]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
278                             BTRFS_FSID_SIZE);
279
280         WARN_ON(btrfs_header_generation(buf) > trans->transid);
281         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283         else
284                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285
286         if (ret)
287                 return ret;
288
289         btrfs_mark_buffer_dirty(cow);
290         *cow_ret = cow;
291         return 0;
292 }
293
294 enum mod_log_op {
295         MOD_LOG_KEY_REPLACE,
296         MOD_LOG_KEY_ADD,
297         MOD_LOG_KEY_REMOVE,
298         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300         MOD_LOG_MOVE_KEYS,
301         MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305         int dst_slot;
306         int nr_items;
307 };
308
309 struct tree_mod_root {
310         u64 logical;
311         u8 level;
312 };
313
314 struct tree_mod_elem {
315         struct rb_node node;
316         u64 index;              /* shifted logical */
317         u64 seq;
318         enum mod_log_op op;
319
320         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321         int slot;
322
323         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324         u64 generation;
325
326         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327         struct btrfs_disk_key key;
328         u64 blockptr;
329
330         /* this is used for op == MOD_LOG_MOVE_KEYS */
331         struct tree_mod_move move;
332
333         /* this is used for op == MOD_LOG_ROOT_REPLACE */
334         struct tree_mod_root old_root;
335 };
336
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339         read_lock(&fs_info->tree_mod_log_lock);
340 }
341
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344         read_unlock(&fs_info->tree_mod_log_lock);
345 }
346
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349         write_lock(&fs_info->tree_mod_log_lock);
350 }
351
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354         write_unlock(&fs_info->tree_mod_log_lock);
355 }
356
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365         seq &= 0xffffffff00000000ull;
366         seq += 1ull << 32;
367         atomic64_set(&fs_info->tree_mod_seq, seq);
368         return seq;
369 }
370
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384         return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392         return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404                            struct seq_list *elem)
405 {
406         u64 seq;
407
408         tree_mod_log_write_lock(fs_info);
409         spin_lock(&fs_info->tree_mod_seq_lock);
410         if (!elem->seq) {
411                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413         }
414         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415         spin_unlock(&fs_info->tree_mod_seq_lock);
416         tree_mod_log_write_unlock(fs_info);
417
418         return seq;
419 }
420
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422                             struct seq_list *elem)
423 {
424         struct rb_root *tm_root;
425         struct rb_node *node;
426         struct rb_node *next;
427         struct seq_list *cur_elem;
428         struct tree_mod_elem *tm;
429         u64 min_seq = (u64)-1;
430         u64 seq_putting = elem->seq;
431
432         if (!seq_putting)
433                 return;
434
435         spin_lock(&fs_info->tree_mod_seq_lock);
436         list_del(&elem->list);
437         elem->seq = 0;
438
439         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440                 if (cur_elem->seq < min_seq) {
441                         if (seq_putting > cur_elem->seq) {
442                                 /*
443                                  * blocker with lower sequence number exists, we
444                                  * cannot remove anything from the log
445                                  */
446                                 spin_unlock(&fs_info->tree_mod_seq_lock);
447                                 return;
448                         }
449                         min_seq = cur_elem->seq;
450                 }
451         }
452         spin_unlock(&fs_info->tree_mod_seq_lock);
453
454         /*
455          * anything that's lower than the lowest existing (read: blocked)
456          * sequence number can be removed from the tree.
457          */
458         tree_mod_log_write_lock(fs_info);
459         tm_root = &fs_info->tree_mod_log;
460         for (node = rb_first(tm_root); node; node = next) {
461                 next = rb_next(node);
462                 tm = container_of(node, struct tree_mod_elem, node);
463                 if (tm->seq > min_seq)
464                         continue;
465                 rb_erase(node, tm_root);
466                 kfree(tm);
467         }
468         tree_mod_log_write_unlock(fs_info);
469 }
470
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482         struct rb_root *tm_root;
483         struct rb_node **new;
484         struct rb_node *parent = NULL;
485         struct tree_mod_elem *cur;
486         int ret = 0;
487
488         BUG_ON(!tm);
489
490         tree_mod_log_write_lock(fs_info);
491         if (list_empty(&fs_info->tree_mod_seq_list)) {
492                 tree_mod_log_write_unlock(fs_info);
493                 /*
494                  * Ok we no longer care about logging modifications, free up tm
495                  * and return 0.  Any callers shouldn't be using tm after
496                  * calling tree_mod_log_insert, but if they do we can just
497                  * change this to return a special error code to let the callers
498                  * do their own thing.
499                  */
500                 kfree(tm);
501                 return 0;
502         }
503
504         spin_lock(&fs_info->tree_mod_seq_lock);
505         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506         spin_unlock(&fs_info->tree_mod_seq_lock);
507
508         tm_root = &fs_info->tree_mod_log;
509         new = &tm_root->rb_node;
510         while (*new) {
511                 cur = container_of(*new, struct tree_mod_elem, node);
512                 parent = *new;
513                 if (cur->index < tm->index)
514                         new = &((*new)->rb_left);
515                 else if (cur->index > tm->index)
516                         new = &((*new)->rb_right);
517                 else if (cur->seq < tm->seq)
518                         new = &((*new)->rb_left);
519                 else if (cur->seq > tm->seq)
520                         new = &((*new)->rb_right);
521                 else {
522                         ret = -EEXIST;
523                         kfree(tm);
524                         goto out;
525                 }
526         }
527
528         rb_link_node(&tm->node, parent, new);
529         rb_insert_color(&tm->node, tm_root);
530 out:
531         tree_mod_log_write_unlock(fs_info);
532         return ret;
533 }
534
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542                                     struct extent_buffer *eb) {
543         smp_mb();
544         if (list_empty(&(fs_info)->tree_mod_seq_list))
545                 return 1;
546         if (eb && btrfs_header_level(eb) == 0)
547                 return 1;
548         return 0;
549 }
550
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553                           struct extent_buffer *eb, int slot,
554                           enum mod_log_op op, gfp_t flags)
555 {
556         struct tree_mod_elem *tm;
557
558         tm = kzalloc(sizeof(*tm), flags);
559         if (!tm)
560                 return -ENOMEM;
561
562         tm->index = eb->start >> PAGE_CACHE_SHIFT;
563         if (op != MOD_LOG_KEY_ADD) {
564                 btrfs_node_key(eb, &tm->key, slot);
565                 tm->blockptr = btrfs_node_blockptr(eb, slot);
566         }
567         tm->op = op;
568         tm->slot = slot;
569         tm->generation = btrfs_node_ptr_generation(eb, slot);
570
571         return __tree_mod_log_insert(fs_info, tm);
572 }
573
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576                         struct extent_buffer *eb, int slot,
577                         enum mod_log_op op, gfp_t flags)
578 {
579         if (tree_mod_dont_log(fs_info, eb))
580                 return 0;
581
582         return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587                          struct extent_buffer *eb, int dst_slot, int src_slot,
588                          int nr_items, gfp_t flags)
589 {
590         struct tree_mod_elem *tm;
591         int ret;
592         int i;
593
594         if (tree_mod_dont_log(fs_info, eb))
595                 return 0;
596
597         /*
598          * When we override something during the move, we log these removals.
599          * This can only happen when we move towards the beginning of the
600          * buffer, i.e. dst_slot < src_slot.
601          */
602         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603                 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604                                 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605                 BUG_ON(ret < 0);
606         }
607
608         tm = kzalloc(sizeof(*tm), flags);
609         if (!tm)
610                 return -ENOMEM;
611
612         tm->index = eb->start >> PAGE_CACHE_SHIFT;
613         tm->slot = src_slot;
614         tm->move.dst_slot = dst_slot;
615         tm->move.nr_items = nr_items;
616         tm->op = MOD_LOG_MOVE_KEYS;
617
618         return __tree_mod_log_insert(fs_info, tm);
619 }
620
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624         int i;
625         u32 nritems;
626         int ret;
627
628         if (btrfs_header_level(eb) == 0)
629                 return;
630
631         nritems = btrfs_header_nritems(eb);
632         for (i = nritems - 1; i >= 0; i--) {
633                 ret = __tree_mod_log_insert_key(fs_info, eb, i,
634                                 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635                 BUG_ON(ret < 0);
636         }
637 }
638
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641                          struct extent_buffer *old_root,
642                          struct extent_buffer *new_root, gfp_t flags,
643                          int log_removal)
644 {
645         struct tree_mod_elem *tm;
646
647         if (tree_mod_dont_log(fs_info, NULL))
648                 return 0;
649
650         if (log_removal)
651                 __tree_mod_log_free_eb(fs_info, old_root);
652
653         tm = kzalloc(sizeof(*tm), flags);
654         if (!tm)
655                 return -ENOMEM;
656
657         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658         tm->old_root.logical = old_root->start;
659         tm->old_root.level = btrfs_header_level(old_root);
660         tm->generation = btrfs_header_generation(old_root);
661         tm->op = MOD_LOG_ROOT_REPLACE;
662
663         return __tree_mod_log_insert(fs_info, tm);
664 }
665
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668                       int smallest)
669 {
670         struct rb_root *tm_root;
671         struct rb_node *node;
672         struct tree_mod_elem *cur = NULL;
673         struct tree_mod_elem *found = NULL;
674         u64 index = start >> PAGE_CACHE_SHIFT;
675
676         tree_mod_log_read_lock(fs_info);
677         tm_root = &fs_info->tree_mod_log;
678         node = tm_root->rb_node;
679         while (node) {
680                 cur = container_of(node, struct tree_mod_elem, node);
681                 if (cur->index < index) {
682                         node = node->rb_left;
683                 } else if (cur->index > index) {
684                         node = node->rb_right;
685                 } else if (cur->seq < min_seq) {
686                         node = node->rb_left;
687                 } else if (!smallest) {
688                         /* we want the node with the highest seq */
689                         if (found)
690                                 BUG_ON(found->seq > cur->seq);
691                         found = cur;
692                         node = node->rb_left;
693                 } else if (cur->seq > min_seq) {
694                         /* we want the node with the smallest seq */
695                         if (found)
696                                 BUG_ON(found->seq < cur->seq);
697                         found = cur;
698                         node = node->rb_right;
699                 } else {
700                         found = cur;
701                         break;
702                 }
703         }
704         tree_mod_log_read_unlock(fs_info);
705
706         return found;
707 }
708
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716                            u64 min_seq)
717 {
718         return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729         return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734                      struct extent_buffer *src, unsigned long dst_offset,
735                      unsigned long src_offset, int nr_items)
736 {
737         int ret;
738         int i;
739
740         if (tree_mod_dont_log(fs_info, NULL))
741                 return;
742
743         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744                 return;
745
746         for (i = 0; i < nr_items; i++) {
747                 ret = __tree_mod_log_insert_key(fs_info, src,
748                                                 i + src_offset,
749                                                 MOD_LOG_KEY_REMOVE, GFP_NOFS);
750                 BUG_ON(ret < 0);
751                 ret = __tree_mod_log_insert_key(fs_info, dst,
752                                                      i + dst_offset,
753                                                      MOD_LOG_KEY_ADD,
754                                                      GFP_NOFS);
755                 BUG_ON(ret < 0);
756         }
757 }
758
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761                      int dst_offset, int src_offset, int nr_items)
762 {
763         int ret;
764         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765                                        nr_items, GFP_NOFS);
766         BUG_ON(ret < 0);
767 }
768
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771                           struct extent_buffer *eb, int slot, int atomic)
772 {
773         int ret;
774
775         ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776                                         MOD_LOG_KEY_REPLACE,
777                                         atomic ? GFP_ATOMIC : GFP_NOFS);
778         BUG_ON(ret < 0);
779 }
780
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784         if (tree_mod_dont_log(fs_info, eb))
785                 return;
786         __tree_mod_log_free_eb(fs_info, eb);
787 }
788
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791                               struct extent_buffer *new_root_node,
792                               int log_removal)
793 {
794         int ret;
795         ret = tree_mod_log_insert_root(root->fs_info, root->node,
796                                        new_root_node, GFP_NOFS, log_removal);
797         BUG_ON(ret < 0);
798 }
799
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804                               struct extent_buffer *buf)
805 {
806         /*
807          * Tree blocks not in refernece counted trees and tree roots
808          * are never shared. If a block was allocated after the last
809          * snapshot and the block was not allocated by tree relocation,
810          * we know the block is not shared.
811          */
812         if (root->ref_cows &&
813             buf != root->node && buf != root->commit_root &&
814             (btrfs_header_generation(buf) <=
815              btrfs_root_last_snapshot(&root->root_item) ||
816              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817                 return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819         if (root->ref_cows &&
820             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821                 return 1;
822 #endif
823         return 0;
824 }
825
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827                                        struct btrfs_root *root,
828                                        struct extent_buffer *buf,
829                                        struct extent_buffer *cow,
830                                        int *last_ref)
831 {
832         u64 refs;
833         u64 owner;
834         u64 flags;
835         u64 new_flags = 0;
836         int ret;
837
838         /*
839          * Backrefs update rules:
840          *
841          * Always use full backrefs for extent pointers in tree block
842          * allocated by tree relocation.
843          *
844          * If a shared tree block is no longer referenced by its owner
845          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846          * use full backrefs for extent pointers in tree block.
847          *
848          * If a tree block is been relocating
849          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850          * use full backrefs for extent pointers in tree block.
851          * The reason for this is some operations (such as drop tree)
852          * are only allowed for blocks use full backrefs.
853          */
854
855         if (btrfs_block_can_be_shared(root, buf)) {
856                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
857                                                btrfs_header_level(buf), 1,
858                                                &refs, &flags);
859                 if (ret)
860                         return ret;
861                 if (refs == 0) {
862                         ret = -EROFS;
863                         btrfs_std_error(root->fs_info, ret);
864                         return ret;
865                 }
866         } else {
867                 refs = 1;
868                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871                 else
872                         flags = 0;
873         }
874
875         owner = btrfs_header_owner(buf);
876         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878
879         if (refs > 1) {
880                 if ((owner == root->root_key.objectid ||
881                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884                         BUG_ON(ret); /* -ENOMEM */
885
886                         if (root->root_key.objectid ==
887                             BTRFS_TREE_RELOC_OBJECTID) {
888                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889                                 BUG_ON(ret); /* -ENOMEM */
890                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891                                 BUG_ON(ret); /* -ENOMEM */
892                         }
893                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894                 } else {
895
896                         if (root->root_key.objectid ==
897                             BTRFS_TREE_RELOC_OBJECTID)
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                         else
900                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901                         BUG_ON(ret); /* -ENOMEM */
902                 }
903                 if (new_flags != 0) {
904                         int level = btrfs_header_level(buf);
905
906                         ret = btrfs_set_disk_extent_flags(trans, root,
907                                                           buf->start,
908                                                           buf->len,
909                                                           new_flags, level, 0);
910                         if (ret)
911                                 return ret;
912                 }
913         } else {
914                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915                         if (root->root_key.objectid ==
916                             BTRFS_TREE_RELOC_OBJECTID)
917                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918                         else
919                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920                         BUG_ON(ret); /* -ENOMEM */
921                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922                         BUG_ON(ret); /* -ENOMEM */
923                 }
924                 clean_tree_block(trans, root, buf);
925                 *last_ref = 1;
926         }
927         return 0;
928 }
929
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943                              struct btrfs_root *root,
944                              struct extent_buffer *buf,
945                              struct extent_buffer *parent, int parent_slot,
946                              struct extent_buffer **cow_ret,
947                              u64 search_start, u64 empty_size)
948 {
949         struct btrfs_disk_key disk_key;
950         struct extent_buffer *cow;
951         int level, ret;
952         int last_ref = 0;
953         int unlock_orig = 0;
954         u64 parent_start;
955
956         if (*cow_ret == buf)
957                 unlock_orig = 1;
958
959         btrfs_assert_tree_locked(buf);
960
961         WARN_ON(root->ref_cows && trans->transid !=
962                 root->fs_info->running_transaction->transid);
963         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964
965         level = btrfs_header_level(buf);
966
967         if (level == 0)
968                 btrfs_item_key(buf, &disk_key, 0);
969         else
970                 btrfs_node_key(buf, &disk_key, 0);
971
972         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973                 if (parent)
974                         parent_start = parent->start;
975                 else
976                         parent_start = 0;
977         } else
978                 parent_start = 0;
979
980         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981                                      root->root_key.objectid, &disk_key,
982                                      level, search_start, empty_size);
983         if (IS_ERR(cow))
984                 return PTR_ERR(cow);
985
986         /* cow is set to blocking by btrfs_init_new_buffer */
987
988         copy_extent_buffer(cow, buf, 0, 0, cow->len);
989         btrfs_set_header_bytenr(cow, cow->start);
990         btrfs_set_header_generation(cow, trans->transid);
991         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993                                      BTRFS_HEADER_FLAG_RELOC);
994         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996         else
997                 btrfs_set_header_owner(cow, root->root_key.objectid);
998
999         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
1000                             BTRFS_FSID_SIZE);
1001
1002         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003         if (ret) {
1004                 btrfs_abort_transaction(trans, root, ret);
1005                 return ret;
1006         }
1007
1008         if (root->ref_cows) {
1009                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1010                 if (ret)
1011                         return ret;
1012         }
1013
1014         if (buf == root->node) {
1015                 WARN_ON(parent && parent != buf);
1016                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018                         parent_start = buf->start;
1019                 else
1020                         parent_start = 0;
1021
1022                 extent_buffer_get(cow);
1023                 tree_mod_log_set_root_pointer(root, cow, 1);
1024                 rcu_assign_pointer(root->node, cow);
1025
1026                 btrfs_free_tree_block(trans, root, buf, parent_start,
1027                                       last_ref);
1028                 free_extent_buffer(buf);
1029                 add_root_to_dirty_list(root);
1030         } else {
1031                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1032                         parent_start = parent->start;
1033                 else
1034                         parent_start = 0;
1035
1036                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1037                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1038                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1039                 btrfs_set_node_blockptr(parent, parent_slot,
1040                                         cow->start);
1041                 btrfs_set_node_ptr_generation(parent, parent_slot,
1042                                               trans->transid);
1043                 btrfs_mark_buffer_dirty(parent);
1044                 if (last_ref)
1045                         tree_mod_log_free_eb(root->fs_info, buf);
1046                 btrfs_free_tree_block(trans, root, buf, parent_start,
1047                                       last_ref);
1048         }
1049         if (unlock_orig)
1050                 btrfs_tree_unlock(buf);
1051         free_extent_buffer_stale(buf);
1052         btrfs_mark_buffer_dirty(cow);
1053         *cow_ret = cow;
1054         return 0;
1055 }
1056
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063                            struct extent_buffer *eb_root, u64 time_seq)
1064 {
1065         struct tree_mod_elem *tm;
1066         struct tree_mod_elem *found = NULL;
1067         u64 root_logical = eb_root->start;
1068         int looped = 0;
1069
1070         if (!time_seq)
1071                 return NULL;
1072
1073         /*
1074          * the very last operation that's logged for a root is the replacement
1075          * operation (if it is replaced at all). this has the index of the *new*
1076          * root, making it the very first operation that's logged for this root.
1077          */
1078         while (1) {
1079                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080                                                 time_seq);
1081                 if (!looped && !tm)
1082                         return NULL;
1083                 /*
1084                  * if there are no tree operation for the oldest root, we simply
1085                  * return it. this should only happen if that (old) root is at
1086                  * level 0.
1087                  */
1088                 if (!tm)
1089                         break;
1090
1091                 /*
1092                  * if there's an operation that's not a root replacement, we
1093                  * found the oldest version of our root. normally, we'll find a
1094                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095                  */
1096                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1097                         break;
1098
1099                 found = tm;
1100                 root_logical = tm->old_root.logical;
1101                 looped = 1;
1102         }
1103
1104         /* if there's no old root to return, return what we found instead */
1105         if (!found)
1106                 found = tm;
1107
1108         return found;
1109 }
1110
1111 /*
1112  * tm is a pointer to the first operation to rewind within eb. then, all
1113  * previous operations will be rewinded (until we reach something older than
1114  * time_seq).
1115  */
1116 static void
1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1118                       u64 time_seq, struct tree_mod_elem *first_tm)
1119 {
1120         u32 n;
1121         struct rb_node *next;
1122         struct tree_mod_elem *tm = first_tm;
1123         unsigned long o_dst;
1124         unsigned long o_src;
1125         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1126
1127         n = btrfs_header_nritems(eb);
1128         tree_mod_log_read_lock(fs_info);
1129         while (tm && tm->seq >= time_seq) {
1130                 /*
1131                  * all the operations are recorded with the operator used for
1132                  * the modification. as we're going backwards, we do the
1133                  * opposite of each operation here.
