51bbbfa1f6a315fd87a2cef72b5dd2c5d1
[karo-tx-linux.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_TX_THOLD            2
54
55 #define PCH_MAX_BAUDRATE        5000000
56 #define PCH_MAX_FIFO_DEPTH      16
57
58 #define STATUS_RUNNING          1
59 #define STATUS_EXITING          2
60 #define PCH_SLEEP_TIME          10
61
62 #define SSN_LOW                 0x02U
63 #define SSN_HIGH                0x03U
64 #define SSN_NO_CONTROL          0x00U
65 #define PCH_MAX_CS              0xFF
66 #define PCI_DEVICE_ID_GE_SPI    0x8816
67
68 #define SPCR_SPE_BIT            (1 << 0)
69 #define SPCR_MSTR_BIT           (1 << 1)
70 #define SPCR_LSBF_BIT           (1 << 4)
71 #define SPCR_CPHA_BIT           (1 << 5)
72 #define SPCR_CPOL_BIT           (1 << 6)
73 #define SPCR_TFIE_BIT           (1 << 8)
74 #define SPCR_RFIE_BIT           (1 << 9)
75 #define SPCR_FIE_BIT            (1 << 10)
76 #define SPCR_ORIE_BIT           (1 << 11)
77 #define SPCR_MDFIE_BIT          (1 << 12)
78 #define SPCR_FICLR_BIT          (1 << 24)
79 #define SPSR_TFI_BIT            (1 << 0)
80 #define SPSR_RFI_BIT            (1 << 1)
81 #define SPSR_FI_BIT             (1 << 2)
82 #define SPSR_ORF_BIT            (1 << 3)
83 #define SPBRR_SIZE_BIT          (1 << 10)
84
85 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
87
88 #define SPCR_RFIC_FIELD         20
89 #define SPCR_TFIC_FIELD         16
90
91 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
94
95 #define PCH_CLOCK_HZ            50000000
96 #define PCH_MAX_SPBR            1023
97
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM              0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
103
104 /*
105  * Set the number of SPI instance max
106  * Intel EG20T PCH :            1ch
107  * LAPIS Semiconductor ML7213 IOH :     2ch
108  * LAPIS Semiconductor ML7223 IOH :     1ch
109  * LAPIS Semiconductor ML7831 IOH :     1ch
110 */
111 #define PCH_SPI_MAX_DEV                 2
112
113 #define PCH_BUF_SIZE            4096
114 #define PCH_DMA_TRANS_SIZE      12
115
116 static int use_dma = 1;
117
118 struct pch_spi_dma_ctrl {
119         struct dma_async_tx_descriptor  *desc_tx;
120         struct dma_async_tx_descriptor  *desc_rx;
121         struct pch_dma_slave            param_tx;
122         struct pch_dma_slave            param_rx;
123         struct dma_chan         *chan_tx;
124         struct dma_chan         *chan_rx;
125         struct scatterlist              *sg_tx_p;
126         struct scatterlist              *sg_rx_p;
127         struct scatterlist              sg_tx;
128         struct scatterlist              sg_rx;
129         int                             nent;
130         void                            *tx_buf_virt;
131         void                            *rx_buf_virt;
132         dma_addr_t                      tx_buf_dma;
133         dma_addr_t                      rx_buf_dma;
134 };
135 /**
136  * struct pch_spi_data - Holds the SPI channel specific details
137  * @io_remap_addr:              The remapped PCI base address
138  * @master:                     Pointer to the SPI master structure
139  * @work:                       Reference to work queue handler
140  * @wk:                         Workqueue for carrying out execution of the
141  *                              requests
142  * @wait:                       Wait queue for waking up upon receiving an
143  *                              interrupt.
144  * @transfer_complete:          Status of SPI Transfer
145  * @bcurrent_msg_processing:    Status flag for message processing
146  * @lock:                       Lock for protecting this structure
147  * @queue:                      SPI Message queue
148  * @status:                     Status of the SPI driver
149  * @bpw_len:                    Length of data to be transferred in bits per
150  *                              word
151  * @transfer_active:            Flag showing active transfer
152  * @tx_index:                   Transmit data count; for bookkeeping during
153  *                              transfer
154  * @rx_index:                   Receive data count; for bookkeeping during
155  *                              transfer
156  * @tx_buff:                    Buffer for data to be transmitted
157  * @rx_index:                   Buffer for Received data
158  * @n_curnt_chip:               The chip number that this SPI driver currently
159  *                              operates on
160  * @current_chip:               Reference to the current chip that this SPI
161  *                              driver currently operates on
162  * @current_msg:                The current message that this SPI driver is
163  *                              handling
164  * @cur_trans:                  The current transfer that this SPI driver is
165  *                              handling
166  * @board_dat:                  Reference to the SPI device data structure
167  * @plat_dev:                   platform_device structure
168  * @ch:                         SPI channel number
169  * @irq_reg_sts:                Status of IRQ registration
170  */
171 struct pch_spi_data {
172         void __iomem *io_remap_addr;
173         unsigned long io_base_addr;
174         struct spi_master *master;
175         struct work_struct work;
176         struct workqueue_struct *wk;
177         wait_queue_head_t wait;
178         u8 transfer_complete;
179         u8 bcurrent_msg_processing;
180         spinlock_t lock;
181         struct list_head queue;
182         u8 status;
183         u32 bpw_len;
184         u8 transfer_active;
185         u32 tx_index;
186         u32 rx_index;
187         u16 *pkt_tx_buff;
188         u16 *pkt_rx_buff;
189         u8 n_curnt_chip;
190         struct spi_device *current_chip;
191         struct spi_message *current_msg;
192         struct spi_transfer *cur_trans;
193         struct pch_spi_board_data *board_dat;
194         struct platform_device  *plat_dev;
195         int ch;
196         struct pch_spi_dma_ctrl dma;
197         int use_dma;
198         u8 irq_reg_sts;
199         int save_total_len;
200 };
201
202 /**
203  * struct pch_spi_board_data - Holds the SPI device specific details
204  * @pdev:               Pointer to the PCI device
205  * @suspend_sts:        Status of suspend
206  * @num:                The number of SPI device instance
207  */
208 struct pch_spi_board_data {
209         struct pci_dev *pdev;
210         u8 suspend_sts;
211         int num;
212 };
213
214 struct pch_pd_dev_save {
215         int num;
216         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217         struct pch_spi_board_data *board_dat;
218 };
219
220 static DEFINE_PCI_DEVICE_TABLE(pch_spi_pcidev_id) = {
221         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
222         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
225         { }
226 };
227
228 /**
229  * pch_spi_writereg() - Performs  register writes
230  * @master:     Pointer to struct spi_master.
231  * @idx:        Register offset.
232  * @val:        Value to be written to register.
