]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/staging/rdma/hfi1/init.c
Merge tag 'vmwgfx-fixes-4.3-151014' of git://people.freedesktop.org/~thomash/linux...
[karo-tx-linux.git] / drivers / staging / rdma / hfi1 / init.c
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50
51 #include <linux/pci.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/delay.h>
55 #include <linux/idr.h>
56 #include <linux/module.h>
57 #include <linux/printk.h>
58 #include <linux/hrtimer.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67
68 #undef pr_fmt
69 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
70
71 /*
72  * min buffers we want to have per context, after driver
73  */
74 #define HFI1_MIN_USER_CTXT_BUFCNT 7
75
76 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
78 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
79
80 /*
81  * Number of user receive contexts we are configured to use (to allow for more
82  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
83  */
84 uint num_rcv_contexts;
85 module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
86 MODULE_PARM_DESC(
87         num_rcv_contexts, "Set max number of user receive contexts to use");
88
89 u8 krcvqs[RXE_NUM_DATA_VL];
90 int krcvqsset;
91 module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
92 MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
93
94 /* computed based on above array */
95 unsigned n_krcvqs;
96
97 static unsigned hfi1_rcvarr_split = 25;
98 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
99 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
100
101 static uint eager_buffer_size = (2 << 20); /* 2MB */
102 module_param(eager_buffer_size, uint, S_IRUGO);
103 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
104
105 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
106 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
108
109 static uint hfi1_hdrq_entsize = 32;
110 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
111 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
112
113 unsigned int user_credit_return_threshold = 33; /* default is 33% */
114 module_param(user_credit_return_threshold, uint, S_IRUGO);
115 MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
116
117 static inline u64 encode_rcv_header_entry_size(u16);
118
119 static struct idr hfi1_unit_table;
120 u32 hfi1_cpulist_count;
121 unsigned long *hfi1_cpulist;
122
123 /*
124  * Common code for creating the receive context array.
125  */
126 int hfi1_create_ctxts(struct hfi1_devdata *dd)
127 {
128         unsigned i;
129         int ret;
130         int local_node_id = pcibus_to_node(dd->pcidev->bus);
131
132         if (local_node_id < 0)
133                 local_node_id = numa_node_id();
134         dd->assigned_node_id = local_node_id;
135
136         dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
137         if (!dd->rcd) {
138                 dd_dev_err(dd,
139                         "Unable to allocate receive context array, failing\n");
140                 goto nomem;
141         }
142
143         /* create one or more kernel contexts */
144         for (i = 0; i < dd->first_user_ctxt; ++i) {
145                 struct hfi1_pportdata *ppd;
146                 struct hfi1_ctxtdata *rcd;
147
148                 ppd = dd->pport + (i % dd->num_pports);
149                 rcd = hfi1_create_ctxtdata(ppd, i);
150                 if (!rcd) {
151                         dd_dev_err(dd,
152                                 "Unable to allocate kernel receive context, failing\n");
153                         goto nomem;
154                 }
155                 /*
156                  * Set up the kernel context flags here and now because they
157                  * use default values for all receive side memories.  User
158                  * contexts will be handled as they are created.
159                  */
160                 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
161                         HFI1_CAP_KGET(NODROP_RHQ_FULL) |
162                         HFI1_CAP_KGET(NODROP_EGR_FULL) |
163                         HFI1_CAP_KGET(DMA_RTAIL);
164                 rcd->seq_cnt = 1;
165
166                 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
167                 if (!rcd->sc) {
168                         dd_dev_err(dd,
169                                 "Unable to allocate kernel send context, failing\n");
170                         dd->rcd[rcd->ctxt] = NULL;
171                         hfi1_free_ctxtdata(dd, rcd);
172                         goto nomem;
173                 }
174
175                 ret = hfi1_init_ctxt(rcd->sc);
176                 if (ret < 0) {
177                         dd_dev_err(dd,
178                                    "Failed to setup kernel receive context, failing\n");
179                         sc_free(rcd->sc);
180                         dd->rcd[rcd->ctxt] = NULL;
181                         hfi1_free_ctxtdata(dd, rcd);
182                         ret = -EFAULT;
183                         goto bail;
184                 }
185         }
186
187         return 0;
188 nomem:
189         ret = -ENOMEM;
190 bail:
191         kfree(dd->rcd);
192         dd->rcd = NULL;
193         return ret;
194 }
195
196 /*
197  * Common code for user and kernel context setup.
198  */
199 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
200 {
201         struct hfi1_devdata *dd = ppd->dd;
202         struct hfi1_ctxtdata *rcd;
203         unsigned kctxt_ngroups = 0;
204         u32 base;
205
206         if (dd->rcv_entries.nctxt_extra >
207             dd->num_rcv_contexts - dd->first_user_ctxt)
208                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
209                                  (dd->num_rcv_contexts - dd->first_user_ctxt));
210         rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
211         if (rcd) {
212                 u32 rcvtids, max_entries;
213
214                 dd_dev_info(dd, "%s: setting up context %u\n", __func__, ctxt);
215
216                 INIT_LIST_HEAD(&rcd->qp_wait_list);
217                 rcd->ppd = ppd;
218                 rcd->dd = dd;
219                 rcd->cnt = 1;
220                 rcd->ctxt = ctxt;
221                 dd->rcd[ctxt] = rcd;
222                 rcd->numa_id = numa_node_id();
223                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
224
225                 spin_lock_init(&rcd->exp_lock);
226
227                 /*
228                  * Calculate the context's RcvArray entry starting point.
229                  * We do this here because we have to take into account all
230                  * the RcvArray entries that previous context would have
231                  * taken and we have to account for any extra groups
232                  * assigned to the kernel or user contexts.
233                  */
234                 if (ctxt < dd->first_user_ctxt) {
235                         if (ctxt < kctxt_ngroups) {
236                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
237                                 rcd->rcv_array_groups++;
238                         } else
239                                 base = kctxt_ngroups +
240                                         (ctxt * dd->rcv_entries.ngroups);
241                 } else {
242                         u16 ct = ctxt - dd->first_user_ctxt;
243
244                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
245                                 kctxt_ngroups);
246                         if (ct < dd->rcv_entries.nctxt_extra) {
247                                 base += ct * (dd->rcv_entries.ngroups + 1);
248                                 rcd->rcv_array_groups++;
249                         } else
250                                 base += dd->rcv_entries.nctxt_extra +
251                                         (ct * dd->rcv_entries.ngroups);
252                 }
253                 rcd->eager_base = base * dd->rcv_entries.group_size;
254
255                 /* Validate and initialize Rcv Hdr Q variables */
256                 if (rcvhdrcnt % HDRQ_INCREMENT) {
257                         dd_dev_err(dd,
258                                    "ctxt%u: header queue count %d must be divisible by %d\n",
259                                    rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
260                         goto bail;
261                 }
262                 rcd->rcvhdrq_cnt = rcvhdrcnt;
263                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
264                 /*
265                  * Simple Eager buffer allocation: we have already pre-allocated
266                  * the number of RcvArray entry groups. Each ctxtdata structure
267                  * holds the number of groups for that context.
