]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
71eb2991c6984a0f75507f1c0b6c5f3635f3ecae
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (ret) {
117                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
118                 return ret;
119         }
120         xhci->xhc_state |= XHCI_STATE_HALTED;
121         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170
171         if (state == ~(u32)0) {
172                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
173                 return -ENODEV;
174         }
175
176         if ((state & STS_HALT) == 0) {
177                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
178                 return 0;
179         }
180
181         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
182         command = readl(&xhci->op_regs->command);
183         command |= CMD_RESET;
184         writel(command, &xhci->op_regs->command);
185
186         /* Existing Intel xHCI controllers require a delay of 1 mS,
187          * after setting the CMD_RESET bit, and before accessing any
188          * HC registers. This allows the HC to complete the
189          * reset operation and be ready for HC register access.
190          * Without this delay, the subsequent HC register access,
191          * may result in a system hang very rarely.
192          */
193         if (xhci->quirks & XHCI_INTEL_HOST)
194                 udelay(1000);
195
196         ret = xhci_handshake(&xhci->op_regs->command,
197                         CMD_RESET, 0, 10 * 1000 * 1000);
198         if (ret)
199                 return ret;
200
201         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
202                          "Wait for controller to be ready for doorbell rings");
203         /*
204          * xHCI cannot write to any doorbells or operational registers other
205          * than status until the "Controller Not Ready" flag is cleared.
206          */
207         ret = xhci_handshake(&xhci->op_regs->status,
208                         STS_CNR, 0, 10 * 1000 * 1000);
209
210         for (i = 0; i < 2; i++) {
211                 xhci->bus_state[i].port_c_suspend = 0;
212                 xhci->bus_state[i].suspended_ports = 0;
213                 xhci->bus_state[i].resuming_ports = 0;
214         }
215
216         return ret;
217 }
218
219
220 #ifdef CONFIG_USB_PCI
221 /*
222  * Set up MSI
223  */
224 static int xhci_setup_msi(struct xhci_hcd *xhci)
225 {
226         int ret;
227         /*
228          * TODO:Check with MSI Soc for sysdev
229          */
230         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
231
232         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
233         if (ret < 0) {
234                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235                                 "failed to allocate MSI entry");
236                 return ret;
237         }
238
239         ret = request_irq(pdev->irq, xhci_msi_irq,
240                                 0, "xhci_hcd", xhci_to_hcd(xhci));
241         if (ret) {
242                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
243                                 "disable MSI interrupt");
244                 pci_free_irq_vectors(pdev);
245         }
246
247         return ret;
248 }
249
250 /*
251  * Set up MSI-X
252  */
253 static int xhci_setup_msix(struct xhci_hcd *xhci)
254 {
255         int i, ret = 0;
256         struct usb_hcd *hcd = xhci_to_hcd(xhci);
257         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
258
259         /*
260          * calculate number of msi-x vectors supported.
261          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
262          *   with max number of interrupters based on the xhci HCSPARAMS1.
263          * - num_online_cpus: maximum msi-x vectors per CPUs core.
264          *   Add additional 1 vector to ensure always available interrupt.
265          */
266         xhci->msix_count = min(num_online_cpus() + 1,
267                                 HCS_MAX_INTRS(xhci->hcs_params1));
268
269         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
270                         PCI_IRQ_MSIX);
271         if (ret < 0) {
272                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
273                                 "Failed to enable MSI-X");
274                 return ret;
275         }
276
277         for (i = 0; i < xhci->msix_count; i++) {
278                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
279                                 "xhci_hcd", xhci_to_hcd(xhci));
280                 if (ret)
281                         goto disable_msix;
282         }
283
284         hcd->msix_enabled = 1;
285         return ret;
286
287 disable_msix:
288         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
289         while (--i >= 0)
290                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
291         pci_free_irq_vectors(pdev);
292         return ret;
293 }
294
295 /* Free any IRQs and disable MSI-X */
296 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
297 {
298         struct usb_hcd *hcd = xhci_to_hcd(xhci);
299         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
300
301         if (xhci->quirks & XHCI_PLAT)
302                 return;
303
304         /* return if using legacy interrupt */
305         if (hcd->irq > 0)
306                 return;
307
308         if (hcd->msix_enabled) {
309                 int i;
310
311                 for (i = 0; i < xhci->msix_count; i++)
312                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
313         } else {
314                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
315         }
316
317         pci_free_irq_vectors(pdev);
318         hcd->msix_enabled = 0;
319 }
320
321 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
322 {
323         struct usb_hcd *hcd = xhci_to_hcd(xhci);
324
325         if (hcd->msix_enabled) {
326                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327                 int i;
328
329                 for (i = 0; i < xhci->msix_count; i++)
330                         synchronize_irq(pci_irq_vector(pdev, i));
331         }
332 }
333
334 static int xhci_try_enable_msi(struct usb_hcd *hcd)
335 {
336         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
337         struct pci_dev  *pdev;
338         int ret;
339
340         /* The xhci platform device has set up IRQs through usb_add_hcd. */
341         if (xhci->quirks & XHCI_PLAT)
342                 return 0;
343
344         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345         /*
346          * Some Fresco Logic host controllers advertise MSI, but fail to
347          * generate interrupts.  Don't even try to enable MSI.
348          */
349         if (xhci->quirks & XHCI_BROKEN_MSI)
350                 goto legacy_irq;
351
352         /* unregister the legacy interrupt */
353         if (hcd->irq)
354                 free_irq(hcd->irq, hcd);
355         hcd->irq = 0;
356
357         ret = xhci_setup_msix(xhci);
358         if (ret)
359                 /* fall back to msi*/
360                 ret = xhci_setup_msi(xhci);
361
362         if (!ret) {
363                 hcd->msi_enabled = 1;
364                 return 0;
365         }
366
367         if (!pdev->irq) {
368                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369                 return -EINVAL;
370         }
371
372  legacy_irq:
373         if (!strlen(hcd->irq_descr))
374                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
375                          hcd->driver->description, hcd->self.busnum);
376
377         /* fall back to legacy interrupt*/
378         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
379                         hcd->irq_descr, hcd);
380         if (ret) {
381                 xhci_err(xhci, "request interrupt %d failed\n",
382                                 pdev->irq);
383                 return ret;
384         }
385         hcd->irq = pdev->irq;
386         return 0;
387 }
388
389 #else
390
391 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
392 {
393         return 0;
394 }
395
396 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
397 {
398 }
399
400 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
401 {
402 }
403
404 #endif
405
406 static void compliance_mode_recovery(unsigned long arg)
407 {
408         struct xhci_hcd *xhci;
409         struct usb_hcd *hcd;
410         u32 temp;
411         int i;
412
413         xhci = (struct xhci_hcd *)arg;
414
415         for (i = 0; i < xhci->num_usb3_ports; i++) {
416                 temp = readl(xhci->usb3_ports[i]);
417                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
418                         /*
419                          * Compliance Mode Detected. Letting USB Core
420                          * handle the Warm Reset
421                          */
422                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
423                                         "Compliance mode detected->port %d",
424                                         i + 1);
425                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
426                                         "Attempting compliance mode recovery");
427                         hcd = xhci->shared_hcd;
428
429                         if (hcd->state == HC_STATE_SUSPENDED)
430                                 usb_hcd_resume_root_hub(hcd);
431
432                         usb_hcd_poll_rh_status(hcd);
433                 }
434         }
435
436         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
437                 mod_timer(&xhci->comp_mode_recovery_timer,
438                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
439 }
440
441 /*
442  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
443  * that causes ports behind that hardware to enter compliance mode sometimes.
444  * The quirk creates a timer that polls every 2 seconds the link state of
445  * each host controller's port and recovers it by issuing a Warm reset
446  * if Compliance mode is detected, otherwise the port will become "dead" (no
447  * device connections or disconnections will be detected anymore). Becasue no
448  * status event is generated when entering compliance mode (per xhci spec),
449  * this quirk is needed on systems that have the failing hardware installed.
450  */
451 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
452 {
453         xhci->port_status_u0 = 0;
454         setup_timer(&xhci->comp_mode_recovery_timer,
455                     compliance_mode_recovery, (unsigned long)xhci);
456         xhci->comp_mode_recovery_timer.expires = jiffies +
457                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
458
459         add_timer(&xhci->comp_mode_recovery_timer);
460         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461                         "Compliance mode recovery timer initialized");
462 }
463
464 /*
465  * This function identifies the systems that have installed the SN65LVPE502CP
466  * USB3.0 re-driver and that need the Compliance Mode Quirk.
467  * Systems:
468  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469  */
470 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472         const char *dmi_product_name, *dmi_sys_vendor;
473
474         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476         if (!dmi_product_name || !dmi_sys_vendor)
477                 return false;
478
479         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480                 return false;
481
482         if (strstr(dmi_product_name, "Z420") ||
483                         strstr(dmi_product_name, "Z620") ||
484                         strstr(dmi_product_name, "Z820") ||
485                         strstr(dmi_product_name, "Z1 Workstation"))
486                 return true;
487
488         return false;
489 }
490
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495
496
497 /*
498  * Initialize memory for HCD and xHC (one-time init).
499  *
500  * Program the PAGESIZE register, initialize the device context array, create
501  * device contexts (?), set up a command ring segment (or two?), create event
502  * ring (one for now).
503  */
504 static int xhci_init(struct usb_hcd *hcd)
505 {
506         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507         int retval = 0;
508
509         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
510         spin_lock_init(&xhci->lock);
511         if (xhci->hci_version == 0x95 && link_quirk) {
512                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
513                                 "QUIRK: Not clearing Link TRB chain bits.");
514                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
515         } else {
516                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
517                                 "xHCI doesn't need link TRB QUIRK");
518         }
519         retval = xhci_mem_init(xhci, GFP_KERNEL);
520         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
521
522         /* Initializing Compliance Mode Recovery Data If Needed */
523         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
524                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
525                 compliance_mode_recovery_timer_init(xhci);
526         }
527
528         return retval;
529 }
530
531 /*-------------------------------------------------------------------------*/
532
533
534 static int xhci_run_finished(struct xhci_hcd *xhci)
535 {
536         if (xhci_start(xhci)) {
537                 xhci_halt(xhci);
538                 return -ENODEV;
539         }
540         xhci->shared_hcd->state = HC_STATE_RUNNING;
541         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
542
543         if (xhci->quirks & XHCI_NEC_HOST)
544                 xhci_ring_cmd_db(xhci);
545
546         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
547                         "Finished xhci_run for USB3 roothub");
548         return 0;
549 }
550
551 /*
552  * Start the HC after it was halted.
553  *
554  * This function is called by the USB core when the HC driver is added.
555  * Its opposite is xhci_stop().
556  *
557  * xhci_init() must be called once before this function can be called.
558  * Reset the HC, enable device slot contexts, program DCBAAP, and
559  * set command ring pointer and event ring pointer.
560  *
561  * Setup MSI-X vectors and enable interrupts.
562  */
563 int xhci_run(struct usb_hcd *hcd)
564 {
565         u32 temp;
566         u64 temp_64;
567         int ret;
568         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569
570         /* Start the xHCI host controller running only after the USB 2.0 roothub
571          * is setup.
572          */
573
574         hcd->uses_new_polling = 1;
575         if (!usb_hcd_is_primary_hcd(hcd))
576                 return xhci_run_finished(xhci);
577
578         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
579
580         ret = xhci_try_enable_msi(hcd);
581         if (ret)
582                 return ret;
583
584         xhci_dbg_cmd_ptrs(xhci);
585
586         xhci_dbg(xhci, "ERST memory map follows:\n");
587         xhci_dbg_erst(xhci, &xhci->erst);
588         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
589         temp_64 &= ~ERST_PTR_MASK;
590         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
592
593         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
594                         "// Set the interrupt modulation register");
595         temp = readl(&xhci->ir_set->irq_control);
596         temp &= ~ER_IRQ_INTERVAL_MASK;
597         /*
598          * the increment interval is 8 times as much as that defined
599          * in xHCI spec on MTK's controller
600          */
601         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
602         writel(temp, &xhci->ir_set->irq_control);
603
604         /* Set the HCD state before we enable the irqs */
605         temp = readl(&xhci->op_regs->command);
606         temp |= (CMD_EIE);
607         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
608                         "// Enable interrupts, cmd = 0x%x.", temp);
609         writel(temp, &xhci->op_regs->command);
610
611         temp = readl(&xhci->ir_set->irq_pending);
612         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
614                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
615         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
616         xhci_print_ir_set(xhci, 0);
617
618         if (xhci->quirks & XHCI_NEC_HOST) {
619                 struct xhci_command *command;
620
621                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
622                 if (!command)
623                         return -ENOMEM;
624
625                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
626                                 TRB_TYPE(TRB_NEC_GET_FW));
627         }
628         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
629                         "Finished xhci_run for USB2 roothub");
630         return 0;
631 }
632 EXPORT_SYMBOL_GPL(xhci_run);
633
634 /*
635  * Stop xHCI driver.
636  *
637  * This function is called by the USB core when the HC driver is removed.
638  * Its opposite is xhci_run().
639  *
640  * Disable device contexts, disable IRQs, and quiesce the HC.
641  * Reset the HC, finish any completed transactions, and cleanup memory.
642  */
643 static void xhci_stop(struct usb_hcd *hcd)
644 {
645         u32 temp;
646         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
647
648         mutex_lock(&xhci->mutex);
649
650         /* Only halt host and free memory after both hcds are removed */
651         if (!usb_hcd_is_primary_hcd(hcd)) {
652                 /* usb core will free this hcd shortly, unset pointer */
653                 xhci->shared_hcd = NULL;
654                 mutex_unlock(&xhci->mutex);
655                 return;
656         }
657
658         spin_lock_irq(&xhci->lock);
659         xhci->xhc_state |= XHCI_STATE_HALTED;
660         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
661         xhci_halt(xhci);
662         xhci_reset(xhci);
663         spin_unlock_irq(&xhci->lock);
664
665         xhci_cleanup_msix(xhci);
666
667         /* Deleting Compliance Mode Recovery Timer */
668         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
669                         (!(xhci_all_ports_seen_u0(xhci)))) {
670                 del_timer_sync(&xhci->comp_mode_recovery_timer);
671                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
672                                 "%s: compliance mode recovery timer deleted",
673                                 __func__);
674         }
675
676         if (xhci->quirks & XHCI_AMD_PLL_FIX)
677                 usb_amd_dev_put();
678
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
680                         "// Disabling event ring interrupts");
681         temp = readl(&xhci->op_regs->status);
682         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
683         temp = readl(&xhci->ir_set->irq_pending);
684         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
685         xhci_print_ir_set(xhci, 0);
686
687         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
688         xhci_mem_cleanup(xhci);
689         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
690                         "xhci_stop completed - status = %x",
691                         readl(&xhci->op_regs->status));
692         mutex_unlock(&xhci->mutex);
693 }
694
695 /*
696  * Shutdown HC (not bus-specific)
697  *
698  * This is called when the machine is rebooting or halting.  We assume that the
699  * machine will be powered off, and the HC's internal state will be reset.
700  * Don't bother to free memory.
701  *
702  * This will only ever be called with the main usb_hcd (the USB3 roothub).
703  */
704 static void xhci_shutdown(struct usb_hcd *hcd)
705 {
706         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
707
708         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
709                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
710
711         spin_lock_irq(&xhci->lock);
712         xhci_halt(xhci);
713         /* Workaround for spurious wakeups at shutdown with HSW */
714         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
715                 xhci_reset(xhci);
716         spin_unlock_irq(&xhci->lock);
717
718         xhci_cleanup_msix(xhci);
719
720         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721                         "xhci_shutdown completed - status = %x",
722                         readl(&xhci->op_regs->status));
723
724         /* Yet another workaround for spurious wakeups at shutdown with HSW */
725         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
726                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
727 }
728
729 #ifdef CONFIG_PM
730 static void xhci_save_registers(struct xhci_hcd *xhci)
731 {
732         xhci->s3.command = readl(&xhci->op_regs->command);
733         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
734         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
735         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
736         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
737         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
738         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
739         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
740         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
741 }
742
743 static void xhci_restore_registers(struct xhci_hcd *xhci)
744 {
745         writel(xhci->s3.command, &xhci->op_regs->command);
746         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
747         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
748         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
749         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
750         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
751         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
752         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
753         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
754 }
755
756 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
757 {
758         u64     val_64;
759
760         /* step 2: initialize command ring buffer */
761         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
762         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
763                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
764                                       xhci->cmd_ring->dequeue) &
765                  (u64) ~CMD_RING_RSVD_BITS) |
766                 xhci->cmd_ring->cycle_state;
767         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
768                         "// Setting command ring address to 0x%llx",
769                         (long unsigned long) val_64);
770         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
771 }
772
773 /*
774  * The whole command ring must be cleared to zero when we suspend the host.
775  *
776  * The host doesn't save the command ring pointer in the suspend well, so we
777  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
778  * aligned, because of the reserved bits in the command ring dequeue pointer
779  * register.  Therefore, we can't just set the dequeue pointer back in the
780  * middle of the ring (TRBs are 16-byte aligned).
781  */
782 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
783 {
784         struct xhci_ring *ring;
785         struct xhci_segment *seg;
786
787         ring = xhci->cmd_ring;
788         seg = ring->deq_seg;
789         do {
790                 memset(seg->trbs, 0,
791                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
792                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
793                         cpu_to_le32(~TRB_CYCLE);
794                 seg = seg->next;
795         } while (seg != ring->deq_seg);
796
797         /* Reset the software enqueue and dequeue pointers */
798         ring->deq_seg = ring->first_seg;
799         ring->dequeue = ring->first_seg->trbs;
800         ring->enq_seg = ring->deq_seg;
801         ring->enqueue = ring->dequeue;
802
803         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
804         /*
805          * Ring is now zeroed, so the HW should look for change of ownership
806          * when the cycle bit is set to 1.
807          */
808         ring->cycle_state = 1;
809
810         /*
811          * Reset the hardware dequeue pointer.
812          * Yes, this will need to be re-written after resume, but we're paranoid
813          * and want to make sure the hardware doesn't access bogus memory
814          * because, say, the BIOS or an SMI started the host without changing
815          * the command ring pointers.
