]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/btrfs/extent_io.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[karo-tx-linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        (unsigned long long)state->start,
65                        (unsigned long long)state->end,
66                        state->state, state->tree, atomic_read(&state->refs));
67                 list_del(&state->leak_list);
68                 kmem_cache_free(extent_state_cache, state);
69         }
70
71         while (!list_empty(&buffers)) {
72                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74                        "refs %d\n", (unsigned long long)eb->start,
75                        eb->len, atomic_read(&eb->refs));
76                 list_del(&eb->leak_list);
77                 kmem_cache_free(extent_buffer_cache, eb);
78         }
79 }
80 #else
81 #define btrfs_leak_debug_add(new, head) do {} while (0)
82 #define btrfs_leak_debug_del(entry)     do {} while (0)
83 #define btrfs_leak_debug_check()        do {} while (0)
84 #endif
85
86 #define BUFFER_LRU_MAX 64
87
88 struct tree_entry {
89         u64 start;
90         u64 end;
91         struct rb_node rb_node;
92 };
93
94 struct extent_page_data {
95         struct bio *bio;
96         struct extent_io_tree *tree;
97         get_extent_t *get_extent;
98         unsigned long bio_flags;
99
100         /* tells writepage not to lock the state bits for this range
101          * it still does the unlocking
102          */
103         unsigned int extent_locked:1;
104
105         /* tells the submit_bio code to use a WRITE_SYNC */
106         unsigned int sync_io:1;
107 };
108
109 static noinline void flush_write_bio(void *data);
110 static inline struct btrfs_fs_info *
111 tree_fs_info(struct extent_io_tree *tree)
112 {
113         return btrfs_sb(tree->mapping->host->i_sb);
114 }
115
116 int __init extent_io_init(void)
117 {
118         extent_state_cache = kmem_cache_create("btrfs_extent_state",
119                         sizeof(struct extent_state), 0,
120                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
121         if (!extent_state_cache)
122                 return -ENOMEM;
123
124         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
125                         sizeof(struct extent_buffer), 0,
126                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
127         if (!extent_buffer_cache)
128                 goto free_state_cache;
129
130         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
131                                      offsetof(struct btrfs_io_bio, bio));
132         if (!btrfs_bioset)
133                 goto free_buffer_cache;
134         return 0;
135
136 free_buffer_cache:
137         kmem_cache_destroy(extent_buffer_cache);
138         extent_buffer_cache = NULL;
139
140 free_state_cache:
141         kmem_cache_destroy(extent_state_cache);
142         extent_state_cache = NULL;
143         return -ENOMEM;
144 }
145
146 void extent_io_exit(void)
147 {
148         btrfs_leak_debug_check();
149
150         /*
151          * Make sure all delayed rcu free are flushed before we
152          * destroy caches.
153          */
154         rcu_barrier();
155         if (extent_state_cache)
156                 kmem_cache_destroy(extent_state_cache);
157         if (extent_buffer_cache)
158                 kmem_cache_destroy(extent_buffer_cache);
159         if (btrfs_bioset)
160                 bioset_free(btrfs_bioset);
161 }
162
163 void extent_io_tree_init(struct extent_io_tree *tree,
164                          struct address_space *mapping)
165 {
166         tree->state = RB_ROOT;
167         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
168         tree->ops = NULL;
169         tree->dirty_bytes = 0;
170         spin_lock_init(&tree->lock);
171         spin_lock_init(&tree->buffer_lock);
172         tree->mapping = mapping;
173 }
174
175 static struct extent_state *alloc_extent_state(gfp_t mask)
176 {
177         struct extent_state *state;
178
179         state = kmem_cache_alloc(extent_state_cache, mask);
180         if (!state)
181                 return state;
182         state->state = 0;
183         state->private = 0;
184         state->tree = NULL;
185         btrfs_leak_debug_add(&state->leak_list, &states);
186         atomic_set(&state->refs, 1);
187         init_waitqueue_head(&state->wq);
188         trace_alloc_extent_state(state, mask, _RET_IP_);
189         return state;
190 }
191
192 void free_extent_state(struct extent_state *state)
193 {
194         if (!state)
195                 return;
196         if (atomic_dec_and_test(&state->refs)) {
197                 WARN_ON(state->tree);
198                 btrfs_leak_debug_del(&state->leak_list);
199                 trace_free_extent_state(state, _RET_IP_);
200                 kmem_cache_free(extent_state_cache, state);
201         }
202 }
203
204 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
205                                    struct rb_node *node)
206 {
207         struct rb_node **p = &root->rb_node;
208         struct rb_node *parent = NULL;
209         struct tree_entry *entry;
210
211         while (*p) {
212                 parent = *p;
213                 entry = rb_entry(parent, struct tree_entry, rb_node);
214
215                 if (offset < entry->start)
216                         p = &(*p)->rb_left;
217                 else if (offset > entry->end)
218                         p = &(*p)->rb_right;
219                 else
220                         return parent;
221         }
222
223         rb_link_node(node, parent, p);
224         rb_insert_color(node, root);
225         return NULL;
226 }
227
228 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
229                                      struct rb_node **prev_ret,
230                                      struct rb_node **next_ret)
231 {
232         struct rb_root *root = &tree->state;
233         struct rb_node *n = root->rb_node;
234         struct rb_node *prev = NULL;
235         struct rb_node *orig_prev = NULL;
236         struct tree_entry *entry;
237         struct tree_entry *prev_entry = NULL;
238
239         while (n) {
240                 entry = rb_entry(n, struct tree_entry, rb_node);
241                 prev = n;
242                 prev_entry = entry;
243
244                 if (offset < entry->start)
245                         n = n->rb_left;
246                 else if (offset > entry->end)
247                         n = n->rb_right;
248                 else
249                         return n;
250         }
251
252         if (prev_ret) {
253                 orig_prev = prev;
254                 while (prev && offset > prev_entry->end) {
255                         prev = rb_next(prev);
256                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
257                 }
258                 *prev_ret = prev;
259                 prev = orig_prev;
260         }
261
262         if (next_ret) {
263                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
264                 while (prev && offset < prev_entry->start) {
265                         prev = rb_prev(prev);
266                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
267                 }
268                 *next_ret = prev;
269         }
270         return NULL;
271 }
272
273 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
274                                           u64 offset)
275 {
276         struct rb_node *prev = NULL;
277         struct rb_node *ret;
278
279         ret = __etree_search(tree, offset, &prev, NULL);
280         if (!ret)
281                 return prev;
282         return ret;
283 }
284
285 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
286                      struct extent_state *other)
287 {
288         if (tree->ops && tree->ops->merge_extent_hook)
289                 tree->ops->merge_extent_hook(tree->mapping->host, new,
290                                              other);
291 }
292
293 /*
294  * utility function to look for merge candidates inside a given range.
295  * Any extents with matching state are merged together into a single
296  * extent in the tree.  Extents with EXTENT_IO in their state field
297  * are not merged because the end_io handlers need to be able to do
298  * operations on them without sleeping (or doing allocations/splits).
299  *
300  * This should be called with the tree lock held.
301  */
302 static void merge_state(struct extent_io_tree *tree,
303                         struct extent_state *state)
304 {
305         struct extent_state *other;
306         struct rb_node *other_node;
307
308         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
309                 return;
310
311         other_node = rb_prev(&state->rb_node);
312         if (other_node) {
313                 other = rb_entry(other_node, struct extent_state, rb_node);
314                 if (other->end == state->start - 1 &&
315                     other->state == state->state) {
316                         merge_cb(tree, state, other);
317                         state->start = other->start;
318                         other->tree = NULL;
319                         rb_erase(&other->rb_node, &tree->state);
320                         free_extent_state(other);
321                 }
322         }
323         other_node = rb_next(&state->rb_node);
324         if (other_node) {
325                 other = rb_entry(other_node, struct extent_state, rb_node);
326                 if (other->start == state->end + 1 &&
327                     other->state == state->state) {
328                         merge_cb(tree, state, other);
329                         state->end = other->end;
330                         other->tree = NULL;
331                         rb_erase(&other->rb_node, &tree->state);
332                         free_extent_state(other);
333                 }
334         }
335 }
336
337 static void set_state_cb(struct extent_io_tree *tree,
338                          struct extent_state *state, unsigned long *bits)
339 {
340         if (tree->ops && tree->ops->set_bit_hook)
341                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
342 }
343
344 static void clear_state_cb(struct extent_io_tree *tree,
345                            struct extent_state *state, unsigned long *bits)
346 {
347         if (tree->ops && tree->ops->clear_bit_hook)
348                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
349 }
350
351 static void set_state_bits(struct extent_io_tree *tree,
352                            struct extent_state *state, unsigned long *bits);
353
354 /*
355  * insert an extent_state struct into the tree.  'bits' are set on the
356  * struct before it is inserted.
357  *
358  * This may return -EEXIST if the extent is already there, in which case the
359  * state struct is freed.
360  *
361  * The tree lock is not taken internally.  This is a utility function and
362  * probably isn't what you want to call (see set/clear_extent_bit).
363  */
364 static int insert_state(struct extent_io_tree *tree,
365                         struct extent_state *state, u64 start, u64 end,
366                         unsigned long *bits)
367 {
368         struct rb_node *node;
369
370         if (end < start)
371                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
372                        (unsigned long long)end,
373                        (unsigned long long)start);
374         state->start = start;
375         state->end = end;
376
377         set_state_bits(tree, state, bits);
378
379         node = tree_insert(&tree->state, end, &state->rb_node);
380         if (node) {
381                 struct extent_state *found;
382                 found = rb_entry(node, struct extent_state, rb_node);
383                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
384                        "%llu %llu\n", (unsigned long long)found->start,
385                        (unsigned long long)found->end,
386                        (unsigned long long)start, (unsigned long long)end);
387                 return -EEXIST;
388         }
389         state->tree = tree;
390         merge_state(tree, state);
391         return 0;
392 }
393
394 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
395                      u64 split)
396 {
397         if (tree->ops && tree->ops->split_extent_hook)
398                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
399 }
400
401 /*
402  * split a given extent state struct in two, inserting the preallocated
403  * struct 'prealloc' as the newly created second half.  'split' indicates an
404  * offset inside 'orig' where it should be split.
405  *
406  * Before calling,
407  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
408  * are two extent state structs in the tree:
409  * prealloc: [orig->start, split - 1]
410  * orig: [ split, orig->end ]
411  *
412  * The tree locks are not taken by this function. They need to be held
413  * by the caller.
414  */
415 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
416                        struct extent_state *prealloc, u64 split)
417 {
418         struct rb_node *node;
419
420         split_cb(tree, orig, split);
421
422         prealloc->start = orig->start;
423         prealloc->end = split - 1;
424         prealloc->state = orig->state;
425         orig->start = split;
426
427         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
428         if (node) {
429                 free_extent_state(prealloc);
430                 return -EEXIST;
431         }
432         prealloc->tree = tree;
433         return 0;
434 }
435
436 static struct extent_state *next_state(struct extent_state *state)
437 {
438         struct rb_node *next = rb_next(&state->rb_node);
439         if (next)
440                 return rb_entry(next, struct extent_state, rb_node);
441         else
442                 return NULL;
443 }
444
445 /*
446  * utility function to clear some bits in an extent state struct.
447  * it will optionally wake up any one waiting on this state (wake == 1).
448  *
449  * If no bits are set on the state struct after clearing things, the
450  * struct is freed and removed from the tree
451  */
452 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
453                                             struct extent_state *state,
454                                             unsigned long *bits, int wake)
455 {
456         struct extent_state *next;
457         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
458
459         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
460                 u64 range = state->end - state->start + 1;
461                 WARN_ON(range > tree->dirty_bytes);
462                 tree->dirty_bytes -= range;
463         }
464         clear_state_cb(tree, state, bits);
465         state->state &= ~bits_to_clear;
466         if (wake)
467                 wake_up(&state->wq);
468         if (state->state == 0) {
469                 next = next_state(state);
470                 if (state->tree) {
471                         rb_erase(&state->rb_node, &tree->state);
472                         state->tree = NULL;
473                         free_extent_state(state);
474                 } else {
475                         WARN_ON(1);
476                 }
477         } else {
478                 merge_state(tree, state);
479                 next = next_state(state);
480         }
481         return next;
482 }
483
484 static struct extent_state *
485 alloc_extent_state_atomic(struct extent_state *prealloc)
486 {
487         if (!prealloc)
488                 prealloc = alloc_extent_state(GFP_ATOMIC);
489
490         return prealloc;
491 }
492
493 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
494 {
495         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
496                     "Extent tree was modified by another "
497                     "thread while locked.");
498 }
499
500 /*
501  * clear some bits on a range in the tree.  This may require splitting
502  * or inserting elements in the tree, so the gfp mask is used to
503  * indicate which allocations or sleeping are allowed.
504  *
505  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
506  * the given range from the tree regardless of state (ie for truncate).
507  *
508  * the range [start, end] is inclusive.
509  *
510  * This takes the tree lock, and returns 0 on success and < 0 on error.
511  */
512 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
513                      unsigned long bits, int wake, int delete,
514                      struct extent_state **cached_state,
515                      gfp_t mask)
516 {
517         struct extent_state *state;
518         struct extent_state *cached;
519         struct extent_state *prealloc = NULL;
520         struct rb_node *node;
521         u64 last_end;
522         int err;
523         int clear = 0;
524
525         if (delete)
526                 bits |= ~EXTENT_CTLBITS;
527         bits |= EXTENT_FIRST_DELALLOC;
528
529         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
530                 clear = 1;
531 again:
532         if (!prealloc && (mask & __GFP_WAIT)) {
533                 prealloc = alloc_extent_state(mask);
534                 if (!prealloc)
535                         return -ENOMEM;
536         }
537
538         spin_lock(&tree->lock);
539         if (cached_state) {
540                 cached = *cached_state;
541
542                 if (clear) {
543                         *cached_state = NULL;
544                         cached_state = NULL;
545                 }
546
547                 if (cached && cached->tree && cached->start <= start &&
548                     cached->end > start) {
549                         if (clear)
550                                 atomic_dec(&cached->refs);
551                         state = cached;
552                         goto hit_next;
553                 }
554                 if (clear)
555                         free_extent_state(cached);
556         }
557         /*
558          * this search will find the extents that end after
559          * our range starts
560          */
561         node = tree_search(tree, start);
562         if (!node)
563                 goto out;
564         state = rb_entry(node, struct extent_state, rb_node);
565 hit_next:
566         if (state->start > end)
567                 goto out;
568         WARN_ON(state->end < start);
569         last_end = state->end;
570
571         /* the state doesn't have the wanted bits, go ahead */
572         if (!(state->state & bits)) {
573                 state = next_state(state);
574                 goto next;
575         }
576
577         /*
578          *     | ---- desired range ---- |
579          *  | state | or
580          *  | ------------- state -------------- |
581          *
582          * We need to split the extent we found, and may flip
583          * bits on second half.
584          *
585          * If the extent we found extends past our range, we
586          * just split and search again.  It'll get split again
587          * the next time though.
588          *
589          * If the extent we found is inside our range, we clear
590          * the desired bit on it.
591          */
592
593         if (state->start < start) {
594                 prealloc = alloc_extent_state_atomic(prealloc);
595                 BUG_ON(!prealloc);
596                 err = split_state(tree, state, prealloc, start);
597                 if (err)
598                         extent_io_tree_panic(tree, err);
599
600                 prealloc = NULL;
601                 if (err)
602                         goto out;
603                 if (state->end <= end) {
604                         state = clear_state_bit(tree, state, &bits, wake);
605                         goto next;
606                 }
607                 goto search_again;
608         }
609         /*
610          * | ---- desired range ---- |
611          *                        | state |
612          * We need to split the extent, and clear the bit
613          * on the first half
614          */
615         if (state->start <= end && state->end > end) {
616                 prealloc = alloc_extent_state_atomic(prealloc);
617                 BUG_ON(!prealloc);
618                 err = split_state(tree, state, prealloc, end + 1);
619                 if (err)
620                         extent_io_tree_panic(tree, err);
621
622                 if (wake)
623                         wake_up(&state->wq);
624
625                 clear_state_bit(tree, prealloc, &bits, wake);
626
627                 prealloc = NULL;
628                 goto out;
629         }
630
631         state = clear_state_bit(tree, state, &bits, wake);
632 next:
633         if (last_end == (u64)-1)
634                 goto out;
635         start = last_end + 1;
636         if (start <= end && state && !need_resched())
637                 goto hit_next;
638         goto search_again;
639
640 out:
641         spin_unlock(&tree->lock);
642         if (prealloc)
643                 free_extent_state(prealloc);
644
645         return 0;
646
647 search_again:
648         if (start > end)
649                 goto out;
650         spin_unlock(&tree->lock);
651         if (mask & __GFP_WAIT)
652                 cond_resched();
653         goto again;
654 }
655
656 static void wait_on_state(struct extent_io_tree *tree,
657                           struct extent_state *state)
658                 __releases(tree->lock)
659                 __acquires(tree->lock)
660 {
661         DEFINE_WAIT(wait);
662         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
663         spin_unlock(&tree->lock);
664         schedule();
665         spin_lock(&tree->lock);
666         finish_wait(&state->wq, &wait);
667 }
668
669 /*
670  * waits for one or more bits to clear on a range in the state tree.
671  * The range [start, end] is inclusive.
672  * The tree lock is taken by this function
673  */
674 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
675                             unsigned long bits)
676 {
677         struct extent_state *state;
678         struct rb_node *node;
679
680         spin_lock(&tree->lock);
681 again:
682         while (1) {
683                 /*
684                  * this search will find all the extents that end after
685                  * our range starts
686                  */
687                 node = tree_search(tree, start);
688                 if (!node)
689                         break;
690
691                 state = rb_entry(node, struct extent_state, rb_node);
692
693                 if (state->start > end)
694                         goto out;
695
696                 if (state->state & bits) {
697                         start = state->start;
698                         atomic_inc(&state->refs);
699                         wait_on_state(tree, state);
700                         free_extent_state(state);
701                         goto again;
702                 }
703                 start = state->end + 1;
704
705                 if (start > end)
706                         break;
707
708                 cond_resched_lock(&tree->lock);
709         }
710 out:
711         spin_unlock(&tree->lock);
712 }
713
714 static void set_state_bits(struct extent_io_tree *tree,
715                            struct extent_state *state,
716                            unsigned long *bits)
717 {
718         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
719
720         set_state_cb(tree, state, bits);
721         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
722                 u64 range = state->end - state->start + 1;
723                 tree->dirty_bytes += range;
724         }
725         state->state |= bits_to_set;
726 }
727
728 static void cache_state(struct extent_state *state,
729                         struct extent_state **cached_ptr)
730 {
731         if (cached_ptr && !(*cached_ptr)) {
732                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
733                         *cached_ptr = state;
734                         atomic_inc(&state->refs);
735                 }
736         }
737 }
738
739 static void uncache_state(struct extent_state **cached_ptr)
740 {
741         if (cached_ptr && (*cached_ptr)) {
742                 struct extent_state *state = *cached_ptr;
743                 *cached_ptr = NULL;
744                 free_extent_state(state);
745         }
746 }
747
748 /*
749  * set some bits on a range in the tree.  This may require allocations or
750  * sleeping, so the gfp mask is used to indicate what is allowed.