233  */
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
235 {
236         struct pch_spi_data *data = spi_master_get_devdata(master);
237         iowrite32(val, (data->io_remap_addr + idx));
238 }
239
240 /**
241  * pch_spi_readreg() - Performs register reads
242  * @master:     Pointer to struct spi_master.
243  * @idx:        Register offset.
244  */
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
246 {
247         struct pch_spi_data *data = spi_master_get_devdata(master);
248         return ioread32(data->io_remap_addr + idx);
249 }
250
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252                                       u32 set, u32 clr)
253 {
254         u32 tmp = pch_spi_readreg(master, idx);
255         tmp = (tmp & ~clr) | set;
256         pch_spi_writereg(master, idx, tmp);
257 }
258
259 static void pch_spi_set_master_mode(struct spi_master *master)
260 {
261         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
262 }
263
264 /**
265  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266  * @master:     Pointer to struct spi_master.
267  */
268 static void pch_spi_clear_fifo(struct spi_master *master)
269 {
270         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
272 }
273
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275                                 void __iomem *io_remap_addr)
276 {
277         u32 n_read, tx_index, rx_index, bpw_len;
278         u16 *pkt_rx_buffer, *pkt_tx_buff;
279         int read_cnt;
280         u32 reg_spcr_val;
281         void __iomem *spsr;
282         void __iomem *spdrr;
283         void __iomem *spdwr;
284
285         spsr = io_remap_addr + PCH_SPSR;
286         iowrite32(reg_spsr_val, spsr);
287
288         if (data->transfer_active) {
289                 rx_index = data->rx_index;
290                 tx_index = data->tx_index;
291                 bpw_len = data->bpw_len;
292                 pkt_rx_buffer = data->pkt_rx_buff;
293                 pkt_tx_buff = data->pkt_tx_buff;
294
295                 spdrr = io_remap_addr + PCH_SPDRR;
296                 spdwr = io_remap_addr + PCH_SPDWR;
297
298                 n_read = PCH_READABLE(reg_spsr_val);
299
300                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302                         if (tx_index < bpw_len)
303                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
304                 }
305
306                 /* disable RFI if not needed */
307                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
310
311                         /* reset rx threshold */
312                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
314
315                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
316                 }
317
318                 /* update counts */
319                 data->tx_index = tx_index;
320                 data->rx_index = rx_index;
321
322                 /* if transfer complete interrupt */
323                 if (reg_spsr_val & SPSR_FI_BIT) {
324                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325                                 /* disable interrupts */
326                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327                                                    PCH_ALL);
328
329                                 /* transfer is completed;
330                                    inform pch_spi_process_messages */
331                                 data->transfer_complete = true;
332                                 data->transfer_active = false;
333                                 wake_up(&data->wait);
334                         } else {
335                                 dev_err(&data->master->dev,
336                                         "%s : Transfer is not completed",
337                                         __func__);
338                         }
339                 }
340         }
341 }
342
343 /**
344  * pch_spi_handler() - Interrupt handler
345  * @irq:        The interrupt number.
346  * @dev_id:     Pointer to struct pch_spi_board_data.
347  */
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
349 {
350         u32 reg_spsr_val;
351         void __iomem *spsr;
352         void __iomem *io_remap_addr;
353         irqreturn_t ret = IRQ_NONE;
354         struct pch_spi_data *data = dev_id;
355         struct pch_spi_board_data *board_dat = data->board_dat;
356
357         if (board_dat->suspend_sts) {
358                 dev_dbg(&board_dat->pdev->dev,
359                         "%s returning due to suspend\n", __func__);
360                 return IRQ_NONE;
361         }
362
363         io_remap_addr = data->io_remap_addr;
364         spsr = io_remap_addr + PCH_SPSR;
365
366         reg_spsr_val = ioread32(spsr);
367
368         if (reg_spsr_val & SPSR_ORF_BIT) {
369                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370                 if (data->current_msg->complete) {
371                         data->transfer_complete = true;
372                         data->current_msg->status = -EIO;
373                         data->current_msg->complete(data->current_msg->context);
374                         data->bcurrent_msg_processing = false;
375                         data->current_msg = NULL;
376                         data->cur_trans = NULL;
377                 }
378         }
379
380         if (data->use_dma)
381                 return IRQ_NONE;
382
383         /* Check if the interrupt is for SPI device */
384         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386                 ret = IRQ_HANDLED;
387         }
388
389         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390                 __func__, ret);
391
392         return ret;
393 }
394
395 /**
396  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397  * @master:     Pointer to struct spi_master.
398  * @speed_hz:   Baud rate.
399  */
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
401 {
402         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
403
404         /* if baud rate is less than we can support limit it */
405         if (n_spbr > PCH_MAX_SPBR)
406                 n_spbr = PCH_MAX_SPBR;
407
408         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
409 }
410
411 /**
412  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413  * @master:             Pointer to struct spi_master.
414  * @bits_per_word:      Bits per word for SPI transfer.
415  */
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417                                       u8 bits_per_word)
418 {
419         if (bits_per_word == 8)
420                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421         else
422                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
423 }
424
425 /**
426  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427  * @spi:        Pointer to struct spi_device.
428  */
429 static void pch_spi_setup_transfer(struct spi_device *spi)
430 {
431         u32 flags = 0;
432
433         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435                 spi->max_speed_hz);
436         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
437
438         /* set bits per word */
439         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
440
441         if (!(spi->mode & SPI_LSB_FIRST))
442                 flags |= SPCR_LSBF_BIT;
443         if (spi->mode & SPI_CPOL)
444                 flags |= SPCR_CPOL_BIT;
445         if (spi->mode & SPI_CPHA)
446                 flags |= SPCR_CPHA_BIT;
447         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
449
450         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
451         pch_spi_clear_fifo(spi->master);
452 }
453
454 /**
455  * pch_spi_reset() - Clears SPI registers
456  * @master:     Pointer to struct spi_master.
