]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci-mem.c
xhci: remove GFP_DMA flag from allocation
[karo-tx-linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         trace_xhci_ring_free(ring);
292
293         if (ring->first_seg) {
294                 if (ring->type == TYPE_STREAM)
295                         xhci_remove_stream_mapping(ring);
296                 xhci_free_segments_for_ring(xhci, ring->first_seg);
297         }
298
299         kfree(ring);
300 }
301
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303                                         unsigned int cycle_state)
304 {
305         /* The ring is empty, so the enqueue pointer == dequeue pointer */
306         ring->enqueue = ring->first_seg->trbs;
307         ring->enq_seg = ring->first_seg;
308         ring->dequeue = ring->enqueue;
309         ring->deq_seg = ring->first_seg;
310         /* The ring is initialized to 0. The producer must write 1 to the cycle
311          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312          * compare CCS to the cycle bit to check ownership, so CCS = 1.
313          *
314          * New rings are initialized with cycle state equal to 1; if we are
315          * handling ring expansion, set the cycle state equal to the old ring.
316          */
317         ring->cycle_state = cycle_state;
318
319         /*
320          * Each segment has a link TRB, and leave an extra TRB for SW
321          * accounting purpose
322          */
323         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324 }
325
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328                 struct xhci_segment **first, struct xhci_segment **last,
329                 unsigned int num_segs, unsigned int cycle_state,
330                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331 {
332         struct xhci_segment *prev;
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(xhci, prev, next, type);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(xhci, prev, *first, type);
359         *last = prev;
360
361         return 0;
362 }
363
364 /**
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377
378         ring = kzalloc(sizeof *(ring), flags);
379         if (!ring)
380                 return NULL;
381
382         ring->num_segs = num_segs;
383         ring->bounce_buf_len = max_packet;
384         INIT_LIST_HEAD(&ring->td_list);
385         ring->type = type;
386         if (num_segs == 0)
387                 return ring;
388
389         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390                         &ring->last_seg, num_segs, cycle_state, type,
391                         max_packet, flags);
392         if (ret)
393                 goto fail;
394
395         /* Only event ring does not use link TRB */
396         if (type != TYPE_EVENT) {
397                 /* See section 4.9.2.1 and 6.4.4.1 */
398                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399                         cpu_to_le32(LINK_TOGGLE);
400         }
401         xhci_initialize_ring_info(ring, cycle_state);
402         trace_xhci_ring_alloc(ring);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         int rings_cached;
415
416         rings_cached = virt_dev->num_rings_cached;
417         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418                 virt_dev->ring_cache[rings_cached] =
419                         virt_dev->eps[ep_index].ring;
420                 virt_dev->num_rings_cached++;
421                 xhci_dbg(xhci, "Cached old ring, "
422                                 "%d ring%s cached\n",
423                                 virt_dev->num_rings_cached,
424                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
425         } else {
426                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427                 xhci_dbg(xhci, "Ring cache full (%d rings), "
428                                 "freeing ring\n",
429                                 virt_dev->num_rings_cached);
430         }
431         virt_dev->eps[ep_index].ring = NULL;
432 }
433
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438                         struct xhci_ring *ring, unsigned int cycle_state,
439                         enum xhci_ring_type type)
440 {
441         struct xhci_segment     *seg = ring->first_seg;
442         int i;
443
444         do {
445                 memset(seg->trbs, 0,
446                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447                 if (cycle_state == 0) {
448                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
449                                 seg->trbs[i].link.control |=
450                                         cpu_to_le32(TRB_CYCLE);
451                 }
452                 /* All endpoint rings have link TRBs */
453                 xhci_link_segments(xhci, seg, seg->next, type);
454                 seg = seg->next;
455         } while (seg != ring->first_seg);
456         ring->type = type;
457         xhci_initialize_ring_info(ring, cycle_state);
458         /* td list should be empty since all URBs have been cancelled,
459          * but just in case...
460          */
461         INIT_LIST_HEAD(&ring->td_list);
462 }
463
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470                                 unsigned int num_trbs, gfp_t flags)
471 {
472         struct xhci_segment     *first;
473         struct xhci_segment     *last;
474         unsigned int            num_segs;
475         unsigned int            num_segs_needed;
476         int                     ret;
477
478         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479                                 (TRBS_PER_SEGMENT - 1);
480
481         /* Allocate number of segments we needed, or double the ring size */
482         num_segs = ring->num_segs > num_segs_needed ?
483                         ring->num_segs : num_segs_needed;
484
485         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486                         num_segs, ring->cycle_state, ring->type,
487                         ring->bounce_buf_len, flags);
488         if (ret)
489                 return -ENOMEM;
490
491         if (ring->type == TYPE_STREAM)
492                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493                                                 ring, first, last, flags);
494         if (ret) {
495                 struct xhci_segment *next;
496                 do {
497                         next = first->next;
498                         xhci_segment_free(xhci, first);
499                         if (first == last)
500                                 break;
501                         first = next;
502                 } while (true);
503                 return ret;
504         }
505
506         xhci_link_rings(xhci, ring, first, last, num_segs);
507         trace_xhci_ring_expansion(ring);
508         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
509                         "ring expansion succeed, now has %d segments",
510                         ring->num_segs);
511
512         return 0;
513 }
514
515 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
516
517 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
518                                                     int type, gfp_t flags)
519 {
520         struct xhci_container_ctx *ctx;
521
522         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
523                 return NULL;
524
525         ctx = kzalloc(sizeof(*ctx), flags);
526         if (!ctx)
527                 return NULL;
528
529         ctx->type = type;
530         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
531         if (type == XHCI_CTX_TYPE_INPUT)
532                 ctx->size += CTX_SIZE(xhci->hcc_params);
533
534         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
535         if (!ctx->bytes) {
536                 kfree(ctx);
537                 return NULL;
538         }
539         return ctx;
540 }
541
542 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
543                              struct xhci_container_ctx *ctx)
544 {
545         if (!ctx)
546                 return;
547         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
548         kfree(ctx);
549 }
550
551 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
552                                               struct xhci_container_ctx *ctx)
553 {
554         if (ctx->type != XHCI_CTX_TYPE_INPUT)
555                 return NULL;
556
557         return (struct xhci_input_control_ctx *)ctx->bytes;
558 }
559
560 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
561                                         struct xhci_container_ctx *ctx)
562 {
563         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
564                 return (struct xhci_slot_ctx *)ctx->bytes;
565
566         return (struct xhci_slot_ctx *)
567                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
568 }
569
570 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
571                                     struct xhci_container_ctx *ctx,
572                                     unsigned int ep_index)
573 {
574         /* increment ep index by offset of start of ep ctx array */
575         ep_index++;
576         if (ctx->type == XHCI_CTX_TYPE_INPUT)
577                 ep_index++;
578
579         return (struct xhci_ep_ctx *)
580                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
581 }
582
583
584 /***************** Streams structures manipulation *************************/
585
586 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
587                 unsigned int num_stream_ctxs,
588                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
589 {
590         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
591         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
592
593         if (size > MEDIUM_STREAM_ARRAY_SIZE)
594                 dma_free_coherent(dev, size,
595                                 stream_ctx, dma);
596         else if (size <= SMALL_STREAM_ARRAY_SIZE)
597                 return dma_pool_free(xhci->small_streams_pool,
598                                 stream_ctx, dma);
599         else
600                 return dma_pool_free(xhci->medium_streams_pool,
601                                 stream_ctx, dma);
602 }
603
604 /*
605  * The stream context array for each endpoint with bulk streams enabled can
606  * vary in size, based on:
607  *  - how many streams the endpoint supports,
608  *  - the maximum primary stream array size the host controller supports,
609  *  - and how many streams the device driver asks for.
610  *
611  * The stream context array must be a power of 2, and can be as small as
612  * 64 bytes or as large as 1MB.
613  */
614 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
615                 unsigned int num_stream_ctxs, dma_addr_t *dma,
616                 gfp_t mem_flags)
617 {
618         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
619         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
620
621         if (size > MEDIUM_STREAM_ARRAY_SIZE)
622                 return dma_alloc_coherent(dev, size,
623                                 dma, mem_flags);
624         else if (size <= SMALL_STREAM_ARRAY_SIZE)
625                 return dma_pool_alloc(xhci->small_streams_pool,
626                                 mem_flags, dma);
627         else
628                 return dma_pool_alloc(xhci->medium_streams_pool,
629                                 mem_flags, dma);
630 }
631
632 struct xhci_ring *xhci_dma_to_transfer_ring(
633                 struct xhci_virt_ep *ep,
634                 u64 address)
635 {
636         if (ep->ep_state & EP_HAS_STREAMS)
637                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
638                                 address >> TRB_SEGMENT_SHIFT);
639         return ep->ring;
640 }
641
642 struct xhci_ring *xhci_stream_id_to_ring(
643                 struct xhci_virt_device *dev,
644                 unsigned int ep_index,
645                 unsigned int stream_id)
646 {
647         struct xhci_virt_ep *ep = &dev->eps[ep_index];
648
649         if (stream_id == 0)
650                 return ep->ring;
651         if (!ep->stream_info)
652                 return NULL;
653
654         if (stream_id > ep->stream_info->num_streams)
655                 return NULL;
656         return ep->stream_info->stream_rings[stream_id];
657 }
658
659 /*
660  * Change an endpoint's internal structure so it supports stream IDs.  The
661  * number of requested streams includes stream 0, which cannot be used by device
662  * drivers.