816          */
817         xhci_set_cmd_ring_deq(xhci);
818 }
819
820 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
821 {
822         int port_index;
823         __le32 __iomem **port_array;
824         unsigned long flags;
825         u32 t1, t2;
826
827         spin_lock_irqsave(&xhci->lock, flags);
828
829         /* disable usb3 ports Wake bits */
830         port_index = xhci->num_usb3_ports;
831         port_array = xhci->usb3_ports;
832         while (port_index--) {
833                 t1 = readl(port_array[port_index]);
834                 t1 = xhci_port_state_to_neutral(t1);
835                 t2 = t1 & ~PORT_WAKE_BITS;
836                 if (t1 != t2)
837                         writel(t2, port_array[port_index]);
838         }
839
840         /* disable usb2 ports Wake bits */
841         port_index = xhci->num_usb2_ports;
842         port_array = xhci->usb2_ports;
843         while (port_index--) {
844                 t1 = readl(port_array[port_index]);
845                 t1 = xhci_port_state_to_neutral(t1);
846                 t2 = t1 & ~PORT_WAKE_BITS;
847                 if (t1 != t2)
848                         writel(t2, port_array[port_index]);
849         }
850
851         spin_unlock_irqrestore(&xhci->lock, flags);
852 }
853
854 /*
855  * Stop HC (not bus-specific)
856  *
857  * This is called when the machine transition into S3/S4 mode.
858  *
859  */
860 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
861 {
862         int                     rc = 0;
863         unsigned int            delay = XHCI_MAX_HALT_USEC;
864         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
865         u32                     command;
866
867         if (!hcd->state)
868                 return 0;
869
870         if (hcd->state != HC_STATE_SUSPENDED ||
871                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
872                 return -EINVAL;
873
874         /* Clear root port wake on bits if wakeup not allowed. */
875         if (!do_wakeup)
876                 xhci_disable_port_wake_on_bits(xhci);
877
878         /* Don't poll the roothubs on bus suspend. */
879         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
880         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
881         del_timer_sync(&hcd->rh_timer);
882         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
883         del_timer_sync(&xhci->shared_hcd->rh_timer);
884
885         spin_lock_irq(&xhci->lock);
886         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
887         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
888         /* step 1: stop endpoint */
889         /* skipped assuming that port suspend has done */
890
891         /* step 2: clear Run/Stop bit */
892         command = readl(&xhci->op_regs->command);
893         command &= ~CMD_RUN;
894         writel(command, &xhci->op_regs->command);
895
896         /* Some chips from Fresco Logic need an extraordinary delay */
897         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
898
899         if (xhci_handshake(&xhci->op_regs->status,
900                       STS_HALT, STS_HALT, delay)) {
901                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
902                 spin_unlock_irq(&xhci->lock);
903                 return -ETIMEDOUT;
904         }
905         xhci_clear_command_ring(xhci);
906
907         /* step 3: save registers */
908         xhci_save_registers(xhci);
909
910         /* step 4: set CSS flag */
911         command = readl(&xhci->op_regs->command);
912         command |= CMD_CSS;
913         writel(command, &xhci->op_regs->command);
914         if (xhci_handshake(&xhci->op_regs->status,
915                                 STS_SAVE, 0, 10 * 1000)) {
916                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
917                 spin_unlock_irq(&xhci->lock);
918                 return -ETIMEDOUT;
919         }
920         spin_unlock_irq(&xhci->lock);
921
922         /*
923          * Deleting Compliance Mode Recovery Timer because the xHCI Host
924          * is about to be suspended.
925          */
926         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
927                         (!(xhci_all_ports_seen_u0(xhci)))) {
928                 del_timer_sync(&xhci->comp_mode_recovery_timer);
929                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
930                                 "%s: compliance mode recovery timer deleted",
931                                 __func__);
932         }
933
934         /* step 5: remove core well power */
935         /* synchronize irq when using MSI-X */
936         xhci_msix_sync_irqs(xhci);
937
938         return rc;
939 }
940 EXPORT_SYMBOL_GPL(xhci_suspend);
941
942 /*
943  * start xHC (not bus-specific)
944  *
945  * This is called when the machine transition from S3/S4 mode.
946  *
947  */
948 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
949 {
950         u32                     command, temp = 0, status;
951         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
952         struct usb_hcd          *secondary_hcd;
953         int                     retval = 0;
954         bool                    comp_timer_running = false;
955
956         if (!hcd->state)
957                 return 0;
958
959         /* Wait a bit if either of the roothubs need to settle from the
960          * transition into bus suspend.
961          */
962         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
963                         time_before(jiffies,
964                                 xhci->bus_state[1].next_statechange))
965                 msleep(100);
966
967         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
968         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
969
970         spin_lock_irq(&xhci->lock);
971         if (xhci->quirks & XHCI_RESET_ON_RESUME)
972                 hibernated = true;
973
974         if (!hibernated) {
975                 /* step 1: restore register */
976                 xhci_restore_registers(xhci);
977                 /* step 2: initialize command ring buffer */
978                 xhci_set_cmd_ring_deq(xhci);
979                 /* step 3: restore state and start state*/
980                 /* step 3: set CRS flag */
981                 command = readl(&xhci->op_regs->command);
982                 command |= CMD_CRS;
983                 writel(command, &xhci->op_regs->command);
984                 if (xhci_handshake(&xhci->op_regs->status,
985                               STS_RESTORE, 0, 10 * 1000)) {
986                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
987                         spin_unlock_irq(&xhci->lock);
988                         return -ETIMEDOUT;
989                 }
990                 temp = readl(&xhci->op_regs->status);
991         }
992
993         /* If restore operation fails, re-initialize the HC during resume */
994         if ((temp & STS_SRE) || hibernated) {
995
996                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997                                 !(xhci_all_ports_seen_u0(xhci))) {
998                         del_timer_sync(&xhci->comp_mode_recovery_timer);
999                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000                                 "Compliance Mode Recovery Timer deleted!");
1001                 }
1002
1003                 /* Let the USB core know _both_ roothubs lost power. */
1004                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1005                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1006
1007                 xhci_dbg(xhci, "Stop HCD\n");
1008                 xhci_halt(xhci);
1009                 xhci_reset(xhci);
1010                 spin_unlock_irq(&xhci->lock);
1011                 xhci_cleanup_msix(xhci);
1012
1013                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1014                 temp = readl(&xhci->op_regs->status);
1015                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1016                 temp = readl(&xhci->ir_set->irq_pending);
1017                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1018                 xhci_print_ir_set(xhci, 0);
1019
1020                 xhci_dbg(xhci, "cleaning up memory\n");
1021                 xhci_mem_cleanup(xhci);
1022                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1023                             readl(&xhci->op_regs->status));
1024
1025                 /* USB core calls the PCI reinit and start functions twice:
1026                  * first with the primary HCD, and then with the secondary HCD.
1027                  * If we don't do the same, the host will never be started.
1028                  */
1029                 if (!usb_hcd_is_primary_hcd(hcd))
1030                         secondary_hcd = hcd;
1031                 else
1032                         secondary_hcd = xhci->shared_hcd;
1033
1034                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1035                 retval = xhci_init(hcd->primary_hcd);
1036                 if (retval)
1037                         return retval;
1038                 comp_timer_running = true;
1039
1040                 xhci_dbg(xhci, "Start the primary HCD\n");
1041                 retval = xhci_run(hcd->primary_hcd);
1042                 if (!retval) {
1043                         xhci_dbg(xhci, "Start the secondary HCD\n");
1044                         retval = xhci_run(secondary_hcd);
1045                 }
1046                 hcd->state = HC_STATE_SUSPENDED;
1047                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1048                 goto done;
1049         }
1050
1051         /* step 4: set Run/Stop bit */
1052         command = readl(&xhci->op_regs->command);
1053         command |= CMD_RUN;
1054         writel(command, &xhci->op_regs->command);
1055         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1056                   0, 250 * 1000);
1057
1058         /* step 5: walk topology and initialize portsc,
1059          * portpmsc and portli
1060          */
1061         /* this is done in bus_resume */
1062
1063         /* step 6: restart each of the previously
1064          * Running endpoints by ringing their doorbells
1065          */
1066
1067         spin_unlock_irq(&xhci->lock);
1068
1069  done:
1070         if (retval == 0) {
1071                 /* Resume root hubs only when have pending events. */
1072                 status = readl(&xhci->op_regs->status);
1073                 if (status & STS_EINT) {
1074                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1075                         usb_hcd_resume_root_hub(hcd);
1076                 }
1077         }
1078
1079         /*
1080          * If system is subject to the Quirk, Compliance Mode Timer needs to
1081          * be re-initialized Always after a system resume. Ports are subject
1082          * to suffer the Compliance Mode issue again. It doesn't matter if
1083          * ports have entered previously to U0 before system's suspension.
1084          */
1085         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086                 compliance_mode_recovery_timer_init(xhci);
1087
1088         /* Re-enable port polling. */
1089         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1090         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1091         usb_hcd_poll_rh_status(xhci->shared_hcd);
1092         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1093         usb_hcd_poll_rh_status(hcd);
1094
1095         return retval;
1096 }
1097 EXPORT_SYMBOL_GPL(xhci_resume);
1098 #endif  /* CONFIG_PM */
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /**
1103  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1104  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1105  * value to right shift 1 for the bitmask.
1106  *
1107  * Index  = (epnum * 2) + direction - 1,
1108  * where direction = 0 for OUT, 1 for IN.
1109  * For control endpoints, the IN index is used (OUT index is unused), so
1110  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1111  */
1112 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1113 {
1114         unsigned int index;
1115         if (usb_endpoint_xfer_control(desc))
1116                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1117         else
1118                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1119                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1120         return index;
1121 }
1122
1123 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1124  * address from the XHCI endpoint index.
1125  */
1126 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1127 {
1128         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1129         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1130         return direction | number;
1131 }
1132
1133 /* Find the flag for this endpoint (for use in the control context).  Use the
1134  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1135  * bit 1, etc.
1136  */
1137 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1138 {
1139         return 1 << (xhci_get_endpoint_index(desc) + 1);
1140 }
1141
1142 /* Find the flag for this endpoint (for use in the control context).  Use the
1143  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1144  * bit 1, etc.
1145  */
1146 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1147 {
1148         return 1 << (ep_index + 1);
1149 }
1150
1151 /* Compute the last valid endpoint context index.  Basically, this is the
1152  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1153  * we find the most significant bit set in the added contexts flags.
1154  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1155  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1156  */
1157 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1158 {
1159         return fls(added_ctxs) - 1;
1160 }
1161
1162 /* Returns 1 if the arguments are OK;
1163  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1164  */
1165 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1166                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1167                 const char *func) {
1168         struct xhci_hcd *xhci;
1169         struct xhci_virt_device *virt_dev;
1170
1171         if (!hcd || (check_ep && !ep) || !udev) {
1172                 pr_debug("xHCI %s called with invalid args\n", func);
1173                 return -EINVAL;
1174         }
1175         if (!udev->parent) {
1176                 pr_debug("xHCI %s called for root hub\n", func);
1177                 return 0;
1178         }
1179
1180         xhci = hcd_to_xhci(hcd);
1181         if (check_virt_dev) {
1182                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1183                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1184                                         func);
1185                         return -EINVAL;
1186                 }
1187
1188                 virt_dev = xhci->devs[udev->slot_id];
1189                 if (virt_dev->udev != udev) {
1190                         xhci_dbg(xhci, "xHCI %s called with udev and "
1191                                           "virt_dev does not match\n", func);
1192                         return -EINVAL;
1193                 }
1194         }
1195
1196         if (xhci->xhc_state & XHCI_STATE_HALTED)
1197                 return -ENODEV;
1198
1199         return 1;
1200 }
1201
1202 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1203                 struct usb_device *udev, struct xhci_command *command,
1204                 bool ctx_change, bool must_succeed);
1205
1206 /*
1207  * Full speed devices may have a max packet size greater than 8 bytes, but the
1208  * USB core doesn't know that until it reads the first 8 bytes of the
1209  * descriptor.  If the usb_device's max packet size changes after that point,
1210  * we need to issue an evaluate context command and wait on it.
1211  */
1212 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1213                 unsigned int ep_index, struct urb *urb)
1214 {
1215         struct xhci_container_ctx *out_ctx;
1216         struct xhci_input_control_ctx *ctrl_ctx;
1217         struct xhci_ep_ctx *ep_ctx;
1218         struct xhci_command *command;
1219         int max_packet_size;
1220         int hw_max_packet_size;
1221         int ret = 0;
1222
1223         out_ctx = xhci->devs[slot_id]->out_ctx;
1224         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1225         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1226         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1227         if (hw_max_packet_size != max_packet_size) {
1228                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1229                                 "Max Packet Size for ep 0 changed.");
1230                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1231                                 "Max packet size in usb_device = %d",
1232                                 max_packet_size);
1233                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234                                 "Max packet size in xHCI HW = %d",
1235                                 hw_max_packet_size);
1236                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237                                 "Issuing evaluate context command.");
1238
1239                 /* Set up the input context flags for the command */
1240                 /* FIXME: This won't work if a non-default control endpoint
1241                  * changes max packet sizes.
1242                  */
1243
1244                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1245                 if (!command)
1246                         return -ENOMEM;
1247
1248                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1249                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1250                 if (!ctrl_ctx) {
1251                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1252                                         __func__);
1253                         ret = -ENOMEM;
1254                         goto command_cleanup;
1255                 }
1256                 /* Set up the modified control endpoint 0 */
1257                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1258                                 xhci->devs[slot_id]->out_ctx, ep_index);
1259
1260                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1261                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1262                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1263
1264                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1265                 ctrl_ctx->drop_flags = 0;
1266
1267                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1268                                 true, false);
1269
1270                 /* Clean up the input context for later use by bandwidth
1271                  * functions.
1272                  */
1273                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1274 command_cleanup:
1275                 kfree(command->completion);
1276                 kfree(command);
1277         }
1278         return ret;
1279 }
1280
1281 /*
1282  * non-error returns are a promise to giveback() the urb later
1283  * we drop ownership so next owner (or urb unlink) can get it
1284  */
1285 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1286 {
1287         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1288         unsigned long flags;
1289         int ret = 0;
1290         unsigned int slot_id, ep_index, ep_state;
1291         struct urb_priv *urb_priv;
1292         int num_tds;
1293
1294         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1295                                         true, true, __func__) <= 0)
1296                 return -EINVAL;
1297
1298         slot_id = urb->dev->slot_id;
1299         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1300
1301         if (!HCD_HW_ACCESSIBLE(hcd)) {
1302                 if (!in_interrupt())
1303                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1304                 return -ESHUTDOWN;
1305         }
1306
1307         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1308                 num_tds = urb->number_of_packets;
1309         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1310             urb->transfer_buffer_length > 0 &&
1311             urb->transfer_flags & URB_ZERO_PACKET &&
1312             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1313                 num_tds = 2;
1314         else
1315                 num_tds = 1;
1316
1317         urb_priv = kzalloc(sizeof(struct urb_priv) +
1318                            num_tds * sizeof(struct xhci_td), mem_flags);
1319         if (!urb_priv)
1320                 return -ENOMEM;
1321
1322         urb_priv->num_tds = num_tds;
1323         urb_priv->num_tds_done = 0;
1324         urb->hcpriv = urb_priv;
1325
1326         trace_xhci_urb_enqueue(urb);
1327
1328         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1329                 /* Check to see if the max packet size for the default control
1330                  * endpoint changed during FS device enumeration
1331                  */
1332                 if (urb->dev->speed == USB_SPEED_FULL) {
1333                         ret = xhci_check_maxpacket(xhci, slot_id,
1334                                         ep_index, urb);
1335                         if (ret < 0) {
1336                                 xhci_urb_free_priv(urb_priv);
1337                                 urb->hcpriv = NULL;
1338                                 return ret;
1339                         }
1340                 }
1341         }
1342
1343         spin_lock_irqsave(&xhci->lock, flags);
1344
1345         if (xhci->xhc_state & XHCI_STATE_DYING) {
1346                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1347                          urb->ep->desc.bEndpointAddress, urb);
1348                 ret = -ESHUTDOWN;
1349                 goto free_priv;
1350         }
1351
1352         switch (usb_endpoint_type(&urb->ep->desc)) {
1353
1354         case USB_ENDPOINT_XFER_CONTROL:
1355                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1356                                          slot_id, ep_index);
1357                 break;
1358         case USB_ENDPOINT_XFER_BULK:
1359                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1360                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1361                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1362                                   ep_state);
1363                         ret = -EINVAL;
1364                         break;
1365                 }
1366                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1367                                          slot_id, ep_index);
1368                 break;
1369
1370
1371         case USB_ENDPOINT_XFER_INT:
1372                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1373                                 slot_id, ep_index);
1374                 break;
1375
1376         case USB_ENDPOINT_XFER_ISOC:
1377                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1378                                 slot_id, ep_index);
1379         }
1380
1381         if (ret) {
1382 free_priv:
1383                 xhci_urb_free_priv(urb_priv);
1384                 urb->hcpriv = NULL;
1385         }
1386         spin_unlock_irqrestore(&xhci->lock, flags);
1387         return ret;
1388 }
1389
1390 /*
1391  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1392  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1393  * should pick up where it left off in the TD, unless a Set Transfer Ring
1394  * Dequeue Pointer is issued.
1395  *
1396  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1397  * the ring.  Since the ring is a contiguous structure, they can't be physically
1398  * removed.  Instead, there are two options:
1399  *
1400  *  1) If the HC is in the middle of processing the URB to be canceled, we
1401  *     simply move the ring's dequeue pointer past those TRBs using the Set
1402  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1403  *     when drivers timeout on the last submitted URB and attempt to cancel.
1404  *
1405  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1406  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1407  *     HC will need to invalidate the any TRBs it has cached after the stop
1408  *     endpoint command, as noted in the xHCI 0.95 errata.
1409  *
1410  *  3) The TD may have completed by the time the Stop Endpoint Command
1411  *     completes, so software needs to handle that case too.
1412  *
1413  * This function should protect against the TD enqueueing code ringing the
1414  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1415  * It also needs to account for multiple cancellations on happening at the same
1416  * time for the same endpoint.
