]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
732                 map_bh(bh, inode->i_sb, map.m_pblk);
733                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735                         set_buffer_defer_completion(bh);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         if (started)
740                 ext4_journal_stop(handle);
741         return ret;
742 }
743
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745                    struct buffer_head *bh, int create)
746 {
747         return _ext4_get_block(inode, iblock, bh,
748                                create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752  * `handle' can be NULL if create is zero
753  */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755                                 ext4_lblk_t block, int create, int *errp)
756 {
757         struct ext4_map_blocks map;
758         struct buffer_head *bh;
759         int fatal = 0, err;
760
761         J_ASSERT(handle != NULL || create == 0);
762
763         map.m_lblk = block;
764         map.m_len = 1;
765         err = ext4_map_blocks(handle, inode, &map,
766                               create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768         /* ensure we send some value back into *errp */
769         *errp = 0;
770
771         if (create && err == 0)
772                 err = -ENOSPC;  /* should never happen */
773         if (err < 0)
774                 *errp = err;
775         if (err <= 0)
776                 return NULL;
777
778         bh = sb_getblk(inode->i_sb, map.m_pblk);
779         if (unlikely(!bh)) {
780                 *errp = -ENOMEM;
781                 return NULL;
782         }
783         if (map.m_flags & EXT4_MAP_NEW) {
784                 J_ASSERT(create != 0);
785                 J_ASSERT(handle != NULL);
786
787                 /*
788                  * Now that we do not always journal data, we should
789                  * keep in mind whether this should always journal the
790                  * new buffer as metadata.  For now, regular file
791                  * writes use ext4_get_block instead, so it's not a
792                  * problem.
793                  */
794                 lock_buffer(bh);
795                 BUFFER_TRACE(bh, "call get_create_access");
796                 fatal = ext4_journal_get_create_access(handle, bh);
797                 if (!fatal && !buffer_uptodate(bh)) {
798                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799                         set_buffer_uptodate(bh);
800                 }
801                 unlock_buffer(bh);
802                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803                 err = ext4_handle_dirty_metadata(handle, inode, bh);
804                 if (!fatal)
805                         fatal = err;
806         } else {
807                 BUFFER_TRACE(bh, "not a new buffer");
808         }
809         if (fatal) {
810                 *errp = fatal;
811                 brelse(bh);
812                 bh = NULL;
813         }
814         return bh;
815 }
816
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818                                ext4_lblk_t block, int create, int *err)
819 {
820         struct buffer_head *bh;
821
822         bh = ext4_getblk(handle, inode, block, create, err);
823         if (!bh)
824                 return bh;
825         if (buffer_uptodate(bh))
826                 return bh;
827         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828         wait_on_buffer(bh);
829         if (buffer_uptodate(bh))
830                 return bh;
831         put_bh(bh);
832         *err = -EIO;
833         return NULL;
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837                            struct buffer_head *head,
838                            unsigned from,
839                            unsigned to,
840                            int *partial,
841                            int (*fn)(handle_t *handle,
842                                      struct buffer_head *bh))
843 {
844         struct buffer_head *bh;
845         unsigned block_start, block_end;
846         unsigned blocksize = head->b_size;
847         int err, ret = 0;
848         struct buffer_head *next;
849
850         for (bh = head, block_start = 0;
851              ret == 0 && (bh != head || !block_start);
852              block_start = block_end, bh = next) {
853                 next = bh->b_this_page;
854                 block_end = block_start + blocksize;
855                 if (block_end <= from || block_start >= to) {
856                         if (partial && !buffer_uptodate(bh))
857                                 *partial = 1;
858                         continue;
859                 }
860                 err = (*fn)(handle, bh);
861                 if (!ret)
862                         ret = err;
863         }
864         return ret;
865 }
866
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892                                 struct buffer_head *bh)
893 {
894         int dirty = buffer_dirty(bh);
895         int ret;
896
897         if (!buffer_mapped(bh) || buffer_freed(bh))
898                 return 0;
899         /*
900          * __block_write_begin() could have dirtied some buffers. Clean
901          * the dirty bit as jbd2_journal_get_write_access() could complain
902          * otherwise about fs integrity issues. Setting of the dirty bit
903          * by __block_write_begin() isn't a real problem here as we clear
904          * the bit before releasing a page lock and thus writeback cannot
905          * ever write the buffer.
906          */
907         if (dirty)
908                 clear_buffer_dirty(bh);
909         ret = ext4_journal_get_write_access(handle, bh);
910         if (!ret && dirty)
911                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912         return ret;
913 }
914
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916                    struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918                             loff_t pos, unsigned len, unsigned flags,
919                             struct page **pagep, void **fsdata)
920 {
921         struct inode *inode = mapping->host;
922         int ret, needed_blocks;
923         handle_t *handle;
924         int retries = 0;
925         struct page *page;
926         pgoff_t index;
927         unsigned from, to;
928
929         trace_ext4_write_begin(inode, pos, len, flags);
930         /*
931          * Reserve one block more for addition to orphan list in case
932          * we allocate blocks but write fails for some reason
933          */
934         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935         index = pos >> PAGE_CACHE_SHIFT;
936         from = pos & (PAGE_CACHE_SIZE - 1);
937         to = from + len;
938
939         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941                                                     flags, pagep);
942                 if (ret < 0)
943                         return ret;
944                 if (ret == 1)
945                         return 0;
946         }
947
948         /*
949          * grab_cache_page_write_begin() can take a long time if the
950          * system is thrashing due to memory pressure, or if the page
951          * is being written back.  So grab it first before we start
952          * the transaction handle.  This also allows us to allocate
953          * the page (if needed) without using GFP_NOFS.
954          */
955 retry_grab:
956         page = grab_cache_page_write_begin(mapping, index, flags);
957         if (!page)
958                 return -ENOMEM;
959         unlock_page(page);
960
961 retry_journal:
962         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963         if (IS_ERR(handle)) {
964                 page_cache_release(page);
965                 return PTR_ERR(handle);
966         }
967
968         lock_page(page);
969         if (page->mapping != mapping) {
970                 /* The page got truncated from under us */
971                 unlock_page(page);
972                 page_cache_release(page);
973                 ext4_journal_stop(handle);
974                 goto retry_grab;
975         }
976         /* In case writeback began while the page was unlocked */
977         wait_for_stable_page(page);
978
979         if (ext4_should_dioread_nolock(inode))
980                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981         else
982                 ret = __block_write_begin(page, pos, len, ext4_get_block);
983
984         if (!ret && ext4_should_journal_data(inode)) {
985                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986                                              from, to, NULL,
987                                              do_journal_get_write_access);
988         }
989
990         if (ret) {
991                 unlock_page(page);
992                 /*
993                  * __block_write_begin may have instantiated a few blocks
994                  * outside i_size.  Trim these off again. Don't need
995                  * i_size_read because we hold i_mutex.
996                  *
997                  * Add inode to orphan list in case we crash before
998                  * truncate finishes
999                  */
1000                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001                         ext4_orphan_add(handle, inode);
1002
1003                 ext4_journal_stop(handle);
1004                 if (pos + len > inode->i_size) {
1005                         ext4_truncate_failed_write(inode);
1006                         /*
1007                          * If truncate failed early the inode might
1008                          * still be on the orphan list; we need to
1009                          * make sure the inode is removed from the
1010                          * orphan list in that case.
1011                          */
1012                         if (inode->i_nlink)
1013                                 ext4_orphan_del(NULL, inode);
1014                 }
1015
1016                 if (ret == -ENOSPC &&
1017                     ext4_should_retry_alloc(inode->i_sb, &retries))
1018                         goto retry_journal;
1019                 page_cache_release(page);
1020                 return ret;
1021         }
1022         *pagep = page;
1023         return ret;
1024 }
1025
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029         int ret;
1030         if (!buffer_mapped(bh) || buffer_freed(bh))
1031                 return 0;
1032         set_buffer_uptodate(bh);
1033         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034         clear_buffer_meta(bh);
1035         clear_buffer_prio(bh);
1036         return ret;
1037 }
1038
1039 /*
1040  * We need to pick up the new inode size which generic_commit_write gave us
1041  * `file' can be NULL - eg, when called from page_symlink().
1042  *
1043  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1044  * buffers are managed internally.
1045  */
1046 static int ext4_write_end(struct file *file,
1047                           struct address_space *mapping,
1048                           loff_t pos, unsigned len, unsigned copied,
1049                           struct page *page, void *fsdata)
1050 {
1051         handle_t *handle = ext4_journal_current_handle();
1052         struct inode *inode = mapping->host;
1053         int ret = 0, ret2;
1054         int i_size_changed = 0;
1055
1056         trace_ext4_write_end(inode, pos, len, copied);
1057         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058                 ret = ext4_jbd2_file_inode(handle, inode);
1059                 if (ret) {
1060                         unlock_page(page);
1061                         page_cache_release(page);
1062                         goto errout;
1063                 }
1064         }
1065
1066         if (ext4_has_inline_data(inode)) {
1067                 ret = ext4_write_inline_data_end(inode, pos, len,
1068                                                  copied, page);
1069                 if (ret < 0)
1070                         goto errout;
1071                 copied = ret;
1072         } else
1073                 copied = block_write_end(file, mapping, pos,
1074                                          len, copied, page, fsdata);
1075
1076         /*
1077          * No need to use i_size_read() here, the i_size
1078          * cannot change under us because we hole i_mutex.