457  */
458 static void pch_spi_reset(struct spi_master *master)
459 {
460         /* write 1 to reset SPI */
461         pch_spi_writereg(master, PCH_SRST, 0x1);
462
463         /* clear reset */
464         pch_spi_writereg(master, PCH_SRST, 0x0);
465 }
466
467 static int pch_spi_setup(struct spi_device *pspi)
468 {
469         /* check bits per word */
470         if (pspi->bits_per_word == 0) {
471                 pspi->bits_per_word = 8;
472                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
473         }
474
475         /* Check baud rate setting */
476         /* if baud rate of chip is greater than
477            max we can support,return error */
478         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
479                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
480
481         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
482                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
483
484         return 0;
485 }
486
487 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
488 {
489
490         struct spi_transfer *transfer;
491         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
492         int retval;
493         unsigned long flags;
494
495         /* validate spi message and baud rate */
496         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
497                 dev_err(&pspi->dev, "%s list empty\n", __func__);
498                 retval = -EINVAL;
499                 goto err_out;
500         }
501
502         if (unlikely(pspi->max_speed_hz == 0)) {
503                 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
504                         __func__, pspi->max_speed_hz);
505                 retval = -EINVAL;
506                 goto err_out;
507         }
508
509         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
510                 "Transfer Speed is set.\n", __func__);
511
512         spin_lock_irqsave(&data->lock, flags);
513         /* validate Tx/Rx buffers and Transfer length */
514         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
515                 if (!transfer->tx_buf && !transfer->rx_buf) {
516                         dev_err(&pspi->dev,
517                                 "%s Tx and Rx buffer NULL\n", __func__);
518                         retval = -EINVAL;
519                         goto err_return_spinlock;
520                 }
521
522                 if (!transfer->len) {
523                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
524                                 __func__);
525                         retval = -EINVAL;
526                         goto err_return_spinlock;
527                 }
528
529                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
530                         " valid\n", __func__);
531
532                 /* if baud rate has been specified validate the same */
533                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
534                         transfer->speed_hz = PCH_MAX_BAUDRATE;
535         }
536         spin_unlock_irqrestore(&data->lock, flags);
537
538         /* We won't process any messages if we have been asked to terminate */
539         if (data->status == STATUS_EXITING) {
540                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
541                 retval = -ESHUTDOWN;
542                 goto err_out;
543         }
544
545         /* If suspended ,return -EINVAL */
546         if (data->board_dat->suspend_sts) {
547                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
548                 retval = -EINVAL;
549                 goto err_out;
550         }
551
552         /* set status of message */
553         pmsg->actual_length = 0;
554         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
555
556         pmsg->status = -EINPROGRESS;
557         spin_lock_irqsave(&data->lock, flags);
558         /* add message to queue */
559         list_add_tail(&pmsg->queue, &data->queue);
560         spin_unlock_irqrestore(&data->lock, flags);
561
562         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
563
564         /* schedule work queue to run */
565         queue_work(data->wk, &data->work);
566         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
567
568         retval = 0;
569
570 err_out:
571         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
572         return retval;
573 err_return_spinlock:
574         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
575         spin_unlock_irqrestore(&data->lock, flags);
576         return retval;
577 }
578
579 static inline void pch_spi_select_chip(struct pch_spi_data *data,
580                                        struct spi_device *pspi)
581 {
582         if (data->current_chip != NULL) {
583                 if (pspi->chip_select != data->n_curnt_chip) {
584                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
585                         data->current_chip = NULL;
586                 }
587         }
588
589         data->current_chip = pspi;
590
591         data->n_curnt_chip = data->current_chip->chip_select;
592
593         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
594         pch_spi_setup_transfer(pspi);
595 }
596
597 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
598 {
599         int size;
600         u32 n_writes;
601         int j;
602         struct spi_message *pmsg, *tmp;
603         const u8 *tx_buf;
604         const u16 *tx_sbuf;
605
606         /* set baud rate if needed */
607         if (data->cur_trans->speed_hz) {
608                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
609                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
610         }
611
612         /* set bits per word if needed */
613         if (data->cur_trans->bits_per_word &&
614             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
615                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
616                 pch_spi_set_bits_per_word(data->master,
617                                           data->cur_trans->bits_per_word);
618                 *bpw = data->cur_trans->bits_per_word;
619         } else {
620                 *bpw = data->current_msg->spi->bits_per_word;
621         }
622
623         /* reset Tx/Rx index */
624         data->tx_index = 0;
625         data->rx_index = 0;
626
627         data->bpw_len = data->cur_trans->len / (*bpw / 8);
628
629         /* find alloc size */
630         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
631
632         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
633         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
634         if (data->pkt_tx_buff != NULL) {
635                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
636                 if (!data->pkt_rx_buff)
637                         kfree(data->pkt_tx_buff);
638         }
639
640         if (!data->pkt_rx_buff) {
641                 /* flush queue and set status of all transfers to -ENOMEM */
642                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
643                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
644                         pmsg->status = -ENOMEM;
645
646                         if (pmsg->complete)
647                                 pmsg->complete(pmsg->context);
648
649                         /* delete from queue */
650                         list_del_init(&pmsg->queue);
651                 }
652                 return;
653         }
654
655         /* copy Tx Data */
656         if (data->cur_trans->tx_buf != NULL) {
657                 if (*bpw == 8) {
658                         tx_buf = data->cur_trans->tx_buf;
659                         for (j = 0; j < data->bpw_len; j++)
660                                 data->pkt_tx_buff[j] = *tx_buf++;
661                 } else {
662                         tx_sbuf = data->cur_trans->tx_buf;
663                         for (j = 0; j < data->bpw_len; j++)
664                                 data->pkt_tx_buff[j] = *tx_sbuf++;
665                 }
666         }
667
668         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
669         n_writes = data->bpw_len;
670         if (n_writes > PCH_MAX_FIFO_DEPTH)
671                 n_writes = PCH_MAX_FIFO_DEPTH;
672
673         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
674                 "0x2 to SSNXCR\n", __func__);
675         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
676
677         for (j = 0; j < n_writes; j++)
678                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
679
680         /* update tx_index */
681         data->tx_index = j;
682
683         /* reset transfer complete flag */
684         data->transfer_complete = false;
685         data->transfer_active = true;
686 }
687
688 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