751  *
752  * If any of the exclusive bits are set, this will fail with -EEXIST if some
753  * part of the range already has the desired bits set.  The start of the
754  * existing range is returned in failed_start in this case.
755  *
756  * [start, end] is inclusive This takes the tree lock.
757  */
758
759 static int __must_check
760 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
761                  unsigned long bits, unsigned long exclusive_bits,
762                  u64 *failed_start, struct extent_state **cached_state,
763                  gfp_t mask)
764 {
765         struct extent_state *state;
766         struct extent_state *prealloc = NULL;
767         struct rb_node *node;
768         int err = 0;
769         u64 last_start;
770         u64 last_end;
771
772         bits |= EXTENT_FIRST_DELALLOC;
773 again:
774         if (!prealloc && (mask & __GFP_WAIT)) {
775                 prealloc = alloc_extent_state(mask);
776                 BUG_ON(!prealloc);
777         }
778
779         spin_lock(&tree->lock);
780         if (cached_state && *cached_state) {
781                 state = *cached_state;
782                 if (state->start <= start && state->end > start &&
783                     state->tree) {
784                         node = &state->rb_node;
785                         goto hit_next;
786                 }
787         }
788         /*
789          * this search will find all the extents that end after
790          * our range starts.
791          */
792         node = tree_search(tree, start);
793         if (!node) {
794                 prealloc = alloc_extent_state_atomic(prealloc);
795                 BUG_ON(!prealloc);
796                 err = insert_state(tree, prealloc, start, end, &bits);
797                 if (err)
798                         extent_io_tree_panic(tree, err);
799
800                 prealloc = NULL;
801                 goto out;
802         }
803         state = rb_entry(node, struct extent_state, rb_node);
804 hit_next:
805         last_start = state->start;
806         last_end = state->end;
807
808         /*
809          * | ---- desired range ---- |
810          * | state |
811          *
812          * Just lock what we found and keep going
813          */
814         if (state->start == start && state->end <= end) {
815                 if (state->state & exclusive_bits) {
816                         *failed_start = state->start;
817                         err = -EEXIST;
818                         goto out;
819                 }
820
821                 set_state_bits(tree, state, &bits);
822                 cache_state(state, cached_state);
823                 merge_state(tree, state);
824                 if (last_end == (u64)-1)
825                         goto out;
826                 start = last_end + 1;
827                 state = next_state(state);
828                 if (start < end && state && state->start == start &&
829                     !need_resched())
830                         goto hit_next;
831                 goto search_again;
832         }
833
834         /*
835          *     | ---- desired range ---- |
836          * | state |
837          *   or
838          * | ------------- state -------------- |
839          *
840          * We need to split the extent we found, and may flip bits on
841          * second half.
842          *
843          * If the extent we found extends past our
844          * range, we just split and search again.  It'll get split
845          * again the next time though.
846          *
847          * If the extent we found is inside our range, we set the
848          * desired bit on it.
849          */
850         if (state->start < start) {
851                 if (state->state & exclusive_bits) {
852                         *failed_start = start;
853                         err = -EEXIST;
854                         goto out;
855                 }
856
857                 prealloc = alloc_extent_state_atomic(prealloc);
858                 BUG_ON(!prealloc);
859                 err = split_state(tree, state, prealloc, start);
860                 if (err)
861                         extent_io_tree_panic(tree, err);
862
863                 prealloc = NULL;
864                 if (err)
865                         goto out;
866                 if (state->end <= end) {
867                         set_state_bits(tree, state, &bits);
868                         cache_state(state, cached_state);
869                         merge_state(tree, state);
870                         if (last_end == (u64)-1)
871                                 goto out;
872                         start = last_end + 1;
873                         state = next_state(state);
874                         if (start < end && state && state->start == start &&
875                             !need_resched())
876                                 goto hit_next;
877                 }
878                 goto search_again;
879         }
880         /*
881          * | ---- desired range ---- |
882          *     | state | or               | state |
883          *
884          * There's a hole, we need to insert something in it and
885          * ignore the extent we found.
886          */
887         if (state->start > start) {
888                 u64 this_end;
889                 if (end < last_start)
890                         this_end = end;
891                 else
892                         this_end = last_start - 1;
893
894                 prealloc = alloc_extent_state_atomic(prealloc);
895                 BUG_ON(!prealloc);
896
897                 /*
898                  * Avoid to free 'prealloc' if it can be merged with
899                  * the later extent.
900                  */
901                 err = insert_state(tree, prealloc, start, this_end,
902                                    &bits);
903                 if (err)
904                         extent_io_tree_panic(tree, err);
905
906                 cache_state(prealloc, cached_state);
907                 prealloc = NULL;
908                 start = this_end + 1;
909                 goto search_again;
910         }
911         /*
912          * | ---- desired range ---- |
913          *                        | state |
914          * We need to split the extent, and set the bit
915          * on the first half
916          */
917         if (state->start <= end && state->end > end) {
918                 if (state->state & exclusive_bits) {
919                         *failed_start = start;
920                         err = -EEXIST;
921                         goto out;
922                 }
923
924                 prealloc = alloc_extent_state_atomic(prealloc);
925                 BUG_ON(!prealloc);
926                 err = split_state(tree, state, prealloc, end + 1);
927                 if (err)
928                         extent_io_tree_panic(tree, err);
929
930                 set_state_bits(tree, prealloc, &bits);
931                 cache_state(prealloc, cached_state);
932                 merge_state(tree, prealloc);
933                 prealloc = NULL;
934                 goto out;
935         }
936
937         goto search_again;
938
939 out:
940         spin_unlock(&tree->lock);
941         if (prealloc)
942                 free_extent_state(prealloc);
943
944         return err;
945
946 search_again:
947         if (start > end)
948                 goto out;
949         spin_unlock(&tree->lock);
950         if (mask & __GFP_WAIT)
951                 cond_resched();
952         goto again;
953 }
954
955 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
956                    unsigned long bits, u64 * failed_start,
957                    struct extent_state **cached_state, gfp_t mask)
958 {
959         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
960                                 cached_state, mask);
961 }
962
963
964 /**
965  * convert_extent_bit - convert all bits in a given range from one bit to
966  *                      another
967  * @tree:       the io tree to search
968  * @start:      the start offset in bytes
969  * @end:        the end offset in bytes (inclusive)
970  * @bits:       the bits to set in this range
971  * @clear_bits: the bits to clear in this range
972  * @cached_state:       state that we're going to cache
973  * @mask:       the allocation mask
974  *
975  * This will go through and set bits for the given range.  If any states exist
976  * already in this range they are set with the given bit and cleared of the
977  * clear_bits.  This is only meant to be used by things that are mergeable, ie
978  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
979  * boundary bits like LOCK.
980  */
981 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
982                        unsigned long bits, unsigned long clear_bits,
983                        struct extent_state **cached_state, gfp_t mask)
984 {
985         struct extent_state *state;
986         struct extent_state *prealloc = NULL;
987         struct rb_node *node;
988         int err = 0;
989         u64 last_start;
990         u64 last_end;
991
992 again:
993         if (!prealloc && (mask & __GFP_WAIT)) {
994                 prealloc = alloc_extent_state(mask);
995                 if (!prealloc)
996                         return -ENOMEM;
997         }
998
999         spin_lock(&tree->lock);
1000         if (cached_state && *cached_state) {
1001                 state = *cached_state;
1002                 if (state->start <= start && state->end > start &&
1003                     state->tree) {
1004                         node = &state->rb_node;
1005                         goto hit_next;
1006                 }
1007         }
1008
1009         /*
1010          * this search will find all the extents that end after
1011          * our range starts.
1012          */
1013         node = tree_search(tree, start);
1014         if (!node) {
1015                 prealloc = alloc_extent_state_atomic(prealloc);
1016                 if (!prealloc) {
1017                         err = -ENOMEM;
1018                         goto out;
1019                 }
1020                 err = insert_state(tree, prealloc, start, end, &bits);
1021                 prealloc = NULL;
1022                 if (err)
1023                         extent_io_tree_panic(tree, err);
1024                 goto out;
1025         }
1026         state = rb_entry(node, struct extent_state, rb_node);
1027 hit_next:
1028         last_start = state->start;
1029         last_end = state->end;
1030
1031         /*
1032          * | ---- desired range ---- |
1033          * | state |
1034          *
1035          * Just lock what we found and keep going
1036          */
1037         if (state->start == start && state->end <= end) {
1038                 set_state_bits(tree, state, &bits);
1039                 cache_state(state, cached_state);
1040                 state = clear_state_bit(tree, state, &clear_bits, 0);
1041                 if (last_end == (u64)-1)
1042                         goto out;
1043                 start = last_end + 1;
1044                 if (start < end && state && state->start == start &&
1045                     !need_resched())
1046                         goto hit_next;
1047                 goto search_again;
1048         }
1049
1050         /*
1051          *     | ---- desired range ---- |
1052          * | state |
1053          *   or
1054          * | ------------- state -------------- |
1055          *
1056          * We need to split the extent we found, and may flip bits on
1057          * second half.
1058          *
1059          * If the extent we found extends past our
1060          * range, we just split and search again.  It'll get split
1061          * again the next time though.
1062          *
1063          * If the extent we found is inside our range, we set the
1064          * desired bit on it.
1065          */
1066         if (state->start < start) {
1067                 prealloc = alloc_extent_state_atomic(prealloc);
1068                 if (!prealloc) {
1069                         err = -ENOMEM;
1070                         goto out;
1071                 }
1072                 err = split_state(tree, state, prealloc, start);
1073                 if (err)
1074                         extent_io_tree_panic(tree, err);
1075                 prealloc = NULL;
1076                 if (err)
1077                         goto out;
1078                 if (state->end <= end) {
1079                         set_state_bits(tree, state, &bits);
1080                         cache_state(state, cached_state);
1081                         state = clear_state_bit(tree, state, &clear_bits, 0);
1082                         if (last_end == (u64)-1)
1083                                 goto out;
1084                         start = last_end + 1;
1085                         if (start < end && state && state->start == start &&
1086                             !need_resched())
1087                                 goto hit_next;
1088                 }
1089                 goto search_again;
1090         }
1091         /*
1092          * | ---- desired range ---- |
1093          *     | state | or               | state |
1094          *
1095          * There's a hole, we need to insert something in it and
1096          * ignore the extent we found.
1097          */
1098         if (state->start > start) {
1099                 u64 this_end;
1100                 if (end < last_start)
1101                         this_end = end;
1102                 else
1103                         this_end = last_start - 1;
1104
1105                 prealloc = alloc_extent_state_atomic(prealloc);
1106                 if (!prealloc) {
1107                         err = -ENOMEM;
1108                         goto out;
1109                 }
1110
1111                 /*
1112                  * Avoid to free 'prealloc' if it can be merged with
1113                  * the later extent.
1114                  */
1115                 err = insert_state(tree, prealloc, start, this_end,
1116                                    &bits);
1117                 if (err)
1118                         extent_io_tree_panic(tree, err);
1119                 cache_state(prealloc, cached_state);
1120                 prealloc = NULL;
1121                 start = this_end + 1;
1122                 goto search_again;
1123         }
1124         /*
1125          * | ---- desired range ---- |
1126          *                        | state |
1127          * We need to split the extent, and set the bit
1128          * on the first half
1129          */
1130         if (state->start <= end && state->end > end) {
1131                 prealloc = alloc_extent_state_atomic(prealloc);
1132                 if (!prealloc) {
1133                         err = -ENOMEM;
1134                         goto out;
1135                 }
1136
1137                 err = split_state(tree, state, prealloc, end + 1);
1138                 if (err)
1139                         extent_io_tree_panic(tree, err);
1140
1141                 set_state_bits(tree, prealloc, &bits);
1142                 cache_state(prealloc, cached_state);
1143                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1144                 prealloc = NULL;
1145                 goto out;
1146         }
1147
1148         goto search_again;
1149
1150 out:
1151         spin_unlock(&tree->lock);
1152         if (prealloc)
1153                 free_extent_state(prealloc);
1154
1155         return err;
1156
1157 search_again:
1158         if (start > end)
1159                 goto out;
1160         spin_unlock(&tree->lock);
1161         if (mask & __GFP_WAIT)
1162                 cond_resched();
1163         goto again;
1164 }
1165
1166 /* wrappers around set/clear extent bit */
1167 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1168                      gfp_t mask)
1169 {
1170         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1171                               NULL, mask);
1172 }
1173
1174 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1175                     unsigned long bits, gfp_t mask)
1176 {
1177         return set_extent_bit(tree, start, end, bits, NULL,
1178                               NULL, mask);
1179 }
1180
1181 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1182                       unsigned long bits, gfp_t mask)
1183 {
1184         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1185 }
1186
1187 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1188                         struct extent_state **cached_state, gfp_t mask)
1189 {
1190         return set_extent_bit(tree, start, end,
1191                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1192                               NULL, cached_state, mask);
1193 }
1194
1195 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1196                       struct extent_state **cached_state, gfp_t mask)
1197 {
1198         return set_extent_bit(tree, start, end,
1199                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1200                               NULL, cached_state, mask);
1201 }
1202
1203 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1204                        gfp_t mask)
1205 {
1206         return clear_extent_bit(tree, start, end,
1207                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1208                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1209 }
1210
1211 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1212                      gfp_t mask)
1213 {
1214         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1215                               NULL, mask);
1216 }
1217
1218 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1219                         struct extent_state **cached_state, gfp_t mask)
1220 {
1221         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1222                               cached_state, mask);
1223 }
1224
1225 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1226                           struct extent_state **cached_state, gfp_t mask)
1227 {
1228         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1229                                 cached_state, mask);
1230 }
1231
1232 /*
1233  * either insert or lock state struct between start and end use mask to tell
1234  * us if waiting is desired.
1235  */
1236 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1237                      unsigned long bits, struct extent_state **cached_state)
1238 {
1239         int err;
1240         u64 failed_start;
1241         while (1) {
1242                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1243                                        EXTENT_LOCKED, &failed_start,
1244                                        cached_state, GFP_NOFS);
1245                 if (err == -EEXIST) {
1246                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1247                         start = failed_start;
1248                 } else
1249                         break;
1250                 WARN_ON(start > end);
1251         }
1252         return err;
1253 }
1254
1255 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256 {
1257         return lock_extent_bits(tree, start, end, 0, NULL);
1258 }
1259
1260 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1261 {
1262         int err;
1263         u64 failed_start;
1264
1265         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1266                                &failed_start, NULL, GFP_NOFS);
1267         if (err == -EEXIST) {
1268                 if (failed_start > start)
1269                         clear_extent_bit(tree, start, failed_start - 1,
1270                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1271                 return 0;
1272         }
1273         return 1;
1274 }
1275
1276 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1277                          struct extent_state **cached, gfp_t mask)
1278 {
1279         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1280                                 mask);
1281 }
1282
1283 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1284 {
1285         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1286                                 GFP_NOFS);
1287 }
1288
1289 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1290 {
1291         unsigned long index = start >> PAGE_CACHE_SHIFT;
1292         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1293         struct page *page;
1294
1295         while (index <= end_index) {
1296                 page = find_get_page(inode->i_mapping, index);
1297                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1298                 clear_page_dirty_for_io(page);
1299                 page_cache_release(page);
1300                 index++;
1301         }
1302         return 0;
1303 }
1304
1305 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1306 {
1307         unsigned long index = start >> PAGE_CACHE_SHIFT;
1308         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1309         struct page *page;
1310
1311         while (index <= end_index) {
1312                 page = find_get_page(inode->i_mapping, index);
1313                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1314                 account_page_redirty(page);
1315                 __set_page_dirty_nobuffers(page);
1316                 page_cache_release(page);
1317                 index++;
1318         }
1319         return 0;
1320 }
1321
1322 /*
1323  * helper function to set both pages and extents in the tree writeback
1324  */
1325 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1326 {
1327         unsigned long index = start >> PAGE_CACHE_SHIFT;
1328         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1329         struct page *page;
1330
1331         while (index <= end_index) {
1332                 page = find_get_page(tree->mapping, index);
1333                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1334                 set_page_writeback(page);
1335                 page_cache_release(page);
1336                 index++;
1337         }
1338         return 0;
1339 }
1340
1341 /* find the first state struct with 'bits' set after 'start', and
1342  * return it.  tree->lock must be held.  NULL will returned if
1343  * nothing was found after 'start'
1344  */
1345 static struct extent_state *
1346 find_first_extent_bit_state(struct extent_io_tree *tree,
1347                             u64 start, unsigned long bits)
1348 {
1349         struct rb_node *node;
1350         struct extent_state *state;
1351
1352         /*
1353          * this search will find all the extents that end after
1354          * our range starts.
1355          */
1356         node = tree_search(tree, start);
1357         if (!node)
1358                 goto out;
1359
1360         while (1) {
1361                 state = rb_entry(node, struct extent_state, rb_node);
1362                 if (state->end >= start && (state->state & bits))
1363                         return state;
1364
1365                 node = rb_next(node);
1366                 if (!node)
1367                         break;
1368         }
1369 out:
1370         return NULL;
1371 }
1372
1373 /*
1374  * find the first offset in the io tree with 'bits' set. zero is
1375  * returned if we find something, and *start_ret and *end_ret are
1376  * set to reflect the state struct that was found.
1377  *
1378  * If nothing was found, 1 is returned. If found something, return 0.