1134                  */
1135                 switch (tm->op) {
1136                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137                         BUG_ON(tm->slot < n);
1138                         /* Fallthrough */
1139                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1140                 case MOD_LOG_KEY_REMOVE:
1141                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1142                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1143                         btrfs_set_node_ptr_generation(eb, tm->slot,
1144                                                       tm->generation);
1145                         n++;
1146                         break;
1147                 case MOD_LOG_KEY_REPLACE:
1148                         BUG_ON(tm->slot >= n);
1149                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1150                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151                         btrfs_set_node_ptr_generation(eb, tm->slot,
1152                                                       tm->generation);
1153                         break;
1154                 case MOD_LOG_KEY_ADD:
1155                         /* if a move operation is needed it's in the log */
1156                         n--;
1157                         break;
1158                 case MOD_LOG_MOVE_KEYS:
1159                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1160                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1161                         memmove_extent_buffer(eb, o_dst, o_src,
1162                                               tm->move.nr_items * p_size);
1163                         break;
1164                 case MOD_LOG_ROOT_REPLACE:
1165                         /*
1166                          * this operation is special. for roots, this must be
1167                          * handled explicitly before rewinding.
1168                          * for non-roots, this operation may exist if the node
1169                          * was a root: root A -> child B; then A gets empty and
1170                          * B is promoted to the new root. in the mod log, we'll
1171                          * have a root-replace operation for B, a tree block
1172                          * that is no root. we simply ignore that operation.
1173                          */
1174                         break;
1175                 }
1176                 next = rb_next(&tm->node);
1177                 if (!next)
1178                         break;
1179                 tm = container_of(next, struct tree_mod_elem, node);
1180                 if (tm->index != first_tm->index)
1181                         break;
1182         }
1183         tree_mod_log_read_unlock(fs_info);
1184         btrfs_set_header_nritems(eb, n);
1185 }
1186
1187 /*
1188  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1189  * is returned. If rewind operations happen, a fresh buffer is returned. The
1190  * returned buffer is always read-locked. If the returned buffer is not the
1191  * input buffer, the lock on the input buffer is released and the input buffer
1192  * is freed (its refcount is decremented).
1193  */
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1196                     struct extent_buffer *eb, u64 time_seq)
1197 {
1198         struct extent_buffer *eb_rewin;
1199         struct tree_mod_elem *tm;
1200
1201         if (!time_seq)
1202                 return eb;
1203
1204         if (btrfs_header_level(eb) == 0)
1205                 return eb;
1206
1207         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208         if (!tm)
1209                 return eb;
1210
1211         btrfs_set_path_blocking(path);
1212         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1213
1214         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1215                 BUG_ON(tm->slot != 0);
1216                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1217                                                 fs_info->tree_root->nodesize);
1218                 if (!eb_rewin) {
1219                         btrfs_tree_read_unlock_blocking(eb);
1220                         free_extent_buffer(eb);
1221                         return NULL;
1222                 }
1223                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1224                 btrfs_set_header_backref_rev(eb_rewin,
1225                                              btrfs_header_backref_rev(eb));
1226                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228         } else {
1229                 eb_rewin = btrfs_clone_extent_buffer(eb);
1230                 if (!eb_rewin) {
1231                         btrfs_tree_read_unlock_blocking(eb);
1232                         free_extent_buffer(eb);
1233                         return NULL;
1234                 }
1235         }
1236
1237         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1238         btrfs_tree_read_unlock_blocking(eb);
1239         free_extent_buffer(eb);
1240
1241         extent_buffer_get(eb_rewin);
1242         btrfs_tree_read_lock(eb_rewin);
1243         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1244         WARN_ON(btrfs_header_nritems(eb_rewin) >
1245                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1246
1247         return eb_rewin;
1248 }
1249
1250 /*
1251  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1252  * value. If there are no changes, the current root->root_node is returned. If
1253  * anything changed in between, there's a fresh buffer allocated on which the
1254  * rewind operations are done. In any case, the returned buffer is read locked.
1255  * Returns NULL on error (with no locks held).
1256  */
1257 static inline struct extent_buffer *
1258 get_old_root(struct btrfs_root *root, u64 time_seq)
1259 {
1260         struct tree_mod_elem *tm;
1261         struct extent_buffer *eb = NULL;
1262         struct extent_buffer *eb_root;
1263         struct extent_buffer *old;
1264         struct tree_mod_root *old_root = NULL;
1265         u64 old_generation = 0;
1266         u64 logical;
1267         u32 blocksize;
1268
1269         eb_root = btrfs_read_lock_root_node(root);
1270         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1271         if (!tm)
1272                 return eb_root;
1273
1274         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1275                 old_root = &tm->old_root;
1276                 old_generation = tm->generation;
1277                 logical = old_root->logical;
1278         } else {
1279                 logical = eb_root->start;
1280         }
1281
1282         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1283         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1284                 btrfs_tree_read_unlock(eb_root);
1285                 free_extent_buffer(eb_root);
1286                 blocksize = btrfs_level_size(root, old_root->level);
1287                 old = read_tree_block(root, logical, blocksize, 0);
1288                 if (!old || !extent_buffer_uptodate(old)) {
1289                         free_extent_buffer(old);
1290                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1291                                 logical);
1292                         WARN_ON(1);
1293                 } else {
1294                         eb = btrfs_clone_extent_buffer(old);
1295                         free_extent_buffer(old);
1296                 }
1297         } else if (old_root) {
1298                 btrfs_tree_read_unlock(eb_root);
1299                 free_extent_buffer(eb_root);
1300                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1301         } else {
1302                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1303                 eb = btrfs_clone_extent_buffer(eb_root);
1304                 btrfs_tree_read_unlock_blocking(eb_root);
1305                 free_extent_buffer(eb_root);
1306         }
1307
1308         if (!eb)
1309                 return NULL;
1310         extent_buffer_get(eb);
1311         btrfs_tree_read_lock(eb);
1312         if (old_root) {
1313                 btrfs_set_header_bytenr(eb, eb->start);
1314                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1315                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1316                 btrfs_set_header_level(eb, old_root->level);
1317                 btrfs_set_header_generation(eb, old_generation);
1318         }
1319         if (tm)
1320                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1321         else
1322                 WARN_ON(btrfs_header_level(eb) != 0);
1323         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1324
1325         return eb;
1326 }
1327
1328 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1329 {
1330         struct tree_mod_elem *tm;
1331         int level;
1332         struct extent_buffer *eb_root = btrfs_root_node(root);
1333
1334         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1335         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1336                 level = tm->old_root.level;
1337         } else {
1338                 level = btrfs_header_level(eb_root);
1339         }
1340         free_extent_buffer(eb_root);
1341
1342         return level;
1343 }
1344
1345 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1346                                    struct btrfs_root *root,
1347                                    struct extent_buffer *buf)
1348 {
1349         /* ensure we can see the force_cow */
1350         smp_rmb();
1351
1352         /*
1353          * We do not need to cow a block if
1354          * 1) this block is not created or changed in this transaction;
1355          * 2) this block does not belong to TREE_RELOC tree;
1356          * 3) the root is not forced COW.
1357          *
1358          * What is forced COW:
1359          *    when we create snapshot during commiting the transaction,
1360          *    after we've finished coping src root, we must COW the shared
1361          *    block to ensure the metadata consistency.
1362          */
1363         if (btrfs_header_generation(buf) == trans->transid &&
1364             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1365             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1366               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1367             !root->force_cow)
1368                 return 0;
1369         return 1;
1370 }
1371
1372 /*
1373  * cows a single block, see __btrfs_cow_block for the real work.
1374  * This version of it has extra checks so that a block isn't cow'd more than
1375  * once per transaction, as long as it hasn't been written yet
1376  */
1377 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1378                     struct btrfs_root *root, struct extent_buffer *buf,
1379                     struct extent_buffer *parent, int parent_slot,
1380                     struct extent_buffer **cow_ret)
1381 {
1382         u64 search_start;
1383         int ret;
1384
1385         if (trans->transaction != root->fs_info->running_transaction)
1386                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1387                        trans->transid,
1388                        root->fs_info->running_transaction->transid);
1389
1390         if (trans->transid != root->fs_info->generation)
1391                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1392                        trans->transid, root->fs_info->generation);
1393
1394         if (!should_cow_block(trans, root, buf)) {
1395                 *cow_ret = buf;
1396                 return 0;
1397         }
1398
1399         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1400
1401         if (parent)
1402                 btrfs_set_lock_blocking(parent);
1403         btrfs_set_lock_blocking(buf);
1404
1405         ret = __btrfs_cow_block(trans, root, buf, parent,
1406                                  parent_slot, cow_ret, search_start, 0);
1407
1408         trace_btrfs_cow_block(root, buf, *cow_ret);
1409
1410         return ret;
1411 }
1412
1413 /*
1414  * helper function for defrag to decide if two blocks pointed to by a
1415  * node are actually close by
1416  */
1417 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1418 {
1419         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1420                 return 1;
1421         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1422                 return 1;
1423         return 0;
1424 }
1425
1426 /*
1427  * compare two keys in a memcmp fashion
1428  */
1429 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1430 {
1431         struct btrfs_key k1;
1432
1433         btrfs_disk_key_to_cpu(&k1, disk);
1434
1435         return btrfs_comp_cpu_keys(&k1, k2);
1436 }
1437
1438 /*
1439  * same as comp_keys only with two btrfs_key's
1440  */
1441 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1442 {
1443         if (k1->objectid > k2->objectid)
1444                 return 1;
1445         if (k1->objectid < k2->objectid)
1446                 return -1;
1447         if (k1->type > k2->type)
1448                 return 1;
1449         if (k1->type < k2->type)
1450                 return -1;
1451         if (k1->offset > k2->offset)
1452                 return 1;
1453         if (k1->offset < k2->offset)
1454                 return -1;
1455         return 0;
1456 }
1457
1458 /*
1459  * this is used by the defrag code to go through all the
1460  * leaves pointed to by a node and reallocate them so that
1461  * disk order is close to key order
1462  */
1463 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1464                        struct btrfs_root *root, struct extent_buffer *parent,
1465                        int start_slot, u64 *last_ret,
1466                        struct btrfs_key *progress)
1467 {
1468         struct extent_buffer *cur;
1469         u64 blocknr;
1470         u64 gen;
1471         u64 search_start = *last_ret;
1472         u64 last_block = 0;
1473         u64 other;
1474         u32 parent_nritems;
1475         int end_slot;
1476         int i;
1477         int err = 0;
1478         int parent_level;
1479         int uptodate;
1480         u32 blocksize;
1481         int progress_passed = 0;
1482         struct btrfs_disk_key disk_key;
1483
1484         parent_level = btrfs_header_level(parent);
1485
1486         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1487         WARN_ON(trans->transid != root->fs_info->generation);
1488
1489         parent_nritems = btrfs_header_nritems(parent);
1490         blocksize = btrfs_level_size(root, parent_level - 1);
1491         end_slot = parent_nritems;
1492
1493         if (parent_nritems == 1)
1494                 return 0;
1495
1496         btrfs_set_lock_blocking(parent);
1497
1498         for (i = start_slot; i < end_slot; i++) {
1499                 int close = 1;
1500
1501                 btrfs_node_key(parent, &disk_key, i);
1502                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1503                         continue;
1504
1505                 progress_passed = 1;
1506                 blocknr = btrfs_node_blockptr(parent, i);
1507                 gen = btrfs_node_ptr_generation(parent, i);
1508                 if (last_block == 0)
1509                         last_block = blocknr;
1510
1511                 if (i > 0) {
1512                         other = btrfs_node_blockptr(parent, i - 1);
1513                         close = close_blocks(blocknr, other, blocksize);
1514                 }
1515                 if (!close && i < end_slot - 2) {
1516                         other = btrfs_node_blockptr(parent, i + 1);
1517                         close = close_blocks(blocknr, other, blocksize);
1518                 }
1519                 if (close) {
1520                         last_block = blocknr;
1521                         continue;
1522                 }
1523
1524                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1525                 if (cur)
1526                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1527                 else
1528                         uptodate = 0;
1529                 if (!cur || !uptodate) {
1530                         if (!cur) {
1531                                 cur = read_tree_block(root, blocknr,
1532                                                          blocksize, gen);
1533                                 if (!cur || !extent_buffer_uptodate(cur)) {
1534                                         free_extent_buffer(cur);
1535                                         return -EIO;
1536                                 }
1537                         } else if (!uptodate) {
1538                                 err = btrfs_read_buffer(cur, gen);
1539                                 if (err) {
1540                                         free_extent_buffer(cur);
1541                                         return err;
1542                                 }
1543                         }
1544                 }
1545                 if (search_start == 0)
1546                         search_start = last_block;
1547
1548                 btrfs_tree_lock(cur);
1549                 btrfs_set_lock_blocking(cur);
1550                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1551                                         &cur, search_start,
1552                                         min(16 * blocksize,
1553                                             (end_slot - i) * blocksize));
1554                 if (err) {
1555                         btrfs_tree_unlock(cur);
1556                         free_extent_buffer(cur);
1557                         break;
1558                 }
1559                 search_start = cur->start;
1560                 last_block = cur->start;
1561                 *last_ret = search_start;
1562                 btrfs_tree_unlock(cur);
1563                 free_extent_buffer(cur);
1564         }
1565         return err;
1566 }
1567
1568 /*
1569  * The leaf data grows from end-to-front in the node.
1570  * this returns the address of the start of the last item,
1571  * which is the stop of the leaf data stack
1572  */
1573 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1574                                          struct extent_buffer *leaf)
1575 {
1576         u32 nr = btrfs_header_nritems(leaf);
1577         if (nr == 0)
1578                 return BTRFS_LEAF_DATA_SIZE(root);
1579         return btrfs_item_offset_nr(leaf, nr - 1);
1580 }
1581
1582
1583 /*
1584  * search for key in the extent_buffer.  The items start at offset p,
1585  * and they are item_size apart.  There are 'max' items in p.
1586  *
1587  * the slot in the array is returned via slot, and it points to
1588  * the place where you would insert key if it is not found in
1589  * the array.
1590  *
1591  * slot may point to max if the key is bigger than all of the keys
1592  */
1593 static noinline int generic_bin_search(struct extent_buffer *eb,
1594                                        unsigned long p,
1595                                        int item_size, struct btrfs_key *key,
1596                                        int max, int *slot)
1597 {
1598         int low = 0;
1599         int high = max;
1600         int mid;
1601         int ret;
1602         struct btrfs_disk_key *tmp = NULL;
1603         struct btrfs_disk_key unaligned;
1604         unsigned long offset;
1605         char *kaddr = NULL;
1606         unsigned long map_start = 0;
1607         unsigned long map_len = 0;
1608         int err;
1609
1610         while (low < high) {
1611                 mid = (low + high) / 2;
1612                 offset = p + mid * item_size;
1613
1614                 if (!kaddr || offset < map_start ||
1615                     (offset + sizeof(struct btrfs_disk_key)) >
1616                     map_start + map_len) {
1617
1618                         err = map_private_extent_buffer(eb, offset,
1619                                                 sizeof(struct btrfs_disk_key),
1620                                                 &kaddr, &map_start, &map_len);
1621
1622                         if (!err) {
1623                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1624                                                         map_start);
1625                         } else {
1626                                 read_extent_buffer(eb, &unaligned,
1627                                                    offset, sizeof(unaligned));
1628                                 tmp = &unaligned;
1629                         }
1630
1631                 } else {
1632                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1633                                                         map_start);
1634                 }
1635                 ret = comp_keys(tmp, key);
1636
1637                 if (ret < 0)
1638                         low = mid + 1;
1639                 else if (ret > 0)
1640                         high = mid;
1641                 else {
1642                         *slot = mid;
1643                         return 0;
1644                 }
1645         }
1646         *slot = low;
1647         return 1;
1648 }
1649
1650 /*
1651  * simple bin_search frontend that does the right thing for
1652  * leaves vs nodes
1653  */
1654 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                       int level, int *slot)
1656 {
1657         if (level == 0)
1658                 return generic_bin_search(eb,
1659                                           offsetof(struct btrfs_leaf, items),
1660                                           sizeof(struct btrfs_item),
1661                                           key, btrfs_header_nritems(eb),
1662                                           slot);
1663         else
1664                 return generic_bin_search(eb,
1665                                           offsetof(struct btrfs_node, ptrs),
1666                                           sizeof(struct btrfs_key_ptr),
1667                                           key, btrfs_header_nritems(eb),
1668                                           slot);
1669 }
1670
1671 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1672                      int level, int *slot)
1673 {
1674         return bin_search(eb, key, level, slot);
1675 }
1676
1677 static void root_add_used(struct btrfs_root *root, u32 size)
1678 {
1679         spin_lock(&root->accounting_lock);
1680         btrfs_set_root_used(&root->root_item,
1681                             btrfs_root_used(&root->root_item) + size);
1682         spin_unlock(&root->accounting_lock);
1683 }
1684
1685 static void root_sub_used(struct btrfs_root *root, u32 size)
1686 {
1687         spin_lock(&root->accounting_lock);
1688         btrfs_set_root_used(&root->root_item,
1689                             btrfs_root_used(&root->root_item) - size);
1690         spin_unlock(&root->accounting_lock);
1691 }
1692
1693 /* given a node and slot number, this reads the blocks it points to.  The
1694  * extent buffer is returned with a reference taken (but unlocked).
1695  * NULL is returned on error.
1696  */
1697 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1698                                    struct extent_buffer *parent, int slot)
1699 {
1700         int level = btrfs_header_level(parent);
1701         struct extent_buffer *eb;
1702
1703         if (slot < 0)
1704                 return NULL;
1705         if (slot >= btrfs_header_nritems(parent))
1706                 return NULL;
1707
1708         BUG_ON(level == 0);
1709
1710         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1711                              btrfs_level_size(root, level - 1),
1712                              btrfs_node_ptr_generation(parent, slot));
1713         if (eb && !extent_buffer_uptodate(eb)) {
1714                 free_extent_buffer(eb);
1715                 eb = NULL;
1716         }
1717
1718         return eb;
1719 }
1720
1721 /*
1722  * node level balancing, used to make sure nodes are in proper order for
1723  * item deletion.  We balance from the top down, so we have to make sure
1724  * that a deletion won't leave an node completely empty later on.
1725  */
1726 static noinline int balance_level(struct btrfs_trans_handle *trans,
1727                          struct btrfs_root *root,
1728                          struct btrfs_path *path, int level)
1729 {
1730         struct extent_buffer *right = NULL;
1731         struct extent_buffer *mid;
1732         struct extent_buffer *left = NULL;
1733         struct extent_buffer *parent = NULL;
1734         int ret = 0;
1735         int wret;
1736         int pslot;
1737         int orig_slot = path->slots[level];
1738         u64 orig_ptr;
1739
1740         if (level == 0)
1741                 return 0;
1742
1743         mid = path->nodes[level];
1744
1745         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1746                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1747         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1748
1749         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1750
1751         if (level < BTRFS_MAX_LEVEL - 1) {
1752                 parent = path->nodes[level + 1];
1753                 pslot = path->slots[level + 1];
1754         }
1755
1756         /*
1757          * deal with the case where there is only one pointer in the root
1758          * by promoting the node below to a root
1759          */
1760         if (!parent) {
1761                 struct extent_buffer *child;
1762
1763                 if (btrfs_header_nritems(mid) != 1)
1764                         return 0;
1765
1766                 /* promote the child to a root */
1767                 child = read_node_slot(root, mid, 0);
1768                 if (!child) {
1769                         ret = -EROFS;
1770                         btrfs_std_error(root->fs_info, ret);
1771                         goto enospc;
1772                 }
1773
1774                 btrfs_tree_lock(child);
1775                 btrfs_set_lock_blocking(child);
1776                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1777                 if (ret) {
1778                         btrfs_tree_unlock(child);
1779                         free_extent_buffer(child);
1780                         goto enospc;
1781                 }
1782
1783                 tree_mod_log_set_root_pointer(root, child, 1);
1784                 rcu_assign_pointer(root->node, child);
1785
1786                 add_root_to_dirty_list(root);
1787                 btrfs_tree_unlock(child);
1788
1789                 path->locks[level] = 0;
1790                 path->nodes[level] = NULL;
1791                 clean_tree_block(trans, root, mid);
1792                 btrfs_tree_unlock(mid);
1793                 /* once for the path */
1794                 free_extent_buffer(mid);
1795
1796                 root_sub_used(root, mid->len);
1797                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1798                 /* once for the root ptr */
1799                 free_extent_buffer_stale(mid);
1800                 return 0;
1801         }
1802         if (btrfs_header_nritems(mid) >
1803             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1804                 return 0;
1805
1806         left = read_node_slot(root, parent, pslot - 1);
1807         if (left) {
1808                 btrfs_tree_lock(left);
1809                 btrfs_set_lock_blocking(left);
1810                 wret = btrfs_cow_block(trans, root, left,
1811                                        parent, pslot - 1, &left);
1812                 if (wret) {
1813                         ret = wret;
1814                         goto enospc;
1815                 }
1816         }
1817         right = read_node_slot(root, parent, pslot + 1);
1818         if (right) {
1819                 btrfs_tree_lock(right);
1820                 btrfs_set_lock_blocking(right);
1821                 wret = btrfs_cow_block(trans, root, right,
1822                                        parent, pslot + 1, &right);
1823                 if (wret) {
1824                         ret = wret;
1825                         goto enospc;
1826                 }
1827         }
1828
1829         /* first, try to make some room in the middle buffer */
1830         if (left) {
1831                 orig_slot += btrfs_header_nritems(left);
1832                 wret = push_node_left(trans, root, left, mid, 1);
1833                 if (wret < 0)
1834                         ret = wret;
1835         }
1836
1837         /*
1838          * then try to empty the right most buffer into the middle
1839          */
1840         if (right) {
1841                 wret = push_node_left(trans, root, mid, right, 1);
1842                 if (wret < 0 && wret != -ENOSPC)
1843                         ret = wret;
1844                 if (btrfs_header_nritems(right) == 0) {
1845                         clean_tree_block(trans, root, right);
1846                         btrfs_tree_unlock(right);
1847                         del_ptr(root, path, level + 1, pslot + 1);
1848                         root_sub_used(root, right->len);
1849                         btrfs_free_tree_block(trans, root, right, 0, 1);
1850                         free_extent_buffer_stale(right);
1851                         right = NULL;
1852                 } else {
1853                         struct btrfs_disk_key right_key;
1854                         btrfs_node_key(right, &right_key, 0);
1855                         tree_mod_log_set_node_key(root->fs_info, parent,
1856                                                   pslot + 1, 0);
1857                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1858                         btrfs_mark_buffer_dirty(parent);
1859                 }
1860         }
1861         if (btrfs_header_nritems(mid) == 1) {
1862                 /*
1863                  * we're not allowed to leave a node with one item in the
1864                  * tree during a delete.  A deletion from lower in the tree
1865                  * could try to delete the only pointer in this node.