663  *
664  * The number of stream contexts in the stream context array may be bigger than
665  * the number of streams the driver wants to use.  This is because the number of
666  * stream context array entries must be a power of two.
667  */
668 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
669                 unsigned int num_stream_ctxs,
670                 unsigned int num_streams,
671                 unsigned int max_packet, gfp_t mem_flags)
672 {
673         struct xhci_stream_info *stream_info;
674         u32 cur_stream;
675         struct xhci_ring *cur_ring;
676         u64 addr;
677         int ret;
678
679         xhci_dbg(xhci, "Allocating %u streams and %u "
680                         "stream context array entries.\n",
681                         num_streams, num_stream_ctxs);
682         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
683                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
684                 return NULL;
685         }
686         xhci->cmd_ring_reserved_trbs++;
687
688         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
689         if (!stream_info)
690                 goto cleanup_trbs;
691
692         stream_info->num_streams = num_streams;
693         stream_info->num_stream_ctxs = num_stream_ctxs;
694
695         /* Initialize the array of virtual pointers to stream rings. */
696         stream_info->stream_rings = kzalloc(
697                         sizeof(struct xhci_ring *)*num_streams,
698                         mem_flags);
699         if (!stream_info->stream_rings)
700                 goto cleanup_info;
701
702         /* Initialize the array of DMA addresses for stream rings for the HW. */
703         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
704                         num_stream_ctxs, &stream_info->ctx_array_dma,
705                         mem_flags);
706         if (!stream_info->stream_ctx_array)
707                 goto cleanup_ctx;
708         memset(stream_info->stream_ctx_array, 0,
709                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
710
711         /* Allocate everything needed to free the stream rings later */
712         stream_info->free_streams_command =
713                 xhci_alloc_command(xhci, true, true, mem_flags);
714         if (!stream_info->free_streams_command)
715                 goto cleanup_ctx;
716
717         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
718
719         /* Allocate rings for all the streams that the driver will use,
720          * and add their segment DMA addresses to the radix tree.
721          * Stream 0 is reserved.
722          */
723
724         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
725                 stream_info->stream_rings[cur_stream] =
726                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
727                                         mem_flags);
728                 cur_ring = stream_info->stream_rings[cur_stream];
729                 if (!cur_ring)
730                         goto cleanup_rings;
731                 cur_ring->stream_id = cur_stream;
732                 cur_ring->trb_address_map = &stream_info->trb_address_map;
733                 /* Set deq ptr, cycle bit, and stream context type */
734                 addr = cur_ring->first_seg->dma |
735                         SCT_FOR_CTX(SCT_PRI_TR) |
736                         cur_ring->cycle_state;
737                 stream_info->stream_ctx_array[cur_stream].stream_ring =
738                         cpu_to_le64(addr);
739                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
740                                 cur_stream, (unsigned long long) addr);
741
742                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
743                 if (ret) {
744                         xhci_ring_free(xhci, cur_ring);
745                         stream_info->stream_rings[cur_stream] = NULL;
746                         goto cleanup_rings;
747                 }
748         }
749         /* Leave the other unused stream ring pointers in the stream context
750          * array initialized to zero.  This will cause the xHC to give us an
751          * error if the device asks for a stream ID we don't have setup (if it
752          * was any other way, the host controller would assume the ring is
753          * "empty" and wait forever for data to be queued to that stream ID).
754          */
755
756         return stream_info;
757
758 cleanup_rings:
759         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
760                 cur_ring = stream_info->stream_rings[cur_stream];
761                 if (cur_ring) {
762                         xhci_ring_free(xhci, cur_ring);
763                         stream_info->stream_rings[cur_stream] = NULL;
764                 }
765         }
766         xhci_free_command(xhci, stream_info->free_streams_command);
767 cleanup_ctx:
768         kfree(stream_info->stream_rings);
769 cleanup_info:
770         kfree(stream_info);
771 cleanup_trbs:
772         xhci->cmd_ring_reserved_trbs--;
773         return NULL;
774 }
775 /*
776  * Sets the MaxPStreams field and the Linear Stream Array field.
777  * Sets the dequeue pointer to the stream context array.
778  */
779 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
780                 struct xhci_ep_ctx *ep_ctx,
781                 struct xhci_stream_info *stream_info)
782 {
783         u32 max_primary_streams;
784         /* MaxPStreams is the number of stream context array entries, not the
785          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
786          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
787          */
788         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
789         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
790                         "Setting number of stream ctx array entries to %u",
791                         1 << (max_primary_streams + 1));
792         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
793         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
794                                        | EP_HAS_LSA);
795         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
796 }
797
798 /*
799  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
800  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
801  * not at the beginning of the ring).
802  */
803 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
804                 struct xhci_virt_ep *ep)
805 {
806         dma_addr_t addr;
807         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
808         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
809         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
810 }
811
812 /* Frees all stream contexts associated with the endpoint,
813  *
814  * Caller should fix the endpoint context streams fields.
815  */
816 void xhci_free_stream_info(struct xhci_hcd *xhci,
817                 struct xhci_stream_info *stream_info)
818 {
819         int cur_stream;
820         struct xhci_ring *cur_ring;
821
822         if (!stream_info)
823                 return;
824
825         for (cur_stream = 1; cur_stream < stream_info->num_streams;
826                         cur_stream++) {
827                 cur_ring = stream_info->stream_rings[cur_stream];
828                 if (cur_ring) {
829                         xhci_ring_free(xhci, cur_ring);
830                         stream_info->stream_rings[cur_stream] = NULL;
831                 }
832         }
833         xhci_free_command(xhci, stream_info->free_streams_command);
834         xhci->cmd_ring_reserved_trbs--;
835         if (stream_info->stream_ctx_array)
836                 xhci_free_stream_ctx(xhci,
837                                 stream_info->num_stream_ctxs,
838                                 stream_info->stream_ctx_array,
839                                 stream_info->ctx_array_dma);
840
841         kfree(stream_info->stream_rings);
842         kfree(stream_info);
843 }
844
845
846 /***************** Device context manipulation *************************/
847
848 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
849                 struct xhci_virt_ep *ep)
850 {
851         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
852                     (unsigned long)ep);
853         ep->xhci = xhci;
854 }
855
856 static void xhci_free_tt_info(struct xhci_hcd *xhci,
857                 struct xhci_virt_device *virt_dev,
858                 int slot_id)
859 {
860         struct list_head *tt_list_head;
861         struct xhci_tt_bw_info *tt_info, *next;
862         bool slot_found = false;
863
864         /* If the device never made it past the Set Address stage,
865          * it may not have the real_port set correctly.
866          */
867         if (virt_dev->real_port == 0 ||
868                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
869                 xhci_dbg(xhci, "Bad real port.\n");
870                 return;
871         }
872
873         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
874         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
875                 /* Multi-TT hubs will have more than one entry */
876                 if (tt_info->slot_id == slot_id) {
877                         slot_found = true;
878                         list_del(&tt_info->tt_list);
879                         kfree(tt_info);
880                 } else if (slot_found) {
881                         break;
882                 }
883         }
884 }
885
886 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
887                 struct xhci_virt_device *virt_dev,
888                 struct usb_device *hdev,
889                 struct usb_tt *tt, gfp_t mem_flags)
890 {
891         struct xhci_tt_bw_info          *tt_info;
892         unsigned int                    num_ports;
893         int                             i, j;
894
895         if (!tt->multi)
896                 num_ports = 1;
897         else
898                 num_ports = hdev->maxchild;
899
900         for (i = 0; i < num_ports; i++, tt_info++) {
901                 struct xhci_interval_bw_table *bw_table;
902
903                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
904                 if (!tt_info)
905                         goto free_tts;
906                 INIT_LIST_HEAD(&tt_info->tt_list);
907                 list_add(&tt_info->tt_list,
908                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
909                 tt_info->slot_id = virt_dev->udev->slot_id;
910                 if (tt->multi)
911                         tt_info->ttport = i+1;
912                 bw_table = &tt_info->bw_table;
913                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
914                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
915         }
916         return 0;
917
918 free_tts:
919         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
920         return -ENOMEM;
921 }
922
923
924 /* All the xhci_tds in the ring's TD list should be freed at this point.