268                  *
269                  * To follow CSR requirements and maintain cacheline alignment,
270                  * make sure all sizes and bases are multiples of group_size.
271                  *
272                  * The expected entry count is what is left after assigning
273                  * eager.
274                  */
275                 max_entries = rcd->rcv_array_groups *
276                         dd->rcv_entries.group_size;
277                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
278                 rcd->egrbufs.count = round_down(rcvtids,
279                                                 dd->rcv_entries.group_size);
280                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
281                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
282                                    rcd->ctxt);
283                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
284                 }
285                 dd_dev_info(dd, "ctxt%u: max Eager buffer RcvArray entries: %u\n",
286                             rcd->ctxt, rcd->egrbufs.count);
287
288                 /*
289                  * Allocate array that will hold the eager buffer accounting
290                  * data.
291                  * This will allocate the maximum possible buffer count based
292                  * on the value of the RcvArray split parameter.
293                  * The resulting value will be rounded down to the closest
294                  * multiple of dd->rcv_entries.group_size.
295                  */
296                 rcd->egrbufs.buffers = kzalloc(sizeof(*rcd->egrbufs.buffers) *
297                                                rcd->egrbufs.count, GFP_KERNEL);
298                 if (!rcd->egrbufs.buffers)
299                         goto bail;
300                 rcd->egrbufs.rcvtids = kzalloc(sizeof(*rcd->egrbufs.rcvtids) *
301                                                rcd->egrbufs.count, GFP_KERNEL);
302                 if (!rcd->egrbufs.rcvtids)
303                         goto bail;
304                 rcd->egrbufs.size = eager_buffer_size;
305                 /*
306                  * The size of the buffers programmed into the RcvArray
307                  * entries needs to be big enough to handle the highest
308                  * MTU supported.
309                  */
310                 if (rcd->egrbufs.size < hfi1_max_mtu) {
311                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
312                         dd_dev_info(dd,
313                                     "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
314                                     rcd->ctxt, rcd->egrbufs.size);
315                 }
316                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
317
318                 if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
319                         rcd->opstats = kzalloc(sizeof(*rcd->opstats),
320                                 GFP_KERNEL);
321                         if (!rcd->opstats) {
322                                 dd_dev_err(dd,
323                                            "ctxt%u: Unable to allocate per ctxt stats buffer\n",
324                                            rcd->ctxt);
325                                 goto bail;
326                         }
327                 }
328         }
329         return rcd;
330 bail:
331         kfree(rcd->opstats);
332         kfree(rcd->egrbufs.rcvtids);
333         kfree(rcd->egrbufs.buffers);
334         kfree(rcd);
335         return NULL;
336 }
337
338 /*
339  * Convert a receive header entry size that to the encoding used in the CSR.
340  *
341  * Return a zero if the given size is invalid.
342  */
343 static inline u64 encode_rcv_header_entry_size(u16 size)
344 {
345         /* there are only 3 valid receive header entry sizes */
346         if (size == 2)
347                 return 1;
348         if (size == 16)
349                 return 2;
350         else if (size == 32)
351                 return 4;
352         return 0; /* invalid */
353 }
354
355 /*
356  * Select the largest ccti value over all SLs to determine the intra-
357  * packet gap for the link.
358  *
359  * called with cca_timer_lock held (to protect access to cca_timer
360  * array), and rcu_read_lock() (to protect access to cc_state).
361  */
362 void set_link_ipg(struct hfi1_pportdata *ppd)
363 {
364         struct hfi1_devdata *dd = ppd->dd;
365         struct cc_state *cc_state;
366         int i;
367         u16 cce, ccti_limit, max_ccti = 0;
368         u16 shift, mult;
369         u64 src;
370         u32 current_egress_rate; /* Mbits /sec */
371         u32 max_pkt_time;
372         /*
373          * max_pkt_time is the maximum packet egress time in units
374          * of the fabric clock period 1/(805 MHz).
375          */
376
377         cc_state = get_cc_state(ppd);
378
379         if (cc_state == NULL)
380                 /*
381                  * This should _never_ happen - rcu_read_lock() is held,
382                  * and set_link_ipg() should not be called if cc_state
383                  * is NULL.
384                  */
385                 return;
386
387         for (i = 0; i < OPA_MAX_SLS; i++) {
388                 u16 ccti = ppd->cca_timer[i].ccti;
389
390                 if (ccti > max_ccti)
391                         max_ccti = ccti;
392         }
393
394         ccti_limit = cc_state->cct.ccti_limit;
395         if (max_ccti > ccti_limit)
396                 max_ccti = ccti_limit;
397
398         cce = cc_state->cct.entries[max_ccti].entry;
399         shift = (cce & 0xc000) >> 14;
400         mult = (cce & 0x3fff);
401
402         current_egress_rate = active_egress_rate(ppd);
403
404         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
405
406         src = (max_pkt_time >> shift) * mult;
407
408         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
409         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
410
411         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
412 }
413
414 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
415 {
416         struct cca_timer *cca_timer;
417         struct hfi1_pportdata *ppd;
418         int sl;
419         u16 ccti, ccti_timer, ccti_min;
420         struct cc_state *cc_state;
421
422         cca_timer = container_of(t, struct cca_timer, hrtimer);
423         ppd = cca_timer->ppd;
424         sl = cca_timer->sl;
425
426         rcu_read_lock();
427
428         cc_state = get_cc_state(ppd);
429
430         if (cc_state == NULL) {
431                 rcu_read_unlock();
432                 return HRTIMER_NORESTART;
433         }
434
435         /*
436          * 1) decrement ccti for SL
437          * 2) calculate IPG for link (set_link_ipg())
438          * 3) restart timer, unless ccti is at min value
439          */
440
441         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
442         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
443
444         spin_lock(&ppd->cca_timer_lock);
445
446         ccti = cca_timer->ccti;
447
448         if (ccti > ccti_min) {
449                 cca_timer->ccti--;
450                 set_link_ipg(ppd);
451         }
452
453         spin_unlock(&ppd->cca_timer_lock);
454
455         rcu_read_unlock();
456
457         if (ccti > ccti_min) {
458                 unsigned long nsec = 1024 * ccti_timer;
459                 /* ccti_timer is in units of 1.024 usec */
460                 hrtimer_forward_now(t, ns_to_ktime(nsec));
461                 return HRTIMER_RESTART;
462         }
463         return HRTIMER_NORESTART;
464 }
465
466 /*
467  * Common code for initializing the physical port structure.
