]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Merge branch 'dice-driver-playback-only' of git://git.alsa-project.org/alsa-kprivate...
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "compat.h"
37 #include "ctree.h"
38 #include "disk-io.h"
39 #include "transaction.h"
40 #include "btrfs_inode.h"
41 #include "volumes.h"
42 #include "print-tree.h"
43 #include "async-thread.h"
44 #include "locking.h"
45 #include "tree-log.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "check-integrity.h"
49 #include "rcu-string.h"
50 #include "dev-replace.h"
51 #include "raid56.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
305                                        "failed on %llu wanted %X found %X "
306                                        "level %d\n",
307                                        root->fs_info->sb->s_id, buf->start,
308                                        val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333
334         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
335                 return 0;
336
337         if (atomic)
338                 return -EAGAIN;
339
340         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
341                          0, &cached_state);
342         if (extent_buffer_uptodate(eb) &&
343             btrfs_header_generation(eb) == parent_transid) {
344                 ret = 0;
345                 goto out;
346         }
347         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
348                        "found %llu\n",
349                        eb->start, parent_transid, btrfs_header_generation(eb));
350         ret = 1;
351         clear_extent_buffer_uptodate(eb);
352 out:
353         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354                              &cached_state, GFP_NOFS);
355         return ret;
356 }
357
358 /*
359  * Return 0 if the superblock checksum type matches the checksum value of that
360  * algorithm. Pass the raw disk superblock data.
361  */
362 static int btrfs_check_super_csum(char *raw_disk_sb)
363 {
364         struct btrfs_super_block *disk_sb =
365                 (struct btrfs_super_block *)raw_disk_sb;
366         u16 csum_type = btrfs_super_csum_type(disk_sb);
367         int ret = 0;
368
369         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
370                 u32 crc = ~(u32)0;
371                 const int csum_size = sizeof(crc);
372                 char result[csum_size];
373
374                 /*
375                  * The super_block structure does not span the whole
376                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
377                  * is filled with zeros and is included in the checkum.
378                  */
379                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
380                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
381                 btrfs_csum_final(crc, result);
382
383                 if (memcmp(raw_disk_sb, result, csum_size))
384                         ret = 1;
385
386                 if (ret && btrfs_super_generation(disk_sb) < 10) {
387                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         struct extent_io_tree *tree;
470         u64 start = page_offset(page);
471         u64 found_start;
472         struct extent_buffer *eb;
473
474         tree = &BTRFS_I(page->mapping->host)->io_tree;
475
476         eb = (struct extent_buffer *)page->private;
477         if (page != eb->pages[0])
478                 return 0;
479         found_start = btrfs_header_bytenr(eb);
480         if (found_start != start) {
481                 WARN_ON(1);
482                 return 0;
483         }
484         if (!PageUptodate(page)) {
485                 WARN_ON(1);
486                 return 0;
487         }
488         csum_tree_block(root, eb, 0);
489         return 0;
490 }
491
492 static int check_tree_block_fsid(struct btrfs_root *root,
493                                  struct extent_buffer *eb)
494 {
495         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
496         u8 fsid[BTRFS_UUID_SIZE];
497         int ret = 1;
498
499         read_extent_buffer(eb, fsid, btrfs_header_fsid(eb), BTRFS_FSID_SIZE);
500         while (fs_devices) {
501                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
502                         ret = 0;
503                         break;
504                 }
505                 fs_devices = fs_devices->seed;
506         }
507         return ret;
508 }
509
510 #define CORRUPT(reason, eb, root, slot)                         \
511         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
512                "root=%llu, slot=%d\n", reason,                  \
513                btrfs_header_bytenr(eb), root->objectid, slot)
514
515 static noinline int check_leaf(struct btrfs_root *root,
516                                struct extent_buffer *leaf)
517 {
518         struct btrfs_key key;
519         struct btrfs_key leaf_key;
520         u32 nritems = btrfs_header_nritems(leaf);
521         int slot;
522
523         if (nritems == 0)
524                 return 0;
525
526         /* Check the 0 item */
527         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
528             BTRFS_LEAF_DATA_SIZE(root)) {
529                 CORRUPT("invalid item offset size pair", leaf, root, 0);
530                 return -EIO;
531         }
532
533         /*
534          * Check to make sure each items keys are in the correct order and their
535          * offsets make sense.  We only have to loop through nritems-1 because
536          * we check the current slot against the next slot, which verifies the
537          * next slot's offset+size makes sense and that the current's slot
538          * offset is correct.
539          */
540         for (slot = 0; slot < nritems - 1; slot++) {
541                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
542                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
543
544                 /* Make sure the keys are in the right order */
545                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
546                         CORRUPT("bad key order", leaf, root, slot);
547                         return -EIO;
548                 }
549
550                 /*
551                  * Make sure the offset and ends are right, remember that the
552                  * item data starts at the end of the leaf and grows towards the
553                  * front.
554                  */
555                 if (btrfs_item_offset_nr(leaf, slot) !=
556                         btrfs_item_end_nr(leaf, slot + 1)) {
557                         CORRUPT("slot offset bad", leaf, root, slot);
558                         return -EIO;
559                 }
560
561                 /*
562                  * Check to make sure that we don't point outside of the leaf,
563                  * just incase all the items are consistent to eachother, but
564                  * all point outside of the leaf.
565                  */
566                 if (btrfs_item_end_nr(leaf, slot) >
567                     BTRFS_LEAF_DATA_SIZE(root)) {
568                         CORRUPT("slot end outside of leaf", leaf, root, slot);
569                         return -EIO;
570                 }
571         }
572
573         return 0;
574 }
575
576 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
577                                       u64 phy_offset, struct page *page,
578                                       u64 start, u64 end, int mirror)
579 {
580         struct extent_io_tree *tree;
581         u64 found_start;
582         int found_level;
583         struct extent_buffer *eb;
584         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
585         int ret = 0;
586         int reads_done;
587
588         if (!page->private)
589                 goto out;
590
591         tree = &BTRFS_I(page->mapping->host)->io_tree;
592         eb = (struct extent_buffer *)page->private;
593
594         /* the pending IO might have been the only thing that kept this buffer
595          * in memory.  Make sure we have a ref for all this other checks
596          */
597         extent_buffer_get(eb);
598
599         reads_done = atomic_dec_and_test(&eb->io_pages);
600         if (!reads_done)
601                 goto err;
602
603         eb->read_mirror = mirror;
604         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
605                 ret = -EIO;
606                 goto err;
607         }
608
609         found_start = btrfs_header_bytenr(eb);
610         if (found_start != eb->start) {
611                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
612                                "%llu %llu\n",
613                                found_start, eb->start);
614                 ret = -EIO;
615                 goto err;
616         }
617         if (check_tree_block_fsid(root, eb)) {
618                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
619                                eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         found_level = btrfs_header_level(eb);
624         if (found_level >= BTRFS_MAX_LEVEL) {
625                 btrfs_info(root->fs_info, "bad tree block level %d\n",
626                            (int)btrfs_header_level(eb));
627                 ret = -EIO;
628                 goto err;
629         }
630
631         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
632                                        eb, found_level);
633
634         ret = csum_tree_block(root, eb, 1);
635         if (ret) {
636                 ret = -EIO;
637                 goto err;
638         }
639
640         /*
641          * If this is a leaf block and it is corrupt, set the corrupt bit so
642          * that we don't try and read the other copies of this block, just
643          * return -EIO.
644          */
645         if (found_level == 0 && check_leaf(root, eb)) {
646                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647                 ret = -EIO;
648         }
649
650         if (!ret)
651                 set_extent_buffer_uptodate(eb);
652 err:
653         if (reads_done &&
654             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
655                 btree_readahead_hook(root, eb, eb->start, ret);
656
657         if (ret) {
658                 /*
659                  * our io error hook is going to dec the io pages
660                  * again, we have to make sure it has something
661                  * to decrement
662                  */
663                 atomic_inc(&eb->io_pages);
664                 clear_extent_buffer_uptodate(eb);
665         }
666         free_extent_buffer(eb);
667 out:
668         return ret;
669 }
670
671 static int btree_io_failed_hook(struct page *page, int failed_mirror)
672 {
673         struct extent_buffer *eb;
674         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
675
676         eb = (struct extent_buffer *)page->private;
677         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
678         eb->read_mirror = failed_mirror;
679         atomic_dec(&eb->io_pages);
680         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
681                 btree_readahead_hook(root, eb, eb->start, -EIO);
682         return -EIO;    /* we fixed nothing */
683 }
684
685 static void end_workqueue_bio(struct bio *bio, int err)
686 {
687         struct end_io_wq *end_io_wq = bio->bi_private;
688         struct btrfs_fs_info *fs_info;
689
690         fs_info = end_io_wq->info;
691         end_io_wq->error = err;
692         end_io_wq->work.func = end_workqueue_fn;
693         end_io_wq->work.flags = 0;
694
695         if (bio->bi_rw & REQ_WRITE) {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
697                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
700                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
701                                            &end_io_wq->work);
702                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
704                                            &end_io_wq->work);
705                 else
706                         btrfs_queue_worker(&fs_info->endio_write_workers,
707                                            &end_io_wq->work);
708         } else {
709                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
710                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
711                                            &end_io_wq->work);
712                 else if (end_io_wq->metadata)
713                         btrfs_queue_worker(&fs_info->endio_meta_workers,
714                                            &end_io_wq->work);
715                 else
716                         btrfs_queue_worker(&fs_info->endio_workers,
717                                            &end_io_wq->work);
718         }
719 }
720
721 /*
722  * For the metadata arg you want
723  *
724  * 0 - if data
725  * 1 - if normal metadta
726  * 2 - if writing to the free space cache area
727  * 3 - raid parity work
728  */
729 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
730                         int metadata)
731 {
732         struct end_io_wq *end_io_wq;
733         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
734         if (!end_io_wq)
735                 return -ENOMEM;
736
737         end_io_wq->private = bio->bi_private;
738         end_io_wq->end_io = bio->bi_end_io;
739         end_io_wq->info = info;
740         end_io_wq->error = 0;
741         end_io_wq->bio = bio;
742         end_io_wq->metadata = metadata;
743
744         bio->bi_private = end_io_wq;
745         bio->bi_end_io = end_workqueue_bio;
746         return 0;
747 }
748
749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
750 {
751         unsigned long limit = min_t(unsigned long,
752                                     info->workers.max_workers,
753                                     info->fs_devices->open_devices);
754         return 256 * limit;
755 }
756
757 static void run_one_async_start(struct btrfs_work *work)
758 {
759         struct async_submit_bio *async;
760         int ret;
761
762         async = container_of(work, struct  async_submit_bio, work);
763         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
764                                       async->mirror_num, async->bio_flags,
765                                       async->bio_offset);
766         if (ret)
767                 async->error = ret;
768 }
769
770 static void run_one_async_done(struct btrfs_work *work)
771 {
772         struct btrfs_fs_info *fs_info;
773         struct async_submit_bio *async;
774         int limit;
775
776         async = container_of(work, struct  async_submit_bio, work);
777         fs_info = BTRFS_I(async->inode)->root->fs_info;
778
779         limit = btrfs_async_submit_limit(fs_info);
780         limit = limit * 2 / 3;
781
782         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
783             waitqueue_active(&fs_info->async_submit_wait))
784                 wake_up(&fs_info->async_submit_wait);
785
786         /* If an error occured we just want to clean up the bio and move on */
787         if (async->error) {
788                 bio_endio(async->bio, async->error);
789                 return;
790         }
791
792         async->submit_bio_done(async->inode, async->rw, async->bio,
793                                async->mirror_num, async->bio_flags,
794                                async->bio_offset);
795 }
796
797 static void run_one_async_free(struct btrfs_work *work)
798 {
799         struct async_submit_bio *async;
800
801         async = container_of(work, struct  async_submit_bio, work);
802         kfree(async);
803 }
804
805 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
806                         int rw, struct bio *bio, int mirror_num,
807                         unsigned long bio_flags,
808                         u64 bio_offset,
809                         extent_submit_bio_hook_t *submit_bio_start,
810                         extent_submit_bio_hook_t *submit_bio_done)
811 {
812         struct async_submit_bio *async;
813
814         async = kmalloc(sizeof(*async), GFP_NOFS);
815         if (!async)
816                 return -ENOMEM;
817
818         async->inode = inode;
819         async->rw = rw;
820         async->bio = bio;
821         async->mirror_num = mirror_num;
822         async->submit_bio_start = submit_bio_start;
823         async->submit_bio_done = submit_bio_done;
824
825         async->work.func = run_one_async_start;
826         async->work.ordered_func = run_one_async_done;
827         async->work.ordered_free = run_one_async_free;
828
829         async->work.flags = 0;
830         async->bio_flags = bio_flags;
831         async->bio_offset = bio_offset;
832
833         async->error = 0;
834
835         atomic_inc(&fs_info->nr_async_submits);
836
837         if (rw & REQ_SYNC)
838                 btrfs_set_work_high_prio(&async->work);
839
840         btrfs_queue_worker(&fs_info->workers, &async->work);
841
842         while (atomic_read(&fs_info->async_submit_draining) &&
843               atomic_read(&fs_info->nr_async_submits)) {
844                 wait_event(fs_info->async_submit_wait,
845                            (atomic_read(&fs_info->nr_async_submits) == 0));
846         }
847
848         return 0;
849 }
850
851 static int btree_csum_one_bio(struct bio *bio)
852 {
853         struct bio_vec *bvec = bio->bi_io_vec;
854         int bio_index = 0;
855         struct btrfs_root *root;
856         int ret = 0;
857
858         WARN_ON(bio->bi_vcnt <= 0);
859         while (bio_index < bio->bi_vcnt) {
860                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
861                 ret = csum_dirty_buffer(root, bvec->bv_page);
862                 if (ret)
863                         break;
864                 bio_index++;
865                 bvec++;
866         }
867         return ret;
868 }
869
870 static int __btree_submit_bio_start(struct inode *inode, int rw,
871                                     struct bio *bio, int mirror_num,
872                                     unsigned long bio_flags,
873                                     u64 bio_offset)
874 {
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         return btree_csum_one_bio(bio);
880 }
881
882 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
883                                  int mirror_num, unsigned long bio_flags,
884                                  u64 bio_offset)
885 {
886         int ret;
887
888         /*
889          * when we're called for a write, we're already in the async
890          * submission context.  Just jump into btrfs_map_bio
891          */
892         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
893         if (ret)
894                 bio_endio(bio, ret);
895         return ret;
896 }
897
898 static int check_async_write(struct inode *inode, unsigned long bio_flags)
899 {
900         if (bio_flags & EXTENT_BIO_TREE_LOG)
901                 return 0;
902 #ifdef CONFIG_X86
903         if (cpu_has_xmm4_2)
904                 return 0;
905 #endif
906         return 1;
907 }
908
909 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
910                                  int mirror_num, unsigned long bio_flags,
911                                  u64 bio_offset)
912 {
913         int async = check_async_write(inode, bio_flags);
914         int ret;
915
916         if (!(rw & REQ_WRITE)) {
917                 /*
918                  * called for a read, do the setup so that checksum validation
919                  * can happen in the async kernel threads
920                  */
921                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
922                                           bio, 1);
923                 if (ret)
924                         goto out_w_error;
925                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
926                                     mirror_num, 0);
927         } else if (!async) {
928                 ret = btree_csum_one_bio(bio);
929                 if (ret)
930                         goto out_w_error;
931                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932                                     mirror_num, 0);
933         } else {
934                 /*
935                  * kthread helpers are used to submit writes so that
936                  * checksumming can happen in parallel across all CPUs
937                  */
938                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
939                                           inode, rw, bio, mirror_num, 0,
940                                           bio_offset,
941                                           __btree_submit_bio_start,
942                                           __btree_submit_bio_done);
943         }
944
945         if (ret) {
946 out_w_error:
947                 bio_endio(bio, ret);
948         }
949         return ret;
950 }
951
952 #ifdef CONFIG_MIGRATION
953 static int btree_migratepage(struct address_space *mapping,
954                         struct page *newpage, struct page *page,
955                         enum migrate_mode mode)
956 {
957         /*
958          * we can't safely write a btree page from here,
959          * we haven't done the locking hook
960          */
961         if (PageDirty(page))
962                 return -EAGAIN;
963         /*
964          * Buffers may be managed in a filesystem specific way.