1417  *
1418  * Note that this function can be called in any context, or so says
1419  * usb_hcd_unlink_urb()
1420  */
1421 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1422 {
1423         unsigned long flags;
1424         int ret, i;
1425         u32 temp;
1426         struct xhci_hcd *xhci;
1427         struct urb_priv *urb_priv;
1428         struct xhci_td *td;
1429         unsigned int ep_index;
1430         struct xhci_ring *ep_ring;
1431         struct xhci_virt_ep *ep;
1432         struct xhci_command *command;
1433         struct xhci_virt_device *vdev;
1434
1435         xhci = hcd_to_xhci(hcd);
1436         spin_lock_irqsave(&xhci->lock, flags);
1437
1438         trace_xhci_urb_dequeue(urb);
1439
1440         /* Make sure the URB hasn't completed or been unlinked already */
1441         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1442         if (ret)
1443                 goto done;
1444
1445         /* give back URB now if we can't queue it for cancel */
1446         vdev = xhci->devs[urb->dev->slot_id];
1447         urb_priv = urb->hcpriv;
1448         if (!vdev || !urb_priv)
1449                 goto err_giveback;
1450
1451         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1452         ep = &vdev->eps[ep_index];
1453         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1454         if (!ep || !ep_ring)
1455                 goto err_giveback;
1456
1457         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1458         temp = readl(&xhci->op_regs->status);
1459         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1460                 xhci_hc_died(xhci);
1461                 goto done;
1462         }
1463
1464         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1465                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1466                                 "HC halted, freeing TD manually.");
1467                 for (i = urb_priv->num_tds_done;
1468                      i < urb_priv->num_tds;
1469                      i++) {
1470                         td = &urb_priv->td[i];
1471                         if (!list_empty(&td->td_list))
1472                                 list_del_init(&td->td_list);
1473                         if (!list_empty(&td->cancelled_td_list))
1474                                 list_del_init(&td->cancelled_td_list);
1475                 }
1476                 goto err_giveback;
1477         }
1478
1479         i = urb_priv->num_tds_done;
1480         if (i < urb_priv->num_tds)
1481                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1482                                 "Cancel URB %p, dev %s, ep 0x%x, "
1483                                 "starting at offset 0x%llx",
1484                                 urb, urb->dev->devpath,
1485                                 urb->ep->desc.bEndpointAddress,
1486                                 (unsigned long long) xhci_trb_virt_to_dma(
1487                                         urb_priv->td[i].start_seg,
1488                                         urb_priv->td[i].first_trb));
1489
1490         for (; i < urb_priv->num_tds; i++) {
1491                 td = &urb_priv->td[i];
1492                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1493         }
1494
1495         /* Queue a stop endpoint command, but only if this is
1496          * the first cancellation to be handled.
1497          */
1498         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1499                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1500                 if (!command) {
1501                         ret = -ENOMEM;
1502                         goto done;
1503                 }
1504                 ep->ep_state |= EP_STOP_CMD_PENDING;
1505                 ep->stop_cmd_timer.expires = jiffies +
1506                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1507                 add_timer(&ep->stop_cmd_timer);
1508                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1509                                          ep_index, 0);
1510                 xhci_ring_cmd_db(xhci);
1511         }
1512 done:
1513         spin_unlock_irqrestore(&xhci->lock, flags);
1514         return ret;
1515
1516 err_giveback:
1517         if (urb_priv)
1518                 xhci_urb_free_priv(urb_priv);
1519         usb_hcd_unlink_urb_from_ep(hcd, urb);
1520         spin_unlock_irqrestore(&xhci->lock, flags);
1521         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1522         return ret;
1523 }
1524
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539                 struct usb_host_endpoint *ep)
1540 {
1541         struct xhci_hcd *xhci;
1542         struct xhci_container_ctx *in_ctx, *out_ctx;
1543         struct xhci_input_control_ctx *ctrl_ctx;
1544         unsigned int ep_index;
1545         struct xhci_ep_ctx *ep_ctx;
1546         u32 drop_flag;
1547         u32 new_add_flags, new_drop_flags;
1548         int ret;
1549
1550         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1551         if (ret <= 0)
1552                 return ret;
1553         xhci = hcd_to_xhci(hcd);
1554         if (xhci->xhc_state & XHCI_STATE_DYING)
1555                 return -ENODEV;
1556
1557         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1558         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1559         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1560                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1561                                 __func__, drop_flag);
1562                 return 0;
1563         }
1564
1565         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1566         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1567         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1568         if (!ctrl_ctx) {
1569                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1570                                 __func__);
1571                 return 0;
1572         }
1573
1574         ep_index = xhci_get_endpoint_index(&ep->desc);
1575         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576         /* If the HC already knows the endpoint is disabled,
1577          * or the HCD has noted it is disabled, ignore this request
1578          */
1579         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1580             le32_to_cpu(ctrl_ctx->drop_flags) &
1581             xhci_get_endpoint_flag(&ep->desc)) {
1582                 /* Do not warn when called after a usb_device_reset */
1583                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1584                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1585                                   __func__, ep);
1586                 return 0;
1587         }
1588
1589         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1590         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1591
1592         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1593         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1594
1595         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1596
1597         if (xhci->quirks & XHCI_MTK_HOST)
1598                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1599
1600         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1601                         (unsigned int) ep->desc.bEndpointAddress,
1602                         udev->slot_id,
1603                         (unsigned int) new_drop_flags,
1604                         (unsigned int) new_add_flags);
1605         return 0;
1606 }
1607
1608 /* Add an endpoint to a new possible bandwidth configuration for this device.
1609  * Only one call to this function is allowed per endpoint before
1610  * check_bandwidth() or reset_bandwidth() must be called.
1611  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1612  * add the endpoint to the schedule with possibly new parameters denoted by a
1613  * different endpoint descriptor in usb_host_endpoint.
1614  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1615  * not allowed.
1616  *
1617  * The USB core will not allow URBs to be queued to an endpoint until the
1618  * configuration or alt setting is installed in the device, so there's no need
1619  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1620  */
1621 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1622                 struct usb_host_endpoint *ep)
1623 {
1624         struct xhci_hcd *xhci;
1625         struct xhci_container_ctx *in_ctx;
1626         unsigned int ep_index;
1627         struct xhci_input_control_ctx *ctrl_ctx;
1628         u32 added_ctxs;
1629         u32 new_add_flags, new_drop_flags;
1630         struct xhci_virt_device *virt_dev;
1631         int ret = 0;
1632
1633         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1634         if (ret <= 0) {
1635                 /* So we won't queue a reset ep command for a root hub */
1636                 ep->hcpriv = NULL;
1637                 return ret;
1638         }
1639         xhci = hcd_to_xhci(hcd);
1640         if (xhci->xhc_state & XHCI_STATE_DYING)
1641                 return -ENODEV;
1642
1643         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1644         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1645                 /* FIXME when we have to issue an evaluate endpoint command to
1646                  * deal with ep0 max packet size changing once we get the
1647                  * descriptors
1648                  */
1649                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1650                                 __func__, added_ctxs);
1651                 return 0;
1652         }
1653
1654         virt_dev = xhci->devs[udev->slot_id];
1655         in_ctx = virt_dev->in_ctx;
1656         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1657         if (!ctrl_ctx) {
1658                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1659                                 __func__);
1660                 return 0;
1661         }
1662
1663         ep_index = xhci_get_endpoint_index(&ep->desc);
1664         /* If this endpoint is already in use, and the upper layers are trying
1665          * to add it again without dropping it, reject the addition.
1666          */
1667         if (virt_dev->eps[ep_index].ring &&
1668                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1669                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1670                                 "without dropping it.\n",
1671                                 (unsigned int) ep->desc.bEndpointAddress);
1672                 return -EINVAL;
1673         }
1674
1675         /* If the HCD has already noted the endpoint is enabled,
1676          * ignore this request.
1677          */
1678         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1679                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1680                                 __func__, ep);
1681                 return 0;
1682         }
1683
1684         /*
1685          * Configuration and alternate setting changes must be done in
1686          * process context, not interrupt context (or so documenation
1687          * for usb_set_interface() and usb_set_configuration() claim).
1688          */
1689         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1690                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1691                                 __func__, ep->desc.bEndpointAddress);
1692                 return -ENOMEM;
1693         }
1694
1695         if (xhci->quirks & XHCI_MTK_HOST) {
1696                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1697                 if (ret < 0) {
1698                         xhci_free_or_cache_endpoint_ring(xhci,
1699                                 virt_dev, ep_index);
1700                         return ret;
1701                 }
1702         }
1703
1704         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1705         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707         /* If xhci_endpoint_disable() was called for this endpoint, but the
1708          * xHC hasn't been notified yet through the check_bandwidth() call,
1709          * this re-adds a new state for the endpoint from the new endpoint
1710          * descriptors.  We must drop and re-add this endpoint, so we leave the
1711          * drop flags alone.
1712          */
1713         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714
1715         /* Store the usb_device pointer for later use */
1716         ep->hcpriv = udev;
1717
1718         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1719                         (unsigned int) ep->desc.bEndpointAddress,
1720                         udev->slot_id,
1721                         (unsigned int) new_drop_flags,
1722                         (unsigned int) new_add_flags);
1723         return 0;
1724 }
1725
1726 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1727 {
1728         struct xhci_input_control_ctx *ctrl_ctx;
1729         struct xhci_ep_ctx *ep_ctx;
1730         struct xhci_slot_ctx *slot_ctx;
1731         int i;
1732
1733         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1734         if (!ctrl_ctx) {
1735                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1736                                 __func__);
1737                 return;
1738         }
1739
1740         /* When a device's add flag and drop flag are zero, any subsequent
1741          * configure endpoint command will leave that endpoint's state
1742          * untouched.  Make sure we don't leave any old state in the input
1743          * endpoint contexts.
1744          */
1745         ctrl_ctx->drop_flags = 0;
1746         ctrl_ctx->add_flags = 0;
1747         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749         /* Endpoint 0 is always valid */
1750         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751         for (i = 1; i < 31; i++) {
1752                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753                 ep_ctx->ep_info = 0;
1754                 ep_ctx->ep_info2 = 0;
1755                 ep_ctx->deq = 0;
1756                 ep_ctx->tx_info = 0;
1757         }
1758 }
1759
1760 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761                 struct usb_device *udev, u32 *cmd_status)
1762 {
1763         int ret;
1764
1765         switch (*cmd_status) {
1766         case COMP_COMMAND_ABORTED:
1767         case COMP_STOPPED:
1768                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1769                 ret = -ETIME;
1770                 break;
1771         case COMP_RESOURCE_ERROR:
1772                 dev_warn(&udev->dev,
1773                          "Not enough host controller resources for new device state.\n");
1774                 ret = -ENOMEM;
1775                 /* FIXME: can we allocate more resources for the HC? */
1776                 break;
1777         case COMP_BANDWIDTH_ERROR:
1778         case COMP_SECONDARY_BANDWIDTH_ERROR:
1779                 dev_warn(&udev->dev,
1780                          "Not enough bandwidth for new device state.\n");
1781                 ret = -ENOSPC;
1782                 /* FIXME: can we go back to the old state? */
1783                 break;
1784         case COMP_TRB_ERROR:
1785                 /* the HCD set up something wrong */
1786                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1787                                 "add flag = 1, "
1788                                 "and endpoint is not disabled.\n");
1789                 ret = -EINVAL;
1790                 break;
1791         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1792                 dev_warn(&udev->dev,
1793                          "ERROR: Incompatible device for endpoint configure command.\n");
1794                 ret = -ENODEV;
1795                 break;
1796         case COMP_SUCCESS:
1797                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1798                                 "Successful Endpoint Configure command");
1799                 ret = 0;
1800                 break;
1801         default:
1802                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1803                                 *cmd_status);
1804                 ret = -EINVAL;
1805                 break;
1806         }
1807         return ret;
1808 }
1809
1810 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1811                 struct usb_device *udev, u32 *cmd_status)
1812 {
1813         int ret;
1814
1815         switch (*cmd_status) {
1816         case COMP_COMMAND_ABORTED:
1817         case COMP_STOPPED:
1818                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1819                 ret = -ETIME;
1820                 break;
1821         case COMP_PARAMETER_ERROR:
1822                 dev_warn(&udev->dev,
1823                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1824                 ret = -EINVAL;
1825                 break;
1826         case COMP_SLOT_NOT_ENABLED_ERROR:
1827                 dev_warn(&udev->dev,
1828                         "WARN: slot not enabled for evaluate context command.\n");
1829                 ret = -EINVAL;
1830                 break;
1831         case COMP_CONTEXT_STATE_ERROR:
1832                 dev_warn(&udev->dev,
1833                         "WARN: invalid context state for evaluate context command.\n");
1834                 ret = -EINVAL;
1835                 break;
1836         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1837                 dev_warn(&udev->dev,
1838                         "ERROR: Incompatible device for evaluate context command.\n");
1839                 ret = -ENODEV;
1840                 break;
1841         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1842                 /* Max Exit Latency too large error */
1843                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1844                 ret = -EINVAL;
1845                 break;
1846         case COMP_SUCCESS:
1847                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1848                                 "Successful evaluate context command");
1849                 ret = 0;
1850                 break;
1851         default:
1852                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1853                         *cmd_status);
1854                 ret = -EINVAL;
1855                 break;
1856         }
1857         return ret;
1858 }
1859
1860 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1861                 struct xhci_input_control_ctx *ctrl_ctx)
1862 {
1863         u32 valid_add_flags;
1864         u32 valid_drop_flags;
1865
1866         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1867          * (bit 1).  The default control endpoint is added during the Address
1868          * Device command and is never removed until the slot is disabled.
1869          */
1870         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1871         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1872
1873         /* Use hweight32 to count the number of ones in the add flags, or
1874          * number of endpoints added.  Don't count endpoints that are changed
1875          * (both added and dropped).
1876          */
1877         return hweight32(valid_add_flags) -
1878                 hweight32(valid_add_flags & valid_drop_flags);
1879 }
1880
1881 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1882                 struct xhci_input_control_ctx *ctrl_ctx)
1883 {
1884         u32 valid_add_flags;
1885         u32 valid_drop_flags;
1886
1887         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1888         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1889
1890         return hweight32(valid_drop_flags) -
1891                 hweight32(valid_add_flags & valid_drop_flags);
1892 }
1893
1894 /*
1895  * We need to reserve the new number of endpoints before the configure endpoint
1896  * command completes.  We can't subtract the dropped endpoints from the number
1897  * of active endpoints until the command completes because we can oversubscribe
1898  * the host in this case:
1899  *
1900  *  - the first configure endpoint command drops more endpoints than it adds
1901  *  - a second configure endpoint command that adds more endpoints is queued
1902  *  - the first configure endpoint command fails, so the config is unchanged
1903  *  - the second command may succeed, even though there isn't enough resources
1904  *
1905  * Must be called with xhci->lock held.
1906  */
1907 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1908                 struct xhci_input_control_ctx *ctrl_ctx)
1909 {
1910         u32 added_eps;
1911
1912         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1913         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1914                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1915                                 "Not enough ep ctxs: "
1916                                 "%u active, need to add %u, limit is %u.",
1917                                 xhci->num_active_eps, added_eps,
1918                                 xhci->limit_active_eps);
1919                 return -ENOMEM;
1920         }
1921         xhci->num_active_eps += added_eps;
1922         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1923                         "Adding %u ep ctxs, %u now active.", added_eps,
1924                         xhci->num_active_eps);
1925         return 0;
1926 }
1927
1928 /*
1929  * The configure endpoint was failed by the xHC for some other reason, so we
1930  * need to revert the resources that failed configuration would have used.
1931  *
1932  * Must be called with xhci->lock held.
1933  */
1934 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1935                 struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937         u32 num_failed_eps;
1938
1939         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1940         xhci->num_active_eps -= num_failed_eps;
1941         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1942                         "Removing %u failed ep ctxs, %u now active.",
1943                         num_failed_eps,
1944                         xhci->num_active_eps);
1945 }
1946
1947 /*
1948  * Now that the command has completed, clean up the active endpoint count by
1949  * subtracting out the endpoints that were dropped (but not changed).
1950  *
1951  * Must be called with xhci->lock held.
1952  */
1953 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1954                 struct xhci_input_control_ctx *ctrl_ctx)
1955 {
1956         u32 num_dropped_eps;
1957
1958         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1959         xhci->num_active_eps -= num_dropped_eps;
1960         if (num_dropped_eps)
1961                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1962                                 "Removing %u dropped ep ctxs, %u now active.",
1963                                 num_dropped_eps,
1964                                 xhci->num_active_eps);
1965 }
1966
1967 static unsigned int xhci_get_block_size(struct usb_device *udev)
1968 {
1969         switch (udev->speed) {
1970         case USB_SPEED_LOW:
1971         case USB_SPEED_FULL:
1972                 return FS_BLOCK;
1973         case USB_SPEED_HIGH:
1974                 return HS_BLOCK;
1975         case USB_SPEED_SUPER:
1976         case USB_SPEED_SUPER_PLUS:
1977                 return SS_BLOCK;
1978         case USB_SPEED_UNKNOWN:
1979         case USB_SPEED_WIRELESS:
1980         default:
1981                 /* Should never happen */
1982                 return 1;
1983         }
1984 }
1985
1986 static unsigned int
1987 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1988 {
1989         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1990                 return LS_OVERHEAD;
1991         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1992                 return FS_OVERHEAD;
1993         return HS_OVERHEAD;
1994 }
1995
1996 /* If we are changing a LS/FS device under a HS hub,
1997  * make sure (if we are activating a new TT) that the HS bus has enough
1998  * bandwidth for this new TT.
1999  */
2000 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2001                 struct xhci_virt_device *virt_dev,
2002                 int old_active_eps)
2003 {
2004         struct xhci_interval_bw_table *bw_table;
2005         struct xhci_tt_bw_info *tt_info;
2006
2007         /* Find the bandwidth table for the root port this TT is attached to. */
2008         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2009         tt_info = virt_dev->tt_info;
2010         /* If this TT already had active endpoints, the bandwidth for this TT
2011          * has already been added.  Removing all periodic endpoints (and thus
2012          * making the TT enactive) will only decrease the bandwidth used.
2013          */
2014         if (old_active_eps)
2015                 return 0;
2016         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2017                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2018                         return -ENOMEM;
2019                 return 0;
2020         }
2021         /* Not sure why we would have no new active endpoints...
2022          *
2023          * Maybe because of an Evaluate Context change for a hub update or a
2024          * control endpoint 0 max packet size change?
2025          * FIXME: skip the bandwidth calculation in that case.
2026          */
2027         return 0;
2028 }
2029
2030 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2031                 struct xhci_virt_device *virt_dev)
2032 {
2033         unsigned int bw_reserved;
2034
2035         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2036         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2037                 return -ENOMEM;
2038
2039         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2040         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2041                 return -ENOMEM;
2042
2043         return 0;
2044 }
2045
2046 /*
2047  * This algorithm is a very conservative estimate of the worst-case scheduling
2048  * scenario for any one interval.  The hardware dynamically schedules the
2049  * packets, so we can't tell which microframe could be the limiting factor in
2050  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2051  *
2052  * Obviously, we can't solve an NP complete problem to find the minimum worst
2053  * case scenario.  Instead, we come up with an estimate that is no less than
2054  * the worst case bandwidth used for any one microframe, but may be an
2055  * over-estimate.