468  */
469 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
470                          struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
471 {
472         int i, size;
473         uint default_pkey_idx;
474
475         ppd->dd = dd;
476         ppd->hw_pidx = hw_pidx;
477         ppd->port = port; /* IB port number, not index */
478
479         default_pkey_idx = 1;
480
481         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
482         if (loopback) {
483                 hfi1_early_err(&pdev->dev,
484                                "Faking data partition 0x8001 in idx %u\n",
485                                !default_pkey_idx);
486                 ppd->pkeys[!default_pkey_idx] = 0x8001;
487         }
488
489         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
490         INIT_WORK(&ppd->link_up_work, handle_link_up);
491         INIT_WORK(&ppd->link_down_work, handle_link_down);
492         INIT_WORK(&ppd->freeze_work, handle_freeze);
493         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
494         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
495         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
496         mutex_init(&ppd->hls_lock);
497         spin_lock_init(&ppd->sdma_alllock);
498         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
499
500         ppd->sm_trap_qp = 0x0;
501         ppd->sa_qp = 0x1;
502
503         ppd->hfi1_wq = NULL;
504
505         spin_lock_init(&ppd->cca_timer_lock);
506
507         for (i = 0; i < OPA_MAX_SLS; i++) {
508                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
509                              HRTIMER_MODE_REL);
510                 ppd->cca_timer[i].ppd = ppd;
511                 ppd->cca_timer[i].sl = i;
512                 ppd->cca_timer[i].ccti = 0;
513                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
514         }
515
516         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
517
518         spin_lock_init(&ppd->cc_state_lock);
519         spin_lock_init(&ppd->cc_log_lock);
520         size = sizeof(struct cc_state);
521         RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
522         if (!rcu_dereference(ppd->cc_state))
523                 goto bail;
524         return;
525
526 bail:
527
528         hfi1_early_err(&pdev->dev,
529                        "Congestion Control Agent disabled for port %d\n", port);
530 }
531
532 /*
533  * Do initialization for device that is only needed on
534  * first detect, not on resets.
535  */
536 static int loadtime_init(struct hfi1_devdata *dd)
537 {
538         return 0;
539 }
540
541 /**
542  * init_after_reset - re-initialize after a reset
543  * @dd: the hfi1_ib device
544  *
545  * sanity check at least some of the values after reset, and
546  * ensure no receive or transmit (explicitly, in case reset
547  * failed
548  */
549 static int init_after_reset(struct hfi1_devdata *dd)
550 {
551         int i;
552
553         /*
554          * Ensure chip does no sends or receives, tail updates, or
555          * pioavail updates while we re-initialize.  This is mostly
556          * for the driver data structures, not chip registers.
557          */
558         for (i = 0; i < dd->num_rcv_contexts; i++)
559                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
560                                   HFI1_RCVCTRL_INTRAVAIL_DIS |
561                                   HFI1_RCVCTRL_TAILUPD_DIS, i);
562         pio_send_control(dd, PSC_GLOBAL_DISABLE);
563         for (i = 0; i < dd->num_send_contexts; i++)
564                 sc_disable(dd->send_contexts[i].sc);
565
566         return 0;
567 }
568
569 static void enable_chip(struct hfi1_devdata *dd)
570 {
571         u32 rcvmask;
572         u32 i;
573
574         /* enable PIO send */
575         pio_send_control(dd, PSC_GLOBAL_ENABLE);
576
577         /*
578          * Enable kernel ctxts' receive and receive interrupt.
579          * Other ctxts done as user opens and initializes them.
580          */
581         rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
582         for (i = 0; i < dd->first_user_ctxt; ++i) {
583                 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
584                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
585                 if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
586                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
587                 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
588                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
589                 if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
590                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
591                 hfi1_rcvctrl(dd, rcvmask, i);
592                 sc_enable(dd->rcd[i]->sc);
593         }
594 }
595
596 /**
597  * create_workqueues - create per port workqueues
598  * @dd: the hfi1_ib device
599  */
600 static int create_workqueues(struct hfi1_devdata *dd)
601 {
602         int pidx;
603         struct hfi1_pportdata *ppd;
604
605         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
606                 ppd = dd->pport + pidx;
607                 if (!ppd->hfi1_wq) {
608                         char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
609
610                         snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
611                                  dd->unit, pidx);
612                         ppd->hfi1_wq =
613                                 create_singlethread_workqueue(wq_name);
614                         if (!ppd->hfi1_wq)
615                                 goto wq_error;
616                 }
617         }
618         return 0;
619 wq_error:
620         pr_err("create_singlethread_workqueue failed for port %d\n",
621                 pidx + 1);
622         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
623                 ppd = dd->pport + pidx;
624                 if (ppd->hfi1_wq) {
625                         destroy_workqueue(ppd->hfi1_wq);
626                         ppd->hfi1_wq = NULL;
627                 }
628         }
629         return -ENOMEM;
630 }
631
632 /**
633  * hfi1_init - do the actual initialization sequence on the chip
634  * @dd: the hfi1_ib device
635  * @reinit: re-initializing, so don't allocate new memory
636  *
637  * Do the actual initialization sequence on the chip.  This is done
638  * both from the init routine called from the PCI infrastructure, and
639  * when we reset the chip, or detect that it was reset internally,
640  * or it's administratively re-enabled.
641  *
642  * Memory allocation here and in called routines is only done in
643  * the first case (reinit == 0).  We have to be careful, because even
644  * without memory allocation, we need to re-write all the chip registers
645  * TIDs, etc. after the reset or enable has completed.
646  */
647 int hfi1_init(struct hfi1_devdata *dd, int reinit)
648 {
649         int ret = 0, pidx, lastfail = 0;
650         unsigned i, len;
651         struct hfi1_ctxtdata *rcd;
652         struct hfi1_pportdata *ppd;
653
654         /* Set up recv low level handlers */
655         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
656                                                 kdeth_process_expected;
657         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
658                                                 kdeth_process_eager;
659         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
660         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
661                                                 process_receive_error;
662         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
663                                                 process_receive_bypass;
664         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
665                                                 process_receive_invalid;
666         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
667                                                 process_receive_invalid;
668         dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
669                                                 process_receive_invalid;
670         dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
671
672         /* Set up send low level handlers */
673         dd->process_pio_send = hfi1_verbs_send_pio;
674         dd->process_dma_send = hfi1_verbs_send_dma;
675         dd->pio_inline_send = pio_copy;
676
677         if (is_a0(dd)) {
678                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
679                 dd->do_drop = 1;
680         } else {
681                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
682                 dd->do_drop = 0;
683         }
684
685         /* make sure the link is not "up" */
686         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
687                 ppd = dd->pport + pidx;
688                 ppd->linkup = 0;
689         }
690
691         if (reinit)
692                 ret = init_after_reset(dd);
693         else
694                 ret = loadtime_init(dd);
695         if (ret)
696                 goto done;
697
698         /* dd->rcd can be NULL if early initialization failed */
699         for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
700                 /*
701                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
702                  * re-init, the simplest way to handle this is to free
703                  * existing, and re-allocate.