925  * Should be called with xhci->lock held if there is any chance the TT lists
926  * will be manipulated by the configure endpoint, allocate device, or update
927  * hub functions while this function is removing the TT entries from the list.
928  */
929 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
930 {
931         struct xhci_virt_device *dev;
932         int i;
933         int old_active_eps = 0;
934
935         /* Slot ID 0 is reserved */
936         if (slot_id == 0 || !xhci->devs[slot_id])
937                 return;
938
939         dev = xhci->devs[slot_id];
940
941         trace_xhci_free_virt_device(dev);
942
943         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
944         if (!dev)
945                 return;
946
947         if (dev->tt_info)
948                 old_active_eps = dev->tt_info->active_eps;
949
950         for (i = 0; i < 31; i++) {
951                 if (dev->eps[i].ring)
952                         xhci_ring_free(xhci, dev->eps[i].ring);
953                 if (dev->eps[i].stream_info)
954                         xhci_free_stream_info(xhci,
955                                         dev->eps[i].stream_info);
956                 /* Endpoints on the TT/root port lists should have been removed
957                  * when usb_disable_device() was called for the device.
958                  * We can't drop them anyway, because the udev might have gone
959                  * away by this point, and we can't tell what speed it was.
960                  */
961                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
962                         xhci_warn(xhci, "Slot %u endpoint %u "
963                                         "not removed from BW list!\n",
964                                         slot_id, i);
965         }
966         /* If this is a hub, free the TT(s) from the TT list */
967         xhci_free_tt_info(xhci, dev, slot_id);
968         /* If necessary, update the number of active TTs on this root port */
969         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
970
971         if (dev->ring_cache) {
972                 for (i = 0; i < dev->num_rings_cached; i++)
973                         xhci_ring_free(xhci, dev->ring_cache[i]);
974                 kfree(dev->ring_cache);
975         }
976
977         if (dev->in_ctx)
978                 xhci_free_container_ctx(xhci, dev->in_ctx);
979         if (dev->out_ctx)
980                 xhci_free_container_ctx(xhci, dev->out_ctx);
981
982         kfree(xhci->devs[slot_id]);
983         xhci->devs[slot_id] = NULL;
984 }
985
986 /*
987  * Free a virt_device structure.
988  * If the virt_device added a tt_info (a hub) and has children pointing to
989  * that tt_info, then free the child first. Recursive.
990  * We can't rely on udev at this point to find child-parent relationships.
991  */
992 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
993 {
994         struct xhci_virt_device *vdev;
995         struct list_head *tt_list_head;
996         struct xhci_tt_bw_info *tt_info, *next;
997         int i;
998
999         vdev = xhci->devs[slot_id];
1000         if (!vdev)
1001                 return;
1002
1003         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1004         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1005                 /* is this a hub device that added a tt_info to the tts list */
1006                 if (tt_info->slot_id == slot_id) {
1007                         /* are any devices using this tt_info? */
1008                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1009                                 vdev = xhci->devs[i];
1010                                 if (vdev && (vdev->tt_info == tt_info))
1011                                         xhci_free_virt_devices_depth_first(
1012                                                 xhci, i);
1013                         }
1014                 }
1015         }
1016         /* we are now at a leaf device */
1017         xhci_free_virt_device(xhci, slot_id);
1018 }
1019
1020 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1021                 struct usb_device *udev, gfp_t flags)
1022 {
1023         struct xhci_virt_device *dev;
1024         int i;
1025
1026         /* Slot ID 0 is reserved */
1027         if (slot_id == 0 || xhci->devs[slot_id]) {
1028                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1029                 return 0;
1030         }
1031
1032         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1033         if (!xhci->devs[slot_id])
1034                 return 0;
1035         dev = xhci->devs[slot_id];
1036
1037         /* Allocate the (output) device context that will be used in the HC. */
1038         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1039         if (!dev->out_ctx)
1040                 goto fail;
1041
1042         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1043                         (unsigned long long)dev->out_ctx->dma);
1044
1045         /* Allocate the (input) device context for address device command */
1046         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1047         if (!dev->in_ctx)
1048                 goto fail;
1049
1050         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1051                         (unsigned long long)dev->in_ctx->dma);
1052
1053         /* Initialize the cancellation list and watchdog timers for each ep */
1054         for (i = 0; i < 31; i++) {
1055                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1056                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1057                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1058         }
1059
1060         /* Allocate endpoint 0 ring */
1061         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1062         if (!dev->eps[0].ring)
1063                 goto fail;
1064
1065         /* Allocate pointers to the ring cache */
1066         dev->ring_cache = kzalloc(
1067                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1068                         flags);
1069         if (!dev->ring_cache)
1070                 goto fail;
1071         dev->num_rings_cached = 0;
1072
1073         dev->udev = udev;
1074
1075         /* Point to output device context in dcbaa. */
1076         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1077         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1078                  slot_id,
1079                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1080                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1081
1082         trace_xhci_alloc_virt_device(dev);
1083
1084         return 1;
1085 fail:
1086         xhci_free_virt_device(xhci, slot_id);
1087         return 0;
1088 }
1089
1090 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1091                 struct usb_device *udev)
1092 {
1093         struct xhci_virt_device *virt_dev;
1094         struct xhci_ep_ctx      *ep0_ctx;
1095         struct xhci_ring        *ep_ring;
1096
1097         virt_dev = xhci->devs[udev->slot_id];
1098         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1099         ep_ring = virt_dev->eps[0].ring;
1100         /*
1101          * FIXME we don't keep track of the dequeue pointer very well after a
1102          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1103          * host to our enqueue pointer.  This should only be called after a
1104          * configured device has reset, so all control transfers should have
1105          * been completed or cancelled before the reset.
1106          */
1107         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1108                                                         ep_ring->enqueue)
1109                                    | ep_ring->cycle_state);
1110 }
1111
1112 /*
1113  * The xHCI roothub may have ports of differing speeds in any order in the port
1114  * status registers.  xhci->port_array provides an array of the port speed for
1115  * each offset into the port status registers.
1116  *
1117  * The xHCI hardware wants to know the roothub port number that the USB device
1118  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1119  * know is the index of that port under either the USB 2.0 or the USB 3.0
1120  * roothub, but that doesn't give us the real index into the HW port status
1121  * registers. Call xhci_find_raw_port_number() to get real index.
1122  */
1123 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1124                 struct usb_device *udev)
1125 {
1126         struct usb_device *top_dev;
1127         struct usb_hcd *hcd;
1128
1129         if (udev->speed >= USB_SPEED_SUPER)
1130                 hcd = xhci->shared_hcd;
1131         else
1132                 hcd = xhci->main_hcd;
1133
1134         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1135                         top_dev = top_dev->parent)
1136                 /* Found device below root hub */;
1137
1138         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1139 }
1140
1141 /* Setup an xHCI virtual device for a Set Address command */
1142 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1143 {
1144         struct xhci_virt_device *dev;
1145         struct xhci_ep_ctx      *ep0_ctx;
1146         struct xhci_slot_ctx    *slot_ctx;
1147         u32                     port_num;
1148         u32                     max_packets;
1149         struct usb_device *top_dev;
1150
1151         dev = xhci->devs[udev->slot_id];
1152         /* Slot ID 0 is reserved */
1153         if (udev->slot_id == 0 || !dev) {
1154                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1155                                 udev->slot_id);
1156                 return -EINVAL;
1157         }
1158         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1159         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1160
1161         /* 3) Only the control endpoint is valid - one endpoint context */
1162         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1163         switch (udev->speed) {
1164         case USB_SPEED_SUPER_PLUS:
1165                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1166                 max_packets = MAX_PACKET(512);
1167                 break;
1168         case USB_SPEED_SUPER:
1169                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1170                 max_packets = MAX_PACKET(512);
1171                 break;
1172         case USB_SPEED_HIGH:
1173                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1174                 max_packets = MAX_PACKET(64);
1175                 break;
1176         /* USB core guesses at a 64-byte max packet first for FS devices */
1177         case USB_SPEED_FULL:
1178                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1179                 max_packets = MAX_PACKET(64);
1180                 break;
1181         case USB_SPEED_LOW:
1182                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1183                 max_packets = MAX_PACKET(8);
1184                 break;
1185         case USB_SPEED_WIRELESS:
1186                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1187                 return -EINVAL;
1188                 break;
1189         default:
1190                 /* Speed was set earlier, this shouldn't happen. */
1191                 return -EINVAL;
1192         }
1193         /* Find the root hub port this device is under */
1194         port_num = xhci_find_real_port_number(xhci, udev);
1195         if (!port_num)
1196                 return -EINVAL;
1197         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1198         /* Set the port number in the virtual_device to the faked port number */
1199         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1200                         top_dev = top_dev->parent)
1201                 /* Found device below root hub */;
1202         dev->fake_port = top_dev->portnum;
1203         dev->real_port = port_num;
1204         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1205         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1206
1207         /* Find the right bandwidth table that this device will be a part of.