1866                  * So, pull some keys from the left.
1867                  * There has to be a left pointer at this point because
1868                  * otherwise we would have pulled some pointers from the
1869                  * right
1870                  */
1871                 if (!left) {
1872                         ret = -EROFS;
1873                         btrfs_std_error(root->fs_info, ret);
1874                         goto enospc;
1875                 }
1876                 wret = balance_node_right(trans, root, mid, left);
1877                 if (wret < 0) {
1878                         ret = wret;
1879                         goto enospc;
1880                 }
1881                 if (wret == 1) {
1882                         wret = push_node_left(trans, root, left, mid, 1);
1883                         if (wret < 0)
1884                                 ret = wret;
1885                 }
1886                 BUG_ON(wret == 1);
1887         }
1888         if (btrfs_header_nritems(mid) == 0) {
1889                 clean_tree_block(trans, root, mid);
1890                 btrfs_tree_unlock(mid);
1891                 del_ptr(root, path, level + 1, pslot);
1892                 root_sub_used(root, mid->len);
1893                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1894                 free_extent_buffer_stale(mid);
1895                 mid = NULL;
1896         } else {
1897                 /* update the parent key to reflect our changes */
1898                 struct btrfs_disk_key mid_key;
1899                 btrfs_node_key(mid, &mid_key, 0);
1900                 tree_mod_log_set_node_key(root->fs_info, parent,
1901                                           pslot, 0);
1902                 btrfs_set_node_key(parent, &mid_key, pslot);
1903                 btrfs_mark_buffer_dirty(parent);
1904         }
1905
1906         /* update the path */
1907         if (left) {
1908                 if (btrfs_header_nritems(left) > orig_slot) {
1909                         extent_buffer_get(left);
1910                         /* left was locked after cow */
1911                         path->nodes[level] = left;
1912                         path->slots[level + 1] -= 1;
1913                         path->slots[level] = orig_slot;
1914                         if (mid) {
1915                                 btrfs_tree_unlock(mid);
1916                                 free_extent_buffer(mid);
1917                         }
1918                 } else {
1919                         orig_slot -= btrfs_header_nritems(left);
1920                         path->slots[level] = orig_slot;
1921                 }
1922         }
1923         /* double check we haven't messed things up */
1924         if (orig_ptr !=
1925             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1926                 BUG();
1927 enospc:
1928         if (right) {
1929                 btrfs_tree_unlock(right);
1930                 free_extent_buffer(right);
1931         }
1932         if (left) {
1933                 if (path->nodes[level] != left)
1934                         btrfs_tree_unlock(left);
1935                 free_extent_buffer(left);
1936         }
1937         return ret;
1938 }
1939
1940 /* Node balancing for insertion.  Here we only split or push nodes around
1941  * when they are completely full.  This is also done top down, so we
1942  * have to be pessimistic.
1943  */
1944 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1945                                           struct btrfs_root *root,
1946                                           struct btrfs_path *path, int level)
1947 {
1948         struct extent_buffer *right = NULL;
1949         struct extent_buffer *mid;
1950         struct extent_buffer *left = NULL;
1951         struct extent_buffer *parent = NULL;
1952         int ret = 0;
1953         int wret;
1954         int pslot;
1955         int orig_slot = path->slots[level];
1956
1957         if (level == 0)
1958                 return 1;
1959
1960         mid = path->nodes[level];
1961         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1962
1963         if (level < BTRFS_MAX_LEVEL - 1) {
1964                 parent = path->nodes[level + 1];
1965                 pslot = path->slots[level + 1];
1966         }
1967
1968         if (!parent)
1969                 return 1;
1970
1971         left = read_node_slot(root, parent, pslot - 1);
1972
1973         /* first, try to make some room in the middle buffer */
1974         if (left) {
1975                 u32 left_nr;
1976
1977                 btrfs_tree_lock(left);
1978                 btrfs_set_lock_blocking(left);
1979
1980                 left_nr = btrfs_header_nritems(left);
1981                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982                         wret = 1;
1983                 } else {
1984                         ret = btrfs_cow_block(trans, root, left, parent,
1985                                               pslot - 1, &left);
1986                         if (ret)
1987                                 wret = 1;
1988                         else {
1989                                 wret = push_node_left(trans, root,
1990                                                       left, mid, 0);
1991                         }
1992                 }
1993                 if (wret < 0)
1994                         ret = wret;
1995                 if (wret == 0) {
1996                         struct btrfs_disk_key disk_key;
1997                         orig_slot += left_nr;
1998                         btrfs_node_key(mid, &disk_key, 0);
1999                         tree_mod_log_set_node_key(root->fs_info, parent,
2000                                                   pslot, 0);
2001                         btrfs_set_node_key(parent, &disk_key, pslot);
2002                         btrfs_mark_buffer_dirty(parent);
2003                         if (btrfs_header_nritems(left) > orig_slot) {
2004                                 path->nodes[level] = left;
2005                                 path->slots[level + 1] -= 1;
2006                                 path->slots[level] = orig_slot;
2007                                 btrfs_tree_unlock(mid);
2008                                 free_extent_buffer(mid);
2009                         } else {
2010                                 orig_slot -=
2011                                         btrfs_header_nritems(left);
2012                                 path->slots[level] = orig_slot;
2013                                 btrfs_tree_unlock(left);
2014                                 free_extent_buffer(left);
2015                         }
2016                         return 0;
2017                 }
2018                 btrfs_tree_unlock(left);
2019                 free_extent_buffer(left);
2020         }
2021         right = read_node_slot(root, parent, pslot + 1);
2022
2023         /*
2024          * then try to empty the right most buffer into the middle
2025          */
2026         if (right) {
2027                 u32 right_nr;
2028
2029                 btrfs_tree_lock(right);
2030                 btrfs_set_lock_blocking(right);
2031
2032                 right_nr = btrfs_header_nritems(right);
2033                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2034                         wret = 1;
2035                 } else {
2036                         ret = btrfs_cow_block(trans, root, right,
2037                                               parent, pslot + 1,
2038                                               &right);
2039                         if (ret)
2040                                 wret = 1;
2041                         else {
2042                                 wret = balance_node_right(trans, root,
2043                                                           right, mid);
2044                         }
2045                 }
2046                 if (wret < 0)
2047                         ret = wret;
2048                 if (wret == 0) {
2049                         struct btrfs_disk_key disk_key;
2050
2051                         btrfs_node_key(right, &disk_key, 0);
2052                         tree_mod_log_set_node_key(root->fs_info, parent,
2053                                                   pslot + 1, 0);
2054                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2055                         btrfs_mark_buffer_dirty(parent);
2056
2057                         if (btrfs_header_nritems(mid) <= orig_slot) {
2058                                 path->nodes[level] = right;
2059                                 path->slots[level + 1] += 1;
2060                                 path->slots[level] = orig_slot -
2061                                         btrfs_header_nritems(mid);
2062                                 btrfs_tree_unlock(mid);
2063                                 free_extent_buffer(mid);
2064                         } else {
2065                                 btrfs_tree_unlock(right);
2066                                 free_extent_buffer(right);
2067                         }
2068                         return 0;
2069                 }
2070                 btrfs_tree_unlock(right);
2071                 free_extent_buffer(right);
2072         }
2073         return 1;
2074 }
2075
2076 /*
2077  * readahead one full node of leaves, finding things that are close
2078  * to the block in 'slot', and triggering ra on them.
2079  */
2080 static void reada_for_search(struct btrfs_root *root,
2081                              struct btrfs_path *path,
2082                              int level, int slot, u64 objectid)
2083 {
2084         struct extent_buffer *node;
2085         struct btrfs_disk_key disk_key;
2086         u32 nritems;
2087         u64 search;
2088         u64 target;
2089         u64 nread = 0;
2090         u64 gen;
2091         int direction = path->reada;
2092         struct extent_buffer *eb;
2093         u32 nr;
2094         u32 blocksize;
2095         u32 nscan = 0;
2096
2097         if (level != 1)
2098                 return;
2099
2100         if (!path->nodes[level])
2101                 return;
2102
2103         node = path->nodes[level];
2104
2105         search = btrfs_node_blockptr(node, slot);
2106         blocksize = btrfs_level_size(root, level - 1);
2107         eb = btrfs_find_tree_block(root, search, blocksize);
2108         if (eb) {
2109                 free_extent_buffer(eb);
2110                 return;
2111         }
2112
2113         target = search;
2114
2115         nritems = btrfs_header_nritems(node);
2116         nr = slot;
2117
2118         while (1) {
2119                 if (direction < 0) {
2120                         if (nr == 0)
2121                                 break;
2122                         nr--;
2123                 } else if (direction > 0) {
2124                         nr++;
2125                         if (nr >= nritems)
2126                                 break;
2127                 }
2128                 if (path->reada < 0 && objectid) {
2129                         btrfs_node_key(node, &disk_key, nr);
2130                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2131                                 break;
2132                 }
2133                 search = btrfs_node_blockptr(node, nr);
2134                 if ((search <= target && target - search <= 65536) ||
2135                     (search > target && search - target <= 65536)) {
2136                         gen = btrfs_node_ptr_generation(node, nr);
2137                         readahead_tree_block(root, search, blocksize, gen);
2138                         nread += blocksize;
2139                 }
2140                 nscan++;
2141                 if ((nread > 65536 || nscan > 32))
2142                         break;
2143         }
2144 }
2145
2146 static noinline void reada_for_balance(struct btrfs_root *root,
2147                                        struct btrfs_path *path, int level)
2148 {
2149         int slot;
2150         int nritems;
2151         struct extent_buffer *parent;
2152         struct extent_buffer *eb;
2153         u64 gen;
2154         u64 block1 = 0;
2155         u64 block2 = 0;
2156         int blocksize;
2157
2158         parent = path->nodes[level + 1];
2159         if (!parent)
2160                 return;
2161
2162         nritems = btrfs_header_nritems(parent);
2163         slot = path->slots[level + 1];
2164         blocksize = btrfs_level_size(root, level);
2165
2166         if (slot > 0) {
2167                 block1 = btrfs_node_blockptr(parent, slot - 1);
2168                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2169                 eb = btrfs_find_tree_block(root, block1, blocksize);
2170                 /*
2171                  * if we get -eagain from btrfs_buffer_uptodate, we
2172                  * don't want to return eagain here.  That will loop
2173                  * forever
2174                  */
2175                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2176                         block1 = 0;
2177                 free_extent_buffer(eb);
2178         }
2179         if (slot + 1 < nritems) {
2180                 block2 = btrfs_node_blockptr(parent, slot + 1);
2181                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2182                 eb = btrfs_find_tree_block(root, block2, blocksize);
2183                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2184                         block2 = 0;
2185                 free_extent_buffer(eb);
2186         }
2187
2188         if (block1)
2189                 readahead_tree_block(root, block1, blocksize, 0);
2190         if (block2)
2191                 readahead_tree_block(root, block2, blocksize, 0);
2192 }
2193
2194
2195 /*
2196  * when we walk down the tree, it is usually safe to unlock the higher layers
2197  * in the tree.  The exceptions are when our path goes through slot 0, because
2198  * operations on the tree might require changing key pointers higher up in the
2199  * tree.
2200  *
2201  * callers might also have set path->keep_locks, which tells this code to keep
2202  * the lock if the path points to the last slot in the block.  This is part of
2203  * walking through the tree, and selecting the next slot in the higher block.
2204  *
2205  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2206  * if lowest_unlock is 1, level 0 won't be unlocked
2207  */
2208 static noinline void unlock_up(struct btrfs_path *path, int level,
2209                                int lowest_unlock, int min_write_lock_level,
2210                                int *write_lock_level)
2211 {
2212         int i;
2213         int skip_level = level;
2214         int no_skips = 0;
2215         struct extent_buffer *t;
2216
2217         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2218                 if (!path->nodes[i])
2219                         break;
2220                 if (!path->locks[i])
2221                         break;
2222                 if (!no_skips && path->slots[i] == 0) {
2223                         skip_level = i + 1;
2224                         continue;
2225                 }
2226                 if (!no_skips && path->keep_locks) {
2227                         u32 nritems;
2228                         t = path->nodes[i];
2229                         nritems = btrfs_header_nritems(t);
2230                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2231                                 skip_level = i + 1;
2232                                 continue;
2233                         }
2234                 }
2235                 if (skip_level < i && i >= lowest_unlock)
2236                         no_skips = 1;
2237
2238                 t = path->nodes[i];
2239                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2240                         btrfs_tree_unlock_rw(t, path->locks[i]);
2241                         path->locks[i] = 0;
2242                         if (write_lock_level &&
2243                             i > min_write_lock_level &&
2244                             i <= *write_lock_level) {
2245                                 *write_lock_level = i - 1;
2246                         }
2247                 }
2248         }
2249 }
2250
2251 /*
2252  * This releases any locks held in the path starting at level and
2253  * going all the way up to the root.
2254  *
2255  * btrfs_search_slot will keep the lock held on higher nodes in a few
2256  * corner cases, such as COW of the block at slot zero in the node.  This
2257  * ignores those rules, and it should only be called when there are no
2258  * more updates to be done higher up in the tree.
2259  */
2260 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2261 {
2262         int i;
2263
2264         if (path->keep_locks)
2265                 return;
2266
2267         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2268                 if (!path->nodes[i])
2269                         continue;
2270                 if (!path->locks[i])
2271                         continue;
2272                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2273                 path->locks[i] = 0;
2274         }
2275 }
2276
2277 /*
2278  * helper function for btrfs_search_slot.  The goal is to find a block
2279  * in cache without setting the path to blocking.  If we find the block
2280  * we return zero and the path is unchanged.
2281  *
2282  * If we can't find the block, we set the path blocking and do some
2283  * reada.  -EAGAIN is returned and the search must be repeated.
2284  */
2285 static int
2286 read_block_for_search(struct btrfs_trans_handle *trans,
2287                        struct btrfs_root *root, struct btrfs_path *p,
2288                        struct extent_buffer **eb_ret, int level, int slot,
2289                        struct btrfs_key *key, u64 time_seq)
2290 {
2291         u64 blocknr;
2292         u64 gen;
2293         u32 blocksize;
2294         struct extent_buffer *b = *eb_ret;
2295         struct extent_buffer *tmp;
2296         int ret;
2297
2298         blocknr = btrfs_node_blockptr(b, slot);
2299         gen = btrfs_node_ptr_generation(b, slot);
2300         blocksize = btrfs_level_size(root, level - 1);
2301
2302         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2303         if (tmp) {
2304                 /* first we do an atomic uptodate check */
2305                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306                         *eb_ret = tmp;
2307                         return 0;
2308                 }
2309
2310                 /* the pages were up to date, but we failed
2311                  * the generation number check.  Do a full
2312                  * read for the generation number that is correct.
2313                  * We must do this without dropping locks so
2314                  * we can trust our generation number
2315                  */
2316                 btrfs_set_path_blocking(p);
2317
2318                 /* now we're allowed to do a blocking uptodate check */
2319                 ret = btrfs_read_buffer(tmp, gen);
2320                 if (!ret) {
2321                         *eb_ret = tmp;
2322                         return 0;
2323                 }
2324                 free_extent_buffer(tmp);
2325                 btrfs_release_path(p);
2326                 return -EIO;
2327         }
2328
2329         /*
2330          * reduce lock contention at high levels
2331          * of the btree by dropping locks before
2332          * we read.  Don't release the lock on the current
2333          * level because we need to walk this node to figure
2334          * out which blocks to read.
2335          */
2336         btrfs_unlock_up_safe(p, level + 1);
2337         btrfs_set_path_blocking(p);
2338
2339         free_extent_buffer(tmp);
2340         if (p->reada)
2341                 reada_for_search(root, p, level, slot, key->objectid);
2342
2343         btrfs_release_path(p);
2344
2345         ret = -EAGAIN;
2346         tmp = read_tree_block(root, blocknr, blocksize, 0);
2347         if (tmp) {
2348                 /*
2349                  * If the read above didn't mark this buffer up to date,
2350                  * it will never end up being up to date.  Set ret to EIO now
2351                  * and give up so that our caller doesn't loop forever
2352                  * on our EAGAINs.
2353                  */
2354                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2355                         ret = -EIO;
2356                 free_extent_buffer(tmp);
2357         }
2358         return ret;
2359 }
2360
2361 /*
2362  * helper function for btrfs_search_slot.  This does all of the checks
2363  * for node-level blocks and does any balancing required based on
2364  * the ins_len.
2365  *
2366  * If no extra work was required, zero is returned.  If we had to
2367  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2368  * start over
2369  */
2370 static int
2371 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2372                        struct btrfs_root *root, struct btrfs_path *p,
2373                        struct extent_buffer *b, int level, int ins_len,
2374                        int *write_lock_level)
2375 {
2376         int ret;
2377         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2378             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2379                 int sret;
2380
2381                 if (*write_lock_level < level + 1) {
2382                         *write_lock_level = level + 1;
2383                         btrfs_release_path(p);
2384                         goto again;
2385                 }
2386
2387                 btrfs_set_path_blocking(p);
2388                 reada_for_balance(root, p, level);
2389                 sret = split_node(trans, root, p, level);
2390                 btrfs_clear_path_blocking(p, NULL, 0);
2391
2392                 BUG_ON(sret > 0);
2393                 if (sret) {
2394                         ret = sret;
2395                         goto done;
2396                 }
2397                 b = p->nodes[level];
2398         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2399                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2400                 int sret;
2401
2402                 if (*write_lock_level < level + 1) {
2403                         *write_lock_level = level + 1;
2404                         btrfs_release_path(p);
2405                         goto again;
2406                 }
2407
2408                 btrfs_set_path_blocking(p);
2409                 reada_for_balance(root, p, level);
2410                 sret = balance_level(trans, root, p, level);
2411                 btrfs_clear_path_blocking(p, NULL, 0);
2412
2413                 if (sret) {
2414                         ret = sret;
2415                         goto done;
2416                 }
2417                 b = p->nodes[level];
2418                 if (!b) {
2419                         btrfs_release_path(p);
2420                         goto again;
2421                 }
2422                 BUG_ON(btrfs_header_nritems(b) == 1);
2423         }
2424         return 0;
2425
2426 again:
2427         ret = -EAGAIN;
2428 done:
2429         return ret;
2430 }
2431
2432 static void key_search_validate(struct extent_buffer *b,
2433                                 struct btrfs_key *key,
2434                                 int level)
2435 {
2436 #ifdef CONFIG_BTRFS_ASSERT
2437         struct btrfs_disk_key disk_key;
2438
2439         btrfs_cpu_key_to_disk(&disk_key, key);
2440
2441         if (level == 0)
2442                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2443                     offsetof(struct btrfs_leaf, items[0].key),
2444                     sizeof(disk_key)));
2445         else
2446                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2447                     offsetof(struct btrfs_node, ptrs[0].key),
2448                     sizeof(disk_key)));
2449 #endif
2450 }
2451
2452 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2453                       int level, int *prev_cmp, int *slot)
2454 {
2455         if (*prev_cmp != 0) {
2456                 *prev_cmp = bin_search(b, key, level, slot);
2457                 return *prev_cmp;
2458         }
2459
2460         key_search_validate(b, key, level);
2461         *slot = 0;
2462
2463         return 0;
2464 }
2465
2466 /*
2467  * look for key in the tree.  path is filled in with nodes along the way
2468  * if key is found, we return zero and you can find the item in the leaf
2469  * level of the path (level 0)
2470  *
2471  * If the key isn't found, the path points to the slot where it should
2472  * be inserted, and 1 is returned.  If there are other errors during the
2473  * search a negative error number is returned.