2056  *
2057  * We walk the requirements for each endpoint by interval, starting with the
2058  * smallest interval, and place packets in the schedule where there is only one
2059  * possible way to schedule packets for that interval.  In order to simplify
2060  * this algorithm, we record the largest max packet size for each interval, and
2061  * assume all packets will be that size.
2062  *
2063  * For interval 0, we obviously must schedule all packets for each interval.
2064  * The bandwidth for interval 0 is just the amount of data to be transmitted
2065  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2066  * the number of packets).
2067  *
2068  * For interval 1, we have two possible microframes to schedule those packets
2069  * in.  For this algorithm, if we can schedule the same number of packets for
2070  * each possible scheduling opportunity (each microframe), we will do so.  The
2071  * remaining number of packets will be saved to be transmitted in the gaps in
2072  * the next interval's scheduling sequence.
2073  *
2074  * As we move those remaining packets to be scheduled with interval 2 packets,
2075  * we have to double the number of remaining packets to transmit.  This is
2076  * because the intervals are actually powers of 2, and we would be transmitting
2077  * the previous interval's packets twice in this interval.  We also have to be
2078  * sure that when we look at the largest max packet size for this interval, we
2079  * also look at the largest max packet size for the remaining packets and take
2080  * the greater of the two.
2081  *
2082  * The algorithm continues to evenly distribute packets in each scheduling
2083  * opportunity, and push the remaining packets out, until we get to the last
2084  * interval.  Then those packets and their associated overhead are just added
2085  * to the bandwidth used.
2086  */
2087 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2088                 struct xhci_virt_device *virt_dev,
2089                 int old_active_eps)
2090 {
2091         unsigned int bw_reserved;
2092         unsigned int max_bandwidth;
2093         unsigned int bw_used;
2094         unsigned int block_size;
2095         struct xhci_interval_bw_table *bw_table;
2096         unsigned int packet_size = 0;
2097         unsigned int overhead = 0;
2098         unsigned int packets_transmitted = 0;
2099         unsigned int packets_remaining = 0;
2100         unsigned int i;
2101
2102         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2103                 return xhci_check_ss_bw(xhci, virt_dev);
2104
2105         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2106                 max_bandwidth = HS_BW_LIMIT;
2107                 /* Convert percent of bus BW reserved to blocks reserved */
2108                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2109         } else {
2110                 max_bandwidth = FS_BW_LIMIT;
2111                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2112         }
2113
2114         bw_table = virt_dev->bw_table;
2115         /* We need to translate the max packet size and max ESIT payloads into
2116          * the units the hardware uses.
2117          */
2118         block_size = xhci_get_block_size(virt_dev->udev);
2119
2120         /* If we are manipulating a LS/FS device under a HS hub, double check
2121          * that the HS bus has enough bandwidth if we are activing a new TT.
2122          */
2123         if (virt_dev->tt_info) {
2124                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125                                 "Recalculating BW for rootport %u",
2126                                 virt_dev->real_port);
2127                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2128                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2129                                         "newly activated TT.\n");
2130                         return -ENOMEM;
2131                 }
2132                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2133                                 "Recalculating BW for TT slot %u port %u",
2134                                 virt_dev->tt_info->slot_id,
2135                                 virt_dev->tt_info->ttport);
2136         } else {
2137                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2138                                 "Recalculating BW for rootport %u",
2139                                 virt_dev->real_port);
2140         }
2141
2142         /* Add in how much bandwidth will be used for interval zero, or the
2143          * rounded max ESIT payload + number of packets * largest overhead.
2144          */
2145         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2146                 bw_table->interval_bw[0].num_packets *
2147                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2148
2149         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2150                 unsigned int bw_added;
2151                 unsigned int largest_mps;
2152                 unsigned int interval_overhead;
2153
2154                 /*
2155                  * How many packets could we transmit in this interval?
2156                  * If packets didn't fit in the previous interval, we will need
2157                  * to transmit that many packets twice within this interval.
2158                  */
2159                 packets_remaining = 2 * packets_remaining +
2160                         bw_table->interval_bw[i].num_packets;
2161
2162                 /* Find the largest max packet size of this or the previous
2163                  * interval.
2164                  */
2165                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2166                         largest_mps = 0;
2167                 else {
2168                         struct xhci_virt_ep *virt_ep;
2169                         struct list_head *ep_entry;
2170
2171                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2172                         virt_ep = list_entry(ep_entry,
2173                                         struct xhci_virt_ep, bw_endpoint_list);
2174                         /* Convert to blocks, rounding up */
2175                         largest_mps = DIV_ROUND_UP(
2176                                         virt_ep->bw_info.max_packet_size,
2177                                         block_size);
2178                 }
2179                 if (largest_mps > packet_size)
2180                         packet_size = largest_mps;
2181
2182                 /* Use the larger overhead of this or the previous interval. */
2183                 interval_overhead = xhci_get_largest_overhead(
2184                                 &bw_table->interval_bw[i]);
2185                 if (interval_overhead > overhead)
2186                         overhead = interval_overhead;
2187
2188                 /* How many packets can we evenly distribute across
2189                  * (1 << (i + 1)) possible scheduling opportunities?
2190                  */
2191                 packets_transmitted = packets_remaining >> (i + 1);
2192
2193                 /* Add in the bandwidth used for those scheduled packets */
2194                 bw_added = packets_transmitted * (overhead + packet_size);
2195
2196                 /* How many packets do we have remaining to transmit? */
2197                 packets_remaining = packets_remaining % (1 << (i + 1));
2198
2199                 /* What largest max packet size should those packets have? */
2200                 /* If we've transmitted all packets, don't carry over the
2201                  * largest packet size.
2202                  */
2203                 if (packets_remaining == 0) {
2204                         packet_size = 0;
2205                         overhead = 0;
2206                 } else if (packets_transmitted > 0) {
2207                         /* Otherwise if we do have remaining packets, and we've
2208                          * scheduled some packets in this interval, take the
2209                          * largest max packet size from endpoints with this
2210                          * interval.
2211                          */
2212                         packet_size = largest_mps;
2213                         overhead = interval_overhead;
2214                 }
2215                 /* Otherwise carry over packet_size and overhead from the last
2216                  * time we had a remainder.
2217                  */
2218                 bw_used += bw_added;
2219                 if (bw_used > max_bandwidth) {
2220                         xhci_warn(xhci, "Not enough bandwidth. "
2221                                         "Proposed: %u, Max: %u\n",
2222                                 bw_used, max_bandwidth);
2223                         return -ENOMEM;
2224                 }
2225         }
2226         /*
2227          * Ok, we know we have some packets left over after even-handedly
2228          * scheduling interval 15.  We don't know which microframes they will
2229          * fit into, so we over-schedule and say they will be scheduled every
2230          * microframe.
2231          */
2232         if (packets_remaining > 0)
2233                 bw_used += overhead + packet_size;
2234
2235         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2236                 unsigned int port_index = virt_dev->real_port - 1;
2237
2238                 /* OK, we're manipulating a HS device attached to a
2239                  * root port bandwidth domain.  Include the number of active TTs
2240                  * in the bandwidth used.
2241                  */
2242                 bw_used += TT_HS_OVERHEAD *
2243                         xhci->rh_bw[port_index].num_active_tts;
2244         }
2245
2246         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2248                 "Available: %u " "percent",
2249                 bw_used, max_bandwidth, bw_reserved,
2250                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2251                 max_bandwidth);
2252
2253         bw_used += bw_reserved;
2254         if (bw_used > max_bandwidth) {
2255                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2256                                 bw_used, max_bandwidth);
2257                 return -ENOMEM;
2258         }
2259
2260         bw_table->bw_used = bw_used;
2261         return 0;
2262 }
2263
2264 static bool xhci_is_async_ep(unsigned int ep_type)
2265 {
2266         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2267                                         ep_type != ISOC_IN_EP &&
2268                                         ep_type != INT_IN_EP);
2269 }
2270
2271 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2272 {
2273         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2274 }
2275
2276 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2277 {
2278         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2279
2280         if (ep_bw->ep_interval == 0)
2281                 return SS_OVERHEAD_BURST +
2282                         (ep_bw->mult * ep_bw->num_packets *
2283                                         (SS_OVERHEAD + mps));
2284         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2285                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2286                                 1 << ep_bw->ep_interval);
2287
2288 }
2289
2290 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2291                 struct xhci_bw_info *ep_bw,
2292                 struct xhci_interval_bw_table *bw_table,
2293                 struct usb_device *udev,
2294                 struct xhci_virt_ep *virt_ep,
2295                 struct xhci_tt_bw_info *tt_info)
2296 {
2297         struct xhci_interval_bw *interval_bw;
2298         int normalized_interval;
2299
2300         if (xhci_is_async_ep(ep_bw->type))
2301                 return;
2302
2303         if (udev->speed >= USB_SPEED_SUPER) {
2304                 if (xhci_is_sync_in_ep(ep_bw->type))
2305                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2306                                 xhci_get_ss_bw_consumed(ep_bw);
2307                 else
2308                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2309                                 xhci_get_ss_bw_consumed(ep_bw);
2310                 return;
2311         }
2312
2313         /* SuperSpeed endpoints never get added to intervals in the table, so
2314          * this check is only valid for HS/FS/LS devices.
2315          */
2316         if (list_empty(&virt_ep->bw_endpoint_list))
2317                 return;
2318         /* For LS/FS devices, we need to translate the interval expressed in
2319          * microframes to frames.
2320          */
2321         if (udev->speed == USB_SPEED_HIGH)
2322                 normalized_interval = ep_bw->ep_interval;
2323         else
2324                 normalized_interval = ep_bw->ep_interval - 3;
2325
2326         if (normalized_interval == 0)
2327                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2328         interval_bw = &bw_table->interval_bw[normalized_interval];
2329         interval_bw->num_packets -= ep_bw->num_packets;
2330         switch (udev->speed) {
2331         case USB_SPEED_LOW:
2332                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2333                 break;
2334         case USB_SPEED_FULL:
2335                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2336                 break;
2337         case USB_SPEED_HIGH:
2338                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2339                 break;
2340         case USB_SPEED_SUPER:
2341         case USB_SPEED_SUPER_PLUS:
2342         case USB_SPEED_UNKNOWN:
2343         case USB_SPEED_WIRELESS:
2344                 /* Should never happen because only LS/FS/HS endpoints will get
2345                  * added to the endpoint list.
2346                  */
2347                 return;
2348         }
2349         if (tt_info)
2350                 tt_info->active_eps -= 1;
2351         list_del_init(&virt_ep->bw_endpoint_list);
2352 }
2353
2354 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2355                 struct xhci_bw_info *ep_bw,
2356                 struct xhci_interval_bw_table *bw_table,
2357                 struct usb_device *udev,
2358                 struct xhci_virt_ep *virt_ep,
2359                 struct xhci_tt_bw_info *tt_info)
2360 {
2361         struct xhci_interval_bw *interval_bw;
2362         struct xhci_virt_ep *smaller_ep;
2363         int normalized_interval;
2364
2365         if (xhci_is_async_ep(ep_bw->type))
2366                 return;
2367
2368         if (udev->speed == USB_SPEED_SUPER) {
2369                 if (xhci_is_sync_in_ep(ep_bw->type))
2370                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2371                                 xhci_get_ss_bw_consumed(ep_bw);
2372                 else
2373                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2374                                 xhci_get_ss_bw_consumed(ep_bw);
2375                 return;
2376         }
2377
2378         /* For LS/FS devices, we need to translate the interval expressed in
2379          * microframes to frames.
2380          */
2381         if (udev->speed == USB_SPEED_HIGH)
2382                 normalized_interval = ep_bw->ep_interval;
2383         else
2384                 normalized_interval = ep_bw->ep_interval - 3;
2385
2386         if (normalized_interval == 0)
2387                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2388         interval_bw = &bw_table->interval_bw[normalized_interval];
2389         interval_bw->num_packets += ep_bw->num_packets;
2390         switch (udev->speed) {
2391         case USB_SPEED_LOW:
2392                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2393                 break;
2394         case USB_SPEED_FULL:
2395                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2396                 break;
2397         case USB_SPEED_HIGH:
2398                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2399                 break;
2400         case USB_SPEED_SUPER:
2401         case USB_SPEED_SUPER_PLUS:
2402         case USB_SPEED_UNKNOWN:
2403         case USB_SPEED_WIRELESS:
2404                 /* Should never happen because only LS/FS/HS endpoints will get
2405                  * added to the endpoint list.
2406                  */
2407                 return;
2408         }
2409
2410         if (tt_info)
2411                 tt_info->active_eps += 1;
2412         /* Insert the endpoint into the list, largest max packet size first. */
2413         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2414                         bw_endpoint_list) {
2415                 if (ep_bw->max_packet_size >=
2416                                 smaller_ep->bw_info.max_packet_size) {
2417                         /* Add the new ep before the smaller endpoint */
2418                         list_add_tail(&virt_ep->bw_endpoint_list,
2419                                         &smaller_ep->bw_endpoint_list);
2420                         return;
2421                 }
2422         }
2423         /* Add the new endpoint at the end of the list. */
2424         list_add_tail(&virt_ep->bw_endpoint_list,
2425                         &interval_bw->endpoints);
2426 }
2427
2428 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2429                 struct xhci_virt_device *virt_dev,
2430                 int old_active_eps)
2431 {
2432         struct xhci_root_port_bw_info *rh_bw_info;
2433         if (!virt_dev->tt_info)
2434                 return;
2435
2436         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2437         if (old_active_eps == 0 &&
2438                                 virt_dev->tt_info->active_eps != 0) {
2439                 rh_bw_info->num_active_tts += 1;
2440                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2441         } else if (old_active_eps != 0 &&
2442                                 virt_dev->tt_info->active_eps == 0) {
2443                 rh_bw_info->num_active_tts -= 1;
2444                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2445         }
2446 }
2447
2448 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2449                 struct xhci_virt_device *virt_dev,
2450                 struct xhci_container_ctx *in_ctx)
2451 {
2452         struct xhci_bw_info ep_bw_info[31];
2453         int i;
2454         struct xhci_input_control_ctx *ctrl_ctx;
2455         int old_active_eps = 0;
2456
2457         if (virt_dev->tt_info)
2458                 old_active_eps = virt_dev->tt_info->active_eps;
2459
2460         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2461         if (!ctrl_ctx) {
2462                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2463                                 __func__);
2464                 return -ENOMEM;
2465         }
2466
2467         for (i = 0; i < 31; i++) {
2468                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2469                         continue;
2470
2471                 /* Make a copy of the BW info in case we need to revert this */
2472                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2473                                 sizeof(ep_bw_info[i]));
2474                 /* Drop the endpoint from the interval table if the endpoint is
2475                  * being dropped or changed.
2476                  */
2477                 if (EP_IS_DROPPED(ctrl_ctx, i))
2478                         xhci_drop_ep_from_interval_table(xhci,
2479                                         &virt_dev->eps[i].bw_info,
2480                                         virt_dev->bw_table,
2481                                         virt_dev->udev,
2482                                         &virt_dev->eps[i],
2483                                         virt_dev->tt_info);
2484         }
2485         /* Overwrite the information stored in the endpoints' bw_info */
2486         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2487         for (i = 0; i < 31; i++) {
2488                 /* Add any changed or added endpoints to the interval table */
2489                 if (EP_IS_ADDED(ctrl_ctx, i))
2490                         xhci_add_ep_to_interval_table(xhci,
2491                                         &virt_dev->eps[i].bw_info,
2492                                         virt_dev->bw_table,
2493                                         virt_dev->udev,
2494                                         &virt_dev->eps[i],
2495                                         virt_dev->tt_info);
2496         }
2497
2498         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2499                 /* Ok, this fits in the bandwidth we have.
2500                  * Update the number of active TTs.
2501                  */
2502                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2503                 return 0;
2504         }
2505
2506         /* We don't have enough bandwidth for this, revert the stored info. */
2507         for (i = 0; i < 31; i++) {
2508                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2509                         continue;
2510
2511                 /* Drop the new copies of any added or changed endpoints from
2512                  * the interval table.
2513                  */
2514                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2515                         xhci_drop_ep_from_interval_table(xhci,
2516                                         &virt_dev->eps[i].bw_info,
2517                                         virt_dev->bw_table,
2518                                         virt_dev->udev,
2519                                         &virt_dev->eps[i],
2520                                         virt_dev->tt_info);
2521                 }
2522                 /* Revert the endpoint back to its old information */
2523                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2524                                 sizeof(ep_bw_info[i]));
2525                 /* Add any changed or dropped endpoints back into the table */
2526                 if (EP_IS_DROPPED(ctrl_ctx, i))
2527                         xhci_add_ep_to_interval_table(xhci,
2528                                         &virt_dev->eps[i].bw_info,
2529                                         virt_dev->bw_table,
2530                                         virt_dev->udev,
2531                                         &virt_dev->eps[i],
2532                                         virt_dev->tt_info);
2533         }
2534         return -ENOMEM;
2535 }
2536
2537
2538 /* Issue a configure endpoint command or evaluate context command
2539  * and wait for it to finish.