704                  * Need to re-create rest of ctxt 0 ctxtdata as well.
705                  */
706                 rcd = dd->rcd[i];
707                 if (!rcd)
708                         continue;
709
710                 rcd->do_interrupt = &handle_receive_interrupt;
711
712                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
713                 if (!lastfail)
714                         lastfail = hfi1_setup_eagerbufs(rcd);
715                 if (lastfail)
716                         dd_dev_err(dd,
717                                 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
718         }
719         if (lastfail)
720                 ret = lastfail;
721
722         /* Allocate enough memory for user event notification. */
723         len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
724                     sizeof(*dd->events), PAGE_SIZE);
725         dd->events = vmalloc_user(len);
726         if (!dd->events)
727                 dd_dev_err(dd, "Failed to allocate user events page\n");
728         /*
729          * Allocate a page for device and port status.
730          * Page will be shared amongst all user processes.
731          */
732         dd->status = vmalloc_user(PAGE_SIZE);
733         if (!dd->status)
734                 dd_dev_err(dd, "Failed to allocate dev status page\n");
735         else
736                 dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
737                                              sizeof(dd->status->freezemsg));
738         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
739                 ppd = dd->pport + pidx;
740                 if (dd->status)
741                         /* Currently, we only have one port */
742                         ppd->statusp = &dd->status->port;
743
744                 set_mtu(ppd);
745         }
746
747         /* enable chip even if we have an error, so we can debug cause */
748         enable_chip(dd);
749
750         ret = hfi1_cq_init(dd);
751 done:
752         /*
753          * Set status even if port serdes is not initialized
754          * so that diags will work.
755          */
756         if (dd->status)
757                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
758                         HFI1_STATUS_INITTED;
759         if (!ret) {
760                 /* enable all interrupts from the chip */
761                 set_intr_state(dd, 1);
762
763                 /* chip is OK for user apps; mark it as initialized */
764                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
765                         ppd = dd->pport + pidx;
766
767                         /* initialize the qsfp if it exists
768                          * Requires interrupts to be enabled so we are notified
769                          * when the QSFP completes reset, and has
770                          * to be done before bringing up the SERDES
771                          */
772                         init_qsfp(ppd);
773
774                         /* start the serdes - must be after interrupts are
775                            enabled so we are notified when the link goes up */
776                         lastfail = bringup_serdes(ppd);
777                         if (lastfail)
778                                 dd_dev_info(dd,
779                                         "Failed to bring up port %u\n",
780                                         ppd->port);
781
782                         /*
783                          * Set status even if port serdes is not initialized
784                          * so that diags will work.
785                          */
786                         if (ppd->statusp)
787                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
788                                                         HFI1_STATUS_INITTED;
789                         if (!ppd->link_speed_enabled)
790                                 continue;
791                 }
792         }
793
794         /* if ret is non-zero, we probably should do some cleanup here... */
795         return ret;
796 }
797
798 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
799 {
800         return idr_find(&hfi1_unit_table, unit);
801 }
802
803 struct hfi1_devdata *hfi1_lookup(int unit)
804 {
805         struct hfi1_devdata *dd;
806         unsigned long flags;
807
808         spin_lock_irqsave(&hfi1_devs_lock, flags);
809         dd = __hfi1_lookup(unit);
810         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
811
812         return dd;
813 }
814
815 /*
816  * Stop the timers during unit shutdown, or after an error late
817  * in initialization.
818  */
819 static void stop_timers(struct hfi1_devdata *dd)
820 {
821         struct hfi1_pportdata *ppd;
822         int pidx;
823
824         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
825                 ppd = dd->pport + pidx;
826                 if (ppd->led_override_timer.data) {
827                         del_timer_sync(&ppd->led_override_timer);
828                         atomic_set(&ppd->led_override_timer_active, 0);
829                 }
830         }
831 }
832
833 /**
834  * shutdown_device - shut down a device
835  * @dd: the hfi1_ib device
836  *
837  * This is called to make the device quiet when we are about to
838  * unload the driver, and also when the device is administratively
839  * disabled.   It does not free any data structures.
840  * Everything it does has to be setup again by hfi1_init(dd, 1)
841  */
842 static void shutdown_device(struct hfi1_devdata *dd)
843 {
844         struct hfi1_pportdata *ppd;
845         unsigned pidx;
846         int i;
847
848         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
849                 ppd = dd->pport + pidx;
850
851                 ppd->linkup = 0;
852                 if (ppd->statusp)
853                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
854                                            HFI1_STATUS_IB_READY);
855         }
856         dd->flags &= ~HFI1_INITTED;
857
858         /* mask interrupts, but not errors */
859         set_intr_state(dd, 0);
860
861         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
862                 ppd = dd->pport + pidx;
863                 for (i = 0; i < dd->num_rcv_contexts; i++)
864                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
865                                           HFI1_RCVCTRL_CTXT_DIS |
866                                           HFI1_RCVCTRL_INTRAVAIL_DIS |
867                                           HFI1_RCVCTRL_PKEY_DIS |
868                                           HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
869                 /*
870                  * Gracefully stop all sends allowing any in progress to
871                  * trickle out first.
872                  */
873                 for (i = 0; i < dd->num_send_contexts; i++)
874                         sc_flush(dd->send_contexts[i].sc);
875         }
876
877         /*
878          * Enough for anything that's going to trickle out to have actually
879          * done so.
880          */
881         udelay(20);
882
883         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
884                 ppd = dd->pport + pidx;
885
886                 /* disable all contexts */
887                 for (i = 0; i < dd->num_send_contexts; i++)
888                         sc_disable(dd->send_contexts[i].sc);
889                 /* disable the send device */
890                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
891
892                 /*
893                  * Clear SerdesEnable.
894                  * We can't count on interrupts since we are stopping.
895                  */
896                 hfi1_quiet_serdes(ppd);
897
898                 if (ppd->hfi1_wq) {
899                         destroy_workqueue(ppd->hfi1_wq);
900                         ppd->hfi1_wq = NULL;
901                 }
902         }
903         sdma_exit(dd);
904 }
905
906 /**
907  * hfi1_free_ctxtdata - free a context's allocated data
908  * @dd: the hfi1_ib device
909  * @rcd: the ctxtdata structure
910  *
911  * free up any allocated data for a context
912  * This should not touch anything that would affect a simultaneous
913  * re-allocation of context data, because it is called after hfi1_mutex
914  * is released (and can be called from reinit as well).