2474  *
2475  * if ins_len > 0, nodes and leaves will be split as we walk down the
2476  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2477  * possible)
2478  */
2479 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2480                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2481                       ins_len, int cow)
2482 {
2483         struct extent_buffer *b;
2484         int slot;
2485         int ret;
2486         int err;
2487         int level;
2488         int lowest_unlock = 1;
2489         int root_lock;
2490         /* everything at write_lock_level or lower must be write locked */
2491         int write_lock_level = 0;
2492         u8 lowest_level = 0;
2493         int min_write_lock_level;
2494         int prev_cmp;
2495
2496         lowest_level = p->lowest_level;
2497         WARN_ON(lowest_level && ins_len > 0);
2498         WARN_ON(p->nodes[0] != NULL);
2499
2500         if (ins_len < 0) {
2501                 lowest_unlock = 2;
2502
2503                 /* when we are removing items, we might have to go up to level
2504                  * two as we update tree pointers  Make sure we keep write
2505                  * for those levels as well
2506                  */
2507                 write_lock_level = 2;
2508         } else if (ins_len > 0) {
2509                 /*
2510                  * for inserting items, make sure we have a write lock on
2511                  * level 1 so we can update keys
2512                  */
2513                 write_lock_level = 1;
2514         }
2515
2516         if (!cow)
2517                 write_lock_level = -1;
2518
2519         if (cow && (p->keep_locks || p->lowest_level))
2520                 write_lock_level = BTRFS_MAX_LEVEL;
2521
2522         min_write_lock_level = write_lock_level;
2523
2524 again:
2525         prev_cmp = -1;
2526         /*
2527          * we try very hard to do read locks on the root
2528          */
2529         root_lock = BTRFS_READ_LOCK;
2530         level = 0;
2531         if (p->search_commit_root) {
2532                 /*
2533                  * the commit roots are read only
2534                  * so we always do read locks
2535                  */
2536                 b = root->commit_root;
2537                 extent_buffer_get(b);
2538                 level = btrfs_header_level(b);
2539                 if (!p->skip_locking)
2540                         btrfs_tree_read_lock(b);
2541         } else {
2542                 if (p->skip_locking) {
2543                         b = btrfs_root_node(root);
2544                         level = btrfs_header_level(b);
2545                 } else {
2546                         /* we don't know the level of the root node
2547                          * until we actually have it read locked
2548                          */
2549                         b = btrfs_read_lock_root_node(root);
2550                         level = btrfs_header_level(b);
2551                         if (level <= write_lock_level) {
2552                                 /* whoops, must trade for write lock */
2553                                 btrfs_tree_read_unlock(b);
2554                                 free_extent_buffer(b);
2555                                 b = btrfs_lock_root_node(root);
2556                                 root_lock = BTRFS_WRITE_LOCK;
2557
2558                                 /* the level might have changed, check again */
2559                                 level = btrfs_header_level(b);
2560                         }
2561                 }
2562         }
2563         p->nodes[level] = b;
2564         if (!p->skip_locking)
2565                 p->locks[level] = root_lock;
2566
2567         while (b) {
2568                 level = btrfs_header_level(b);
2569
2570                 /*
2571                  * setup the path here so we can release it under lock
2572                  * contention with the cow code
2573                  */
2574                 if (cow) {
2575                         /*
2576                          * if we don't really need to cow this block
2577                          * then we don't want to set the path blocking,
2578                          * so we test it here
2579                          */
2580                         if (!should_cow_block(trans, root, b))
2581                                 goto cow_done;
2582
2583                         btrfs_set_path_blocking(p);
2584
2585                         /*
2586                          * must have write locks on this node and the
2587                          * parent
2588                          */
2589                         if (level > write_lock_level ||
2590                             (level + 1 > write_lock_level &&
2591                             level + 1 < BTRFS_MAX_LEVEL &&
2592                             p->nodes[level + 1])) {
2593                                 write_lock_level = level + 1;
2594                                 btrfs_release_path(p);
2595                                 goto again;
2596                         }
2597
2598                         err = btrfs_cow_block(trans, root, b,
2599                                               p->nodes[level + 1],
2600                                               p->slots[level + 1], &b);
2601                         if (err) {
2602                                 ret = err;
2603                                 goto done;
2604                         }
2605                 }
2606 cow_done:
2607                 BUG_ON(!cow && ins_len);
2608
2609                 p->nodes[level] = b;
2610                 btrfs_clear_path_blocking(p, NULL, 0);
2611
2612                 /*
2613                  * we have a lock on b and as long as we aren't changing
2614                  * the tree, there is no way to for the items in b to change.
2615                  * It is safe to drop the lock on our parent before we
2616                  * go through the expensive btree search on b.
2617                  *
2618                  * If cow is true, then we might be changing slot zero,
2619                  * which may require changing the parent.  So, we can't
2620                  * drop the lock until after we know which slot we're
2621                  * operating on.
2622                  */
2623                 if (!cow)
2624                         btrfs_unlock_up_safe(p, level + 1);
2625
2626                 ret = key_search(b, key, level, &prev_cmp, &slot);
2627
2628                 if (level != 0) {
2629                         int dec = 0;
2630                         if (ret && slot > 0) {
2631                                 dec = 1;
2632                                 slot -= 1;
2633                         }
2634                         p->slots[level] = slot;
2635                         err = setup_nodes_for_search(trans, root, p, b, level,
2636                                              ins_len, &write_lock_level);
2637                         if (err == -EAGAIN)
2638                                 goto again;
2639                         if (err) {
2640                                 ret = err;
2641                                 goto done;
2642                         }
2643                         b = p->nodes[level];
2644                         slot = p->slots[level];
2645
2646                         /*
2647                          * slot 0 is special, if we change the key
2648                          * we have to update the parent pointer
2649                          * which means we must have a write lock
2650                          * on the parent
2651                          */
2652                         if (slot == 0 && cow &&
2653                             write_lock_level < level + 1) {
2654                                 write_lock_level = level + 1;
2655                                 btrfs_release_path(p);
2656                                 goto again;
2657                         }
2658
2659                         unlock_up(p, level, lowest_unlock,
2660                                   min_write_lock_level, &write_lock_level);
2661
2662                         if (level == lowest_level) {
2663                                 if (dec)
2664                                         p->slots[level]++;
2665                                 goto done;
2666                         }
2667
2668                         err = read_block_for_search(trans, root, p,
2669                                                     &b, level, slot, key, 0);
2670                         if (err == -EAGAIN)
2671                                 goto again;
2672                         if (err) {
2673                                 ret = err;
2674                                 goto done;
2675                         }
2676
2677                         if (!p->skip_locking) {
2678                                 level = btrfs_header_level(b);
2679                                 if (level <= write_lock_level) {
2680                                         err = btrfs_try_tree_write_lock(b);
2681                                         if (!err) {
2682                                                 btrfs_set_path_blocking(p);
2683                                                 btrfs_tree_lock(b);
2684                                                 btrfs_clear_path_blocking(p, b,
2685                                                                   BTRFS_WRITE_LOCK);
2686                                         }
2687                                         p->locks[level] = BTRFS_WRITE_LOCK;
2688                                 } else {
2689                                         err = btrfs_try_tree_read_lock(b);
2690                                         if (!err) {
2691                                                 btrfs_set_path_blocking(p);
2692                                                 btrfs_tree_read_lock(b);
2693                                                 btrfs_clear_path_blocking(p, b,
2694                                                                   BTRFS_READ_LOCK);
2695                                         }
2696                                         p->locks[level] = BTRFS_READ_LOCK;
2697                                 }
2698                                 p->nodes[level] = b;
2699                         }
2700                 } else {
2701                         p->slots[level] = slot;
2702                         if (ins_len > 0 &&
2703                             btrfs_leaf_free_space(root, b) < ins_len) {
2704                                 if (write_lock_level < 1) {
2705                                         write_lock_level = 1;
2706                                         btrfs_release_path(p);
2707                                         goto again;
2708                                 }
2709
2710                                 btrfs_set_path_blocking(p);
2711                                 err = split_leaf(trans, root, key,
2712                                                  p, ins_len, ret == 0);
2713                                 btrfs_clear_path_blocking(p, NULL, 0);
2714
2715                                 BUG_ON(err > 0);
2716                                 if (err) {
2717                                         ret = err;
2718                                         goto done;
2719                                 }
2720                         }
2721                         if (!p->search_for_split)
2722                                 unlock_up(p, level, lowest_unlock,
2723                                           min_write_lock_level, &write_lock_level);
2724                         goto done;
2725                 }
2726         }
2727         ret = 1;
2728 done:
2729         /*
2730          * we don't really know what they plan on doing with the path
2731          * from here on, so for now just mark it as blocking
2732          */
2733         if (!p->leave_spinning)
2734                 btrfs_set_path_blocking(p);
2735         if (ret < 0)
2736                 btrfs_release_path(p);
2737         return ret;
2738 }
2739
2740 /*
2741  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2742  * current state of the tree together with the operations recorded in the tree
2743  * modification log to search for the key in a previous version of this tree, as
2744  * denoted by the time_seq parameter.
2745  *
2746  * Naturally, there is no support for insert, delete or cow operations.
2747  *
2748  * The resulting path and return value will be set up as if we called
2749  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2750  */
2751 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2752                           struct btrfs_path *p, u64 time_seq)
2753 {
2754         struct extent_buffer *b;
2755         int slot;
2756         int ret;
2757         int err;
2758         int level;
2759         int lowest_unlock = 1;
2760         u8 lowest_level = 0;
2761         int prev_cmp;
2762
2763         lowest_level = p->lowest_level;
2764         WARN_ON(p->nodes[0] != NULL);
2765
2766         if (p->search_commit_root) {
2767                 BUG_ON(time_seq);
2768                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769         }
2770
2771 again:
2772         prev_cmp = -1;
2773         b = get_old_root(root, time_seq);
2774         level = btrfs_header_level(b);
2775         p->locks[level] = BTRFS_READ_LOCK;
2776
2777         while (b) {
2778                 level = btrfs_header_level(b);
2779                 p->nodes[level] = b;
2780                 btrfs_clear_path_blocking(p, NULL, 0);
2781
2782                 /*
2783                  * we have a lock on b and as long as we aren't changing
2784                  * the tree, there is no way to for the items in b to change.
2785                  * It is safe to drop the lock on our parent before we
2786                  * go through the expensive btree search on b.
2787                  */
2788                 btrfs_unlock_up_safe(p, level + 1);
2789
2790                 ret = key_search(b, key, level, &prev_cmp, &slot);
2791
2792                 if (level != 0) {
2793                         int dec = 0;
2794                         if (ret && slot > 0) {
2795                                 dec = 1;
2796                                 slot -= 1;
2797                         }
2798                         p->slots[level] = slot;
2799                         unlock_up(p, level, lowest_unlock, 0, NULL);
2800
2801                         if (level == lowest_level) {
2802                                 if (dec)
2803                                         p->slots[level]++;
2804                                 goto done;
2805                         }
2806
2807                         err = read_block_for_search(NULL, root, p, &b, level,
2808                                                     slot, key, time_seq);
2809                         if (err == -EAGAIN)
2810                                 goto again;
2811                         if (err) {
2812                                 ret = err;
2813                                 goto done;
2814                         }
2815
2816                         level = btrfs_header_level(b);
2817                         err = btrfs_try_tree_read_lock(b);
2818                         if (!err) {
2819                                 btrfs_set_path_blocking(p);
2820                                 btrfs_tree_read_lock(b);
2821                                 btrfs_clear_path_blocking(p, b,
2822                                                           BTRFS_READ_LOCK);
2823                         }
2824                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2825                         if (!b) {
2826                                 ret = -ENOMEM;
2827                                 goto done;
2828                         }
2829                         p->locks[level] = BTRFS_READ_LOCK;
2830                         p->nodes[level] = b;
2831                 } else {
2832                         p->slots[level] = slot;
2833                         unlock_up(p, level, lowest_unlock, 0, NULL);
2834                         goto done;
2835                 }
2836         }
2837         ret = 1;
2838 done:
2839         if (!p->leave_spinning)
2840                 btrfs_set_path_blocking(p);
2841         if (ret < 0)
2842                 btrfs_release_path(p);
2843
2844         return ret;
2845 }
2846
2847 /*
2848  * helper to use instead of search slot if no exact match is needed but
2849  * instead the next or previous item should be returned.
2850  * When find_higher is true, the next higher item is returned, the next lower
2851  * otherwise.
2852  * When return_any and find_higher are both true, and no higher item is found,
2853  * return the next lower instead.
2854  * When return_any is true and find_higher is false, and no lower item is found,
2855  * return the next higher instead.
2856  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2857  * < 0 on error
2858  */
2859 int btrfs_search_slot_for_read(struct btrfs_root *root,
2860                                struct btrfs_key *key, struct btrfs_path *p,
2861                                int find_higher, int return_any)
2862 {
2863         int ret;
2864         struct extent_buffer *leaf;
2865
2866 again:
2867         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2868         if (ret <= 0)
2869                 return ret;
2870         /*
2871          * a return value of 1 means the path is at the position where the
2872          * item should be inserted. Normally this is the next bigger item,
2873          * but in case the previous item is the last in a leaf, path points
2874          * to the first free slot in the previous leaf, i.e. at an invalid
2875          * item.
2876          */
2877         leaf = p->nodes[0];
2878
2879         if (find_higher) {
2880                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2881                         ret = btrfs_next_leaf(root, p);
2882                         if (ret <= 0)
2883                                 return ret;
2884                         if (!return_any)
2885                                 return 1;
2886                         /*
2887                          * no higher item found, return the next
2888                          * lower instead
2889                          */
2890                         return_any = 0;
2891                         find_higher = 0;
2892                         btrfs_release_path(p);
2893                         goto again;
2894                 }
2895         } else {
2896                 if (p->slots[0] == 0) {
2897                         ret = btrfs_prev_leaf(root, p);
2898                         if (ret < 0)
2899                                 return ret;
2900                         if (!ret) {
2901                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2902                                 return 0;
2903                         }
2904                         if (!return_any)
2905                                 return 1;
2906                         /*
2907                          * no lower item found, return the next
2908                          * higher instead
2909                          */
2910                         return_any = 0;
2911                         find_higher = 1;
2912                         btrfs_release_path(p);
2913                         goto again;
2914                 } else {
2915                         --p->slots[0];
2916                 }
2917         }
2918         return 0;
2919 }
2920
2921 /*
2922  * adjust the pointers going up the tree, starting at level
2923  * making sure the right key of each node is points to 'key'.
2924  * This is used after shifting pointers to the left, so it stops
2925  * fixing up pointers when a given leaf/node is not in slot 0 of the
2926  * higher levels
2927  *
2928  */
2929 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2930                            struct btrfs_disk_key *key, int level)
2931 {
2932         int i;
2933         struct extent_buffer *t;
2934
2935         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2936                 int tslot = path->slots[i];
2937                 if (!path->nodes[i])
2938                         break;
2939                 t = path->nodes[i];
2940                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2941                 btrfs_set_node_key(t, key, tslot);
2942                 btrfs_mark_buffer_dirty(path->nodes[i]);
2943                 if (tslot != 0)
2944                         break;
2945         }
2946 }
2947
2948 /*
2949  * update item key.
2950  *
2951  * This function isn't completely safe. It's the caller's responsibility
2952  * that the new key won't break the order
2953  */
2954 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2955                              struct btrfs_key *new_key)
2956 {
2957         struct btrfs_disk_key disk_key;
2958         struct extent_buffer *eb;
2959         int slot;
2960
2961         eb = path->nodes[0];
2962         slot = path->slots[0];
2963         if (slot > 0) {
2964                 btrfs_item_key(eb, &disk_key, slot - 1);
2965                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2966         }
2967         if (slot < btrfs_header_nritems(eb) - 1) {
2968                 btrfs_item_key(eb, &disk_key, slot + 1);
2969                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2970         }
2971
2972         btrfs_cpu_key_to_disk(&disk_key, new_key);
2973         btrfs_set_item_key(eb, &disk_key, slot);
2974         btrfs_mark_buffer_dirty(eb);
2975         if (slot == 0)
2976                 fixup_low_keys(root, path, &disk_key, 1);
2977 }
2978
2979 /*
2980  * try to push data from one node into the next node left in the
2981  * tree.
2982  *
2983  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2984  * error, and > 0 if there was no room in the left hand block.
2985  */
2986 static int push_node_left(struct btrfs_trans_handle *trans,
2987                           struct btrfs_root *root, struct extent_buffer *dst,
2988                           struct extent_buffer *src, int empty)
2989 {
2990         int push_items = 0;
2991         int src_nritems;
2992         int dst_nritems;
2993         int ret = 0;
2994
2995         src_nritems = btrfs_header_nritems(src);
2996         dst_nritems = btrfs_header_nritems(dst);
2997         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2998         WARN_ON(btrfs_header_generation(src) != trans->transid);
2999         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3000
3001         if (!empty && src_nritems <= 8)
3002                 return 1;
3003
3004         if (push_items <= 0)
3005                 return 1;
3006
3007         if (empty) {
3008                 push_items = min(src_nritems, push_items);
3009                 if (push_items < src_nritems) {
3010                         /* leave at least 8 pointers in the node if
3011                          * we aren't going to empty it
3012                          */
3013                         if (src_nritems - push_items < 8) {
3014                                 if (push_items <= 8)
3015                                         return 1;
3016                                 push_items -= 8;
3017                         }
3018                 }
3019         } else
3020                 push_items = min(src_nritems - 8, push_items);
3021
3022         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3023                              push_items);
3024         copy_extent_buffer(dst, src,
3025                            btrfs_node_key_ptr_offset(dst_nritems),
3026                            btrfs_node_key_ptr_offset(0),
3027                            push_items * sizeof(struct btrfs_key_ptr));
3028
3029         if (push_items < src_nritems) {
3030                 /*
3031                  * don't call tree_mod_log_eb_move here, key removal was already
3032                  * fully logged by tree_mod_log_eb_copy above.
3033                  */
3034                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3035                                       btrfs_node_key_ptr_offset(push_items),
3036                                       (src_nritems - push_items) *
3037                                       sizeof(struct btrfs_key_ptr));
3038         }
3039         btrfs_set_header_nritems(src, src_nritems - push_items);
3040         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3041         btrfs_mark_buffer_dirty(src);
3042         btrfs_mark_buffer_dirty(dst);
3043
3044         return ret;
3045 }
3046
3047 /*
3048  * try to push data from one node into the next node right in the
3049  * tree.
3050  *
3051  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3052  * error, and > 0 if there was no room in the right hand block.
3053  *
3054  * this will  only push up to 1/2 the contents of the left node over
3055  */
3056 static int balance_node_right(struct btrfs_trans_handle *trans,
3057                               struct btrfs_root *root,
3058                               struct extent_buffer *dst,
3059                               struct extent_buffer *src)
3060 {
3061         int push_items = 0;
3062         int max_push;
3063         int src_nritems;
3064         int dst_nritems;
3065         int ret = 0;
3066
3067         WARN_ON(btrfs_header_generation(src) != trans->transid);
3068         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3069
3070         src_nritems = btrfs_header_nritems(src);
3071         dst_nritems = btrfs_header_nritems(dst);
3072         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3073         if (push_items <= 0)
3074                 return 1;
3075
3076         if (src_nritems < 4)
3077                 return 1;
3078
3079         max_push = src_nritems / 2 + 1;
3080         /* don't try to empty the node */
3081         if (max_push >= src_nritems)
3082                 return 1;
3083
3084         if (max_push < push_items)
3085                 push_items = max_push;
3086
3087         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3088         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3089                                       btrfs_node_key_ptr_offset(0),
3090                                       (dst_nritems) *
3091                                       sizeof(struct btrfs_key_ptr));
3092
3093         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3094                              src_nritems - push_items, push_items);
3095         copy_extent_buffer(dst, src,
3096                            btrfs_node_key_ptr_offset(0),
3097                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3098                            push_items * sizeof(struct btrfs_key_ptr));
3099
3100         btrfs_set_header_nritems(src, src_nritems - push_items);
3101         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3102
3103         btrfs_mark_buffer_dirty(src);
3104         btrfs_mark_buffer_dirty(dst);
3105
3106         return ret;
3107 }
3108
3109 /*
3110  * helper function to insert a new root level in the tree.