2540  */
2541 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2542                 struct usb_device *udev,
2543                 struct xhci_command *command,
2544                 bool ctx_change, bool must_succeed)
2545 {
2546         int ret;
2547         unsigned long flags;
2548         struct xhci_input_control_ctx *ctrl_ctx;
2549         struct xhci_virt_device *virt_dev;
2550
2551         if (!command)
2552                 return -EINVAL;
2553
2554         spin_lock_irqsave(&xhci->lock, flags);
2555
2556         if (xhci->xhc_state & XHCI_STATE_DYING) {
2557                 spin_unlock_irqrestore(&xhci->lock, flags);
2558                 return -ESHUTDOWN;
2559         }
2560
2561         virt_dev = xhci->devs[udev->slot_id];
2562
2563         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2564         if (!ctrl_ctx) {
2565                 spin_unlock_irqrestore(&xhci->lock, flags);
2566                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2567                                 __func__);
2568                 return -ENOMEM;
2569         }
2570
2571         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2572                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2573                 spin_unlock_irqrestore(&xhci->lock, flags);
2574                 xhci_warn(xhci, "Not enough host resources, "
2575                                 "active endpoint contexts = %u\n",
2576                                 xhci->num_active_eps);
2577                 return -ENOMEM;
2578         }
2579         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2580             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2581                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2582                         xhci_free_host_resources(xhci, ctrl_ctx);
2583                 spin_unlock_irqrestore(&xhci->lock, flags);
2584                 xhci_warn(xhci, "Not enough bandwidth\n");
2585                 return -ENOMEM;
2586         }
2587
2588         if (!ctx_change)
2589                 ret = xhci_queue_configure_endpoint(xhci, command,
2590                                 command->in_ctx->dma,
2591                                 udev->slot_id, must_succeed);
2592         else
2593                 ret = xhci_queue_evaluate_context(xhci, command,
2594                                 command->in_ctx->dma,
2595                                 udev->slot_id, must_succeed);
2596         if (ret < 0) {
2597                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2598                         xhci_free_host_resources(xhci, ctrl_ctx);
2599                 spin_unlock_irqrestore(&xhci->lock, flags);
2600                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2601                                 "FIXME allocate a new ring segment");
2602                 return -ENOMEM;
2603         }
2604         xhci_ring_cmd_db(xhci);
2605         spin_unlock_irqrestore(&xhci->lock, flags);
2606
2607         /* Wait for the configure endpoint command to complete */
2608         wait_for_completion(command->completion);
2609
2610         if (!ctx_change)
2611                 ret = xhci_configure_endpoint_result(xhci, udev,
2612                                                      &command->status);
2613         else
2614                 ret = xhci_evaluate_context_result(xhci, udev,
2615                                                    &command->status);
2616
2617         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2618                 spin_lock_irqsave(&xhci->lock, flags);
2619                 /* If the command failed, remove the reserved resources.
2620                  * Otherwise, clean up the estimate to include dropped eps.
2621                  */
2622                 if (ret)
2623                         xhci_free_host_resources(xhci, ctrl_ctx);
2624                 else
2625                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2626                 spin_unlock_irqrestore(&xhci->lock, flags);
2627         }
2628         return ret;
2629 }
2630
2631 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2632         struct xhci_virt_device *vdev, int i)
2633 {
2634         struct xhci_virt_ep *ep = &vdev->eps[i];
2635
2636         if (ep->ep_state & EP_HAS_STREAMS) {
2637                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2638                                 xhci_get_endpoint_address(i));
2639                 xhci_free_stream_info(xhci, ep->stream_info);
2640                 ep->stream_info = NULL;
2641                 ep->ep_state &= ~EP_HAS_STREAMS;
2642         }
2643 }
2644
2645 /* Called after one or more calls to xhci_add_endpoint() or
2646  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2647  * to call xhci_reset_bandwidth().
2648  *
2649  * Since we are in the middle of changing either configuration or
2650  * installing a new alt setting, the USB core won't allow URBs to be
2651  * enqueued for any endpoint on the old config or interface.  Nothing
2652  * else should be touching the xhci->devs[slot_id] structure, so we
2653  * don't need to take the xhci->lock for manipulating that.
2654  */
2655 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2656 {
2657         int i;
2658         int ret = 0;
2659         struct xhci_hcd *xhci;
2660         struct xhci_virt_device *virt_dev;
2661         struct xhci_input_control_ctx *ctrl_ctx;
2662         struct xhci_slot_ctx *slot_ctx;
2663         struct xhci_command *command;
2664
2665         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2666         if (ret <= 0)
2667                 return ret;
2668         xhci = hcd_to_xhci(hcd);
2669         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2670                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2671                 return -ENODEV;
2672
2673         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2674         virt_dev = xhci->devs[udev->slot_id];
2675
2676         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2677         if (!command)
2678                 return -ENOMEM;
2679
2680         command->in_ctx = virt_dev->in_ctx;
2681
2682         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2683         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2684         if (!ctrl_ctx) {
2685                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2686                                 __func__);
2687                 ret = -ENOMEM;
2688                 goto command_cleanup;
2689         }
2690         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2691         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2692         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2693
2694         /* Don't issue the command if there's no endpoints to update. */
2695         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2696             ctrl_ctx->drop_flags == 0) {
2697                 ret = 0;
2698                 goto command_cleanup;
2699         }
2700         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2701         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2702         for (i = 31; i >= 1; i--) {
2703                 __le32 le32 = cpu_to_le32(BIT(i));
2704
2705                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2706                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2707                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2708                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2709                         break;
2710                 }
2711         }
2712
2713         ret = xhci_configure_endpoint(xhci, udev, command,
2714                         false, false);
2715         if (ret)
2716                 /* Callee should call reset_bandwidth() */
2717                 goto command_cleanup;
2718
2719         /* Free any rings that were dropped, but not changed. */
2720         for (i = 1; i < 31; i++) {
2721                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2722                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2723                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2724                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2725                 }
2726         }
2727         xhci_zero_in_ctx(xhci, virt_dev);
2728         /*
2729          * Install any rings for completely new endpoints or changed endpoints,
2730          * and free or cache any old rings from changed endpoints.
2731          */
2732         for (i = 1; i < 31; i++) {
2733                 if (!virt_dev->eps[i].new_ring)
2734                         continue;
2735                 /* Only cache or free the old ring if it exists.
2736                  * It may not if this is the first add of an endpoint.
2737                  */
2738                 if (virt_dev->eps[i].ring) {
2739                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740                 }
2741                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2742                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2743                 virt_dev->eps[i].new_ring = NULL;
2744         }
2745 command_cleanup:
2746         kfree(command->completion);
2747         kfree(command);
2748
2749         return ret;
2750 }
2751
2752 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2753 {
2754         struct xhci_hcd *xhci;
2755         struct xhci_virt_device *virt_dev;
2756         int i, ret;
2757
2758         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2759         if (ret <= 0)
2760                 return;
2761         xhci = hcd_to_xhci(hcd);
2762
2763         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2764         virt_dev = xhci->devs[udev->slot_id];
2765         /* Free any rings allocated for added endpoints */
2766         for (i = 0; i < 31; i++) {
2767                 if (virt_dev->eps[i].new_ring) {
2768                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2769                         virt_dev->eps[i].new_ring = NULL;
2770                 }
2771         }
2772         xhci_zero_in_ctx(xhci, virt_dev);
2773 }
2774
2775 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2776                 struct xhci_container_ctx *in_ctx,
2777                 struct xhci_container_ctx *out_ctx,
2778                 struct xhci_input_control_ctx *ctrl_ctx,
2779                 u32 add_flags, u32 drop_flags)
2780 {
2781         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2782         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2783         xhci_slot_copy(xhci, in_ctx, out_ctx);
2784         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2785 }
2786
2787 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2788                 unsigned int slot_id, unsigned int ep_index,
2789                 struct xhci_dequeue_state *deq_state)
2790 {
2791         struct xhci_input_control_ctx *ctrl_ctx;
2792         struct xhci_container_ctx *in_ctx;
2793         struct xhci_ep_ctx *ep_ctx;
2794         u32 added_ctxs;
2795         dma_addr_t addr;
2796
2797         in_ctx = xhci->devs[slot_id]->in_ctx;
2798         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2799         if (!ctrl_ctx) {
2800                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2801                                 __func__);
2802                 return;
2803         }
2804
2805         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2806                         xhci->devs[slot_id]->out_ctx, ep_index);
2807         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2808         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2809                         deq_state->new_deq_ptr);
2810         if (addr == 0) {
2811                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2812                                 "reset ep command\n");
2813                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2814                                 deq_state->new_deq_seg,
2815                                 deq_state->new_deq_ptr);
2816                 return;
2817         }
2818         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2819
2820         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2821         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2822                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2823                         added_ctxs, added_ctxs);
2824 }
2825
2826 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2827                         unsigned int ep_index, struct xhci_td *td)
2828 {
2829         struct xhci_dequeue_state deq_state;
2830         struct xhci_virt_ep *ep;
2831         struct usb_device *udev = td->urb->dev;
2832
2833         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2834                         "Cleaning up stalled endpoint ring");
2835         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2836         /* We need to move the HW's dequeue pointer past this TD,
2837          * or it will attempt to resend it on the next doorbell ring.
2838          */
2839         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2840                         ep_index, ep->stopped_stream, td, &deq_state);
2841
2842         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2843                 return;
2844
2845         /* HW with the reset endpoint quirk will use the saved dequeue state to
2846          * issue a configure endpoint command later.
2847          */
2848         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2849                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2850                                 "Queueing new dequeue state");
2851                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2852                                 ep_index, ep->stopped_stream, &deq_state);
2853         } else {
2854                 /* Better hope no one uses the input context between now and the
2855                  * reset endpoint completion!
2856                  * XXX: No idea how this hardware will react when stream rings
2857                  * are enabled.
2858                  */
2859                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2860                                 "Setting up input context for "
2861                                 "configure endpoint command");
2862                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2863                                 ep_index, &deq_state);
2864         }
2865 }
2866
2867 /* Called when clearing halted device. The core should have sent the control
2868  * message to clear the device halt condition. The host side of the halt should
2869  * already be cleared with a reset endpoint command issued when the STALL tx
2870  * event was received.
2871  *
2872  * Context: in_interrupt
2873  */
2874
2875 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2876                 struct usb_host_endpoint *ep)
2877 {
2878         struct xhci_hcd *xhci;
2879
2880         xhci = hcd_to_xhci(hcd);
2881
2882         /*
2883          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2884          * The Reset Endpoint Command may only be issued to endpoints in the
2885          * Halted state. If software wishes reset the Data Toggle or Sequence
2886          * Number of an endpoint that isn't in the Halted state, then software
2887          * may issue a Configure Endpoint Command with the Drop and Add bits set
2888          * for the target endpoint. that is in the Stopped state.
2889          */
2890
2891         /* For now just print debug to follow the situation */
2892         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2893                  ep->desc.bEndpointAddress);
2894 }
2895
2896 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2897                 struct usb_device *udev, struct usb_host_endpoint *ep,
2898                 unsigned int slot_id)
2899 {
2900         int ret;
2901         unsigned int ep_index;
2902         unsigned int ep_state;
2903
2904         if (!ep)
2905                 return -EINVAL;
2906         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2907         if (ret <= 0)
2908                 return -EINVAL;
2909         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2910                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2911                                 " descriptor for ep 0x%x does not support streams\n",
2912                                 ep->desc.bEndpointAddress);
2913                 return -EINVAL;
2914         }
2915
2916         ep_index = xhci_get_endpoint_index(&ep->desc);
2917         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2918         if (ep_state & EP_HAS_STREAMS ||
2919                         ep_state & EP_GETTING_STREAMS) {
2920                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2921                                 "already has streams set up.\n",
2922                                 ep->desc.bEndpointAddress);
2923                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2924                                 "dynamic stream context array reallocation.\n");
2925                 return -EINVAL;
2926         }
2927         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2928                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2929                                 "endpoint 0x%x; URBs are pending.\n",
2930                                 ep->desc.bEndpointAddress);
2931                 return -EINVAL;
2932         }
2933         return 0;
2934 }
2935
2936 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2937                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2938 {
2939         unsigned int max_streams;
2940
2941         /* The stream context array size must be a power of two */
2942         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2943         /*
2944          * Find out how many primary stream array entries the host controller
2945          * supports.  Later we may use secondary stream arrays (similar to 2nd
2946          * level page entries), but that's an optional feature for xHCI host
2947          * controllers. xHCs must support at least 4 stream IDs.
2948          */
2949         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2950         if (*num_stream_ctxs > max_streams) {
2951                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2952                                 max_streams);
2953                 *num_stream_ctxs = max_streams;
2954                 *num_streams = max_streams;
2955         }
2956 }
2957
2958 /* Returns an error code if one of the endpoint already has streams.
2959  * This does not change any data structures, it only checks and gathers
2960  * information.
2961  */
2962 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2963                 struct usb_device *udev,
2964                 struct usb_host_endpoint **eps, unsigned int num_eps,
2965                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2966 {
2967         unsigned int max_streams;
2968         unsigned int endpoint_flag;
2969         int i;
2970         int ret;
2971
2972         for (i = 0; i < num_eps; i++) {
2973                 ret = xhci_check_streams_endpoint(xhci, udev,
2974                                 eps[i], udev->slot_id);
2975                 if (ret < 0)
2976                         return ret;
2977
2978                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2979                 if (max_streams < (*num_streams - 1)) {
2980                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2981                                         eps[i]->desc.bEndpointAddress,
2982                                         max_streams);
2983                         *num_streams = max_streams+1;
2984                 }
2985
2986                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2987                 if (*changed_ep_bitmask & endpoint_flag)
2988                         return -EINVAL;
2989                 *changed_ep_bitmask |= endpoint_flag;
2990         }
2991         return 0;
2992 }
2993
2994 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2995                 struct usb_device *udev,
2996                 struct usb_host_endpoint **eps, unsigned int num_eps)
2997 {
2998         u32 changed_ep_bitmask = 0;
2999         unsigned int slot_id;
3000         unsigned int ep_index;
3001         unsigned int ep_state;
3002         int i;
3003
3004         slot_id = udev->slot_id;
3005         if (!xhci->devs[slot_id])
3006                 return 0;
3007
3008         for (i = 0; i < num_eps; i++) {
3009                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3010                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3011                 /* Are streams already being freed for the endpoint? */
3012                 if (ep_state & EP_GETTING_NO_STREAMS) {
3013                         xhci_warn(xhci, "WARN Can't disable streams for "
3014                                         "endpoint 0x%x, "
3015                                         "streams are being disabled already\n",
3016                                         eps[i]->desc.bEndpointAddress);
3017                         return 0;
3018                 }
3019                 /* Are there actually any streams to free? */
3020                 if (!(ep_state & EP_HAS_STREAMS) &&
3021                                 !(ep_state & EP_GETTING_STREAMS)) {
3022                         xhci_warn(xhci, "WARN Can't disable streams for "
3023                                         "endpoint 0x%x, "
3024                                         "streams are already disabled!\n",
3025                                         eps[i]->desc.bEndpointAddress);
3026                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3027                                         "with non-streams endpoint\n");
3028                         return 0;
3029                 }
3030                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3031         }
3032         return changed_ep_bitmask;
3033 }
3034
3035 /*
3036  * The USB device drivers use this function (through the HCD interface in USB
3037  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3038  * coordinate mass storage command queueing across multiple endpoints (basically
3039  * a stream ID == a task ID).
3040  *
3041  * Setting up streams involves allocating the same size stream context array
3042  * for each endpoint and issuing a configure endpoint command for all endpoints.
3043  *
3044  * Don't allow the call to succeed if one endpoint only supports one stream
3045  * (which means it doesn't support streams at all).
3046  *
3047  * Drivers may get less stream IDs than they asked for, if the host controller
3048  * hardware or endpoints claim they can't support the number of requested
3049  * stream IDs.
3050  */
3051 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3052                 struct usb_host_endpoint **eps, unsigned int num_eps,
3053                 unsigned int num_streams, gfp_t mem_flags)
3054 {
3055         int i, ret;
3056         struct xhci_hcd *xhci;
3057         struct xhci_virt_device *vdev;
3058         struct xhci_command *config_cmd;
3059         struct xhci_input_control_ctx *ctrl_ctx;
3060         unsigned int ep_index;
3061         unsigned int num_stream_ctxs;
3062         unsigned int max_packet;
3063         unsigned long flags;
3064         u32 changed_ep_bitmask = 0;
3065
3066         if (!eps)
3067                 return -EINVAL;
3068
3069         /* Add one to the number of streams requested to account for
3070          * stream 0 that is reserved for xHCI usage.
3071          */
3072         num_streams += 1;
3073         xhci = hcd_to_xhci(hcd);
3074         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3075                         num_streams);
3076
3077         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3078         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3079                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3080                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3081                 return -ENOSYS;
3082         }
3083
3084         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3085         if (!config_cmd)
3086                 return -ENOMEM;
3087
3088         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3089         if (!ctrl_ctx) {
3090                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3091                                 __func__);
3092                 xhci_free_command(xhci, config_cmd);
3093                 return -ENOMEM;
3094         }
3095
3096         /* Check to make sure all endpoints are not already configured for
3097          * streams.  While we're at it, find the maximum number of streams that
3098          * all the endpoints will support and check for duplicate endpoints.
3099          */
3100         spin_lock_irqsave(&xhci->lock, flags);
3101         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3102                         num_eps, &num_streams, &changed_ep_bitmask);
3103         if (ret < 0) {
3104                 xhci_free_command(xhci, config_cmd);
3105                 spin_unlock_irqrestore(&xhci->lock, flags);
3106                 return ret;
3107         }
3108         if (num_streams <= 1) {
3109                 xhci_warn(xhci, "WARN: endpoints can't handle "
3110                                 "more than one stream.\n");
3111                 xhci_free_command(xhci, config_cmd);
3112                 spin_unlock_irqrestore(&xhci->lock, flags);
3113                 return -EINVAL;
3114         }
3115         vdev = xhci->devs[udev->slot_id];
3116         /* Mark each endpoint as being in transition, so
3117          * xhci_urb_enqueue() will reject all URBs.
3118          */
3119         for (i = 0; i < num_eps; i++) {
3120                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3122         }
3123         spin_unlock_irqrestore(&xhci->lock, flags);
3124
3125         /* Setup internal data structures and allocate HW data structures for
3126          * streams (but don't install the HW structures in the input context
3127          * until we're sure all memory allocation succeeded).
3128          */
3129         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3130         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3131                         num_stream_ctxs, num_streams);
3132
3133         for (i = 0; i < num_eps; i++) {
3134                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3135                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3136                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3137                                 num_stream_ctxs,
3138                                 num_streams,
3139                                 max_packet, mem_flags);
3140                 if (!vdev->eps[ep_index].stream_info)
3141                         goto cleanup;
3142                 /* Set maxPstreams in endpoint context and update deq ptr to
3143                  * point to stream context array. FIXME
3144                  */
3145         }
3146
3147         /* Set up the input context for a configure endpoint command. */
3148         for (i = 0; i < num_eps; i++) {
3149                 struct xhci_ep_ctx *ep_ctx;
3150
3151                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3152                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3153
3154                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3155                                 vdev->out_ctx, ep_index);
3156                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3157                                 vdev->eps[ep_index].stream_info);
3158         }
3159         /* Tell the HW to drop its old copy of the endpoint context info
3160          * and add the updated copy from the input context.
3161          */
3162         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3163                         vdev->out_ctx, ctrl_ctx,
3164                         changed_ep_bitmask, changed_ep_bitmask);
3165
3166         /* Issue and wait for the configure endpoint command */
3167         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3168                         false, false);
3169
3170         /* xHC rejected the configure endpoint command for some reason, so we
3171          * leave the old ring intact and free our internal streams data
3172          * structure.