1379  */
1380 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1381                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1382                           struct extent_state **cached_state)
1383 {
1384         struct extent_state *state;
1385         struct rb_node *n;
1386         int ret = 1;
1387
1388         spin_lock(&tree->lock);
1389         if (cached_state && *cached_state) {
1390                 state = *cached_state;
1391                 if (state->end == start - 1 && state->tree) {
1392                         n = rb_next(&state->rb_node);
1393                         while (n) {
1394                                 state = rb_entry(n, struct extent_state,
1395                                                  rb_node);
1396                                 if (state->state & bits)
1397                                         goto got_it;
1398                                 n = rb_next(n);
1399                         }
1400                         free_extent_state(*cached_state);
1401                         *cached_state = NULL;
1402                         goto out;
1403                 }
1404                 free_extent_state(*cached_state);
1405                 *cached_state = NULL;
1406         }
1407
1408         state = find_first_extent_bit_state(tree, start, bits);
1409 got_it:
1410         if (state) {
1411                 cache_state(state, cached_state);
1412                 *start_ret = state->start;
1413                 *end_ret = state->end;
1414                 ret = 0;
1415         }
1416 out:
1417         spin_unlock(&tree->lock);
1418         return ret;
1419 }
1420
1421 /*
1422  * find a contiguous range of bytes in the file marked as delalloc, not
1423  * more than 'max_bytes'.  start and end are used to return the range,
1424  *
1425  * 1 is returned if we find something, 0 if nothing was in the tree
1426  */
1427 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1428                                         u64 *start, u64 *end, u64 max_bytes,
1429                                         struct extent_state **cached_state)
1430 {
1431         struct rb_node *node;
1432         struct extent_state *state;
1433         u64 cur_start = *start;
1434         u64 found = 0;
1435         u64 total_bytes = 0;
1436
1437         spin_lock(&tree->lock);
1438
1439         /*
1440          * this search will find all the extents that end after
1441          * our range starts.
1442          */
1443         node = tree_search(tree, cur_start);
1444         if (!node) {
1445                 if (!found)
1446                         *end = (u64)-1;
1447                 goto out;
1448         }
1449
1450         while (1) {
1451                 state = rb_entry(node, struct extent_state, rb_node);
1452                 if (found && (state->start != cur_start ||
1453                               (state->state & EXTENT_BOUNDARY))) {
1454                         goto out;
1455                 }
1456                 if (!(state->state & EXTENT_DELALLOC)) {
1457                         if (!found)
1458                                 *end = state->end;
1459                         goto out;
1460                 }
1461                 if (!found) {
1462                         *start = state->start;
1463                         *cached_state = state;
1464                         atomic_inc(&state->refs);
1465                 }
1466                 found++;
1467                 *end = state->end;
1468                 cur_start = state->end + 1;
1469                 node = rb_next(node);
1470                 if (!node)
1471                         break;
1472                 total_bytes += state->end - state->start + 1;
1473                 if (total_bytes >= max_bytes)
1474                         break;
1475         }
1476 out:
1477         spin_unlock(&tree->lock);
1478         return found;
1479 }
1480
1481 static noinline void __unlock_for_delalloc(struct inode *inode,
1482                                            struct page *locked_page,
1483                                            u64 start, u64 end)
1484 {
1485         int ret;
1486         struct page *pages[16];
1487         unsigned long index = start >> PAGE_CACHE_SHIFT;
1488         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1489         unsigned long nr_pages = end_index - index + 1;
1490         int i;
1491
1492         if (index == locked_page->index && end_index == index)
1493                 return;
1494
1495         while (nr_pages > 0) {
1496                 ret = find_get_pages_contig(inode->i_mapping, index,
1497                                      min_t(unsigned long, nr_pages,
1498                                      ARRAY_SIZE(pages)), pages);
1499                 for (i = 0; i < ret; i++) {
1500                         if (pages[i] != locked_page)
1501                                 unlock_page(pages[i]);
1502                         page_cache_release(pages[i]);
1503                 }
1504                 nr_pages -= ret;
1505                 index += ret;
1506                 cond_resched();
1507         }
1508 }
1509
1510 static noinline int lock_delalloc_pages(struct inode *inode,
1511                                         struct page *locked_page,
1512                                         u64 delalloc_start,
1513                                         u64 delalloc_end)
1514 {
1515         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1516         unsigned long start_index = index;
1517         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1518         unsigned long pages_locked = 0;
1519         struct page *pages[16];
1520         unsigned long nrpages;
1521         int ret;
1522         int i;
1523
1524         /* the caller is responsible for locking the start index */
1525         if (index == locked_page->index && index == end_index)
1526                 return 0;
1527
1528         /* skip the page at the start index */
1529         nrpages = end_index - index + 1;
1530         while (nrpages > 0) {
1531                 ret = find_get_pages_contig(inode->i_mapping, index,
1532                                      min_t(unsigned long,
1533                                      nrpages, ARRAY_SIZE(pages)), pages);
1534                 if (ret == 0) {
1535                         ret = -EAGAIN;
1536                         goto done;
1537                 }
1538                 /* now we have an array of pages, lock them all */
1539                 for (i = 0; i < ret; i++) {
1540                         /*
1541                          * the caller is taking responsibility for
1542                          * locked_page
1543                          */
1544                         if (pages[i] != locked_page) {
1545                                 lock_page(pages[i]);
1546                                 if (!PageDirty(pages[i]) ||
1547                                     pages[i]->mapping != inode->i_mapping) {
1548                                         ret = -EAGAIN;
1549                                         unlock_page(pages[i]);
1550                                         page_cache_release(pages[i]);
1551                                         goto done;
1552                                 }
1553                         }
1554                         page_cache_release(pages[i]);
1555                         pages_locked++;
1556                 }
1557                 nrpages -= ret;
1558                 index += ret;
1559                 cond_resched();
1560         }
1561         ret = 0;
1562 done:
1563         if (ret && pages_locked) {
1564                 __unlock_for_delalloc(inode, locked_page,
1565                               delalloc_start,
1566                               ((u64)(start_index + pages_locked - 1)) <<
1567                               PAGE_CACHE_SHIFT);
1568         }
1569         return ret;
1570 }
1571
1572 /*
1573  * find a contiguous range of bytes in the file marked as delalloc, not
1574  * more than 'max_bytes'.  start and end are used to return the range,
1575  *
1576  * 1 is returned if we find something, 0 if nothing was in the tree
1577  */
1578 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1579                                              struct extent_io_tree *tree,
1580                                              struct page *locked_page,
1581                                              u64 *start, u64 *end,
1582                                              u64 max_bytes)
1583 {
1584         u64 delalloc_start;
1585         u64 delalloc_end;
1586         u64 found;
1587         struct extent_state *cached_state = NULL;
1588         int ret;
1589         int loops = 0;
1590
1591 again:
1592         /* step one, find a bunch of delalloc bytes starting at start */
1593         delalloc_start = *start;
1594         delalloc_end = 0;
1595         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1596                                     max_bytes, &cached_state);
1597         if (!found || delalloc_end <= *start) {
1598                 *start = delalloc_start;
1599                 *end = delalloc_end;
1600                 free_extent_state(cached_state);
1601                 return found;
1602         }
1603
1604         /*
1605          * start comes from the offset of locked_page.  We have to lock
1606          * pages in order, so we can't process delalloc bytes before
1607          * locked_page
1608          */
1609         if (delalloc_start < *start)
1610                 delalloc_start = *start;
1611
1612         /*
1613          * make sure to limit the number of pages we try to lock down
1614          * if we're looping.
1615          */
1616         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1617                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1618
1619         /* step two, lock all the pages after the page that has start */
1620         ret = lock_delalloc_pages(inode, locked_page,
1621                                   delalloc_start, delalloc_end);
1622         if (ret == -EAGAIN) {
1623                 /* some of the pages are gone, lets avoid looping by
1624                  * shortening the size of the delalloc range we're searching
1625                  */
1626                 free_extent_state(cached_state);
1627                 if (!loops) {
1628                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1629                         max_bytes = PAGE_CACHE_SIZE - offset;
1630                         loops = 1;
1631                         goto again;
1632                 } else {
1633                         found = 0;
1634                         goto out_failed;
1635                 }
1636         }
1637         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1638
1639         /* step three, lock the state bits for the whole range */
1640         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1641
1642         /* then test to make sure it is all still delalloc */
1643         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1644                              EXTENT_DELALLOC, 1, cached_state);
1645         if (!ret) {
1646                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1647                                      &cached_state, GFP_NOFS);
1648                 __unlock_for_delalloc(inode, locked_page,
1649                               delalloc_start, delalloc_end);
1650                 cond_resched();
1651                 goto again;
1652         }
1653         free_extent_state(cached_state);
1654         *start = delalloc_start;
1655         *end = delalloc_end;
1656 out_failed:
1657         return found;
1658 }
1659
1660 int extent_clear_unlock_delalloc(struct inode *inode,
1661                                 struct extent_io_tree *tree,
1662                                 u64 start, u64 end, struct page *locked_page,
1663                                 unsigned long op)
1664 {
1665         int ret;
1666         struct page *pages[16];
1667         unsigned long index = start >> PAGE_CACHE_SHIFT;
1668         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1669         unsigned long nr_pages = end_index - index + 1;
1670         int i;
1671         unsigned long clear_bits = 0;
1672
1673         if (op & EXTENT_CLEAR_UNLOCK)
1674                 clear_bits |= EXTENT_LOCKED;
1675         if (op & EXTENT_CLEAR_DIRTY)
1676                 clear_bits |= EXTENT_DIRTY;
1677
1678         if (op & EXTENT_CLEAR_DELALLOC)
1679                 clear_bits |= EXTENT_DELALLOC;
1680
1681         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1682         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1683                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1684                     EXTENT_SET_PRIVATE2)))
1685                 return 0;
1686
1687         while (nr_pages > 0) {
1688                 ret = find_get_pages_contig(inode->i_mapping, index,
1689                                      min_t(unsigned long,
1690                                      nr_pages, ARRAY_SIZE(pages)), pages);
1691                 for (i = 0; i < ret; i++) {
1692
1693                         if (op & EXTENT_SET_PRIVATE2)
1694                                 SetPagePrivate2(pages[i]);
1695
1696                         if (pages[i] == locked_page) {
1697                                 page_cache_release(pages[i]);
1698                                 continue;
1699                         }
1700                         if (op & EXTENT_CLEAR_DIRTY)
1701                                 clear_page_dirty_for_io(pages[i]);
1702                         if (op & EXTENT_SET_WRITEBACK)
1703                                 set_page_writeback(pages[i]);
1704                         if (op & EXTENT_END_WRITEBACK)
1705                                 end_page_writeback(pages[i]);
1706                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1707                                 unlock_page(pages[i]);
1708                         page_cache_release(pages[i]);
1709                 }
1710                 nr_pages -= ret;
1711                 index += ret;
1712                 cond_resched();
1713         }
1714         return 0;
1715 }
1716
1717 /*
1718  * count the number of bytes in the tree that have a given bit(s)
1719  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1720  * cached.  The total number found is returned.
1721  */
1722 u64 count_range_bits(struct extent_io_tree *tree,
1723                      u64 *start, u64 search_end, u64 max_bytes,
1724                      unsigned long bits, int contig)
1725 {
1726         struct rb_node *node;
1727         struct extent_state *state;
1728         u64 cur_start = *start;
1729         u64 total_bytes = 0;
1730         u64 last = 0;
1731         int found = 0;
1732
1733         if (search_end <= cur_start) {
1734                 WARN_ON(1);
1735                 return 0;
1736         }
1737
1738         spin_lock(&tree->lock);
1739         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1740                 total_bytes = tree->dirty_bytes;
1741                 goto out;
1742         }
1743         /*
1744          * this search will find all the extents that end after
1745          * our range starts.
1746          */
1747         node = tree_search(tree, cur_start);
1748         if (!node)
1749                 goto out;
1750
1751         while (1) {
1752                 state = rb_entry(node, struct extent_state, rb_node);
1753                 if (state->start > search_end)
1754                         break;
1755                 if (contig && found && state->start > last + 1)
1756                         break;
1757                 if (state->end >= cur_start && (state->state & bits) == bits) {
1758                         total_bytes += min(search_end, state->end) + 1 -
1759                                        max(cur_start, state->start);
1760                         if (total_bytes >= max_bytes)
1761                                 break;
1762                         if (!found) {
1763                                 *start = max(cur_start, state->start);
1764                                 found = 1;
1765                         }
1766                         last = state->end;
1767                 } else if (contig && found) {
1768                         break;
1769                 }
1770                 node = rb_next(node);
1771                 if (!node)
1772                         break;
1773         }
1774 out:
1775         spin_unlock(&tree->lock);
1776         return total_bytes;
1777 }
1778
1779 /*
1780  * set the private field for a given byte offset in the tree.  If there isn't
1781  * an extent_state there already, this does nothing.
1782  */
1783 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1784 {
1785         struct rb_node *node;
1786         struct extent_state *state;
1787         int ret = 0;
1788
1789         spin_lock(&tree->lock);
1790         /*
1791          * this search will find all the extents that end after
1792          * our range starts.
1793          */
1794         node = tree_search(tree, start);
1795         if (!node) {
1796                 ret = -ENOENT;
1797                 goto out;
1798         }
1799         state = rb_entry(node, struct extent_state, rb_node);
1800         if (state->start != start) {
1801                 ret = -ENOENT;
1802                 goto out;
1803         }
1804         state->private = private;
1805 out:
1806         spin_unlock(&tree->lock);
1807         return ret;
1808 }
1809
1810 void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1811                             int count)
1812 {
1813         struct rb_node *node;
1814         struct extent_state *state;
1815
1816         spin_lock(&tree->lock);
1817         /*
1818          * this search will find all the extents that end after
1819          * our range starts.
1820          */
1821         node = tree_search(tree, start);
1822         BUG_ON(!node);
1823
1824         state = rb_entry(node, struct extent_state, rb_node);
1825         BUG_ON(state->start != start);
1826
1827         while (count) {
1828                 state->private = *csums++;
1829                 count--;
1830                 state = next_state(state);
1831         }
1832         spin_unlock(&tree->lock);
1833 }
1834
1835 static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1836 {
1837         struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1838
1839         return page_offset(bvec->bv_page) + bvec->bv_offset;
1840 }
1841
1842 void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1843                         u32 csums[], int count)
1844 {
1845         struct rb_node *node;
1846         struct extent_state *state = NULL;
1847         u64 start;
1848
1849         spin_lock(&tree->lock);
1850         do {
1851                 start = __btrfs_get_bio_offset(bio, bio_index);
1852                 if (state == NULL || state->start != start) {
1853                         node = tree_search(tree, start);
1854                         BUG_ON(!node);
1855
1856                         state = rb_entry(node, struct extent_state, rb_node);
1857                         BUG_ON(state->start != start);
1858                 }
1859                 state->private = *csums++;
1860                 count--;
1861                 bio_index++;
1862
1863                 state = next_state(state);
1864         } while (count);
1865         spin_unlock(&tree->lock);
1866 }
1867
1868 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1869 {
1870         struct rb_node *node;
1871         struct extent_state *state;
1872         int ret = 0;
1873
1874         spin_lock(&tree->lock);
1875         /*
1876          * this search will find all the extents that end after
1877          * our range starts.
1878          */
1879         node = tree_search(tree, start);
1880         if (!node) {
1881                 ret = -ENOENT;
1882                 goto out;
1883         }
1884         state = rb_entry(node, struct extent_state, rb_node);
1885         if (state->start != start) {
1886                 ret = -ENOENT;
1887                 goto out;
1888         }
1889         *private = state->private;
1890 out:
1891         spin_unlock(&tree->lock);
1892         return ret;
1893 }
1894
1895 /*
1896  * searches a range in the state tree for a given mask.
1897  * If 'filled' == 1, this returns 1 only if every extent in the tree
1898  * has the bits set.  Otherwise, 1 is returned if any bit in the
1899  * range is found set.
1900  */
1901 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902                    unsigned long bits, int filled, struct extent_state *cached)
1903 {
1904         struct extent_state *state = NULL;
1905         struct rb_node *node;
1906         int bitset = 0;
1907
1908         spin_lock(&tree->lock);
1909         if (cached && cached->tree && cached->start <= start &&
1910             cached->end > start)
1911                 node = &cached->rb_node;
1912         else
1913                 node = tree_search(tree, start);
1914         while (node && start <= end) {
1915                 state = rb_entry(node, struct extent_state, rb_node);
1916
1917                 if (filled && state->start > start) {
1918                         bitset = 0;
1919                         break;
1920                 }
1921
1922                 if (state->start > end)
1923                         break;
1924
1925                 if (state->state & bits) {
1926                         bitset = 1;
1927                         if (!filled)
1928                                 break;
1929                 } else if (filled) {
1930                         bitset = 0;
1931                         break;
1932                 }
1933
1934                 if (state->end == (u64)-1)
1935                         break;
1936
1937                 start = state->end + 1;
1938                 if (start > end)
1939                         break;
1940                 node = rb_next(node);
1941                 if (!node) {
1942                         if (filled)
1943                                 bitset = 0;
1944                         break;
1945                 }
1946         }
1947         spin_unlock(&tree->lock);
1948         return bitset;
1949 }
1950
1951 /*
1952  * helper function to set a given page up to date if all the
1953  * extents in the tree for that page are up to date
1954  */
1955 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956 {
1957         u64 start = page_offset(page);
1958         u64 end = start + PAGE_CACHE_SIZE - 1;
1959         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960                 SetPageUptodate(page);
1961 }
1962
1963 /*
1964  * When IO fails, either with EIO or csum verification fails, we
1965  * try other mirrors that might have a good copy of the data.  This
1966  * io_failure_record is used to record state as we go through all the
1967  * mirrors.  If another mirror has good data, the page is set up to date
1968  * and things continue.  If a good mirror can't be found, the original
1969  * bio end_io callback is called to indicate things have failed.
1970  */
1971 struct io_failure_record {
1972         struct page *page;
1973         u64 start;
1974         u64 len;
1975         u64 logical;
1976         unsigned long bio_flags;
1977         int this_mirror;
1978         int failed_mirror;
1979         int in_validation;
1980 };
1981
1982 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1983                                 int did_repair)
1984 {
1985         int ret;
1986         int err = 0;
1987         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1988
1989         set_state_private(failure_tree, rec->start, 0);
1990         ret = clear_extent_bits(failure_tree, rec->start,
1991                                 rec->start + rec->len - 1,
1992                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1993         if (ret)
1994                 err = ret;
1995
1996         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1997                                 rec->start + rec->len - 1,
1998                                 EXTENT_DAMAGED, GFP_NOFS);
1999         if (ret && !err)
2000                 err = ret;
2001
2002         kfree(rec);
2003         return err;
2004 }
2005
2006 static void repair_io_failure_callback(struct bio *bio, int err)
2007 {
2008         complete(bio->bi_private);
2009 }
2010
2011 /*
2012  * this bypasses the standard btrfs submit functions deliberately, as
2013  * the standard behavior is to write all copies in a raid setup. here we only
2014  * want to write the one bad copy. so we do the mapping for ourselves and issue
2015  * submit_bio directly.
2016  * to avoid any synchronization issues, wait for the data after writing, which
2017  * actually prevents the read that triggered the error from finishing.