1208          * If this is a full speed device attached directly to a root port (or a
1209          * decendent of one), it counts as a primary bandwidth domain, not a
1210          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1211          * will never be created for the HS root hub.
1212          */
1213         if (!udev->tt || !udev->tt->hub->parent) {
1214                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1215         } else {
1216                 struct xhci_root_port_bw_info *rh_bw;
1217                 struct xhci_tt_bw_info *tt_bw;
1218
1219                 rh_bw = &xhci->rh_bw[port_num - 1];
1220                 /* Find the right TT. */
1221                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1222                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1223                                 continue;
1224
1225                         if (!dev->udev->tt->multi ||
1226                                         (udev->tt->multi &&
1227                                          tt_bw->ttport == dev->udev->ttport)) {
1228                                 dev->bw_table = &tt_bw->bw_table;
1229                                 dev->tt_info = tt_bw;
1230                                 break;
1231                         }
1232                 }
1233                 if (!dev->tt_info)
1234                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1235         }
1236
1237         /* Is this a LS/FS device under an external HS hub? */
1238         if (udev->tt && udev->tt->hub->parent) {
1239                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1240                                                 (udev->ttport << 8));
1241                 if (udev->tt->multi)
1242                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1243         }
1244         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1245         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1246
1247         /* Step 4 - ring already allocated */
1248         /* Step 5 */
1249         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1250
1251         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1252         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1253                                          max_packets);
1254
1255         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1256                                    dev->eps[0].ring->cycle_state);
1257
1258         trace_xhci_setup_addressable_virt_device(dev);
1259
1260         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1261
1262         return 0;
1263 }
1264
1265 /*
1266  * Convert interval expressed as 2^(bInterval - 1) == interval into
1267  * straight exponent value 2^n == interval.
1268  *
1269  */
1270 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1271                 struct usb_host_endpoint *ep)
1272 {
1273         unsigned int interval;
1274
1275         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1276         if (interval != ep->desc.bInterval - 1)
1277                 dev_warn(&udev->dev,
1278                          "ep %#x - rounding interval to %d %sframes\n",
1279                          ep->desc.bEndpointAddress,
1280                          1 << interval,
1281                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1282
1283         if (udev->speed == USB_SPEED_FULL) {
1284                 /*
1285                  * Full speed isoc endpoints specify interval in frames,
1286                  * not microframes. We are using microframes everywhere,
1287                  * so adjust accordingly.
1288                  */
1289                 interval += 3;  /* 1 frame = 2^3 uframes */
1290         }
1291
1292         return interval;
1293 }
1294
1295 /*
1296  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1297  * microframes, rounded down to nearest power of 2.
1298  */
1299 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1300                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1301                 unsigned int min_exponent, unsigned int max_exponent)
1302 {
1303         unsigned int interval;
1304
1305         interval = fls(desc_interval) - 1;
1306         interval = clamp_val(interval, min_exponent, max_exponent);
1307         if ((1 << interval) != desc_interval)
1308                 dev_dbg(&udev->dev,
1309                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1310                          ep->desc.bEndpointAddress,
1311                          1 << interval,
1312                          desc_interval);
1313
1314         return interval;
1315 }
1316
1317 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1318                 struct usb_host_endpoint *ep)
1319 {
1320         if (ep->desc.bInterval == 0)
1321                 return 0;
1322         return xhci_microframes_to_exponent(udev, ep,
1323                         ep->desc.bInterval, 0, 15);
1324 }
1325
1326
1327 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1328                 struct usb_host_endpoint *ep)
1329 {
1330         return xhci_microframes_to_exponent(udev, ep,
1331                         ep->desc.bInterval * 8, 3, 10);
1332 }
1333
1334 /* Return the polling or NAK interval.
1335  *
1336  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1337  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1338  *
1339  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1340  * is set to 0.
1341  */
1342 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1343                 struct usb_host_endpoint *ep)
1344 {
1345         unsigned int interval = 0;
1346
1347         switch (udev->speed) {
1348         case USB_SPEED_HIGH:
1349                 /* Max NAK rate */
1350                 if (usb_endpoint_xfer_control(&ep->desc) ||
1351                     usb_endpoint_xfer_bulk(&ep->desc)) {
1352                         interval = xhci_parse_microframe_interval(udev, ep);
1353                         break;
1354                 }
1355                 /* Fall through - SS and HS isoc/int have same decoding */
1356
1357         case USB_SPEED_SUPER_PLUS:
1358         case USB_SPEED_SUPER:
1359                 if (usb_endpoint_xfer_int(&ep->desc) ||
1360                     usb_endpoint_xfer_isoc(&ep->desc)) {
1361                         interval = xhci_parse_exponent_interval(udev, ep);
1362                 }
1363                 break;
1364
1365         case USB_SPEED_FULL:
1366                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1367                         interval = xhci_parse_exponent_interval(udev, ep);
1368                         break;
1369                 }
1370                 /*
1371                  * Fall through for interrupt endpoint interval decoding
1372                  * since it uses the same rules as low speed interrupt
1373                  * endpoints.
1374                  */
1375
1376         case USB_SPEED_LOW:
1377                 if (usb_endpoint_xfer_int(&ep->desc) ||
1378                     usb_endpoint_xfer_isoc(&ep->desc)) {
1379
1380                         interval = xhci_parse_frame_interval(udev, ep);
1381                 }
1382                 break;
1383
1384         default:
1385                 BUG();
1386         }
1387         return interval;
1388 }
1389
1390 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1391  * High speed endpoint descriptors can define "the number of additional
1392  * transaction opportunities per microframe", but that goes in the Max Burst
1393  * endpoint context field.
1394  */
1395 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1396                 struct usb_host_endpoint *ep)
1397 {
1398         if (udev->speed < USB_SPEED_SUPER ||
1399                         !usb_endpoint_xfer_isoc(&ep->desc))
1400                 return 0;
1401         return ep->ss_ep_comp.bmAttributes;
1402 }
1403
1404 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1405                                        struct usb_host_endpoint *ep)
1406 {
1407         /* Super speed and Plus have max burst in ep companion desc */
1408         if (udev->speed >= USB_SPEED_SUPER)
1409                 return ep->ss_ep_comp.bMaxBurst;
1410
1411         if (udev->speed == USB_SPEED_HIGH &&
1412             (usb_endpoint_xfer_isoc(&ep->desc) ||
1413              usb_endpoint_xfer_int(&ep->desc)))
1414                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1415
1416         return 0;
1417 }
1418
1419 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1420 {
1421         int in;
1422
1423         in = usb_endpoint_dir_in(&ep->desc);
1424
1425         switch (usb_endpoint_type(&ep->desc)) {
1426         case USB_ENDPOINT_XFER_CONTROL:
1427                 return CTRL_EP;
1428         case USB_ENDPOINT_XFER_BULK:
1429                 return in ? BULK_IN_EP : BULK_OUT_EP;
1430         case USB_ENDPOINT_XFER_ISOC:
1431                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1432         case USB_ENDPOINT_XFER_INT:
1433                 return in ? INT_IN_EP : INT_OUT_EP;
1434         }
1435         return 0;
1436 }
1437
1438 /* Return the maximum endpoint service interval time (ESIT) payload.
1439  * Basically, this is the maxpacket size, multiplied by the burst size
1440  * and mult size.
1441  */
1442 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1443                 struct usb_host_endpoint *ep)
1444 {
1445         int max_burst;
1446         int max_packet;
1447
1448         /* Only applies for interrupt or isochronous endpoints */
1449         if (usb_endpoint_xfer_control(&ep->desc) ||
1450                         usb_endpoint_xfer_bulk(&ep->desc))
1451                 return 0;
1452
1453         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1454         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1455             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1456                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1457         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1458         else if (udev->speed >= USB_SPEED_SUPER)
1459                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1460
1461         max_packet = usb_endpoint_maxp(&ep->desc);
1462         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1463         /* A 0 in max burst means 1 transfer per ESIT */
1464         return max_packet * max_burst;
1465 }
1466
1467 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1468  * Drivers will have to call usb_alloc_streams() to do that.
1469  */
1470 int xhci_endpoint_init(struct xhci_hcd *xhci,
1471                 struct xhci_virt_device *virt_dev,
1472                 struct usb_device *udev,
1473                 struct usb_host_endpoint *ep,
1474                 gfp_t mem_flags)
1475 {
1476         unsigned int ep_index;
1477         struct xhci_ep_ctx *ep_ctx;
1478         struct xhci_ring *ep_ring;
1479         unsigned int max_packet;
1480         enum xhci_ring_type ring_type;
1481         u32 max_esit_payload;
1482         u32 endpoint_type;
1483         unsigned int max_burst;
1484         unsigned int interval;
1485         unsigned int mult;
1486         unsigned int avg_trb_len;
1487         unsigned int err_count = 0;
1488
1489         ep_index = xhci_get_endpoint_index(&ep->desc);
1490         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491
1492         endpoint_type = xhci_get_endpoint_type(ep);
1493         if (!endpoint_type)
1494                 return -EINVAL;
1495
1496         ring_type = usb_endpoint_type(&ep->desc);
1497
1498         /*
1499          * Get values to fill the endpoint context, mostly from ep descriptor.