3173          */
3174         if (ret < 0)
3175                 goto cleanup;
3176
3177         spin_lock_irqsave(&xhci->lock, flags);
3178         for (i = 0; i < num_eps; i++) {
3179                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3180                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3181                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3182                          udev->slot_id, ep_index);
3183                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3184         }
3185         xhci_free_command(xhci, config_cmd);
3186         spin_unlock_irqrestore(&xhci->lock, flags);
3187
3188         /* Subtract 1 for stream 0, which drivers can't use */
3189         return num_streams - 1;
3190
3191 cleanup:
3192         /* If it didn't work, free the streams! */
3193         for (i = 0; i < num_eps; i++) {
3194                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3195                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3196                 vdev->eps[ep_index].stream_info = NULL;
3197                 /* FIXME Unset maxPstreams in endpoint context and
3198                  * update deq ptr to point to normal string ring.
3199                  */
3200                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3201                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3202                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3203         }
3204         xhci_free_command(xhci, config_cmd);
3205         return -ENOMEM;
3206 }
3207
3208 /* Transition the endpoint from using streams to being a "normal" endpoint
3209  * without streams.
3210  *
3211  * Modify the endpoint context state, submit a configure endpoint command,
3212  * and free all endpoint rings for streams if that completes successfully.
3213  */
3214 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3215                 struct usb_host_endpoint **eps, unsigned int num_eps,
3216                 gfp_t mem_flags)
3217 {
3218         int i, ret;
3219         struct xhci_hcd *xhci;
3220         struct xhci_virt_device *vdev;
3221         struct xhci_command *command;
3222         struct xhci_input_control_ctx *ctrl_ctx;
3223         unsigned int ep_index;
3224         unsigned long flags;
3225         u32 changed_ep_bitmask;
3226
3227         xhci = hcd_to_xhci(hcd);
3228         vdev = xhci->devs[udev->slot_id];
3229
3230         /* Set up a configure endpoint command to remove the streams rings */
3231         spin_lock_irqsave(&xhci->lock, flags);
3232         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3233                         udev, eps, num_eps);
3234         if (changed_ep_bitmask == 0) {
3235                 spin_unlock_irqrestore(&xhci->lock, flags);
3236                 return -EINVAL;
3237         }
3238
3239         /* Use the xhci_command structure from the first endpoint.  We may have
3240          * allocated too many, but the driver may call xhci_free_streams() for
3241          * each endpoint it grouped into one call to xhci_alloc_streams().
3242          */
3243         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3244         command = vdev->eps[ep_index].stream_info->free_streams_command;
3245         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3246         if (!ctrl_ctx) {
3247                 spin_unlock_irqrestore(&xhci->lock, flags);
3248                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3249                                 __func__);
3250                 return -EINVAL;
3251         }
3252
3253         for (i = 0; i < num_eps; i++) {
3254                 struct xhci_ep_ctx *ep_ctx;
3255
3256                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3257                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3258                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3259                         EP_GETTING_NO_STREAMS;
3260
3261                 xhci_endpoint_copy(xhci, command->in_ctx,
3262                                 vdev->out_ctx, ep_index);
3263                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3264                                 &vdev->eps[ep_index]);
3265         }
3266         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3267                         vdev->out_ctx, ctrl_ctx,
3268                         changed_ep_bitmask, changed_ep_bitmask);
3269         spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271         /* Issue and wait for the configure endpoint command,
3272          * which must succeed.
3273          */
3274         ret = xhci_configure_endpoint(xhci, udev, command,
3275                         false, true);
3276
3277         /* xHC rejected the configure endpoint command for some reason, so we
3278          * leave the streams rings intact.
3279          */
3280         if (ret < 0)
3281                 return ret;
3282
3283         spin_lock_irqsave(&xhci->lock, flags);
3284         for (i = 0; i < num_eps; i++) {
3285                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3286                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3287                 vdev->eps[ep_index].stream_info = NULL;
3288                 /* FIXME Unset maxPstreams in endpoint context and
3289                  * update deq ptr to point to normal string ring.
3290                  */
3291                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3292                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3293         }
3294         spin_unlock_irqrestore(&xhci->lock, flags);
3295
3296         return 0;
3297 }
3298
3299 /*
3300  * Deletes endpoint resources for endpoints that were active before a Reset
3301  * Device command, or a Disable Slot command.  The Reset Device command leaves
3302  * the control endpoint intact, whereas the Disable Slot command deletes it.
3303  *
3304  * Must be called with xhci->lock held.
3305  */
3306 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3307         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3308 {
3309         int i;
3310         unsigned int num_dropped_eps = 0;
3311         unsigned int drop_flags = 0;
3312
3313         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3314                 if (virt_dev->eps[i].ring) {
3315                         drop_flags |= 1 << i;
3316                         num_dropped_eps++;
3317                 }
3318         }
3319         xhci->num_active_eps -= num_dropped_eps;
3320         if (num_dropped_eps)
3321                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3322                                 "Dropped %u ep ctxs, flags = 0x%x, "
3323                                 "%u now active.",
3324                                 num_dropped_eps, drop_flags,
3325                                 xhci->num_active_eps);
3326 }
3327
3328 /*
3329  * This submits a Reset Device Command, which will set the device state to 0,
3330  * set the device address to 0, and disable all the endpoints except the default
3331  * control endpoint.  The USB core should come back and call
3332  * xhci_address_device(), and then re-set up the configuration.  If this is
3333  * called because of a usb_reset_and_verify_device(), then the old alternate
3334  * settings will be re-installed through the normal bandwidth allocation
3335  * functions.
3336  *
3337  * Wait for the Reset Device command to finish.  Remove all structures
3338  * associated with the endpoints that were disabled.  Clear the input device
3339  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3340  *
3341  * If the virt_dev to be reset does not exist or does not match the udev,
3342  * it means the device is lost, possibly due to the xHC restore error and
3343  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3344  * re-allocate the device.
3345  */
3346 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3347                 struct usb_device *udev)
3348 {
3349         int ret, i;
3350         unsigned long flags;
3351         struct xhci_hcd *xhci;
3352         unsigned int slot_id;
3353         struct xhci_virt_device *virt_dev;
3354         struct xhci_command *reset_device_cmd;
3355         int last_freed_endpoint;
3356         struct xhci_slot_ctx *slot_ctx;
3357         int old_active_eps = 0;
3358
3359         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3360         if (ret <= 0)
3361                 return ret;
3362         xhci = hcd_to_xhci(hcd);
3363         slot_id = udev->slot_id;
3364         virt_dev = xhci->devs[slot_id];
3365         if (!virt_dev) {
3366                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3367                                 "not exist. Re-allocate the device\n", slot_id);
3368                 ret = xhci_alloc_dev(hcd, udev);
3369                 if (ret == 1)
3370                         return 0;
3371                 else
3372                         return -EINVAL;
3373         }
3374
3375         if (virt_dev->tt_info)
3376                 old_active_eps = virt_dev->tt_info->active_eps;
3377
3378         if (virt_dev->udev != udev) {
3379                 /* If the virt_dev and the udev does not match, this virt_dev
3380                  * may belong to another udev.
3381                  * Re-allocate the device.
3382                  */
3383                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3384                                 "not match the udev. Re-allocate the device\n",
3385                                 slot_id);
3386                 ret = xhci_alloc_dev(hcd, udev);
3387                 if (ret == 1)
3388                         return 0;
3389                 else
3390                         return -EINVAL;
3391         }
3392
3393         /* If device is not setup, there is no point in resetting it */
3394         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3395         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3396                                                 SLOT_STATE_DISABLED)
3397                 return 0;
3398
3399         trace_xhci_discover_or_reset_device(slot_ctx);
3400
3401         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3402         /* Allocate the command structure that holds the struct completion.
3403          * Assume we're in process context, since the normal device reset
3404          * process has to wait for the device anyway.  Storage devices are
3405          * reset as part of error handling, so use GFP_NOIO instead of
3406          * GFP_KERNEL.
3407          */
3408         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3409         if (!reset_device_cmd) {
3410                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3411                 return -ENOMEM;
3412         }
3413
3414         /* Attempt to submit the Reset Device command to the command ring */
3415         spin_lock_irqsave(&xhci->lock, flags);
3416
3417         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3418         if (ret) {
3419                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3420                 spin_unlock_irqrestore(&xhci->lock, flags);
3421                 goto command_cleanup;
3422         }
3423         xhci_ring_cmd_db(xhci);
3424         spin_unlock_irqrestore(&xhci->lock, flags);
3425
3426         /* Wait for the Reset Device command to finish */
3427         wait_for_completion(reset_device_cmd->completion);
3428
3429         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3430          * unless we tried to reset a slot ID that wasn't enabled,
3431          * or the device wasn't in the addressed or configured state.
3432          */
3433         ret = reset_device_cmd->status;
3434         switch (ret) {
3435         case COMP_COMMAND_ABORTED:
3436         case COMP_STOPPED:
3437                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3438                 ret = -ETIME;
3439                 goto command_cleanup;
3440         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3441         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3442                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3443                                 slot_id,
3444                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3445                 xhci_dbg(xhci, "Not freeing device rings.\n");
3446                 /* Don't treat this as an error.  May change my mind later. */
3447                 ret = 0;
3448                 goto command_cleanup;
3449         case COMP_SUCCESS:
3450                 xhci_dbg(xhci, "Successful reset device command.\n");
3451                 break;
3452         default:
3453                 if (xhci_is_vendor_info_code(xhci, ret))
3454                         break;
3455                 xhci_warn(xhci, "Unknown completion code %u for "
3456                                 "reset device command.\n", ret);
3457                 ret = -EINVAL;
3458                 goto command_cleanup;
3459         }
3460
3461         /* Free up host controller endpoint resources */
3462         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3463                 spin_lock_irqsave(&xhci->lock, flags);
3464                 /* Don't delete the default control endpoint resources */
3465                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3466                 spin_unlock_irqrestore(&xhci->lock, flags);
3467         }
3468
3469         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3470         last_freed_endpoint = 1;
3471         for (i = 1; i < 31; i++) {
3472                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3473
3474                 if (ep->ep_state & EP_HAS_STREAMS) {
3475                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3476                                         xhci_get_endpoint_address(i));
3477                         xhci_free_stream_info(xhci, ep->stream_info);
3478                         ep->stream_info = NULL;
3479                         ep->ep_state &= ~EP_HAS_STREAMS;
3480                 }
3481
3482                 if (ep->ring) {
3483                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3484                         last_freed_endpoint = i;
3485                 }
3486                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3487                         xhci_drop_ep_from_interval_table(xhci,
3488                                         &virt_dev->eps[i].bw_info,
3489                                         virt_dev->bw_table,
3490                                         udev,
3491                                         &virt_dev->eps[i],
3492                                         virt_dev->tt_info);
3493                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3494         }
3495         /* If necessary, update the number of active TTs on this root port */
3496         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3497         ret = 0;
3498
3499 command_cleanup:
3500         xhci_free_command(xhci, reset_device_cmd);
3501         return ret;
3502 }
3503
3504 /*
3505  * At this point, the struct usb_device is about to go away, the device has
3506  * disconnected, and all traffic has been stopped and the endpoints have been
3507  * disabled.  Free any HC data structures associated with that device.
3508  */
3509 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3510 {
3511         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3512         struct xhci_virt_device *virt_dev;
3513         struct xhci_slot_ctx *slot_ctx;
3514         int i, ret;
3515         struct xhci_command *command;
3516
3517         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3518         if (!command)
3519                 return;
3520
3521 #ifndef CONFIG_USB_DEFAULT_PERSIST
3522         /*
3523          * We called pm_runtime_get_noresume when the device was attached.
3524          * Decrement the counter here to allow controller to runtime suspend
3525          * if no devices remain.
3526          */
3527         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3528                 pm_runtime_put_noidle(hcd->self.controller);
3529 #endif
3530
3531         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3532         /* If the host is halted due to driver unload, we still need to free the
3533          * device.
3534          */
3535         if (ret <= 0 && ret != -ENODEV) {
3536                 kfree(command);
3537                 return;
3538         }
3539
3540         virt_dev = xhci->devs[udev->slot_id];
3541         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3542         trace_xhci_free_dev(slot_ctx);
3543
3544         /* Stop any wayward timer functions (which may grab the lock) */
3545         for (i = 0; i < 31; i++) {
3546                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3547                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3548         }
3549
3550         xhci_disable_slot(xhci, command, udev->slot_id);
3551         /*
3552          * Event command completion handler will free any data structures
3553          * associated with the slot.  XXX Can free sleep?
3554          */
3555 }
3556
3557 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3558                         u32 slot_id)
3559 {
3560         unsigned long flags;
3561         u32 state;
3562         int ret = 0;
3563         struct xhci_virt_device *virt_dev;
3564
3565         virt_dev = xhci->devs[slot_id];
3566         if (!virt_dev)
3567                 return -EINVAL;
3568         if (!command)
3569                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3570         if (!command)
3571                 return -ENOMEM;
3572
3573         spin_lock_irqsave(&xhci->lock, flags);
3574         /* Don't disable the slot if the host controller is dead. */
3575         state = readl(&xhci->op_regs->status);
3576         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3577                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3578                 xhci_free_virt_device(xhci, slot_id);
3579                 spin_unlock_irqrestore(&xhci->lock, flags);
3580                 kfree(command);
3581                 return ret;
3582         }
3583
3584         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3585                                 slot_id);
3586         if (ret) {
3587                 spin_unlock_irqrestore(&xhci->lock, flags);
3588                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3589                 return ret;
3590         }
3591         xhci_ring_cmd_db(xhci);
3592         spin_unlock_irqrestore(&xhci->lock, flags);
3593         return ret;
3594 }
3595
3596 /*
3597  * Checks if we have enough host controller resources for the default control
3598  * endpoint.
3599  *
3600  * Must be called with xhci->lock held.
3601  */
3602 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3603 {
3604         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3605                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3606                                 "Not enough ep ctxs: "
3607                                 "%u active, need to add 1, limit is %u.",
3608                                 xhci->num_active_eps, xhci->limit_active_eps);
3609                 return -ENOMEM;
3610         }
3611         xhci->num_active_eps += 1;
3612         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3613                         "Adding 1 ep ctx, %u now active.",
3614                         xhci->num_active_eps);
3615         return 0;
3616 }
3617
3618
3619 /*
3620  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3621  * timed out, or allocating memory failed.  Returns 1 on success.
3622  */
3623 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626         struct xhci_virt_device *vdev;
3627         struct xhci_slot_ctx *slot_ctx;
3628         unsigned long flags;
3629         int ret, slot_id;
3630         struct xhci_command *command;
3631
3632         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3633         if (!command)
3634                 return 0;
3635
3636         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3637         mutex_lock(&xhci->mutex);
3638         spin_lock_irqsave(&xhci->lock, flags);
3639         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3640         if (ret) {
3641                 spin_unlock_irqrestore(&xhci->lock, flags);
3642                 mutex_unlock(&xhci->mutex);
3643                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3644                 xhci_free_command(xhci, command);
3645                 return 0;
3646         }
3647         xhci_ring_cmd_db(xhci);
3648         spin_unlock_irqrestore(&xhci->lock, flags);
3649
3650         wait_for_completion(command->completion);
3651         slot_id = command->slot_id;
3652         mutex_unlock(&xhci->mutex);
3653
3654         if (!slot_id || command->status != COMP_SUCCESS) {
3655                 xhci_err(xhci, "Error while assigning device slot ID\n");
3656                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3657                                 HCS_MAX_SLOTS(
3658                                         readl(&xhci->cap_regs->hcs_params1)));
3659                 xhci_free_command(xhci, command);
3660                 return 0;
3661         }
3662
3663         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3664                 spin_lock_irqsave(&xhci->lock, flags);
3665                 ret = xhci_reserve_host_control_ep_resources(xhci);
3666                 if (ret) {
3667                         spin_unlock_irqrestore(&xhci->lock, flags);
3668                         xhci_warn(xhci, "Not enough host resources, "
3669                                         "active endpoint contexts = %u\n",
3670                                         xhci->num_active_eps);
3671                         goto disable_slot;
3672                 }
3673                 spin_unlock_irqrestore(&xhci->lock, flags);
3674         }
3675         /* Use GFP_NOIO, since this function can be called from
3676          * xhci_discover_or_reset_device(), which may be called as part of
3677          * mass storage driver error handling.
3678          */
3679         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3680                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3681                 goto disable_slot;
3682         }
3683         vdev = xhci->devs[slot_id];
3684         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3685         trace_xhci_alloc_dev(slot_ctx);
3686
3687         udev->slot_id = slot_id;
3688
3689 #ifndef CONFIG_USB_DEFAULT_PERSIST
3690         /*
3691          * If resetting upon resume, we can't put the controller into runtime
3692          * suspend if there is a device attached.
3693          */
3694         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3695                 pm_runtime_get_noresume(hcd->self.controller);
3696 #endif
3697
3698
3699         xhci_free_command(xhci, command);
3700         /* Is this a LS or FS device under a HS hub? */
3701         /* Hub or peripherial? */
3702         return 1;
3703
3704 disable_slot:
3705         /* Disable slot, if we can do it without mem alloc */
3706         kfree(command->completion);
3707         command->completion = NULL;
3708         command->status = 0;
3709         return xhci_disable_slot(xhci, command, udev->slot_id);
3710 }
3711
3712 /*
3713  * Issue an Address Device command and optionally send a corresponding
3714  * SetAddress request to the device.
3715  */
3716 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3717                              enum xhci_setup_dev setup)
3718 {
3719         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3720         unsigned long flags;
3721         struct xhci_virt_device *virt_dev;
3722         int ret = 0;
3723         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3724         struct xhci_slot_ctx *slot_ctx;
3725         struct xhci_input_control_ctx *ctrl_ctx;
3726         u64 temp_64;
3727         struct xhci_command *command = NULL;
3728
3729         mutex_lock(&xhci->mutex);
3730
3731         if (xhci->xhc_state) {  /* dying, removing or halted */
3732                 ret = -ESHUTDOWN;
3733                 goto out;
3734         }
3735
3736         if (!udev->slot_id) {
3737                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3738                                 "Bad Slot ID %d", udev->slot_id);
3739                 ret = -EINVAL;
3740                 goto out;
3741         }
3742
3743         virt_dev = xhci->devs[udev->slot_id];
3744
3745         if (WARN_ON(!virt_dev)) {
3746                 /*
3747                  * In plug/unplug torture test with an NEC controller,
3748                  * a zero-dereference was observed once due to virt_dev = 0.