2018  * currently, there can be no more than two copies of every data bit. thus,
2019  * exactly one rewrite is required.
2020  */
2021 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2022                         u64 length, u64 logical, struct page *page,
2023                         int mirror_num)
2024 {
2025         struct bio *bio;
2026         struct btrfs_device *dev;
2027         DECLARE_COMPLETION_ONSTACK(compl);
2028         u64 map_length = 0;
2029         u64 sector;
2030         struct btrfs_bio *bbio = NULL;
2031         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2032         int ret;
2033
2034         BUG_ON(!mirror_num);
2035
2036         /* we can't repair anything in raid56 yet */
2037         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2038                 return 0;
2039
2040         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2041         if (!bio)
2042                 return -EIO;
2043         bio->bi_private = &compl;
2044         bio->bi_end_io = repair_io_failure_callback;
2045         bio->bi_size = 0;
2046         map_length = length;
2047
2048         ret = btrfs_map_block(fs_info, WRITE, logical,
2049                               &map_length, &bbio, mirror_num);
2050         if (ret) {
2051                 bio_put(bio);
2052                 return -EIO;
2053         }
2054         BUG_ON(mirror_num != bbio->mirror_num);
2055         sector = bbio->stripes[mirror_num-1].physical >> 9;
2056         bio->bi_sector = sector;
2057         dev = bbio->stripes[mirror_num-1].dev;
2058         kfree(bbio);
2059         if (!dev || !dev->bdev || !dev->writeable) {
2060                 bio_put(bio);
2061                 return -EIO;
2062         }
2063         bio->bi_bdev = dev->bdev;
2064         bio_add_page(bio, page, length, start - page_offset(page));
2065         btrfsic_submit_bio(WRITE_SYNC, bio);
2066         wait_for_completion(&compl);
2067
2068         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2069                 /* try to remap that extent elsewhere? */
2070                 bio_put(bio);
2071                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2072                 return -EIO;
2073         }
2074
2075         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2076                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2077                       start, rcu_str_deref(dev->name), sector);
2078
2079         bio_put(bio);
2080         return 0;
2081 }
2082
2083 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084                          int mirror_num)
2085 {
2086         u64 start = eb->start;
2087         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2088         int ret = 0;
2089
2090         for (i = 0; i < num_pages; i++) {
2091                 struct page *p = extent_buffer_page(eb, i);
2092                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2093                                         start, p, mirror_num);
2094                 if (ret)
2095                         break;
2096                 start += PAGE_CACHE_SIZE;
2097         }
2098
2099         return ret;
2100 }
2101
2102 /*
2103  * each time an IO finishes, we do a fast check in the IO failure tree
2104  * to see if we need to process or clean up an io_failure_record
2105  */
2106 static int clean_io_failure(u64 start, struct page *page)
2107 {
2108         u64 private;
2109         u64 private_failure;
2110         struct io_failure_record *failrec;
2111         struct btrfs_fs_info *fs_info;
2112         struct extent_state *state;
2113         int num_copies;
2114         int did_repair = 0;
2115         int ret;
2116         struct inode *inode = page->mapping->host;
2117
2118         private = 0;
2119         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2120                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2121         if (!ret)
2122                 return 0;
2123
2124         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2125                                 &private_failure);
2126         if (ret)
2127                 return 0;
2128
2129         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2130         BUG_ON(!failrec->this_mirror);
2131
2132         if (failrec->in_validation) {
2133                 /* there was no real error, just free the record */
2134                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2135                          failrec->start);
2136                 did_repair = 1;
2137                 goto out;
2138         }
2139
2140         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2141         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2142                                             failrec->start,
2143                                             EXTENT_LOCKED);
2144         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2145
2146         if (state && state->start == failrec->start) {
2147                 fs_info = BTRFS_I(inode)->root->fs_info;
2148                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2149                                               failrec->len);
2150                 if (num_copies > 1)  {
2151                         ret = repair_io_failure(fs_info, start, failrec->len,
2152                                                 failrec->logical, page,
2153                                                 failrec->failed_mirror);
2154                         did_repair = !ret;
2155                 }
2156                 ret = 0;
2157         }
2158
2159 out:
2160         if (!ret)
2161                 ret = free_io_failure(inode, failrec, did_repair);
2162
2163         return ret;
2164 }
2165
2166 /*
2167  * this is a generic handler for readpage errors (default
2168  * readpage_io_failed_hook). if other copies exist, read those and write back
2169  * good data to the failed position. does not investigate in remapping the
2170  * failed extent elsewhere, hoping the device will be smart enough to do this as
2171  * needed
2172  */
2173
2174 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2175                                 u64 start, u64 end, int failed_mirror,
2176                                 struct extent_state *state)
2177 {
2178         struct io_failure_record *failrec = NULL;
2179         u64 private;
2180         struct extent_map *em;
2181         struct inode *inode = page->mapping->host;
2182         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185         struct bio *bio;
2186         int num_copies;
2187         int ret;
2188         int read_mode;
2189         u64 logical;
2190
2191         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2192
2193         ret = get_state_private(failure_tree, start, &private);
2194         if (ret) {
2195                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196                 if (!failrec)
2197                         return -ENOMEM;
2198                 failrec->start = start;
2199                 failrec->len = end - start + 1;
2200                 failrec->this_mirror = 0;
2201                 failrec->bio_flags = 0;
2202                 failrec->in_validation = 0;
2203
2204                 read_lock(&em_tree->lock);
2205                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2206                 if (!em) {
2207                         read_unlock(&em_tree->lock);
2208                         kfree(failrec);
2209                         return -EIO;
2210                 }
2211
2212                 if (em->start > start || em->start + em->len < start) {
2213                         free_extent_map(em);
2214                         em = NULL;
2215                 }
2216                 read_unlock(&em_tree->lock);
2217
2218                 if (!em) {
2219                         kfree(failrec);
2220                         return -EIO;
2221                 }
2222                 logical = start - em->start;
2223                 logical = em->block_start + logical;
2224                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2225                         logical = em->block_start;
2226                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2227                         extent_set_compress_type(&failrec->bio_flags,
2228                                                  em->compress_type);
2229                 }
2230                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2231                          "len=%llu\n", logical, start, failrec->len);
2232                 failrec->logical = logical;
2233                 free_extent_map(em);
2234
2235                 /* set the bits in the private failure tree */
2236                 ret = set_extent_bits(failure_tree, start, end,
2237                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2238                 if (ret >= 0)
2239                         ret = set_state_private(failure_tree, start,
2240                                                 (u64)(unsigned long)failrec);
2241                 /* set the bits in the inode's tree */
2242                 if (ret >= 0)
2243                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2244                                                 GFP_NOFS);
2245                 if (ret < 0) {
2246                         kfree(failrec);
2247                         return ret;
2248                 }
2249         } else {
2250                 failrec = (struct io_failure_record *)(unsigned long)private;
2251                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2252                          "start=%llu, len=%llu, validation=%d\n",
2253                          failrec->logical, failrec->start, failrec->len,
2254                          failrec->in_validation);
2255                 /*
2256                  * when data can be on disk more than twice, add to failrec here
2257                  * (e.g. with a list for failed_mirror) to make
2258                  * clean_io_failure() clean all those errors at once.
2259                  */
2260         }
2261         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2262                                       failrec->logical, failrec->len);
2263         if (num_copies == 1) {
2264                 /*
2265                  * we only have a single copy of the data, so don't bother with
2266                  * all the retry and error correction code that follows. no
2267                  * matter what the error is, it is very likely to persist.
2268                  */
2269                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2270                          "state=%p, num_copies=%d, next_mirror %d, "
2271                          "failed_mirror %d\n", state, num_copies,
2272                          failrec->this_mirror, failed_mirror);
2273                 free_io_failure(inode, failrec, 0);
2274                 return -EIO;
2275         }
2276
2277         if (!state) {
2278                 spin_lock(&tree->lock);
2279                 state = find_first_extent_bit_state(tree, failrec->start,
2280                                                     EXTENT_LOCKED);
2281                 if (state && state->start != failrec->start)
2282                         state = NULL;
2283                 spin_unlock(&tree->lock);
2284         }
2285
2286         /*
2287          * there are two premises:
2288          *      a) deliver good data to the caller
2289          *      b) correct the bad sectors on disk
2290          */
2291         if (failed_bio->bi_vcnt > 1) {
2292                 /*
2293                  * to fulfill b), we need to know the exact failing sectors, as
2294                  * we don't want to rewrite any more than the failed ones. thus,
2295                  * we need separate read requests for the failed bio
2296                  *
2297                  * if the following BUG_ON triggers, our validation request got
2298                  * merged. we need separate requests for our algorithm to work.
2299                  */
2300                 BUG_ON(failrec->in_validation);
2301                 failrec->in_validation = 1;
2302                 failrec->this_mirror = failed_mirror;
2303                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2304         } else {
2305                 /*
2306                  * we're ready to fulfill a) and b) alongside. get a good copy
2307                  * of the failed sector and if we succeed, we have setup
2308                  * everything for repair_io_failure to do the rest for us.
2309                  */
2310                 if (failrec->in_validation) {
2311                         BUG_ON(failrec->this_mirror != failed_mirror);
2312                         failrec->in_validation = 0;
2313                         failrec->this_mirror = 0;
2314                 }
2315                 failrec->failed_mirror = failed_mirror;
2316                 failrec->this_mirror++;
2317                 if (failrec->this_mirror == failed_mirror)
2318                         failrec->this_mirror++;
2319                 read_mode = READ_SYNC;
2320         }
2321
2322         if (!state || failrec->this_mirror > num_copies) {
2323                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2324                          "next_mirror %d, failed_mirror %d\n", state,
2325                          num_copies, failrec->this_mirror, failed_mirror);
2326                 free_io_failure(inode, failrec, 0);
2327                 return -EIO;
2328         }
2329
2330         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2331         if (!bio) {
2332                 free_io_failure(inode, failrec, 0);
2333                 return -EIO;
2334         }
2335         bio->bi_private = state;
2336         bio->bi_end_io = failed_bio->bi_end_io;
2337         bio->bi_sector = failrec->logical >> 9;
2338         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2339         bio->bi_size = 0;
2340
2341         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2342
2343         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2344                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2345                  failrec->this_mirror, num_copies, failrec->in_validation);
2346
2347         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2348                                          failrec->this_mirror,
2349                                          failrec->bio_flags, 0);
2350         return ret;
2351 }
2352
2353 /* lots and lots of room for performance fixes in the end_bio funcs */
2354
2355 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2356 {
2357         int uptodate = (err == 0);
2358         struct extent_io_tree *tree;
2359         int ret;
2360
2361         tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
2363         if (tree->ops && tree->ops->writepage_end_io_hook) {
2364                 ret = tree->ops->writepage_end_io_hook(page, start,
2365                                                end, NULL, uptodate);
2366                 if (ret)
2367                         uptodate = 0;
2368         }
2369
2370         if (!uptodate) {
2371                 ClearPageUptodate(page);
2372                 SetPageError(page);
2373         }
2374         return 0;
2375 }
2376
2377 /*
2378  * after a writepage IO is done, we need to:
2379  * clear the uptodate bits on error
2380  * clear the writeback bits in the extent tree for this IO
2381  * end_page_writeback if the page has no more pending IO
2382  *
2383  * Scheduling is not allowed, so the extent state tree is expected
2384  * to have one and only one object corresponding to this IO.
2385  */
2386 static void end_bio_extent_writepage(struct bio *bio, int err)
2387 {
2388         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2389         struct extent_io_tree *tree;
2390         u64 start;
2391         u64 end;
2392
2393         do {
2394                 struct page *page = bvec->bv_page;
2395                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2396
2397                 /* We always issue full-page reads, but if some block
2398                  * in a page fails to read, blk_update_request() will
2399                  * advance bv_offset and adjust bv_len to compensate.
2400                  * Print a warning for nonzero offsets, and an error
2401                  * if they don't add up to a full page.  */
2402                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2403                         printk("%s page write in btrfs with offset %u and length %u\n",
2404                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2405                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2406                                bvec->bv_offset, bvec->bv_len);
2407
2408                 start = page_offset(page);
2409                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2410
2411                 if (--bvec >= bio->bi_io_vec)
2412                         prefetchw(&bvec->bv_page->flags);
2413
2414                 if (end_extent_writepage(page, err, start, end))
2415                         continue;
2416
2417                 end_page_writeback(page);
2418         } while (bvec >= bio->bi_io_vec);
2419
2420         bio_put(bio);
2421 }
2422
2423 /*
2424  * after a readpage IO is done, we need to:
2425  * clear the uptodate bits on error
2426  * set the uptodate bits if things worked
2427  * set the page up to date if all extents in the tree are uptodate
2428  * clear the lock bit in the extent tree
2429  * unlock the page if there are no other extents locked for it
2430  *
2431  * Scheduling is not allowed, so the extent state tree is expected
2432  * to have one and only one object corresponding to this IO.
2433  */
2434 static void end_bio_extent_readpage(struct bio *bio, int err)
2435 {
2436         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2437         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2438         struct bio_vec *bvec = bio->bi_io_vec;
2439         struct extent_io_tree *tree;
2440         u64 start;
2441         u64 end;
2442         int mirror;
2443         int ret;
2444
2445         if (err)
2446                 uptodate = 0;
2447
2448         do {
2449                 struct page *page = bvec->bv_page;
2450                 struct extent_state *cached = NULL;
2451                 struct extent_state *state;
2452                 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453
2454                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2455                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2456                          io_bio->mirror_num);
2457                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
2459                 /* We always issue full-page reads, but if some block
2460                  * in a page fails to read, blk_update_request() will
2461                  * advance bv_offset and adjust bv_len to compensate.
2462                  * Print a warning for nonzero offsets, and an error
2463                  * if they don't add up to a full page.  */
2464                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2465                         printk("%s page read in btrfs with offset %u and length %u\n",
2466                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2467                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2468                                bvec->bv_offset, bvec->bv_len);
2469
2470                 start = page_offset(page);
2471                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2472
2473                 if (++bvec <= bvec_end)
2474                         prefetchw(&bvec->bv_page->flags);
2475
2476                 spin_lock(&tree->lock);
2477                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2478                 if (state && state->start == start) {
2479                         /*
2480                          * take a reference on the state, unlock will drop
2481                          * the ref
2482                          */
2483                         cache_state(state, &cached);
2484                 }
2485                 spin_unlock(&tree->lock);
2486
2487                 mirror = io_bio->mirror_num;
2488                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2489                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2490                                                               state, mirror);
2491                         if (ret)
2492                                 uptodate = 0;
2493                         else
2494                                 clean_io_failure(start, page);
2495                 }
2496
2497                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2498                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2499                         if (!ret && !err &&
2500                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2501                                 uptodate = 1;
2502                 } else if (!uptodate) {
2503                         /*
2504                          * The generic bio_readpage_error handles errors the
2505                          * following way: If possible, new read requests are
2506                          * created and submitted and will end up in
2507                          * end_bio_extent_readpage as well (if we're lucky, not
2508                          * in the !uptodate case). In that case it returns 0 and
2509                          * we just go on with the next page in our bio. If it
2510                          * can't handle the error it will return -EIO and we
2511                          * remain responsible for that page.