1079          *
1080          * But it's important to update i_size while still holding page lock:
1081          * page writeout could otherwise come in and zero beyond i_size.
1082          */
1083         if (pos + copied > inode->i_size) {
1084                 i_size_write(inode, pos + copied);
1085                 i_size_changed = 1;
1086         }
1087
1088         if (pos + copied > EXT4_I(inode)->i_disksize) {
1089                 /* We need to mark inode dirty even if
1090                  * new_i_size is less that inode->i_size
1091                  * but greater than i_disksize. (hint delalloc)
1092                  */
1093                 ext4_update_i_disksize(inode, (pos + copied));
1094                 i_size_changed = 1;
1095         }
1096         unlock_page(page);
1097         page_cache_release(page);
1098
1099         /*
1100          * Don't mark the inode dirty under page lock. First, it unnecessarily
1101          * makes the holding time of page lock longer. Second, it forces lock
1102          * ordering of page lock and transaction start for journaling
1103          * filesystems.
1104          */
1105         if (i_size_changed)
1106                 ext4_mark_inode_dirty(handle, inode);
1107
1108         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109                 /* if we have allocated more blocks and copied
1110                  * less. We will have blocks allocated outside
1111                  * inode->i_size. So truncate them
1112                  */
1113                 ext4_orphan_add(handle, inode);
1114 errout:
1115         ret2 = ext4_journal_stop(handle);
1116         if (!ret)
1117                 ret = ret2;
1118
1119         if (pos + len > inode->i_size) {
1120                 ext4_truncate_failed_write(inode);
1121                 /*
1122                  * If truncate failed early the inode might still be
1123                  * on the orphan list; we need to make sure the inode
1124                  * is removed from the orphan list in that case.
1125                  */
1126                 if (inode->i_nlink)
1127                         ext4_orphan_del(NULL, inode);
1128         }
1129
1130         return ret ? ret : copied;
1131 }
1132
1133 static int ext4_journalled_write_end(struct file *file,
1134                                      struct address_space *mapping,
1135                                      loff_t pos, unsigned len, unsigned copied,
1136                                      struct page *page, void *fsdata)
1137 {
1138         handle_t *handle = ext4_journal_current_handle();
1139         struct inode *inode = mapping->host;
1140         int ret = 0, ret2;
1141         int partial = 0;
1142         unsigned from, to;
1143         loff_t new_i_size;
1144
1145         trace_ext4_journalled_write_end(inode, pos, len, copied);
1146         from = pos & (PAGE_CACHE_SIZE - 1);
1147         to = from + len;
1148
1149         BUG_ON(!ext4_handle_valid(handle));
1150
1151         if (ext4_has_inline_data(inode))
1152                 copied = ext4_write_inline_data_end(inode, pos, len,
1153                                                     copied, page);
1154         else {
1155                 if (copied < len) {
1156                         if (!PageUptodate(page))
1157                                 copied = 0;
1158                         page_zero_new_buffers(page, from+copied, to);
1159                 }
1160
1161                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162                                              to, &partial, write_end_fn);
1163                 if (!partial)
1164                         SetPageUptodate(page);
1165         }
1166         new_i_size = pos + copied;
1167         if (new_i_size > inode->i_size)
1168                 i_size_write(inode, pos+copied);
1169         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171         if (new_i_size > EXT4_I(inode)->i_disksize) {
1172                 ext4_update_i_disksize(inode, new_i_size);
1173                 ret2 = ext4_mark_inode_dirty(handle, inode);
1174                 if (!ret)
1175                         ret = ret2;
1176         }
1177
1178         unlock_page(page);
1179         page_cache_release(page);
1180         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181                 /* if we have allocated more blocks and copied
1182                  * less. We will have blocks allocated outside
1183                  * inode->i_size. So truncate them
1184                  */
1185                 ext4_orphan_add(handle, inode);
1186
1187         ret2 = ext4_journal_stop(handle);
1188         if (!ret)
1189                 ret = ret2;
1190         if (pos + len > inode->i_size) {
1191                 ext4_truncate_failed_write(inode);
1192                 /*
1193                  * If truncate failed early the inode might still be
1194                  * on the orphan list; we need to make sure the inode
1195                  * is removed from the orphan list in that case.
1196                  */
1197                 if (inode->i_nlink)
1198                         ext4_orphan_del(NULL, inode);
1199         }
1200
1201         return ret ? ret : copied;
1202 }
1203
1204 /*
1205  * Reserve a metadata for a single block located at lblock
1206  */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209         int retries = 0;
1210         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211         struct ext4_inode_info *ei = EXT4_I(inode);
1212         unsigned int md_needed;
1213         ext4_lblk_t save_last_lblock;
1214         int save_len;
1215
1216         /*
1217          * recalculate the amount of metadata blocks to reserve
1218          * in order to allocate nrblocks
1219          * worse case is one extent per block
1220          */
1221 repeat:
1222         spin_lock(&ei->i_block_reservation_lock);
1223         /*
1224          * ext4_calc_metadata_amount() has side effects, which we have
1225          * to be prepared undo if we fail to claim space.
1226          */
1227         save_len = ei->i_da_metadata_calc_len;
1228         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1229         md_needed = EXT4_NUM_B2C(sbi,
1230                                  ext4_calc_metadata_amount(inode, lblock));
1231         trace_ext4_da_reserve_space(inode, md_needed);
1232
1233         /*
1234          * We do still charge estimated metadata to the sb though;
1235          * we cannot afford to run out of free blocks.
1236          */
1237         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1238                 ei->i_da_metadata_calc_len = save_len;
1239                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1240                 spin_unlock(&ei->i_block_reservation_lock);
1241                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242                         cond_resched();
1243                         goto repeat;
1244                 }
1245                 return -ENOSPC;
1246         }
1247         ei->i_reserved_meta_blocks += md_needed;
1248         spin_unlock(&ei->i_block_reservation_lock);
1249
1250         return 0;       /* success */
1251 }
1252
1253 /*
1254  * Reserve a single cluster located at lblock
1255  */
1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         int retries = 0;
1259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260         struct ext4_inode_info *ei = EXT4_I(inode);
1261         unsigned int md_needed;
1262         int ret;
1263         ext4_lblk_t save_last_lblock;
1264         int save_len;
1265
1266         /*
1267          * We will charge metadata quota at writeout time; this saves
1268          * us from metadata over-estimation, though we may go over by
1269          * a small amount in the end.  Here we just reserve for data.
1270          */
1271         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272         if (ret)
1273                 return ret;
1274
1275         /*
1276          * recalculate the amount of metadata blocks to reserve
1277          * in order to allocate nrblocks
1278          * worse case is one extent per block
1279          */
1280 repeat:
1281         spin_lock(&ei->i_block_reservation_lock);
1282         /*
1283          * ext4_calc_metadata_amount() has side effects, which we have
1284          * to be prepared undo if we fail to claim space.
1285          */
1286         save_len = ei->i_da_metadata_calc_len;
1287         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288         md_needed = EXT4_NUM_B2C(sbi,
1289                                  ext4_calc_metadata_amount(inode, lblock));
1290         trace_ext4_da_reserve_space(inode, md_needed);
1291
1292         /*
1293          * We do still charge estimated metadata to the sb though;
1294          * we cannot afford to run out of free blocks.
1295          */
1296         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1297                 ei->i_da_metadata_calc_len = save_len;
1298                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299                 spin_unlock(&ei->i_block_reservation_lock);
1300                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1301                         cond_resched();
1302                         goto repeat;
1303                 }
1304                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305                 return -ENOSPC;
1306         }
1307         ei->i_reserved_data_blocks++;
1308         ei->i_reserved_meta_blocks += md_needed;
1309         spin_unlock(&ei->i_block_reservation_lock);
1310
1311         return 0;       /* success */
1312 }
1313
1314 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 {
1316         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317         struct ext4_inode_info *ei = EXT4_I(inode);
1318
1319         if (!to_free)
1320                 return;         /* Nothing to release, exit */
1321
1322         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323
1324         trace_ext4_da_release_space(inode, to_free);
1325         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326                 /*
1327                  * if there aren't enough reserved blocks, then the
1328                  * counter is messed up somewhere.  Since this
1329                  * function is called from invalidate page, it's
1330                  * harmless to return without any action.
1331                  */
1332                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1333                          "ino %lu, to_free %d with only %d reserved "
1334                          "data blocks", inode->i_ino, to_free,
1335                          ei->i_reserved_data_blocks);
1336                 WARN_ON(1);
1337                 to_free = ei->i_reserved_data_blocks;
1338         }
1339         ei->i_reserved_data_blocks -= to_free;
1340
1341         if (ei->i_reserved_data_blocks == 0) {
1342                 /*
1343                  * We can release all of the reserved metadata blocks
1344                  * only when we have written all of the delayed
1345                  * allocation blocks.