965          * We must have no buffers or drop them.
966          */
967         if (page_has_private(page) &&
968             !try_to_release_page(page, GFP_KERNEL))
969                 return -EAGAIN;
970         return migrate_page(mapping, newpage, page, mode);
971 }
972 #endif
973
974
975 static int btree_writepages(struct address_space *mapping,
976                             struct writeback_control *wbc)
977 {
978         struct extent_io_tree *tree;
979         struct btrfs_fs_info *fs_info;
980         int ret;
981
982         tree = &BTRFS_I(mapping->host)->io_tree;
983         if (wbc->sync_mode == WB_SYNC_NONE) {
984
985                 if (wbc->for_kupdate)
986                         return 0;
987
988                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
989                 /* this is a bit racy, but that's ok */
990                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
991                                              BTRFS_DIRTY_METADATA_THRESH);
992                 if (ret < 0)
993                         return 0;
994         }
995         return btree_write_cache_pages(mapping, wbc);
996 }
997
998 static int btree_readpage(struct file *file, struct page *page)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         return extent_read_full_page(tree, page, btree_get_extent, 0);
1003 }
1004
1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1006 {
1007         if (PageWriteback(page) || PageDirty(page))
1008                 return 0;
1009
1010         return try_release_extent_buffer(page);
1011 }
1012
1013 static void btree_invalidatepage(struct page *page, unsigned int offset,
1014                                  unsigned int length)
1015 {
1016         struct extent_io_tree *tree;
1017         tree = &BTRFS_I(page->mapping->host)->io_tree;
1018         extent_invalidatepage(tree, page, offset);
1019         btree_releasepage(page, GFP_NOFS);
1020         if (PagePrivate(page)) {
1021                 printk(KERN_WARNING "btrfs warning page private not zero "
1022                        "on page %llu\n", (unsigned long long)page_offset(page));
1023                 ClearPagePrivate(page);
1024                 set_page_private(page, 0);
1025                 page_cache_release(page);
1026         }
1027 }
1028
1029 static int btree_set_page_dirty(struct page *page)
1030 {
1031 #ifdef DEBUG
1032         struct extent_buffer *eb;
1033
1034         BUG_ON(!PagePrivate(page));
1035         eb = (struct extent_buffer *)page->private;
1036         BUG_ON(!eb);
1037         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038         BUG_ON(!atomic_read(&eb->refs));
1039         btrfs_assert_tree_locked(eb);
1040 #endif
1041         return __set_page_dirty_nobuffers(page);
1042 }
1043
1044 static const struct address_space_operations btree_aops = {
1045         .readpage       = btree_readpage,
1046         .writepages     = btree_writepages,
1047         .releasepage    = btree_releasepage,
1048         .invalidatepage = btree_invalidatepage,
1049 #ifdef CONFIG_MIGRATION
1050         .migratepage    = btree_migratepage,
1051 #endif
1052         .set_page_dirty = btree_set_page_dirty,
1053 };
1054
1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1056                          u64 parent_transid)
1057 {
1058         struct extent_buffer *buf = NULL;
1059         struct inode *btree_inode = root->fs_info->btree_inode;
1060         int ret = 0;
1061
1062         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1063         if (!buf)
1064                 return 0;
1065         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1066                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1067         free_extent_buffer(buf);
1068         return ret;
1069 }
1070
1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1072                          int mirror_num, struct extent_buffer **eb)
1073 {
1074         struct extent_buffer *buf = NULL;
1075         struct inode *btree_inode = root->fs_info->btree_inode;
1076         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1077         int ret;
1078
1079         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1080         if (!buf)
1081                 return 0;
1082
1083         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1084
1085         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1086                                        btree_get_extent, mirror_num);
1087         if (ret) {
1088                 free_extent_buffer(buf);
1089                 return ret;
1090         }
1091
1092         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1093                 free_extent_buffer(buf);
1094                 return -EIO;
1095         } else if (extent_buffer_uptodate(buf)) {
1096                 *eb = buf;
1097         } else {
1098                 free_extent_buffer(buf);
1099         }
1100         return 0;
1101 }
1102
1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1104                                             u64 bytenr, u32 blocksize)
1105 {
1106         struct inode *btree_inode = root->fs_info->btree_inode;
1107         struct extent_buffer *eb;
1108         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1109                                 bytenr, blocksize);
1110         return eb;
1111 }
1112
1113 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1114                                                  u64 bytenr, u32 blocksize)
1115 {
1116         struct inode *btree_inode = root->fs_info->btree_inode;
1117         struct extent_buffer *eb;
1118
1119         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1120                                  bytenr, blocksize);
1121         return eb;
1122 }
1123
1124
1125 int btrfs_write_tree_block(struct extent_buffer *buf)
1126 {
1127         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1128                                         buf->start + buf->len - 1);
1129 }
1130
1131 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1132 {
1133         return filemap_fdatawait_range(buf->pages[0]->mapping,
1134                                        buf->start, buf->start + buf->len - 1);
1135 }
1136
1137 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1138                                       u32 blocksize, u64 parent_transid)
1139 {
1140         struct extent_buffer *buf = NULL;
1141         int ret;
1142
1143         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1144         if (!buf)
1145                 return NULL;
1146
1147         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1148         if (ret) {
1149                 free_extent_buffer(buf);
1150                 return NULL;
1151         }
1152         return buf;
1153
1154 }
1155
1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1157                       struct extent_buffer *buf)
1158 {
1159         struct btrfs_fs_info *fs_info = root->fs_info;
1160
1161         if (btrfs_header_generation(buf) ==
1162             fs_info->running_transaction->transid) {
1163                 btrfs_assert_tree_locked(buf);
1164
1165                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1166                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1167                                              -buf->len,
1168                                              fs_info->dirty_metadata_batch);
1169                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1170                         btrfs_set_lock_blocking(buf);
1171                         clear_extent_buffer_dirty(buf);
1172                 }
1173         }
1174 }
1175
1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1177                          u32 stripesize, struct btrfs_root *root,
1178                          struct btrfs_fs_info *fs_info,
1179                          u64 objectid)
1180 {
1181         root->node = NULL;
1182         root->commit_root = NULL;
1183         root->sectorsize = sectorsize;
1184         root->nodesize = nodesize;
1185         root->leafsize = leafsize;
1186         root->stripesize = stripesize;
1187         root->ref_cows = 0;
1188         root->track_dirty = 0;
1189         root->in_radix = 0;
1190         root->orphan_item_inserted = 0;
1191         root->orphan_cleanup_state = 0;
1192
1193         root->objectid = objectid;
1194         root->last_trans = 0;
1195         root->highest_objectid = 0;
1196         root->nr_delalloc_inodes = 0;
1197         root->nr_ordered_extents = 0;
1198         root->name = NULL;
1199         root->inode_tree = RB_ROOT;
1200         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1201         root->block_rsv = NULL;
1202         root->orphan_block_rsv = NULL;
1203
1204         INIT_LIST_HEAD(&root->dirty_list);
1205         INIT_LIST_HEAD(&root->root_list);
1206         INIT_LIST_HEAD(&root->delalloc_inodes);
1207         INIT_LIST_HEAD(&root->delalloc_root);
1208         INIT_LIST_HEAD(&root->ordered_extents);
1209         INIT_LIST_HEAD(&root->ordered_root);
1210         INIT_LIST_HEAD(&root->logged_list[0]);
1211         INIT_LIST_HEAD(&root->logged_list[1]);
1212         spin_lock_init(&root->orphan_lock);
1213         spin_lock_init(&root->inode_lock);
1214         spin_lock_init(&root->delalloc_lock);
1215         spin_lock_init(&root->ordered_extent_lock);
1216         spin_lock_init(&root->accounting_lock);
1217         spin_lock_init(&root->log_extents_lock[0]);
1218         spin_lock_init(&root->log_extents_lock[1]);
1219         mutex_init(&root->objectid_mutex);
1220         mutex_init(&root->log_mutex);
1221         init_waitqueue_head(&root->log_writer_wait);
1222         init_waitqueue_head(&root->log_commit_wait[0]);
1223         init_waitqueue_head(&root->log_commit_wait[1]);
1224         atomic_set(&root->log_commit[0], 0);
1225         atomic_set(&root->log_commit[1], 0);
1226         atomic_set(&root->log_writers, 0);
1227         atomic_set(&root->log_batch, 0);
1228         atomic_set(&root->orphan_inodes, 0);
1229         atomic_set(&root->refs, 1);
1230         root->log_transid = 0;
1231         root->last_log_commit = 0;
1232         extent_io_tree_init(&root->dirty_log_pages,
1233                              fs_info->btree_inode->i_mapping);
1234
1235         memset(&root->root_key, 0, sizeof(root->root_key));
1236         memset(&root->root_item, 0, sizeof(root->root_item));
1237         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1238         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1239         root->defrag_trans_start = fs_info->generation;
1240         init_completion(&root->kobj_unregister);
1241         root->defrag_running = 0;
1242         root->root_key.objectid = objectid;
1243         root->anon_dev = 0;
1244
1245         spin_lock_init(&root->root_item_lock);
1246 }
1247
1248 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1249 {
1250         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1251         if (root)
1252                 root->fs_info = fs_info;
1253         return root;
1254 }
1255
1256 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1257                                      struct btrfs_fs_info *fs_info,
1258                                      u64 objectid)
1259 {
1260         struct extent_buffer *leaf;
1261         struct btrfs_root *tree_root = fs_info->tree_root;
1262         struct btrfs_root *root;
1263         struct btrfs_key key;
1264         int ret = 0;
1265         u64 bytenr;
1266         uuid_le uuid;
1267
1268         root = btrfs_alloc_root(fs_info);
1269         if (!root)
1270                 return ERR_PTR(-ENOMEM);
1271
1272         __setup_root(tree_root->nodesize, tree_root->leafsize,
1273                      tree_root->sectorsize, tree_root->stripesize,
1274                      root, fs_info, objectid);
1275         root->root_key.objectid = objectid;
1276         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277         root->root_key.offset = 0;
1278
1279         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1280                                       0, objectid, NULL, 0, 0, 0);
1281         if (IS_ERR(leaf)) {
1282                 ret = PTR_ERR(leaf);
1283                 leaf = NULL;
1284                 goto fail;
1285         }
1286
1287         bytenr = leaf->start;
1288         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1289         btrfs_set_header_bytenr(leaf, leaf->start);
1290         btrfs_set_header_generation(leaf, trans->transid);
1291         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1292         btrfs_set_header_owner(leaf, objectid);
1293         root->node = leaf;
1294
1295         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(leaf),
1296                             BTRFS_FSID_SIZE);
1297         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1298                             btrfs_header_chunk_tree_uuid(leaf),
1299                             BTRFS_UUID_SIZE);
1300         btrfs_mark_buffer_dirty(leaf);
1301
1302         root->commit_root = btrfs_root_node(root);
1303         root->track_dirty = 1;
1304
1305
1306         root->root_item.flags = 0;
1307         root->root_item.byte_limit = 0;
1308         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1309         btrfs_set_root_generation(&root->root_item, trans->transid);
1310         btrfs_set_root_level(&root->root_item, 0);
1311         btrfs_set_root_refs(&root->root_item, 1);
1312         btrfs_set_root_used(&root->root_item, leaf->len);
1313         btrfs_set_root_last_snapshot(&root->root_item, 0);
1314         btrfs_set_root_dirid(&root->root_item, 0);
1315         uuid_le_gen(&uuid);
1316         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1317         root->root_item.drop_level = 0;
1318
1319         key.objectid = objectid;
1320         key.type = BTRFS_ROOT_ITEM_KEY;
1321         key.offset = 0;
1322         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1323         if (ret)
1324                 goto fail;
1325
1326         btrfs_tree_unlock(leaf);
1327
1328         return root;
1329
1330 fail:
1331         if (leaf) {
1332                 btrfs_tree_unlock(leaf);
1333                 free_extent_buffer(leaf);
1334         }
1335         kfree(root);
1336
1337         return ERR_PTR(ret);
1338 }
1339
1340 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1341                                          struct btrfs_fs_info *fs_info)
1342 {
1343         struct btrfs_root *root;
1344         struct btrfs_root *tree_root = fs_info->tree_root;
1345         struct extent_buffer *leaf;
1346
1347         root = btrfs_alloc_root(fs_info);
1348         if (!root)
1349                 return ERR_PTR(-ENOMEM);
1350
1351         __setup_root(tree_root->nodesize, tree_root->leafsize,
1352                      tree_root->sectorsize, tree_root->stripesize,
1353                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1354
1355         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1356         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1357         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1358         /*
1359          * log trees do not get reference counted because they go away
1360          * before a real commit is actually done.  They do store pointers
1361          * to file data extents, and those reference counts still get
1362          * updated (along with back refs to the log tree).