2512                          */
2513                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2514                         if (ret == 0) {
2515                                 uptodate =
2516                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2517                                 if (err)
2518                                         uptodate = 0;
2519                                 uncache_state(&cached);
2520                                 continue;
2521                         }
2522                 }
2523
2524                 if (uptodate && tree->track_uptodate) {
2525                         set_extent_uptodate(tree, start, end, &cached,
2526                                             GFP_ATOMIC);
2527                 }
2528                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2529
2530                 if (uptodate) {
2531                         SetPageUptodate(page);
2532                 } else {
2533                         ClearPageUptodate(page);
2534                         SetPageError(page);
2535                 }
2536                 unlock_page(page);
2537         } while (bvec <= bvec_end);
2538
2539         bio_put(bio);
2540 }
2541
2542 /*
2543  * this allocates from the btrfs_bioset.  We're returning a bio right now
2544  * but you can call btrfs_io_bio for the appropriate container_of magic
2545  */
2546 struct bio *
2547 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2548                 gfp_t gfp_flags)
2549 {
2550         struct bio *bio;
2551
2552         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2553
2554         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2555                 while (!bio && (nr_vecs /= 2)) {
2556                         bio = bio_alloc_bioset(gfp_flags,
2557                                                nr_vecs, btrfs_bioset);
2558                 }
2559         }
2560
2561         if (bio) {
2562                 bio->bi_size = 0;
2563                 bio->bi_bdev = bdev;
2564                 bio->bi_sector = first_sector;
2565         }
2566         return bio;
2567 }
2568
2569 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570 {
2571         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572 }
2573
2574
2575 /* this also allocates from the btrfs_bioset */
2576 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577 {
2578         return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2579 }
2580
2581
2582 static int __must_check submit_one_bio(int rw, struct bio *bio,
2583                                        int mirror_num, unsigned long bio_flags)
2584 {
2585         int ret = 0;
2586         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2587         struct page *page = bvec->bv_page;
2588         struct extent_io_tree *tree = bio->bi_private;
2589         u64 start;
2590
2591         start = page_offset(page) + bvec->bv_offset;
2592
2593         bio->bi_private = NULL;
2594
2595         bio_get(bio);
2596
2597         if (tree->ops && tree->ops->submit_bio_hook)
2598                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2599                                            mirror_num, bio_flags, start);
2600         else
2601                 btrfsic_submit_bio(rw, bio);
2602
2603         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2604                 ret = -EOPNOTSUPP;
2605         bio_put(bio);
2606         return ret;
2607 }
2608
2609 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2610                      unsigned long offset, size_t size, struct bio *bio,
2611                      unsigned long bio_flags)
2612 {
2613         int ret = 0;
2614         if (tree->ops && tree->ops->merge_bio_hook)
2615                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2616                                                 bio_flags);
2617         BUG_ON(ret < 0);
2618         return ret;
2619
2620 }
2621
2622 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2623                               struct page *page, sector_t sector,
2624                               size_t size, unsigned long offset,
2625                               struct block_device *bdev,
2626                               struct bio **bio_ret,
2627                               unsigned long max_pages,
2628                               bio_end_io_t end_io_func,
2629                               int mirror_num,
2630                               unsigned long prev_bio_flags,
2631                               unsigned long bio_flags)
2632 {
2633         int ret = 0;
2634         struct bio *bio;
2635         int nr;
2636         int contig = 0;
2637         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2638         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2639         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2640
2641         if (bio_ret && *bio_ret) {
2642                 bio = *bio_ret;
2643                 if (old_compressed)
2644                         contig = bio->bi_sector == sector;
2645                 else
2646                         contig = bio_end_sector(bio) == sector;
2647
2648                 if (prev_bio_flags != bio_flags || !contig ||
2649                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2650                     bio_add_page(bio, page, page_size, offset) < page_size) {
2651                         ret = submit_one_bio(rw, bio, mirror_num,
2652                                              prev_bio_flags);
2653                         if (ret < 0)
2654                                 return ret;
2655                         bio = NULL;
2656                 } else {
2657                         return 0;
2658                 }
2659         }
2660         if (this_compressed)
2661                 nr = BIO_MAX_PAGES;
2662         else
2663                 nr = bio_get_nr_vecs(bdev);
2664
2665         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2666         if (!bio)
2667                 return -ENOMEM;
2668
2669         bio_add_page(bio, page, page_size, offset);
2670         bio->bi_end_io = end_io_func;
2671         bio->bi_private = tree;
2672
2673         if (bio_ret)
2674                 *bio_ret = bio;
2675         else
2676                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2677
2678         return ret;
2679 }
2680
2681 static void attach_extent_buffer_page(struct extent_buffer *eb,
2682                                       struct page *page)
2683 {
2684         if (!PagePrivate(page)) {
2685                 SetPagePrivate(page);
2686                 page_cache_get(page);
2687                 set_page_private(page, (unsigned long)eb);
2688         } else {
2689                 WARN_ON(page->private != (unsigned long)eb);
2690         }
2691 }
2692
2693 void set_page_extent_mapped(struct page *page)
2694 {
2695         if (!PagePrivate(page)) {
2696                 SetPagePrivate(page);
2697                 page_cache_get(page);
2698                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2699         }
2700 }
2701
2702 /*
2703  * basic readpage implementation.  Locked extent state structs are inserted
2704  * into the tree that are removed when the IO is done (by the end_io
2705  * handlers)
2706  * XXX JDM: This needs looking at to ensure proper page locking
2707  */
2708 static int __extent_read_full_page(struct extent_io_tree *tree,
2709                                    struct page *page,
2710                                    get_extent_t *get_extent,
2711                                    struct bio **bio, int mirror_num,
2712                                    unsigned long *bio_flags, int rw)
2713 {
2714         struct inode *inode = page->mapping->host;
2715         u64 start = page_offset(page);
2716         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2717         u64 end;
2718         u64 cur = start;
2719         u64 extent_offset;
2720         u64 last_byte = i_size_read(inode);
2721         u64 block_start;
2722         u64 cur_end;
2723         sector_t sector;
2724         struct extent_map *em;
2725         struct block_device *bdev;
2726         struct btrfs_ordered_extent *ordered;
2727         int ret;
2728         int nr = 0;
2729         size_t pg_offset = 0;
2730         size_t iosize;
2731         size_t disk_io_size;
2732         size_t blocksize = inode->i_sb->s_blocksize;
2733         unsigned long this_bio_flag = 0;
2734
2735         set_page_extent_mapped(page);
2736
2737         if (!PageUptodate(page)) {
2738                 if (cleancache_get_page(page) == 0) {
2739                         BUG_ON(blocksize != PAGE_SIZE);
2740                         goto out;
2741                 }
2742         }
2743
2744         end = page_end;
2745         while (1) {
2746                 lock_extent(tree, start, end);
2747                 ordered = btrfs_lookup_ordered_extent(inode, start);
2748                 if (!ordered)
2749                         break;
2750                 unlock_extent(tree, start, end);
2751                 btrfs_start_ordered_extent(inode, ordered, 1);
2752                 btrfs_put_ordered_extent(ordered);
2753         }
2754
2755         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2756                 char *userpage;
2757                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2758
2759                 if (zero_offset) {
2760                         iosize = PAGE_CACHE_SIZE - zero_offset;
2761                         userpage = kmap_atomic(page);
2762                         memset(userpage + zero_offset, 0, iosize);
2763                         flush_dcache_page(page);
2764                         kunmap_atomic(userpage);
2765                 }
2766         }
2767         while (cur <= end) {
2768                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2769
2770                 if (cur >= last_byte) {
2771                         char *userpage;
2772                         struct extent_state *cached = NULL;
2773
2774                         iosize = PAGE_CACHE_SIZE - pg_offset;
2775                         userpage = kmap_atomic(page);
2776                         memset(userpage + pg_offset, 0, iosize);
2777                         flush_dcache_page(page);
2778                         kunmap_atomic(userpage);
2779                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2780                                             &cached, GFP_NOFS);
2781                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2782                                              &cached, GFP_NOFS);
2783                         break;
2784                 }
2785                 em = get_extent(inode, page, pg_offset, cur,
2786                                 end - cur + 1, 0);
2787                 if (IS_ERR_OR_NULL(em)) {
2788                         SetPageError(page);
2789                         unlock_extent(tree, cur, end);
2790                         break;
2791                 }
2792                 extent_offset = cur - em->start;
2793                 BUG_ON(extent_map_end(em) <= cur);
2794                 BUG_ON(end < cur);
2795
2796                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2797                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2798                         extent_set_compress_type(&this_bio_flag,
2799                                                  em->compress_type);
2800                 }
2801
2802                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2803                 cur_end = min(extent_map_end(em) - 1, end);
2804                 iosize = ALIGN(iosize, blocksize);
2805                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2806                         disk_io_size = em->block_len;
2807                         sector = em->block_start >> 9;
2808                 } else {
2809                         sector = (em->block_start + extent_offset) >> 9;
2810                         disk_io_size = iosize;
2811                 }
2812                 bdev = em->bdev;
2813                 block_start = em->block_start;
2814                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2815                         block_start = EXTENT_MAP_HOLE;
2816                 free_extent_map(em);
2817                 em = NULL;
2818
2819                 /* we've found a hole, just zero and go on */
2820                 if (block_start == EXTENT_MAP_HOLE) {
2821                         char *userpage;
2822                         struct extent_state *cached = NULL;
2823
2824                         userpage = kmap_atomic(page);
2825                         memset(userpage + pg_offset, 0, iosize);
2826                         flush_dcache_page(page);
2827                         kunmap_atomic(userpage);
2828
2829                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2830                                             &cached, GFP_NOFS);
2831                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2832                                              &cached, GFP_NOFS);
2833                         cur = cur + iosize;
2834                         pg_offset += iosize;
2835                         continue;
2836                 }
2837                 /* the get_extent function already copied into the page */
2838                 if (test_range_bit(tree, cur, cur_end,
2839                                    EXTENT_UPTODATE, 1, NULL)) {
2840                         check_page_uptodate(tree, page);
2841                         unlock_extent(tree, cur, cur + iosize - 1);
2842                         cur = cur + iosize;
2843                         pg_offset += iosize;
2844                         continue;
2845                 }
2846                 /* we have an inline extent but it didn't get marked up
2847                  * to date.  Error out
2848                  */
2849                 if (block_start == EXTENT_MAP_INLINE) {
2850                         SetPageError(page);
2851                         unlock_extent(tree, cur, cur + iosize - 1);
2852                         cur = cur + iosize;
2853                         pg_offset += iosize;
2854                         continue;
2855                 }
2856
2857                 pnr -= page->index;
2858                 ret = submit_extent_page(rw, tree, page,
2859                                          sector, disk_io_size, pg_offset,
2860                                          bdev, bio, pnr,
2861                                          end_bio_extent_readpage, mirror_num,
2862                                          *bio_flags,
2863                                          this_bio_flag);
2864                 if (!ret) {
2865                         nr++;
2866                         *bio_flags = this_bio_flag;
2867                 } else {
2868                         SetPageError(page);
2869                         unlock_extent(tree, cur, cur + iosize - 1);
2870                 }
2871                 cur = cur + iosize;
2872                 pg_offset += iosize;
2873         }
2874 out:
2875         if (!nr) {
2876                 if (!PageError(page))
2877                         SetPageUptodate(page);
2878                 unlock_page(page);
2879         }
2880         return 0;
2881 }
2882
2883 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2884                             get_extent_t *get_extent, int mirror_num)
2885 {
2886         struct bio *bio = NULL;
2887         unsigned long bio_flags = 0;
2888         int ret;
2889
2890         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2891                                       &bio_flags, READ);
2892         if (bio)
2893                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2894         return ret;
2895 }
2896
2897 static noinline void update_nr_written(struct page *page,
2898                                       struct writeback_control *wbc,
2899                                       unsigned long nr_written)
2900 {
2901         wbc->nr_to_write -= nr_written;
2902         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2903             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2904                 page->mapping->writeback_index = page->index + nr_written;
2905 }
2906
2907 /*
2908  * the writepage semantics are similar to regular writepage.  extent
2909  * records are inserted to lock ranges in the tree, and as dirty areas
2910  * are found, they are marked writeback.  Then the lock bits are removed
2911  * and the end_io handler clears the writeback ranges
2912  */
2913 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2914                               void *data)
2915 {
2916         struct inode *inode = page->mapping->host;
2917         struct extent_page_data *epd = data;
2918         struct extent_io_tree *tree = epd->tree;
2919         u64 start = page_offset(page);
2920         u64 delalloc_start;
2921         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2922         u64 end;
2923         u64 cur = start;
2924         u64 extent_offset;
2925         u64 last_byte = i_size_read(inode);
2926         u64 block_start;
2927         u64 iosize;
2928         sector_t sector;
2929         struct extent_state *cached_state = NULL;
2930         struct extent_map *em;
2931         struct block_device *bdev;
2932         int ret;
2933         int nr = 0;
2934         size_t pg_offset = 0;
2935         size_t blocksize;
2936         loff_t i_size = i_size_read(inode);
2937         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2938         u64 nr_delalloc;
2939         u64 delalloc_end;
2940         int page_started;
2941         int compressed;
2942         int write_flags;
2943         unsigned long nr_written = 0;
2944         bool fill_delalloc = true;
2945
2946         if (wbc->sync_mode == WB_SYNC_ALL)
2947                 write_flags = WRITE_SYNC;
2948         else
2949                 write_flags = WRITE;
2950
2951         trace___extent_writepage(page, inode, wbc);
2952
2953         WARN_ON(!PageLocked(page));
2954
2955         ClearPageError(page);
2956
2957         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2958         if (page->index > end_index ||
2959            (page->index == end_index && !pg_offset)) {
2960                 page->mapping->a_ops->invalidatepage(page, 0);
2961                 unlock_page(page);
2962                 return 0;
2963         }
2964
2965         if (page->index == end_index) {
2966                 char *userpage;
2967
2968                 userpage = kmap_atomic(page);
2969                 memset(userpage + pg_offset, 0,
2970                        PAGE_CACHE_SIZE - pg_offset);
2971                 kunmap_atomic(userpage);
2972                 flush_dcache_page(page);
2973         }
2974         pg_offset = 0;
2975
2976         set_page_extent_mapped(page);
2977
2978         if (!tree->ops || !tree->ops->fill_delalloc)
2979                 fill_delalloc = false;
2980
2981         delalloc_start = start;
2982         delalloc_end = 0;
2983         page_started = 0;
2984         if (!epd->extent_locked && fill_delalloc) {
2985                 u64 delalloc_to_write = 0;
2986                 /*
2987                  * make sure the wbc mapping index is at least updated
2988                  * to this page.
2989                  */
2990                 update_nr_written(page, wbc, 0);
2991
2992                 while (delalloc_end < page_end) {
2993                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2994                                                        page,
2995                                                        &delalloc_start,
2996                                                        &delalloc_end,
2997                                                        128 * 1024 * 1024);
2998                         if (nr_delalloc == 0) {
2999                                 delalloc_start = delalloc_end + 1;
3000                                 continue;
3001                         }
3002                         ret = tree->ops->fill_delalloc(inode, page,
3003                                                        delalloc_start,
3004                                                        delalloc_end,
3005                                                        &page_started,
3006                                                        &nr_written);
3007                         /* File system has been set read-only */
3008                         if (ret) {
3009                                 SetPageError(page);
3010                                 goto done;
3011                         }
3012                         /*
3013                          * delalloc_end is already one less than the total
3014                          * length, so we don't subtract one from
3015                          * PAGE_CACHE_SIZE
3016                          */
3017                         delalloc_to_write += (delalloc_end - delalloc_start +
3018                                               PAGE_CACHE_SIZE) >>
3019                                               PAGE_CACHE_SHIFT;
3020                         delalloc_start = delalloc_end + 1;
3021                 }
3022                 if (wbc->nr_to_write < delalloc_to_write) {
3023                         int thresh = 8192;
3024
3025                         if (delalloc_to_write < thresh * 2)
3026                                 thresh = delalloc_to_write;
3027                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3028                                                  thresh);
3029                 }
3030
3031                 /* did the fill delalloc function already unlock and start
3032                  * the IO?
3033                  */
3034                 if (page_started) {
3035                         ret = 0;
3036                         /*
3037                          * we've unlocked the page, so we can't update
3038                          * the mapping's writeback index, just update
3039                          * nr_to_write.
3040                          */
3041                         wbc->nr_to_write -= nr_written;
3042                         goto done_unlocked;
3043                 }
3044         }
3045         if (tree->ops && tree->ops->writepage_start_hook) {
3046                 ret = tree->ops->writepage_start_hook(page, start,
3047                                                       page_end);
3048                 if (ret) {
3049                         /* Fixup worker will requeue */
3050                         if (ret == -EBUSY)
3051                                 wbc->pages_skipped++;
3052                         else
3053                                 redirty_page_for_writepage(wbc, page);
3054                         update_nr_written(page, wbc, nr_written);
3055                         unlock_page(page);
3056                         ret = 0;
3057                         goto done_unlocked;
3058                 }
3059         }
3060
3061         /*
3062          * we don't want to touch the inode after unlocking the page,
3063          * so we update the mapping writeback index now
3064          */
3065         update_nr_written(page, wbc, nr_written + 1);
3066
3067         end = page_end;
3068         if (last_byte <= start) {
3069                 if (tree->ops && tree->ops->writepage_end_io_hook)
3070                         tree->ops->writepage_end_io_hook(page, start,
3071                                                          page_end, NULL, 1);
3072                 goto done;
3073         }
3074
3075         blocksize = inode->i_sb->s_blocksize;
3076
3077         while (cur <= end) {
3078                 if (cur >= last_byte) {
3079                         if (tree->ops && tree->ops->writepage_end_io_hook)
3080                                 tree->ops->writepage_end_io_hook(page, cur,
3081                                                          page_end, NULL, 1);
3082                         break;
3083                 }
3084                 em = epd->get_extent(inode, page, pg_offset, cur,
3085                                      end - cur + 1, 1);
3086                 if (IS_ERR_OR_NULL(em)) {
3087                         SetPageError(page);
3088                         break;
3089                 }
3090
3091                 extent_offset = cur - em->start;
3092                 BUG_ON(extent_map_end(em) <= cur);
3093                 BUG_ON(end < cur);
3094                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3095                 iosize = ALIGN(iosize, blocksize);
3096                 sector = (em->block_start + extent_offset) >> 9;
3097                 bdev = em->bdev;
3098                 block_start = em->block_start;
3099                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3100                 free_extent_map(em);
3101                 em = NULL;
3102
3103                 /*
3104                  * compressed and inline extents are written through other
3105                  * paths in the FS
3106                  */
3107                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3108                     block_start == EXTENT_MAP_INLINE) {
3109                         /*
3110                          * end_io notification does not happen here for
3111                          * compressed extents
3112                          */
3113                         if (!compressed && tree->ops &&
3114                             tree->ops->writepage_end_io_hook)
3115                                 tree->ops->writepage_end_io_hook(page, cur,
3116                                                          cur + iosize - 1,
3117                                                          NULL, 1);
3118                         else if (compressed) {
3119                                 /* we don't want to end_page_writeback on
3120                                  * a compressed extent.  this happens
3121                                  * elsewhere
3122                                  */
3123                                 nr++;
3124                         }
3125
3126                         cur += iosize;
3127                         pg_offset += iosize;
3128                         continue;
3129                 }
3130                 /* leave this out until we have a page_mkwrite call */
3131                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3132                                    EXTENT_DIRTY, 0, NULL)) {
3133                         cur = cur + iosize;
3134                         pg_offset += iosize;
3135                         continue;
3136                 }
3137
3138                 if (tree->ops && tree->ops->writepage_io_hook) {
3139                         ret = tree->ops->writepage_io_hook(page, cur,
3140                                                 cur + iosize - 1);
3141                 } else {
3142                         ret = 0;
3143                 }
3144                 if (ret) {
3145                         SetPageError(page);
3146                 } else {
3147                         unsigned long max_nr = end_index + 1;
3148
3149                         set_range_writeback(tree, cur, cur + iosize - 1);
3150                         if (!PageWriteback(page)) {
3151                                 printk(KERN_ERR "btrfs warning page %lu not "
3152                                        "writeback, cur %llu end %llu\n",
3153                                        page->index, (unsigned long long)cur,
3154                                        (unsigned long long)end);
3155                         }
3156
3157                         ret = submit_extent_page(write_flags, tree, page,
3158                                                  sector, iosize, pg_offset,
3159                                                  bdev, &epd->bio, max_nr,
3160                                                  end_bio_extent_writepage,
3161                                                  0, 0, 0);
3162                         if (ret)
3163                                 SetPageError(page);
3164                 }
3165                 cur = cur + iosize;
3166                 pg_offset += iosize;
3167                 nr++;
3168         }
3169 done:
3170         if (nr == 0) {
3171                 /* make sure the mapping tag for page dirty gets cleared */
3172                 set_page_writeback(page);
3173                 end_page_writeback(page);
3174         }
3175         unlock_page(page);
3176
3177 done_unlocked:
3178
3179         /* drop our reference on any cached states */
3180         free_extent_state(cached_state);
3181         return 0;
3182 }
3183
3184 static int eb_wait(void *word)
3185 {
3186         io_schedule();
3187         return 0;
3188 }
3189
3190 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3191 {
3192         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3193                     TASK_UNINTERRUPTIBLE);
3194 }
3195
3196 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3197                                      struct btrfs_fs_info *fs_info,
3198                                      struct extent_page_data *epd)
3199 {
3200         unsigned long i, num_pages;
3201         int flush = 0;
3202         int ret = 0;
3203
3204         if (!btrfs_try_tree_write_lock(eb)) {
3205                 flush = 1;
3206                 flush_write_bio(epd);
3207                 btrfs_tree_lock(eb);
3208         }
3209
3210         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3211                 btrfs_tree_unlock(eb);
3212                 if (!epd->sync_io)
3213                         return 0;
3214                 if (!flush) {
3215                         flush_write_bio(epd);
3216                         flush = 1;
3217                 }
3218                 while (1) {
3219                         wait_on_extent_buffer_writeback(eb);
3220                         btrfs_tree_lock(eb);
3221                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3222                                 break;
3223                         btrfs_tree_unlock(eb);
3224                 }
3225         }
3226
3227         /*
3228          * We need to do this to prevent races in people who check if the eb is
3229          * under IO since we can end up having no IO bits set for a short period
3230          * of time.