1500          * The average TRB buffer lengt for bulk endpoints is unclear as we
1501          * have no clue on scatter gather list entry size. For Isoc and Int,
1502          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1503          */
1504         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1505         interval = xhci_get_endpoint_interval(udev, ep);
1506
1507         /* Periodic endpoint bInterval limit quirk */
1508         if (usb_endpoint_xfer_int(&ep->desc) ||
1509             usb_endpoint_xfer_isoc(&ep->desc)) {
1510                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1511                     udev->speed >= USB_SPEED_HIGH &&
1512                     interval >= 7) {
1513                         interval = 6;
1514                 }
1515         }
1516
1517         mult = xhci_get_endpoint_mult(udev, ep);
1518         max_packet = usb_endpoint_maxp(&ep->desc);
1519         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1520         avg_trb_len = max_esit_payload;
1521
1522         /* FIXME dig Mult and streams info out of ep companion desc */
1523
1524         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1525         if (!usb_endpoint_xfer_isoc(&ep->desc))
1526                 err_count = 3;
1527         /* Some devices get this wrong */
1528         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1529                 max_packet = 512;
1530         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1531         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1532                 avg_trb_len = 8;
1533         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1534         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1535                 mult = 0;
1536
1537         /* Set up the endpoint ring */
1538         virt_dev->eps[ep_index].new_ring =
1539                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1540         if (!virt_dev->eps[ep_index].new_ring) {
1541                 /* Attempt to use the ring cache */
1542                 if (virt_dev->num_rings_cached == 0)
1543                         return -ENOMEM;
1544                 virt_dev->num_rings_cached--;
1545                 virt_dev->eps[ep_index].new_ring =
1546                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1547                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1548                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1549                                         1, ring_type);
1550         }
1551         virt_dev->eps[ep_index].skip = false;
1552         ep_ring = virt_dev->eps[ep_index].new_ring;
1553
1554         /* Fill the endpoint context */
1555         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1556                                       EP_INTERVAL(interval) |
1557                                       EP_MULT(mult));
1558         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1559                                        MAX_PACKET(max_packet) |
1560                                        MAX_BURST(max_burst) |
1561                                        ERROR_COUNT(err_count));
1562         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1563                                   ep_ring->cycle_state);
1564
1565         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1566                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1567
1568         /* FIXME Debug endpoint context */
1569         return 0;
1570 }
1571
1572 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1573                 struct xhci_virt_device *virt_dev,
1574                 struct usb_host_endpoint *ep)
1575 {
1576         unsigned int ep_index;
1577         struct xhci_ep_ctx *ep_ctx;
1578
1579         ep_index = xhci_get_endpoint_index(&ep->desc);
1580         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1581
1582         ep_ctx->ep_info = 0;
1583         ep_ctx->ep_info2 = 0;
1584         ep_ctx->deq = 0;
1585         ep_ctx->tx_info = 0;
1586         /* Don't free the endpoint ring until the set interface or configuration
1587          * request succeeds.
1588          */
1589 }
1590
1591 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1592 {
1593         bw_info->ep_interval = 0;
1594         bw_info->mult = 0;
1595         bw_info->num_packets = 0;
1596         bw_info->max_packet_size = 0;
1597         bw_info->type = 0;
1598         bw_info->max_esit_payload = 0;
1599 }
1600
1601 void xhci_update_bw_info(struct xhci_hcd *xhci,
1602                 struct xhci_container_ctx *in_ctx,
1603                 struct xhci_input_control_ctx *ctrl_ctx,
1604                 struct xhci_virt_device *virt_dev)
1605 {
1606         struct xhci_bw_info *bw_info;
1607         struct xhci_ep_ctx *ep_ctx;
1608         unsigned int ep_type;
1609         int i;
1610
1611         for (i = 1; i < 31; i++) {
1612                 bw_info = &virt_dev->eps[i].bw_info;
1613
1614                 /* We can't tell what endpoint type is being dropped, but
1615                  * unconditionally clearing the bandwidth info for non-periodic
1616                  * endpoints should be harmless because the info will never be
1617                  * set in the first place.
1618                  */
1619                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1620                         /* Dropped endpoint */
1621                         xhci_clear_endpoint_bw_info(bw_info);
1622                         continue;
1623                 }
1624
1625                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1626                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1627                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1628
1629                         /* Ignore non-periodic endpoints */
1630                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1631                                         ep_type != ISOC_IN_EP &&
1632                                         ep_type != INT_IN_EP)
1633                                 continue;
1634
1635                         /* Added or changed endpoint */
1636                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1637                                         le32_to_cpu(ep_ctx->ep_info));
1638                         /* Number of packets and mult are zero-based in the
1639                          * input context, but we want one-based for the
1640                          * interval table.
1641                          */
1642                         bw_info->mult = CTX_TO_EP_MULT(
1643                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1644                         bw_info->num_packets = CTX_TO_MAX_BURST(
1645                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1646                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1647                                         le32_to_cpu(ep_ctx->ep_info2));
1648                         bw_info->type = ep_type;
1649                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1650                                         le32_to_cpu(ep_ctx->tx_info));
1651                 }
1652         }
1653 }
1654
1655 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1656  * Useful when you want to change one particular aspect of the endpoint and then
1657  * issue a configure endpoint command.
1658  */
1659 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1660                 struct xhci_container_ctx *in_ctx,
1661                 struct xhci_container_ctx *out_ctx,
1662                 unsigned int ep_index)
1663 {
1664         struct xhci_ep_ctx *out_ep_ctx;
1665         struct xhci_ep_ctx *in_ep_ctx;
1666
1667         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1668         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1669
1670         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1671         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1672         in_ep_ctx->deq = out_ep_ctx->deq;
1673         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1674 }
1675
1676 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1677  * Useful when you want to change one particular aspect of the endpoint and then
1678  * issue a configure endpoint command.  Only the context entries field matters,
1679  * but we'll copy the whole thing anyway.
1680  */
1681 void xhci_slot_copy(struct xhci_hcd *xhci,
1682                 struct xhci_container_ctx *in_ctx,
1683                 struct xhci_container_ctx *out_ctx)
1684 {
1685         struct xhci_slot_ctx *in_slot_ctx;
1686         struct xhci_slot_ctx *out_slot_ctx;
1687
1688         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1689         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1690
1691         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1692         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1693         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1694         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1695 }
1696
1697 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1698 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1699 {
1700         int i;
1701         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703
1704         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1705                         "Allocating %d scratchpad buffers", num_sp);
1706
1707         if (!num_sp)
1708                 return 0;
1709
1710         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1711         if (!xhci->scratchpad)
1712                 goto fail_sp;
1713
1714         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1715                                      num_sp * sizeof(u64),
1716                                      &xhci->scratchpad->sp_dma, flags);
1717         if (!xhci->scratchpad->sp_array)
1718                 goto fail_sp2;
1719
1720         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1721         if (!xhci->scratchpad->sp_buffers)
1722                 goto fail_sp3;
1723
1724         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1725         for (i = 0; i < num_sp; i++) {
1726                 dma_addr_t dma;
1727                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1728                                 flags);
1729                 if (!buf)
1730                         goto fail_sp4;
1731
1732                 xhci->scratchpad->sp_array[i] = dma;
1733                 xhci->scratchpad->sp_buffers[i] = buf;
1734         }
1735
1736         return 0;
1737
1738  fail_sp4:
1739         for (i = i - 1; i >= 0; i--) {
1740                 dma_free_coherent(dev, xhci->page_size,
1741                                     xhci->scratchpad->sp_buffers[i],
1742                                     xhci->scratchpad->sp_array[i]);
1743         }
1744
1745         kfree(xhci->scratchpad->sp_buffers);
1746
1747  fail_sp3:
1748         dma_free_coherent(dev, num_sp * sizeof(u64),
1749                             xhci->scratchpad->sp_array,
1750                             xhci->scratchpad->sp_dma);
1751
1752  fail_sp2:
1753         kfree(xhci->scratchpad);
1754         xhci->scratchpad = NULL;
1755
1756  fail_sp:
1757         return -ENOMEM;
1758 }
1759
1760 static void scratchpad_free(struct xhci_hcd *xhci)
1761 {
1762         int num_sp;
1763         int i;
1764         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1765
1766         if (!xhci->scratchpad)
1767                 return;
1768
1769         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1770
1771         for (i = 0; i < num_sp; i++) {
1772                 dma_free_coherent(dev, xhci->page_size,
1773                                     xhci->scratchpad->sp_buffers[i],
1774                                     xhci->scratchpad->sp_array[i]);
1775         }
1776         kfree(xhci->scratchpad->sp_buffers);
1777         dma_free_coherent(dev, num_sp * sizeof(u64),
1778                             xhci->scratchpad->sp_array,
1779                             xhci->scratchpad->sp_dma);
1780         kfree(xhci->scratchpad);
1781         xhci->scratchpad = NULL;
1782 }
1783
1784 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1785                 bool allocate_in_ctx, bool allocate_completion,
1786                 gfp_t mem_flags)
1787 {
1788         struct xhci_command *command;
1789
1790         command = kzalloc(sizeof(*command), mem_flags);
1791         if (!command)
1792                 return NULL;
1793
1794         if (allocate_in_ctx) {
1795                 command->in_ctx =
1796                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1797                                         mem_flags);
1798                 if (!command->in_ctx) {
1799                         kfree(command);
1800                         return NULL;
1801                 }
1802         }
1803
1804         if (allocate_completion) {
1805                 command->completion =
1806                         kzalloc(sizeof(struct completion), mem_flags);
1807                 if (!command->completion) {
1808                         xhci_free_container_ctx(xhci, command->in_ctx);
1809                         kfree(command);
1810                         return NULL;
1811                 }
1812                 init_completion(command->completion);
1813         }
1814
1815         command->status = 0;
1816         INIT_LIST_HEAD(&command->cmd_list);
1817         return command;
1818 }
1819