3111  * A new node is allocated, and a single item is inserted to
3112  * point to the existing root
3113  *
3114  * returns zero on success or < 0 on failure.
3115  */
3116 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3117                            struct btrfs_root *root,
3118                            struct btrfs_path *path, int level)
3119 {
3120         u64 lower_gen;
3121         struct extent_buffer *lower;
3122         struct extent_buffer *c;
3123         struct extent_buffer *old;
3124         struct btrfs_disk_key lower_key;
3125
3126         BUG_ON(path->nodes[level]);
3127         BUG_ON(path->nodes[level-1] != root->node);
3128
3129         lower = path->nodes[level-1];
3130         if (level == 1)
3131                 btrfs_item_key(lower, &lower_key, 0);
3132         else
3133                 btrfs_node_key(lower, &lower_key, 0);
3134
3135         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3136                                    root->root_key.objectid, &lower_key,
3137                                    level, root->node->start, 0);
3138         if (IS_ERR(c))
3139                 return PTR_ERR(c);
3140
3141         root_add_used(root, root->nodesize);
3142
3143         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3144         btrfs_set_header_nritems(c, 1);
3145         btrfs_set_header_level(c, level);
3146         btrfs_set_header_bytenr(c, c->start);
3147         btrfs_set_header_generation(c, trans->transid);
3148         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3149         btrfs_set_header_owner(c, root->root_key.objectid);
3150
3151         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(c),
3152                             BTRFS_FSID_SIZE);
3153
3154         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3155                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3156
3157         btrfs_set_node_key(c, &lower_key, 0);
3158         btrfs_set_node_blockptr(c, 0, lower->start);
3159         lower_gen = btrfs_header_generation(lower);
3160         WARN_ON(lower_gen != trans->transid);
3161
3162         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3163
3164         btrfs_mark_buffer_dirty(c);
3165
3166         old = root->node;
3167         tree_mod_log_set_root_pointer(root, c, 0);
3168         rcu_assign_pointer(root->node, c);
3169
3170         /* the super has an extra ref to root->node */
3171         free_extent_buffer(old);
3172
3173         add_root_to_dirty_list(root);
3174         extent_buffer_get(c);
3175         path->nodes[level] = c;
3176         path->locks[level] = BTRFS_WRITE_LOCK;
3177         path->slots[level] = 0;
3178         return 0;
3179 }
3180
3181 /*
3182  * worker function to insert a single pointer in a node.
3183  * the node should have enough room for the pointer already
3184  *
3185  * slot and level indicate where you want the key to go, and
3186  * blocknr is the block the key points to.
3187  */
3188 static void insert_ptr(struct btrfs_trans_handle *trans,
3189                        struct btrfs_root *root, struct btrfs_path *path,
3190                        struct btrfs_disk_key *key, u64 bytenr,
3191                        int slot, int level)
3192 {
3193         struct extent_buffer *lower;
3194         int nritems;
3195         int ret;
3196
3197         BUG_ON(!path->nodes[level]);
3198         btrfs_assert_tree_locked(path->nodes[level]);
3199         lower = path->nodes[level];
3200         nritems = btrfs_header_nritems(lower);
3201         BUG_ON(slot > nritems);
3202         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3203         if (slot != nritems) {
3204                 if (level)
3205                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3206                                              slot, nritems - slot);
3207                 memmove_extent_buffer(lower,
3208                               btrfs_node_key_ptr_offset(slot + 1),
3209                               btrfs_node_key_ptr_offset(slot),
3210                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3211         }
3212         if (level) {
3213                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3214                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3215                 BUG_ON(ret < 0);
3216         }
3217         btrfs_set_node_key(lower, key, slot);
3218         btrfs_set_node_blockptr(lower, slot, bytenr);
3219         WARN_ON(trans->transid == 0);
3220         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3221         btrfs_set_header_nritems(lower, nritems + 1);
3222         btrfs_mark_buffer_dirty(lower);
3223 }
3224
3225 /*
3226  * split the node at the specified level in path in two.
3227  * The path is corrected to point to the appropriate node after the split
3228  *
3229  * Before splitting this tries to make some room in the node by pushing
3230  * left and right, if either one works, it returns right away.
3231  *
3232  * returns 0 on success and < 0 on failure
3233  */
3234 static noinline int split_node(struct btrfs_trans_handle *trans,
3235                                struct btrfs_root *root,
3236                                struct btrfs_path *path, int level)
3237 {
3238         struct extent_buffer *c;
3239         struct extent_buffer *split;
3240         struct btrfs_disk_key disk_key;
3241         int mid;
3242         int ret;
3243         u32 c_nritems;
3244
3245         c = path->nodes[level];
3246         WARN_ON(btrfs_header_generation(c) != trans->transid);
3247         if (c == root->node) {
3248                 /*
3249                  * trying to split the root, lets make a new one
3250                  *
3251                  * tree mod log: We don't log_removal old root in
3252                  * insert_new_root, because that root buffer will be kept as a
3253                  * normal node. We are going to log removal of half of the
3254                  * elements below with tree_mod_log_eb_copy. We're holding a
3255                  * tree lock on the buffer, which is why we cannot race with
3256                  * other tree_mod_log users.
3257                  */
3258                 ret = insert_new_root(trans, root, path, level + 1);
3259                 if (ret)
3260                         return ret;
3261         } else {
3262                 ret = push_nodes_for_insert(trans, root, path, level);
3263                 c = path->nodes[level];
3264                 if (!ret && btrfs_header_nritems(c) <
3265                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3266                         return 0;
3267                 if (ret < 0)
3268                         return ret;
3269         }
3270
3271         c_nritems = btrfs_header_nritems(c);
3272         mid = (c_nritems + 1) / 2;
3273         btrfs_node_key(c, &disk_key, mid);
3274
3275         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3276                                         root->root_key.objectid,
3277                                         &disk_key, level, c->start, 0);
3278         if (IS_ERR(split))
3279                 return PTR_ERR(split);
3280
3281         root_add_used(root, root->nodesize);
3282
3283         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3284         btrfs_set_header_level(split, btrfs_header_level(c));
3285         btrfs_set_header_bytenr(split, split->start);
3286         btrfs_set_header_generation(split, trans->transid);
3287         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3288         btrfs_set_header_owner(split, root->root_key.objectid);
3289         write_extent_buffer(split, root->fs_info->fsid,
3290                             btrfs_header_fsid(split), BTRFS_FSID_SIZE);
3291         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3292                             btrfs_header_chunk_tree_uuid(split),
3293                             BTRFS_UUID_SIZE);
3294
3295         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3296         copy_extent_buffer(split, c,
3297                            btrfs_node_key_ptr_offset(0),
3298                            btrfs_node_key_ptr_offset(mid),
3299                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3300         btrfs_set_header_nritems(split, c_nritems - mid);
3301         btrfs_set_header_nritems(c, mid);
3302         ret = 0;
3303
3304         btrfs_mark_buffer_dirty(c);
3305         btrfs_mark_buffer_dirty(split);
3306
3307         insert_ptr(trans, root, path, &disk_key, split->start,
3308                    path->slots[level + 1] + 1, level + 1);
3309
3310         if (path->slots[level] >= mid) {
3311                 path->slots[level] -= mid;
3312                 btrfs_tree_unlock(c);
3313                 free_extent_buffer(c);
3314                 path->nodes[level] = split;
3315                 path->slots[level + 1] += 1;
3316         } else {
3317                 btrfs_tree_unlock(split);
3318                 free_extent_buffer(split);
3319         }
3320         return ret;
3321 }
3322
3323 /*
3324  * how many bytes are required to store the items in a leaf.  start
3325  * and nr indicate which items in the leaf to check.  This totals up the
3326  * space used both by the item structs and the item data
3327  */
3328 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3329 {
3330         struct btrfs_item *start_item;
3331         struct btrfs_item *end_item;
3332         struct btrfs_map_token token;
3333         int data_len;
3334         int nritems = btrfs_header_nritems(l);
3335         int end = min(nritems, start + nr) - 1;
3336
3337         if (!nr)
3338                 return 0;
3339         btrfs_init_map_token(&token);
3340         start_item = btrfs_item_nr(l, start);
3341         end_item = btrfs_item_nr(l, end);
3342         data_len = btrfs_token_item_offset(l, start_item, &token) +
3343                 btrfs_token_item_size(l, start_item, &token);
3344         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3345         data_len += sizeof(struct btrfs_item) * nr;
3346         WARN_ON(data_len < 0);
3347         return data_len;
3348 }
3349
3350 /*
3351  * The space between the end of the leaf items and
3352  * the start of the leaf data.  IOW, how much room
3353  * the leaf has left for both items and data
3354  */
3355 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3356                                    struct extent_buffer *leaf)
3357 {
3358         int nritems = btrfs_header_nritems(leaf);
3359         int ret;
3360         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3361         if (ret < 0) {
3362                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3363                        "used %d nritems %d\n",
3364                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3365                        leaf_space_used(leaf, 0, nritems), nritems);
3366         }
3367         return ret;
3368 }
3369
3370 /*
3371  * min slot controls the lowest index we're willing to push to the
3372  * right.  We'll push up to and including min_slot, but no lower
3373  */
3374 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3375                                       struct btrfs_root *root,
3376                                       struct btrfs_path *path,
3377                                       int data_size, int empty,
3378                                       struct extent_buffer *right,
3379                                       int free_space, u32 left_nritems,
3380                                       u32 min_slot)
3381 {
3382         struct extent_buffer *left = path->nodes[0];
3383         struct extent_buffer *upper = path->nodes[1];
3384         struct btrfs_map_token token;
3385         struct btrfs_disk_key disk_key;
3386         int slot;
3387         u32 i;
3388         int push_space = 0;
3389         int push_items = 0;
3390         struct btrfs_item *item;
3391         u32 nr;
3392         u32 right_nritems;
3393         u32 data_end;
3394         u32 this_item_size;
3395
3396         btrfs_init_map_token(&token);
3397
3398         if (empty)
3399                 nr = 0;
3400         else
3401                 nr = max_t(u32, 1, min_slot);
3402
3403         if (path->slots[0] >= left_nritems)
3404                 push_space += data_size;
3405
3406         slot = path->slots[1];
3407         i = left_nritems - 1;
3408         while (i >= nr) {
3409                 item = btrfs_item_nr(left, i);
3410
3411                 if (!empty && push_items > 0) {
3412                         if (path->slots[0] > i)
3413                                 break;
3414                         if (path->slots[0] == i) {
3415                                 int space = btrfs_leaf_free_space(root, left);
3416                                 if (space + push_space * 2 > free_space)
3417                                         break;
3418                         }
3419                 }
3420
3421                 if (path->slots[0] == i)
3422                         push_space += data_size;
3423
3424                 this_item_size = btrfs_item_size(left, item);
3425                 if (this_item_size + sizeof(*item) + push_space > free_space)
3426                         break;
3427
3428                 push_items++;
3429                 push_space += this_item_size + sizeof(*item);
3430                 if (i == 0)
3431                         break;
3432                 i--;
3433         }
3434
3435         if (push_items == 0)
3436                 goto out_unlock;
3437
3438         WARN_ON(!empty && push_items == left_nritems);
3439
3440         /* push left to right */
3441         right_nritems = btrfs_header_nritems(right);
3442
3443         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3444         push_space -= leaf_data_end(root, left);
3445
3446         /* make room in the right data area */
3447         data_end = leaf_data_end(root, right);
3448         memmove_extent_buffer(right,
3449                               btrfs_leaf_data(right) + data_end - push_space,
3450                               btrfs_leaf_data(right) + data_end,
3451                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3452
3453         /* copy from the left data area */
3454         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3455                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3456                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3457                      push_space);
3458
3459         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3460                               btrfs_item_nr_offset(0),
3461                               right_nritems * sizeof(struct btrfs_item));
3462
3463         /* copy the items from left to right */
3464         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3465                    btrfs_item_nr_offset(left_nritems - push_items),
3466                    push_items * sizeof(struct btrfs_item));
3467
3468         /* update the item pointers */
3469         right_nritems += push_items;
3470         btrfs_set_header_nritems(right, right_nritems);
3471         push_space = BTRFS_LEAF_DATA_SIZE(root);
3472         for (i = 0; i < right_nritems; i++) {
3473                 item = btrfs_item_nr(right, i);
3474                 push_space -= btrfs_token_item_size(right, item, &token);
3475                 btrfs_set_token_item_offset(right, item, push_space, &token);
3476         }
3477
3478         left_nritems -= push_items;
3479         btrfs_set_header_nritems(left, left_nritems);
3480
3481         if (left_nritems)
3482                 btrfs_mark_buffer_dirty(left);
3483         else
3484                 clean_tree_block(trans, root, left);
3485
3486         btrfs_mark_buffer_dirty(right);
3487
3488         btrfs_item_key(right, &disk_key, 0);
3489         btrfs_set_node_key(upper, &disk_key, slot + 1);
3490         btrfs_mark_buffer_dirty(upper);
3491
3492         /* then fixup the leaf pointer in the path */
3493         if (path->slots[0] >= left_nritems) {
3494                 path->slots[0] -= left_nritems;
3495                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3496                         clean_tree_block(trans, root, path->nodes[0]);
3497                 btrfs_tree_unlock(path->nodes[0]);
3498                 free_extent_buffer(path->nodes[0]);
3499                 path->nodes[0] = right;
3500                 path->slots[1] += 1;
3501         } else {
3502                 btrfs_tree_unlock(right);
3503                 free_extent_buffer(right);
3504         }
3505         return 0;
3506
3507 out_unlock:
3508         btrfs_tree_unlock(right);
3509         free_extent_buffer(right);
3510         return 1;
3511 }
3512
3513 /*
3514  * push some data in the path leaf to the right, trying to free up at
3515  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3516  *
3517  * returns 1 if the push failed because the other node didn't have enough
3518  * room, 0 if everything worked out and < 0 if there were major errors.
3519  *
3520  * this will push starting from min_slot to the end of the leaf.  It won't
3521  * push any slot lower than min_slot
3522  */
3523 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3524                            *root, struct btrfs_path *path,
3525                            int min_data_size, int data_size,
3526                            int empty, u32 min_slot)
3527 {
3528         struct extent_buffer *left = path->nodes[0];
3529         struct extent_buffer *right;
3530         struct extent_buffer *upper;
3531         int slot;
3532         int free_space;
3533         u32 left_nritems;
3534         int ret;
3535
3536         if (!path->nodes[1])
3537                 return 1;
3538
3539         slot = path->slots[1];
3540         upper = path->nodes[1];
3541         if (slot >= btrfs_header_nritems(upper) - 1)
3542                 return 1;
3543
3544         btrfs_assert_tree_locked(path->nodes[1]);
3545
3546         right = read_node_slot(root, upper, slot + 1);
3547         if (right == NULL)
3548                 return 1;
3549
3550         btrfs_tree_lock(right);
3551         btrfs_set_lock_blocking(right);
3552
3553         free_space = btrfs_leaf_free_space(root, right);
3554         if (free_space < data_size)
3555                 goto out_unlock;
3556
3557         /* cow and double check */
3558         ret = btrfs_cow_block(trans, root, right, upper,
3559                               slot + 1, &right);
3560         if (ret)
3561                 goto out_unlock;
3562
3563         free_space = btrfs_leaf_free_space(root, right);
3564         if (free_space < data_size)
3565                 goto out_unlock;
3566
3567         left_nritems = btrfs_header_nritems(left);
3568         if (left_nritems == 0)
3569                 goto out_unlock;
3570
3571         return __push_leaf_right(trans, root, path, min_data_size, empty,
3572                                 right, free_space, left_nritems, min_slot);
3573 out_unlock:
3574         btrfs_tree_unlock(right);
3575         free_extent_buffer(right);
3576         return 1;
3577 }
3578
3579 /*
3580  * push some data in the path leaf to the left, trying to free up at
3581  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3582  *
3583  * max_slot can put a limit on how far into the leaf we'll push items.  The
3584  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3585  * items
3586  */
3587 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3588                                      struct btrfs_root *root,
3589                                      struct btrfs_path *path, int data_size,
3590                                      int empty, struct extent_buffer *left,
3591                                      int free_space, u32 right_nritems,
3592                                      u32 max_slot)
3593 {
3594         struct btrfs_disk_key disk_key;
3595         struct extent_buffer *right = path->nodes[0];
3596         int i;
3597         int push_space = 0;
3598         int push_items = 0;
3599         struct btrfs_item *item;
3600         u32 old_left_nritems;
3601         u32 nr;
3602         int ret = 0;
3603         u32 this_item_size;
3604         u32 old_left_item_size;
3605         struct btrfs_map_token token;
3606
3607         btrfs_init_map_token(&token);
3608
3609         if (empty)
3610                 nr = min(right_nritems, max_slot);
3611         else
3612                 nr = min(right_nritems - 1, max_slot);
3613
3614         for (i = 0; i < nr; i++) {
3615                 item = btrfs_item_nr(right, i);
3616
3617                 if (!empty && push_items > 0) {
3618                         if (path->slots[0] < i)
3619                                 break;
3620                         if (path->slots[0] == i) {
3621                                 int space = btrfs_leaf_free_space(root, right);
3622                                 if (space + push_space * 2 > free_space)
3623                                         break;
3624                         }
3625                 }
3626
3627                 if (path->slots[0] == i)
3628                         push_space += data_size;
3629
3630                 this_item_size = btrfs_item_size(right, item);
3631                 if (this_item_size + sizeof(*item) + push_space > free_space)
3632                         break;
3633
3634                 push_items++;
3635                 push_space += this_item_size + sizeof(*item);
3636         }
3637
3638         if (push_items == 0) {
3639                 ret = 1;
3640                 goto out;
3641         }
3642         if (!empty && push_items == btrfs_header_nritems(right))
3643                 WARN_ON(1);
3644
3645         /* push data from right to left */
3646         copy_extent_buffer(left, right,
3647                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3648                            btrfs_item_nr_offset(0),
3649                            push_items * sizeof(struct btrfs_item));
3650
3651         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3652                      btrfs_item_offset_nr(right, push_items - 1);
3653
3654         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3655                      leaf_data_end(root, left) - push_space,
3656                      btrfs_leaf_data(right) +
3657                      btrfs_item_offset_nr(right, push_items - 1),
3658                      push_space);
3659         old_left_nritems = btrfs_header_nritems(left);
3660         BUG_ON(old_left_nritems <= 0);
3661
3662         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3663         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3664                 u32 ioff;
3665
3666                 item = btrfs_item_nr(left, i);
3667
3668                 ioff = btrfs_token_item_offset(left, item, &token);
3669                 btrfs_set_token_item_offset(left, item,
3670                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3671                       &token);
3672         }
3673         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3674
3675         /* fixup right node */
3676         if (push_items > right_nritems)
3677                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3678                        right_nritems);
3679
3680         if (push_items < right_nritems) {
3681                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3682                                                   leaf_data_end(root, right);
3683                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3684                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3685                                       btrfs_leaf_data(right) +
3686                                       leaf_data_end(root, right), push_space);
3687
3688                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3689                               btrfs_item_nr_offset(push_items),
3690                              (btrfs_header_nritems(right) - push_items) *
3691                              sizeof(struct btrfs_item));
3692         }
3693         right_nritems -= push_items;
3694         btrfs_set_header_nritems(right, right_nritems);
3695         push_space = BTRFS_LEAF_DATA_SIZE(root);
3696         for (i = 0; i < right_nritems; i++) {
3697                 item = btrfs_item_nr(right, i);
3698
3699                 push_space = push_space - btrfs_token_item_size(right,
3700                                                                 item, &token);
3701                 btrfs_set_token_item_offset(right, item, push_space, &token);
3702         }
3703
3704         btrfs_mark_buffer_dirty(left);
3705         if (right_nritems)
3706                 btrfs_mark_buffer_dirty(right);
3707         else
3708                 clean_tree_block(trans, root, right);
3709
3710         btrfs_item_key(right, &disk_key, 0);
3711         fixup_low_keys(root, path, &disk_key, 1);
3712
3713         /* then fixup the leaf pointer in the path */
3714         if (path->slots[0] < push_items) {
3715                 path->slots[0] += old_left_nritems;
3716                 btrfs_tree_unlock(path->nodes[0]);
3717                 free_extent_buffer(path->nodes[0]);
3718                 path->nodes[0] = left;
3719                 path->slots[1] -= 1;
3720         } else {
3721                 btrfs_tree_unlock(left);
3722                 free_extent_buffer(left);
3723                 path->slots[0] -= push_items;
3724         }
3725         BUG_ON(path->slots[0] < 0);
3726         return ret;
3727 out:
3728         btrfs_tree_unlock(left);
3729         free_extent_buffer(left);
3730         return ret;
3731 }
3732
3733 /*
3734  * push some data in the path leaf to the left, trying to free up at
3735  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3736  *
3737  * max_slot can put a limit on how far into the leaf we'll push items.  The
3738  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3739  * items
3740  */
3741 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3742                           *root, struct btrfs_path *path, int min_data_size,
3743                           int data_size, int empty, u32 max_slot)
3744 {
3745         struct extent_buffer *right = path->nodes[0];
3746         struct extent_buffer *left;
3747         int slot;
3748         int free_space;
3749         u32 right_nritems;
3750         int ret = 0;
3751
3752         slot = path->slots[1];
3753         if (slot == 0)
3754                 return 1;
3755         if (!path->nodes[1])
3756                 return 1;
3757
3758         right_nritems = btrfs_header_nritems(right);
3759         if (right_nritems == 0)
3760                 return 1;
3761
3762         btrfs_assert_tree_locked(path->nodes[1]);
3763
3764         left = read_node_slot(root, path->nodes[1], slot - 1);
3765         if (left == NULL)
3766                 return 1;
3767
3768         btrfs_tree_lock(left);
3769         btrfs_set_lock_blocking(left);
3770
3771         free_space = btrfs_leaf_free_space(root, left);
3772         if (free_space < data_size) {
3773                 ret = 1;
3774                 goto out;
3775         }
3776
3777         /* cow and double check */
3778         ret = btrfs_cow_block(trans, root, left,
3779                               path->nodes[1], slot - 1, &left);
3780         if (ret) {
3781                 /* we hit -ENOSPC, but it isn't fatal here */
3782                 if (ret == -ENOSPC)
3783                         ret = 1;
3784                 goto out;
3785         }
3786
3787         free_space = btrfs_leaf_free_space(root, left);
3788         if (free_space < data_size) {
3789                 ret = 1;
3790                 goto out;
3791         }
3792
3793         return __push_leaf_left(trans, root, path, min_data_size,
3794                                empty, left, free_space, right_nritems,
3795                                max_slot);
3796 out:
3797         btrfs_tree_unlock(left);
3798         free_extent_buffer(left);
3799         return ret;
3800 }
3801
3802 /*
3803  * split the path's leaf in two, making sure there is at least data_size
3804  * available for the resulting leaf level of the path.