3749                  * Print useful debug rather than crash if it is observed again!
3750                  */
3751                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3752                         udev->slot_id);
3753                 ret = -EINVAL;
3754                 goto out;
3755         }
3756         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3757         trace_xhci_setup_device_slot(slot_ctx);
3758
3759         if (setup == SETUP_CONTEXT_ONLY) {
3760                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3761                     SLOT_STATE_DEFAULT) {
3762                         xhci_dbg(xhci, "Slot already in default state\n");
3763                         goto out;
3764                 }
3765         }
3766
3767         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3768         if (!command) {
3769                 ret = -ENOMEM;
3770                 goto out;
3771         }
3772
3773         command->in_ctx = virt_dev->in_ctx;
3774
3775         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3776         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3777         if (!ctrl_ctx) {
3778                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3779                                 __func__);
3780                 ret = -EINVAL;
3781                 goto out;
3782         }
3783         /*
3784          * If this is the first Set Address since device plug-in or
3785          * virt_device realloaction after a resume with an xHCI power loss,
3786          * then set up the slot context.
3787          */
3788         if (!slot_ctx->dev_info)
3789                 xhci_setup_addressable_virt_dev(xhci, udev);
3790         /* Otherwise, update the control endpoint ring enqueue pointer. */
3791         else
3792                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3793         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3794         ctrl_ctx->drop_flags = 0;
3795
3796         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3797                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3798
3799         spin_lock_irqsave(&xhci->lock, flags);
3800         trace_xhci_setup_device(virt_dev);
3801         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3802                                         udev->slot_id, setup);
3803         if (ret) {
3804                 spin_unlock_irqrestore(&xhci->lock, flags);
3805                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3806                                 "FIXME: allocate a command ring segment");
3807                 goto out;
3808         }
3809         xhci_ring_cmd_db(xhci);
3810         spin_unlock_irqrestore(&xhci->lock, flags);
3811
3812         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3813         wait_for_completion(command->completion);
3814
3815         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3816          * the SetAddress() "recovery interval" required by USB and aborting the
3817          * command on a timeout.
3818          */
3819         switch (command->status) {
3820         case COMP_COMMAND_ABORTED:
3821         case COMP_STOPPED:
3822                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3823                 ret = -ETIME;
3824                 break;
3825         case COMP_CONTEXT_STATE_ERROR:
3826         case COMP_SLOT_NOT_ENABLED_ERROR:
3827                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3828                          act, udev->slot_id);
3829                 ret = -EINVAL;
3830                 break;
3831         case COMP_USB_TRANSACTION_ERROR:
3832                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3833                 ret = -EPROTO;
3834                 break;
3835         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3836                 dev_warn(&udev->dev,
3837                          "ERROR: Incompatible device for setup %s command\n", act);
3838                 ret = -ENODEV;
3839                 break;
3840         case COMP_SUCCESS:
3841                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3842                                "Successful setup %s command", act);
3843                 break;
3844         default:
3845                 xhci_err(xhci,
3846                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3847                          act, command->status);
3848                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3849                 ret = -EINVAL;
3850                 break;
3851         }
3852         if (ret)
3853                 goto out;
3854         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3855         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3856                         "Op regs DCBAA ptr = %#016llx", temp_64);
3857         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858                 "Slot ID %d dcbaa entry @%p = %#016llx",
3859                 udev->slot_id,
3860                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3861                 (unsigned long long)
3862                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3863         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3864                         "Output Context DMA address = %#08llx",
3865                         (unsigned long long)virt_dev->out_ctx->dma);
3866         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3867                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3868         /*
3869          * USB core uses address 1 for the roothubs, so we add one to the
3870          * address given back to us by the HC.
3871          */
3872         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3873                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3874         /* Zero the input context control for later use */
3875         ctrl_ctx->add_flags = 0;
3876         ctrl_ctx->drop_flags = 0;
3877
3878         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879                        "Internal device address = %d",
3880                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3881 out:
3882         mutex_unlock(&xhci->mutex);
3883         if (command) {
3884                 kfree(command->completion);
3885                 kfree(command);
3886         }
3887         return ret;
3888 }
3889
3890 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3891 {
3892         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3893 }
3894
3895 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3896 {
3897         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3898 }
3899
3900 /*
3901  * Transfer the port index into real index in the HW port status
3902  * registers. Caculate offset between the port's PORTSC register
3903  * and port status base. Divide the number of per port register
3904  * to get the real index. The raw port number bases 1.
3905  */
3906 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3907 {
3908         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3909         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3910         __le32 __iomem *addr;
3911         int raw_port;
3912
3913         if (hcd->speed < HCD_USB3)
3914                 addr = xhci->usb2_ports[port1 - 1];
3915         else
3916                 addr = xhci->usb3_ports[port1 - 1];
3917
3918         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3919         return raw_port;
3920 }
3921
3922 /*
3923  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3924  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3925  */
3926 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3927                         struct usb_device *udev, u16 max_exit_latency)
3928 {
3929         struct xhci_virt_device *virt_dev;
3930         struct xhci_command *command;
3931         struct xhci_input_control_ctx *ctrl_ctx;
3932         struct xhci_slot_ctx *slot_ctx;
3933         unsigned long flags;
3934         int ret;
3935
3936         spin_lock_irqsave(&xhci->lock, flags);
3937
3938         virt_dev = xhci->devs[udev->slot_id];
3939
3940         /*
3941          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3942          * xHC was re-initialized. Exit latency will be set later after
3943          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3944          */
3945
3946         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3947                 spin_unlock_irqrestore(&xhci->lock, flags);
3948                 return 0;
3949         }
3950
3951         /* Attempt to issue an Evaluate Context command to change the MEL. */
3952         command = xhci->lpm_command;
3953         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3954         if (!ctrl_ctx) {
3955                 spin_unlock_irqrestore(&xhci->lock, flags);
3956                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3957                                 __func__);
3958                 return -ENOMEM;
3959         }
3960
3961         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3962         spin_unlock_irqrestore(&xhci->lock, flags);
3963
3964         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3965         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3966         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3967         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3968         slot_ctx->dev_state = 0;
3969
3970         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3971                         "Set up evaluate context for LPM MEL change.");
3972
3973         /* Issue and wait for the evaluate context command. */
3974         ret = xhci_configure_endpoint(xhci, udev, command,
3975                         true, true);
3976
3977         if (!ret) {
3978                 spin_lock_irqsave(&xhci->lock, flags);
3979                 virt_dev->current_mel = max_exit_latency;
3980                 spin_unlock_irqrestore(&xhci->lock, flags);
3981         }
3982         return ret;
3983 }
3984
3985 #ifdef CONFIG_PM
3986
3987 /* BESL to HIRD Encoding array for USB2 LPM */
3988 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3989         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3990
3991 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3992 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3993                                         struct usb_device *udev)
3994 {
3995         int u2del, besl, besl_host;
3996         int besl_device = 0;
3997         u32 field;
3998
3999         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4000         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4001
4002         if (field & USB_BESL_SUPPORT) {
4003                 for (besl_host = 0; besl_host < 16; besl_host++) {
4004                         if (xhci_besl_encoding[besl_host] >= u2del)
4005                                 break;
4006                 }
4007                 /* Use baseline BESL value as default */
4008                 if (field & USB_BESL_BASELINE_VALID)
4009                         besl_device = USB_GET_BESL_BASELINE(field);
4010                 else if (field & USB_BESL_DEEP_VALID)
4011                         besl_device = USB_GET_BESL_DEEP(field);
4012         } else {
4013                 if (u2del <= 50)
4014                         besl_host = 0;
4015                 else
4016                         besl_host = (u2del - 51) / 75 + 1;
4017         }
4018
4019         besl = besl_host + besl_device;
4020         if (besl > 15)
4021                 besl = 15;
4022
4023         return besl;
4024 }
4025
4026 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4027 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4028 {
4029         u32 field;
4030         int l1;
4031         int besld = 0;
4032         int hirdm = 0;
4033
4034         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4035
4036         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4037         l1 = udev->l1_params.timeout / 256;
4038
4039         /* device has preferred BESLD */
4040         if (field & USB_BESL_DEEP_VALID) {
4041                 besld = USB_GET_BESL_DEEP(field);
4042                 hirdm = 1;
4043         }
4044
4045         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4046 }
4047
4048 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4049                         struct usb_device *udev, int enable)
4050 {
4051         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4052         __le32 __iomem  **port_array;
4053         __le32 __iomem  *pm_addr, *hlpm_addr;
4054         u32             pm_val, hlpm_val, field;
4055         unsigned int    port_num;
4056         unsigned long   flags;
4057         int             hird, exit_latency;
4058         int             ret;
4059
4060         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4061                         !udev->lpm_capable)
4062                 return -EPERM;
4063
4064         if (!udev->parent || udev->parent->parent ||
4065                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4066                 return -EPERM;
4067
4068         if (udev->usb2_hw_lpm_capable != 1)
4069                 return -EPERM;
4070
4071         spin_lock_irqsave(&xhci->lock, flags);
4072
4073         port_array = xhci->usb2_ports;
4074         port_num = udev->portnum - 1;
4075         pm_addr = port_array[port_num] + PORTPMSC;
4076         pm_val = readl(pm_addr);
4077         hlpm_addr = port_array[port_num] + PORTHLPMC;
4078         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4079
4080         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4081                         enable ? "enable" : "disable", port_num + 1);
4082
4083         if (enable) {
4084                 /* Host supports BESL timeout instead of HIRD */
4085                 if (udev->usb2_hw_lpm_besl_capable) {
4086                         /* if device doesn't have a preferred BESL value use a
4087                          * default one which works with mixed HIRD and BESL
4088                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4089                          */
4090                         if ((field & USB_BESL_SUPPORT) &&
4091                             (field & USB_BESL_BASELINE_VALID))
4092                                 hird = USB_GET_BESL_BASELINE(field);
4093                         else
4094                                 hird = udev->l1_params.besl;
4095
4096                         exit_latency = xhci_besl_encoding[hird];
4097                         spin_unlock_irqrestore(&xhci->lock, flags);
4098
4099                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4100                          * input context for link powermanagement evaluate
4101                          * context commands. It is protected by hcd->bandwidth
4102                          * mutex and is shared by all devices. We need to set
4103                          * the max ext latency in USB 2 BESL LPM as well, so
4104                          * use the same mutex and xhci_change_max_exit_latency()
4105                          */
4106                         mutex_lock(hcd->bandwidth_mutex);
4107                         ret = xhci_change_max_exit_latency(xhci, udev,
4108                                                            exit_latency);
4109                         mutex_unlock(hcd->bandwidth_mutex);
4110
4111                         if (ret < 0)
4112                                 return ret;
4113                         spin_lock_irqsave(&xhci->lock, flags);
4114
4115                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4116                         writel(hlpm_val, hlpm_addr);
4117                         /* flush write */
4118                         readl(hlpm_addr);
4119                 } else {
4120                         hird = xhci_calculate_hird_besl(xhci, udev);
4121                 }
4122
4123                 pm_val &= ~PORT_HIRD_MASK;
4124                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4125                 writel(pm_val, pm_addr);
4126                 pm_val = readl(pm_addr);
4127                 pm_val |= PORT_HLE;
4128                 writel(pm_val, pm_addr);
4129                 /* flush write */
4130                 readl(pm_addr);
4131         } else {
4132                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4133                 writel(pm_val, pm_addr);
4134                 /* flush write */
4135                 readl(pm_addr);
4136                 if (udev->usb2_hw_lpm_besl_capable) {
4137                         spin_unlock_irqrestore(&xhci->lock, flags);
4138                         mutex_lock(hcd->bandwidth_mutex);
4139                         xhci_change_max_exit_latency(xhci, udev, 0);
4140                         mutex_unlock(hcd->bandwidth_mutex);
4141                         return 0;
4142                 }
4143         }
4144
4145         spin_unlock_irqrestore(&xhci->lock, flags);
4146         return 0;
4147 }
4148
4149 /* check if a usb2 port supports a given extened capability protocol
4150  * only USB2 ports extended protocol capability values are cached.
4151  * Return 1 if capability is supported
4152  */
4153 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4154                                            unsigned capability)
4155 {
4156         u32 port_offset, port_count;
4157         int i;
4158
4159         for (i = 0; i < xhci->num_ext_caps; i++) {
4160                 if (xhci->ext_caps[i] & capability) {
4161                         /* port offsets starts at 1 */
4162                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4163                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4164                         if (port >= port_offset &&
4165                             port < port_offset + port_count)
4166                                 return 1;
4167                 }
4168         }
4169         return 0;
4170 }
4171
4172 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4173 {
4174         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4175         int             portnum = udev->portnum - 1;
4176
4177         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4178                         !udev->lpm_capable)
4179                 return 0;
4180
4181         /* we only support lpm for non-hub device connected to root hub yet */
4182         if (!udev->parent || udev->parent->parent ||
4183                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4184                 return 0;
4185
4186         if (xhci->hw_lpm_support == 1 &&
4187                         xhci_check_usb2_port_capability(
4188                                 xhci, portnum, XHCI_HLC)) {
4189                 udev->usb2_hw_lpm_capable = 1;
4190                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4191                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4192                 if (xhci_check_usb2_port_capability(xhci, portnum,
4193                                         XHCI_BLC))
4194                         udev->usb2_hw_lpm_besl_capable = 1;
4195         }
4196
4197         return 0;
4198 }
4199
4200 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4201
4202 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4203 static unsigned long long xhci_service_interval_to_ns(
4204                 struct usb_endpoint_descriptor *desc)
4205 {
4206         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4207 }
4208
4209 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4210                 enum usb3_link_state state)
4211 {
4212         unsigned long long sel;
4213         unsigned long long pel;
4214         unsigned int max_sel_pel;
4215         char *state_name;
4216
4217         switch (state) {
4218         case USB3_LPM_U1:
4219                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4220                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4221                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4222                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4223                 state_name = "U1";
4224                 break;
4225         case USB3_LPM_U2:
4226                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4227                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4228                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4229                 state_name = "U2";
4230                 break;
4231         default:
4232                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4233                                 __func__);
4234                 return USB3_LPM_DISABLED;
4235         }
4236
4237         if (sel <= max_sel_pel && pel <= max_sel_pel)
4238                 return USB3_LPM_DEVICE_INITIATED;
4239
4240         if (sel > max_sel_pel)
4241                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4242                                 "due to long SEL %llu ms\n",
4243                                 state_name, sel);
4244         else
4245                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4246                                 "due to long PEL %llu ms\n",
4247                                 state_name, pel);
4248         return USB3_LPM_DISABLED;
4249 }
4250
4251 /* The U1 timeout should be the maximum of the following values:
4252  *  - For control endpoints, U1 system exit latency (SEL) * 3
4253  *  - For bulk endpoints, U1 SEL * 5
4254  *  - For interrupt endpoints:
4255  *    - Notification EPs, U1 SEL * 3
4256  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4257  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4258  */
4259 static unsigned long long xhci_calculate_intel_u1_timeout(
4260                 struct usb_device *udev,
4261                 struct usb_endpoint_descriptor *desc)
4262 {
4263         unsigned long long timeout_ns;
4264         int ep_type;
4265         int intr_type;
4266
4267         ep_type = usb_endpoint_type(desc);
4268         switch (ep_type) {
4269         case USB_ENDPOINT_XFER_CONTROL:
4270                 timeout_ns = udev->u1_params.sel * 3;
4271                 break;
4272         case USB_ENDPOINT_XFER_BULK:
4273                 timeout_ns = udev->u1_params.sel * 5;
4274                 break;
4275         case USB_ENDPOINT_XFER_INT:
4276                 intr_type = usb_endpoint_interrupt_type(desc);
4277                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4278                         timeout_ns = udev->u1_params.sel * 3;
4279                         break;
4280                 }
4281                 /* Otherwise the calculation is the same as isoc eps */
4282         case USB_ENDPOINT_XFER_ISOC:
4283                 timeout_ns = xhci_service_interval_to_ns(desc);
4284                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4285                 if (timeout_ns < udev->u1_params.sel * 2)
4286                         timeout_ns = udev->u1_params.sel * 2;
4287                 break;
4288         default:
4289                 return 0;
4290         }
4291
4292         return timeout_ns;
4293 }
4294
4295 /* Returns the hub-encoded U1 timeout value. */
4296 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4297                 struct usb_device *udev,
4298                 struct usb_endpoint_descriptor *desc)
4299 {
4300         unsigned long long timeout_ns;
4301
4302         if (xhci->quirks & XHCI_INTEL_HOST)
4303                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4304         else
4305                 timeout_ns = udev->u1_params.sel;
4306
4307         /* The U1 timeout is encoded in 1us intervals.
4308          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4309          */
4310         if (timeout_ns == USB3_LPM_DISABLED)
4311                 timeout_ns = 1;
4312         else
4313                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4314
4315         /* If the necessary timeout value is bigger than what we can set in the
4316          * USB 3.0 hub, we have to disable hub-initiated U1.
4317          */
4318         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4319                 return timeout_ns;
4320         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4321                         "due to long timeout %llu ms\n", timeout_ns);
4322         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4323 }
4324
4325 /* The U2 timeout should be the maximum of:
4326  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4327  *  - largest bInterval of any active periodic endpoint (to avoid going
4328  *    into lower power link states between intervals).
4329  *  - the U2 Exit Latency of the device
4330  */
4331 static unsigned long long xhci_calculate_intel_u2_timeout(
4332                 struct usb_device *udev,
4333                 struct usb_endpoint_descriptor *desc)
4334 {
4335         unsigned long long timeout_ns;
4336         unsigned long long u2_del_ns;
4337
4338         timeout_ns = 10 * 1000 * 1000;
4339
4340         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4341                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4342                 timeout_ns = xhci_service_interval_to_ns(desc);
4343
4344         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4345         if (u2_del_ns > timeout_ns)
4346                 timeout_ns = u2_del_ns;
4347
4348         return timeout_ns;
4349 }
4350
4351 /* Returns the hub-encoded U2 timeout value. */
4352 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4353                 struct usb_device *udev,
4354                 struct usb_endpoint_descriptor *desc)
4355 {
4356         unsigned long long timeout_ns;
4357
4358         if (xhci->quirks & XHCI_INTEL_HOST)
4359                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4360         else
4361                 timeout_ns = udev->u2_params.sel;
4362
4363         /* The U2 timeout is encoded in 256us intervals */
4364         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4365         /* If the necessary timeout value is bigger than what we can set in the
4366          * USB 3.0 hub, we have to disable hub-initiated U2.