689 {
690         struct spi_message *pmsg, *tmp;
691         dev_dbg(&data->master->dev, "%s called\n", __func__);
692         /* Invoke complete callback
693          * [To the spi core..indicating end of transfer] */
694         data->current_msg->status = 0;
695
696         if (data->current_msg->complete) {
697                 dev_dbg(&data->master->dev,
698                         "%s:Invoking callback of SPI core\n", __func__);
699                 data->current_msg->complete(data->current_msg->context);
700         }
701
702         /* update status in global variable */
703         data->bcurrent_msg_processing = false;
704
705         dev_dbg(&data->master->dev,
706                 "%s:data->bcurrent_msg_processing = false\n", __func__);
707
708         data->current_msg = NULL;
709         data->cur_trans = NULL;
710
711         /* check if we have items in list and not suspending
712          * return 1 if list empty */
713         if ((list_empty(&data->queue) == 0) &&
714             (!data->board_dat->suspend_sts) &&
715             (data->status != STATUS_EXITING)) {
716                 /* We have some more work to do (either there is more tranint
717                  * bpw;sfer requests in the current message or there are
718                  *more messages)
719                  */
720                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
721                 queue_work(data->wk, &data->work);
722         } else if (data->board_dat->suspend_sts ||
723                    data->status == STATUS_EXITING) {
724                 dev_dbg(&data->master->dev,
725                         "%s suspend/remove initiated, flushing queue\n",
726                         __func__);
727                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
728                         pmsg->status = -EIO;
729
730                         if (pmsg->complete)
731                                 pmsg->complete(pmsg->context);
732
733                         /* delete from queue */
734                         list_del_init(&pmsg->queue);
735                 }
736         }
737 }
738
739 static void pch_spi_set_ir(struct pch_spi_data *data)
740 {
741         /* enable interrupts, set threshold, enable SPI */
742         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
743                 /* set receive threshold to PCH_RX_THOLD */
744                 pch_spi_setclr_reg(data->master, PCH_SPCR,
745                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
746                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
747                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
748                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
749         else
750                 /* set receive threshold to maximum */
751                 pch_spi_setclr_reg(data->master, PCH_SPCR,
752                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
753                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
754                                    SPCR_SPE_BIT,
755                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
756
757         /* Wait until the transfer completes; go to sleep after
758                                  initiating the transfer. */
759         dev_dbg(&data->master->dev,
760                 "%s:waiting for transfer to get over\n", __func__);
761
762         wait_event_interruptible(data->wait, data->transfer_complete);
763
764         /* clear all interrupts */
765         pch_spi_writereg(data->master, PCH_SPSR,
766                          pch_spi_readreg(data->master, PCH_SPSR));
767         /* Disable interrupts and SPI transfer */
768         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
769         /* clear FIFO */
770         pch_spi_clear_fifo(data->master);
771 }
772
773 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
774 {
775         int j;
776         u8 *rx_buf;
777         u16 *rx_sbuf;
778
779         /* copy Rx Data */
780         if (!data->cur_trans->rx_buf)
781                 return;
782
783         if (bpw == 8) {
784                 rx_buf = data->cur_trans->rx_buf;
785                 for (j = 0; j < data->bpw_len; j++)
786                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
787         } else {
788                 rx_sbuf = data->cur_trans->rx_buf;
789                 for (j = 0; j < data->bpw_len; j++)
790                         *rx_sbuf++ = data->pkt_rx_buff[j];
791         }
792 }
793
794 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
795 {
796         int j;
797         u8 *rx_buf;
798         u16 *rx_sbuf;
799         const u8 *rx_dma_buf;
800         const u16 *rx_dma_sbuf;
801
802         /* copy Rx Data */
803         if (!data->cur_trans->rx_buf)
804                 return;
805
806         if (bpw == 8) {
807                 rx_buf = data->cur_trans->rx_buf;
808                 rx_dma_buf = data->dma.rx_buf_virt;
809                 for (j = 0; j < data->bpw_len; j++)
810                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
811                 data->cur_trans->rx_buf = rx_buf;
812         } else {
813                 rx_sbuf = data->cur_trans->rx_buf;
814                 rx_dma_sbuf = data->dma.rx_buf_virt;
815                 for (j = 0; j < data->bpw_len; j++)
816                         *rx_sbuf++ = *rx_dma_sbuf++;
817                 data->cur_trans->rx_buf = rx_sbuf;
818         }
819 }
820
821 static int pch_spi_start_transfer(struct pch_spi_data *data)
822 {
823         struct pch_spi_dma_ctrl *dma;
824         unsigned long flags;
825         int rtn;
826
827         dma = &data->dma;
828
829         spin_lock_irqsave(&data->lock, flags);
830
831         /* disable interrupts, SPI set enable */
832         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
833
834         spin_unlock_irqrestore(&data->lock, flags);
835
836         /* Wait until the transfer completes; go to sleep after
837                                  initiating the transfer. */
838         dev_dbg(&data->master->dev,
839                 "%s:waiting for transfer to get over\n", __func__);
840         rtn = wait_event_interruptible_timeout(data->wait,
841                                                data->transfer_complete,
842                                                msecs_to_jiffies(2 * HZ));
843         if (!rtn)
844                 dev_err(&data->master->dev,
845                         "%s wait-event timeout\n", __func__);
846
847         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
848                             DMA_FROM_DEVICE);
849
850         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
851                             DMA_FROM_DEVICE);
852         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
853
854         async_tx_ack(dma->desc_rx);
855         async_tx_ack(dma->desc_tx);
856         kfree(dma->sg_tx_p);
857         kfree(dma->sg_rx_p);
858
859         spin_lock_irqsave(&data->lock, flags);
860
861         /* clear fifo threshold, disable interrupts, disable SPI transfer */
862         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
863                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
864                            SPCR_SPE_BIT);
865         /* clear all interrupts */
866         pch_spi_writereg(data->master, PCH_SPSR,
867                          pch_spi_readreg(data->master, PCH_SPSR));
868         /* clear FIFO */
869         pch_spi_clear_fifo(data->master);
870
871         spin_unlock_irqrestore(&data->lock, flags);
872
873         return rtn;
874 }
875
876 static void pch_dma_rx_complete(void *arg)
877 {
878         struct pch_spi_data *data = arg;
879
880         /* transfer is completed;inform pch_spi_process_messages_dma */
881         data->transfer_complete = true;
882         wake_up_interruptible(&data->wait);
883 }
884
885 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
886 {
887         struct pch_dma_slave *param = slave;
888
889         if ((chan->chan_id == param->chan_id) &&
890             (param->dma_dev == chan->device->dev)) {
891                 chan->private = param;
892                 return true;
893         } else {
894                 return false;
895         }
896 }
897
898 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
899 {
900         dma_cap_mask_t mask;
901         struct dma_chan *chan;
902         struct pci_dev *dma_dev;
903         struct pch_dma_slave *param;
904         struct pch_spi_dma_ctrl *dma;
905         unsigned int width;
906
907         if (bpw == 8)
908                 width = PCH_DMA_WIDTH_1_BYTE;
909         else
910                 width = PCH_DMA_WIDTH_2_BYTES;
911
912         dma = &data->dma;
913         dma_cap_zero(mask);
914         dma_cap_set(DMA_SLAVE, mask);
915
916         /* Get DMA's dev information */
917         dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