1820 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1821 {
1822         kfree(urb_priv);
1823 }
1824
1825 void xhci_free_command(struct xhci_hcd *xhci,
1826                 struct xhci_command *command)
1827 {
1828         xhci_free_container_ctx(xhci,
1829                         command->in_ctx);
1830         kfree(command->completion);
1831         kfree(command);
1832 }
1833
1834 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1835 {
1836         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1837         int size;
1838         int i, j, num_ports;
1839
1840         cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842         /* Free the Event Ring Segment Table and the actual Event Ring */
1843         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1844         if (xhci->erst.entries)
1845                 dma_free_coherent(dev, size,
1846                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1847         xhci->erst.entries = NULL;
1848         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1849         if (xhci->event_ring)
1850                 xhci_ring_free(xhci, xhci->event_ring);
1851         xhci->event_ring = NULL;
1852         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1853
1854         if (xhci->lpm_command)
1855                 xhci_free_command(xhci, xhci->lpm_command);
1856         xhci->lpm_command = NULL;
1857         if (xhci->cmd_ring)
1858                 xhci_ring_free(xhci, xhci->cmd_ring);
1859         xhci->cmd_ring = NULL;
1860         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1861         xhci_cleanup_command_queue(xhci);
1862
1863         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1864         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1865                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1866                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1867                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1868                         while (!list_empty(ep))
1869                                 list_del_init(ep->next);
1870                 }
1871         }
1872
1873         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1874                 xhci_free_virt_devices_depth_first(xhci, i);
1875
1876         dma_pool_destroy(xhci->segment_pool);
1877         xhci->segment_pool = NULL;
1878         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1879
1880         dma_pool_destroy(xhci->device_pool);
1881         xhci->device_pool = NULL;
1882         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1883
1884         dma_pool_destroy(xhci->small_streams_pool);
1885         xhci->small_streams_pool = NULL;
1886         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887                         "Freed small stream array pool");
1888
1889         dma_pool_destroy(xhci->medium_streams_pool);
1890         xhci->medium_streams_pool = NULL;
1891         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1892                         "Freed medium stream array pool");
1893
1894         if (xhci->dcbaa)
1895                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1896                                 xhci->dcbaa, xhci->dcbaa->dma);
1897         xhci->dcbaa = NULL;
1898
1899         scratchpad_free(xhci);
1900
1901         if (!xhci->rh_bw)
1902                 goto no_bw;
1903
1904         for (i = 0; i < num_ports; i++) {
1905                 struct xhci_tt_bw_info *tt, *n;
1906                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1907                         list_del(&tt->tt_list);
1908                         kfree(tt);
1909                 }
1910         }
1911
1912 no_bw:
1913         xhci->cmd_ring_reserved_trbs = 0;
1914         xhci->num_usb2_ports = 0;
1915         xhci->num_usb3_ports = 0;
1916         xhci->num_active_eps = 0;
1917         kfree(xhci->usb2_ports);
1918         kfree(xhci->usb3_ports);
1919         kfree(xhci->port_array);
1920         kfree(xhci->rh_bw);
1921         kfree(xhci->ext_caps);
1922
1923         xhci->usb2_ports = NULL;
1924         xhci->usb3_ports = NULL;
1925         xhci->port_array = NULL;
1926         xhci->rh_bw = NULL;
1927         xhci->ext_caps = NULL;
1928
1929         xhci->page_size = 0;
1930         xhci->page_shift = 0;
1931         xhci->bus_state[0].bus_suspended = 0;
1932         xhci->bus_state[1].bus_suspended = 0;
1933 }
1934
1935 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1936                 struct xhci_segment *input_seg,
1937                 union xhci_trb *start_trb,
1938                 union xhci_trb *end_trb,
1939                 dma_addr_t input_dma,
1940                 struct xhci_segment *result_seg,
1941                 char *test_name, int test_number)
1942 {
1943         unsigned long long start_dma;
1944         unsigned long long end_dma;
1945         struct xhci_segment *seg;
1946
1947         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1948         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1949
1950         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1951         if (seg != result_seg) {
1952                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1953                                 test_name, test_number);
1954                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1955                                 "input DMA 0x%llx\n",
1956                                 input_seg,
1957                                 (unsigned long long) input_dma);
1958                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1959                                 "ending TRB %p (0x%llx DMA)\n",
1960                                 start_trb, start_dma,
1961                                 end_trb, end_dma);
1962                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1963                                 result_seg, seg);
1964                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1965                           true);
1966                 return -1;
1967         }
1968         return 0;
1969 }
1970
1971 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1972 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1973 {
1974         struct {
1975                 dma_addr_t              input_dma;
1976                 struct xhci_segment     *result_seg;
1977         } simple_test_vector [] = {
1978                 /* A zeroed DMA field should fail */
1979                 { 0, NULL },
1980                 /* One TRB before the ring start should fail */
1981                 { xhci->event_ring->first_seg->dma - 16, NULL },
1982                 /* One byte before the ring start should fail */
1983                 { xhci->event_ring->first_seg->dma - 1, NULL },
1984                 /* Starting TRB should succeed */
1985                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1986                 /* Ending TRB should succeed */
1987                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1988                         xhci->event_ring->first_seg },
1989                 /* One byte after the ring end should fail */
1990                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1991                 /* One TRB after the ring end should fail */
1992                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1993                 /* An address of all ones should fail */
1994                 { (dma_addr_t) (~0), NULL },
1995         };
1996         struct {
1997                 struct xhci_segment     *input_seg;
1998                 union xhci_trb          *start_trb;
1999                 union xhci_trb          *end_trb;
2000                 dma_addr_t              input_dma;
2001                 struct xhci_segment     *result_seg;
2002         } complex_test_vector [] = {
2003                 /* Test feeding a valid DMA address from a different ring */
2004                 {       .input_seg = xhci->event_ring->first_seg,
2005                         .start_trb = xhci->event_ring->first_seg->trbs,
2006                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007                         .input_dma = xhci->cmd_ring->first_seg->dma,
2008                         .result_seg = NULL,
2009                 },
2010                 /* Test feeding a valid end TRB from a different ring */
2011                 {       .input_seg = xhci->event_ring->first_seg,
2012                         .start_trb = xhci->event_ring->first_seg->trbs,
2013                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2014                         .input_dma = xhci->cmd_ring->first_seg->dma,
2015                         .result_seg = NULL,
2016                 },
2017                 /* Test feeding a valid start and end TRB from a different ring */
2018                 {       .input_seg = xhci->event_ring->first_seg,
2019                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2020                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2021                         .input_dma = xhci->cmd_ring->first_seg->dma,
2022                         .result_seg = NULL,
2023                 },
2024                 /* TRB in this ring, but after this TD */
2025                 {       .input_seg = xhci->event_ring->first_seg,
2026                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2027                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2028                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2029                         .result_seg = NULL,
2030                 },
2031                 /* TRB in this ring, but before this TD */
2032                 {       .input_seg = xhci->event_ring->first_seg,
2033                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2034                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2035                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2036                         .result_seg = NULL,
2037                 },
2038                 /* TRB in this ring, but after this wrapped TD */
2039                 {       .input_seg = xhci->event_ring->first_seg,
2040                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2041                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2042                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2043                         .result_seg = NULL,
2044                 },
2045                 /* TRB in this ring, but before this wrapped TD */
2046                 {       .input_seg = xhci->event_ring->first_seg,
2047                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2048                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2049                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2050                         .result_seg = NULL,
2051                 },
2052                 /* TRB not in this ring, and we have a wrapped TD */
2053                 {       .input_seg = xhci->event_ring->first_seg,
2054                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2055                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2056                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2057                         .result_seg = NULL,
2058                 },
2059         };
2060
2061         unsigned int num_tests;
2062         int i, ret;
2063
2064         num_tests = ARRAY_SIZE(simple_test_vector);
2065         for (i = 0; i < num_tests; i++) {
2066                 ret = xhci_test_trb_in_td(xhci,
2067                                 xhci->event_ring->first_seg,
2068                                 xhci->event_ring->first_seg->trbs,
2069                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2070                                 simple_test_vector[i].input_dma,
2071                                 simple_test_vector[i].result_seg,
2072                                 "Simple", i);
2073                 if (ret < 0)
2074                         return ret;
2075         }
2076
2077         num_tests = ARRAY_SIZE(complex_test_vector);
2078         for (i = 0; i < num_tests; i++) {
2079                 ret = xhci_test_trb_in_td(xhci,
2080                                 complex_test_vector[i].input_seg,
2081                                 complex_test_vector[i].start_trb,
2082                                 complex_test_vector[i].end_trb,
2083                                 complex_test_vector[i].input_dma,
2084                                 complex_test_vector[i].result_seg,
2085                                 "Complex", i);
2086                 if (ret < 0)
2087                         return ret;
2088         }
2089         xhci_dbg(xhci, "TRB math tests passed.\n");
2090         return 0;
2091 }
2092
2093 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2094 {
2095         u64 temp;
2096         dma_addr_t deq;
2097
2098         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2099                         xhci->event_ring->dequeue);
2100         if (deq == 0 && !in_interrupt())
2101                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2102                                 "dequeue ptr.\n");
2103         /* Update HC event ring dequeue pointer */
2104         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2105         temp &= ERST_PTR_MASK;
2106         /* Don't clear the EHB bit (which is RW1C) because
2107          * there might be more events to service.