1363          */
1364         root->ref_cows = 0;
1365
1366         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1367                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1368                                       0, 0, 0);
1369         if (IS_ERR(leaf)) {
1370                 kfree(root);
1371                 return ERR_CAST(leaf);
1372         }
1373
1374         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1375         btrfs_set_header_bytenr(leaf, leaf->start);
1376         btrfs_set_header_generation(leaf, trans->transid);
1377         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1378         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1379         root->node = leaf;
1380
1381         write_extent_buffer(root->node, root->fs_info->fsid,
1382                             btrfs_header_fsid(root->node), BTRFS_FSID_SIZE);
1383         btrfs_mark_buffer_dirty(root->node);
1384         btrfs_tree_unlock(root->node);
1385         return root;
1386 }
1387
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389                              struct btrfs_fs_info *fs_info)
1390 {
1391         struct btrfs_root *log_root;
1392
1393         log_root = alloc_log_tree(trans, fs_info);
1394         if (IS_ERR(log_root))
1395                 return PTR_ERR(log_root);
1396         WARN_ON(fs_info->log_root_tree);
1397         fs_info->log_root_tree = log_root;
1398         return 0;
1399 }
1400
1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402                        struct btrfs_root *root)
1403 {
1404         struct btrfs_root *log_root;
1405         struct btrfs_inode_item *inode_item;
1406
1407         log_root = alloc_log_tree(trans, root->fs_info);
1408         if (IS_ERR(log_root))
1409                 return PTR_ERR(log_root);
1410
1411         log_root->last_trans = trans->transid;
1412         log_root->root_key.offset = root->root_key.objectid;
1413
1414         inode_item = &log_root->root_item.inode;
1415         btrfs_set_stack_inode_generation(inode_item, 1);
1416         btrfs_set_stack_inode_size(inode_item, 3);
1417         btrfs_set_stack_inode_nlink(inode_item, 1);
1418         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1419         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1420
1421         btrfs_set_root_node(&log_root->root_item, log_root->node);
1422
1423         WARN_ON(root->log_root);
1424         root->log_root = log_root;
1425         root->log_transid = 0;
1426         root->last_log_commit = 0;
1427         return 0;
1428 }
1429
1430 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431                                                struct btrfs_key *key)
1432 {
1433         struct btrfs_root *root;
1434         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1435         struct btrfs_path *path;
1436         u64 generation;
1437         u32 blocksize;
1438         int ret;
1439
1440         path = btrfs_alloc_path();
1441         if (!path)
1442                 return ERR_PTR(-ENOMEM);
1443
1444         root = btrfs_alloc_root(fs_info);
1445         if (!root) {
1446                 ret = -ENOMEM;
1447                 goto alloc_fail;
1448         }
1449
1450         __setup_root(tree_root->nodesize, tree_root->leafsize,
1451                      tree_root->sectorsize, tree_root->stripesize,
1452                      root, fs_info, key->objectid);
1453
1454         ret = btrfs_find_root(tree_root, key, path,
1455                               &root->root_item, &root->root_key);
1456         if (ret) {
1457                 if (ret > 0)
1458                         ret = -ENOENT;
1459                 goto find_fail;
1460         }
1461
1462         generation = btrfs_root_generation(&root->root_item);
1463         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1465                                      blocksize, generation);
1466         if (!root->node) {
1467                 ret = -ENOMEM;
1468                 goto find_fail;
1469         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470                 ret = -EIO;
1471                 goto read_fail;
1472         }
1473         root->commit_root = btrfs_root_node(root);
1474 out:
1475         btrfs_free_path(path);
1476         return root;
1477
1478 read_fail:
1479         free_extent_buffer(root->node);
1480 find_fail:
1481         kfree(root);
1482 alloc_fail:
1483         root = ERR_PTR(ret);
1484         goto out;
1485 }
1486
1487 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488                                       struct btrfs_key *location)
1489 {
1490         struct btrfs_root *root;
1491
1492         root = btrfs_read_tree_root(tree_root, location);
1493         if (IS_ERR(root))
1494                 return root;
1495
1496         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1497                 root->ref_cows = 1;
1498                 btrfs_check_and_init_root_item(&root->root_item);
1499         }
1500
1501         return root;
1502 }
1503
1504 int btrfs_init_fs_root(struct btrfs_root *root)
1505 {
1506         int ret;
1507
1508         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510                                         GFP_NOFS);
1511         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512                 ret = -ENOMEM;
1513                 goto fail;
1514         }
1515
1516         btrfs_init_free_ino_ctl(root);
1517         mutex_init(&root->fs_commit_mutex);
1518         spin_lock_init(&root->cache_lock);
1519         init_waitqueue_head(&root->cache_wait);
1520
1521         ret = get_anon_bdev(&root->anon_dev);
1522         if (ret)
1523                 goto fail;
1524         return 0;
1525 fail:
1526         kfree(root->free_ino_ctl);
1527         kfree(root->free_ino_pinned);
1528         return ret;
1529 }
1530
1531 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532                                                u64 root_id)
1533 {
1534         struct btrfs_root *root;
1535
1536         spin_lock(&fs_info->fs_roots_radix_lock);
1537         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538                                  (unsigned long)root_id);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         return root;
1541 }
1542
1543 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544                          struct btrfs_root *root)
1545 {
1546         int ret;
1547
1548         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549         if (ret)
1550                 return ret;
1551
1552         spin_lock(&fs_info->fs_roots_radix_lock);
1553         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554                                 (unsigned long)root->root_key.objectid,
1555                                 root);
1556         if (ret == 0)
1557                 root->in_radix = 1;
1558         spin_unlock(&fs_info->fs_roots_radix_lock);
1559         radix_tree_preload_end();
1560
1561         return ret;
1562 }
1563
1564 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1565                                               struct btrfs_key *location)
1566 {
1567         struct btrfs_root *root;
1568         int ret;
1569
1570         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571                 return fs_info->tree_root;
1572         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573                 return fs_info->extent_root;
1574         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575                 return fs_info->chunk_root;
1576         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577                 return fs_info->dev_root;
1578         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579                 return fs_info->csum_root;
1580         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581                 return fs_info->quota_root ? fs_info->quota_root :
1582                                              ERR_PTR(-ENOENT);
1583         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1584                 return fs_info->uuid_root ? fs_info->uuid_root :
1585                                             ERR_PTR(-ENOENT);
1586 again:
1587         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1588         if (root) {
1589                 if (btrfs_root_refs(&root->root_item) == 0)
1590                         return ERR_PTR(-ENOENT);
1591                 return root;
1592         }
1593
1594         root = btrfs_read_fs_root(fs_info->tree_root, location);
1595         if (IS_ERR(root))
1596                 return root;
1597
1598         if (btrfs_root_refs(&root->root_item) == 0) {
1599                 ret = -ENOENT;
1600                 goto fail;
1601         }
1602
1603         ret = btrfs_init_fs_root(root);
1604         if (ret)
1605                 goto fail;
1606
1607         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1608         if (ret < 0)
1609                 goto fail;
1610         if (ret == 0)
1611                 root->orphan_item_inserted = 1;
1612
1613         ret = btrfs_insert_fs_root(fs_info, root);
1614         if (ret) {
1615                 if (ret == -EEXIST) {
1616                         free_fs_root(root);
1617                         goto again;
1618                 }
1619                 goto fail;
1620         }
1621         return root;
1622 fail:
1623         free_fs_root(root);
1624         return ERR_PTR(ret);
1625 }
1626
1627 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628 {
1629         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630         int ret = 0;
1631         struct btrfs_device *device;
1632         struct backing_dev_info *bdi;
1633
1634         rcu_read_lock();
1635         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1636                 if (!device->bdev)
1637                         continue;
1638                 bdi = blk_get_backing_dev_info(device->bdev);
1639                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640                         ret = 1;
1641                         break;
1642                 }
1643         }
1644         rcu_read_unlock();
1645         return ret;
1646 }
1647
1648 /*
1649  * If this fails, caller must call bdi_destroy() to get rid of the
1650  * bdi again.
1651  */
1652 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653 {
1654         int err;
1655
1656         bdi->capabilities = BDI_CAP_MAP_COPY;
1657         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1658         if (err)
1659                 return err;
1660
1661         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1662         bdi->congested_fn       = btrfs_congested_fn;
1663         bdi->congested_data     = info;
1664         return 0;
1665 }
1666
1667 /*
1668  * called by the kthread helper functions to finally call the bio end_io
1669  * functions.  This is where read checksum verification actually happens
1670  */
1671 static void end_workqueue_fn(struct btrfs_work *work)
1672 {
1673         struct bio *bio;
1674         struct end_io_wq *end_io_wq;
1675         struct btrfs_fs_info *fs_info;
1676         int error;
1677
1678         end_io_wq = container_of(work, struct end_io_wq, work);
1679         bio = end_io_wq->bio;
1680         fs_info = end_io_wq->info;
1681
1682         error = end_io_wq->error;
1683         bio->bi_private = end_io_wq->private;
1684         bio->bi_end_io = end_io_wq->end_io;
1685         kfree(end_io_wq);
1686         bio_endio(bio, error);
1687 }
1688
1689 static int cleaner_kthread(void *arg)
1690 {
1691         struct btrfs_root *root = arg;
1692         int again;
1693
1694         do {
1695                 again = 0;
1696
1697                 /* Make the cleaner go to sleep early. */
1698                 if (btrfs_need_cleaner_sleep(root))
1699                         goto sleep;
1700
1701                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1702                         goto sleep;
1703
1704                 /*
1705                  * Avoid the problem that we change the status of the fs
1706                  * during the above check and trylock.
1707                  */
1708                 if (btrfs_need_cleaner_sleep(root)) {
1709                         mutex_unlock(&root->fs_info->cleaner_mutex);
1710                         goto sleep;
1711                 }
1712
1713                 btrfs_run_delayed_iputs(root);
1714                 again = btrfs_clean_one_deleted_snapshot(root);
1715                 mutex_unlock(&root->fs_info->cleaner_mutex);
1716
1717                 /*
1718                  * The defragger has dealt with the R/O remount and umount,
1719                  * needn't do anything special here.