915  * It should never change any chip state, or global driver state.
916  */
917 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
918 {
919         unsigned e;
920
921         if (!rcd)
922                 return;
923
924         if (rcd->rcvhdrq) {
925                 dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
926                                   rcd->rcvhdrq, rcd->rcvhdrq_phys);
927                 rcd->rcvhdrq = NULL;
928                 if (rcd->rcvhdrtail_kvaddr) {
929                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
930                                           (void *)rcd->rcvhdrtail_kvaddr,
931                                           rcd->rcvhdrqtailaddr_phys);
932                         rcd->rcvhdrtail_kvaddr = NULL;
933                 }
934         }
935
936         /* all the RcvArray entries should have been cleared by now */
937         kfree(rcd->egrbufs.rcvtids);
938
939         for (e = 0; e < rcd->egrbufs.alloced; e++) {
940                 if (rcd->egrbufs.buffers[e].phys)
941                         dma_free_coherent(&dd->pcidev->dev,
942                                           rcd->egrbufs.buffers[e].len,
943                                           rcd->egrbufs.buffers[e].addr,
944                                           rcd->egrbufs.buffers[e].phys);
945         }
946         kfree(rcd->egrbufs.buffers);
947
948         sc_free(rcd->sc);
949         vfree(rcd->physshadow);
950         vfree(rcd->tid_pg_list);
951         vfree(rcd->user_event_mask);
952         vfree(rcd->subctxt_uregbase);
953         vfree(rcd->subctxt_rcvegrbuf);
954         vfree(rcd->subctxt_rcvhdr_base);
955         kfree(rcd->tidusemap);
956         kfree(rcd->opstats);
957         kfree(rcd);
958 }
959
960 void hfi1_free_devdata(struct hfi1_devdata *dd)
961 {
962         unsigned long flags;
963
964         spin_lock_irqsave(&hfi1_devs_lock, flags);
965         idr_remove(&hfi1_unit_table, dd->unit);
966         list_del(&dd->list);
967         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
968         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
969         rcu_barrier(); /* wait for rcu callbacks to complete */
970         free_percpu(dd->int_counter);
971         free_percpu(dd->rcv_limit);
972         ib_dealloc_device(&dd->verbs_dev.ibdev);
973 }
974
975 /*
976  * Allocate our primary per-unit data structure.  Must be done via verbs
977  * allocator, because the verbs cleanup process both does cleanup and
978  * free of the data structure.
979  * "extra" is for chip-specific data.
980  *
981  * Use the idr mechanism to get a unit number for this unit.
982  */
983 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
984 {
985         unsigned long flags;
986         struct hfi1_devdata *dd;
987         int ret;
988
989         dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
990         if (!dd)
991                 return ERR_PTR(-ENOMEM);
992         /* extra is * number of ports */
993         dd->num_pports = extra / sizeof(struct hfi1_pportdata);
994         dd->pport = (struct hfi1_pportdata *)(dd + 1);
995
996         INIT_LIST_HEAD(&dd->list);
997         dd->node = dev_to_node(&pdev->dev);
998         if (dd->node < 0)
999                 dd->node = 0;
1000         idr_preload(GFP_KERNEL);
1001         spin_lock_irqsave(&hfi1_devs_lock, flags);
1002
1003         ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1004         if (ret >= 0) {
1005                 dd->unit = ret;
1006                 list_add(&dd->list, &hfi1_dev_list);
1007         }
1008
1009         spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1010         idr_preload_end();
1011
1012         if (ret < 0) {
1013                 hfi1_early_err(&pdev->dev,
1014                                "Could not allocate unit ID: error %d\n", -ret);
1015                 goto bail;
1016         }
1017         /*
1018          * Initialize all locks for the device. This needs to be as early as
1019          * possible so locks are usable.
1020          */
1021         spin_lock_init(&dd->sc_lock);
1022         spin_lock_init(&dd->sendctrl_lock);
1023         spin_lock_init(&dd->rcvctrl_lock);
1024         spin_lock_init(&dd->uctxt_lock);
1025         spin_lock_init(&dd->hfi1_diag_trans_lock);
1026         spin_lock_init(&dd->sc_init_lock);
1027         spin_lock_init(&dd->dc8051_lock);
1028         spin_lock_init(&dd->dc8051_memlock);
1029         mutex_init(&dd->qsfp_i2c_mutex);
1030         seqlock_init(&dd->sc2vl_lock);
1031         spin_lock_init(&dd->sde_map_lock);
1032         init_waitqueue_head(&dd->event_queue);
1033
1034         dd->int_counter = alloc_percpu(u64);
1035         if (!dd->int_counter) {
1036                 ret = -ENOMEM;
1037                 hfi1_early_err(&pdev->dev,
1038                                "Could not allocate per-cpu int_counter\n");
1039                 goto bail;
1040         }
1041
1042         dd->rcv_limit = alloc_percpu(u64);
1043         if (!dd->rcv_limit) {
1044                 ret = -ENOMEM;
1045                 hfi1_early_err(&pdev->dev,
1046                                "Could not allocate per-cpu rcv_limit\n");
1047                 goto bail;
1048         }
1049
1050         if (!hfi1_cpulist_count) {
1051                 u32 count = num_online_cpus();
1052
1053                 hfi1_cpulist = kzalloc(BITS_TO_LONGS(count) *
1054                                       sizeof(long), GFP_KERNEL);
1055                 if (hfi1_cpulist)
1056                         hfi1_cpulist_count = count;
1057                 else
1058                         hfi1_early_err(
1059                         &pdev->dev,
1060                         "Could not alloc cpulist info, cpu affinity might be wrong\n");
1061         }
1062         hfi1_dbg_ibdev_init(&dd->verbs_dev);
1063         return dd;
1064
1065 bail:
1066         if (!list_empty(&dd->list))
1067                 list_del_init(&dd->list);
1068         ib_dealloc_device(&dd->verbs_dev.ibdev);
1069         return ERR_PTR(ret);
1070 }
1071
1072 /*
1073  * Called from freeze mode handlers, and from PCI error
1074  * reporting code.  Should be paranoid about state of
1075  * system and data structures.
1076  */
1077 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1078 {
1079         if (dd->flags & HFI1_INITTED) {
1080                 u32 pidx;
1081
1082                 dd->flags &= ~HFI1_INITTED;
1083                 if (dd->pport)
1084                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1085                                 struct hfi1_pportdata *ppd;
1086
1087                                 ppd = dd->pport + pidx;
1088                                 if (dd->flags & HFI1_PRESENT)
1089                                         set_link_state(ppd, HLS_DN_DISABLE);
1090
1091                                 if (ppd->statusp)
1092                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1093                         }
1094         }
1095
1096         /*
1097          * Mark as having had an error for driver, and also
1098          * for /sys and status word mapped to user programs.