918                                        PCI_DEVFN(12, 0));
919
920         /* Set Tx DMA */
921         param = &dma->param_tx;
922         param->dma_dev = &dma_dev->dev;
923         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
924         param->tx_reg = data->io_base_addr + PCH_SPDWR;
925         param->width = width;
926         chan = dma_request_channel(mask, pch_spi_filter, param);
927         if (!chan) {
928                 dev_err(&data->master->dev,
929                         "ERROR: dma_request_channel FAILS(Tx)\n");
930                 data->use_dma = 0;
931                 return;
932         }
933         dma->chan_tx = chan;
934
935         /* Set Rx DMA */
936         param = &dma->param_rx;
937         param->dma_dev = &dma_dev->dev;
938         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
939         param->rx_reg = data->io_base_addr + PCH_SPDRR;
940         param->width = width;
941         chan = dma_request_channel(mask, pch_spi_filter, param);
942         if (!chan) {
943                 dev_err(&data->master->dev,
944                         "ERROR: dma_request_channel FAILS(Rx)\n");
945                 dma_release_channel(dma->chan_tx);
946                 dma->chan_tx = NULL;
947                 data->use_dma = 0;
948                 return;
949         }
950         dma->chan_rx = chan;
951 }
952
953 static void pch_spi_release_dma(struct pch_spi_data *data)
954 {
955         struct pch_spi_dma_ctrl *dma;
956
957         dma = &data->dma;
958         if (dma->chan_tx) {
959                 dma_release_channel(dma->chan_tx);
960                 dma->chan_tx = NULL;
961         }
962         if (dma->chan_rx) {
963                 dma_release_channel(dma->chan_rx);
964                 dma->chan_rx = NULL;
965         }
966         return;
967 }
968
969 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
970 {
971         const u8 *tx_buf;
972         const u16 *tx_sbuf;
973         u8 *tx_dma_buf;
974         u16 *tx_dma_sbuf;
975         struct scatterlist *sg;
976         struct dma_async_tx_descriptor *desc_tx;
977         struct dma_async_tx_descriptor *desc_rx;
978         int num;
979         int i;
980         int size;
981         int rem;
982         int head;
983         unsigned long flags;
984         struct pch_spi_dma_ctrl *dma;
985
986         dma = &data->dma;
987
988         /* set baud rate if needed */
989         if (data->cur_trans->speed_hz) {
990                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
991                 spin_lock_irqsave(&data->lock, flags);
992                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
993                 spin_unlock_irqrestore(&data->lock, flags);
994         }
995
996         /* set bits per word if needed */
997         if (data->cur_trans->bits_per_word &&
998             (data->current_msg->spi->bits_per_word !=
999              data->cur_trans->bits_per_word)) {
1000                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1001                 spin_lock_irqsave(&data->lock, flags);
1002                 pch_spi_set_bits_per_word(data->master,
1003                                           data->cur_trans->bits_per_word);
1004                 spin_unlock_irqrestore(&data->lock, flags);
1005                 *bpw = data->cur_trans->bits_per_word;
1006         } else {
1007                 *bpw = data->current_msg->spi->bits_per_word;
1008         }
1009         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1010
1011         if (data->bpw_len > PCH_BUF_SIZE) {
1012                 data->bpw_len = PCH_BUF_SIZE;
1013                 data->cur_trans->len -= PCH_BUF_SIZE;
1014         }
1015
1016         /* copy Tx Data */
1017         if (data->cur_trans->tx_buf != NULL) {
1018                 if (*bpw == 8) {
1019                         tx_buf = data->cur_trans->tx_buf;
1020                         tx_dma_buf = dma->tx_buf_virt;
1021                         for (i = 0; i < data->bpw_len; i++)
1022                                 *tx_dma_buf++ = *tx_buf++;
1023                 } else {
1024                         tx_sbuf = data->cur_trans->tx_buf;
1025                         tx_dma_sbuf = dma->tx_buf_virt;
1026                         for (i = 0; i < data->bpw_len; i++)
1027                                 *tx_dma_sbuf++ = *tx_sbuf++;
1028                 }
1029         }
1030
1031         /* Calculate Rx parameter for DMA transmitting */
1032         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1033                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1034                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1035                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1036                 } else {
1037                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1038                         rem = PCH_DMA_TRANS_SIZE;
1039                 }
1040                 size = PCH_DMA_TRANS_SIZE;
1041         } else {
1042                 num = 1;
1043                 size = data->bpw_len;
1044                 rem = data->bpw_len;
1045         }
1046         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1047                 __func__, num, size, rem);
1048         spin_lock_irqsave(&data->lock, flags);
1049
1050         /* set receive fifo threshold and transmit fifo threshold */
1051         pch_spi_setclr_reg(data->master, PCH_SPCR,
1052                            ((size - 1) << SPCR_RFIC_FIELD) |
1053                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1054                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1055
1056         spin_unlock_irqrestore(&data->lock, flags);
1057
1058         /* RX */
1059         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1060         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1061         /* offset, length setting */
1062         sg = dma->sg_rx_p;
1063         for (i = 0; i < num; i++, sg++) {
1064                 if (i == (num - 2)) {
1065                         sg->offset = size * i;
1066                         sg->offset = sg->offset * (*bpw / 8);
1067                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1068                                     sg->offset);
1069                         sg_dma_len(sg) = rem;
1070                 } else if (i == (num - 1)) {
1071                         sg->offset = size * (i - 1) + rem;
1072                         sg->offset = sg->offset * (*bpw / 8);
1073                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1074                                     sg->offset);
1075                         sg_dma_len(sg) = size;
1076                 } else {
1077                         sg->offset = size * i;
1078                         sg->offset = sg->offset * (*bpw / 8);
1079                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1080                                     sg->offset);
1081                         sg_dma_len(sg) = size;
1082                 }
1083                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1084         }
1085         sg = dma->sg_rx_p;
1086         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1087                                         num, DMA_DEV_TO_MEM,
1088                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1089         if (!desc_rx) {
1090                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1091                         __func__);
1092                 return;
1093         }
1094         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1095         desc_rx->callback = pch_dma_rx_complete;
1096         desc_rx->callback_param = data;
1097         dma->nent = num;
1098         dma->desc_rx = desc_rx;
1099
1100         /* Calculate Tx parameter for DMA transmitting */
1101         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1102                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1103                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1104                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1105                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1106                 } else {
1107                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1108                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1109                               PCH_DMA_TRANS_SIZE - head;
1110                 }
1111                 size = PCH_DMA_TRANS_SIZE;
1112         } else {
1113                 num = 1;
1114                 size = data->bpw_len;
1115                 rem = data->bpw_len;
1116                 head = 0;
1117         }
1118
1119         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1120         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1121         /* offset, length setting */
1122         sg = dma->sg_tx_p;