1720                  */
1721                 btrfs_run_defrag_inodes(root->fs_info);
1722 sleep:
1723                 if (!try_to_freeze() && !again) {
1724                         set_current_state(TASK_INTERRUPTIBLE);
1725                         if (!kthread_should_stop())
1726                                 schedule();
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         } while (!kthread_should_stop());
1730         return 0;
1731 }
1732
1733 static int transaction_kthread(void *arg)
1734 {
1735         struct btrfs_root *root = arg;
1736         struct btrfs_trans_handle *trans;
1737         struct btrfs_transaction *cur;
1738         u64 transid;
1739         unsigned long now;
1740         unsigned long delay;
1741         bool cannot_commit;
1742
1743         do {
1744                 cannot_commit = false;
1745                 delay = HZ * root->fs_info->commit_interval;
1746                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1747
1748                 spin_lock(&root->fs_info->trans_lock);
1749                 cur = root->fs_info->running_transaction;
1750                 if (!cur) {
1751                         spin_unlock(&root->fs_info->trans_lock);
1752                         goto sleep;
1753                 }
1754
1755                 now = get_seconds();
1756                 if (cur->state < TRANS_STATE_BLOCKED &&
1757                     (now < cur->start_time ||
1758                      now - cur->start_time < root->fs_info->commit_interval)) {
1759                         spin_unlock(&root->fs_info->trans_lock);
1760                         delay = HZ * 5;
1761                         goto sleep;
1762                 }
1763                 transid = cur->transid;
1764                 spin_unlock(&root->fs_info->trans_lock);
1765
1766                 /* If the file system is aborted, this will always fail. */
1767                 trans = btrfs_attach_transaction(root);
1768                 if (IS_ERR(trans)) {
1769                         if (PTR_ERR(trans) != -ENOENT)
1770                                 cannot_commit = true;
1771                         goto sleep;
1772                 }
1773                 if (transid == trans->transid) {
1774                         btrfs_commit_transaction(trans, root);
1775                 } else {
1776                         btrfs_end_transaction(trans, root);
1777                 }
1778 sleep:
1779                 wake_up_process(root->fs_info->cleaner_kthread);
1780                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1781
1782                 if (!try_to_freeze()) {
1783                         set_current_state(TASK_INTERRUPTIBLE);
1784                         if (!kthread_should_stop() &&
1785                             (!btrfs_transaction_blocked(root->fs_info) ||
1786                              cannot_commit))
1787                                 schedule_timeout(delay);
1788                         __set_current_state(TASK_RUNNING);
1789                 }
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_stop_workers(&fs_info->generic_worker);
1997         btrfs_stop_workers(&fs_info->fixup_workers);
1998         btrfs_stop_workers(&fs_info->delalloc_workers);
1999         btrfs_stop_workers(&fs_info->workers);
2000         btrfs_stop_workers(&fs_info->endio_workers);
2001         btrfs_stop_workers(&fs_info->endio_meta_workers);
2002         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2003         btrfs_stop_workers(&fs_info->rmw_workers);
2004         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2005         btrfs_stop_workers(&fs_info->endio_write_workers);
2006         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2007         btrfs_stop_workers(&fs_info->submit_workers);
2008         btrfs_stop_workers(&fs_info->delayed_workers);
2009         btrfs_stop_workers(&fs_info->caching_workers);
2010         btrfs_stop_workers(&fs_info->readahead_workers);
2011         btrfs_stop_workers(&fs_info->flush_workers);
2012         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2013 }
2014
2015 /* helper to cleanup tree roots */
2016 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2017 {
2018         free_extent_buffer(info->tree_root->node);
2019         free_extent_buffer(info->tree_root->commit_root);
2020         info->tree_root->node = NULL;
2021         info->tree_root->commit_root = NULL;
2022
2023         if (info->dev_root) {
2024                 free_extent_buffer(info->dev_root->node);
2025                 free_extent_buffer(info->dev_root->commit_root);
2026                 info->dev_root->node = NULL;
2027                 info->dev_root->commit_root = NULL;
2028         }
2029         if (info->extent_root) {
2030                 free_extent_buffer(info->extent_root->node);
2031                 free_extent_buffer(info->extent_root->commit_root);
2032                 info->extent_root->node = NULL;
2033                 info->extent_root->commit_root = NULL;
2034         }
2035         if (info->csum_root) {
2036                 free_extent_buffer(info->csum_root->node);
2037                 free_extent_buffer(info->csum_root->commit_root);
2038                 info->csum_root->node = NULL;
2039                 info->csum_root->commit_root = NULL;
2040         }
2041         if (info->quota_root) {
2042                 free_extent_buffer(info->quota_root->node);
2043                 free_extent_buffer(info->quota_root->commit_root);
2044                 info->quota_root->node = NULL;
2045                 info->quota_root->commit_root = NULL;
2046         }
2047         if (info->uuid_root) {
2048                 free_extent_buffer(info->uuid_root->node);
2049                 free_extent_buffer(info->uuid_root->commit_root);
2050                 info->uuid_root->node = NULL;
2051                 info->uuid_root->commit_root = NULL;
2052         }
2053         if (chunk_root) {
2054                 free_extent_buffer(info->chunk_root->node);
2055                 free_extent_buffer(info->chunk_root->commit_root);
2056                 info->chunk_root->node = NULL;
2057                 info->chunk_root->commit_root = NULL;
2058         }
2059 }
2060
2061 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2062 {
2063         int ret;
2064         struct btrfs_root *gang[8];
2065         int i;
2066
2067         while (!list_empty(&fs_info->dead_roots)) {
2068                 gang[0] = list_entry(fs_info->dead_roots.next,
2069                                      struct btrfs_root, root_list);
2070                 list_del(&gang[0]->root_list);
2071
2072                 if (gang[0]->in_radix) {
2073                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2074                 } else {
2075                         free_extent_buffer(gang[0]->node);
2076                         free_extent_buffer(gang[0]->commit_root);
2077                         btrfs_put_fs_root(gang[0]);
2078                 }
2079         }
2080
2081         while (1) {
2082                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2083                                              (void **)gang, 0,
2084                                              ARRAY_SIZE(gang));
2085                 if (!ret)
2086                         break;
2087                 for (i = 0; i < ret; i++)
2088                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2089         }
2090 }
2091
2092 int open_ctree(struct super_block *sb,
2093                struct btrfs_fs_devices *fs_devices,
2094                char *options)
2095 {
2096         u32 sectorsize;
2097         u32 nodesize;
2098         u32 leafsize;
2099         u32 blocksize;
2100         u32 stripesize;
2101         u64 generation;
2102         u64 features;
2103         struct btrfs_key location;
2104         struct buffer_head *bh;
2105         struct btrfs_super_block *disk_super;
2106         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2107         struct btrfs_root *tree_root;
2108         struct btrfs_root *extent_root;
2109         struct btrfs_root *csum_root;
2110         struct btrfs_root *chunk_root;
2111         struct btrfs_root *dev_root;
2112         struct btrfs_root *quota_root;
2113         struct btrfs_root *uuid_root;
2114         struct btrfs_root *log_tree_root;
2115         int ret;
2116         int err = -EINVAL;
2117         int num_backups_tried = 0;
2118         int backup_index = 0;
2119         bool create_uuid_tree;
2120         bool check_uuid_tree;
2121
2122         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2123         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2124         if (!tree_root || !chunk_root) {
2125                 err = -ENOMEM;
2126                 goto fail;
2127         }
2128
2129         ret = init_srcu_struct(&fs_info->subvol_srcu);
2130         if (ret) {
2131                 err = ret;
2132                 goto fail;
2133         }
2134
2135         ret = setup_bdi(fs_info, &fs_info->bdi);
2136         if (ret) {
2137                 err = ret;
2138                 goto fail_srcu;
2139         }
2140
2141         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2142         if (ret) {
2143                 err = ret;
2144                 goto fail_bdi;
2145         }
2146         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2147                                         (1 + ilog2(nr_cpu_ids));
2148
2149         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2150         if (ret) {
2151                 err = ret;
2152                 goto fail_dirty_metadata_bytes;
2153         }
2154
2155         fs_info->btree_inode = new_inode(sb);
2156         if (!fs_info->btree_inode) {
2157                 err = -ENOMEM;
2158                 goto fail_delalloc_bytes;
2159         }
2160
2161         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2162
2163         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2164         INIT_LIST_HEAD(&fs_info->trans_list);
2165         INIT_LIST_HEAD(&fs_info->dead_roots);
2166         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2167         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2168         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2169         spin_lock_init(&fs_info->delalloc_root_lock);
2170         spin_lock_init(&fs_info->trans_lock);
2171         spin_lock_init(&fs_info->fs_roots_radix_lock);
2172         spin_lock_init(&fs_info->delayed_iput_lock);
2173         spin_lock_init(&fs_info->defrag_inodes_lock);
2174         spin_lock_init(&fs_info->free_chunk_lock);
2175         spin_lock_init(&fs_info->tree_mod_seq_lock);
2176         spin_lock_init(&fs_info->super_lock);
2177         rwlock_init(&fs_info->tree_mod_log_lock);
2178         mutex_init(&fs_info->reloc_mutex);
2179         seqlock_init(&fs_info->profiles_lock);
2180
2181         init_completion(&fs_info->kobj_unregister);
2182         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2183         INIT_LIST_HEAD(&fs_info->space_info);
2184         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2185         btrfs_mapping_init(&fs_info->mapping_tree);
2186         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2187                              BTRFS_BLOCK_RSV_GLOBAL);
2188         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2189                              BTRFS_BLOCK_RSV_DELALLOC);
2190         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2191         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2192         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2193         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2194                              BTRFS_BLOCK_RSV_DELOPS);
2195         atomic_set(&fs_info->nr_async_submits, 0);
2196         atomic_set(&fs_info->async_delalloc_pages, 0);
2197         atomic_set(&fs_info->async_submit_draining, 0);
2198         atomic_set(&fs_info->nr_async_bios, 0);
2199         atomic_set(&fs_info->defrag_running, 0);
2200         atomic64_set(&fs_info->tree_mod_seq, 0);
2201         fs_info->sb = sb;
2202         fs_info->max_inline = 8192 * 1024;
2203         fs_info->metadata_ratio = 0;
2204         fs_info->defrag_inodes = RB_ROOT;
2205         fs_info->free_chunk_space = 0;
2206         fs_info->tree_mod_log = RB_ROOT;
2207         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2208
2209         /* readahead state */
2210         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2211         spin_lock_init(&fs_info->reada_lock);
2212
2213         fs_info->thread_pool_size = min_t(unsigned long,
2214                                           num_online_cpus() + 2, 8);
2215
2216         INIT_LIST_HEAD(&fs_info->ordered_roots);
2217         spin_lock_init(&fs_info->ordered_root_lock);
2218         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2219                                         GFP_NOFS);
2220         if (!fs_info->delayed_root) {
2221                 err = -ENOMEM;
2222                 goto fail_iput;
2223         }
2224         btrfs_init_delayed_root(fs_info->delayed_root);
2225
2226         mutex_init(&fs_info->scrub_lock);
2227         atomic_set(&fs_info->scrubs_running, 0);
2228         atomic_set(&fs_info->scrub_pause_req, 0);
2229         atomic_set(&fs_info->scrubs_paused, 0);
2230         atomic_set(&fs_info->scrub_cancel_req, 0);
2231         init_waitqueue_head(&fs_info->scrub_pause_wait);
2232         init_rwsem(&fs_info->scrub_super_lock);
2233         fs_info->scrub_workers_refcnt = 0;
2234 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2235         fs_info->check_integrity_print_mask = 0;
2236 #endif
2237
2238         spin_lock_init(&fs_info->balance_lock);
2239         mutex_init(&fs_info->balance_mutex);
2240         atomic_set(&fs_info->balance_running, 0);
2241         atomic_set(&fs_info->balance_pause_req, 0);
2242         atomic_set(&fs_info->balance_cancel_req, 0);
2243         fs_info->balance_ctl = NULL;
2244         init_waitqueue_head(&fs_info->balance_wait_q);
2245
2246         sb->s_blocksize = 4096;
2247         sb->s_blocksize_bits = blksize_bits(4096);
2248         sb->s_bdi = &fs_info->bdi;
2249
2250         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251         set_nlink(fs_info->btree_inode, 1);
2252         /*
2253          * we set the i_size on the btree inode to the max possible int.
2254          * the real end of the address space is determined by all of
2255          * the devices in the system
2256          */
2257         fs_info->btree_inode->i_size = OFFSET_MAX;
2258         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2259         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2260
2261         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2262         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2263                              fs_info->btree_inode->i_mapping);
2264         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2265         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2266
2267         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2268
2269         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2270         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2271                sizeof(struct btrfs_key));
2272         set_bit(BTRFS_INODE_DUMMY,
2273                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2274         insert_inode_hash(fs_info->btree_inode);
2275
2276         spin_lock_init(&fs_info->block_group_cache_lock);
2277         fs_info->block_group_cache_tree = RB_ROOT;
2278         fs_info->first_logical_byte = (u64)-1;
2279
2280         extent_io_tree_init(&fs_info->freed_extents[0],
2281                              fs_info->btree_inode->i_mapping);
2282         extent_io_tree_init(&fs_info->freed_extents[1],
2283                              fs_info->btree_inode->i_mapping);
2284         fs_info->pinned_extents = &fs_info->freed_extents[0];
2285         fs_info->do_barriers = 1;
2286
2287
2288         mutex_init(&fs_info->ordered_operations_mutex);
2289         mutex_init(&fs_info->ordered_extent_flush_mutex);
2290         mutex_init(&fs_info->tree_log_mutex);
2291         mutex_init(&fs_info->chunk_mutex);
2292         mutex_init(&fs_info->transaction_kthread_mutex);
2293         mutex_init(&fs_info->cleaner_mutex);
2294         mutex_init(&fs_info->volume_mutex);
2295         init_rwsem(&fs_info->extent_commit_sem);
2296         init_rwsem(&fs_info->cleanup_work_sem);
2297         init_rwsem(&fs_info->subvol_sem);
2298         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2299         fs_info->dev_replace.lock_owner = 0;
2300         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2301         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2302         mutex_init(&fs_info->dev_replace.lock_management_lock);
2303         mutex_init(&fs_info->dev_replace.lock);
2304
2305         spin_lock_init(&fs_info->qgroup_lock);
2306         mutex_init(&fs_info->qgroup_ioctl_lock);
2307         fs_info->qgroup_tree = RB_ROOT;
2308         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2309         fs_info->qgroup_seq = 1;
2310         fs_info->quota_enabled = 0;
2311         fs_info->pending_quota_state = 0;
2312         fs_info->qgroup_ulist = NULL;
2313         mutex_init(&fs_info->qgroup_rescan_lock);
2314
2315         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2316         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2317
2318         init_waitqueue_head(&fs_info->transaction_throttle);
2319         init_waitqueue_head(&fs_info->transaction_wait);
2320         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2321         init_waitqueue_head(&fs_info->async_submit_wait);
2322
2323         ret = btrfs_alloc_stripe_hash_table(fs_info);
2324         if (ret) {
2325                 err = ret;
2326                 goto fail_alloc;
2327         }
2328
2329         __setup_root(4096, 4096, 4096, 4096, tree_root,
2330                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2331
2332         invalidate_bdev(fs_devices->latest_bdev);
2333
2334         /*
2335          * Read super block and check the signature bytes only
2336          */
2337         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2338         if (!bh) {
2339                 err = -EINVAL;
2340                 goto fail_alloc;
2341         }
2342
2343         /*
2344          * We want to check superblock checksum, the type is stored inside.
2345          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2346          */
2347         if (btrfs_check_super_csum(bh->b_data)) {
2348                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2349                 err = -EINVAL;
2350                 goto fail_alloc;
2351         }
2352
2353         /*
2354          * super_copy is zeroed at allocation time and we never touch the
2355          * following bytes up to INFO_SIZE, the checksum is calculated from
2356          * the whole block of INFO_SIZE
2357          */
2358         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2359         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2360                sizeof(*fs_info->super_for_commit));
2361         brelse(bh);
2362
2363         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2364
2365         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2366         if (ret) {
2367                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2368                 err = -EINVAL;
2369                 goto fail_alloc;
2370         }
2371
2372         disk_super = fs_info->super_copy;
2373         if (!btrfs_super_root(disk_super))
2374                 goto fail_alloc;
2375
2376         /* check FS state, whether FS is broken. */
2377         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2378                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2379
2380         /*
2381          * run through our array of backup supers and setup
2382          * our ring pointer to the oldest one
2383          */
2384         generation = btrfs_super_generation(disk_super);
2385         find_oldest_super_backup(fs_info, generation);
2386
2387         /*
2388          * In the long term, we'll store the compression type in the super
2389          * block, and it'll be used for per file compression control.