1099          * This marks unit as not usable, until reset.
1100          */
1101         if (dd->status)
1102                 dd->status->dev |= HFI1_STATUS_HWERROR;
1103 }
1104
1105 static void remove_one(struct pci_dev *);
1106 static int init_one(struct pci_dev *, const struct pci_device_id *);
1107
1108 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1109 #define PFX DRIVER_NAME ": "
1110
1111 static const struct pci_device_id hfi1_pci_tbl[] = {
1112         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1113         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1114         { 0, }
1115 };
1116
1117 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1118
1119 static struct pci_driver hfi1_pci_driver = {
1120         .name = DRIVER_NAME,
1121         .probe = init_one,
1122         .remove = remove_one,
1123         .id_table = hfi1_pci_tbl,
1124         .err_handler = &hfi1_pci_err_handler,
1125 };
1126
1127 static void __init compute_krcvqs(void)
1128 {
1129         int i;
1130
1131         for (i = 0; i < krcvqsset; i++)
1132                 n_krcvqs += krcvqs[i];
1133 }
1134
1135 /*
1136  * Do all the generic driver unit- and chip-independent memory
1137  * allocation and initialization.
1138  */
1139 static int __init hfi1_mod_init(void)
1140 {
1141         int ret;
1142
1143         ret = dev_init();
1144         if (ret)
1145                 goto bail;
1146
1147         /* validate max MTU before any devices start */
1148         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1149                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1150                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1151                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1152         }
1153         /* valid CUs run from 1-128 in powers of 2 */
1154         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1155                 hfi1_cu = 1;
1156         /* valid credit return threshold is 0-100, variable is unsigned */
1157         if (user_credit_return_threshold > 100)
1158                 user_credit_return_threshold = 100;
1159
1160         compute_krcvqs();
1161         /* sanitize receive interrupt count, time must wait until after
1162            the hardware type is known */
1163         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1164                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1165         /* reject invalid combinations */
1166         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1167                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1168                 rcv_intr_count = 1;
1169         }
1170         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1171                 /*
1172                  * Avoid indefinite packet delivery by requiring a timeout
1173                  * if count is > 1.
1174                  */
1175                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1176                 rcv_intr_timeout = 1;
1177         }
1178         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1179                 /*
1180                  * The dynamic algorithm expects a non-zero timeout
1181                  * and a count > 1.
1182                  */
1183                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1184                 rcv_intr_dynamic = 0;
1185         }
1186
1187         /* sanitize link CRC options */
1188         link_crc_mask &= SUPPORTED_CRCS;
1189
1190         /*
1191          * These must be called before the driver is registered with
1192          * the PCI subsystem.
1193          */
1194         idr_init(&hfi1_unit_table);
1195
1196         hfi1_dbg_init();
1197         ret = pci_register_driver(&hfi1_pci_driver);
1198         if (ret < 0) {
1199                 pr_err("Unable to register driver: error %d\n", -ret);
1200                 goto bail_dev;
1201         }
1202         goto bail; /* all OK */
1203
1204 bail_dev:
1205         hfi1_dbg_exit();
1206         idr_destroy(&hfi1_unit_table);
1207         dev_cleanup();
1208 bail:
1209         return ret;
1210 }
1211
1212 module_init(hfi1_mod_init);
1213
1214 /*
1215  * Do the non-unit driver cleanup, memory free, etc. at unload.
1216  */
1217 static void __exit hfi1_mod_cleanup(void)
1218 {
1219         pci_unregister_driver(&hfi1_pci_driver);
1220         hfi1_dbg_exit();
1221         hfi1_cpulist_count = 0;
1222         kfree(hfi1_cpulist);
1223
1224         idr_destroy(&hfi1_unit_table);
1225         dispose_firmware();     /* asymmetric with obtain_firmware() */
1226         dev_cleanup();
1227 }
1228
1229 module_exit(hfi1_mod_cleanup);
1230
1231 /* this can only be called after a successful initialization */
1232 static void cleanup_device_data(struct hfi1_devdata *dd)
1233 {
1234         int ctxt;
1235         int pidx;
1236         struct hfi1_ctxtdata **tmp;
1237         unsigned long flags;
1238
1239         /* users can't do anything more with chip */
1240         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1241                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1242                 struct cc_state *cc_state;
1243                 int i;
1244
1245                 if (ppd->statusp)
1246                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1247
1248                 for (i = 0; i < OPA_MAX_SLS; i++)
1249                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1250
1251                 spin_lock(&ppd->cc_state_lock);
1252                 cc_state = get_cc_state(ppd);
1253                 rcu_assign_pointer(ppd->cc_state, NULL);
1254                 spin_unlock(&ppd->cc_state_lock);
1255
1256                 if (cc_state)
1257                         call_rcu(&cc_state->rcu, cc_state_reclaim);
1258         }
1259
1260         free_credit_return(dd);
1261
1262         /*
1263          * Free any resources still in use (usually just kernel contexts)
1264          * at unload; we do for ctxtcnt, because that's what we allocate.
1265          * We acquire lock to be really paranoid that rcd isn't being
1266          * accessed from some interrupt-related code (that should not happen,
1267          * but best to be sure).
1268          */
1269         spin_lock_irqsave(&dd->uctxt_lock, flags);
1270         tmp = dd->rcd;
1271         dd->rcd = NULL;
1272         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1273         for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1274                 struct hfi1_ctxtdata *rcd = tmp[ctxt];
1275
1276                 tmp[ctxt] = NULL; /* debugging paranoia */
1277                 if (rcd) {
1278                         hfi1_clear_tids(rcd);
1279                         hfi1_free_ctxtdata(dd, rcd);
1280                 }
1281         }
1282         kfree(tmp);
1283         /* must follow rcv context free - need to remove rcv's hooks */
1284         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1285                 sc_free(dd->send_contexts[ctxt].sc);
1286         dd->num_send_contexts = 0;
1287         kfree(dd->send_contexts);
1288         dd->send_contexts = NULL;
1289         kfree(dd->boardname);
1290         vfree(dd->events);
1291         vfree(dd->status);
1292         hfi1_cq_exit(dd);
1293 }
1294
1295 /*
1296  * Clean up on unit shutdown, or error during unit load after
1297  * successful initialization.