1123         for (i = 0; i < num; i++, sg++) {
1124                 if (i == 0) {
1125                         sg->offset = 0;
1126                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1127                                     sg->offset);
1128                         sg_dma_len(sg) = size + head;
1129                 } else if (i == (num - 1)) {
1130                         sg->offset = head + size * i;
1131                         sg->offset = sg->offset * (*bpw / 8);
1132                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1133                                     sg->offset);
1134                         sg_dma_len(sg) = rem;
1135                 } else {
1136                         sg->offset = head + size * i;
1137                         sg->offset = sg->offset * (*bpw / 8);
1138                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1139                                     sg->offset);
1140                         sg_dma_len(sg) = size;
1141                 }
1142                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1143         }
1144         sg = dma->sg_tx_p;
1145         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1146                                         sg, num, DMA_MEM_TO_DEV,
1147                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1148         if (!desc_tx) {
1149                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1150                         __func__);
1151                 return;
1152         }
1153         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1154         desc_tx->callback = NULL;
1155         desc_tx->callback_param = data;
1156         dma->nent = num;
1157         dma->desc_tx = desc_tx;
1158
1159         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1160                 "0x2 to SSNXCR\n", __func__);
1161
1162         spin_lock_irqsave(&data->lock, flags);
1163         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1164         desc_rx->tx_submit(desc_rx);
1165         desc_tx->tx_submit(desc_tx);
1166         spin_unlock_irqrestore(&data->lock, flags);
1167
1168         /* reset transfer complete flag */
1169         data->transfer_complete = false;
1170 }
1171
1172 static void pch_spi_process_messages(struct work_struct *pwork)
1173 {
1174         struct spi_message *pmsg, *tmp;
1175         struct pch_spi_data *data;
1176         int bpw;
1177
1178         data = container_of(pwork, struct pch_spi_data, work);
1179         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1180
1181         spin_lock(&data->lock);
1182         /* check if suspend has been initiated;if yes flush queue */
1183         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1184                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1185                         "flushing queue\n", __func__);
1186                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1187                         pmsg->status = -EIO;
1188
1189                         if (pmsg->complete) {
1190                                 spin_unlock(&data->lock);
1191                                 pmsg->complete(pmsg->context);
1192                                 spin_lock(&data->lock);
1193                         }
1194
1195                         /* delete from queue */
1196                         list_del_init(&pmsg->queue);
1197                 }
1198
1199                 spin_unlock(&data->lock);
1200                 return;
1201         }
1202
1203         data->bcurrent_msg_processing = true;
1204         dev_dbg(&data->master->dev,
1205                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1206
1207         /* Get the message from the queue and delete it from there. */
1208         data->current_msg = list_entry(data->queue.next, struct spi_message,
1209                                         queue);
1210
1211         list_del_init(&data->current_msg->queue);
1212
1213         data->current_msg->status = 0;
1214
1215         pch_spi_select_chip(data, data->current_msg->spi);
1216
1217         spin_unlock(&data->lock);
1218
1219         if (data->use_dma)
1220                 pch_spi_request_dma(data,
1221                                     data->current_msg->spi->bits_per_word);
1222         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1223         do {
1224                 int cnt;
1225                 /* If we are already processing a message get the next
1226                 transfer structure from the message otherwise retrieve
1227                 the 1st transfer request from the message. */
1228                 spin_lock(&data->lock);
1229                 if (data->cur_trans == NULL) {
1230                         data->cur_trans =
1231                                 list_entry(data->current_msg->transfers.next,
1232                                            struct spi_transfer, transfer_list);
1233                         dev_dbg(&data->master->dev, "%s "
1234                                 ":Getting 1st transfer message\n", __func__);
1235                 } else {
1236                         data->cur_trans =
1237                                 list_entry(data->cur_trans->transfer_list.next,
1238                                            struct spi_transfer, transfer_list);
1239                         dev_dbg(&data->master->dev, "%s "
1240                                 ":Getting next transfer message\n", __func__);
1241                 }
1242                 spin_unlock(&data->lock);
1243
1244                 if (!data->cur_trans->len)
1245                         goto out;
1246                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1247                 data->save_total_len = data->cur_trans->len;
1248                 if (data->use_dma) {
1249                         int i;
1250                         char *save_rx_buf = data->cur_trans->rx_buf;
1251                         for (i = 0; i < cnt; i ++) {
1252                                 pch_spi_handle_dma(data, &bpw);
1253                                 if (!pch_spi_start_transfer(data)) {
1254                                         data->transfer_complete = true;
1255                                         data->current_msg->status = -EIO;
1256                                         data->current_msg->complete
1257                                                    (data->current_msg->context);
1258                                         data->bcurrent_msg_processing = false;
1259                                         data->current_msg = NULL;
1260                                         data->cur_trans = NULL;
1261                                         goto out;
1262                                 }
1263                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1264                         }
1265                         data->cur_trans->rx_buf = save_rx_buf;
1266                 } else {
1267                         pch_spi_set_tx(data, &bpw);
1268                         pch_spi_set_ir(data);
1269                         pch_spi_copy_rx_data(data, bpw);
1270                         kfree(data->pkt_rx_buff);
1271                         data->pkt_rx_buff = NULL;
1272                         kfree(data->pkt_tx_buff);
1273                         data->pkt_tx_buff = NULL;
1274                 }
1275                 /* increment message count */
1276                 data->cur_trans->len = data->save_total_len;
1277                 data->current_msg->actual_length += data->cur_trans->len;
1278
1279                 dev_dbg(&data->master->dev,
1280                         "%s:data->current_msg->actual_length=%d\n",
1281                         __func__, data->current_msg->actual_length);
1282
1283                 /* check for delay */
1284                 if (data->cur_trans->delay_usecs) {
1285                         dev_dbg(&data->master->dev, "%s:"
1286                                 "delay in usec=%d\n", __func__,
1287                                 data->cur_trans->delay_usecs);
1288                         udelay(data->cur_trans->delay_usecs);
1289                 }
1290
1291                 spin_lock(&data->lock);
1292
1293                 /* No more transfer in this message. */
1294                 if ((data->cur_trans->transfer_list.next) ==
1295                     &(data->current_msg->transfers)) {
1296                         pch_spi_nomore_transfer(data);
1297                 }
1298
1299                 spin_unlock(&data->lock);
1300
1301         } while (data->cur_trans != NULL);
1302
1303 out:
1304         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1305         if (data->use_dma)
1306                 pch_spi_release_dma(data);
1307 }
1308
1309 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1310                                    struct pch_spi_data *data)
1311 {