3231          */
3232         spin_lock(&eb->refs_lock);
3233         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3234                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3235                 spin_unlock(&eb->refs_lock);
3236                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3237                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3238                                      -eb->len,
3239                                      fs_info->dirty_metadata_batch);
3240                 ret = 1;
3241         } else {
3242                 spin_unlock(&eb->refs_lock);
3243         }
3244
3245         btrfs_tree_unlock(eb);
3246
3247         if (!ret)
3248                 return ret;
3249
3250         num_pages = num_extent_pages(eb->start, eb->len);
3251         for (i = 0; i < num_pages; i++) {
3252                 struct page *p = extent_buffer_page(eb, i);
3253
3254                 if (!trylock_page(p)) {
3255                         if (!flush) {
3256                                 flush_write_bio(epd);
3257                                 flush = 1;
3258                         }
3259                         lock_page(p);
3260                 }
3261         }
3262
3263         return ret;
3264 }
3265
3266 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3267 {
3268         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3269         smp_mb__after_clear_bit();
3270         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3271 }
3272
3273 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3274 {
3275         int uptodate = err == 0;
3276         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3277         struct extent_buffer *eb;
3278         int done;
3279
3280         do {
3281                 struct page *page = bvec->bv_page;
3282
3283                 bvec--;
3284                 eb = (struct extent_buffer *)page->private;
3285                 BUG_ON(!eb);
3286                 done = atomic_dec_and_test(&eb->io_pages);
3287
3288                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3289                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3290                         ClearPageUptodate(page);
3291                         SetPageError(page);
3292                 }
3293
3294                 end_page_writeback(page);
3295
3296                 if (!done)
3297                         continue;
3298
3299                 end_extent_buffer_writeback(eb);
3300         } while (bvec >= bio->bi_io_vec);
3301
3302         bio_put(bio);
3303
3304 }
3305
3306 static int write_one_eb(struct extent_buffer *eb,
3307                         struct btrfs_fs_info *fs_info,
3308                         struct writeback_control *wbc,
3309                         struct extent_page_data *epd)
3310 {
3311         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3312         u64 offset = eb->start;
3313         unsigned long i, num_pages;
3314         unsigned long bio_flags = 0;
3315         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3316         int ret = 0;
3317
3318         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3319         num_pages = num_extent_pages(eb->start, eb->len);
3320         atomic_set(&eb->io_pages, num_pages);
3321         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3322                 bio_flags = EXTENT_BIO_TREE_LOG;
3323
3324         for (i = 0; i < num_pages; i++) {
3325                 struct page *p = extent_buffer_page(eb, i);
3326
3327                 clear_page_dirty_for_io(p);
3328                 set_page_writeback(p);
3329                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3330                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3331                                          -1, end_bio_extent_buffer_writepage,
3332                                          0, epd->bio_flags, bio_flags);
3333                 epd->bio_flags = bio_flags;
3334                 if (ret) {
3335                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3336                         SetPageError(p);
3337                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3338                                 end_extent_buffer_writeback(eb);
3339                         ret = -EIO;
3340                         break;
3341                 }
3342                 offset += PAGE_CACHE_SIZE;
3343                 update_nr_written(p, wbc, 1);
3344                 unlock_page(p);
3345         }
3346
3347         if (unlikely(ret)) {
3348                 for (; i < num_pages; i++) {
3349                         struct page *p = extent_buffer_page(eb, i);
3350                         unlock_page(p);
3351                 }
3352         }
3353
3354         return ret;
3355 }
3356
3357 int btree_write_cache_pages(struct address_space *mapping,
3358                                    struct writeback_control *wbc)
3359 {
3360         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3361         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3362         struct extent_buffer *eb, *prev_eb = NULL;
3363         struct extent_page_data epd = {
3364                 .bio = NULL,
3365                 .tree = tree,
3366                 .extent_locked = 0,
3367                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3368                 .bio_flags = 0,
3369         };
3370         int ret = 0;
3371         int done = 0;
3372         int nr_to_write_done = 0;
3373         struct pagevec pvec;
3374         int nr_pages;
3375         pgoff_t index;
3376         pgoff_t end;            /* Inclusive */
3377         int scanned = 0;
3378         int tag;
3379
3380         pagevec_init(&pvec, 0);
3381         if (wbc->range_cyclic) {
3382                 index = mapping->writeback_index; /* Start from prev offset */
3383                 end = -1;
3384         } else {
3385                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3386                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3387                 scanned = 1;
3388         }
3389         if (wbc->sync_mode == WB_SYNC_ALL)
3390                 tag = PAGECACHE_TAG_TOWRITE;
3391         else
3392                 tag = PAGECACHE_TAG_DIRTY;
3393 retry:
3394         if (wbc->sync_mode == WB_SYNC_ALL)
3395                 tag_pages_for_writeback(mapping, index, end);
3396         while (!done && !nr_to_write_done && (index <= end) &&
3397                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3398                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3399                 unsigned i;
3400
3401                 scanned = 1;
3402                 for (i = 0; i < nr_pages; i++) {
3403                         struct page *page = pvec.pages[i];
3404
3405                         if (!PagePrivate(page))
3406                                 continue;
3407
3408                         if (!wbc->range_cyclic && page->index > end) {
3409                                 done = 1;
3410                                 break;
3411                         }
3412
3413                         spin_lock(&mapping->private_lock);
3414                         if (!PagePrivate(page)) {
3415                                 spin_unlock(&mapping->private_lock);
3416                                 continue;
3417                         }
3418
3419                         eb = (struct extent_buffer *)page->private;
3420
3421                         /*
3422                          * Shouldn't happen and normally this would be a BUG_ON
3423                          * but no sense in crashing the users box for something
3424                          * we can survive anyway.
3425                          */
3426                         if (!eb) {
3427                                 spin_unlock(&mapping->private_lock);
3428                                 WARN_ON(1);
3429                                 continue;
3430                         }
3431
3432                         if (eb == prev_eb) {
3433                                 spin_unlock(&mapping->private_lock);
3434                                 continue;
3435                         }
3436
3437                         ret = atomic_inc_not_zero(&eb->refs);
3438                         spin_unlock(&mapping->private_lock);
3439                         if (!ret)
3440                                 continue;
3441
3442                         prev_eb = eb;
3443                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3444                         if (!ret) {
3445                                 free_extent_buffer(eb);
3446                                 continue;
3447                         }
3448
3449                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3450                         if (ret) {
3451                                 done = 1;
3452                                 free_extent_buffer(eb);
3453                                 break;
3454                         }
3455                         free_extent_buffer(eb);
3456
3457                         /*
3458                          * the filesystem may choose to bump up nr_to_write.
3459                          * We have to make sure to honor the new nr_to_write
3460                          * at any time
3461                          */
3462                         nr_to_write_done = wbc->nr_to_write <= 0;
3463                 }
3464                 pagevec_release(&pvec);
3465                 cond_resched();
3466         }
3467         if (!scanned && !done) {
3468                 /*
3469                  * We hit the last page and there is more work to be done: wrap
3470                  * back to the start of the file
3471                  */
3472                 scanned = 1;
3473                 index = 0;
3474                 goto retry;
3475         }
3476         flush_write_bio(&epd);
3477         return ret;
3478 }
3479
3480 /**
3481  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3482  * @mapping: address space structure to write
3483  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3484  * @writepage: function called for each page
3485  * @data: data passed to writepage function
3486  *
3487  * If a page is already under I/O, write_cache_pages() skips it, even
3488  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3489  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3490  * and msync() need to guarantee that all the data which was dirty at the time
3491  * the call was made get new I/O started against them.  If wbc->sync_mode is
3492  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3493  * existing IO to complete.
3494  */
3495 static int extent_write_cache_pages(struct extent_io_tree *tree,
3496                              struct address_space *mapping,
3497                              struct writeback_control *wbc,
3498                              writepage_t writepage, void *data,
3499                              void (*flush_fn)(void *))
3500 {
3501         struct inode *inode = mapping->host;
3502         int ret = 0;
3503         int done = 0;
3504         int nr_to_write_done = 0;
3505         struct pagevec pvec;
3506         int nr_pages;
3507         pgoff_t index;
3508         pgoff_t end;            /* Inclusive */
3509         int scanned = 0;
3510         int tag;
3511
3512         /*
3513          * We have to hold onto the inode so that ordered extents can do their
3514          * work when the IO finishes.  The alternative to this is failing to add
3515          * an ordered extent if the igrab() fails there and that is a huge pain
3516          * to deal with, so instead just hold onto the inode throughout the
3517          * writepages operation.  If it fails here we are freeing up the inode
3518          * anyway and we'd rather not waste our time writing out stuff that is
3519          * going to be truncated anyway.
3520          */
3521         if (!igrab(inode))
3522                 return 0;
3523
3524         pagevec_init(&pvec, 0);
3525         if (wbc->range_cyclic) {
3526                 index = mapping->writeback_index; /* Start from prev offset */
3527                 end = -1;
3528         } else {
3529                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3530                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3531                 scanned = 1;
3532         }
3533         if (wbc->sync_mode == WB_SYNC_ALL)
3534                 tag = PAGECACHE_TAG_TOWRITE;
3535         else
3536                 tag = PAGECACHE_TAG_DIRTY;
3537 retry:
3538         if (wbc->sync_mode == WB_SYNC_ALL)
3539                 tag_pages_for_writeback(mapping, index, end);
3540         while (!done && !nr_to_write_done && (index <= end) &&
3541                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3542                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3543                 unsigned i;
3544
3545                 scanned = 1;
3546                 for (i = 0; i < nr_pages; i++) {
3547                         struct page *page = pvec.pages[i];
3548
3549                         /*
3550                          * At this point we hold neither mapping->tree_lock nor
3551                          * lock on the page itself: the page may be truncated or
3552                          * invalidated (changing page->mapping to NULL), or even
3553                          * swizzled back from swapper_space to tmpfs file
3554                          * mapping
3555                          */
3556                         if (!trylock_page(page)) {
3557                                 flush_fn(data);
3558                                 lock_page(page);
3559                         }
3560
3561                         if (unlikely(page->mapping != mapping)) {
3562                                 unlock_page(page);
3563                                 continue;
3564                         }
3565
3566                         if (!wbc->range_cyclic && page->index > end) {
3567                                 done = 1;
3568                                 unlock_page(page);
3569                                 continue;
3570                         }
3571
3572                         if (wbc->sync_mode != WB_SYNC_NONE) {
3573                                 if (PageWriteback(page))
3574                                         flush_fn(data);
3575                                 wait_on_page_writeback(page);
3576                         }
3577
3578                         if (PageWriteback(page) ||
3579                             !clear_page_dirty_for_io(page)) {
3580                                 unlock_page(page);
3581                                 continue;
3582                         }
3583
3584                         ret = (*writepage)(page, wbc, data);
3585
3586                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3587                                 unlock_page(page);
3588                                 ret = 0;
3589                         }
3590                         if (ret)
3591                                 done = 1;
3592
3593                         /*
3594                          * the filesystem may choose to bump up nr_to_write.
3595                          * We have to make sure to honor the new nr_to_write
3596                          * at any time
3597                          */
3598                         nr_to_write_done = wbc->nr_to_write <= 0;
3599                 }
3600                 pagevec_release(&pvec);
3601                 cond_resched();
3602         }
3603         if (!scanned && !done) {
3604                 /*
3605                  * We hit the last page and there is more work to be done: wrap
3606                  * back to the start of the file
3607                  */
3608                 scanned = 1;
3609                 index = 0;
3610                 goto retry;
3611         }
3612         btrfs_add_delayed_iput(inode);
3613         return ret;
3614 }
3615
3616 static void flush_epd_write_bio(struct extent_page_data *epd)
3617 {
3618         if (epd->bio) {
3619                 int rw = WRITE;
3620                 int ret;
3621
3622                 if (epd->sync_io)
3623                         rw = WRITE_SYNC;
3624
3625                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3626                 BUG_ON(ret < 0); /* -ENOMEM */
3627                 epd->bio = NULL;
3628         }
3629 }
3630
3631 static noinline void flush_write_bio(void *data)
3632 {
3633         struct extent_page_data *epd = data;
3634         flush_epd_write_bio(epd);
3635 }
3636
3637 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3638                           get_extent_t *get_extent,
3639                           struct writeback_control *wbc)
3640 {
3641         int ret;
3642         struct extent_page_data epd = {
3643                 .bio = NULL,
3644                 .tree = tree,
3645                 .get_extent = get_extent,
3646                 .extent_locked = 0,
3647                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3648                 .bio_flags = 0,
3649         };
3650
3651         ret = __extent_writepage(page, wbc, &epd);
3652
3653         flush_epd_write_bio(&epd);
3654         return ret;
3655 }
3656
3657 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3658                               u64 start, u64 end, get_extent_t *get_extent,
3659                               int mode)
3660 {
3661         int ret = 0;
3662         struct address_space *mapping = inode->i_mapping;
3663         struct page *page;
3664         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3665                 PAGE_CACHE_SHIFT;
3666
3667         struct extent_page_data epd = {
3668                 .bio = NULL,
3669                 .tree = tree,
3670                 .get_extent = get_extent,
3671                 .extent_locked = 1,
3672                 .sync_io = mode == WB_SYNC_ALL,
3673                 .bio_flags = 0,
3674         };
3675         struct writeback_control wbc_writepages = {
3676                 .sync_mode      = mode,
3677                 .nr_to_write    = nr_pages * 2,
3678                 .range_start    = start,
3679                 .range_end      = end + 1,
3680         };
3681
3682         while (start <= end) {
3683                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3684                 if (clear_page_dirty_for_io(page))
3685                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3686                 else {
3687                         if (tree->ops && tree->ops->writepage_end_io_hook)
3688                                 tree->ops->writepage_end_io_hook(page, start,
3689                                                  start + PAGE_CACHE_SIZE - 1,
3690                                                  NULL, 1);
3691                         unlock_page(page);
3692                 }
3693                 page_cache_release(page);
3694                 start += PAGE_CACHE_SIZE;
3695         }
3696
3697         flush_epd_write_bio(&epd);
3698         return ret;
3699 }
3700
3701 int extent_writepages(struct extent_io_tree *tree,
3702                       struct address_space *mapping,
3703                       get_extent_t *get_extent,
3704                       struct writeback_control *wbc)
3705 {
3706         int ret = 0;
3707         struct extent_page_data epd = {
3708                 .bio = NULL,
3709                 .tree = tree,
3710                 .get_extent = get_extent,
3711                 .extent_locked = 0,
3712                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3713                 .bio_flags = 0,
3714         };
3715
3716         ret = extent_write_cache_pages(tree, mapping, wbc,
3717                                        __extent_writepage, &epd,
3718                                        flush_write_bio);
3719         flush_epd_write_bio(&epd);
3720         return ret;
3721 }
3722
3723 int extent_readpages(struct extent_io_tree *tree,
3724                      struct address_space *mapping,
3725                      struct list_head *pages, unsigned nr_pages,
3726                      get_extent_t get_extent)
3727 {
3728         struct bio *bio = NULL;
3729         unsigned page_idx;
3730         unsigned long bio_flags = 0;
3731         struct page *pagepool[16];
3732         struct page *page;
3733         int i = 0;
3734         int nr = 0;
3735
3736         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3737                 page = list_entry(pages->prev, struct page, lru);
3738
3739                 prefetchw(&page->flags);
3740                 list_del(&page->lru);
3741                 if (add_to_page_cache_lru(page, mapping,
3742                                         page->index, GFP_NOFS)) {
3743                         page_cache_release(page);
3744                         continue;
3745                 }
3746
3747                 pagepool[nr++] = page;
3748                 if (nr < ARRAY_SIZE(pagepool))
3749                         continue;
3750                 for (i = 0; i < nr; i++) {
3751                         __extent_read_full_page(tree, pagepool[i], get_extent,
3752                                         &bio, 0, &bio_flags, READ);
3753                         page_cache_release(pagepool[i]);
3754                 }
3755                 nr = 0;
3756         }
3757         for (i = 0; i < nr; i++) {
3758                 __extent_read_full_page(tree, pagepool[i], get_extent,
3759                                         &bio, 0, &bio_flags, READ);
3760                 page_cache_release(pagepool[i]);
3761         }
3762
3763         BUG_ON(!list_empty(pages));
3764         if (bio)
3765                 return submit_one_bio(READ, bio, 0, bio_flags);
3766         return 0;
3767 }
3768
3769 /*
3770  * basic invalidatepage code, this waits on any locked or writeback
3771  * ranges corresponding to the page, and then deletes any extent state
3772  * records from the tree
3773  */
3774 int extent_invalidatepage(struct extent_io_tree *tree,
3775                           struct page *page, unsigned long offset)
3776 {
3777         struct extent_state *cached_state = NULL;
3778         u64 start = page_offset(page);
3779         u64 end = start + PAGE_CACHE_SIZE - 1;
3780         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3781
3782         start += ALIGN(offset, blocksize);
3783         if (start > end)
3784                 return 0;
3785
3786         lock_extent_bits(tree, start, end, 0, &cached_state);
3787         wait_on_page_writeback(page);
3788         clear_extent_bit(tree, start, end,
3789                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3790                          EXTENT_DO_ACCOUNTING,
3791                          1, 1, &cached_state, GFP_NOFS);
3792         return 0;
3793 }
3794
3795 /*
3796  * a helper for releasepage, this tests for areas of the page that
3797  * are locked or under IO and drops the related state bits if it is safe
3798  * to drop the page.
3799  */
3800 static int try_release_extent_state(struct extent_map_tree *map,
3801                                     struct extent_io_tree *tree,
3802                                     struct page *page, gfp_t mask)
3803 {
3804         u64 start = page_offset(page);
3805         u64 end = start + PAGE_CACHE_SIZE - 1;
3806         int ret = 1;
3807
3808         if (test_range_bit(tree, start, end,
3809                            EXTENT_IOBITS, 0, NULL))
3810                 ret = 0;
3811         else {
3812                 if ((mask & GFP_NOFS) == GFP_NOFS)
3813                         mask = GFP_NOFS;
3814                 /*
3815                  * at this point we can safely clear everything except the
3816                  * locked bit and the nodatasum bit
3817                  */
3818                 ret = clear_extent_bit(tree, start, end,
3819                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3820                                  0, 0, NULL, mask);
3821
3822                 /* if clear_extent_bit failed for enomem reasons,
3823                  * we can't allow the release to continue.