1298  */
1299 static void postinit_cleanup(struct hfi1_devdata *dd)
1300 {
1301         hfi1_start_cleanup(dd);
1302
1303         hfi1_pcie_ddcleanup(dd);
1304         hfi1_pcie_cleanup(dd->pcidev);
1305
1306         cleanup_device_data(dd);
1307
1308         hfi1_free_devdata(dd);
1309 }
1310
1311 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1312 {
1313         int ret = 0, j, pidx, initfail;
1314         struct hfi1_devdata *dd = NULL;
1315
1316         /* First, lock the non-writable module parameters */
1317         HFI1_CAP_LOCK();
1318
1319         /* Validate some global module parameters */
1320         if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1321                 hfi1_early_err(&pdev->dev, "Header queue  count too small\n");
1322                 ret = -EINVAL;
1323                 goto bail;
1324         }
1325         /* use the encoding function as a sanitization check */
1326         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1327                 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1328                                hfi1_hdrq_entsize);
1329                 goto bail;
1330         }
1331
1332         /* The receive eager buffer size must be set before the receive
1333          * contexts are created.
1334          *
1335          * Set the eager buffer size.  Validate that it falls in a range
1336          * allowed by the hardware - all powers of 2 between the min and
1337          * max.  The maximum valid MTU is within the eager buffer range
1338          * so we do not need to cap the max_mtu by an eager buffer size
1339          * setting.
1340          */
1341         if (eager_buffer_size) {
1342                 if (!is_power_of_2(eager_buffer_size))
1343                         eager_buffer_size =
1344                                 roundup_pow_of_two(eager_buffer_size);
1345                 eager_buffer_size =
1346                         clamp_val(eager_buffer_size,
1347                                   MIN_EAGER_BUFFER * 8,
1348                                   MAX_EAGER_BUFFER_TOTAL);
1349                 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1350                                 eager_buffer_size);
1351         } else {
1352                 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1353                 ret = -EINVAL;
1354                 goto bail;
1355         }
1356
1357         /* restrict value of hfi1_rcvarr_split */
1358         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1359
1360         ret = hfi1_pcie_init(pdev, ent);
1361         if (ret)
1362                 goto bail;
1363
1364         /*
1365          * Do device-specific initialization, function table setup, dd
1366          * allocation, etc.
1367          */
1368         switch (ent->device) {
1369         case PCI_DEVICE_ID_INTEL0:
1370         case PCI_DEVICE_ID_INTEL1:
1371                 dd = hfi1_init_dd(pdev, ent);
1372                 break;
1373         default:
1374                 hfi1_early_err(&pdev->dev,
1375                                "Failing on unknown Intel deviceid 0x%x\n",
1376                                ent->device);
1377                 ret = -ENODEV;
1378         }
1379
1380         if (IS_ERR(dd))
1381                 ret = PTR_ERR(dd);
1382         if (ret)
1383                 goto clean_bail; /* error already printed */
1384
1385         ret = create_workqueues(dd);
1386         if (ret)
1387                 goto clean_bail;
1388
1389         /* do the generic initialization */
1390         initfail = hfi1_init(dd, 0);
1391
1392         ret = hfi1_register_ib_device(dd);
1393
1394         /*
1395          * Now ready for use.  this should be cleared whenever we
1396          * detect a reset, or initiate one.  If earlier failure,
1397          * we still create devices, so diags, etc. can be used
1398          * to determine cause of problem.
1399          */
1400         if (!initfail && !ret)
1401                 dd->flags |= HFI1_INITTED;
1402
1403         j = hfi1_device_create(dd);
1404         if (j)
1405                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1406
1407         if (initfail || ret) {
1408                 stop_timers(dd);
1409                 flush_workqueue(ib_wq);
1410                 for (pidx = 0; pidx < dd->num_pports; ++pidx)
1411                         hfi1_quiet_serdes(dd->pport + pidx);
1412                 if (!j)
1413                         hfi1_device_remove(dd);
1414                 if (!ret)
1415                         hfi1_unregister_ib_device(dd);
1416                 postinit_cleanup(dd);
1417                 if (initfail)
1418                         ret = initfail;
1419                 goto bail;      /* everything already cleaned */
1420         }
1421
1422         sdma_start(dd);
1423
1424         return 0;
1425
1426 clean_bail:
1427         hfi1_pcie_cleanup(pdev);
1428 bail:
1429         return ret;
1430 }
1431
1432 static void remove_one(struct pci_dev *pdev)
1433 {
1434         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1435
1436         /* unregister from IB core */
1437         hfi1_unregister_ib_device(dd);
1438
1439         /*
1440          * Disable the IB link, disable interrupts on the device,
1441          * clear dma engines, etc.
1442          */
1443         shutdown_device(dd);
1444
1445         stop_timers(dd);
1446
1447         /* wait until all of our (qsfp) queue_work() calls complete */
1448         flush_workqueue(ib_wq);
1449
1450         hfi1_device_remove(dd);
1451
1452         postinit_cleanup(dd);
1453 }
1454
1455 /**
1456  * hfi1_create_rcvhdrq - create a receive header queue
1457  * @dd: the hfi1_ib device
1458  * @rcd: the context data
1459  *
1460  * This must be contiguous memory (from an i/o perspective), and must be
1461  * DMA'able (which means for some systems, it will go through an IOMMU,
1462  * or be forced into a low address range).
1463  */
1464 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1465 {
1466         unsigned amt;
1467         u64 reg;
1468
1469         if (!rcd->rcvhdrq) {
1470                 dma_addr_t phys_hdrqtail;
1471                 gfp_t gfp_flags;
1472
1473                 /*
1474                  * rcvhdrqentsize is in DWs, so we have to convert to bytes
1475                  * (* sizeof(u32)).
1476                  */
1477                 amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1478                             sizeof(u32), PAGE_SIZE);
1479
1480                 gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1481                         GFP_USER : GFP_KERNEL;
1482                 rcd->rcvhdrq = dma_zalloc_coherent(
1483                         &dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1484                         gfp_flags | __GFP_COMP);
1485
1486                 if (!rcd->rcvhdrq) {
1487                         dd_dev_err(dd,
1488                                 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1489                                 amt, rcd->ctxt);
1490                         goto bail;
1491                 }
1492
1493                 /* Event mask is per device now and is in hfi1_devdata */
1494                 /*if (rcd->ctxt >= dd->first_user_ctxt) {
1495                         rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1496                         if (!rcd->user_event_mask)
1497                                 goto bail_free_hdrq;
1498                                 }*/
1499
1500                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1501                         rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1502                                 &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1503                                 gfp_flags);
1504                         if (!rcd->rcvhdrtail_kvaddr)
1505                                 goto bail_free;
1506                         rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1507                 }
1508
1509                 rcd->rcvhdrq_size = amt;
1510         }
1511         /*
1512          * These values are per-context:
1513          *      RcvHdrCnt
1514          *      RcvHdrEntSize
1515          *      RcvHdrSize
1516          */
1517         reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1518                         & RCV_HDR_CNT_CNT_MASK)
1519                 << RCV_HDR_CNT_CNT_SHIFT;
1520         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1521         reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1522                         & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1523                 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1524         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1525         reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1526                 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1527         write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1528         return 0;
1529
1530 bail_free:
1531         dd_dev_err(dd,
1532                 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1533                 rcd->ctxt);
1534         vfree(rcd->user_event_mask);
1535         rcd->user_event_mask = NULL;
1536         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1537                           rcd->rcvhdrq_phys);
1538         rcd->rcvhdrq = NULL;
1539 bail:
1540         return -ENOMEM;
1541 }
1542
1543 /**
1544  * allocate eager buffers, both kernel and user contexts.