2390          */
2391         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2392
2393         ret = btrfs_parse_options(tree_root, options);
2394         if (ret) {
2395                 err = ret;
2396                 goto fail_alloc;
2397         }
2398
2399         features = btrfs_super_incompat_flags(disk_super) &
2400                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2401         if (features) {
2402                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2403                        "unsupported optional features (%Lx).\n",
2404                        features);
2405                 err = -EINVAL;
2406                 goto fail_alloc;
2407         }
2408
2409         if (btrfs_super_leafsize(disk_super) !=
2410             btrfs_super_nodesize(disk_super)) {
2411                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2412                        "blocksizes don't match.  node %d leaf %d\n",
2413                        btrfs_super_nodesize(disk_super),
2414                        btrfs_super_leafsize(disk_super));
2415                 err = -EINVAL;
2416                 goto fail_alloc;
2417         }
2418         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2419                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2420                        "blocksize (%d) was too large\n",
2421                        btrfs_super_leafsize(disk_super));
2422                 err = -EINVAL;
2423                 goto fail_alloc;
2424         }
2425
2426         features = btrfs_super_incompat_flags(disk_super);
2427         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2428         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2429                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2430
2431         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2432                 printk(KERN_ERR "btrfs: has skinny extents\n");
2433
2434         /*
2435          * flag our filesystem as having big metadata blocks if
2436          * they are bigger than the page size
2437          */
2438         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2439                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2440                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2441                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2442         }
2443
2444         nodesize = btrfs_super_nodesize(disk_super);
2445         leafsize = btrfs_super_leafsize(disk_super);
2446         sectorsize = btrfs_super_sectorsize(disk_super);
2447         stripesize = btrfs_super_stripesize(disk_super);
2448         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2449         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2450
2451         /*
2452          * mixed block groups end up with duplicate but slightly offset
2453          * extent buffers for the same range.  It leads to corruptions
2454          */
2455         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2456             (sectorsize != leafsize)) {
2457                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2458                                 "are not allowed for mixed block groups on %s\n",
2459                                 sb->s_id);
2460                 goto fail_alloc;
2461         }
2462
2463         /*
2464          * Needn't use the lock because there is no other task which will
2465          * update the flag.
2466          */
2467         btrfs_set_super_incompat_flags(disk_super, features);
2468
2469         features = btrfs_super_compat_ro_flags(disk_super) &
2470                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2471         if (!(sb->s_flags & MS_RDONLY) && features) {
2472                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2473                        "unsupported option features (%Lx).\n",
2474                        features);
2475                 err = -EINVAL;
2476                 goto fail_alloc;
2477         }
2478
2479         btrfs_init_workers(&fs_info->generic_worker,
2480                            "genwork", 1, NULL);
2481
2482         btrfs_init_workers(&fs_info->workers, "worker",
2483                            fs_info->thread_pool_size,
2484                            &fs_info->generic_worker);
2485
2486         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2487                            fs_info->thread_pool_size, NULL);
2488
2489         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2490                            fs_info->thread_pool_size, NULL);
2491
2492         btrfs_init_workers(&fs_info->submit_workers, "submit",
2493                            min_t(u64, fs_devices->num_devices,
2494                            fs_info->thread_pool_size), NULL);
2495
2496         btrfs_init_workers(&fs_info->caching_workers, "cache",
2497                            fs_info->thread_pool_size, NULL);
2498
2499         /* a higher idle thresh on the submit workers makes it much more
2500          * likely that bios will be send down in a sane order to the
2501          * devices
2502          */
2503         fs_info->submit_workers.idle_thresh = 64;
2504
2505         fs_info->workers.idle_thresh = 16;
2506         fs_info->workers.ordered = 1;
2507
2508         fs_info->delalloc_workers.idle_thresh = 2;
2509         fs_info->delalloc_workers.ordered = 1;
2510
2511         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_workers, "endio",
2514                            fs_info->thread_pool_size,
2515                            &fs_info->generic_worker);
2516         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2517                            fs_info->thread_pool_size,
2518                            &fs_info->generic_worker);
2519         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2520                            "endio-meta-write", fs_info->thread_pool_size,
2521                            &fs_info->generic_worker);
2522         btrfs_init_workers(&fs_info->endio_raid56_workers,
2523                            "endio-raid56", fs_info->thread_pool_size,
2524                            &fs_info->generic_worker);
2525         btrfs_init_workers(&fs_info->rmw_workers,
2526                            "rmw", fs_info->thread_pool_size,
2527                            &fs_info->generic_worker);
2528         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2529                            fs_info->thread_pool_size,
2530                            &fs_info->generic_worker);
2531         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2532                            1, &fs_info->generic_worker);
2533         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2534                            fs_info->thread_pool_size,
2535                            &fs_info->generic_worker);
2536         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2537                            fs_info->thread_pool_size,
2538                            &fs_info->generic_worker);
2539         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2540                            &fs_info->generic_worker);
2541
2542         /*
2543          * endios are largely parallel and should have a very
2544          * low idle thresh
2545          */
2546         fs_info->endio_workers.idle_thresh = 4;
2547         fs_info->endio_meta_workers.idle_thresh = 4;
2548         fs_info->endio_raid56_workers.idle_thresh = 4;
2549         fs_info->rmw_workers.idle_thresh = 2;
2550
2551         fs_info->endio_write_workers.idle_thresh = 2;
2552         fs_info->endio_meta_write_workers.idle_thresh = 2;
2553         fs_info->readahead_workers.idle_thresh = 2;
2554
2555         /*
2556          * btrfs_start_workers can really only fail because of ENOMEM so just
2557          * return -ENOMEM if any of these fail.
2558          */
2559         ret = btrfs_start_workers(&fs_info->workers);
2560         ret |= btrfs_start_workers(&fs_info->generic_worker);
2561         ret |= btrfs_start_workers(&fs_info->submit_workers);
2562         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2563         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2564         ret |= btrfs_start_workers(&fs_info->endio_workers);
2565         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2566         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2567         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2568         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2569         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2570         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2571         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2572         ret |= btrfs_start_workers(&fs_info->caching_workers);
2573         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2574         ret |= btrfs_start_workers(&fs_info->flush_workers);
2575         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2576         if (ret) {
2577                 err = -ENOMEM;
2578                 goto fail_sb_buffer;
2579         }
2580
2581         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2582         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2583                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2584
2585         tree_root->nodesize = nodesize;
2586         tree_root->leafsize = leafsize;
2587         tree_root->sectorsize = sectorsize;
2588         tree_root->stripesize = stripesize;
2589
2590         sb->s_blocksize = sectorsize;
2591         sb->s_blocksize_bits = blksize_bits(sectorsize);
2592
2593         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2594                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2595                 goto fail_sb_buffer;
2596         }
2597
2598         if (sectorsize != PAGE_SIZE) {
2599                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2600                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2601                 goto fail_sb_buffer;
2602         }
2603
2604         mutex_lock(&fs_info->chunk_mutex);
2605         ret = btrfs_read_sys_array(tree_root);
2606         mutex_unlock(&fs_info->chunk_mutex);
2607         if (ret) {
2608                 printk(KERN_WARNING "btrfs: failed to read the system "
2609                        "array on %s\n", sb->s_id);
2610                 goto fail_sb_buffer;
2611         }
2612
2613         blocksize = btrfs_level_size(tree_root,
2614                                      btrfs_super_chunk_root_level(disk_super));
2615         generation = btrfs_super_chunk_root_generation(disk_super);
2616
2617         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2618                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2619
2620         chunk_root->node = read_tree_block(chunk_root,
2621                                            btrfs_super_chunk_root(disk_super),
2622                                            blocksize, generation);
2623         if (!chunk_root->node ||
2624             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2625                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2626                        sb->s_id);
2627                 goto fail_tree_roots;
2628         }
2629         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2630         chunk_root->commit_root = btrfs_root_node(chunk_root);
2631
2632         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2633            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2634
2635         ret = btrfs_read_chunk_tree(chunk_root);
2636         if (ret) {
2637                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2638                        sb->s_id);
2639                 goto fail_tree_roots;
2640         }
2641
2642         /*
2643          * keep the device that is marked to be the target device for the
2644          * dev_replace procedure
2645          */
2646         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2647
2648         if (!fs_devices->latest_bdev) {
2649                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2650                        sb->s_id);
2651                 goto fail_tree_roots;
2652         }
2653
2654 retry_root_backup:
2655         blocksize = btrfs_level_size(tree_root,
2656                                      btrfs_super_root_level(disk_super));
2657         generation = btrfs_super_generation(disk_super);
2658
2659         tree_root->node = read_tree_block(tree_root,
2660                                           btrfs_super_root(disk_super),
2661                                           blocksize, generation);
2662         if (!tree_root->node ||
2663             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2664                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2665                        sb->s_id);
2666
2667                 goto recovery_tree_root;
2668         }
2669
2670         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2671         tree_root->commit_root = btrfs_root_node(tree_root);
2672
2673         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2674         location.type = BTRFS_ROOT_ITEM_KEY;
2675         location.offset = 0;
2676
2677         extent_root = btrfs_read_tree_root(tree_root, &location);
2678         if (IS_ERR(extent_root)) {
2679                 ret = PTR_ERR(extent_root);
2680                 goto recovery_tree_root;
2681         }
2682         extent_root->track_dirty = 1;
2683         fs_info->extent_root = extent_root;
2684
2685         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2686         dev_root = btrfs_read_tree_root(tree_root, &location);
2687         if (IS_ERR(dev_root)) {
2688                 ret = PTR_ERR(dev_root);
2689                 goto recovery_tree_root;
2690         }
2691         dev_root->track_dirty = 1;
2692         fs_info->dev_root = dev_root;
2693         btrfs_init_devices_late(fs_info);
2694
2695         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2696         csum_root = btrfs_read_tree_root(tree_root, &location);
2697         if (IS_ERR(csum_root)) {
2698                 ret = PTR_ERR(csum_root);
2699                 goto recovery_tree_root;
2700         }
2701         csum_root->track_dirty = 1;
2702         fs_info->csum_root = csum_root;
2703
2704         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2705         quota_root = btrfs_read_tree_root(tree_root, &location);
2706         if (!IS_ERR(quota_root)) {
2707                 quota_root->track_dirty = 1;
2708                 fs_info->quota_enabled = 1;
2709                 fs_info->pending_quota_state = 1;
2710                 fs_info->quota_root = quota_root;
2711         }
2712
2713         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2714         uuid_root = btrfs_read_tree_root(tree_root, &location);
2715         if (IS_ERR(uuid_root)) {
2716                 ret = PTR_ERR(uuid_root);
2717                 if (ret != -ENOENT)
2718                         goto recovery_tree_root;
2719                 create_uuid_tree = true;
2720                 check_uuid_tree = false;
2721         } else {
2722                 uuid_root->track_dirty = 1;
2723                 fs_info->uuid_root = uuid_root;
2724                 create_uuid_tree = false;
2725                 check_uuid_tree =
2726                     generation != btrfs_super_uuid_tree_generation(disk_super);
2727         }
2728
2729         fs_info->generation = generation;
2730         fs_info->last_trans_committed = generation;
2731
2732         ret = btrfs_recover_balance(fs_info);
2733         if (ret) {
2734                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2735                 goto fail_block_groups;
2736         }
2737
2738         ret = btrfs_init_dev_stats(fs_info);
2739         if (ret) {
2740                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2741                        ret);
2742                 goto fail_block_groups;
2743         }
2744
2745         ret = btrfs_init_dev_replace(fs_info);
2746         if (ret) {
2747                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2748                 goto fail_block_groups;
2749         }
2750
2751         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2752
2753         ret = btrfs_init_space_info(fs_info);
2754         if (ret) {
2755                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2756                 goto fail_block_groups;
2757         }
2758
2759         ret = btrfs_read_block_groups(extent_root);
2760         if (ret) {
2761                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2762                 goto fail_block_groups;
2763         }
2764         fs_info->num_tolerated_disk_barrier_failures =