3824                  */
3825                 if (ret < 0)
3826                         ret = 0;
3827                 else
3828                         ret = 1;
3829         }
3830         return ret;
3831 }
3832
3833 /*
3834  * a helper for releasepage.  As long as there are no locked extents
3835  * in the range corresponding to the page, both state records and extent
3836  * map records are removed
3837  */
3838 int try_release_extent_mapping(struct extent_map_tree *map,
3839                                struct extent_io_tree *tree, struct page *page,
3840                                gfp_t mask)
3841 {
3842         struct extent_map *em;
3843         u64 start = page_offset(page);
3844         u64 end = start + PAGE_CACHE_SIZE - 1;
3845
3846         if ((mask & __GFP_WAIT) &&
3847             page->mapping->host->i_size > 16 * 1024 * 1024) {
3848                 u64 len;
3849                 while (start <= end) {
3850                         len = end - start + 1;
3851                         write_lock(&map->lock);
3852                         em = lookup_extent_mapping(map, start, len);
3853                         if (!em) {
3854                                 write_unlock(&map->lock);
3855                                 break;
3856                         }
3857                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3858                             em->start != start) {
3859                                 write_unlock(&map->lock);
3860                                 free_extent_map(em);
3861                                 break;
3862                         }
3863                         if (!test_range_bit(tree, em->start,
3864                                             extent_map_end(em) - 1,
3865                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3866                                             0, NULL)) {
3867                                 remove_extent_mapping(map, em);
3868                                 /* once for the rb tree */
3869                                 free_extent_map(em);
3870                         }
3871                         start = extent_map_end(em);
3872                         write_unlock(&map->lock);
3873
3874                         /* once for us */
3875                         free_extent_map(em);
3876                 }
3877         }
3878         return try_release_extent_state(map, tree, page, mask);
3879 }
3880
3881 /*
3882  * helper function for fiemap, which doesn't want to see any holes.
3883  * This maps until we find something past 'last'
3884  */
3885 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3886                                                 u64 offset,
3887                                                 u64 last,
3888                                                 get_extent_t *get_extent)
3889 {
3890         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3891         struct extent_map *em;
3892         u64 len;
3893
3894         if (offset >= last)
3895                 return NULL;
3896
3897         while(1) {
3898                 len = last - offset;
3899                 if (len == 0)
3900                         break;
3901                 len = ALIGN(len, sectorsize);
3902                 em = get_extent(inode, NULL, 0, offset, len, 0);
3903                 if (IS_ERR_OR_NULL(em))
3904                         return em;
3905
3906                 /* if this isn't a hole return it */
3907                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3908                     em->block_start != EXTENT_MAP_HOLE) {
3909                         return em;
3910                 }
3911
3912                 /* this is a hole, advance to the next extent */
3913                 offset = extent_map_end(em);
3914                 free_extent_map(em);
3915                 if (offset >= last)
3916                         break;
3917         }
3918         return NULL;
3919 }
3920
3921 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3922                 __u64 start, __u64 len, get_extent_t *get_extent)
3923 {
3924         int ret = 0;
3925         u64 off = start;
3926         u64 max = start + len;
3927         u32 flags = 0;
3928         u32 found_type;
3929         u64 last;
3930         u64 last_for_get_extent = 0;
3931         u64 disko = 0;
3932         u64 isize = i_size_read(inode);
3933         struct btrfs_key found_key;
3934         struct extent_map *em = NULL;
3935         struct extent_state *cached_state = NULL;
3936         struct btrfs_path *path;
3937         struct btrfs_file_extent_item *item;
3938         int end = 0;
3939         u64 em_start = 0;
3940         u64 em_len = 0;
3941         u64 em_end = 0;
3942         unsigned long emflags;
3943
3944         if (len == 0)
3945                 return -EINVAL;
3946
3947         path = btrfs_alloc_path();
3948         if (!path)
3949                 return -ENOMEM;
3950         path->leave_spinning = 1;
3951
3952         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3953         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3954
3955         /*
3956          * lookup the last file extent.  We're not using i_size here
3957          * because there might be preallocation past i_size
3958          */
3959         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3960                                        path, btrfs_ino(inode), -1, 0);
3961         if (ret < 0) {
3962                 btrfs_free_path(path);
3963                 return ret;
3964         }
3965         WARN_ON(!ret);
3966         path->slots[0]--;
3967         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3968                               struct btrfs_file_extent_item);
3969         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3970         found_type = btrfs_key_type(&found_key);
3971
3972         /* No extents, but there might be delalloc bits */
3973         if (found_key.objectid != btrfs_ino(inode) ||
3974             found_type != BTRFS_EXTENT_DATA_KEY) {
3975                 /* have to trust i_size as the end */
3976                 last = (u64)-1;
3977                 last_for_get_extent = isize;
3978         } else {
3979                 /*
3980                  * remember the start of the last extent.  There are a
3981                  * bunch of different factors that go into the length of the
3982                  * extent, so its much less complex to remember where it started
3983                  */
3984                 last = found_key.offset;
3985                 last_for_get_extent = last + 1;
3986         }
3987         btrfs_free_path(path);
3988
3989         /*
3990          * we might have some extents allocated but more delalloc past those
3991          * extents.  so, we trust isize unless the start of the last extent is
3992          * beyond isize
3993          */
3994         if (last < isize) {
3995                 last = (u64)-1;
3996                 last_for_get_extent = isize;
3997         }
3998
3999         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4000                          &cached_state);
4001
4002         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4003                                    get_extent);
4004         if (!em)
4005                 goto out;
4006         if (IS_ERR(em)) {
4007                 ret = PTR_ERR(em);
4008                 goto out;
4009         }
4010
4011         while (!end) {
4012                 u64 offset_in_extent;
4013
4014                 /* break if the extent we found is outside the range */
4015                 if (em->start >= max || extent_map_end(em) < off)
4016                         break;
4017
4018                 /*
4019                  * get_extent may return an extent that starts before our
4020                  * requested range.  We have to make sure the ranges
4021                  * we return to fiemap always move forward and don't
4022                  * overlap, so adjust the offsets here
4023                  */
4024                 em_start = max(em->start, off);
4025
4026                 /*
4027                  * record the offset from the start of the extent
4028                  * for adjusting the disk offset below
4029                  */
4030                 offset_in_extent = em_start - em->start;
4031                 em_end = extent_map_end(em);
4032                 em_len = em_end - em_start;
4033                 emflags = em->flags;
4034                 disko = 0;
4035                 flags = 0;
4036
4037                 /*
4038                  * bump off for our next call to get_extent
4039                  */
4040                 off = extent_map_end(em);
4041                 if (off >= max)
4042                         end = 1;
4043
4044                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4045                         end = 1;
4046                         flags |= FIEMAP_EXTENT_LAST;
4047                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4048                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4049                                   FIEMAP_EXTENT_NOT_ALIGNED);
4050                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4051                         flags |= (FIEMAP_EXTENT_DELALLOC |
4052                                   FIEMAP_EXTENT_UNKNOWN);
4053                 } else {
4054                         disko = em->block_start + offset_in_extent;
4055                 }
4056                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4057                         flags |= FIEMAP_EXTENT_ENCODED;
4058
4059                 free_extent_map(em);
4060                 em = NULL;
4061                 if ((em_start >= last) || em_len == (u64)-1 ||
4062                    (last == (u64)-1 && isize <= em_end)) {
4063                         flags |= FIEMAP_EXTENT_LAST;
4064                         end = 1;
4065                 }
4066
4067                 /* now scan forward to see if this is really the last extent. */
4068                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4069                                            get_extent);
4070                 if (IS_ERR(em)) {
4071                         ret = PTR_ERR(em);
4072                         goto out;
4073                 }
4074                 if (!em) {
4075                         flags |= FIEMAP_EXTENT_LAST;
4076                         end = 1;
4077                 }
4078                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4079                                               em_len, flags);
4080                 if (ret)
4081                         goto out_free;
4082         }
4083 out_free:
4084         free_extent_map(em);
4085 out:
4086         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4087                              &cached_state, GFP_NOFS);
4088         return ret;
4089 }
4090
4091 static void __free_extent_buffer(struct extent_buffer *eb)
4092 {
4093         btrfs_leak_debug_del(&eb->leak_list);
4094         kmem_cache_free(extent_buffer_cache, eb);
4095 }
4096
4097 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4098                                                    u64 start,
4099                                                    unsigned long len,
4100                                                    gfp_t mask)
4101 {
4102         struct extent_buffer *eb = NULL;
4103
4104         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4105         if (eb == NULL)
4106                 return NULL;
4107         eb->start = start;
4108         eb->len = len;
4109         eb->tree = tree;
4110         eb->bflags = 0;
4111         rwlock_init(&eb->lock);
4112         atomic_set(&eb->write_locks, 0);
4113         atomic_set(&eb->read_locks, 0);
4114         atomic_set(&eb->blocking_readers, 0);
4115         atomic_set(&eb->blocking_writers, 0);
4116         atomic_set(&eb->spinning_readers, 0);
4117         atomic_set(&eb->spinning_writers, 0);
4118         eb->lock_nested = 0;
4119         init_waitqueue_head(&eb->write_lock_wq);
4120         init_waitqueue_head(&eb->read_lock_wq);
4121
4122         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4123
4124         spin_lock_init(&eb->refs_lock);
4125         atomic_set(&eb->refs, 1);
4126         atomic_set(&eb->io_pages, 0);
4127
4128         /*
4129          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4130          */
4131         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4132                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4133         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4134
4135         return eb;
4136 }
4137
4138 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4139 {
4140         unsigned long i;
4141         struct page *p;
4142         struct extent_buffer *new;
4143         unsigned long num_pages = num_extent_pages(src->start, src->len);
4144
4145         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4146         if (new == NULL)
4147                 return NULL;
4148
4149         for (i = 0; i < num_pages; i++) {
4150                 p = alloc_page(GFP_ATOMIC);
4151                 BUG_ON(!p);
4152                 attach_extent_buffer_page(new, p);
4153                 WARN_ON(PageDirty(p));
4154                 SetPageUptodate(p);
4155                 new->pages[i] = p;
4156         }
4157
4158         copy_extent_buffer(new, src, 0, 0, src->len);
4159         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4160         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4161
4162         return new;
4163 }
4164
4165 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4166 {
4167         struct extent_buffer *eb;
4168         unsigned long num_pages = num_extent_pages(0, len);
4169         unsigned long i;
4170
4171         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4172         if (!eb)
4173                 return NULL;
4174
4175         for (i = 0; i < num_pages; i++) {
4176                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4177                 if (!eb->pages[i])
4178                         goto err;
4179         }
4180         set_extent_buffer_uptodate(eb);
4181         btrfs_set_header_nritems(eb, 0);
4182         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4183
4184         return eb;
4185 err:
4186         for (; i > 0; i--)
4187                 __free_page(eb->pages[i - 1]);
4188         __free_extent_buffer(eb);
4189         return NULL;
4190 }
4191
4192 static int extent_buffer_under_io(struct extent_buffer *eb)
4193 {
4194         return (atomic_read(&eb->io_pages) ||
4195                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4196                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4197 }
4198
4199 /*
4200  * Helper for releasing extent buffer page.
4201  */
4202 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4203                                                 unsigned long start_idx)
4204 {
4205         unsigned long index;
4206         unsigned long num_pages;
4207         struct page *page;
4208         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4209
4210         BUG_ON(extent_buffer_under_io(eb));
4211
4212         num_pages = num_extent_pages(eb->start, eb->len);
4213         index = start_idx + num_pages;
4214         if (start_idx >= index)
4215                 return;
4216
4217         do {
4218                 index--;
4219                 page = extent_buffer_page(eb, index);
4220                 if (page && mapped) {
4221                         spin_lock(&page->mapping->private_lock);
4222                         /*
4223                          * We do this since we'll remove the pages after we've
4224                          * removed the eb from the radix tree, so we could race
4225                          * and have this page now attached to the new eb.  So
4226                          * only clear page_private if it's still connected to
4227                          * this eb.
4228                          */
4229                         if (PagePrivate(page) &&
4230                             page->private == (unsigned long)eb) {
4231                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4232                                 BUG_ON(PageDirty(page));
4233                                 BUG_ON(PageWriteback(page));
4234                                 /*
4235                                  * We need to make sure we haven't be attached
4236                                  * to a new eb.
4237                                  */
4238                                 ClearPagePrivate(page);
4239                                 set_page_private(page, 0);
4240                                 /* One for the page private */
4241                                 page_cache_release(page);
4242                         }
4243                         spin_unlock(&page->mapping->private_lock);
4244
4245                 }
4246                 if (page) {
4247                         /* One for when we alloced the page */
4248                         page_cache_release(page);
4249                 }
4250         } while (index != start_idx);
4251 }
4252
4253 /*
4254  * Helper for releasing the extent buffer.
4255  */
4256 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4257 {
4258         btrfs_release_extent_buffer_page(eb, 0);
4259         __free_extent_buffer(eb);
4260 }
4261
4262 static void check_buffer_tree_ref(struct extent_buffer *eb)
4263 {
4264         int refs;
4265         /* the ref bit is tricky.  We have to make sure it is set
4266          * if we have the buffer dirty.   Otherwise the
4267          * code to free a buffer can end up dropping a dirty
4268          * page
4269          *
4270          * Once the ref bit is set, it won't go away while the
4271          * buffer is dirty or in writeback, and it also won't
4272          * go away while we have the reference count on the
4273          * eb bumped.
4274          *
4275          * We can't just set the ref bit without bumping the
4276          * ref on the eb because free_extent_buffer might
4277          * see the ref bit and try to clear it.  If this happens
4278          * free_extent_buffer might end up dropping our original
4279          * ref by mistake and freeing the page before we are able
4280          * to add one more ref.
4281          *
4282          * So bump the ref count first, then set the bit.  If someone
4283          * beat us to it, drop the ref we added.
4284          */
4285         refs = atomic_read(&eb->refs);
4286         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4287                 return;
4288
4289         spin_lock(&eb->refs_lock);
4290         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4291                 atomic_inc(&eb->refs);
4292         spin_unlock(&eb->refs_lock);
4293 }
4294
4295 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4296 {
4297         unsigned long num_pages, i;
4298
4299         check_buffer_tree_ref(eb);
4300
4301         num_pages = num_extent_pages(eb->start, eb->len);
4302         for (i = 0; i < num_pages; i++) {
4303                 struct page *p = extent_buffer_page(eb, i);
4304                 mark_page_accessed(p);
4305         }
4306 }
4307
4308 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4309                                           u64 start, unsigned long len)
4310 {
4311         unsigned long num_pages = num_extent_pages(start, len);
4312         unsigned long i;
4313         unsigned long index = start >> PAGE_CACHE_SHIFT;
4314         struct extent_buffer *eb;
4315         struct extent_buffer *exists = NULL;
4316         struct page *p;
4317         struct address_space *mapping = tree->mapping;
4318         int uptodate = 1;
4319         int ret;
4320
4321         rcu_read_lock();
4322         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4323         if (eb && atomic_inc_not_zero(&eb->refs)) {
4324                 rcu_read_unlock();
4325                 mark_extent_buffer_accessed(eb);
4326                 return eb;
4327         }
4328         rcu_read_unlock();
4329
4330         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4331         if (!eb)
4332                 return NULL;
4333
4334         for (i = 0; i < num_pages; i++, index++) {
4335                 p = find_or_create_page(mapping, index, GFP_NOFS);
4336                 if (!p)
4337                         goto free_eb;
4338
4339                 spin_lock(&mapping->private_lock);
4340                 if (PagePrivate(p)) {
4341                         /*
4342                          * We could have already allocated an eb for this page
4343                          * and attached one so lets see if we can get a ref on
4344                          * the existing eb, and if we can we know it's good and
4345                          * we can just return that one, else we know we can just
4346                          * overwrite page->private.
4347                          */
4348                         exists = (struct extent_buffer *)p->private;
4349                         if (atomic_inc_not_zero(&exists->refs)) {
4350                                 spin_unlock(&mapping->private_lock);
4351                                 unlock_page(p);
4352                                 page_cache_release(p);
4353                                 mark_extent_buffer_accessed(exists);
4354                                 goto free_eb;
4355                         }
4356
4357                         /*
4358                          * Do this so attach doesn't complain and we need to
4359                          * drop the ref the old guy had.
4360                          */
4361                         ClearPagePrivate(p);
4362                         WARN_ON(PageDirty(p));
4363                         page_cache_release(p);
4364                 }
4365                 attach_extent_buffer_page(eb, p);
4366                 spin_unlock(&mapping->private_lock);
4367                 WARN_ON(PageDirty(p));
4368                 mark_page_accessed(p);
4369                 eb->pages[i] = p;
4370                 if (!PageUptodate(p))
4371                         uptodate = 0;
4372
4373                 /*
4374                  * see below about how we avoid a nasty race with release page
4375                  * and why we unlock later
4376                  */
4377         }
4378         if (uptodate)
4379                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4380 again:
4381         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4382         if (ret)
4383                 goto free_eb;
4384
4385         spin_lock(&tree->buffer_lock);
4386         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4387         if (ret == -EEXIST) {
4388                 exists = radix_tree_lookup(&tree->buffer,
4389                                                 start >> PAGE_CACHE_SHIFT);
4390                 if (!atomic_inc_not_zero(&exists->refs)) {
4391                         spin_unlock(&tree->buffer_lock);
4392                         radix_tree_preload_end();
4393                         exists = NULL;
4394                         goto again;
4395                 }
4396                 spin_unlock(&tree->buffer_lock);
4397                 radix_tree_preload_end();
4398                 mark_extent_buffer_accessed(exists);
4399                 goto free_eb;
4400         }
4401         /* add one reference for the tree */
4402         check_buffer_tree_ref(eb);
4403         spin_unlock(&tree->buffer_lock);
4404         radix_tree_preload_end();
4405
4406         /*
4407          * there is a race where release page may have
4408          * tried to find this extent buffer in the radix
4409          * but failed.  It will tell the VM it is safe to
4410          * reclaim the, and it will clear the page private bit.