1545  * @rcd: the context we are setting up.
1546  *
1547  * Allocate the eager TID buffers and program them into hip.
1548  * They are no longer completely contiguous, we do multiple allocation
1549  * calls.  Otherwise we get the OOM code involved, by asking for too
1550  * much per call, with disastrous results on some kernels.
1551  */
1552 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1553 {
1554         struct hfi1_devdata *dd = rcd->dd;
1555         u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1556         gfp_t gfp_flags;
1557         u16 order;
1558         int ret = 0;
1559         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1560
1561         /*
1562          * GFP_USER, but without GFP_FS, so buffer cache can be
1563          * coalesced (we hope); otherwise, even at order 4,
1564          * heavy filesystem activity makes these fail, and we can
1565          * use compound pages.
1566          */
1567         gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP;
1568
1569         /*
1570          * The minimum size of the eager buffers is a groups of MTU-sized
1571          * buffers.
1572          * The global eager_buffer_size parameter is checked against the
1573          * theoretical lower limit of the value. Here, we check against the
1574          * MTU.
1575          */
1576         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1577                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1578         /*
1579          * If using one-pkt-per-egr-buffer, lower the eager buffer
1580          * size to the max MTU (page-aligned).
1581          */
1582         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1583                 rcd->egrbufs.rcvtid_size = round_mtu;
1584
1585         /*
1586          * Eager buffers sizes of 1MB or less require smaller TID sizes
1587          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1588          */
1589         if (rcd->egrbufs.size <= (1 << 20))
1590                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1591                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1592
1593         while (alloced_bytes < rcd->egrbufs.size &&
1594                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1595                 rcd->egrbufs.buffers[idx].addr =
1596                         dma_zalloc_coherent(&dd->pcidev->dev,
1597                                             rcd->egrbufs.rcvtid_size,
1598                                             &rcd->egrbufs.buffers[idx].phys,
1599                                             gfp_flags);
1600                 if (rcd->egrbufs.buffers[idx].addr) {
1601                         rcd->egrbufs.buffers[idx].len =
1602                                 rcd->egrbufs.rcvtid_size;
1603                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1604                                 rcd->egrbufs.buffers[idx].addr;
1605                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1606                                 rcd->egrbufs.buffers[idx].phys;
1607                         rcd->egrbufs.alloced++;
1608                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1609                         idx++;
1610                 } else {
1611                         u32 new_size, i, j;
1612                         u64 offset = 0;
1613
1614                         /*
1615                          * Fail the eager buffer allocation if:
1616                          *   - we are already using the lowest acceptable size
1617                          *   - we are using one-pkt-per-egr-buffer (this implies
1618                          *     that we are accepting only one size)
1619                          */
1620                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1621                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1622                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1623                                         rcd->ctxt);
1624                                 goto bail_rcvegrbuf_phys;
1625                         }
1626
1627                         new_size = rcd->egrbufs.rcvtid_size / 2;
1628
1629                         /*
1630                          * If the first attempt to allocate memory failed, don't
1631                          * fail everything but continue with the next lower
1632                          * size.
1633                          */
1634                         if (idx == 0) {
1635                                 rcd->egrbufs.rcvtid_size = new_size;
1636                                 continue;
1637                         }
1638
1639                         /*
1640                          * Re-partition already allocated buffers to a smaller
1641                          * size.
1642                          */
1643                         rcd->egrbufs.alloced = 0;
1644                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1645                                 if (i >= rcd->egrbufs.count)
1646                                         break;
1647                                 rcd->egrbufs.rcvtids[i].phys =
1648                                         rcd->egrbufs.buffers[j].phys + offset;
1649                                 rcd->egrbufs.rcvtids[i].addr =
1650                                         rcd->egrbufs.buffers[j].addr + offset;
1651                                 rcd->egrbufs.alloced++;
1652                                 if ((rcd->egrbufs.buffers[j].phys + offset +
1653                                      new_size) ==
1654                                     (rcd->egrbufs.buffers[j].phys +
1655                                      rcd->egrbufs.buffers[j].len)) {
1656                                         j++;
1657                                         offset = 0;
1658                                 } else
1659                                         offset += new_size;
1660                         }
1661                         rcd->egrbufs.rcvtid_size = new_size;
1662                 }
1663         }
1664         rcd->egrbufs.numbufs = idx;
1665         rcd->egrbufs.size = alloced_bytes;
1666
1667         dd_dev_info(dd, "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1668                 rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1669                 rcd->egrbufs.size);
1670
1671         /*
1672          * Set the contexts rcv array head update threshold to the closest
1673          * power of 2 (so we can use a mask instead of modulo) below half
1674          * the allocated entries.
1675          */
1676         rcd->egrbufs.threshold =
1677                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1678         /*
1679          * Compute the expected RcvArray entry base. This is done after
1680          * allocating the eager buffers in order to maximize the
1681          * expected RcvArray entries for the context.
1682          */
1683         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1684         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1685         rcd->expected_count = max_entries - egrtop;
1686         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1687                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1688
1689         rcd->expected_base = rcd->eager_base + egrtop;
1690         dd_dev_info(dd, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1691                     rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1692                     rcd->eager_base, rcd->expected_base);
1693
1694         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1695                 dd_dev_err(dd, "ctxt%u: current Eager buffer size is invalid %u\n",
1696                            rcd->ctxt, rcd->egrbufs.rcvtid_size);
1697                 ret = -EINVAL;
1698                 goto bail;
1699         }
1700
1701         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1702                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1703                               rcd->egrbufs.rcvtids[idx].phys, order);
1704                 cond_resched();
1705         }
1706         goto bail;
1707
1708 bail_rcvegrbuf_phys:
1709         for (idx = 0; idx < rcd->egrbufs.alloced &&
1710                      rcd->egrbufs.buffers[idx].addr;
1711              idx++) {
1712                 dma_free_coherent(&dd->pcidev->dev,
1713                                   rcd->egrbufs.buffers[idx].len,
1714                                   rcd->egrbufs.buffers[idx].addr,
1715                                   rcd->egrbufs.buffers[idx].phys);
1716                 rcd->egrbufs.buffers[idx].addr = NULL;
1717                 rcd->egrbufs.buffers[idx].phys = 0;
1718                 rcd->egrbufs.buffers[idx].len = 0;
1719         }
1720 bail:
1721         return ret;
1722 }