1346                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1347                  * i_reserved_data_blocks, etc. refer to number of clusters.
1348                  */
1349                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1350                                    ei->i_reserved_meta_blocks);
1351                 ei->i_reserved_meta_blocks = 0;
1352                 ei->i_da_metadata_calc_len = 0;
1353         }
1354
1355         /* update fs dirty data blocks counter */
1356         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357
1358         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359
1360         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362
1363 static void ext4_da_page_release_reservation(struct page *page,
1364                                              unsigned int offset,
1365                                              unsigned int length)
1366 {
1367         int to_release = 0;
1368         struct buffer_head *head, *bh;
1369         unsigned int curr_off = 0;
1370         struct inode *inode = page->mapping->host;
1371         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372         unsigned int stop = offset + length;
1373         int num_clusters;
1374         ext4_fsblk_t lblk;
1375
1376         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377
1378         head = page_buffers(page);
1379         bh = head;
1380         do {
1381                 unsigned int next_off = curr_off + bh->b_size;
1382
1383                 if (next_off > stop)
1384                         break;
1385
1386                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387                         to_release++;
1388                         clear_buffer_delay(bh);
1389                 }
1390                 curr_off = next_off;
1391         } while ((bh = bh->b_this_page) != head);
1392
1393         if (to_release) {
1394                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395                 ext4_es_remove_extent(inode, lblk, to_release);
1396         }
1397
1398         /* If we have released all the blocks belonging to a cluster, then we
1399          * need to release the reserved space for that cluster. */
1400         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401         while (num_clusters > 0) {
1402                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403                         ((num_clusters - 1) << sbi->s_cluster_bits);
1404                 if (sbi->s_cluster_ratio == 1 ||
1405                     !ext4_find_delalloc_cluster(inode, lblk))
1406                         ext4_da_release_space(inode, 1);
1407
1408                 num_clusters--;
1409         }
1410 }
1411
1412 /*
1413  * Delayed allocation stuff
1414  */
1415
1416 struct mpage_da_data {
1417         struct inode *inode;
1418         struct writeback_control *wbc;
1419
1420         pgoff_t first_page;     /* The first page to write */
1421         pgoff_t next_page;      /* Current page to examine */
1422         pgoff_t last_page;      /* Last page to examine */
1423         /*
1424          * Extent to map - this can be after first_page because that can be
1425          * fully mapped. We somewhat abuse m_flags to store whether the extent
1426          * is delalloc or unwritten.
1427          */
1428         struct ext4_map_blocks map;
1429         struct ext4_io_submit io_submit;        /* IO submission data */
1430 };
1431
1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433                                        bool invalidate)
1434 {
1435         int nr_pages, i;
1436         pgoff_t index, end;
1437         struct pagevec pvec;
1438         struct inode *inode = mpd->inode;
1439         struct address_space *mapping = inode->i_mapping;
1440
1441         /* This is necessary when next_page == 0. */
1442         if (mpd->first_page >= mpd->next_page)
1443                 return;
1444
1445         index = mpd->first_page;
1446         end   = mpd->next_page - 1;
1447         if (invalidate) {
1448                 ext4_lblk_t start, last;
1449                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451                 ext4_es_remove_extent(inode, start, last - start + 1);
1452         }
1453
1454         pagevec_init(&pvec, 0);
1455         while (index <= end) {
1456                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457                 if (nr_pages == 0)
1458                         break;
1459                 for (i = 0; i < nr_pages; i++) {
1460                         struct page *page = pvec.pages[i];
1461                         if (page->index > end)
1462                                 break;
1463                         BUG_ON(!PageLocked(page));
1464                         BUG_ON(PageWriteback(page));
1465                         if (invalidate) {
1466                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467                                 ClearPageUptodate(page);
1468                         }
1469                         unlock_page(page);
1470                 }
1471                 index = pvec.pages[nr_pages - 1]->index + 1;
1472                 pagevec_release(&pvec);
1473         }
1474 }
1475
1476 static void ext4_print_free_blocks(struct inode *inode)
1477 {
1478         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479         struct super_block *sb = inode->i_sb;
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1483                EXT4_C2B(EXT4_SB(inode->i_sb),
1484                         ext4_count_free_clusters(sb)));
1485         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1487                (long long) EXT4_C2B(EXT4_SB(sb),
1488                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1489         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1490                (long long) EXT4_C2B(EXT4_SB(sb),
1491                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1492         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1494                  ei->i_reserved_data_blocks);
1495         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1496                ei->i_reserved_meta_blocks);
1497         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498                ei->i_allocated_meta_blocks);
1499         return;
1500 }
1501
1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 {
1504         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 }
1506
1507 /*
1508  * This function is grabs code from the very beginning of
1509  * ext4_map_blocks, but assumes that the caller is from delayed write
1510  * time. This function looks up the requested blocks and sets the
1511  * buffer delay bit under the protection of i_data_sem.
1512  */
1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514                               struct ext4_map_blocks *map,
1515                               struct buffer_head *bh)
1516 {
1517         struct extent_status es;
1518         int retval;
1519         sector_t invalid_block = ~((sector_t) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521         struct ext4_map_blocks orig_map;
1522
1523         memcpy(&orig_map, map, sizeof(*map));
1524 #endif
1525
1526         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527                 invalid_block = ~0;
1528
1529         map->m_flags = 0;
1530         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531                   "logical block %lu\n", inode->i_ino, map->m_len,
1532                   (unsigned long) map->m_lblk);
1533
1534         /* Lookup extent status tree firstly */
1535         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536                 ext4_es_lru_add(inode);
1537                 if (ext4_es_is_hole(&es)) {
1538                         retval = 0;
1539                         down_read((&EXT4_I(inode)->i_data_sem));
1540                         goto add_delayed;
1541                 }
1542
1543                 /*
1544                  * Delayed extent could be allocated by fallocate.
1545                  * So we need to check it.
1546                  */
1547                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548                         map_bh(bh, inode->i_sb, invalid_block);
1549                         set_buffer_new(bh);
1550                         set_buffer_delay(bh);
1551                         return 0;
1552                 }
1553
1554                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555                 retval = es.es_len - (iblock - es.es_lblk);
1556                 if (retval > map->m_len)
1557                         retval = map->m_len;
1558                 map->m_len = retval;
1559                 if (ext4_es_is_written(&es))
1560                         map->m_flags |= EXT4_MAP_MAPPED;
1561                 else if (ext4_es_is_unwritten(&es))
1562                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1563                 else
1564                         BUG_ON(1);
1565
1566 #ifdef ES_AGGRESSIVE_TEST
1567                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569                 return retval;
1570         }
1571
1572         /*
1573          * Try to see if we can get the block without requesting a new
1574          * file system block.
1575          */
1576         down_read((&EXT4_I(inode)->i_data_sem));
1577         if (ext4_has_inline_data(inode)) {
1578                 /*
1579                  * We will soon create blocks for this page, and let
1580                  * us pretend as if the blocks aren't allocated yet.
1581                  * In case of clusters, we have to handle the work
1582                  * of mapping from cluster so that the reserved space
1583                  * is calculated properly.
1584                  */
1585                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1587                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588                 retval = 0;
1589         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590                 retval = ext4_ext_map_blocks(NULL, inode, map,
1591                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592         else
1593                 retval = ext4_ind_map_blocks(NULL, inode, map,
1594                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595
1596 add_delayed:
1597         if (retval == 0) {
1598                 int ret;
1599                 /*
1600                  * XXX: __block_prepare_write() unmaps passed block,
1601                  * is it OK?
1602                  */
1603                 /*
1604                  * If the block was allocated from previously allocated cluster,
1605                  * then we don't need to reserve it again. However we still need
1606                  * to reserve metadata for every block we're going to write.
1607                  */
1608                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609                         ret = ext4_da_reserve_space(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 } else {
1616                         ret = ext4_da_reserve_metadata(inode, iblock);
1617                         if (ret) {
1618                                 /* not enough space to reserve */
1619                                 retval = ret;
1620                                 goto out_unlock;
1621                         }
1622                 }
1623
1624                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625                                             ~0, EXTENT_STATUS_DELAYED);
1626                 if (ret) {
1627                         retval = ret;
1628                         goto out_unlock;
1629                 }
1630
1631                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632                  * and it should not appear on the bh->b_state.
1633                  */
1634                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636                 map_bh(bh, inode->i_sb, invalid_block);
1637                 set_buffer_new(bh);
1638                 set_buffer_delay(bh);
1639         } else if (retval > 0) {
1640                 int ret;
1641                 unsigned int status;
1642
1643                 if (unlikely(retval != map->m_len)) {
1644                         ext4_warning(inode->i_sb,
1645                                      "ES len assertion failed for inode "
1646                                      "%lu: retval %d != map->m_len %d",
1647                                      inode->i_ino, retval, map->m_len);
1648                         WARN_ON(1);
1649                 }
1650
1651                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654                                             map->m_pblk, status);
1655                 if (ret != 0)
1656                         retval = ret;
1657         }
1658
1659 out_unlock:
1660         up_read((&EXT4_I(inode)->i_data_sem));
1661
1662         return retval;
1663 }
1664
1665 /*
1666  * This is a special get_blocks_t callback which is used by
1667  * ext4_da_write_begin().  It will either return mapped block or
1668  * reserve space for a single block.