4367          */
4368         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4369                 return timeout_ns;
4370         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4371                         "due to long timeout %llu ms\n", timeout_ns);
4372         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4373 }
4374
4375 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4376                 struct usb_device *udev,
4377                 struct usb_endpoint_descriptor *desc,
4378                 enum usb3_link_state state,
4379                 u16 *timeout)
4380 {
4381         if (state == USB3_LPM_U1)
4382                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4383         else if (state == USB3_LPM_U2)
4384                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4385
4386         return USB3_LPM_DISABLED;
4387 }
4388
4389 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4390                 struct usb_device *udev,
4391                 struct usb_endpoint_descriptor *desc,
4392                 enum usb3_link_state state,
4393                 u16 *timeout)
4394 {
4395         u16 alt_timeout;
4396
4397         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4398                 desc, state, timeout);
4399
4400         /* If we found we can't enable hub-initiated LPM, or
4401          * the U1 or U2 exit latency was too high to allow
4402          * device-initiated LPM as well, just stop searching.
4403          */
4404         if (alt_timeout == USB3_LPM_DISABLED ||
4405                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4406                 *timeout = alt_timeout;
4407                 return -E2BIG;
4408         }
4409         if (alt_timeout > *timeout)
4410                 *timeout = alt_timeout;
4411         return 0;
4412 }
4413
4414 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4415                 struct usb_device *udev,
4416                 struct usb_host_interface *alt,
4417                 enum usb3_link_state state,
4418                 u16 *timeout)
4419 {
4420         int j;
4421
4422         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4423                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4424                                         &alt->endpoint[j].desc, state, timeout))
4425                         return -E2BIG;
4426                 continue;
4427         }
4428         return 0;
4429 }
4430
4431 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4432                 enum usb3_link_state state)
4433 {
4434         struct usb_device *parent;
4435         unsigned int num_hubs;
4436
4437         if (state == USB3_LPM_U2)
4438                 return 0;
4439
4440         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4441         for (parent = udev->parent, num_hubs = 0; parent->parent;
4442                         parent = parent->parent)
4443                 num_hubs++;
4444
4445         if (num_hubs < 2)
4446                 return 0;
4447
4448         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4449                         " below second-tier hub.\n");
4450         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4451                         "to decrease power consumption.\n");
4452         return -E2BIG;
4453 }
4454
4455 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4456                 struct usb_device *udev,
4457                 enum usb3_link_state state)
4458 {
4459         if (xhci->quirks & XHCI_INTEL_HOST)
4460                 return xhci_check_intel_tier_policy(udev, state);
4461         else
4462                 return 0;
4463 }
4464
4465 /* Returns the U1 or U2 timeout that should be enabled.
4466  * If the tier check or timeout setting functions return with a non-zero exit
4467  * code, that means the timeout value has been finalized and we shouldn't look
4468  * at any more endpoints.
4469  */
4470 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471                         struct usb_device *udev, enum usb3_link_state state)
4472 {
4473         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474         struct usb_host_config *config;
4475         char *state_name;
4476         int i;
4477         u16 timeout = USB3_LPM_DISABLED;
4478
4479         if (state == USB3_LPM_U1)
4480                 state_name = "U1";
4481         else if (state == USB3_LPM_U2)
4482                 state_name = "U2";
4483         else {
4484                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485                                 state);
4486                 return timeout;
4487         }
4488
4489         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490                 return timeout;
4491
4492         /* Gather some information about the currently installed configuration
4493          * and alternate interface settings.
4494          */
4495         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496                         state, &timeout))
4497                 return timeout;
4498
4499         config = udev->actconfig;
4500         if (!config)
4501                 return timeout;
4502
4503         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504                 struct usb_driver *driver;
4505                 struct usb_interface *intf = config->interface[i];
4506
4507                 if (!intf)
4508                         continue;
4509
4510                 /* Check if any currently bound drivers want hub-initiated LPM
4511                  * disabled.
4512                  */
4513                 if (intf->dev.driver) {
4514                         driver = to_usb_driver(intf->dev.driver);
4515                         if (driver && driver->disable_hub_initiated_lpm) {
4516                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517                                                 "at request of driver %s\n",
4518                                                 state_name, driver->name);
4519                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4520                         }
4521                 }
4522
4523                 /* Not sure how this could happen... */
4524                 if (!intf->cur_altsetting)
4525                         continue;
4526
4527                 if (xhci_update_timeout_for_interface(xhci, udev,
4528                                         intf->cur_altsetting,
4529                                         state, &timeout))
4530                         return timeout;
4531         }
4532         return timeout;
4533 }
4534
4535 static int calculate_max_exit_latency(struct usb_device *udev,
4536                 enum usb3_link_state state_changed,
4537                 u16 hub_encoded_timeout)
4538 {
4539         unsigned long long u1_mel_us = 0;
4540         unsigned long long u2_mel_us = 0;
4541         unsigned long long mel_us = 0;
4542         bool disabling_u1;
4543         bool disabling_u2;
4544         bool enabling_u1;
4545         bool enabling_u2;
4546
4547         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548                         hub_encoded_timeout == USB3_LPM_DISABLED);
4549         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550                         hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553                         hub_encoded_timeout != USB3_LPM_DISABLED);
4554         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555                         hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557         /* If U1 was already enabled and we're not disabling it,
4558          * or we're going to enable U1, account for the U1 max exit latency.
4559          */
4560         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561                         enabling_u1)
4562                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564                         enabling_u2)
4565                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567         if (u1_mel_us > u2_mel_us)
4568                 mel_us = u1_mel_us;
4569         else
4570                 mel_us = u2_mel_us;
4571         /* xHCI host controller max exit latency field is only 16 bits wide. */
4572         if (mel_us > MAX_EXIT) {
4573                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574                                 "is too big.\n", mel_us);
4575                 return -E2BIG;
4576         }
4577         return mel_us;
4578 }
4579
4580 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582                         struct usb_device *udev, enum usb3_link_state state)
4583 {
4584         struct xhci_hcd *xhci;
4585         u16 hub_encoded_timeout;
4586         int mel;
4587         int ret;
4588
4589         xhci = hcd_to_xhci(hcd);
4590         /* The LPM timeout values are pretty host-controller specific, so don't
4591          * enable hub-initiated timeouts unless the vendor has provided
4592          * information about their timeout algorithm.
4593          */
4594         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595                         !xhci->devs[udev->slot_id])
4596                 return USB3_LPM_DISABLED;
4597
4598         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600         if (mel < 0) {
4601                 /* Max Exit Latency is too big, disable LPM. */
4602                 hub_encoded_timeout = USB3_LPM_DISABLED;
4603                 mel = 0;
4604         }
4605
4606         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607         if (ret)
4608                 return ret;
4609         return hub_encoded_timeout;
4610 }
4611
4612 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613                         struct usb_device *udev, enum usb3_link_state state)
4614 {
4615         struct xhci_hcd *xhci;
4616         u16 mel;
4617
4618         xhci = hcd_to_xhci(hcd);
4619         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4620                         !xhci->devs[udev->slot_id])
4621                 return 0;
4622
4623         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4624         return xhci_change_max_exit_latency(xhci, udev, mel);
4625 }
4626 #else /* CONFIG_PM */
4627
4628 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4629                                 struct usb_device *udev, int enable)
4630 {
4631         return 0;
4632 }
4633
4634 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4635 {
4636         return 0;
4637 }
4638
4639 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640                         struct usb_device *udev, enum usb3_link_state state)
4641 {
4642         return USB3_LPM_DISABLED;
4643 }
4644
4645 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4646                         struct usb_device *udev, enum usb3_link_state state)
4647 {
4648         return 0;
4649 }
4650 #endif  /* CONFIG_PM */
4651
4652 /*-------------------------------------------------------------------------*/
4653
4654 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4655  * internal data structures for the device.
4656  */
4657 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4658                         struct usb_tt *tt, gfp_t mem_flags)
4659 {
4660         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4661         struct xhci_virt_device *vdev;
4662         struct xhci_command *config_cmd;
4663         struct xhci_input_control_ctx *ctrl_ctx;
4664         struct xhci_slot_ctx *slot_ctx;
4665         unsigned long flags;
4666         unsigned think_time;
4667         int ret;
4668
4669         /* Ignore root hubs */
4670         if (!hdev->parent)
4671                 return 0;
4672
4673         vdev = xhci->devs[hdev->slot_id];
4674         if (!vdev) {
4675                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4676                 return -EINVAL;
4677         }
4678
4679         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4680         if (!config_cmd)
4681                 return -ENOMEM;
4682
4683         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4684         if (!ctrl_ctx) {
4685                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4686                                 __func__);
4687                 xhci_free_command(xhci, config_cmd);
4688                 return -ENOMEM;
4689         }
4690
4691         spin_lock_irqsave(&xhci->lock, flags);
4692         if (hdev->speed == USB_SPEED_HIGH &&
4693                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4694                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4695                 xhci_free_command(xhci, config_cmd);
4696                 spin_unlock_irqrestore(&xhci->lock, flags);
4697                 return -ENOMEM;
4698         }
4699
4700         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4701         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4702         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4703         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4704         /*
4705          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4706          * but it may be already set to 1 when setup an xHCI virtual
4707          * device, so clear it anyway.
4708          */
4709         if (tt->multi)
4710                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4711         else if (hdev->speed == USB_SPEED_FULL)
4712                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4713
4714         if (xhci->hci_version > 0x95) {
4715                 xhci_dbg(xhci, "xHCI version %x needs hub "
4716                                 "TT think time and number of ports\n",
4717                                 (unsigned int) xhci->hci_version);
4718                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4719                 /* Set TT think time - convert from ns to FS bit times.
4720                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4721                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4722                  *
4723                  * xHCI 1.0: this field shall be 0 if the device is not a
4724                  * High-spped hub.
4725                  */
4726                 think_time = tt->think_time;
4727                 if (think_time != 0)
4728                         think_time = (think_time / 666) - 1;
4729                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4730                         slot_ctx->tt_info |=
4731                                 cpu_to_le32(TT_THINK_TIME(think_time));
4732         } else {
4733                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4734                                 "TT think time or number of ports\n",
4735                                 (unsigned int) xhci->hci_version);
4736         }
4737         slot_ctx->dev_state = 0;
4738         spin_unlock_irqrestore(&xhci->lock, flags);
4739
4740         xhci_dbg(xhci, "Set up %s for hub device.\n",
4741                         (xhci->hci_version > 0x95) ?
4742                         "configure endpoint" : "evaluate context");
4743
4744         /* Issue and wait for the configure endpoint or
4745          * evaluate context command.
4746          */
4747         if (xhci->hci_version > 0x95)
4748                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4749                                 false, false);
4750         else
4751                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4752                                 true, false);
4753
4754         xhci_free_command(xhci, config_cmd);
4755         return ret;
4756 }
4757
4758 static int xhci_get_frame(struct usb_hcd *hcd)
4759 {
4760         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4761         /* EHCI mods by the periodic size.  Why? */
4762         return readl(&xhci->run_regs->microframe_index) >> 3;
4763 }
4764
4765 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4766 {
4767         struct xhci_hcd         *xhci;
4768         /*
4769          * TODO: Check with DWC3 clients for sysdev according to
4770          * quirks
4771          */
4772         struct device           *dev = hcd->self.sysdev;
4773         int                     retval;
4774
4775         /* Accept arbitrarily long scatter-gather lists */
4776         hcd->self.sg_tablesize = ~0;
4777
4778         /* support to build packet from discontinuous buffers */
4779         hcd->self.no_sg_constraint = 1;
4780
4781         /* XHCI controllers don't stop the ep queue on short packets :| */
4782         hcd->self.no_stop_on_short = 1;
4783
4784         xhci = hcd_to_xhci(hcd);
4785
4786         if (usb_hcd_is_primary_hcd(hcd)) {
4787                 xhci->main_hcd = hcd;
4788                 /* Mark the first roothub as being USB 2.0.
4789                  * The xHCI driver will register the USB 3.0 roothub.
4790                  */
4791                 hcd->speed = HCD_USB2;
4792                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4793                 /*
4794                  * USB 2.0 roothub under xHCI has an integrated TT,
4795                  * (rate matching hub) as opposed to having an OHCI/UHCI
4796                  * companion controller.
4797                  */
4798                 hcd->has_tt = 1;
4799         } else {
4800                 if (xhci->sbrn == 0x31) {
4801                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4802                         hcd->speed = HCD_USB31;
4803                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4804                 }
4805                 /* xHCI private pointer was set in xhci_pci_probe for the second
4806                  * registered roothub.
4807                  */
4808                 return 0;
4809         }
4810
4811         mutex_init(&xhci->mutex);
4812         xhci->cap_regs = hcd->regs;
4813         xhci->op_regs = hcd->regs +
4814                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4815         xhci->run_regs = hcd->regs +
4816                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4817         /* Cache read-only capability registers */
4818         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4819         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4820         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4821         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4822         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4823         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4824         if (xhci->hci_version > 0x100)
4825                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4826         xhci_print_registers(xhci);
4827
4828         xhci->quirks |= quirks;
4829
4830         get_quirks(dev, xhci);
4831
4832         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4833          * success event after a short transfer. This quirk will ignore such
4834          * spurious event.
4835          */
4836         if (xhci->hci_version > 0x96)
4837                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4838
4839         /* Make sure the HC is halted. */
4840         retval = xhci_halt(xhci);
4841         if (retval)
4842                 return retval;
4843
4844         xhci_dbg(xhci, "Resetting HCD\n");
4845         /* Reset the internal HC memory state and registers. */
4846         retval = xhci_reset(xhci);
4847         if (retval)
4848                 return retval;
4849         xhci_dbg(xhci, "Reset complete\n");
4850
4851         /*
4852          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4853          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4854          * address memory pointers actually. So, this driver clears the AC64
4855          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4856          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4857          */
4858         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4859                 xhci->hcc_params &= ~BIT(0);
4860
4861         /* Set dma_mask and coherent_dma_mask to 64-bits,
4862          * if xHC supports 64-bit addressing */
4863         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4864                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4865                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4866                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4867         } else {
4868                 /*
4869                  * This is to avoid error in cases where a 32-bit USB
4870                  * controller is used on a 64-bit capable system.
4871                  */
4872                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4873                 if (retval)
4874                         return retval;
4875                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4876                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4877         }
4878
4879         xhci_dbg(xhci, "Calling HCD init\n");
4880         /* Initialize HCD and host controller data structures. */
4881         retval = xhci_init(hcd);
4882         if (retval)
4883                 return retval;
4884         xhci_dbg(xhci, "Called HCD init\n");
4885
4886         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4887                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4888
4889         return 0;
4890 }
4891 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4892
4893 static const struct hc_driver xhci_hc_driver = {
4894         .description =          "xhci-hcd",
4895         .product_desc =         "xHCI Host Controller",
4896         .hcd_priv_size =        sizeof(struct xhci_hcd),
4897
4898         /*
4899          * generic hardware linkage
4900          */
4901         .irq =                  xhci_irq,
4902         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4903
4904         /*
4905          * basic lifecycle operations
4906          */
4907         .reset =                NULL, /* set in xhci_init_driver() */
4908         .start =                xhci_run,
4909         .stop =                 xhci_stop,
4910         .shutdown =             xhci_shutdown,
4911
4912         /*
4913          * managing i/o requests and associated device resources
4914          */
4915         .urb_enqueue =          xhci_urb_enqueue,
4916         .urb_dequeue =          xhci_urb_dequeue,
4917         .alloc_dev =            xhci_alloc_dev,
4918         .free_dev =             xhci_free_dev,
4919         .alloc_streams =        xhci_alloc_streams,
4920         .free_streams =         xhci_free_streams,
4921         .add_endpoint =         xhci_add_endpoint,
4922         .drop_endpoint =        xhci_drop_endpoint,
4923         .endpoint_reset =       xhci_endpoint_reset,
4924         .check_bandwidth =      xhci_check_bandwidth,
4925         .reset_bandwidth =      xhci_reset_bandwidth,
4926         .address_device =       xhci_address_device,
4927         .enable_device =        xhci_enable_device,
4928         .update_hub_device =    xhci_update_hub_device,
4929         .reset_device =         xhci_discover_or_reset_device,
4930
4931         /*
4932          * scheduling support
4933          */
4934         .get_frame_number =     xhci_get_frame,
4935
4936         /*
4937          * root hub support
4938          */
4939         .hub_control =          xhci_hub_control,
4940         .hub_status_data =      xhci_hub_status_data,
4941         .bus_suspend =          xhci_bus_suspend,
4942         .bus_resume =           xhci_bus_resume,
4943
4944         /*
4945          * call back when device connected and addressed
4946          */
4947         .update_device =        xhci_update_device,
4948         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4949         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4950         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4951         .find_raw_port_number = xhci_find_raw_port_number,
4952 };
4953
4954 void xhci_init_driver(struct hc_driver *drv,
4955                       const struct xhci_driver_overrides *over)
4956 {
4957         BUG_ON(!over);
4958
4959         /* Copy the generic table to drv then apply the overrides */
4960         *drv = xhci_hc_driver;
4961
4962         if (over) {
4963                 drv->hcd_priv_size += over->extra_priv_size;
4964                 if (over->reset)
4965                         drv->reset = over->reset;
4966                 if (over->start)
4967                         drv->start = over->start;
4968         }
4969 }
4970 EXPORT_SYMBOL_GPL(xhci_init_driver);
4971
4972 MODULE_DESCRIPTION(DRIVER_DESC);
4973 MODULE_AUTHOR(DRIVER_AUTHOR);
4974 MODULE_LICENSE("GPL");
4975
4976 static int __init xhci_hcd_init(void)
4977 {
4978         /*
4979          * Check the compiler generated sizes of structures that must be laid
4980          * out in specific ways for hardware access.
4981          */
4982         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4983         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4984         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4985         /* xhci_device_control has eight fields, and also
4986          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4987          */
4988         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4989         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4990         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4991         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
4992         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4993         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4994         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4995
4996         if (usb_disabled())
4997                 return -ENODEV;
4998
4999         return 0;
5000 }
5001
5002 /*
5003  * If an init function is provided, an exit function must also be provided
5004  * to allow module unload.
5005  */
5006 static void __exit xhci_hcd_fini(void) { }
5007
5008 module_init(xhci_hcd_init);
5009 module_exit(xhci_hcd_fini);