1312         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1313
1314         /* free workqueue */
1315         if (data->wk != NULL) {
1316                 destroy_workqueue(data->wk);
1317                 data->wk = NULL;
1318                 dev_dbg(&board_dat->pdev->dev,
1319                         "%s destroy_workqueue invoked successfully\n",
1320                         __func__);
1321         }
1322 }
1323
1324 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1325                                  struct pch_spi_data *data)
1326 {
1327         int retval = 0;
1328
1329         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1330
1331         /* create workqueue */
1332         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1333         if (!data->wk) {
1334                 dev_err(&board_dat->pdev->dev,
1335                         "%s create_singlet hread_workqueue failed\n", __func__);
1336                 retval = -EBUSY;
1337                 goto err_return;
1338         }
1339
1340         /* reset PCH SPI h/w */
1341         pch_spi_reset(data->master);
1342         dev_dbg(&board_dat->pdev->dev,
1343                 "%s pch_spi_reset invoked successfully\n", __func__);
1344
1345         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1346
1347 err_return:
1348         if (retval != 0) {
1349                 dev_err(&board_dat->pdev->dev,
1350                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1351                 pch_spi_free_resources(board_dat, data);
1352         }
1353
1354         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1355
1356         return retval;
1357 }
1358
1359 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1360                              struct pch_spi_data *data)
1361 {
1362         struct pch_spi_dma_ctrl *dma;
1363
1364         dma = &data->dma;
1365         if (dma->tx_buf_dma)
1366                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1367                                   dma->tx_buf_virt, dma->tx_buf_dma);
1368         if (dma->rx_buf_dma)
1369                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1370                                   dma->rx_buf_virt, dma->rx_buf_dma);
1371         return;
1372 }
1373
1374 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1375                               struct pch_spi_data *data)
1376 {
1377         struct pch_spi_dma_ctrl *dma;
1378
1379         dma = &data->dma;
1380         /* Get Consistent memory for Tx DMA */
1381         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1382                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1383         /* Get Consistent memory for Rx DMA */
1384         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1385                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1386 }
1387
1388 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1389 {
1390         int ret;
1391         struct spi_master *master;
1392         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1393         struct pch_spi_data *data;
1394
1395         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1396
1397         master = spi_alloc_master(&board_dat->pdev->dev,
1398                                   sizeof(struct pch_spi_data));
1399         if (!master) {
1400                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1401                         plat_dev->id);
1402                 return -ENOMEM;
1403         }
1404
1405         data = spi_master_get_devdata(master);
1406         data->master = master;
1407
1408         platform_set_drvdata(plat_dev, data);
1409
1410         /* baseaddress + address offset) */
1411         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1412                                          PCH_ADDRESS_SIZE * plat_dev->id;
1413         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1414                                          PCH_ADDRESS_SIZE * plat_dev->id;
1415         if (!data->io_remap_addr) {
1416                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1417                 ret = -ENOMEM;
1418                 goto err_pci_iomap;
1419         }
1420
1421         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1422                 plat_dev->id, data->io_remap_addr);
1423
1424         /* initialize members of SPI master */
1425         master->num_chipselect = PCH_MAX_CS;
1426         master->setup = pch_spi_setup;
1427         master->transfer = pch_spi_transfer;
1428         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1429         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1430
1431         data->board_dat = board_dat;
1432         data->plat_dev = plat_dev;
1433         data->n_curnt_chip = 255;
1434         data->status = STATUS_RUNNING;
1435         data->ch = plat_dev->id;
1436         data->use_dma = use_dma;
1437
1438         INIT_LIST_HEAD(&data->queue);
1439         spin_lock_init(&data->lock);
1440         INIT_WORK(&data->work, pch_spi_process_messages);
1441         init_waitqueue_head(&data->wait);
1442
1443         ret = pch_spi_get_resources(board_dat, data);
1444         if (ret) {
1445                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1446                 goto err_spi_get_resources;
1447         }
1448
1449         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1450                           IRQF_SHARED, KBUILD_MODNAME, data);
1451         if (ret) {
1452                 dev_err(&plat_dev->dev,
1453                         "%s request_irq failed\n", __func__);
1454                 goto err_request_irq;
1455         }
1456         data->irq_reg_sts = true;
1457
1458         pch_spi_set_master_mode(master);
1459
1460         ret = spi_register_master(master);
1461         if (ret != 0) {
1462                 dev_err(&plat_dev->dev,
1463                         "%s spi_register_master FAILED\n", __func__);
1464                 goto err_spi_register_master;
1465         }
1466
1467         if (use_dma) {
1468                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1469                 pch_alloc_dma_buf(board_dat, data);
1470         }
1471
1472         return 0;
1473
1474 err_spi_register_master:
1475         free_irq(board_dat->pdev->irq, data);
1476 err_request_irq:
1477         pch_spi_free_resources(board_dat, data);
1478 err_spi_get_resources:
1479         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1480 err_pci_iomap:
1481         spi_master_put(master);
1482
1483         return ret;
1484 }
1485
1486 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1487 {
1488         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1489         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1490         int count;
1491         unsigned long flags;
1492
1493         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1494                 __func__, plat_dev->id, board_dat->pdev->irq);
1495
1496         if (use_dma)
1497                 pch_free_dma_buf(board_dat, data);
1498
1499         /* check for any pending messages; no action is taken if the queue
1500          * is still full; but at least we tried.  Unload anyway */
1501         count = 500;
1502         spin_lock_irqsave(&data->lock, flags);
1503         data->status = STATUS_EXITING;
1504         while ((list_empty(&data->queue) == 0) && --count) {
1505                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1506                         __func__);
1507                 spin_unlock_irqrestore(&data->lock, flags);
1508                 msleep(PCH_SLEEP_TIME);
1509                 spin_lock_irqsave(&data->lock, flags);
1510         }
1511         spin_unlock_irqrestore(&data->lock, flags);
1512
1513         pch_spi_free_resources(board_dat, data);
1514         /* disable interrupts & free IRQ */
1515         if (data->irq_reg_sts) {
1516                 /* disable interrupts */
1517                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1518                 data->irq_reg_sts = false;
1519                 free_irq(board_dat->pdev->irq, data);
1520         }
1521
1522         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1523         spi_unregister_master(data->master);
1524
1525         return 0;
1526 }
1527 #ifdef CONFIG_PM
1528 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1529                               pm_message_t state)
1530 {
1531         u8 count;
1532         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1533         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1534
1535         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1536
1537         if (!board_dat) {
1538                 dev_err(&pd_dev->dev,
1539                         "%s pci_get_drvdata returned NULL\n", __func__);
1540                 return -EFAULT;
1541         }
1542
1543         /* check if the current message is processed:
1544            Only after thats done the transfer will be suspended */
1545         count = 255;
1546         while ((--count) > 0) {
1547                 if (!(data->bcurrent_msg_processing))
1548                         break;
1549                 msleep(PCH_SLEEP_TIME);
1550         }
1551
1552         /* Free IRQ */
1553         if (data->irq_reg_sts) {
1554                 /* disable all interrupts */
1555                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1556                 pch_spi_reset(data->master);
1557                 free_irq(board_dat->pdev->irq, data);
1558
1559                 data->irq_reg_sts = false;
1560                 dev_dbg(&pd_dev->dev,
1561                         "%s free_irq invoked successfully.\n", __func__);
1562         }
1563
1564         return 0;
1565 }
1566
1567 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1568 {
1569         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1570         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1571         int retval;
1572
1573         if (!board_dat) {
1574                 dev_err(&pd_dev->dev,
1575                         "%s pci_get_drvdata returned NULL\n", __func__);
1576                 return -EFAULT;
1577         }
1578
1579         if (!data->irq_reg_sts) {
1580                 /* register IRQ */
1581                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1582                                      IRQF_SHARED, KBUILD_MODNAME, data);
1583                 if (retval < 0) {
1584                         dev_err(&pd_dev->dev,
1585                                 "%s request_irq failed\n", __func__);
1586                         return retval;
1587                 }
1588
1589                 /* reset PCH SPI h/w */
1590                 pch_spi_reset(data->master);
1591                 pch_spi_set_master_mode(data->master);
1592                 data->irq_reg_sts = true;
1593         }
1594         return 0;
1595 }
1596 #else
1597 #define pch_spi_pd_suspend NULL
1598 #define pch_spi_pd_resume NULL
1599 #endif
1600
1601 static struct platform_driver pch_spi_pd_driver = {
1602         .driver = {
1603                 .name = "pch-spi",
1604                 .owner = THIS_MODULE,
1605         },
1606         .probe = pch_spi_pd_probe,
1607         .remove = pch_spi_pd_remove,
1608         .suspend = pch_spi_pd_suspend,
1609         .resume = pch_spi_pd_resume
1610 };
1611
1612 static int pch_spi_probe(struct pci_dev *pdev,
1613                                    const struct pci_device_id *id)
1614 {
1615         struct pch_spi_board_data *board_dat;
1616         struct platform_device *pd_dev = NULL;
1617         int retval;
1618         int i;
1619         struct pch_pd_dev_save *pd_dev_save;
1620
1621         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1622         if (!pd_dev_save) {
1623                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1624                 return -ENOMEM;
1625         }
1626
1627         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1628         if (!board_dat) {
1629                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1630                 retval = -ENOMEM;
1631                 goto err_no_mem;
1632         }
1633
1634         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1635         if (retval) {
1636                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1637                 goto pci_request_regions;
1638         }
1639
1640         board_dat->pdev = pdev;
1641         board_dat->num = id->driver_data;
1642         pd_dev_save->num = id->driver_data;
1643         pd_dev_save->board_dat = board_dat;
1644
1645         retval = pci_enable_device(pdev);
1646         if (retval) {
1647                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1648                 goto pci_enable_device;
1649         }
1650
1651         for (i = 0; i < board_dat->num; i++) {
1652                 pd_dev = platform_device_alloc("pch-spi", i);
1653                 if (!pd_dev) {
1654                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1655                         retval = -ENOMEM;
1656                         goto err_platform_device;
1657                 }
1658                 pd_dev_save->pd_save[i] = pd_dev;
1659                 pd_dev->dev.parent = &pdev->dev;
1660
1661                 retval = platform_device_add_data(pd_dev, board_dat,
1662                                                   sizeof(*board_dat));
1663                 if (retval) {
1664                         dev_err(&pdev->dev,
1665                                 "platform_device_add_data failed\n");
1666                         platform_device_put(pd_dev);
1667                         goto err_platform_device;
1668                 }
1669
1670                 retval = platform_device_add(pd_dev);
1671                 if (retval) {
1672                         dev_err(&pdev->dev, "platform_device_add failed\n");
1673                         platform_device_put(pd_dev);
1674                         goto err_platform_device;
1675                 }
1676         }
1677
1678         pci_set_drvdata(pdev, pd_dev_save);
1679
1680         return 0;
1681
1682 err_platform_device:
1683         pci_disable_device(pdev);
1684 pci_enable_device:
1685         pci_release_regions(pdev);
1686 pci_request_regions:
1687         kfree(board_dat);
1688 err_no_mem:
1689         kfree(pd_dev_save);
1690
1691         return retval;
1692 }
1693
1694 static void pch_spi_remove(struct pci_dev *pdev)
1695 {
1696         int i;
1697         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1698
1699         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1700
1701         for (i = 0; i < pd_dev_save->num; i++)
1702                 platform_device_unregister(pd_dev_save->pd_save[i]);
1703
1704         pci_disable_device(pdev);
1705         pci_release_regions(pdev);
1706         kfree(pd_dev_save->board_dat);
1707         kfree(pd_dev_save);
1708 }
1709
1710 #ifdef CONFIG_PM
1711 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1712 {
1713         int retval;
1714         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1715
1716         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1717
1718         pd_dev_save->board_dat->suspend_sts = true;
1719
1720         /* save config space */
1721         retval = pci_save_state(pdev);
1722         if (retval == 0) {
1723                 pci_enable_wake(pdev, PCI_D3hot, 0);
1724                 pci_disable_device(pdev);
1725                 pci_set_power_state(pdev, PCI_D3hot);
1726         } else {
1727                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1728         }
1729
1730         return retval;
1731 }
1732
1733 static int pch_spi_resume(struct pci_dev *pdev)
1734 {
1735         int retval;
1736         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1737         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1738
1739         pci_set_power_state(pdev, PCI_D0);
1740         pci_restore_state(pdev);
1741
1742         retval = pci_enable_device(pdev);
1743         if (retval < 0) {
1744                 dev_err(&pdev->dev,
1745                         "%s pci_enable_device failed\n", __func__);
1746         } else {
1747                 pci_enable_wake(pdev, PCI_D3hot, 0);
1748
1749                 /* set suspend status to false */
1750                 pd_dev_save->board_dat->suspend_sts = false;
1751         }
1752
1753         return retval;
1754 }
1755 #else
1756 #define pch_spi_suspend NULL
1757 #define pch_spi_resume NULL
1758
1759 #endif
1760
1761 static struct pci_driver pch_spi_pcidev_driver = {
1762         .name = "pch_spi",
1763         .id_table = pch_spi_pcidev_id,
1764         .probe = pch_spi_probe,
1765         .remove = pch_spi_remove,
1766         .suspend = pch_spi_suspend,
1767         .resume = pch_spi_resume,
1768 };
1769
1770 static int __init pch_spi_init(void)
1771 {
1772         int ret;
1773         ret = platform_driver_register(&pch_spi_pd_driver);
1774         if (ret)
1775                 return ret;
1776
1777         ret = pci_register_driver(&pch_spi_pcidev_driver);
1778         if (ret) {
1779                 platform_driver_unregister(&pch_spi_pd_driver);
1780                 return ret;
1781         }
1782
1783         return 0;
1784 }
1785 module_init(pch_spi_init);
1786
1787 static void __exit pch_spi_exit(void)
1788 {
1789         pci_unregister_driver(&pch_spi_pcidev_driver);
1790         platform_driver_unregister(&pch_spi_pd_driver);
1791 }
1792 module_exit(pch_spi_exit);
1793
1794 module_param(use_dma, int, 0644);
1795 MODULE_PARM_DESC(use_dma,
1796                  "to use DMA for data transfers pass 1 else 0; default 1");
1797
1798 MODULE_LICENSE("GPL");
1799 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1800 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1801