1669  *
1670  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671  * We also have b_blocknr = -1 and b_bdev initialized properly
1672  *
1673  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675  * initialized properly.
1676  */
1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678                            struct buffer_head *bh, int create)
1679 {
1680         struct ext4_map_blocks map;
1681         int ret = 0;
1682
1683         BUG_ON(create == 0);
1684         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686         map.m_lblk = iblock;
1687         map.m_len = 1;
1688
1689         /*
1690          * first, we need to know whether the block is allocated already
1691          * preallocated blocks are unmapped but should treated
1692          * the same as allocated blocks.
1693          */
1694         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695         if (ret <= 0)
1696                 return ret;
1697
1698         map_bh(bh, inode->i_sb, map.m_pblk);
1699         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701         if (buffer_unwritten(bh)) {
1702                 /* A delayed write to unwritten bh should be marked
1703                  * new and mapped.  Mapped ensures that we don't do
1704                  * get_block multiple times when we write to the same
1705                  * offset and new ensures that we do proper zero out
1706                  * for partial write.
1707                  */
1708                 set_buffer_new(bh);
1709                 set_buffer_mapped(bh);
1710         }
1711         return 0;
1712 }
1713
1714 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716         get_bh(bh);
1717         return 0;
1718 }
1719
1720 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 {
1722         put_bh(bh);
1723         return 0;
1724 }
1725
1726 static int __ext4_journalled_writepage(struct page *page,
1727                                        unsigned int len)
1728 {
1729         struct address_space *mapping = page->mapping;
1730         struct inode *inode = mapping->host;
1731         struct buffer_head *page_bufs = NULL;
1732         handle_t *handle = NULL;
1733         int ret = 0, err = 0;
1734         int inline_data = ext4_has_inline_data(inode);
1735         struct buffer_head *inode_bh = NULL;
1736
1737         ClearPageChecked(page);
1738
1739         if (inline_data) {
1740                 BUG_ON(page->index != 0);
1741                 BUG_ON(len > ext4_get_max_inline_size(inode));
1742                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743                 if (inode_bh == NULL)
1744                         goto out;
1745         } else {
1746                 page_bufs = page_buffers(page);
1747                 if (!page_bufs) {
1748                         BUG();
1749                         goto out;
1750                 }
1751                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752                                        NULL, bget_one);
1753         }
1754         /* As soon as we unlock the page, it can go away, but we have
1755          * references to buffers so we are safe */
1756         unlock_page(page);
1757
1758         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759                                     ext4_writepage_trans_blocks(inode));
1760         if (IS_ERR(handle)) {
1761                 ret = PTR_ERR(handle);
1762                 goto out;
1763         }
1764
1765         BUG_ON(!ext4_handle_valid(handle));
1766
1767         if (inline_data) {
1768                 ret = ext4_journal_get_write_access(handle, inode_bh);
1769
1770                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772         } else {
1773                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774                                              do_journal_get_write_access);
1775
1776                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777                                              write_end_fn);
1778         }
1779         if (ret == 0)
1780                 ret = err;
1781         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1782         err = ext4_journal_stop(handle);
1783         if (!ret)
1784                 ret = err;
1785
1786         if (!ext4_has_inline_data(inode))
1787                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788                                        NULL, bput_one);
1789         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1790 out:
1791         brelse(inode_bh);
1792         return ret;
1793 }
1794
1795 /*
1796  * Note that we don't need to start a transaction unless we're journaling data
1797  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798  * need to file the inode to the transaction's list in ordered mode because if
1799  * we are writing back data added by write(), the inode is already there and if
1800  * we are writing back data modified via mmap(), no one guarantees in which
1801  * transaction the data will hit the disk. In case we are journaling data, we
1802  * cannot start transaction directly because transaction start ranks above page
1803  * lock so we have to do some magic.
1804  *
1805  * This function can get called via...
1806  *   - ext4_writepages after taking page lock (have journal handle)
1807  *   - journal_submit_inode_data_buffers (no journal handle)
1808  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809  *   - grab_page_cache when doing write_begin (have journal handle)
1810  *
1811  * We don't do any block allocation in this function. If we have page with
1812  * multiple blocks we need to write those buffer_heads that are mapped. This
1813  * is important for mmaped based write. So if we do with blocksize 1K
1814  * truncate(f, 1024);
1815  * a = mmap(f, 0, 4096);
1816  * a[0] = 'a';
1817  * truncate(f, 4096);
1818  * we have in the page first buffer_head mapped via page_mkwrite call back
1819  * but other buffer_heads would be unmapped but dirty (dirty done via the
1820  * do_wp_page). So writepage should write the first block. If we modify
1821  * the mmap area beyond 1024 we will again get a page_fault and the
1822  * page_mkwrite callback will do the block allocation and mark the
1823  * buffer_heads mapped.
1824  *
1825  * We redirty the page if we have any buffer_heads that is either delay or
1826  * unwritten in the page.
1827  *
1828  * We can get recursively called as show below.
1829  *
1830  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831  *              ext4_writepage()
1832  *
1833  * But since we don't do any block allocation we should not deadlock.
1834  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835  */
1836 static int ext4_writepage(struct page *page,
1837                           struct writeback_control *wbc)
1838 {
1839         int ret = 0;
1840         loff_t size;
1841         unsigned int len;
1842         struct buffer_head *page_bufs = NULL;
1843         struct inode *inode = page->mapping->host;
1844         struct ext4_io_submit io_submit;
1845
1846         trace_ext4_writepage(page);
1847         size = i_size_read(inode);
1848         if (page->index == size >> PAGE_CACHE_SHIFT)
1849                 len = size & ~PAGE_CACHE_MASK;
1850         else
1851                 len = PAGE_CACHE_SIZE;
1852
1853         page_bufs = page_buffers(page);
1854         /*
1855          * We cannot do block allocation or other extent handling in this
1856          * function. If there are buffers needing that, we have to redirty
1857          * the page. But we may reach here when we do a journal commit via
1858          * journal_submit_inode_data_buffers() and in that case we must write
1859          * allocated buffers to achieve data=ordered mode guarantees.
1860          */
1861         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862                                    ext4_bh_delay_or_unwritten)) {
1863                 redirty_page_for_writepage(wbc, page);
1864                 if (current->flags & PF_MEMALLOC) {
1865                         /*
1866                          * For memory cleaning there's no point in writing only
1867                          * some buffers. So just bail out. Warn if we came here
1868                          * from direct reclaim.
1869                          */
1870                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871                                                         == PF_MEMALLOC);
1872                         unlock_page(page);
1873                         return 0;
1874                 }
1875         }
1876
1877         if (PageChecked(page) && ext4_should_journal_data(inode))
1878                 /*
1879                  * It's mmapped pagecache.  Add buffers and journal it.  There
1880                  * doesn't seem much point in redirtying the page here.
1881                  */
1882                 return __ext4_journalled_writepage(page, len);
1883
1884         ext4_io_submit_init(&io_submit, wbc);
1885         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886         if (!io_submit.io_end) {
1887                 redirty_page_for_writepage(wbc, page);
1888                 unlock_page(page);
1889                 return -ENOMEM;
1890         }
1891         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892         ext4_io_submit(&io_submit);
1893         /* Drop io_end reference we got from init */
1894         ext4_put_io_end_defer(io_submit.io_end);
1895         return ret;
1896 }
1897
1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899 {
1900         int len;
1901         loff_t size = i_size_read(mpd->inode);
1902         int err;
1903
1904         BUG_ON(page->index != mpd->first_page);
1905         if (page->index == size >> PAGE_CACHE_SHIFT)
1906                 len = size & ~PAGE_CACHE_MASK;
1907         else
1908                 len = PAGE_CACHE_SIZE;
1909         clear_page_dirty_for_io(page);
1910         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911         if (!err)
1912                 mpd->wbc->nr_to_write--;
1913         mpd->first_page++;
1914
1915         return err;
1916 }
1917
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919
1920 /*
1921  * mballoc gives us at most this number of blocks...
1922  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923  * The rest of mballoc seems to handle chunks up to full group size.
1924  */
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926
1927 /*
1928  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929  *
1930  * @mpd - extent of blocks
1931  * @lblk - logical number of the block in the file
1932  * @bh - buffer head we want to add to the extent
1933  *
1934  * The function is used to collect contig. blocks in the same state. If the
1935  * buffer doesn't require mapping for writeback and we haven't started the
1936  * extent of buffers to map yet, the function returns 'true' immediately - the
1937  * caller can write the buffer right away. Otherwise the function returns true
1938  * if the block has been added to the extent, false if the block couldn't be
1939  * added.