3805  */
3806 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3807                                     struct btrfs_root *root,
3808                                     struct btrfs_path *path,
3809                                     struct extent_buffer *l,
3810                                     struct extent_buffer *right,
3811                                     int slot, int mid, int nritems)
3812 {
3813         int data_copy_size;
3814         int rt_data_off;
3815         int i;
3816         struct btrfs_disk_key disk_key;
3817         struct btrfs_map_token token;
3818
3819         btrfs_init_map_token(&token);
3820
3821         nritems = nritems - mid;
3822         btrfs_set_header_nritems(right, nritems);
3823         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3824
3825         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3826                            btrfs_item_nr_offset(mid),
3827                            nritems * sizeof(struct btrfs_item));
3828
3829         copy_extent_buffer(right, l,
3830                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3831                      data_copy_size, btrfs_leaf_data(l) +
3832                      leaf_data_end(root, l), data_copy_size);
3833
3834         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3835                       btrfs_item_end_nr(l, mid);
3836
3837         for (i = 0; i < nritems; i++) {
3838                 struct btrfs_item *item = btrfs_item_nr(right, i);
3839                 u32 ioff;
3840
3841                 ioff = btrfs_token_item_offset(right, item, &token);
3842                 btrfs_set_token_item_offset(right, item,
3843                                             ioff + rt_data_off, &token);
3844         }
3845
3846         btrfs_set_header_nritems(l, mid);
3847         btrfs_item_key(right, &disk_key, 0);
3848         insert_ptr(trans, root, path, &disk_key, right->start,
3849                    path->slots[1] + 1, 1);
3850
3851         btrfs_mark_buffer_dirty(right);
3852         btrfs_mark_buffer_dirty(l);
3853         BUG_ON(path->slots[0] != slot);
3854
3855         if (mid <= slot) {
3856                 btrfs_tree_unlock(path->nodes[0]);
3857                 free_extent_buffer(path->nodes[0]);
3858                 path->nodes[0] = right;
3859                 path->slots[0] -= mid;
3860                 path->slots[1] += 1;
3861         } else {
3862                 btrfs_tree_unlock(right);
3863                 free_extent_buffer(right);
3864         }
3865
3866         BUG_ON(path->slots[0] < 0);
3867 }
3868
3869 /*
3870  * double splits happen when we need to insert a big item in the middle
3871  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3872  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3873  *          A                 B                 C
3874  *
3875  * We avoid this by trying to push the items on either side of our target
3876  * into the adjacent leaves.  If all goes well we can avoid the double split
3877  * completely.
3878  */
3879 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3880                                           struct btrfs_root *root,
3881                                           struct btrfs_path *path,
3882                                           int data_size)
3883 {
3884         int ret;
3885         int progress = 0;
3886         int slot;
3887         u32 nritems;
3888
3889         slot = path->slots[0];
3890
3891         /*
3892          * try to push all the items after our slot into the
3893          * right leaf
3894          */
3895         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3896         if (ret < 0)
3897                 return ret;
3898
3899         if (ret == 0)
3900                 progress++;
3901
3902         nritems = btrfs_header_nritems(path->nodes[0]);
3903         /*
3904          * our goal is to get our slot at the start or end of a leaf.  If
3905          * we've done so we're done
3906          */
3907         if (path->slots[0] == 0 || path->slots[0] == nritems)
3908                 return 0;
3909
3910         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3911                 return 0;
3912
3913         /* try to push all the items before our slot into the next leaf */
3914         slot = path->slots[0];
3915         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3916         if (ret < 0)
3917                 return ret;
3918
3919         if (ret == 0)
3920                 progress++;
3921
3922         if (progress)
3923                 return 0;
3924         return 1;
3925 }
3926
3927 /*
3928  * split the path's leaf in two, making sure there is at least data_size
3929  * available for the resulting leaf level of the path.
3930  *
3931  * returns 0 if all went well and < 0 on failure.
3932  */
3933 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3934                                struct btrfs_root *root,
3935                                struct btrfs_key *ins_key,
3936                                struct btrfs_path *path, int data_size,
3937                                int extend)
3938 {
3939         struct btrfs_disk_key disk_key;
3940         struct extent_buffer *l;
3941         u32 nritems;
3942         int mid;
3943         int slot;
3944         struct extent_buffer *right;
3945         int ret = 0;
3946         int wret;
3947         int split;
3948         int num_doubles = 0;
3949         int tried_avoid_double = 0;
3950
3951         l = path->nodes[0];
3952         slot = path->slots[0];
3953         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3954             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3955                 return -EOVERFLOW;
3956
3957         /* first try to make some room by pushing left and right */
3958         if (data_size && path->nodes[1]) {
3959                 wret = push_leaf_right(trans, root, path, data_size,
3960                                        data_size, 0, 0);
3961                 if (wret < 0)
3962                         return wret;
3963                 if (wret) {
3964                         wret = push_leaf_left(trans, root, path, data_size,
3965                                               data_size, 0, (u32)-1);
3966                         if (wret < 0)
3967                                 return wret;
3968                 }
3969                 l = path->nodes[0];
3970
3971                 /* did the pushes work? */
3972                 if (btrfs_leaf_free_space(root, l) >= data_size)
3973                         return 0;
3974         }
3975
3976         if (!path->nodes[1]) {
3977                 ret = insert_new_root(trans, root, path, 1);
3978                 if (ret)
3979                         return ret;
3980         }
3981 again:
3982         split = 1;
3983         l = path->nodes[0];
3984         slot = path->slots[0];
3985         nritems = btrfs_header_nritems(l);
3986         mid = (nritems + 1) / 2;
3987
3988         if (mid <= slot) {
3989                 if (nritems == 1 ||
3990                     leaf_space_used(l, mid, nritems - mid) + data_size >
3991                         BTRFS_LEAF_DATA_SIZE(root)) {
3992                         if (slot >= nritems) {
3993                                 split = 0;
3994                         } else {
3995                                 mid = slot;
3996                                 if (mid != nritems &&
3997                                     leaf_space_used(l, mid, nritems - mid) +
3998                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3999                                         if (data_size && !tried_avoid_double)
4000                                                 goto push_for_double;
4001                                         split = 2;
4002                                 }
4003                         }
4004                 }
4005         } else {
4006                 if (leaf_space_used(l, 0, mid) + data_size >
4007                         BTRFS_LEAF_DATA_SIZE(root)) {
4008                         if (!extend && data_size && slot == 0) {
4009                                 split = 0;
4010                         } else if ((extend || !data_size) && slot == 0) {
4011                                 mid = 1;
4012                         } else {
4013                                 mid = slot;
4014                                 if (mid != nritems &&
4015                                     leaf_space_used(l, mid, nritems - mid) +
4016                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4017                                         if (data_size && !tried_avoid_double)
4018                                                 goto push_for_double;
4019                                         split = 2 ;
4020                                 }
4021                         }
4022                 }
4023         }
4024
4025         if (split == 0)
4026                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4027         else
4028                 btrfs_item_key(l, &disk_key, mid);
4029
4030         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4031                                         root->root_key.objectid,
4032                                         &disk_key, 0, l->start, 0);
4033         if (IS_ERR(right))
4034                 return PTR_ERR(right);
4035
4036         root_add_used(root, root->leafsize);
4037
4038         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4039         btrfs_set_header_bytenr(right, right->start);
4040         btrfs_set_header_generation(right, trans->transid);
4041         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4042         btrfs_set_header_owner(right, root->root_key.objectid);
4043         btrfs_set_header_level(right, 0);
4044         write_extent_buffer(right, root->fs_info->fsid,
4045                             btrfs_header_fsid(right), BTRFS_FSID_SIZE);
4046
4047         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4048                             btrfs_header_chunk_tree_uuid(right),
4049                             BTRFS_UUID_SIZE);
4050
4051         if (split == 0) {
4052                 if (mid <= slot) {
4053                         btrfs_set_header_nritems(right, 0);
4054                         insert_ptr(trans, root, path, &disk_key, right->start,
4055                                    path->slots[1] + 1, 1);
4056                         btrfs_tree_unlock(path->nodes[0]);
4057                         free_extent_buffer(path->nodes[0]);
4058                         path->nodes[0] = right;
4059                         path->slots[0] = 0;
4060                         path->slots[1] += 1;
4061                 } else {
4062                         btrfs_set_header_nritems(right, 0);
4063                         insert_ptr(trans, root, path, &disk_key, right->start,
4064                                           path->slots[1], 1);
4065                         btrfs_tree_unlock(path->nodes[0]);
4066                         free_extent_buffer(path->nodes[0]);
4067                         path->nodes[0] = right;
4068                         path->slots[0] = 0;
4069                         if (path->slots[1] == 0)
4070                                 fixup_low_keys(root, path, &disk_key, 1);
4071                 }
4072                 btrfs_mark_buffer_dirty(right);
4073                 return ret;
4074         }
4075
4076         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4077
4078         if (split == 2) {
4079                 BUG_ON(num_doubles != 0);
4080                 num_doubles++;
4081                 goto again;
4082         }
4083
4084         return 0;
4085
4086 push_for_double:
4087         push_for_double_split(trans, root, path, data_size);
4088         tried_avoid_double = 1;
4089         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4090                 return 0;
4091         goto again;
4092 }
4093
4094 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4095                                          struct btrfs_root *root,
4096                                          struct btrfs_path *path, int ins_len)
4097 {
4098         struct btrfs_key key;
4099         struct extent_buffer *leaf;
4100         struct btrfs_file_extent_item *fi;
4101         u64 extent_len = 0;
4102         u32 item_size;
4103         int ret;
4104
4105         leaf = path->nodes[0];
4106         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4107
4108         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4109                key.type != BTRFS_EXTENT_CSUM_KEY);
4110
4111         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4112                 return 0;
4113
4114         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4115         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4116                 fi = btrfs_item_ptr(leaf, path->slots[0],
4117                                     struct btrfs_file_extent_item);
4118                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4119         }
4120         btrfs_release_path(path);
4121
4122         path->keep_locks = 1;
4123         path->search_for_split = 1;
4124         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4125         path->search_for_split = 0;
4126         if (ret < 0)
4127                 goto err;
4128
4129         ret = -EAGAIN;
4130         leaf = path->nodes[0];
4131         /* if our item isn't there or got smaller, return now */
4132         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4133                 goto err;
4134
4135         /* the leaf has  changed, it now has room.  return now */
4136         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4137                 goto err;
4138
4139         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4140                 fi = btrfs_item_ptr(leaf, path->slots[0],
4141                                     struct btrfs_file_extent_item);
4142                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4143                         goto err;
4144         }
4145
4146         btrfs_set_path_blocking(path);
4147         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4148         if (ret)
4149                 goto err;
4150
4151         path->keep_locks = 0;
4152         btrfs_unlock_up_safe(path, 1);
4153         return 0;
4154 err:
4155         path->keep_locks = 0;
4156         return ret;
4157 }
4158
4159 static noinline int split_item(struct btrfs_trans_handle *trans,
4160                                struct btrfs_root *root,
4161                                struct btrfs_path *path,
4162                                struct btrfs_key *new_key,
4163                                unsigned long split_offset)
4164 {
4165         struct extent_buffer *leaf;
4166         struct btrfs_item *item;
4167         struct btrfs_item *new_item;
4168         int slot;
4169         char *buf;
4170         u32 nritems;
4171         u32 item_size;
4172         u32 orig_offset;
4173         struct btrfs_disk_key disk_key;
4174
4175         leaf = path->nodes[0];
4176         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4177
4178         btrfs_set_path_blocking(path);
4179
4180         item = btrfs_item_nr(leaf, path->slots[0]);
4181         orig_offset = btrfs_item_offset(leaf, item);
4182         item_size = btrfs_item_size(leaf, item);
4183
4184         buf = kmalloc(item_size, GFP_NOFS);
4185         if (!buf)
4186                 return -ENOMEM;
4187
4188         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4189                             path->slots[0]), item_size);
4190
4191         slot = path->slots[0] + 1;
4192         nritems = btrfs_header_nritems(leaf);
4193         if (slot != nritems) {
4194                 /* shift the items */
4195                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4196                                 btrfs_item_nr_offset(slot),
4197                                 (nritems - slot) * sizeof(struct btrfs_item));
4198         }
4199
4200         btrfs_cpu_key_to_disk(&disk_key, new_key);
4201         btrfs_set_item_key(leaf, &disk_key, slot);
4202
4203         new_item = btrfs_item_nr(leaf, slot);
4204
4205         btrfs_set_item_offset(leaf, new_item, orig_offset);
4206         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4207
4208         btrfs_set_item_offset(leaf, item,
4209                               orig_offset + item_size - split_offset);
4210         btrfs_set_item_size(leaf, item, split_offset);
4211
4212         btrfs_set_header_nritems(leaf, nritems + 1);
4213
4214         /* write the data for the start of the original item */
4215         write_extent_buffer(leaf, buf,
4216                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4217                             split_offset);
4218
4219         /* write the data for the new item */
4220         write_extent_buffer(leaf, buf + split_offset,
4221                             btrfs_item_ptr_offset(leaf, slot),
4222                             item_size - split_offset);
4223         btrfs_mark_buffer_dirty(leaf);
4224
4225         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4226         kfree(buf);
4227         return 0;
4228 }
4229
4230 /*
4231  * This function splits a single item into two items,
4232  * giving 'new_key' to the new item and splitting the
4233  * old one at split_offset (from the start of the item).
4234  *
4235  * The path may be released by this operation.  After
4236  * the split, the path is pointing to the old item.  The
4237  * new item is going to be in the same node as the old one.
4238  *
4239  * Note, the item being split must be smaller enough to live alone on
4240  * a tree block with room for one extra struct btrfs_item
4241  *
4242  * This allows us to split the item in place, keeping a lock on the
4243  * leaf the entire time.
4244  */
4245 int btrfs_split_item(struct btrfs_trans_handle *trans,
4246                      struct btrfs_root *root,
4247                      struct btrfs_path *path,
4248                      struct btrfs_key *new_key,
4249                      unsigned long split_offset)
4250 {
4251         int ret;
4252         ret = setup_leaf_for_split(trans, root, path,
4253                                    sizeof(struct btrfs_item));
4254         if (ret)
4255                 return ret;
4256
4257         ret = split_item(trans, root, path, new_key, split_offset);
4258         return ret;
4259 }
4260
4261 /*
4262  * This function duplicate a item, giving 'new_key' to the new item.
4263  * It guarantees both items live in the same tree leaf and the new item
4264  * is contiguous with the original item.
4265  *
4266  * This allows us to split file extent in place, keeping a lock on the
4267  * leaf the entire time.
4268  */
4269 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4270                          struct btrfs_root *root,
4271                          struct btrfs_path *path,
4272                          struct btrfs_key *new_key)
4273 {
4274         struct extent_buffer *leaf;
4275         int ret;
4276         u32 item_size;
4277
4278         leaf = path->nodes[0];
4279         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4280         ret = setup_leaf_for_split(trans, root, path,
4281                                    item_size + sizeof(struct btrfs_item));
4282         if (ret)
4283                 return ret;
4284
4285         path->slots[0]++;
4286         setup_items_for_insert(root, path, new_key, &item_size,
4287                                item_size, item_size +
4288                                sizeof(struct btrfs_item), 1);
4289         leaf = path->nodes[0];
4290         memcpy_extent_buffer(leaf,
4291                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4292                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4293                              item_size);
4294         return 0;
4295 }
4296
4297 /*
4298  * make the item pointed to by the path smaller.  new_size indicates
4299  * how small to make it, and from_end tells us if we just chop bytes
4300  * off the end of the item or if we shift the item to chop bytes off
4301  * the front.
4302  */
4303 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4304                          u32 new_size, int from_end)
4305 {
4306         int slot;
4307         struct extent_buffer *leaf;
4308         struct btrfs_item *item;
4309         u32 nritems;
4310         unsigned int data_end;
4311         unsigned int old_data_start;
4312         unsigned int old_size;
4313         unsigned int size_diff;
4314         int i;
4315         struct btrfs_map_token token;
4316
4317         btrfs_init_map_token(&token);
4318
4319         leaf = path->nodes[0];
4320         slot = path->slots[0];
4321
4322         old_size = btrfs_item_size_nr(leaf, slot);
4323         if (old_size == new_size)
4324                 return;
4325
4326         nritems = btrfs_header_nritems(leaf);
4327         data_end = leaf_data_end(root, leaf);
4328
4329         old_data_start = btrfs_item_offset_nr(leaf, slot);
4330
4331         size_diff = old_size - new_size;
4332
4333         BUG_ON(slot < 0);
4334         BUG_ON(slot >= nritems);
4335
4336         /*
4337          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4338          */
4339         /* first correct the data pointers */
4340         for (i = slot; i < nritems; i++) {
4341                 u32 ioff;
4342                 item = btrfs_item_nr(leaf, i);
4343
4344                 ioff = btrfs_token_item_offset(leaf, item, &token);
4345                 btrfs_set_token_item_offset(leaf, item,
4346                                             ioff + size_diff, &token);
4347         }
4348
4349         /* shift the data */
4350         if (from_end) {
4351                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4352                               data_end + size_diff, btrfs_leaf_data(leaf) +
4353                               data_end, old_data_start + new_size - data_end);
4354         } else {
4355                 struct btrfs_disk_key disk_key;
4356                 u64 offset;
4357
4358                 btrfs_item_key(leaf, &disk_key, slot);
4359
4360                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4361                         unsigned long ptr;
4362                         struct btrfs_file_extent_item *fi;
4363
4364                         fi = btrfs_item_ptr(leaf, slot,
4365                                             struct btrfs_file_extent_item);
4366                         fi = (struct btrfs_file_extent_item *)(
4367                              (unsigned long)fi - size_diff);
4368
4369                         if (btrfs_file_extent_type(leaf, fi) ==
4370                             BTRFS_FILE_EXTENT_INLINE) {
4371                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4372                                 memmove_extent_buffer(leaf, ptr,
4373                                       (unsigned long)fi,
4374                                       offsetof(struct btrfs_file_extent_item,
4375                                                  disk_bytenr));
4376                         }
4377                 }
4378
4379                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4380                               data_end + size_diff, btrfs_leaf_data(leaf) +
4381                               data_end, old_data_start - data_end);
4382
4383                 offset = btrfs_disk_key_offset(&disk_key);
4384                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4385                 btrfs_set_item_key(leaf, &disk_key, slot);
4386                 if (slot == 0)
4387                         fixup_low_keys(root, path, &disk_key, 1);
4388         }
4389
4390         item = btrfs_item_nr(leaf, slot);
4391         btrfs_set_item_size(leaf, item, new_size);
4392         btrfs_mark_buffer_dirty(leaf);
4393
4394         if (btrfs_leaf_free_space(root, leaf) < 0) {
4395                 btrfs_print_leaf(root, leaf);
4396                 BUG();
4397         }
4398 }
4399
4400 /*
4401  * make the item pointed to by the path bigger, data_size is the added size.