2765                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2766         if (fs_info->fs_devices->missing_devices >
2767              fs_info->num_tolerated_disk_barrier_failures &&
2768             !(sb->s_flags & MS_RDONLY)) {
2769                 printk(KERN_WARNING
2770                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2771                 goto fail_block_groups;
2772         }
2773
2774         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2775                                                "btrfs-cleaner");
2776         if (IS_ERR(fs_info->cleaner_kthread))
2777                 goto fail_block_groups;
2778
2779         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2780                                                    tree_root,
2781                                                    "btrfs-transaction");
2782         if (IS_ERR(fs_info->transaction_kthread))
2783                 goto fail_cleaner;
2784
2785         if (!btrfs_test_opt(tree_root, SSD) &&
2786             !btrfs_test_opt(tree_root, NOSSD) &&
2787             !fs_info->fs_devices->rotating) {
2788                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2789                        "mode\n");
2790                 btrfs_set_opt(fs_info->mount_opt, SSD);
2791         }
2792
2793 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2794         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2795                 ret = btrfsic_mount(tree_root, fs_devices,
2796                                     btrfs_test_opt(tree_root,
2797                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2798                                     1 : 0,
2799                                     fs_info->check_integrity_print_mask);
2800                 if (ret)
2801                         printk(KERN_WARNING "btrfs: failed to initialize"
2802                                " integrity check module %s\n", sb->s_id);
2803         }
2804 #endif
2805         ret = btrfs_read_qgroup_config(fs_info);
2806         if (ret)
2807                 goto fail_trans_kthread;
2808
2809         /* do not make disk changes in broken FS */
2810         if (btrfs_super_log_root(disk_super) != 0) {
2811                 u64 bytenr = btrfs_super_log_root(disk_super);
2812
2813                 if (fs_devices->rw_devices == 0) {
2814                         printk(KERN_WARNING "Btrfs log replay required "
2815                                "on RO media\n");
2816                         err = -EIO;
2817                         goto fail_qgroup;
2818                 }
2819                 blocksize =
2820                      btrfs_level_size(tree_root,
2821                                       btrfs_super_log_root_level(disk_super));
2822
2823                 log_tree_root = btrfs_alloc_root(fs_info);
2824                 if (!log_tree_root) {
2825                         err = -ENOMEM;
2826                         goto fail_qgroup;
2827                 }
2828
2829                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2830                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2831
2832                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2833                                                       blocksize,
2834                                                       generation + 1);
2835                 if (!log_tree_root->node ||
2836                     !extent_buffer_uptodate(log_tree_root->node)) {
2837                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2838                         free_extent_buffer(log_tree_root->node);
2839                         kfree(log_tree_root);
2840                         goto fail_trans_kthread;
2841                 }
2842                 /* returns with log_tree_root freed on success */
2843                 ret = btrfs_recover_log_trees(log_tree_root);
2844                 if (ret) {
2845                         btrfs_error(tree_root->fs_info, ret,
2846                                     "Failed to recover log tree");
2847                         free_extent_buffer(log_tree_root->node);
2848                         kfree(log_tree_root);
2849                         goto fail_trans_kthread;
2850                 }
2851
2852                 if (sb->s_flags & MS_RDONLY) {
2853                         ret = btrfs_commit_super(tree_root);
2854                         if (ret)
2855                                 goto fail_trans_kthread;
2856                 }
2857         }
2858
2859         ret = btrfs_find_orphan_roots(tree_root);
2860         if (ret)
2861                 goto fail_trans_kthread;
2862
2863         if (!(sb->s_flags & MS_RDONLY)) {
2864                 ret = btrfs_cleanup_fs_roots(fs_info);
2865                 if (ret)
2866                         goto fail_trans_kthread;
2867
2868                 ret = btrfs_recover_relocation(tree_root);
2869                 if (ret < 0) {
2870                         printk(KERN_WARNING
2871                                "btrfs: failed to recover relocation\n");
2872                         err = -EINVAL;
2873                         goto fail_qgroup;
2874                 }
2875         }
2876
2877         location.objectid = BTRFS_FS_TREE_OBJECTID;
2878         location.type = BTRFS_ROOT_ITEM_KEY;
2879         location.offset = 0;
2880
2881         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2882         if (IS_ERR(fs_info->fs_root)) {
2883                 err = PTR_ERR(fs_info->fs_root);
2884                 goto fail_qgroup;
2885         }
2886
2887         if (sb->s_flags & MS_RDONLY)
2888                 return 0;
2889
2890         down_read(&fs_info->cleanup_work_sem);
2891         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2892             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2893                 up_read(&fs_info->cleanup_work_sem);
2894                 close_ctree(tree_root);
2895                 return ret;
2896         }
2897         up_read(&fs_info->cleanup_work_sem);
2898
2899         ret = btrfs_resume_balance_async(fs_info);
2900         if (ret) {
2901                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2902                 close_ctree(tree_root);
2903                 return ret;
2904         }
2905
2906         ret = btrfs_resume_dev_replace_async(fs_info);
2907         if (ret) {
2908                 pr_warn("btrfs: failed to resume dev_replace\n");
2909                 close_ctree(tree_root);
2910                 return ret;
2911         }
2912
2913         btrfs_qgroup_rescan_resume(fs_info);
2914
2915         if (create_uuid_tree) {
2916                 pr_info("btrfs: creating UUID tree\n");
2917                 ret = btrfs_create_uuid_tree(fs_info);
2918                 if (ret) {
2919                         pr_warn("btrfs: failed to create the UUID tree %d\n",
2920                                 ret);
2921                         close_ctree(tree_root);
2922                         return ret;
2923                 }
2924         } else if (check_uuid_tree ||
2925                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2926                 pr_info("btrfs: checking UUID tree\n");
2927                 ret = btrfs_check_uuid_tree(fs_info);
2928                 if (ret) {
2929                         pr_warn("btrfs: failed to check the UUID tree %d\n",
2930                                 ret);
2931                         close_ctree(tree_root);
2932                         return ret;
2933                 }
2934         } else {
2935                 fs_info->update_uuid_tree_gen = 1;
2936         }
2937
2938         return 0;
2939
2940 fail_qgroup:
2941         btrfs_free_qgroup_config(fs_info);
2942 fail_trans_kthread:
2943         kthread_stop(fs_info->transaction_kthread);
2944         btrfs_cleanup_transaction(fs_info->tree_root);
2945         del_fs_roots(fs_info);
2946 fail_cleaner:
2947         kthread_stop(fs_info->cleaner_kthread);
2948
2949         /*
2950          * make sure we're done with the btree inode before we stop our
2951          * kthreads
2952          */
2953         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2954
2955 fail_block_groups:
2956         btrfs_put_block_group_cache(fs_info);
2957         btrfs_free_block_groups(fs_info);
2958
2959 fail_tree_roots:
2960         free_root_pointers(fs_info, 1);
2961         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2962
2963 fail_sb_buffer:
2964         btrfs_stop_all_workers(fs_info);
2965 fail_alloc:
2966 fail_iput:
2967         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2968
2969         iput(fs_info->btree_inode);
2970 fail_delalloc_bytes:
2971         percpu_counter_destroy(&fs_info->delalloc_bytes);
2972 fail_dirty_metadata_bytes:
2973         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2974 fail_bdi:
2975         bdi_destroy(&fs_info->bdi);
2976 fail_srcu:
2977         cleanup_srcu_struct(&fs_info->subvol_srcu);
2978 fail:
2979         btrfs_free_stripe_hash_table(fs_info);
2980         btrfs_close_devices(fs_info->fs_devices);
2981         return err;
2982
2983 recovery_tree_root:
2984         if (!btrfs_test_opt(tree_root, RECOVERY))
2985                 goto fail_tree_roots;
2986
2987         free_root_pointers(fs_info, 0);
2988
2989         /* don't use the log in recovery mode, it won't be valid */
2990         btrfs_set_super_log_root(disk_super, 0);
2991
2992         /* we can't trust the free space cache either */
2993         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2994
2995         ret = next_root_backup(fs_info, fs_info->super_copy,
2996                                &num_backups_tried, &backup_index);
2997         if (ret == -1)
2998                 goto fail_block_groups;
2999         goto retry_root_backup;
3000 }
3001
3002 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3003 {
3004         if (uptodate) {
3005                 set_buffer_uptodate(bh);
3006         } else {
3007                 struct btrfs_device *device = (struct btrfs_device *)
3008                         bh->b_private;
3009
3010                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3011                                           "I/O error on %s\n",
3012                                           rcu_str_deref(device->name));
3013                 /* note, we dont' set_buffer_write_io_error because we have
3014                  * our own ways of dealing with the IO errors
3015                  */
3016                 clear_buffer_uptodate(bh);
3017                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3018         }
3019         unlock_buffer(bh);
3020         put_bh(bh);
3021 }
3022
3023 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3024 {
3025         struct buffer_head *bh;
3026         struct buffer_head *latest = NULL;
3027         struct btrfs_super_block *super;
3028         int i;
3029         u64 transid = 0;
3030         u64 bytenr;
3031
3032         /* we would like to check all the supers, but that would make
3033          * a btrfs mount succeed after a mkfs from a different FS.
3034          * So, we need to add a special mount option to scan for
3035          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3036          */
3037         for (i = 0; i < 1; i++) {
3038                 bytenr = btrfs_sb_offset(i);
3039                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3040                                         i_size_read(bdev->bd_inode))
3041                         break;
3042                 bh = __bread(bdev, bytenr / 4096,
3043                                         BTRFS_SUPER_INFO_SIZE);
3044                 if (!bh)
3045                         continue;
3046
3047                 super = (struct btrfs_super_block *)bh->b_data;
3048                 if (btrfs_super_bytenr(super) != bytenr ||
3049                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3050                         brelse(bh);
3051                         continue;
3052                 }
3053
3054                 if (!latest || btrfs_super_generation(super) > transid) {
3055                         brelse(latest);
3056                         latest = bh;
3057                         transid = btrfs_super_generation(super);
3058                 } else {
3059                         brelse(bh);
3060                 }
3061         }
3062         return latest;
3063 }
3064
3065 /*
3066  * this should be called twice, once with wait == 0 and
3067  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3068  * we write are pinned.
3069  *
3070  * They are released when wait == 1 is done.
3071  * max_mirrors must be the same for both runs, and it indicates how
3072  * many supers on this one device should be written.
3073  *
3074  * max_mirrors == 0 means to write them all.
3075  */
3076 static int write_dev_supers(struct btrfs_device *device,
3077                             struct btrfs_super_block *sb,
3078                             int do_barriers, int wait, int max_mirrors)
3079 {
3080         struct buffer_head *bh;
3081         int i;
3082         int ret;
3083         int errors = 0;
3084         u32 crc;
3085         u64 bytenr;
3086
3087         if (max_mirrors == 0)
3088                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3089
3090         for (i = 0; i < max_mirrors; i++) {
3091                 bytenr = btrfs_sb_offset(i);
3092                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3093                         break;
3094
3095                 if (wait) {
3096                         bh = __find_get_block(device->bdev, bytenr / 4096,
3097                                               BTRFS_SUPER_INFO_SIZE);
3098                         if (!bh) {
3099                                 errors++;
3100                                 continue;
3101                         }
3102                         wait_on_buffer(bh);
3103                         if (!buffer_uptodate(bh))
3104                                 errors++;
3105
3106                         /* drop our reference */
3107                         brelse(bh);
3108
3109                         /* drop the reference from the wait == 0 run */
3110                         brelse(bh);
3111                         continue;
3112                 } else {
3113                         btrfs_set_super_bytenr(sb, bytenr);
3114
3115                         crc = ~(u32)0;
3116                         crc = btrfs_csum_data((char *)sb +
3117                                               BTRFS_CSUM_SIZE, crc,
3118                                               BTRFS_SUPER_INFO_SIZE -
3119                                               BTRFS_CSUM_SIZE);
3120                         btrfs_csum_final(crc, sb->csum);
3121
3122                         /*
3123                          * one reference for us, and we leave it for the
3124                          * caller
3125                          */
3126                         bh = __getblk(device->bdev, bytenr / 4096,
3127                                       BTRFS_SUPER_INFO_SIZE);
3128                         if (!bh) {
3129                                 printk(KERN_ERR "btrfs: couldn't get super "
3130                                        "buffer head for bytenr %Lu\n", bytenr);
3131                                 errors++;
3132                                 continue;
3133                         }
3134
3135                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3136
3137                         /* one reference for submit_bh */
3138                         get_bh(bh);
3139
3140                         set_buffer_uptodate(bh);
3141                         lock_buffer(bh);
3142                         bh->b_end_io = btrfs_end_buffer_write_sync;
3143                         bh->b_private = device;
3144                 }
3145
3146                 /*
3147                  * we fua the first super.  The others we allow
3148                  * to go down lazy.
3149                  */
3150                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3151                 if (ret)
3152                         errors++;
3153         }
3154         return errors < i ? 0 : -1;
3155 }
3156
3157 /*
3158  * endio for the write_dev_flush, this will wake anyone waiting
3159  * for the barrier when it is done
3160  */
3161 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3162 {
3163         if (err) {
3164                 if (err == -EOPNOTSUPP)
3165                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3166                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3167         }
3168         if (bio->bi_private)
3169                 complete(bio->bi_private);
3170         bio_put(bio);
3171 }
3172
3173 /*
3174  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3175  * sent down.  With wait == 1, it waits for the previous flush.