1940  */
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942                                    struct buffer_head *bh)
1943 {
1944         struct ext4_map_blocks *map = &mpd->map;
1945
1946         /* Buffer that doesn't need mapping for writeback? */
1947         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949                 /* So far no extent to map => we write the buffer right away */
1950                 if (map->m_len == 0)
1951                         return true;
1952                 return false;
1953         }
1954
1955         /* First block in the extent? */
1956         if (map->m_len == 0) {
1957                 map->m_lblk = lblk;
1958                 map->m_len = 1;
1959                 map->m_flags = bh->b_state & BH_FLAGS;
1960                 return true;
1961         }
1962
1963         /* Don't go larger than mballoc is willing to allocate */
1964         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965                 return false;
1966
1967         /* Can we merge the block to our big extent? */
1968         if (lblk == map->m_lblk + map->m_len &&
1969             (bh->b_state & BH_FLAGS) == map->m_flags) {
1970                 map->m_len++;
1971                 return true;
1972         }
1973         return false;
1974 }
1975
1976 /*
1977  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978  *
1979  * @mpd - extent of blocks for mapping
1980  * @head - the first buffer in the page
1981  * @bh - buffer we should start processing from
1982  * @lblk - logical number of the block in the file corresponding to @bh
1983  *
1984  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985  * the page for IO if all buffers in this page were mapped and there's no
1986  * accumulated extent of buffers to map or add buffers in the page to the
1987  * extent of buffers to map. The function returns 1 if the caller can continue
1988  * by processing the next page, 0 if it should stop adding buffers to the
1989  * extent to map because we cannot extend it anymore. It can also return value
1990  * < 0 in case of error during IO submission.
1991  */
1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993                                    struct buffer_head *head,
1994                                    struct buffer_head *bh,
1995                                    ext4_lblk_t lblk)
1996 {
1997         struct inode *inode = mpd->inode;
1998         int err;
1999         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000                                                         >> inode->i_blkbits;
2001
2002         do {
2003                 BUG_ON(buffer_locked(bh));
2004
2005                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2006                         /* Found extent to map? */
2007                         if (mpd->map.m_len)
2008                                 return 0;
2009                         /* Everything mapped so far and we hit EOF */
2010                         break;
2011                 }
2012         } while (lblk++, (bh = bh->b_this_page) != head);
2013         /* So far everything mapped? Submit the page for IO. */
2014         if (mpd->map.m_len == 0) {
2015                 err = mpage_submit_page(mpd, head->b_page);
2016                 if (err < 0)
2017                         return err;
2018         }
2019         return lblk < blocks;
2020 }
2021
2022 /*
2023  * mpage_map_buffers - update buffers corresponding to changed extent and
2024  *                     submit fully mapped pages for IO
2025  *
2026  * @mpd - description of extent to map, on return next extent to map
2027  *
2028  * Scan buffers corresponding to changed extent (we expect corresponding pages
2029  * to be already locked) and update buffer state according to new extent state.
2030  * We map delalloc buffers to their physical location, clear unwritten bits,
2031  * and mark buffers as uninit when we perform writes to uninitialized extents
2032  * and do extent conversion after IO is finished. If the last page is not fully
2033  * mapped, we update @map to the next extent in the last page that needs
2034  * mapping. Otherwise we submit the page for IO.
2035  */
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 {
2038         struct pagevec pvec;
2039         int nr_pages, i;
2040         struct inode *inode = mpd->inode;
2041         struct buffer_head *head, *bh;
2042         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2043         pgoff_t start, end;
2044         ext4_lblk_t lblk;
2045         sector_t pblock;
2046         int err;
2047
2048         start = mpd->map.m_lblk >> bpp_bits;
2049         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050         lblk = start << bpp_bits;
2051         pblock = mpd->map.m_pblk;
2052
2053         pagevec_init(&pvec, 0);
2054         while (start <= end) {
2055                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056                                           PAGEVEC_SIZE);
2057                 if (nr_pages == 0)
2058                         break;
2059                 for (i = 0; i < nr_pages; i++) {
2060                         struct page *page = pvec.pages[i];
2061
2062                         if (page->index > end)
2063                                 break;
2064                         /* Up to 'end' pages must be contiguous */
2065                         BUG_ON(page->index != start);
2066                         bh = head = page_buffers(page);
2067                         do {
2068                                 if (lblk < mpd->map.m_lblk)
2069                                         continue;
2070                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071                                         /*
2072                                          * Buffer after end of mapped extent.
2073                                          * Find next buffer in the page to map.
2074                                          */
2075                                         mpd->map.m_len = 0;
2076                                         mpd->map.m_flags = 0;
2077                                         /*
2078                                          * FIXME: If dioread_nolock supports
2079                                          * blocksize < pagesize, we need to make
2080                                          * sure we add size mapped so far to
2081                                          * io_end->size as the following call
2082                                          * can submit the page for IO.
2083                                          */
2084                                         err = mpage_process_page_bufs(mpd, head,
2085                                                                       bh, lblk);
2086                                         pagevec_release(&pvec);
2087                                         if (err > 0)
2088                                                 err = 0;
2089                                         return err;
2090                                 }
2091                                 if (buffer_delay(bh)) {
2092                                         clear_buffer_delay(bh);
2093                                         bh->b_blocknr = pblock++;
2094                                 }
2095                                 clear_buffer_unwritten(bh);
2096                         } while (lblk++, (bh = bh->b_this_page) != head);
2097
2098                         /*
2099                          * FIXME: This is going to break if dioread_nolock
2100                          * supports blocksize < pagesize as we will try to
2101                          * convert potentially unmapped parts of inode.
2102                          */
2103                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104                         /* Page fully mapped - let IO run! */
2105                         err = mpage_submit_page(mpd, page);
2106                         if (err < 0) {
2107                                 pagevec_release(&pvec);
2108                                 return err;
2109                         }
2110                         start++;
2111                 }
2112                 pagevec_release(&pvec);
2113         }
2114         /* Extent fully mapped and matches with page boundary. We are done. */
2115         mpd->map.m_len = 0;
2116         mpd->map.m_flags = 0;
2117         return 0;
2118 }
2119
2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 {
2122         struct inode *inode = mpd->inode;
2123         struct ext4_map_blocks *map = &mpd->map;
2124         int get_blocks_flags;
2125         int err;
2126
2127         trace_ext4_da_write_pages_extent(inode, map);
2128         /*
2129          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130          * to convert an uninitialized extent to be initialized (in the case
2131          * where we have written into one or more preallocated blocks).  It is
2132          * possible that we're going to need more metadata blocks than
2133          * previously reserved. However we must not fail because we're in
2134          * writeback and there is nothing we can do about it so it might result
2135          * in data loss.  So use reserved blocks to allocate metadata if
2136          * possible.
2137          *
2138          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139          * in question are delalloc blocks.  This affects functions in many
2140          * different parts of the allocation call path.  This flag exists
2141          * primarily because we don't want to change *many* call functions, so
2142          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143          * once the inode's allocation semaphore is taken.
2144          */
2145         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147         if (ext4_should_dioread_nolock(inode))
2148                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149         if (map->m_flags & (1 << BH_Delay))
2150                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151
2152         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153         if (err < 0)
2154                 return err;
2155         if (map->m_flags & EXT4_MAP_UNINIT) {
2156                 if (!mpd->io_submit.io_end->handle &&
2157                     ext4_handle_valid(handle)) {
2158                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159                         handle->h_rsv_handle = NULL;
2160                 }
2161                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2162         }
2163
2164         BUG_ON(map->m_len == 0);
2165         if (map->m_flags & EXT4_MAP_NEW) {
2166                 struct block_device *bdev = inode->i_sb->s_bdev;
2167                 int i;
2168
2169                 for (i = 0; i < map->m_len; i++)
2170                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2171         }
2172         return 0;
2173 }
2174
2175 /*
2176  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177  *                               mpd->len and submit pages underlying it for IO
2178  *
2179  * @handle - handle for journal operations
2180  * @mpd - extent to map
2181  *
2182  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184  * them to initialized or split the described range from larger unwritten
2185  * extent. Note that we need not map all the described range since allocation
2186  * can return less blocks or the range is covered by more unwritten extents. We
2187  * cannot map more because we are limited by reserved transaction credits. On
2188  * the other hand we always make sure that the last touched page is fully
2189  * mapped so that it can be written out (and thus forward progress is
2190  * guaranteed). After mapping we submit all mapped pages for IO.
2191  */
2192 static int mpage_map_and_submit_extent(handle_t *handle,
2193                                        struct mpage_da_data *mpd,
2194                                        bool *give_up_on_write)
2195 {
2196         struct inode *inode = mpd->inode;
2197         struct ext4_map_blocks *map = &mpd->map;
2198         int err;
2199         loff_t disksize;
2200
2201         mpd->io_submit.io_end->offset =
2202                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2203         do {
2204                 err = mpage_map_one_extent(handle, mpd);
2205                 if (err < 0) {
2206                         struct super_block *sb = inode->i_sb;
2207
2208                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2209                                 goto invalidate_dirty_pages;
2210                         /*
2211                          * Let the uper layers retry transient errors.
2212                          * In the case of ENOSPC, if ext4_count_free_blocks()
2213                          * is non-zero, a commit should free up blocks.