4402  */
4403 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4404                        u32 data_size)
4405 {
4406         int slot;
4407         struct extent_buffer *leaf;
4408         struct btrfs_item *item;
4409         u32 nritems;
4410         unsigned int data_end;
4411         unsigned int old_data;
4412         unsigned int old_size;
4413         int i;
4414         struct btrfs_map_token token;
4415
4416         btrfs_init_map_token(&token);
4417
4418         leaf = path->nodes[0];
4419
4420         nritems = btrfs_header_nritems(leaf);
4421         data_end = leaf_data_end(root, leaf);
4422
4423         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4424                 btrfs_print_leaf(root, leaf);
4425                 BUG();
4426         }
4427         slot = path->slots[0];
4428         old_data = btrfs_item_end_nr(leaf, slot);
4429
4430         BUG_ON(slot < 0);
4431         if (slot >= nritems) {
4432                 btrfs_print_leaf(root, leaf);
4433                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4434                        slot, nritems);
4435                 BUG_ON(1);
4436         }
4437
4438         /*
4439          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4440          */
4441         /* first correct the data pointers */
4442         for (i = slot; i < nritems; i++) {
4443                 u32 ioff;
4444                 item = btrfs_item_nr(leaf, i);
4445
4446                 ioff = btrfs_token_item_offset(leaf, item, &token);
4447                 btrfs_set_token_item_offset(leaf, item,
4448                                             ioff - data_size, &token);
4449         }
4450
4451         /* shift the data */
4452         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4453                       data_end - data_size, btrfs_leaf_data(leaf) +
4454                       data_end, old_data - data_end);
4455
4456         data_end = old_data;
4457         old_size = btrfs_item_size_nr(leaf, slot);
4458         item = btrfs_item_nr(leaf, slot);
4459         btrfs_set_item_size(leaf, item, old_size + data_size);
4460         btrfs_mark_buffer_dirty(leaf);
4461
4462         if (btrfs_leaf_free_space(root, leaf) < 0) {
4463                 btrfs_print_leaf(root, leaf);
4464                 BUG();
4465         }
4466 }
4467
4468 /*
4469  * this is a helper for btrfs_insert_empty_items, the main goal here is
4470  * to save stack depth by doing the bulk of the work in a function
4471  * that doesn't call btrfs_search_slot
4472  */
4473 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4474                             struct btrfs_key *cpu_key, u32 *data_size,
4475                             u32 total_data, u32 total_size, int nr)
4476 {
4477         struct btrfs_item *item;
4478         int i;
4479         u32 nritems;
4480         unsigned int data_end;
4481         struct btrfs_disk_key disk_key;
4482         struct extent_buffer *leaf;
4483         int slot;
4484         struct btrfs_map_token token;
4485
4486         btrfs_init_map_token(&token);
4487
4488         leaf = path->nodes[0];
4489         slot = path->slots[0];
4490
4491         nritems = btrfs_header_nritems(leaf);
4492         data_end = leaf_data_end(root, leaf);
4493
4494         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4495                 btrfs_print_leaf(root, leaf);
4496                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4497                        total_size, btrfs_leaf_free_space(root, leaf));
4498                 BUG();
4499         }
4500
4501         if (slot != nritems) {
4502                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4503
4504                 if (old_data < data_end) {
4505                         btrfs_print_leaf(root, leaf);
4506                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4507                                slot, old_data, data_end);
4508                         BUG_ON(1);
4509                 }
4510                 /*
4511                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4512                  */
4513                 /* first correct the data pointers */
4514                 for (i = slot; i < nritems; i++) {
4515                         u32 ioff;
4516
4517                         item = btrfs_item_nr(leaf, i);
4518                         ioff = btrfs_token_item_offset(leaf, item, &token);
4519                         btrfs_set_token_item_offset(leaf, item,
4520                                                     ioff - total_data, &token);
4521                 }
4522                 /* shift the items */
4523                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4524                               btrfs_item_nr_offset(slot),
4525                               (nritems - slot) * sizeof(struct btrfs_item));
4526
4527                 /* shift the data */
4528                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4529                               data_end - total_data, btrfs_leaf_data(leaf) +
4530                               data_end, old_data - data_end);
4531                 data_end = old_data;
4532         }
4533
4534         /* setup the item for the new data */
4535         for (i = 0; i < nr; i++) {
4536                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4537                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4538                 item = btrfs_item_nr(leaf, slot + i);
4539                 btrfs_set_token_item_offset(leaf, item,
4540                                             data_end - data_size[i], &token);
4541                 data_end -= data_size[i];
4542                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4543         }
4544
4545         btrfs_set_header_nritems(leaf, nritems + nr);
4546
4547         if (slot == 0) {
4548                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4549                 fixup_low_keys(root, path, &disk_key, 1);
4550         }
4551         btrfs_unlock_up_safe(path, 1);
4552         btrfs_mark_buffer_dirty(leaf);
4553
4554         if (btrfs_leaf_free_space(root, leaf) < 0) {
4555                 btrfs_print_leaf(root, leaf);
4556                 BUG();
4557         }
4558 }
4559
4560 /*
4561  * Given a key and some data, insert items into the tree.
4562  * This does all the path init required, making room in the tree if needed.
4563  */
4564 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4565                             struct btrfs_root *root,
4566                             struct btrfs_path *path,
4567                             struct btrfs_key *cpu_key, u32 *data_size,
4568                             int nr)
4569 {
4570         int ret = 0;
4571         int slot;
4572         int i;
4573         u32 total_size = 0;
4574         u32 total_data = 0;
4575
4576         for (i = 0; i < nr; i++)
4577                 total_data += data_size[i];
4578
4579         total_size = total_data + (nr * sizeof(struct btrfs_item));
4580         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4581         if (ret == 0)
4582                 return -EEXIST;
4583         if (ret < 0)
4584                 return ret;
4585
4586         slot = path->slots[0];
4587         BUG_ON(slot < 0);
4588
4589         setup_items_for_insert(root, path, cpu_key, data_size,
4590                                total_data, total_size, nr);
4591         return 0;
4592 }
4593
4594 /*
4595  * Given a key and some data, insert an item into the tree.
4596  * This does all the path init required, making room in the tree if needed.
4597  */
4598 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4599                       *root, struct btrfs_key *cpu_key, void *data, u32
4600                       data_size)
4601 {
4602         int ret = 0;
4603         struct btrfs_path *path;
4604         struct extent_buffer *leaf;
4605         unsigned long ptr;
4606
4607         path = btrfs_alloc_path();
4608         if (!path)
4609                 return -ENOMEM;
4610         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4611         if (!ret) {
4612                 leaf = path->nodes[0];
4613                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4614                 write_extent_buffer(leaf, data, ptr, data_size);
4615                 btrfs_mark_buffer_dirty(leaf);
4616         }
4617         btrfs_free_path(path);
4618         return ret;
4619 }
4620
4621 /*
4622  * delete the pointer from a given node.
4623  *
4624  * the tree should have been previously balanced so the deletion does not
4625  * empty a node.
4626  */
4627 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4628                     int level, int slot)
4629 {
4630         struct extent_buffer *parent = path->nodes[level];
4631         u32 nritems;
4632         int ret;
4633
4634         nritems = btrfs_header_nritems(parent);
4635         if (slot != nritems - 1) {
4636                 if (level)
4637                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4638                                              slot + 1, nritems - slot - 1);
4639                 memmove_extent_buffer(parent,
4640                               btrfs_node_key_ptr_offset(slot),
4641                               btrfs_node_key_ptr_offset(slot + 1),
4642                               sizeof(struct btrfs_key_ptr) *
4643                               (nritems - slot - 1));
4644         } else if (level) {
4645                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4646                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4647                 BUG_ON(ret < 0);
4648         }
4649
4650         nritems--;
4651         btrfs_set_header_nritems(parent, nritems);
4652         if (nritems == 0 && parent == root->node) {
4653                 BUG_ON(btrfs_header_level(root->node) != 1);
4654                 /* just turn the root into a leaf and break */
4655                 btrfs_set_header_level(root->node, 0);
4656         } else if (slot == 0) {
4657                 struct btrfs_disk_key disk_key;
4658
4659                 btrfs_node_key(parent, &disk_key, 0);
4660                 fixup_low_keys(root, path, &disk_key, level + 1);
4661         }
4662         btrfs_mark_buffer_dirty(parent);
4663 }
4664
4665 /*
4666  * a helper function to delete the leaf pointed to by path->slots[1] and
4667  * path->nodes[1].
4668  *
4669  * This deletes the pointer in path->nodes[1] and frees the leaf
4670  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4671  *
4672  * The path must have already been setup for deleting the leaf, including
4673  * all the proper balancing.  path->nodes[1] must be locked.
4674  */
4675 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4676                                     struct btrfs_root *root,
4677                                     struct btrfs_path *path,
4678                                     struct extent_buffer *leaf)
4679 {
4680         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4681         del_ptr(root, path, 1, path->slots[1]);
4682
4683         /*
4684          * btrfs_free_extent is expensive, we want to make sure we
4685          * aren't holding any locks when we call it
4686          */
4687         btrfs_unlock_up_safe(path, 0);
4688
4689         root_sub_used(root, leaf->len);
4690
4691         extent_buffer_get(leaf);
4692         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4693         free_extent_buffer_stale(leaf);
4694 }
4695 /*
4696  * delete the item at the leaf level in path.  If that empties
4697  * the leaf, remove it from the tree
4698  */
4699 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4700                     struct btrfs_path *path, int slot, int nr)
4701 {
4702         struct extent_buffer *leaf;
4703         struct btrfs_item *item;
4704         int last_off;
4705         int dsize = 0;
4706         int ret = 0;
4707         int wret;
4708         int i;
4709         u32 nritems;
4710         struct btrfs_map_token token;
4711
4712         btrfs_init_map_token(&token);
4713
4714         leaf = path->nodes[0];
4715         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4716
4717         for (i = 0; i < nr; i++)
4718                 dsize += btrfs_item_size_nr(leaf, slot + i);
4719
4720         nritems = btrfs_header_nritems(leaf);
4721
4722         if (slot + nr != nritems) {
4723                 int data_end = leaf_data_end(root, leaf);
4724
4725                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4726                               data_end + dsize,
4727                               btrfs_leaf_data(leaf) + data_end,
4728                               last_off - data_end);
4729
4730                 for (i = slot + nr; i < nritems; i++) {
4731                         u32 ioff;
4732
4733                         item = btrfs_item_nr(leaf, i);
4734                         ioff = btrfs_token_item_offset(leaf, item, &token);
4735                         btrfs_set_token_item_offset(leaf, item,
4736                                                     ioff + dsize, &token);
4737                 }
4738
4739                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4740                               btrfs_item_nr_offset(slot + nr),
4741                               sizeof(struct btrfs_item) *
4742                               (nritems - slot - nr));
4743         }
4744         btrfs_set_header_nritems(leaf, nritems - nr);
4745         nritems -= nr;
4746
4747         /* delete the leaf if we've emptied it */
4748         if (nritems == 0) {
4749                 if (leaf == root->node) {
4750                         btrfs_set_header_level(leaf, 0);
4751                 } else {
4752                         btrfs_set_path_blocking(path);
4753                         clean_tree_block(trans, root, leaf);
4754                         btrfs_del_leaf(trans, root, path, leaf);
4755                 }
4756         } else {
4757                 int used = leaf_space_used(leaf, 0, nritems);
4758                 if (slot == 0) {
4759                         struct btrfs_disk_key disk_key;
4760
4761                         btrfs_item_key(leaf, &disk_key, 0);
4762                         fixup_low_keys(root, path, &disk_key, 1);
4763                 }
4764
4765                 /* delete the leaf if it is mostly empty */
4766                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4767                         /* push_leaf_left fixes the path.
4768                          * make sure the path still points to our leaf
4769                          * for possible call to del_ptr below
4770                          */
4771                         slot = path->slots[1];
4772                         extent_buffer_get(leaf);
4773
4774                         btrfs_set_path_blocking(path);
4775                         wret = push_leaf_left(trans, root, path, 1, 1,
4776                                               1, (u32)-1);
4777                         if (wret < 0 && wret != -ENOSPC)
4778                                 ret = wret;
4779
4780                         if (path->nodes[0] == leaf &&
4781                             btrfs_header_nritems(leaf)) {
4782                                 wret = push_leaf_right(trans, root, path, 1,
4783                                                        1, 1, 0);
4784                                 if (wret < 0 && wret != -ENOSPC)
4785                                         ret = wret;
4786                         }
4787
4788                         if (btrfs_header_nritems(leaf) == 0) {
4789                                 path->slots[1] = slot;
4790                                 btrfs_del_leaf(trans, root, path, leaf);
4791                                 free_extent_buffer(leaf);
4792                                 ret = 0;
4793                         } else {
4794                                 /* if we're still in the path, make sure
4795                                  * we're dirty.  Otherwise, one of the
4796                                  * push_leaf functions must have already
4797                                  * dirtied this buffer
4798                                  */
4799                                 if (path->nodes[0] == leaf)
4800                                         btrfs_mark_buffer_dirty(leaf);
4801                                 free_extent_buffer(leaf);
4802                         }
4803                 } else {
4804                         btrfs_mark_buffer_dirty(leaf);
4805                 }
4806         }
4807         return ret;
4808 }
4809
4810 /*
4811  * search the tree again to find a leaf with lesser keys
4812  * returns 0 if it found something or 1 if there are no lesser leaves.
4813  * returns < 0 on io errors.
4814  *
4815  * This may release the path, and so you may lose any locks held at the
4816  * time you call it.
4817  */
4818 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4819 {
4820         struct btrfs_key key;
4821         struct btrfs_disk_key found_key;
4822         int ret;
4823
4824         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4825
4826         if (key.offset > 0)
4827                 key.offset--;
4828         else if (key.type > 0)
4829                 key.type--;
4830         else if (key.objectid > 0)
4831                 key.objectid--;
4832         else
4833                 return 1;
4834
4835         btrfs_release_path(path);
4836         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4837         if (ret < 0)
4838                 return ret;
4839         btrfs_item_key(path->nodes[0], &found_key, 0);
4840         ret = comp_keys(&found_key, &key);
4841         if (ret < 0)
4842                 return 0;
4843         return 1;
4844 }
4845
4846 /*
4847  * A helper function to walk down the tree starting at min_key, and looking
4848  * for nodes or leaves that are have a minimum transaction id.
4849  * This is used by the btree defrag code, and tree logging
4850  *
4851  * This does not cow, but it does stuff the starting key it finds back
4852  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4853  * key and get a writable path.
4854  *
4855  * This does lock as it descends, and path->keep_locks should be set
4856  * to 1 by the caller.
4857  *
4858  * This honors path->lowest_level to prevent descent past a given level
4859  * of the tree.
4860  *
4861  * min_trans indicates the oldest transaction that you are interested
4862  * in walking through.  Any nodes or leaves older than min_trans are
4863  * skipped over (without reading them).
4864  *
4865  * returns zero if something useful was found, < 0 on error and 1 if there
4866  * was nothing in the tree that matched the search criteria.
4867  */
4868 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4869                          struct btrfs_key *max_key,
4870                          struct btrfs_path *path,
4871                          u64 min_trans)
4872 {
4873         struct extent_buffer *cur;
4874         struct btrfs_key found_key;
4875         int slot;
4876         int sret;
4877         u32 nritems;
4878         int level;
4879         int ret = 1;
4880
4881         WARN_ON(!path->keep_locks);
4882 again:
4883         cur = btrfs_read_lock_root_node(root);
4884         level = btrfs_header_level(cur);
4885         WARN_ON(path->nodes[level]);
4886         path->nodes[level] = cur;
4887         path->locks[level] = BTRFS_READ_LOCK;
4888
4889         if (btrfs_header_generation(cur) < min_trans) {
4890                 ret = 1;
4891                 goto out;
4892         }
4893         while (1) {
4894                 nritems = btrfs_header_nritems(cur);
4895                 level = btrfs_header_level(cur);
4896                 sret = bin_search(cur, min_key, level, &slot);
4897
4898                 /* at the lowest level, we're done, setup the path and exit */
4899                 if (level == path->lowest_level) {
4900                         if (slot >= nritems)
4901                                 goto find_next_key;
4902                         ret = 0;
4903                         path->slots[level] = slot;
4904                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4905                         goto out;
4906                 }
4907                 if (sret && slot > 0)
4908                         slot--;
4909                 /*
4910                  * check this node pointer against the min_trans parameters.
4911                  * If it is too old, old, skip to the next one.
4912                  */
4913                 while (slot < nritems) {
4914                         u64 blockptr;
4915                         u64 gen;
4916
4917                         blockptr = btrfs_node_blockptr(cur, slot);
4918                         gen = btrfs_node_ptr_generation(cur, slot);
4919                         if (gen < min_trans) {
4920                                 slot++;
4921                                 continue;
4922                         }
4923                         break;
4924                 }
4925 find_next_key:
4926                 /*
4927                  * we didn't find a candidate key in this node, walk forward
4928                  * and find another one
4929                  */
4930                 if (slot >= nritems) {
4931                         path->slots[level] = slot;
4932                         btrfs_set_path_blocking(path);
4933                         sret = btrfs_find_next_key(root, path, min_key, level,
4934                                                   min_trans);
4935                         if (sret == 0) {
4936                                 btrfs_release_path(path);
4937                                 goto again;
4938                         } else {
4939                                 goto out;
4940                         }
4941                 }
4942                 /* save our key for returning back */
4943                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4944                 path->slots[level] = slot;
4945                 if (level == path->lowest_level) {
4946                         ret = 0;
4947                         unlock_up(path, level, 1, 0, NULL);
4948                         goto out;
4949                 }
4950                 btrfs_set_path_blocking(path);
4951                 cur = read_node_slot(root, cur, slot);
4952                 BUG_ON(!cur); /* -ENOMEM */
4953
4954                 btrfs_tree_read_lock(cur);
4955
4956                 path->locks[level - 1] = BTRFS_READ_LOCK;
4957                 path->nodes[level - 1] = cur;
4958                 unlock_up(path, level, 1, 0, NULL);
4959                 btrfs_clear_path_blocking(path, NULL, 0);
4960         }
4961 out:
4962         if (ret == 0)
4963                 memcpy(min_key, &found_key, sizeof(found_key));
4964         btrfs_set_path_blocking(path);
4965         return ret;
4966 }
4967
4968 static void tree_move_down(struct btrfs_root *root,
4969                            struct btrfs_path *path,
4970                            int *level, int root_level)
4971 {
4972         BUG_ON(*level == 0);
4973         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4974                                         path->slots[*level]);
4975         path->slots[*level - 1] = 0;
4976         (*level)--;
4977 }
4978
4979 static int tree_move_next_or_upnext(struct btrfs_root *root,
4980                                     struct btrfs_path *path,
4981                                     int *level, int root_level)
4982 {
4983         int ret = 0;
4984         int nritems;
4985         nritems = btrfs_header_nritems(path->nodes[*level]);
4986
4987         path->slots[*level]++;
4988
4989         while (path->slots[*level] >= nritems) {
4990                 if (*level == root_level)
4991                         return -1;
4992
4993                 /* move upnext */
4994                 path->slots[*level] = 0;
4995                 free_extent_buffer(path->nodes[*level]);
4996                 path->nodes[*level] = NULL;
4997                 (*level)++;
4998                 path->slots[*level]++;
4999
5000                 nritems = btrfs_header_nritems(path->nodes[*level]);
5001                 ret = 1;
5002         }
5003         return ret;
5004 }
5005
5006 /*
5007  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5008  * or down.
5009  */
5010 static int tree_advance(struct btrfs_root *root,
5011                         struct btrfs_path *path,
5012                         int *level, int root_level,
5013                         int allow_down,
5014                         struct btrfs_key *key)
5015 {
5016         int ret;
5017
5018         if (*level == 0 || !allow_down) {
5019                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5020         } else {
5021                 tree_move_down(root, path, level, root_level);
5022                 ret = 0;
5023         }
5024         if (ret >= 0) {
5025                 if (*level == 0)
5026                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5027                                         path->slots[*level]);
5028                 else
5029                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5030                                         path->slots[*level]);
5031         }
5032         return ret;
5033 }
5034
5035 static int tree_compare_item(struct btrfs_root *left_root,
5036                              struct btrfs_path *left_path,
5037                              struct btrfs_path *right_path,
5038                              char *tmp_buf)
5039 {
5040         int cmp;
5041         int len1, len2;
5042         unsigned long off1, off2;
5043
5044         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5045         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5046         if (len1 != len2)
5047                 return 1;
5048
5049         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5050         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5051                                 right_path->slots[0]);
5052
5053         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5054
5055         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5056         if (cmp)
5057                 return 1;
5058         return 0;
5059 }
5060
5061 #define ADVANCE 1
5062 #define ADVANCE_ONLY_NEXT -1
5063
5064 /*
5065  * This function compares two trees and calls the provided callback for
5066  * every changed/new/deleted item it finds.