4411          * We must make sure to set the page private bit properly
4412          * after the extent buffer is in the radix tree so
4413          * it doesn't get lost
4414          */
4415         SetPageChecked(eb->pages[0]);
4416         for (i = 1; i < num_pages; i++) {
4417                 p = extent_buffer_page(eb, i);
4418                 ClearPageChecked(p);
4419                 unlock_page(p);
4420         }
4421         unlock_page(eb->pages[0]);
4422         return eb;
4423
4424 free_eb:
4425         for (i = 0; i < num_pages; i++) {
4426                 if (eb->pages[i])
4427                         unlock_page(eb->pages[i]);
4428         }
4429
4430         WARN_ON(!atomic_dec_and_test(&eb->refs));
4431         btrfs_release_extent_buffer(eb);
4432         return exists;
4433 }
4434
4435 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4436                                          u64 start, unsigned long len)
4437 {
4438         struct extent_buffer *eb;
4439
4440         rcu_read_lock();
4441         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4442         if (eb && atomic_inc_not_zero(&eb->refs)) {
4443                 rcu_read_unlock();
4444                 mark_extent_buffer_accessed(eb);
4445                 return eb;
4446         }
4447         rcu_read_unlock();
4448
4449         return NULL;
4450 }
4451
4452 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4453 {
4454         struct extent_buffer *eb =
4455                         container_of(head, struct extent_buffer, rcu_head);
4456
4457         __free_extent_buffer(eb);
4458 }
4459
4460 /* Expects to have eb->eb_lock already held */
4461 static int release_extent_buffer(struct extent_buffer *eb)
4462 {
4463         WARN_ON(atomic_read(&eb->refs) == 0);
4464         if (atomic_dec_and_test(&eb->refs)) {
4465                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4466                         spin_unlock(&eb->refs_lock);
4467                 } else {
4468                         struct extent_io_tree *tree = eb->tree;
4469
4470                         spin_unlock(&eb->refs_lock);
4471
4472                         spin_lock(&tree->buffer_lock);
4473                         radix_tree_delete(&tree->buffer,
4474                                           eb->start >> PAGE_CACHE_SHIFT);
4475                         spin_unlock(&tree->buffer_lock);
4476                 }
4477
4478                 /* Should be safe to release our pages at this point */
4479                 btrfs_release_extent_buffer_page(eb, 0);
4480                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4481                 return 1;
4482         }
4483         spin_unlock(&eb->refs_lock);
4484
4485         return 0;
4486 }
4487
4488 void free_extent_buffer(struct extent_buffer *eb)
4489 {
4490         int refs;
4491         int old;
4492         if (!eb)
4493                 return;
4494
4495         while (1) {
4496                 refs = atomic_read(&eb->refs);
4497                 if (refs <= 3)
4498                         break;
4499                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4500                 if (old == refs)
4501                         return;
4502         }
4503
4504         spin_lock(&eb->refs_lock);
4505         if (atomic_read(&eb->refs) == 2 &&
4506             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4507                 atomic_dec(&eb->refs);
4508
4509         if (atomic_read(&eb->refs) == 2 &&
4510             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4511             !extent_buffer_under_io(eb) &&
4512             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4513                 atomic_dec(&eb->refs);
4514
4515         /*
4516          * I know this is terrible, but it's temporary until we stop tracking
4517          * the uptodate bits and such for the extent buffers.
4518          */
4519         release_extent_buffer(eb);
4520 }
4521
4522 void free_extent_buffer_stale(struct extent_buffer *eb)
4523 {
4524         if (!eb)
4525                 return;
4526
4527         spin_lock(&eb->refs_lock);
4528         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4529
4530         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4531             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4532                 atomic_dec(&eb->refs);
4533         release_extent_buffer(eb);
4534 }
4535
4536 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4537 {
4538         unsigned long i;
4539         unsigned long num_pages;
4540         struct page *page;
4541
4542         num_pages = num_extent_pages(eb->start, eb->len);
4543
4544         for (i = 0; i < num_pages; i++) {
4545                 page = extent_buffer_page(eb, i);
4546                 if (!PageDirty(page))
4547                         continue;
4548
4549                 lock_page(page);
4550                 WARN_ON(!PagePrivate(page));
4551
4552                 clear_page_dirty_for_io(page);
4553                 spin_lock_irq(&page->mapping->tree_lock);
4554                 if (!PageDirty(page)) {
4555                         radix_tree_tag_clear(&page->mapping->page_tree,
4556                                                 page_index(page),
4557                                                 PAGECACHE_TAG_DIRTY);
4558                 }
4559                 spin_unlock_irq(&page->mapping->tree_lock);
4560                 ClearPageError(page);
4561                 unlock_page(page);
4562         }
4563         WARN_ON(atomic_read(&eb->refs) == 0);
4564 }
4565
4566 int set_extent_buffer_dirty(struct extent_buffer *eb)
4567 {
4568         unsigned long i;
4569         unsigned long num_pages;
4570         int was_dirty = 0;
4571
4572         check_buffer_tree_ref(eb);
4573
4574         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4575
4576         num_pages = num_extent_pages(eb->start, eb->len);
4577         WARN_ON(atomic_read(&eb->refs) == 0);
4578         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4579
4580         for (i = 0; i < num_pages; i++)
4581                 set_page_dirty(extent_buffer_page(eb, i));
4582         return was_dirty;
4583 }
4584
4585 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4586 {
4587         unsigned long i;
4588         struct page *page;
4589         unsigned long num_pages;
4590
4591         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4592         num_pages = num_extent_pages(eb->start, eb->len);
4593         for (i = 0; i < num_pages; i++) {
4594                 page = extent_buffer_page(eb, i);
4595                 if (page)
4596                         ClearPageUptodate(page);
4597         }
4598         return 0;
4599 }
4600
4601 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4602 {
4603         unsigned long i;
4604         struct page *page;
4605         unsigned long num_pages;
4606
4607         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4608         num_pages = num_extent_pages(eb->start, eb->len);
4609         for (i = 0; i < num_pages; i++) {
4610                 page = extent_buffer_page(eb, i);
4611                 SetPageUptodate(page);
4612         }
4613         return 0;
4614 }
4615
4616 int extent_buffer_uptodate(struct extent_buffer *eb)
4617 {
4618         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4619 }
4620
4621 int read_extent_buffer_pages(struct extent_io_tree *tree,
4622                              struct extent_buffer *eb, u64 start, int wait,
4623                              get_extent_t *get_extent, int mirror_num)
4624 {
4625         unsigned long i;
4626         unsigned long start_i;
4627         struct page *page;
4628         int err;
4629         int ret = 0;
4630         int locked_pages = 0;
4631         int all_uptodate = 1;
4632         unsigned long num_pages;
4633         unsigned long num_reads = 0;
4634         struct bio *bio = NULL;
4635         unsigned long bio_flags = 0;
4636
4637         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4638                 return 0;
4639
4640         if (start) {
4641                 WARN_ON(start < eb->start);
4642                 start_i = (start >> PAGE_CACHE_SHIFT) -
4643                         (eb->start >> PAGE_CACHE_SHIFT);
4644         } else {
4645                 start_i = 0;
4646         }
4647
4648         num_pages = num_extent_pages(eb->start, eb->len);
4649         for (i = start_i; i < num_pages; i++) {
4650                 page = extent_buffer_page(eb, i);
4651                 if (wait == WAIT_NONE) {
4652                         if (!trylock_page(page))
4653                                 goto unlock_exit;
4654                 } else {
4655                         lock_page(page);
4656                 }
4657                 locked_pages++;
4658                 if (!PageUptodate(page)) {
4659                         num_reads++;
4660                         all_uptodate = 0;
4661                 }
4662         }
4663         if (all_uptodate) {
4664                 if (start_i == 0)
4665                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4666                 goto unlock_exit;
4667         }
4668
4669         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4670         eb->read_mirror = 0;
4671         atomic_set(&eb->io_pages, num_reads);
4672         for (i = start_i; i < num_pages; i++) {
4673                 page = extent_buffer_page(eb, i);
4674                 if (!PageUptodate(page)) {
4675                         ClearPageError(page);
4676                         err = __extent_read_full_page(tree, page,
4677                                                       get_extent, &bio,
4678                                                       mirror_num, &bio_flags,
4679                                                       READ | REQ_META);
4680                         if (err)
4681                                 ret = err;
4682                 } else {
4683                         unlock_page(page);
4684                 }
4685         }
4686
4687         if (bio) {
4688                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4689                                      bio_flags);
4690                 if (err)
4691                         return err;
4692         }
4693
4694         if (ret || wait != WAIT_COMPLETE)
4695                 return ret;
4696
4697         for (i = start_i; i < num_pages; i++) {
4698                 page = extent_buffer_page(eb, i);
4699                 wait_on_page_locked(page);
4700                 if (!PageUptodate(page))
4701                         ret = -EIO;
4702         }
4703
4704         return ret;
4705
4706 unlock_exit:
4707         i = start_i;
4708         while (locked_pages > 0) {
4709                 page = extent_buffer_page(eb, i);
4710                 i++;
4711                 unlock_page(page);
4712                 locked_pages--;
4713         }
4714         return ret;
4715 }
4716
4717 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4718                         unsigned long start,
4719                         unsigned long len)
4720 {
4721         size_t cur;
4722         size_t offset;
4723         struct page *page;
4724         char *kaddr;
4725         char *dst = (char *)dstv;
4726         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4727         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4728
4729         WARN_ON(start > eb->len);
4730         WARN_ON(start + len > eb->start + eb->len);
4731
4732         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4733
4734         while (len > 0) {
4735                 page = extent_buffer_page(eb, i);
4736
4737                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4738                 kaddr = page_address(page);
4739                 memcpy(dst, kaddr + offset, cur);
4740
4741                 dst += cur;
4742                 len -= cur;
4743                 offset = 0;
4744                 i++;
4745         }
4746 }
4747
4748 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4749                                unsigned long min_len, char **map,
4750                                unsigned long *map_start,
4751                                unsigned long *map_len)
4752 {
4753         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4754         char *kaddr;
4755         struct page *p;
4756         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4757         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4758         unsigned long end_i = (start_offset + start + min_len - 1) >>
4759                 PAGE_CACHE_SHIFT;
4760
4761         if (i != end_i)
4762                 return -EINVAL;
4763
4764         if (i == 0) {
4765                 offset = start_offset;
4766                 *map_start = 0;
4767         } else {
4768                 offset = 0;
4769                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4770         }
4771
4772         if (start + min_len > eb->len) {
4773                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4774                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4775                        eb->len, start, min_len);
4776                 return -EINVAL;
4777         }
4778
4779         p = extent_buffer_page(eb, i);
4780         kaddr = page_address(p);
4781         *map = kaddr + offset;
4782         *map_len = PAGE_CACHE_SIZE - offset;
4783         return 0;
4784 }
4785
4786 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4787                           unsigned long start,
4788                           unsigned long len)
4789 {
4790         size_t cur;
4791         size_t offset;
4792         struct page *page;
4793         char *kaddr;
4794         char *ptr = (char *)ptrv;
4795         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4796         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4797         int ret = 0;
4798
4799         WARN_ON(start > eb->len);
4800         WARN_ON(start + len > eb->start + eb->len);
4801
4802         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4803
4804         while (len > 0) {
4805                 page = extent_buffer_page(eb, i);
4806
4807                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4808
4809                 kaddr = page_address(page);
4810                 ret = memcmp(ptr, kaddr + offset, cur);
4811                 if (ret)
4812                         break;
4813
4814                 ptr += cur;
4815                 len -= cur;
4816                 offset = 0;
4817                 i++;
4818         }
4819         return ret;
4820 }
4821
4822 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4823                          unsigned long start, unsigned long len)
4824 {
4825         size_t cur;
4826         size_t offset;
4827         struct page *page;
4828         char *kaddr;
4829         char *src = (char *)srcv;
4830         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4831         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4832
4833         WARN_ON(start > eb->len);
4834         WARN_ON(start + len > eb->start + eb->len);
4835
4836         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4837
4838         while (len > 0) {
4839                 page = extent_buffer_page(eb, i);
4840                 WARN_ON(!PageUptodate(page));
4841
4842                 cur = min(len, PAGE_CACHE_SIZE - offset);
4843                 kaddr = page_address(page);
4844                 memcpy(kaddr + offset, src, cur);
4845
4846                 src += cur;
4847                 len -= cur;
4848                 offset = 0;
4849                 i++;
4850         }
4851 }
4852
4853 void memset_extent_buffer(struct extent_buffer *eb, char c,
4854                           unsigned long start, unsigned long len)
4855 {
4856         size_t cur;
4857         size_t offset;
4858         struct page *page;
4859         char *kaddr;
4860         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4861         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4862
4863         WARN_ON(start > eb->len);
4864         WARN_ON(start + len > eb->start + eb->len);
4865
4866         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4867
4868         while (len > 0) {
4869                 page = extent_buffer_page(eb, i);
4870                 WARN_ON(!PageUptodate(page));
4871
4872                 cur = min(len, PAGE_CACHE_SIZE - offset);
4873                 kaddr = page_address(page);
4874                 memset(kaddr + offset, c, cur);
4875
4876                 len -= cur;
4877                 offset = 0;
4878                 i++;
4879         }
4880 }
4881
4882 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4883                         unsigned long dst_offset, unsigned long src_offset,
4884                         unsigned long len)
4885 {
4886         u64 dst_len = dst->len;
4887         size_t cur;
4888         size_t offset;
4889         struct page *page;
4890         char *kaddr;
4891         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4892         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4893
4894         WARN_ON(src->len != dst_len);
4895
4896         offset = (start_offset + dst_offset) &
4897                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4898
4899         while (len > 0) {
4900                 page = extent_buffer_page(dst, i);
4901                 WARN_ON(!PageUptodate(page));
4902
4903                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4904
4905                 kaddr = page_address(page);
4906                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4907
4908                 src_offset += cur;
4909                 len -= cur;
4910                 offset = 0;
4911                 i++;
4912         }
4913 }
4914
4915 static void move_pages(struct page *dst_page, struct page *src_page,
4916                        unsigned long dst_off, unsigned long src_off,
4917                        unsigned long len)
4918 {
4919         char *dst_kaddr = page_address(dst_page);
4920         if (dst_page == src_page) {
4921                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4922         } else {
4923                 char *src_kaddr = page_address(src_page);
4924                 char *p = dst_kaddr + dst_off + len;
4925                 char *s = src_kaddr + src_off + len;
4926
4927                 while (len--)
4928                         *--p = *--s;
4929         }
4930 }
4931
4932 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4933 {
4934         unsigned long distance = (src > dst) ? src - dst : dst - src;
4935         return distance < len;
4936 }
4937
4938 static void copy_pages(struct page *dst_page, struct page *src_page,
4939                        unsigned long dst_off, unsigned long src_off,
4940                        unsigned long len)
4941 {
4942         char *dst_kaddr = page_address(dst_page);
4943         char *src_kaddr;
4944         int must_memmove = 0;
4945
4946         if (dst_page != src_page) {
4947                 src_kaddr = page_address(src_page);
4948         } else {
4949                 src_kaddr = dst_kaddr;
4950                 if (areas_overlap(src_off, dst_off, len))
4951                         must_memmove = 1;
4952         }
4953
4954         if (must_memmove)
4955                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4956         else
4957                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4958 }
4959
4960 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4961                            unsigned long src_offset, unsigned long len)
4962 {
4963         size_t cur;
4964         size_t dst_off_in_page;
4965         size_t src_off_in_page;
4966         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4967         unsigned long dst_i;
4968         unsigned long src_i;
4969
4970         if (src_offset + len > dst->len) {
4971                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4972                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4973                 BUG_ON(1);
4974         }
4975         if (dst_offset + len > dst->len) {
4976                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4977                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4978                 BUG_ON(1);
4979         }
4980
4981         while (len > 0) {
4982                 dst_off_in_page = (start_offset + dst_offset) &
4983                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4984                 src_off_in_page = (start_offset + src_offset) &
4985                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4986
4987                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4988                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4989
4990                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4991                                                src_off_in_page));
4992                 cur = min_t(unsigned long, cur,
4993                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4994
4995                 copy_pages(extent_buffer_page(dst, dst_i),
4996                            extent_buffer_page(dst, src_i),
4997                            dst_off_in_page, src_off_in_page, cur);
4998
4999                 src_offset += cur;
5000                 dst_offset += cur;
5001                 len -= cur;
5002         }
5003 }
5004
5005 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5006                            unsigned long src_offset, unsigned long len)
5007 {
5008         size_t cur;
5009         size_t dst_off_in_page;
5010         size_t src_off_in_page;
5011         unsigned long dst_end = dst_offset + len - 1;
5012         unsigned long src_end = src_offset + len - 1;
5013         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5014         unsigned long dst_i;
5015         unsigned long src_i;
5016
5017         if (src_offset + len > dst->len) {
5018                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5019                        "len %lu len %lu\n", src_offset, len, dst->len);
5020                 BUG_ON(1);
5021         }
5022         if (dst_offset + len > dst->len) {
5023                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5024                        "len %lu len %lu\n", dst_offset, len, dst->len);
5025                 BUG_ON(1);
5026         }
5027         if (dst_offset < src_offset) {
5028                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5029                 return;
5030         }
5031         while (len > 0) {
5032                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5033                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5034
5035                 dst_off_in_page = (start_offset + dst_end) &
5036                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5037                 src_off_in_page = (start_offset + src_end) &
5038                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5039
5040                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5041                 cur = min(cur, dst_off_in_page + 1);
5042                 move_pages(extent_buffer_page(dst, dst_i),
5043                            extent_buffer_page(dst, src_i),
5044                            dst_off_in_page - cur + 1,
5045                            src_off_in_page - cur + 1, cur);
5046
5047                 dst_end -= cur;
5048                 src_end -= cur;
5049                 len -= cur;
5050         }
5051 }
5052
5053 int try_release_extent_buffer(struct page *page)
5054 {
5055         struct extent_buffer *eb;
5056
5057         /*
5058          * We need to make sure noboody is attaching this page to an eb right
5059          * now.
5060          */
5061         spin_lock(&page->mapping->private_lock);
5062         if (!PagePrivate(page)) {
5063                 spin_unlock(&page->mapping->private_lock);
5064                 return 1;
5065         }
5066
5067         eb = (struct extent_buffer *)page->private;
5068         BUG_ON(!eb);
5069
5070         /*
5071          * This is a little awful but should be ok, we need to make sure that
5072          * the eb doesn't disappear out from under us while we're looking at
5073          * this page.
5074          */
5075         spin_lock(&eb->refs_lock);
5076         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5077                 spin_unlock(&eb->refs_lock);
5078                 spin_unlock(&page->mapping->private_lock);
5079                 return 0;
5080         }
5081         spin_unlock(&page->mapping->private_lock);
5082
5083         /*
5084          * If tree ref isn't set then we know the ref on this eb is a real ref,
5085          * so just return, this page will likely be freed soon anyway.
5086          */
5087         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5088                 spin_unlock(&eb->refs_lock);
5089                 return 0;
5090         }
5091
5092         return release_extent_buffer(eb);
5093 }