2108          */
2109         temp &= ~ERST_EHB;
2110         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111                         "// Write event ring dequeue pointer, "
2112                         "preserving EHB bit");
2113         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2114                         &xhci->ir_set->erst_dequeue);
2115 }
2116
2117 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2118                 __le32 __iomem *addr, int max_caps)
2119 {
2120         u32 temp, port_offset, port_count;
2121         int i;
2122         u8 major_revision;
2123         struct xhci_hub *rhub;
2124
2125         temp = readl(addr);
2126         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2127
2128         if (major_revision == 0x03) {
2129                 rhub = &xhci->usb3_rhub;
2130         } else if (major_revision <= 0x02) {
2131                 rhub = &xhci->usb2_rhub;
2132         } else {
2133                 xhci_warn(xhci, "Ignoring unknown port speed, "
2134                                 "Ext Cap %p, revision = 0x%x\n",
2135                                 addr, major_revision);
2136                 /* Ignoring port protocol we can't understand. FIXME */
2137                 return;
2138         }
2139         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2140         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2141
2142         /* Port offset and count in the third dword, see section 7.2 */
2143         temp = readl(addr + 2);
2144         port_offset = XHCI_EXT_PORT_OFF(temp);
2145         port_count = XHCI_EXT_PORT_COUNT(temp);
2146         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2147                         "Ext Cap %p, port offset = %u, "
2148                         "count = %u, revision = 0x%x",
2149                         addr, port_offset, port_count, major_revision);
2150         /* Port count includes the current port offset */
2151         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2152                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2153                 return;
2154
2155         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2156         if (rhub->psi_count) {
2157                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2158                                     GFP_KERNEL);
2159                 if (!rhub->psi)
2160                         rhub->psi_count = 0;
2161
2162                 rhub->psi_uid_count++;
2163                 for (i = 0; i < rhub->psi_count; i++) {
2164                         rhub->psi[i] = readl(addr + 4 + i);
2165
2166                         /* count unique ID values, two consecutive entries can
2167                          * have the same ID if link is assymetric
2168                          */
2169                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2170                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2171                                 rhub->psi_uid_count++;
2172
2173                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2174                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2175                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2176                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2177                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2178                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2179                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2180                 }
2181         }
2182         /* cache usb2 port capabilities */
2183         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2184                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2185
2186         /* Check the host's USB2 LPM capability */
2187         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2188                         (temp & XHCI_L1C)) {
2189                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2190                                 "xHCI 0.96: support USB2 software lpm");
2191                 xhci->sw_lpm_support = 1;
2192         }
2193
2194         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2195                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2196                                 "xHCI 1.0: support USB2 software lpm");
2197                 xhci->sw_lpm_support = 1;
2198                 if (temp & XHCI_HLC) {
2199                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2200                                         "xHCI 1.0: support USB2 hardware lpm");
2201                         xhci->hw_lpm_support = 1;
2202                 }
2203         }
2204
2205         port_offset--;
2206         for (i = port_offset; i < (port_offset + port_count); i++) {
2207                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2208                 if (xhci->port_array[i] != 0) {
2209                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2210                                         " port %u\n", addr, i);
2211                         xhci_warn(xhci, "Port was marked as USB %u, "
2212                                         "duplicated as USB %u\n",
2213                                         xhci->port_array[i], major_revision);
2214                         /* Only adjust the roothub port counts if we haven't
2215                          * found a similar duplicate.
2216                          */
2217                         if (xhci->port_array[i] != major_revision &&
2218                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2219                                 if (xhci->port_array[i] == 0x03)
2220                                         xhci->num_usb3_ports--;
2221                                 else
2222                                         xhci->num_usb2_ports--;
2223                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2224                         }
2225                         /* FIXME: Should we disable the port? */
2226                         continue;
2227                 }
2228                 xhci->port_array[i] = major_revision;
2229                 if (major_revision == 0x03)
2230                         xhci->num_usb3_ports++;
2231                 else
2232                         xhci->num_usb2_ports++;
2233         }
2234         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2235 }
2236
2237 /*
2238  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2239  * specify what speeds each port is supposed to be.  We can't count on the port
2240  * speed bits in the PORTSC register being correct until a device is connected,
2241  * but we need to set up the two fake roothubs with the correct number of USB
2242  * 3.0 and USB 2.0 ports at host controller initialization time.
2243  */
2244 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2245 {
2246         void __iomem *base;
2247         u32 offset;
2248         unsigned int num_ports;
2249         int i, j, port_index;
2250         int cap_count = 0;
2251         u32 cap_start;
2252
2253         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2254         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2255         if (!xhci->port_array)
2256                 return -ENOMEM;
2257
2258         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2259         if (!xhci->rh_bw)
2260                 return -ENOMEM;
2261         for (i = 0; i < num_ports; i++) {
2262                 struct xhci_interval_bw_table *bw_table;
2263
2264                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2265                 bw_table = &xhci->rh_bw[i].bw_table;
2266                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2267                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2268         }
2269         base = &xhci->cap_regs->hc_capbase;
2270
2271         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2272         if (!cap_start) {
2273                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2274                 return -ENODEV;
2275         }
2276
2277         offset = cap_start;
2278         /* count extended protocol capability entries for later caching */
2279         while (offset) {
2280                 cap_count++;
2281                 offset = xhci_find_next_ext_cap(base, offset,
2282                                                       XHCI_EXT_CAPS_PROTOCOL);
2283         }
2284
2285         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2286         if (!xhci->ext_caps)
2287                 return -ENOMEM;
2288
2289         offset = cap_start;
2290
2291         while (offset) {
2292                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2293                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2294                         break;
2295                 offset = xhci_find_next_ext_cap(base, offset,
2296                                                 XHCI_EXT_CAPS_PROTOCOL);
2297         }
2298
2299         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2300                 xhci_warn(xhci, "No ports on the roothubs?\n");
2301                 return -ENODEV;
2302         }
2303         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2305                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2306
2307         /* Place limits on the number of roothub ports so that the hub
2308          * descriptors aren't longer than the USB core will allocate.
2309          */
2310         if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2312                                 "Limiting USB 3.0 roothub ports to %u.",
2313                                 USB_SS_MAXPORTS);
2314                 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2315         }
2316         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2317                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2318                                 "Limiting USB 2.0 roothub ports to %u.",
2319                                 USB_MAXCHILDREN);
2320                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2321         }
2322
2323         /*
2324          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2325          * Not sure how the USB core will handle a hub with no ports...