3176  *
3177  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3178  * capable
3179  */
3180 static int write_dev_flush(struct btrfs_device *device, int wait)
3181 {
3182         struct bio *bio;
3183         int ret = 0;
3184
3185         if (device->nobarriers)
3186                 return 0;
3187
3188         if (wait) {
3189                 bio = device->flush_bio;
3190                 if (!bio)
3191                         return 0;
3192
3193                 wait_for_completion(&device->flush_wait);
3194
3195                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3196                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3197                                       rcu_str_deref(device->name));
3198                         device->nobarriers = 1;
3199                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3200                         ret = -EIO;
3201                         btrfs_dev_stat_inc_and_print(device,
3202                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3203                 }
3204
3205                 /* drop the reference from the wait == 0 run */
3206                 bio_put(bio);
3207                 device->flush_bio = NULL;
3208
3209                 return ret;
3210         }
3211
3212         /*
3213          * one reference for us, and we leave it for the
3214          * caller
3215          */
3216         device->flush_bio = NULL;
3217         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3218         if (!bio)
3219                 return -ENOMEM;
3220
3221         bio->bi_end_io = btrfs_end_empty_barrier;
3222         bio->bi_bdev = device->bdev;
3223         init_completion(&device->flush_wait);
3224         bio->bi_private = &device->flush_wait;
3225         device->flush_bio = bio;
3226
3227         bio_get(bio);
3228         btrfsic_submit_bio(WRITE_FLUSH, bio);
3229
3230         return 0;
3231 }
3232
3233 /*
3234  * send an empty flush down to each device in parallel,
3235  * then wait for them
3236  */
3237 static int barrier_all_devices(struct btrfs_fs_info *info)
3238 {
3239         struct list_head *head;
3240         struct btrfs_device *dev;
3241         int errors_send = 0;
3242         int errors_wait = 0;
3243         int ret;
3244
3245         /* send down all the barriers */
3246         head = &info->fs_devices->devices;
3247         list_for_each_entry_rcu(dev, head, dev_list) {
3248                 if (!dev->bdev) {
3249                         errors_send++;
3250                         continue;
3251                 }
3252                 if (!dev->in_fs_metadata || !dev->writeable)
3253                         continue;
3254
3255                 ret = write_dev_flush(dev, 0);
3256                 if (ret)
3257                         errors_send++;
3258         }
3259
3260         /* wait for all the barriers */
3261         list_for_each_entry_rcu(dev, head, dev_list) {
3262                 if (!dev->bdev) {
3263                         errors_wait++;
3264                         continue;
3265                 }
3266                 if (!dev->in_fs_metadata || !dev->writeable)
3267                         continue;
3268
3269                 ret = write_dev_flush(dev, 1);
3270                 if (ret)
3271                         errors_wait++;
3272         }
3273         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3274             errors_wait > info->num_tolerated_disk_barrier_failures)
3275                 return -EIO;
3276         return 0;
3277 }
3278
3279 int btrfs_calc_num_tolerated_disk_barrier_failures(
3280         struct btrfs_fs_info *fs_info)
3281 {
3282         struct btrfs_ioctl_space_info space;
3283         struct btrfs_space_info *sinfo;
3284         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3285                        BTRFS_BLOCK_GROUP_SYSTEM,
3286                        BTRFS_BLOCK_GROUP_METADATA,
3287                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3288         int num_types = 4;
3289         int i;
3290         int c;
3291         int num_tolerated_disk_barrier_failures =
3292                 (int)fs_info->fs_devices->num_devices;
3293
3294         for (i = 0; i < num_types; i++) {
3295                 struct btrfs_space_info *tmp;
3296
3297                 sinfo = NULL;
3298                 rcu_read_lock();
3299                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3300                         if (tmp->flags == types[i]) {
3301                                 sinfo = tmp;
3302                                 break;
3303                         }
3304                 }
3305                 rcu_read_unlock();
3306
3307                 if (!sinfo)
3308                         continue;
3309
3310                 down_read(&sinfo->groups_sem);
3311                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3312                         if (!list_empty(&sinfo->block_groups[c])) {
3313                                 u64 flags;
3314
3315                                 btrfs_get_block_group_info(
3316                                         &sinfo->block_groups[c], &space);
3317                                 if (space.total_bytes == 0 ||
3318                                     space.used_bytes == 0)
3319                                         continue;
3320                                 flags = space.flags;
3321                                 /*
3322                                  * return
3323                                  * 0: if dup, single or RAID0 is configured for
3324                                  *    any of metadata, system or data, else
3325                                  * 1: if RAID5 is configured, or if RAID1 or
3326                                  *    RAID10 is configured and only two mirrors
3327                                  *    are used, else
3328                                  * 2: if RAID6 is configured, else
3329                                  * num_mirrors - 1: if RAID1 or RAID10 is
3330                                  *                  configured and more than
3331                                  *                  2 mirrors are used.
3332                                  */
3333                                 if (num_tolerated_disk_barrier_failures > 0 &&
3334                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3335                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3336                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3337                                       == 0)))
3338                                         num_tolerated_disk_barrier_failures = 0;
3339                                 else if (num_tolerated_disk_barrier_failures > 1) {
3340                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3341                                             BTRFS_BLOCK_GROUP_RAID5 |
3342                                             BTRFS_BLOCK_GROUP_RAID10)) {
3343                                                 num_tolerated_disk_barrier_failures = 1;
3344                                         } else if (flags &
3345                                                    BTRFS_BLOCK_GROUP_RAID6) {
3346                                                 num_tolerated_disk_barrier_failures = 2;
3347                                         }
3348                                 }
3349                         }
3350                 }
3351                 up_read(&sinfo->groups_sem);
3352         }
3353
3354         return num_tolerated_disk_barrier_failures;
3355 }
3356
3357 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3358 {
3359         struct list_head *head;
3360         struct btrfs_device *dev;
3361         struct btrfs_super_block *sb;
3362         struct btrfs_dev_item *dev_item;
3363         int ret;
3364         int do_barriers;
3365         int max_errors;
3366         int total_errors = 0;
3367         u64 flags;
3368
3369         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3370         backup_super_roots(root->fs_info);
3371
3372         sb = root->fs_info->super_for_commit;
3373         dev_item = &sb->dev_item;
3374
3375         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3376         head = &root->fs_info->fs_devices->devices;
3377         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3378
3379         if (do_barriers) {
3380                 ret = barrier_all_devices(root->fs_info);
3381                 if (ret) {
3382                         mutex_unlock(
3383                                 &root->fs_info->fs_devices->device_list_mutex);
3384                         btrfs_error(root->fs_info, ret,
3385                                     "errors while submitting device barriers.");
3386                         return ret;
3387                 }
3388         }
3389
3390         list_for_each_entry_rcu(dev, head, dev_list) {
3391                 if (!dev->bdev) {
3392                         total_errors++;
3393                         continue;
3394                 }
3395                 if (!dev->in_fs_metadata || !dev->writeable)
3396                         continue;
3397
3398                 btrfs_set_stack_device_generation(dev_item, 0);
3399                 btrfs_set_stack_device_type(dev_item, dev->type);
3400                 btrfs_set_stack_device_id(dev_item, dev->devid);
3401                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3402                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3403                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3404                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3405                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3406                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3407                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3408
3409                 flags = btrfs_super_flags(sb);
3410                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3411
3412                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3413                 if (ret)
3414                         total_errors++;
3415         }
3416         if (total_errors > max_errors) {
3417                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3418                        total_errors);
3419                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3420
3421                 /* FUA is masked off if unsupported and can't be the reason */
3422                 btrfs_error(root->fs_info, -EIO,
3423                             "%d errors while writing supers", total_errors);
3424                 return -EIO;
3425         }
3426
3427         total_errors = 0;
3428         list_for_each_entry_rcu(dev, head, dev_list) {
3429                 if (!dev->bdev)
3430                         continue;
3431                 if (!dev->in_fs_metadata || !dev->writeable)
3432                         continue;
3433
3434                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3435                 if (ret)
3436                         total_errors++;
3437         }
3438         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3439         if (total_errors > max_errors) {
3440                 btrfs_error(root->fs_info, -EIO,
3441                             "%d errors while writing supers", total_errors);
3442                 return -EIO;
3443         }
3444         return 0;
3445 }
3446
3447 int write_ctree_super(struct btrfs_trans_handle *trans,
3448                       struct btrfs_root *root, int max_mirrors)
3449 {
3450         int ret;
3451
3452         ret = write_all_supers(root, max_mirrors);
3453         return ret;
3454 }
3455
3456 /* Drop a fs root from the radix tree and free it. */
3457 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3458                                   struct btrfs_root *root)
3459 {
3460         spin_lock(&fs_info->fs_roots_radix_lock);
3461         radix_tree_delete(&fs_info->fs_roots_radix,
3462                           (unsigned long)root->root_key.objectid);
3463         spin_unlock(&fs_info->fs_roots_radix_lock);
3464
3465         if (btrfs_root_refs(&root->root_item) == 0)
3466                 synchronize_srcu(&fs_info->subvol_srcu);
3467
3468         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3469                 btrfs_free_log(NULL, root);
3470                 btrfs_free_log_root_tree(NULL, fs_info);
3471         }
3472
3473         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3474         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3475         free_fs_root(root);
3476 }
3477
3478 static void free_fs_root(struct btrfs_root *root)
3479 {
3480         iput(root->cache_inode);
3481         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3482         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3483         root->orphan_block_rsv = NULL;
3484         if (root->anon_dev)
3485                 free_anon_bdev(root->anon_dev);
3486         free_extent_buffer(root->node);
3487         free_extent_buffer(root->commit_root);
3488         kfree(root->free_ino_ctl);
3489         kfree(root->free_ino_pinned);
3490         kfree(root->name);
3491         btrfs_put_fs_root(root);
3492 }
3493
3494 void btrfs_free_fs_root(struct btrfs_root *root)
3495 {
3496         free_fs_root(root);
3497 }
3498
3499 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3500 {
3501         u64 root_objectid = 0;
3502         struct btrfs_root *gang[8];
3503         int i;
3504         int ret;
3505
3506         while (1) {
3507                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3508                                              (void **)gang, root_objectid,
3509                                              ARRAY_SIZE(gang));
3510                 if (!ret)
3511                         break;
3512
3513                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3514                 for (i = 0; i < ret; i++) {
3515                         int err;
3516
3517                         root_objectid = gang[i]->root_key.objectid;
3518                         err = btrfs_orphan_cleanup(gang[i]);
3519                         if (err)
3520                                 return err;
3521                 }
3522                 root_objectid++;
3523         }
3524         return 0;
3525 }
3526
3527 int btrfs_commit_super(struct btrfs_root *root)
3528 {
3529         struct btrfs_trans_handle *trans;
3530         int ret;
3531
3532         mutex_lock(&root->fs_info->cleaner_mutex);
3533         btrfs_run_delayed_iputs(root);
3534         mutex_unlock(&root->fs_info->cleaner_mutex);
3535         wake_up_process(root->fs_info->cleaner_kthread);
3536
3537         /* wait until ongoing cleanup work done */
3538         down_write(&root->fs_info->cleanup_work_sem);
3539         up_write(&root->fs_info->cleanup_work_sem);
3540
3541         trans = btrfs_join_transaction(root);
3542         if (IS_ERR(trans))
3543                 return PTR_ERR(trans);
3544         ret = btrfs_commit_transaction(trans, root);
3545         if (ret)
3546                 return ret;
3547         /* run commit again to drop the original snapshot */
3548         trans = btrfs_join_transaction(root);
3549         if (IS_ERR(trans))
3550                 return PTR_ERR(trans);
3551         ret = btrfs_commit_transaction(trans, root);
3552         if (ret)
3553                 return ret;
3554         ret = btrfs_write_and_wait_transaction(NULL, root);
3555         if (ret) {
3556                 btrfs_error(root->fs_info, ret,
3557                             "Failed to sync btree inode to disk.");
3558                 return ret;
3559         }
3560
3561         ret = write_ctree_super(NULL, root, 0);
3562         return ret;
3563 }
3564
3565 int close_ctree(struct btrfs_root *root)
3566 {
3567         struct btrfs_fs_info *fs_info = root->fs_info;
3568         int ret;
3569
3570         fs_info->closing = 1;
3571         smp_mb();
3572
3573         /* wait for the uuid_scan task to finish */
3574         down(&fs_info->uuid_tree_rescan_sem);
3575         /* avoid complains from lockdep et al., set sem back to initial state */
3576         up(&fs_info->uuid_tree_rescan_sem);
3577
3578         /* pause restriper - we want to resume on mount */
3579         btrfs_pause_balance(fs_info);
3580
3581         btrfs_dev_replace_suspend_for_unmount(fs_info);
3582
3583         btrfs_scrub_cancel(fs_info);
3584
3585         /* wait for any defraggers to finish */
3586         wait_event(fs_info->transaction_wait,
3587                    (atomic_read(&fs_info->defrag_running) == 0));
3588
3589         /* clear out the rbtree of defraggable inodes */
3590         btrfs_cleanup_defrag_inodes(fs_info);
3591
3592         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3593                 ret = btrfs_commit_super(root);
3594                 if (ret)
3595                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3596         }
3597
3598         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3599                 btrfs_error_commit_super(root);
3600
3601         btrfs_put_block_group_cache(fs_info);
3602
3603         kthread_stop(fs_info->transaction_kthread);
3604         kthread_stop(fs_info->cleaner_kthread);
3605
3606         fs_info->closing = 2;
3607         smp_mb();
3608
3609         btrfs_free_qgroup_config(root->fs_info);
3610
3611         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3612                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3613                        percpu_counter_sum(&fs_info->delalloc_bytes));
3614         }
3615
3616         btrfs_free_block_groups(fs_info);
3617
3618         btrfs_stop_all_workers(fs_info);
3619
3620         del_fs_roots(fs_info);
3621
3622         free_root_pointers(fs_info, 1);
3623
3624         iput(fs_info->btree_inode);
3625
3626 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3627         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3628                 btrfsic_unmount(root, fs_info->fs_devices);
3629 #endif
3630
3631         btrfs_close_devices(fs_info->fs_devices);
3632         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3633
3634         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3635         percpu_counter_destroy(&fs_info->delalloc_bytes);
3636         bdi_destroy(&fs_info->bdi);
3637         cleanup_srcu_struct(&fs_info->subvol_srcu);
3638
3639         btrfs_free_stripe_hash_table(fs_info);
3640
3641         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3642         root->orphan_block_rsv = NULL;
3643
3644         return 0;
3645 }
3646
3647 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3648                           int atomic)
3649 {
3650         int ret;
3651         struct inode *btree_inode = buf->pages[0]->mapping->host;
3652
3653         ret = extent_buffer_uptodate(buf);
3654         if (!ret)
3655                 return ret;
3656
3657         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3658                                     parent_transid, atomic);
3659         if (ret == -EAGAIN)
3660                 return ret;
3661         return !ret;
3662 }
3663
3664 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3665 {
3666         return set_extent_buffer_uptodate(buf);
3667 }
3668
3669 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3670 {
3671         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3672         u64 transid = btrfs_header_generation(buf);
3673         int was_dirty;
3674
3675         btrfs_assert_tree_locked(buf);
3676         if (transid != root->fs_info->generation)
3677                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3678                        "found %llu running %llu\n",
3679                         buf->start, transid, root->fs_info->generation);
3680         was_dirty = set_extent_buffer_dirty(buf);
3681         if (!was_dirty)
3682                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3683                                      buf->len,
3684                                      root->fs_info->dirty_metadata_batch);
3685 }
3686
3687 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3688                                         int flush_delayed)
3689 {
3690         /*
3691          * looks as though older kernels can get into trouble with
3692          * this code, they end up stuck in balance_dirty_pages forever
3693          */
3694         int ret;
3695
3696         if (current->flags & PF_MEMALLOC)
3697                 return;
3698
3699         if (flush_delayed)
3700                 btrfs_balance_delayed_items(root);
3701
3702         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3703                                      BTRFS_DIRTY_METADATA_THRESH);
3704         if (ret > 0) {
3705                 balance_dirty_pages_ratelimited(
3706                                    root->fs_info->btree_inode->i_mapping);
3707         }
3708         return;
3709 }
3710
3711 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3712 {
3713         __btrfs_btree_balance_dirty(root, 1);
3714 }
3715
3716 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3717 {
3718         __btrfs_btree_balance_dirty(root, 0);
3719 }
3720
3721 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3722 {
3723         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3724         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3725 }
3726
3727 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3728                               int read_only)
3729 {
3730         /*
3731          * Placeholder for checks
3732          */
3733         return 0;
3734 }
3735
3736 static void btrfs_error_commit_super(struct btrfs_root *root)
3737 {
3738         mutex_lock(&root->fs_info->cleaner_mutex);
3739         btrfs_run_delayed_iputs(root);
3740         mutex_unlock(&root->fs_info->cleaner_mutex);
3741
3742         down_write(&root->fs_info->cleanup_work_sem);
3743         up_write(&root->fs_info->cleanup_work_sem);
3744
3745         /* cleanup FS via transaction */
3746         btrfs_cleanup_transaction(root);
3747 }
3748
3749 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3750                                              struct btrfs_root *root)
3751 {
3752         struct btrfs_inode *btrfs_inode;
3753         struct list_head splice;
3754
3755         INIT_LIST_HEAD(&splice);
3756
3757         mutex_lock(&root->fs_info->ordered_operations_mutex);
3758         spin_lock(&root->fs_info->ordered_root_lock);
3759
3760         list_splice_init(&t->ordered_operations, &splice);
3761         while (!list_empty(&splice)) {
3762                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3763                                          ordered_operations);
3764
3765                 list_del_init(&btrfs_inode->ordered_operations);
3766                 spin_unlock(&root->fs_info->ordered_root_lock);
3767
3768                 btrfs_invalidate_inodes(btrfs_inode->root);
3769
3770                 spin_lock(&root->fs_info->ordered_root_lock);
3771         }
3772
3773         spin_unlock(&root->fs_info->ordered_root_lock);
3774         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3775 }
3776
3777 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3778 {
3779         struct btrfs_ordered_extent *ordered;
3780
3781         spin_lock(&root->ordered_extent_lock);
3782         /*
3783          * This will just short circuit the ordered completion stuff which will
3784          * make sure the ordered extent gets properly cleaned up.