2214                          */
2215                         if ((err == -ENOMEM) ||
2216                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2217                                 return err;
2218                         ext4_msg(sb, KERN_CRIT,
2219                                  "Delayed block allocation failed for "
2220                                  "inode %lu at logical offset %llu with"
2221                                  " max blocks %u with error %d",
2222                                  inode->i_ino,
2223                                  (unsigned long long)map->m_lblk,
2224                                  (unsigned)map->m_len, -err);
2225                         ext4_msg(sb, KERN_CRIT,
2226                                  "This should not happen!! Data will "
2227                                  "be lost\n");
2228                         if (err == -ENOSPC)
2229                                 ext4_print_free_blocks(inode);
2230                 invalidate_dirty_pages:
2231                         *give_up_on_write = true;
2232                         return err;
2233                 }
2234                 /*
2235                  * Update buffer state, submit mapped pages, and get us new
2236                  * extent to map
2237                  */
2238                 err = mpage_map_and_submit_buffers(mpd);
2239                 if (err < 0)
2240                         return err;
2241         } while (map->m_len);
2242
2243         /* Update on-disk size after IO is submitted */
2244         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2245         if (disksize > EXT4_I(inode)->i_disksize) {
2246                 int err2;
2247
2248                 ext4_wb_update_i_disksize(inode, disksize);
2249                 err2 = ext4_mark_inode_dirty(handle, inode);
2250                 if (err2)
2251                         ext4_error(inode->i_sb,
2252                                    "Failed to mark inode %lu dirty",
2253                                    inode->i_ino);
2254                 if (!err)
2255                         err = err2;
2256         }
2257         return err;
2258 }
2259
2260 /*
2261  * Calculate the total number of credits to reserve for one writepages
2262  * iteration. This is called from ext4_writepages(). We map an extent of
2263  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2264  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2265  * bpp - 1 blocks in bpp different extents.
2266  */
2267 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2268 {
2269         int bpp = ext4_journal_blocks_per_page(inode);
2270
2271         return ext4_meta_trans_blocks(inode,
2272                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2273 }
2274
2275 /*
2276  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2277  *                               and underlying extent to map
2278  *
2279  * @mpd - where to look for pages
2280  *
2281  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2282  * IO immediately. When we find a page which isn't mapped we start accumulating
2283  * extent of buffers underlying these pages that needs mapping (formed by
2284  * either delayed or unwritten buffers). We also lock the pages containing
2285  * these buffers. The extent found is returned in @mpd structure (starting at
2286  * mpd->lblk with length mpd->len blocks).
2287  *
2288  * Note that this function can attach bios to one io_end structure which are
2289  * neither logically nor physically contiguous. Although it may seem as an
2290  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2291  * case as we need to track IO to all buffers underlying a page in one io_end.
2292  */
2293 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2294 {
2295         struct address_space *mapping = mpd->inode->i_mapping;
2296         struct pagevec pvec;
2297         unsigned int nr_pages;
2298         pgoff_t index = mpd->first_page;
2299         pgoff_t end = mpd->last_page;
2300         int tag;
2301         int i, err = 0;
2302         int blkbits = mpd->inode->i_blkbits;
2303         ext4_lblk_t lblk;
2304         struct buffer_head *head;
2305
2306         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2307                 tag = PAGECACHE_TAG_TOWRITE;
2308         else
2309                 tag = PAGECACHE_TAG_DIRTY;
2310
2311         pagevec_init(&pvec, 0);
2312         mpd->map.m_len = 0;
2313         mpd->next_page = index;
2314         while (index <= end) {
2315                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317                 if (nr_pages == 0)
2318                         goto out;
2319
2320                 for (i = 0; i < nr_pages; i++) {
2321                         struct page *page = pvec.pages[i];
2322
2323                         /*
2324                          * At this point, the page may be truncated or
2325                          * invalidated (changing page->mapping to NULL), or
2326                          * even swizzled back from swapper_space to tmpfs file
2327                          * mapping. However, page->index will not change
2328                          * because we have a reference on the page.
2329                          */
2330                         if (page->index > end)
2331                                 goto out;
2332
2333                         /* If we can't merge this page, we are done. */
2334                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2335                                 goto out;
2336
2337                         lock_page(page);
2338                         /*
2339                          * If the page is no longer dirty, or its mapping no
2340                          * longer corresponds to inode we are writing (which
2341                          * means it has been truncated or invalidated), or the
2342                          * page is already under writeback and we are not doing
2343                          * a data integrity writeback, skip the page
2344                          */
2345                         if (!PageDirty(page) ||
2346                             (PageWriteback(page) &&
2347                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2348                             unlikely(page->mapping != mapping)) {
2349                                 unlock_page(page);
2350                                 continue;
2351                         }
2352
2353                         wait_on_page_writeback(page);
2354                         BUG_ON(PageWriteback(page));
2355
2356                         if (mpd->map.m_len == 0)
2357                                 mpd->first_page = page->index;
2358                         mpd->next_page = page->index + 1;
2359                         /* Add all dirty buffers to mpd */
2360                         lblk = ((ext4_lblk_t)page->index) <<
2361                                 (PAGE_CACHE_SHIFT - blkbits);
2362                         head = page_buffers(page);
2363                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2364                         if (err <= 0)
2365                                 goto out;
2366                         err = 0;
2367
2368                         /*
2369                          * Accumulated enough dirty pages? This doesn't apply
2370                          * to WB_SYNC_ALL mode. For integrity sync we have to
2371                          * keep going because someone may be concurrently
2372                          * dirtying pages, and we might have synced a lot of
2373                          * newly appeared dirty pages, but have not synced all
2374                          * of the old dirty pages.
2375                          */
2376                         if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2377                             mpd->next_page - mpd->first_page >=
2378                                                         mpd->wbc->nr_to_write)
2379                                 goto out;
2380                 }
2381                 pagevec_release(&pvec);
2382                 cond_resched();
2383         }
2384         return 0;
2385 out:
2386         pagevec_release(&pvec);
2387         return err;
2388 }
2389
2390 static int __writepage(struct page *page, struct writeback_control *wbc,
2391                        void *data)
2392 {
2393         struct address_space *mapping = data;
2394         int ret = ext4_writepage(page, wbc);
2395         mapping_set_error(mapping, ret);
2396         return ret;
2397 }
2398
2399 static int ext4_writepages(struct address_space *mapping,
2400                            struct writeback_control *wbc)
2401 {
2402         pgoff_t writeback_index = 0;
2403         long nr_to_write = wbc->nr_to_write;
2404         int range_whole = 0;
2405         int cycled = 1;
2406         handle_t *handle = NULL;
2407         struct mpage_da_data mpd;
2408         struct inode *inode = mapping->host;
2409         int needed_blocks, rsv_blocks = 0, ret = 0;
2410         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2411         bool done;
2412         struct blk_plug plug;
2413         bool give_up_on_write = false;
2414
2415         trace_ext4_writepages(inode, wbc);
2416
2417         /*
2418          * No pages to write? This is mainly a kludge to avoid starting
2419          * a transaction for special inodes like journal inode on last iput()
2420          * because that could violate lock ordering on umount
2421          */
2422         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2423                 return 0;
2424
2425         if (ext4_should_journal_data(inode)) {
2426                 struct blk_plug plug;
2427                 int ret;
2428
2429                 blk_start_plug(&plug);
2430                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2431                 blk_finish_plug(&plug);
2432                 return ret;
2433         }
2434
2435         /*
2436          * If the filesystem has aborted, it is read-only, so return
2437          * right away instead of dumping stack traces later on that
2438          * will obscure the real source of the problem.  We test
2439          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2440          * the latter could be true if the filesystem is mounted
2441          * read-only, and in that case, ext4_writepages should
2442          * *never* be called, so if that ever happens, we would want
2443          * the stack trace.
2444          */
2445         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2446                 return -EROFS;
2447
2448         if (ext4_should_dioread_nolock(inode)) {
2449                 /*
2450                  * We may need to convert up to one extent per block in
2451                  * the page and we may dirty the inode.
2452                  */
2453                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2454         }
2455
2456         /*
2457          * If we have inline data and arrive here, it means that
2458          * we will soon create the block for the 1st page, so
2459          * we'd better clear the inline data here.
2460          */
2461         if (ext4_has_inline_data(inode)) {
2462                 /* Just inode will be modified... */
2463                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2464                 if (IS_ERR(handle)) {
2465                         ret = PTR_ERR(handle);
2466                         goto out_writepages;
2467                 }
2468                 BUG_ON(ext4_test_inode_state(inode,
2469                                 EXT4_STATE_MAY_INLINE_DATA));
2470                 ext4_destroy_inline_data(handle, inode);
2471                 ext4_journal_stop(handle);
2472         }
2473
2474         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2475                 range_whole = 1;
2476
2477         if (wbc->range_cyclic) {
2478                 writeback_index = mapping->writeback_index;
2479                 if (writeback_index)
2480                         cycled = 0;
2481                 mpd.first_page = writeback_index;
2482                 mpd.last_page = -1;
2483         } else {
2484                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2485                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2486         }
2487
2488         mpd.inode = inode;
2489         mpd.wbc = wbc;
2490         ext4_io_submit_init(&mpd.io_submit, wbc);
2491 retry:
2492         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2493                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2494         done = false;
2495         blk_start_plug(&plug);
2496         while (!done && mpd.first_page <= mpd.last_page) {
2497                 /* For each extent of pages we use new io_end */
2498                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2499                 if (!mpd.io_submit.io_end) {
2500                         ret = -ENOMEM;
2501                         break;
2502                 }
2503
2504                 /*
2505                  * We have two constraints: We find one extent to map and we
2506                  * must always write out whole page (makes a difference when
2507                  * blocksize < pagesize) so that we don't block on IO when we
2508                  * try to write out the rest of the page. Journalled mode is
2509                  * not supported by delalloc.