5067  * If shared tree blocks are encountered, whole subtrees are skipped, making
5068  * the compare pretty fast on snapshotted subvolumes.
5069  *
5070  * This currently works on commit roots only. As commit roots are read only,
5071  * we don't do any locking. The commit roots are protected with transactions.
5072  * Transactions are ended and rejoined when a commit is tried in between.
5073  *
5074  * This function checks for modifications done to the trees while comparing.
5075  * If it detects a change, it aborts immediately.
5076  */
5077 int btrfs_compare_trees(struct btrfs_root *left_root,
5078                         struct btrfs_root *right_root,
5079                         btrfs_changed_cb_t changed_cb, void *ctx)
5080 {
5081         int ret;
5082         int cmp;
5083         struct btrfs_trans_handle *trans = NULL;
5084         struct btrfs_path *left_path = NULL;
5085         struct btrfs_path *right_path = NULL;
5086         struct btrfs_key left_key;
5087         struct btrfs_key right_key;
5088         char *tmp_buf = NULL;
5089         int left_root_level;
5090         int right_root_level;
5091         int left_level;
5092         int right_level;
5093         int left_end_reached;
5094         int right_end_reached;
5095         int advance_left;
5096         int advance_right;
5097         u64 left_blockptr;
5098         u64 right_blockptr;
5099         u64 left_start_ctransid;
5100         u64 right_start_ctransid;
5101         u64 ctransid;
5102
5103         left_path = btrfs_alloc_path();
5104         if (!left_path) {
5105                 ret = -ENOMEM;
5106                 goto out;
5107         }
5108         right_path = btrfs_alloc_path();
5109         if (!right_path) {
5110                 ret = -ENOMEM;
5111                 goto out;
5112         }
5113
5114         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5115         if (!tmp_buf) {
5116                 ret = -ENOMEM;
5117                 goto out;
5118         }
5119
5120         left_path->search_commit_root = 1;
5121         left_path->skip_locking = 1;
5122         right_path->search_commit_root = 1;
5123         right_path->skip_locking = 1;
5124
5125         spin_lock(&left_root->root_item_lock);
5126         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5127         spin_unlock(&left_root->root_item_lock);
5128
5129         spin_lock(&right_root->root_item_lock);
5130         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5131         spin_unlock(&right_root->root_item_lock);
5132
5133         trans = btrfs_join_transaction(left_root);
5134         if (IS_ERR(trans)) {
5135                 ret = PTR_ERR(trans);
5136                 trans = NULL;
5137                 goto out;
5138         }
5139
5140         /*
5141          * Strategy: Go to the first items of both trees. Then do
5142          *
5143          * If both trees are at level 0
5144          *   Compare keys of current items
5145          *     If left < right treat left item as new, advance left tree
5146          *       and repeat
5147          *     If left > right treat right item as deleted, advance right tree
5148          *       and repeat
5149          *     If left == right do deep compare of items, treat as changed if
5150          *       needed, advance both trees and repeat
5151          * If both trees are at the same level but not at level 0
5152          *   Compare keys of current nodes/leafs
5153          *     If left < right advance left tree and repeat
5154          *     If left > right advance right tree and repeat
5155          *     If left == right compare blockptrs of the next nodes/leafs
5156          *       If they match advance both trees but stay at the same level
5157          *         and repeat
5158          *       If they don't match advance both trees while allowing to go
5159          *         deeper and repeat
5160          * If tree levels are different
5161          *   Advance the tree that needs it and repeat
5162          *
5163          * Advancing a tree means:
5164          *   If we are at level 0, try to go to the next slot. If that's not
5165          *   possible, go one level up and repeat. Stop when we found a level
5166          *   where we could go to the next slot. We may at this point be on a
5167          *   node or a leaf.
5168          *
5169          *   If we are not at level 0 and not on shared tree blocks, go one
5170          *   level deeper.
5171          *
5172          *   If we are not at level 0 and on shared tree blocks, go one slot to
5173          *   the right if possible or go up and right.
5174          */
5175
5176         left_level = btrfs_header_level(left_root->commit_root);
5177         left_root_level = left_level;
5178         left_path->nodes[left_level] = left_root->commit_root;
5179         extent_buffer_get(left_path->nodes[left_level]);
5180
5181         right_level = btrfs_header_level(right_root->commit_root);
5182         right_root_level = right_level;
5183         right_path->nodes[right_level] = right_root->commit_root;
5184         extent_buffer_get(right_path->nodes[right_level]);
5185
5186         if (left_level == 0)
5187                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5188                                 &left_key, left_path->slots[left_level]);
5189         else
5190                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5191                                 &left_key, left_path->slots[left_level]);
5192         if (right_level == 0)
5193                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5194                                 &right_key, right_path->slots[right_level]);
5195         else
5196                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5197                                 &right_key, right_path->slots[right_level]);
5198
5199         left_end_reached = right_end_reached = 0;
5200         advance_left = advance_right = 0;
5201
5202         while (1) {
5203                 /*
5204                  * We need to make sure the transaction does not get committed
5205                  * while we do anything on commit roots. This means, we need to
5206                  * join and leave transactions for every item that we process.
5207                  */
5208                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5209                         btrfs_release_path(left_path);
5210                         btrfs_release_path(right_path);
5211
5212                         ret = btrfs_end_transaction(trans, left_root);
5213                         trans = NULL;
5214                         if (ret < 0)
5215                                 goto out;
5216                 }
5217                 /* now rejoin the transaction */
5218                 if (!trans) {
5219                         trans = btrfs_join_transaction(left_root);
5220                         if (IS_ERR(trans)) {
5221                                 ret = PTR_ERR(trans);
5222                                 trans = NULL;
5223                                 goto out;
5224                         }
5225
5226                         spin_lock(&left_root->root_item_lock);
5227                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5228                         spin_unlock(&left_root->root_item_lock);
5229                         if (ctransid != left_start_ctransid)
5230                                 left_start_ctransid = 0;
5231
5232                         spin_lock(&right_root->root_item_lock);
5233                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5234                         spin_unlock(&right_root->root_item_lock);
5235                         if (ctransid != right_start_ctransid)
5236                                 right_start_ctransid = 0;
5237
5238                         if (!left_start_ctransid || !right_start_ctransid) {
5239                                 WARN(1, KERN_WARNING
5240                                         "btrfs: btrfs_compare_tree detected "
5241                                         "a change in one of the trees while "
5242                                         "iterating. This is probably a "
5243                                         "bug.\n");
5244                                 ret = -EIO;
5245                                 goto out;
5246                         }
5247
5248                         /*
5249                          * the commit root may have changed, so start again
5250                          * where we stopped
5251                          */
5252                         left_path->lowest_level = left_level;
5253                         right_path->lowest_level = right_level;
5254                         ret = btrfs_search_slot(NULL, left_root,
5255                                         &left_key, left_path, 0, 0);
5256                         if (ret < 0)
5257                                 goto out;
5258                         ret = btrfs_search_slot(NULL, right_root,
5259                                         &right_key, right_path, 0, 0);
5260                         if (ret < 0)
5261                                 goto out;
5262                 }
5263
5264                 if (advance_left && !left_end_reached) {
5265                         ret = tree_advance(left_root, left_path, &left_level,
5266                                         left_root_level,
5267                                         advance_left != ADVANCE_ONLY_NEXT,
5268                                         &left_key);
5269                         if (ret < 0)
5270                                 left_end_reached = ADVANCE;
5271                         advance_left = 0;
5272                 }
5273                 if (advance_right && !right_end_reached) {
5274                         ret = tree_advance(right_root, right_path, &right_level,
5275                                         right_root_level,
5276                                         advance_right != ADVANCE_ONLY_NEXT,
5277                                         &right_key);
5278                         if (ret < 0)
5279                                 right_end_reached = ADVANCE;
5280                         advance_right = 0;
5281                 }
5282
5283                 if (left_end_reached && right_end_reached) {
5284                         ret = 0;
5285                         goto out;
5286                 } else if (left_end_reached) {
5287                         if (right_level == 0) {
5288                                 ret = changed_cb(left_root, right_root,
5289                                                 left_path, right_path,
5290                                                 &right_key,
5291                                                 BTRFS_COMPARE_TREE_DELETED,
5292                                                 ctx);
5293                                 if (ret < 0)
5294                                         goto out;
5295                         }
5296                         advance_right = ADVANCE;
5297                         continue;
5298                 } else if (right_end_reached) {
5299                         if (left_level == 0) {
5300                                 ret = changed_cb(left_root, right_root,
5301                                                 left_path, right_path,
5302                                                 &left_key,
5303                                                 BTRFS_COMPARE_TREE_NEW,
5304                                                 ctx);
5305                                 if (ret < 0)
5306                                         goto out;
5307                         }
5308                         advance_left = ADVANCE;
5309                         continue;
5310                 }
5311
5312                 if (left_level == 0 && right_level == 0) {
5313                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5314                         if (cmp < 0) {
5315                                 ret = changed_cb(left_root, right_root,
5316                                                 left_path, right_path,
5317                                                 &left_key,
5318                                                 BTRFS_COMPARE_TREE_NEW,
5319                                                 ctx);
5320                                 if (ret < 0)
5321                                         goto out;
5322                                 advance_left = ADVANCE;
5323                         } else if (cmp > 0) {
5324                                 ret = changed_cb(left_root, right_root,
5325                                                 left_path, right_path,
5326                                                 &right_key,
5327                                                 BTRFS_COMPARE_TREE_DELETED,
5328                                                 ctx);
5329                                 if (ret < 0)
5330                                         goto out;
5331                                 advance_right = ADVANCE;
5332                         } else {
5333                                 enum btrfs_compare_tree_result cmp;
5334
5335                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5336                                 ret = tree_compare_item(left_root, left_path,
5337                                                 right_path, tmp_buf);
5338                                 if (ret)
5339                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5340                                 else
5341                                         cmp = BTRFS_COMPARE_TREE_SAME;
5342                                 ret = changed_cb(left_root, right_root,
5343                                                  left_path, right_path,
5344                                                  &left_key, cmp, ctx);
5345                                 if (ret < 0)
5346                                         goto out;
5347                                 advance_left = ADVANCE;
5348                                 advance_right = ADVANCE;
5349                         }
5350                 } else if (left_level == right_level) {
5351                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5352                         if (cmp < 0) {
5353                                 advance_left = ADVANCE;
5354                         } else if (cmp > 0) {
5355                                 advance_right = ADVANCE;
5356                         } else {
5357                                 left_blockptr = btrfs_node_blockptr(
5358                                                 left_path->nodes[left_level],
5359                                                 left_path->slots[left_level]);
5360                                 right_blockptr = btrfs_node_blockptr(
5361                                                 right_path->nodes[right_level],
5362                                                 right_path->slots[right_level]);
5363                                 if (left_blockptr == right_blockptr) {
5364                                         /*
5365                                          * As we're on a shared block, don't
5366                                          * allow to go deeper.
5367                                          */
5368                                         advance_left = ADVANCE_ONLY_NEXT;
5369                                         advance_right = ADVANCE_ONLY_NEXT;
5370                                 } else {
5371                                         advance_left = ADVANCE;
5372                                         advance_right = ADVANCE;
5373                                 }
5374                         }
5375                 } else if (left_level < right_level) {
5376                         advance_right = ADVANCE;
5377                 } else {
5378                         advance_left = ADVANCE;
5379                 }
5380         }
5381
5382 out:
5383         btrfs_free_path(left_path);
5384         btrfs_free_path(right_path);
5385         kfree(tmp_buf);
5386
5387         if (trans) {
5388                 if (!ret)
5389                         ret = btrfs_end_transaction(trans, left_root);
5390                 else
5391                         btrfs_end_transaction(trans, left_root);
5392         }
5393
5394         return ret;
5395 }
5396
5397 /*
5398  * this is similar to btrfs_next_leaf, but does not try to preserve
5399  * and fixup the path.  It looks for and returns the next key in the
5400  * tree based on the current path and the min_trans parameters.
5401  *
5402  * 0 is returned if another key is found, < 0 if there are any errors
5403  * and 1 is returned if there are no higher keys in the tree
5404  *
5405  * path->keep_locks should be set to 1 on the search made before
5406  * calling this function.
5407  */
5408 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5409                         struct btrfs_key *key, int level, u64 min_trans)
5410 {
5411         int slot;
5412         struct extent_buffer *c;
5413
5414         WARN_ON(!path->keep_locks);
5415         while (level < BTRFS_MAX_LEVEL) {
5416                 if (!path->nodes[level])
5417                         return 1;
5418
5419                 slot = path->slots[level] + 1;
5420                 c = path->nodes[level];
5421 next:
5422                 if (slot >= btrfs_header_nritems(c)) {
5423                         int ret;
5424                         int orig_lowest;
5425                         struct btrfs_key cur_key;
5426                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5427                             !path->nodes[level + 1])
5428                                 return 1;
5429
5430                         if (path->locks[level + 1]) {
5431                                 level++;
5432                                 continue;
5433                         }
5434
5435                         slot = btrfs_header_nritems(c) - 1;
5436                         if (level == 0)
5437                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5438                         else
5439                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5440
5441                         orig_lowest = path->lowest_level;
5442                         btrfs_release_path(path);
5443                         path->lowest_level = level;
5444                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5445                                                 0, 0);
5446                         path->lowest_level = orig_lowest;
5447                         if (ret < 0)
5448                                 return ret;
5449
5450                         c = path->nodes[level];
5451                         slot = path->slots[level];
5452                         if (ret == 0)
5453                                 slot++;
5454                         goto next;
5455                 }
5456
5457                 if (level == 0)
5458                         btrfs_item_key_to_cpu(c, key, slot);
5459                 else {
5460                         u64 gen = btrfs_node_ptr_generation(c, slot);
5461
5462                         if (gen < min_trans) {
5463                                 slot++;
5464                                 goto next;
5465                         }
5466                         btrfs_node_key_to_cpu(c, key, slot);
5467                 }
5468                 return 0;
5469         }
5470         return 1;
5471 }
5472
5473 /*
5474  * search the tree again to find a leaf with greater keys
5475  * returns 0 if it found something or 1 if there are no greater leaves.
5476  * returns < 0 on io errors.
5477  */
5478 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5479 {
5480         return btrfs_next_old_leaf(root, path, 0);
5481 }
5482
5483 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5484                         u64 time_seq)
5485 {
5486         int slot;
5487         int level;
5488         struct extent_buffer *c;
5489         struct extent_buffer *next;
5490         struct btrfs_key key;
5491         u32 nritems;
5492         int ret;
5493         int old_spinning = path->leave_spinning;
5494         int next_rw_lock = 0;
5495
5496         nritems = btrfs_header_nritems(path->nodes[0]);
5497         if (nritems == 0)
5498                 return 1;
5499
5500         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5501 again:
5502         level = 1;
5503         next = NULL;
5504         next_rw_lock = 0;
5505         btrfs_release_path(path);
5506
5507         path->keep_locks = 1;
5508         path->leave_spinning = 1;
5509
5510         if (time_seq)
5511                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5512         else
5513                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5514         path->keep_locks = 0;
5515
5516         if (ret < 0)
5517                 return ret;
5518
5519         nritems = btrfs_header_nritems(path->nodes[0]);
5520         /*
5521          * by releasing the path above we dropped all our locks.  A balance
5522          * could have added more items next to the key that used to be
5523          * at the very end of the block.  So, check again here and
5524          * advance the path if there are now more items available.
5525          */
5526         if (nritems > 0 && path->slots[0] < nritems - 1) {
5527                 if (ret == 0)
5528                         path->slots[0]++;
5529                 ret = 0;
5530                 goto done;
5531         }
5532
5533         while (level < BTRFS_MAX_LEVEL) {
5534                 if (!path->nodes[level]) {
5535                         ret = 1;
5536                         goto done;
5537                 }
5538
5539                 slot = path->slots[level] + 1;
5540                 c = path->nodes[level];
5541                 if (slot >= btrfs_header_nritems(c)) {
5542                         level++;
5543                         if (level == BTRFS_MAX_LEVEL) {
5544                                 ret = 1;
5545                                 goto done;
5546                         }
5547                         continue;
5548                 }
5549
5550                 if (next) {
5551                         btrfs_tree_unlock_rw(next, next_rw_lock);
5552                         free_extent_buffer(next);
5553                 }
5554
5555                 next = c;
5556                 next_rw_lock = path->locks[level];
5557                 ret = read_block_for_search(NULL, root, path, &next, level,
5558                                             slot, &key, 0);
5559                 if (ret == -EAGAIN)
5560                         goto again;
5561
5562                 if (ret < 0) {
5563                         btrfs_release_path(path);
5564                         goto done;
5565                 }
5566
5567                 if (!path->skip_locking) {
5568                         ret = btrfs_try_tree_read_lock(next);
5569                         if (!ret && time_seq) {
5570                                 /*
5571                                  * If we don't get the lock, we may be racing
5572                                  * with push_leaf_left, holding that lock while
5573                                  * itself waiting for the leaf we've currently
5574                                  * locked. To solve this situation, we give up
5575                                  * on our lock and cycle.
5576                                  */
5577                                 free_extent_buffer(next);
5578                                 btrfs_release_path(path);
5579                                 cond_resched();
5580                                 goto again;
5581                         }
5582                         if (!ret) {
5583                                 btrfs_set_path_blocking(path);
5584                                 btrfs_tree_read_lock(next);
5585                                 btrfs_clear_path_blocking(path, next,
5586                                                           BTRFS_READ_LOCK);
5587                         }
5588                         next_rw_lock = BTRFS_READ_LOCK;
5589                 }
5590                 break;
5591         }
5592         path->slots[level] = slot;
5593         while (1) {
5594                 level--;
5595                 c = path->nodes[level];
5596                 if (path->locks[level])
5597                         btrfs_tree_unlock_rw(c, path->locks[level]);
5598
5599                 free_extent_buffer(c);
5600                 path->nodes[level] = next;
5601                 path->slots[level] = 0;
5602                 if (!path->skip_locking)
5603                         path->locks[level] = next_rw_lock;
5604                 if (!level)
5605                         break;
5606
5607                 ret = read_block_for_search(NULL, root, path, &next, level,
5608                                             0, &key, 0);
5609                 if (ret == -EAGAIN)
5610                         goto again;
5611
5612                 if (ret < 0) {
5613                         btrfs_release_path(path);
5614                         goto done;
5615                 }
5616
5617                 if (!path->skip_locking) {
5618                         ret = btrfs_try_tree_read_lock(next);
5619                         if (!ret) {
5620                                 btrfs_set_path_blocking(path);
5621                                 btrfs_tree_read_lock(next);
5622                                 btrfs_clear_path_blocking(path, next,
5623                                                           BTRFS_READ_LOCK);
5624                         }
5625                         next_rw_lock = BTRFS_READ_LOCK;
5626                 }
5627         }
5628         ret = 0;
5629 done:
5630         unlock_up(path, 0, 1, 0, NULL);
5631         path->leave_spinning = old_spinning;
5632         if (!old_spinning)
5633                 btrfs_set_path_blocking(path);
5634
5635         return ret;
5636 }
5637
5638 /*
5639  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5640  * searching until it gets past min_objectid or finds an item of 'type'
5641  *
5642  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5643  */
5644 int btrfs_previous_item(struct btrfs_root *root,
5645                         struct btrfs_path *path, u64 min_objectid,
5646                         int type)
5647 {
5648         struct btrfs_key found_key;
5649         struct extent_buffer *leaf;
5650         u32 nritems;
5651         int ret;
5652
5653         while (1) {
5654                 if (path->slots[0] == 0) {
5655                         btrfs_set_path_blocking(path);
5656                         ret = btrfs_prev_leaf(root, path);
5657                         if (ret != 0)
5658                                 return ret;
5659                 } else {
5660                         path->slots[0]--;
5661                 }
5662                 leaf = path->nodes[0];
5663                 nritems = btrfs_header_nritems(leaf);
5664                 if (nritems == 0)
5665                         return 1;
5666                 if (path->slots[0] == nritems)
5667                         path->slots[0]--;
5668
5669                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5670                 if (found_key.objectid < min_objectid)
5671                         break;
5672                 if (found_key.type == type)
5673                         return 0;
5674                 if (found_key.objectid == min_objectid &&
5675                     found_key.type < type)
5676                         break;
5677         }
5678         return 1;
5679 }