3785          */
3786         list_for_each_entry(ordered, &root->ordered_extents,
3787                             root_extent_list)
3788                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3789         spin_unlock(&root->ordered_extent_lock);
3790 }
3791
3792 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3793 {
3794         struct btrfs_root *root;
3795         struct list_head splice;
3796
3797         INIT_LIST_HEAD(&splice);
3798
3799         spin_lock(&fs_info->ordered_root_lock);
3800         list_splice_init(&fs_info->ordered_roots, &splice);
3801         while (!list_empty(&splice)) {
3802                 root = list_first_entry(&splice, struct btrfs_root,
3803                                         ordered_root);
3804                 list_del_init(&root->ordered_root);
3805
3806                 btrfs_destroy_ordered_extents(root);
3807
3808                 cond_resched_lock(&fs_info->ordered_root_lock);
3809         }
3810         spin_unlock(&fs_info->ordered_root_lock);
3811 }
3812
3813 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3814                                       struct btrfs_root *root)
3815 {
3816         struct rb_node *node;
3817         struct btrfs_delayed_ref_root *delayed_refs;
3818         struct btrfs_delayed_ref_node *ref;
3819         int ret = 0;
3820
3821         delayed_refs = &trans->delayed_refs;
3822
3823         spin_lock(&delayed_refs->lock);
3824         if (delayed_refs->num_entries == 0) {
3825                 spin_unlock(&delayed_refs->lock);
3826                 printk(KERN_INFO "delayed_refs has NO entry\n");
3827                 return ret;
3828         }
3829
3830         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3831                 struct btrfs_delayed_ref_head *head = NULL;
3832                 bool pin_bytes = false;
3833
3834                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3835                 atomic_set(&ref->refs, 1);
3836                 if (btrfs_delayed_ref_is_head(ref)) {
3837
3838                         head = btrfs_delayed_node_to_head(ref);
3839                         if (!mutex_trylock(&head->mutex)) {
3840                                 atomic_inc(&ref->refs);
3841                                 spin_unlock(&delayed_refs->lock);
3842
3843                                 /* Need to wait for the delayed ref to run */
3844                                 mutex_lock(&head->mutex);
3845                                 mutex_unlock(&head->mutex);
3846                                 btrfs_put_delayed_ref(ref);
3847
3848                                 spin_lock(&delayed_refs->lock);
3849                                 continue;
3850                         }
3851
3852                         if (head->must_insert_reserved)
3853                                 pin_bytes = true;
3854                         btrfs_free_delayed_extent_op(head->extent_op);
3855                         delayed_refs->num_heads--;
3856                         if (list_empty(&head->cluster))
3857                                 delayed_refs->num_heads_ready--;
3858                         list_del_init(&head->cluster);
3859                 }
3860
3861                 ref->in_tree = 0;
3862                 rb_erase(&ref->rb_node, &delayed_refs->root);
3863                 delayed_refs->num_entries--;
3864                 spin_unlock(&delayed_refs->lock);
3865                 if (head) {
3866                         if (pin_bytes)
3867                                 btrfs_pin_extent(root, ref->bytenr,
3868                                                  ref->num_bytes, 1);
3869                         mutex_unlock(&head->mutex);
3870                 }
3871                 btrfs_put_delayed_ref(ref);
3872
3873                 cond_resched();
3874                 spin_lock(&delayed_refs->lock);
3875         }
3876
3877         spin_unlock(&delayed_refs->lock);
3878
3879         return ret;
3880 }
3881
3882 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3883 {
3884         struct btrfs_pending_snapshot *snapshot;
3885         struct list_head splice;
3886
3887         INIT_LIST_HEAD(&splice);
3888
3889         list_splice_init(&t->pending_snapshots, &splice);
3890
3891         while (!list_empty(&splice)) {
3892                 snapshot = list_entry(splice.next,
3893                                       struct btrfs_pending_snapshot,
3894                                       list);
3895                 snapshot->error = -ECANCELED;
3896                 list_del_init(&snapshot->list);
3897         }
3898 }
3899
3900 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3901 {
3902         struct btrfs_inode *btrfs_inode;
3903         struct list_head splice;
3904
3905         INIT_LIST_HEAD(&splice);
3906
3907         spin_lock(&root->delalloc_lock);
3908         list_splice_init(&root->delalloc_inodes, &splice);
3909
3910         while (!list_empty(&splice)) {
3911                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3912                                                delalloc_inodes);
3913
3914                 list_del_init(&btrfs_inode->delalloc_inodes);
3915                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3916                           &btrfs_inode->runtime_flags);
3917                 spin_unlock(&root->delalloc_lock);
3918
3919                 btrfs_invalidate_inodes(btrfs_inode->root);
3920
3921                 spin_lock(&root->delalloc_lock);
3922         }
3923
3924         spin_unlock(&root->delalloc_lock);
3925 }
3926
3927 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3928 {
3929         struct btrfs_root *root;
3930         struct list_head splice;
3931
3932         INIT_LIST_HEAD(&splice);
3933
3934         spin_lock(&fs_info->delalloc_root_lock);
3935         list_splice_init(&fs_info->delalloc_roots, &splice);
3936         while (!list_empty(&splice)) {
3937                 root = list_first_entry(&splice, struct btrfs_root,
3938                                          delalloc_root);
3939                 list_del_init(&root->delalloc_root);
3940                 root = btrfs_grab_fs_root(root);
3941                 BUG_ON(!root);
3942                 spin_unlock(&fs_info->delalloc_root_lock);
3943
3944                 btrfs_destroy_delalloc_inodes(root);
3945                 btrfs_put_fs_root(root);
3946
3947                 spin_lock(&fs_info->delalloc_root_lock);
3948         }
3949         spin_unlock(&fs_info->delalloc_root_lock);
3950 }
3951
3952 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3953                                         struct extent_io_tree *dirty_pages,
3954                                         int mark)
3955 {
3956         int ret;
3957         struct extent_buffer *eb;
3958         u64 start = 0;
3959         u64 end;
3960
3961         while (1) {
3962                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3963                                             mark, NULL);
3964                 if (ret)
3965                         break;
3966
3967                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3968                 while (start <= end) {
3969                         eb = btrfs_find_tree_block(root, start,
3970                                                    root->leafsize);
3971                         start += root->leafsize;
3972                         if (!eb)
3973                                 continue;
3974                         wait_on_extent_buffer_writeback(eb);
3975
3976                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3977                                                &eb->bflags))
3978                                 clear_extent_buffer_dirty(eb);
3979                         free_extent_buffer_stale(eb);
3980                 }
3981         }
3982
3983         return ret;
3984 }
3985
3986 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3987                                        struct extent_io_tree *pinned_extents)
3988 {
3989         struct extent_io_tree *unpin;
3990         u64 start;
3991         u64 end;
3992         int ret;
3993         bool loop = true;
3994
3995         unpin = pinned_extents;
3996 again:
3997         while (1) {
3998                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3999                                             EXTENT_DIRTY, NULL);
4000                 if (ret)
4001                         break;
4002
4003                 /* opt_discard */
4004                 if (btrfs_test_opt(root, DISCARD))
4005                         ret = btrfs_error_discard_extent(root, start,
4006                                                          end + 1 - start,
4007                                                          NULL);
4008
4009                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4010                 btrfs_error_unpin_extent_range(root, start, end);
4011                 cond_resched();
4012         }
4013
4014         if (loop) {
4015                 if (unpin == &root->fs_info->freed_extents[0])
4016                         unpin = &root->fs_info->freed_extents[1];
4017                 else
4018                         unpin = &root->fs_info->freed_extents[0];
4019                 loop = false;
4020                 goto again;
4021         }
4022
4023         return 0;
4024 }
4025
4026 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4027                                    struct btrfs_root *root)
4028 {
4029         btrfs_destroy_delayed_refs(cur_trans, root);
4030         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
4031                                 cur_trans->dirty_pages.dirty_bytes);
4032
4033         cur_trans->state = TRANS_STATE_COMMIT_START;
4034         wake_up(&root->fs_info->transaction_blocked_wait);
4035
4036         btrfs_evict_pending_snapshots(cur_trans);
4037
4038         cur_trans->state = TRANS_STATE_UNBLOCKED;
4039         wake_up(&root->fs_info->transaction_wait);
4040
4041         btrfs_destroy_delayed_inodes(root);
4042         btrfs_assert_delayed_root_empty(root);
4043
4044         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4045                                      EXTENT_DIRTY);
4046         btrfs_destroy_pinned_extent(root,
4047                                     root->fs_info->pinned_extents);
4048
4049         cur_trans->state =TRANS_STATE_COMPLETED;
4050         wake_up(&cur_trans->commit_wait);
4051
4052         /*
4053         memset(cur_trans, 0, sizeof(*cur_trans));
4054         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4055         */
4056 }
4057
4058 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4059 {
4060         struct btrfs_transaction *t;
4061         LIST_HEAD(list);
4062
4063         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4064
4065         spin_lock(&root->fs_info->trans_lock);
4066         list_splice_init(&root->fs_info->trans_list, &list);
4067         root->fs_info->running_transaction = NULL;
4068         spin_unlock(&root->fs_info->trans_lock);
4069
4070         while (!list_empty(&list)) {
4071                 t = list_entry(list.next, struct btrfs_transaction, list);
4072
4073                 btrfs_destroy_ordered_operations(t, root);
4074
4075                 btrfs_destroy_all_ordered_extents(root->fs_info);
4076
4077                 btrfs_destroy_delayed_refs(t, root);
4078
4079                 /*
4080                  *  FIXME: cleanup wait for commit
4081                  *  We needn't acquire the lock here, because we are during
4082                  *  the umount, there is no other task which will change it.
4083                  */
4084                 t->state = TRANS_STATE_COMMIT_START;
4085                 smp_mb();
4086                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4087                         wake_up(&root->fs_info->transaction_blocked_wait);
4088
4089                 btrfs_evict_pending_snapshots(t);
4090
4091                 t->state = TRANS_STATE_UNBLOCKED;
4092                 smp_mb();
4093                 if (waitqueue_active(&root->fs_info->transaction_wait))
4094                         wake_up(&root->fs_info->transaction_wait);
4095
4096                 btrfs_destroy_delayed_inodes(root);
4097                 btrfs_assert_delayed_root_empty(root);
4098
4099                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4100
4101                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4102                                              EXTENT_DIRTY);
4103
4104                 btrfs_destroy_pinned_extent(root,
4105                                             root->fs_info->pinned_extents);
4106
4107                 t->state = TRANS_STATE_COMPLETED;
4108                 smp_mb();
4109                 if (waitqueue_active(&t->commit_wait))
4110                         wake_up(&t->commit_wait);
4111
4112                 atomic_set(&t->use_count, 0);
4113                 list_del_init(&t->list);
4114                 memset(t, 0, sizeof(*t));
4115                 kmem_cache_free(btrfs_transaction_cachep, t);
4116         }
4117
4118         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4119
4120         return 0;
4121 }
4122
4123 static struct extent_io_ops btree_extent_io_ops = {
4124         .readpage_end_io_hook = btree_readpage_end_io_hook,
4125         .readpage_io_failed_hook = btree_io_failed_hook,
4126         .submit_bio_hook = btree_submit_bio_hook,
4127         /* note we're sharing with inode.c for the merge bio hook */
4128         .merge_bio_hook = btrfs_merge_bio_hook,
4129 };