2510                  */
2511                 BUG_ON(ext4_should_journal_data(inode));
2512                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2513
2514                 /* start a new transaction */
2515                 handle = ext4_journal_start_with_reserve(inode,
2516                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2517                 if (IS_ERR(handle)) {
2518                         ret = PTR_ERR(handle);
2519                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2520                                "%ld pages, ino %lu; err %d", __func__,
2521                                 wbc->nr_to_write, inode->i_ino, ret);
2522                         /* Release allocated io_end */
2523                         ext4_put_io_end(mpd.io_submit.io_end);
2524                         break;
2525                 }
2526
2527                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2528                 ret = mpage_prepare_extent_to_map(&mpd);
2529                 if (!ret) {
2530                         if (mpd.map.m_len)
2531                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2532                                         &give_up_on_write);
2533                         else {
2534                                 /*
2535                                  * We scanned the whole range (or exhausted
2536                                  * nr_to_write), submitted what was mapped and
2537                                  * didn't find anything needing mapping. We are
2538                                  * done.
2539                                  */
2540                                 done = true;
2541                         }
2542                 }
2543                 ext4_journal_stop(handle);
2544                 /* Submit prepared bio */
2545                 ext4_io_submit(&mpd.io_submit);
2546                 /* Unlock pages we didn't use */
2547                 mpage_release_unused_pages(&mpd, give_up_on_write);
2548                 /* Drop our io_end reference we got from init */
2549                 ext4_put_io_end(mpd.io_submit.io_end);
2550
2551                 if (ret == -ENOSPC && sbi->s_journal) {
2552                         /*
2553                          * Commit the transaction which would
2554                          * free blocks released in the transaction
2555                          * and try again
2556                          */
2557                         jbd2_journal_force_commit_nested(sbi->s_journal);
2558                         ret = 0;
2559                         continue;
2560                 }
2561                 /* Fatal error - ENOMEM, EIO... */
2562                 if (ret)
2563                         break;
2564         }
2565         blk_finish_plug(&plug);
2566         if (!ret && !cycled && wbc->nr_to_write > 0) {
2567                 cycled = 1;
2568                 mpd.last_page = writeback_index - 1;
2569                 mpd.first_page = 0;
2570                 goto retry;
2571         }
2572
2573         /* Update index */
2574         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2575                 /*
2576                  * Set the writeback_index so that range_cyclic
2577                  * mode will write it back later
2578                  */
2579                 mapping->writeback_index = mpd.first_page;
2580
2581 out_writepages:
2582         trace_ext4_writepages_result(inode, wbc, ret,
2583                                      nr_to_write - wbc->nr_to_write);
2584         return ret;
2585 }
2586
2587 static int ext4_nonda_switch(struct super_block *sb)
2588 {
2589         s64 free_clusters, dirty_clusters;
2590         struct ext4_sb_info *sbi = EXT4_SB(sb);
2591
2592         /*
2593          * switch to non delalloc mode if we are running low
2594          * on free block. The free block accounting via percpu
2595          * counters can get slightly wrong with percpu_counter_batch getting
2596          * accumulated on each CPU without updating global counters
2597          * Delalloc need an accurate free block accounting. So switch
2598          * to non delalloc when we are near to error range.
2599          */
2600         free_clusters =
2601                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2602         dirty_clusters =
2603                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2604         /*
2605          * Start pushing delalloc when 1/2 of free blocks are dirty.
2606          */
2607         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2608                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2609
2610         if (2 * free_clusters < 3 * dirty_clusters ||
2611             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2612                 /*
2613                  * free block count is less than 150% of dirty blocks
2614                  * or free blocks is less than watermark
2615                  */
2616                 return 1;
2617         }
2618         return 0;
2619 }
2620
2621 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2622                                loff_t pos, unsigned len, unsigned flags,
2623                                struct page **pagep, void **fsdata)
2624 {
2625         int ret, retries = 0;
2626         struct page *page;
2627         pgoff_t index;
2628         struct inode *inode = mapping->host;
2629         handle_t *handle;
2630
2631         index = pos >> PAGE_CACHE_SHIFT;
2632
2633         if (ext4_nonda_switch(inode->i_sb)) {
2634                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2635                 return ext4_write_begin(file, mapping, pos,
2636                                         len, flags, pagep, fsdata);
2637         }
2638         *fsdata = (void *)0;
2639         trace_ext4_da_write_begin(inode, pos, len, flags);
2640
2641         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2642                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2643                                                       pos, len, flags,
2644                                                       pagep, fsdata);
2645                 if (ret < 0)
2646                         return ret;
2647                 if (ret == 1)
2648                         return 0;
2649         }
2650
2651         /*
2652          * grab_cache_page_write_begin() can take a long time if the
2653          * system is thrashing due to memory pressure, or if the page
2654          * is being written back.  So grab it first before we start
2655          * the transaction handle.  This also allows us to allocate
2656          * the page (if needed) without using GFP_NOFS.
2657          */
2658 retry_grab:
2659         page = grab_cache_page_write_begin(mapping, index, flags);
2660         if (!page)
2661                 return -ENOMEM;
2662         unlock_page(page);
2663
2664         /*
2665          * With delayed allocation, we don't log the i_disksize update
2666          * if there is delayed block allocation. But we still need
2667          * to journalling the i_disksize update if writes to the end
2668          * of file which has an already mapped buffer.
2669          */
2670 retry_journal:
2671         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2672         if (IS_ERR(handle)) {
2673                 page_cache_release(page);
2674                 return PTR_ERR(handle);
2675         }
2676
2677         lock_page(page);
2678         if (page->mapping != mapping) {
2679                 /* The page got truncated from under us */
2680                 unlock_page(page);
2681                 page_cache_release(page);
2682                 ext4_journal_stop(handle);
2683                 goto retry_grab;
2684         }
2685         /* In case writeback began while the page was unlocked */
2686         wait_for_stable_page(page);
2687
2688         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2689         if (ret < 0) {
2690                 unlock_page(page);
2691                 ext4_journal_stop(handle);
2692                 /*
2693                  * block_write_begin may have instantiated a few blocks
2694                  * outside i_size.  Trim these off again. Don't need
2695                  * i_size_read because we hold i_mutex.
2696                  */
2697                 if (pos + len > inode->i_size)
2698                         ext4_truncate_failed_write(inode);
2699
2700                 if (ret == -ENOSPC &&
2701                     ext4_should_retry_alloc(inode->i_sb, &retries))
2702                         goto retry_journal;
2703
2704                 page_cache_release(page);
2705                 return ret;
2706         }
2707
2708         *pagep = page;
2709         return ret;
2710 }
2711
2712 /*
2713  * Check if we should update i_disksize
2714  * when write to the end of file but not require block allocation
2715  */
2716 static int ext4_da_should_update_i_disksize(struct page *page,
2717                                             unsigned long offset)
2718 {
2719         struct buffer_head *bh;
2720         struct inode *inode = page->mapping->host;
2721         unsigned int idx;
2722         int i;
2723
2724         bh = page_buffers(page);
2725         idx = offset >> inode->i_blkbits;
2726
2727         for (i = 0; i < idx; i++)
2728                 bh = bh->b_this_page;
2729
2730         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2731                 return 0;
2732         return 1;
2733 }
2734
2735 static int ext4_da_write_end(struct file *file,
2736                              struct address_space *mapping,
2737                              loff_t pos, unsigned len, unsigned copied,
2738                              struct page *page, void *fsdata)
2739 {
2740         struct inode *inode = mapping->host;
2741         int ret = 0, ret2;
2742         handle_t *handle = ext4_journal_current_handle();
2743         loff_t new_i_size;
2744         unsigned long start, end;
2745         int write_mode = (int)(unsigned long)fsdata;
2746
2747         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2748                 return ext4_write_end(file, mapping, pos,
2749                                       len, copied, page, fsdata);
2750
2751         trace_ext4_da_write_end(inode, pos, len, copied);
2752         start = pos & (PAGE_CACHE_SIZE - 1);
2753         end = start + copied - 1;
2754
2755         /*
2756          * generic_write_end() will run mark_inode_dirty() if i_size
2757          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2758          * into that.