2326          */
2327         if (xhci->num_usb2_ports) {
2328                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2329                                 xhci->num_usb2_ports, flags);
2330                 if (!xhci->usb2_ports)
2331                         return -ENOMEM;
2332
2333                 port_index = 0;
2334                 for (i = 0; i < num_ports; i++) {
2335                         if (xhci->port_array[i] == 0x03 ||
2336                                         xhci->port_array[i] == 0 ||
2337                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2338                                 continue;
2339
2340                         xhci->usb2_ports[port_index] =
2341                                 &xhci->op_regs->port_status_base +
2342                                 NUM_PORT_REGS*i;
2343                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344                                         "USB 2.0 port at index %u, "
2345                                         "addr = %p", i,
2346                                         xhci->usb2_ports[port_index]);
2347                         port_index++;
2348                         if (port_index == xhci->num_usb2_ports)
2349                                 break;
2350                 }
2351         }
2352         if (xhci->num_usb3_ports) {
2353                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2354                                 xhci->num_usb3_ports, flags);
2355                 if (!xhci->usb3_ports)
2356                         return -ENOMEM;
2357
2358                 port_index = 0;
2359                 for (i = 0; i < num_ports; i++)
2360                         if (xhci->port_array[i] == 0x03) {
2361                                 xhci->usb3_ports[port_index] =
2362                                         &xhci->op_regs->port_status_base +
2363                                         NUM_PORT_REGS*i;
2364                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2365                                                 "USB 3.0 port at index %u, "
2366                                                 "addr = %p", i,
2367                                                 xhci->usb3_ports[port_index]);
2368                                 port_index++;
2369                                 if (port_index == xhci->num_usb3_ports)
2370                                         break;
2371                         }
2372         }
2373         return 0;
2374 }
2375
2376 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2377 {
2378         dma_addr_t      dma;
2379         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2380         unsigned int    val, val2;
2381         u64             val_64;
2382         struct xhci_segment     *seg;
2383         u32 page_size, temp;
2384         int i;
2385
2386         INIT_LIST_HEAD(&xhci->cmd_list);
2387
2388         /* init command timeout work */
2389         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2390         init_completion(&xhci->cmd_ring_stop_completion);
2391
2392         page_size = readl(&xhci->op_regs->page_size);
2393         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394                         "Supported page size register = 0x%x", page_size);
2395         for (i = 0; i < 16; i++) {
2396                 if ((0x1 & page_size) != 0)
2397                         break;
2398                 page_size = page_size >> 1;
2399         }
2400         if (i < 16)
2401                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2403         else
2404                 xhci_warn(xhci, "WARN: no supported page size\n");
2405         /* Use 4K pages, since that's common and the minimum the HC supports */
2406         xhci->page_shift = 12;
2407         xhci->page_size = 1 << xhci->page_shift;
2408         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409                         "HCD page size set to %iK", xhci->page_size / 1024);
2410
2411         /*
2412          * Program the Number of Device Slots Enabled field in the CONFIG
2413          * register with the max value of slots the HC can handle.
2414          */
2415         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2416         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2417                         "// xHC can handle at most %d device slots.", val);
2418         val2 = readl(&xhci->op_regs->config_reg);
2419         val |= (val2 & ~HCS_SLOTS_MASK);
2420         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421                         "// Setting Max device slots reg = 0x%x.", val);
2422         writel(val, &xhci->op_regs->config_reg);
2423
2424         /*
2425          * xHCI section 5.4.6 - doorbell array must be
2426          * "physically contiguous and 64-byte (cache line) aligned".
2427          */
2428         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2429                         flags);
2430         if (!xhci->dcbaa)
2431                 goto fail;
2432         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2433         xhci->dcbaa->dma = dma;
2434         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2435                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2436                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2437         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2438
2439         /*
2440          * Initialize the ring segment pool.  The ring must be a contiguous
2441          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2442          * however, the command ring segment needs 64-byte aligned segments
2443          * and our use of dma addresses in the trb_address_map radix tree needs
2444          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2445          */
2446         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2447                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2448
2449         /* See Table 46 and Note on Figure 55 */
2450         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2451                         2112, 64, xhci->page_size);
2452         if (!xhci->segment_pool || !xhci->device_pool)
2453                 goto fail;
2454
2455         /* Linear stream context arrays don't have any boundary restrictions,
2456          * and only need to be 16-byte aligned.
2457          */
2458         xhci->small_streams_pool =
2459                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2460                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2461         xhci->medium_streams_pool =
2462                 dma_pool_create("xHCI 1KB stream ctx arrays",
2463                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2464         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2465          * will be allocated with dma_alloc_coherent()
2466          */
2467
2468         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2469                 goto fail;
2470
2471         /* Set up the command ring to have one segments for now. */
2472         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2473         if (!xhci->cmd_ring)
2474                 goto fail;
2475         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476                         "Allocated command ring at %p", xhci->cmd_ring);
2477         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2478                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2479
2480         /* Set the address in the Command Ring Control register */
2481         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2482         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2483                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2484                 xhci->cmd_ring->cycle_state;
2485         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2486                         "// Setting command ring address to 0x%016llx", val_64);
2487         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2488         xhci_dbg_cmd_ptrs(xhci);
2489
2490         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2491         if (!xhci->lpm_command)
2492                 goto fail;
2493
2494         /* Reserve one command ring TRB for disabling LPM.
2495          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2496          * disabling LPM, we only need to reserve one TRB for all devices.
2497          */
2498         xhci->cmd_ring_reserved_trbs++;
2499
2500         val = readl(&xhci->cap_regs->db_off);
2501         val &= DBOFF_MASK;
2502         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503                         "// Doorbell array is located at offset 0x%x"
2504                         " from cap regs base addr", val);
2505         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2506         xhci_dbg_regs(xhci);
2507         xhci_print_run_regs(xhci);
2508         /* Set ir_set to interrupt register set 0 */
2509         xhci->ir_set = &xhci->run_regs->ir_set[0];
2510
2511         /*
2512          * Event ring setup: Allocate a normal ring, but also setup
2513          * the event ring segment table (ERST).  Section 4.9.3.
2514          */
2515         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2516         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2517                                         0, flags);
2518         if (!xhci->event_ring)
2519                 goto fail;
2520         if (xhci_check_trb_in_td_math(xhci) < 0)
2521                 goto fail;
2522
2523         xhci->erst.entries = dma_alloc_coherent(dev,
2524                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2525                         flags);
2526         if (!xhci->erst.entries)
2527                 goto fail;
2528         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529                         "// Allocated event ring segment table at 0x%llx",
2530                         (unsigned long long)dma);
2531
2532         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2533         xhci->erst.num_entries = ERST_NUM_SEGS;
2534         xhci->erst.erst_dma_addr = dma;
2535         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2536                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2537                         xhci->erst.num_entries,
2538                         xhci->erst.entries,
2539                         (unsigned long long)xhci->erst.erst_dma_addr);
2540
2541         /* set ring base address and size for each segment table entry */
2542         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2543                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2544                 entry->seg_addr = cpu_to_le64(seg->dma);
2545                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2546                 entry->rsvd = 0;
2547                 seg = seg->next;
2548         }
2549
2550         /* set ERST count with the number of entries in the segment table */
2551         val = readl(&xhci->ir_set->erst_size);
2552         val &= ERST_SIZE_MASK;
2553         val |= ERST_NUM_SEGS;
2554         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2555                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2556                         val);
2557         writel(val, &xhci->ir_set->erst_size);
2558
2559         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560                         "// Set ERST entries to point to event ring.");
2561         /* set the segment table base address */
2562         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2563                         "// Set ERST base address for ir_set 0 = 0x%llx",
2564                         (unsigned long long)xhci->erst.erst_dma_addr);
2565         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2566         val_64 &= ERST_PTR_MASK;
2567         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2568         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2569
2570         /* Set the event ring dequeue address */
2571         xhci_set_hc_event_deq(xhci);
2572         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2573                         "Wrote ERST address to ir_set 0.");
2574         xhci_print_ir_set(xhci, 0);
2575
2576         /*
2577          * XXX: Might need to set the Interrupter Moderation Register to
2578          * something other than the default (~1ms minimum between interrupts).
2579          * See section 5.5.1.2.
2580          */
2581         for (i = 0; i < MAX_HC_SLOTS; i++)
2582                 xhci->devs[i] = NULL;
2583         for (i = 0; i < USB_MAXCHILDREN; i++) {
2584                 xhci->bus_state[0].resume_done[i] = 0;
2585                 xhci->bus_state[1].resume_done[i] = 0;
2586                 /* Only the USB 2.0 completions will ever be used. */
2587                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2588         }
2589
2590         if (scratchpad_alloc(xhci, flags))
2591                 goto fail;
2592         if (xhci_setup_port_arrays(xhci, flags))
2593                 goto fail;
2594
2595         /* Enable USB 3.0 device notifications for function remote wake, which
2596          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2597          * U3 (device suspend).
2598          */
2599         temp = readl(&xhci->op_regs->dev_notification);
2600         temp &= ~DEV_NOTE_MASK;
2601         temp |= DEV_NOTE_FWAKE;
2602         writel(temp, &xhci->op_regs->dev_notification);
2603
2604         return 0;
2605
2606 fail:
2607         xhci_halt(xhci);
2608         xhci_reset(xhci);
2609         xhci_mem_cleanup(xhci);
2610         return -ENOMEM;
2611 }