2759          */
2760         new_i_size = pos + copied;
2761         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2762                 if (ext4_has_inline_data(inode) ||
2763                     ext4_da_should_update_i_disksize(page, end)) {
2764                         down_write(&EXT4_I(inode)->i_data_sem);
2765                         if (new_i_size > EXT4_I(inode)->i_disksize)
2766                                 EXT4_I(inode)->i_disksize = new_i_size;
2767                         up_write(&EXT4_I(inode)->i_data_sem);
2768                         /* We need to mark inode dirty even if
2769                          * new_i_size is less that inode->i_size
2770                          * bu greater than i_disksize.(hint delalloc)
2771                          */
2772                         ext4_mark_inode_dirty(handle, inode);
2773                 }
2774         }
2775
2776         if (write_mode != CONVERT_INLINE_DATA &&
2777             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2778             ext4_has_inline_data(inode))
2779                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2780                                                      page);
2781         else
2782                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2783                                                         page, fsdata);
2784
2785         copied = ret2;
2786         if (ret2 < 0)
2787                 ret = ret2;
2788         ret2 = ext4_journal_stop(handle);
2789         if (!ret)
2790                 ret = ret2;
2791
2792         return ret ? ret : copied;
2793 }
2794
2795 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2796                                    unsigned int length)
2797 {
2798         /*
2799          * Drop reserved blocks
2800          */
2801         BUG_ON(!PageLocked(page));
2802         if (!page_has_buffers(page))
2803                 goto out;
2804
2805         ext4_da_page_release_reservation(page, offset, length);
2806
2807 out:
2808         ext4_invalidatepage(page, offset, length);
2809
2810         return;
2811 }
2812
2813 /*
2814  * Force all delayed allocation blocks to be allocated for a given inode.
2815  */
2816 int ext4_alloc_da_blocks(struct inode *inode)
2817 {
2818         trace_ext4_alloc_da_blocks(inode);
2819
2820         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2821             !EXT4_I(inode)->i_reserved_meta_blocks)
2822                 return 0;
2823
2824         /*
2825          * We do something simple for now.  The filemap_flush() will
2826          * also start triggering a write of the data blocks, which is
2827          * not strictly speaking necessary (and for users of
2828          * laptop_mode, not even desirable).  However, to do otherwise
2829          * would require replicating code paths in:
2830          *
2831          * ext4_writepages() ->
2832          *    write_cache_pages() ---> (via passed in callback function)
2833          *        __mpage_da_writepage() -->
2834          *           mpage_add_bh_to_extent()
2835          *           mpage_da_map_blocks()
2836          *
2837          * The problem is that write_cache_pages(), located in
2838          * mm/page-writeback.c, marks pages clean in preparation for
2839          * doing I/O, which is not desirable if we're not planning on
2840          * doing I/O at all.
2841          *
2842          * We could call write_cache_pages(), and then redirty all of
2843          * the pages by calling redirty_page_for_writepage() but that
2844          * would be ugly in the extreme.  So instead we would need to
2845          * replicate parts of the code in the above functions,
2846          * simplifying them because we wouldn't actually intend to
2847          * write out the pages, but rather only collect contiguous
2848          * logical block extents, call the multi-block allocator, and
2849          * then update the buffer heads with the block allocations.
2850          *
2851          * For now, though, we'll cheat by calling filemap_flush(),
2852          * which will map the blocks, and start the I/O, but not
2853          * actually wait for the I/O to complete.
2854          */
2855         return filemap_flush(inode->i_mapping);
2856 }
2857
2858 /*
2859  * bmap() is special.  It gets used by applications such as lilo and by
2860  * the swapper to find the on-disk block of a specific piece of data.
2861  *
2862  * Naturally, this is dangerous if the block concerned is still in the
2863  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2864  * filesystem and enables swap, then they may get a nasty shock when the
2865  * data getting swapped to that swapfile suddenly gets overwritten by
2866  * the original zero's written out previously to the journal and
2867  * awaiting writeback in the kernel's buffer cache.
2868  *
2869  * So, if we see any bmap calls here on a modified, data-journaled file,
2870  * take extra steps to flush any blocks which might be in the cache.
2871  */
2872 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2873 {
2874         struct inode *inode = mapping->host;
2875         journal_t *journal;
2876         int err;
2877
2878         /*
2879          * We can get here for an inline file via the FIBMAP ioctl
2880          */
2881         if (ext4_has_inline_data(inode))
2882                 return 0;
2883
2884         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2885                         test_opt(inode->i_sb, DELALLOC)) {
2886                 /*
2887                  * With delalloc we want to sync the file
2888                  * so that we can make sure we allocate
2889                  * blocks for file
2890                  */
2891                 filemap_write_and_wait(mapping);
2892         }
2893
2894         if (EXT4_JOURNAL(inode) &&
2895             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2896                 /*
2897                  * This is a REALLY heavyweight approach, but the use of
2898                  * bmap on dirty files is expected to be extremely rare:
2899                  * only if we run lilo or swapon on a freshly made file
2900                  * do we expect this to happen.
2901                  *
2902                  * (bmap requires CAP_SYS_RAWIO so this does not
2903                  * represent an unprivileged user DOS attack --- we'd be
2904                  * in trouble if mortal users could trigger this path at
2905                  * will.)
2906                  *
2907                  * NB. EXT4_STATE_JDATA is not set on files other than
2908                  * regular files.  If somebody wants to bmap a directory
2909                  * or symlink and gets confused because the buffer
2910                  * hasn't yet been flushed to disk, they deserve
2911                  * everything they get.
2912                  */
2913
2914                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2915                 journal = EXT4_JOURNAL(inode);
2916                 jbd2_journal_lock_updates(journal);
2917                 err = jbd2_journal_flush(journal);
2918                 jbd2_journal_unlock_updates(journal);
2919
2920                 if (err)
2921                         return 0;
2922         }
2923
2924         return generic_block_bmap(mapping, block, ext4_get_block);
2925 }
2926
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929         int ret = -EAGAIN;
2930         struct inode *inode = page->mapping->host;
2931
2932         trace_ext4_readpage(page);
2933
2934         if (ext4_has_inline_data(inode))
2935                 ret = ext4_readpage_inline(inode, page);
2936
2937         if (ret == -EAGAIN)
2938                 return mpage_readpage(page, ext4_get_block);
2939
2940         return ret;
2941 }
2942
2943 static int
2944 ext4_readpages(struct file *file, struct address_space *mapping,
2945                 struct list_head *pages, unsigned nr_pages)
2946 {
2947         struct inode *inode = mapping->host;
2948
2949         /* If the file has inline data, no need to do readpages. */
2950         if (ext4_has_inline_data(inode))
2951                 return 0;
2952
2953         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2954 }
2955
2956 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2957                                 unsigned int length)
2958 {
2959         trace_ext4_invalidatepage(page, offset, length);
2960
2961         /* No journalling happens on data buffers when this function is used */
2962         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2963
2964         block_invalidatepage(page, offset, length);
2965 }
2966
2967 static int __ext4_journalled_invalidatepage(struct page *page,
2968                                             unsigned int offset,
2969                                             unsigned int length)
2970 {
2971         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2972
2973         trace_ext4_journalled_invalidatepage(page, offset, length);
2974
2975         /*
2976          * If it's a full truncate we just forget about the pending dirtying
2977          */
2978         if (offset == 0 && length == PAGE_CACHE_SIZE)
2979                 ClearPageChecked(page);
2980
2981         return jbd2_journal_invalidatepage(journal, page, offset, length);
2982 }
2983
2984 /* Wrapper for aops... */
2985 static void ext4_journalled_invalidatepage(struct page *page,
2986                                            unsigned int offset,
2987                                            unsigned int length)
2988 {
2989         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2990 }
2991
2992 static int ext4_releasepage(struct page *page, gfp_t wait)
2993 {
2994         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995
2996         trace_ext4_releasepage(page);
2997
2998         /* Page has dirty journalled data -> cannot release */
2999         if (PageChecked(page))
3000                 return 0;
3001         if (journal)
3002                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003         else
3004                 return try_to_free_buffers(page);
3005 }
3006
3007 /*
3008  * ext4_get_block used when preparing for a DIO write or buffer write.
3009  * We allocate an uinitialized extent if blocks haven't been allocated.
3010  * The extent will be converted to initialized after the IO is complete.
3011  */
3012 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3013                    struct buffer_head *bh_result, int create)
3014 {
3015         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3016                    inode->i_ino, create);
3017         return _ext4_get_block(inode, iblock, bh_result,
3018                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3019 }
3020
3021 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3022                    struct buffer_head *bh_result, int create)
3023 {
3024         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3025                    inode->i_ino, create);
3026         return _ext4_get_block(inode, iblock, bh_result,
3027                                EXT4_GET_BLOCKS_NO_LOCK);
3028 }
3029
3030 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3031                             ssize_t size, void *private)
3032 {
3033         ext4_io_end_t *io_end = iocb->private;
3034
3035         /* if not async direct IO just return */
3036         if (!io_end)
3037                 return;
3038
3039         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3040                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3041                   iocb->private, io_end->inode->i_ino, iocb, offset,
3042                   size);
3043
3044         iocb->private = NULL;
3045         io_end->offset = offset;
3046         io_end->size = size;
3047         ext4_put_io_end(io_end);
3048 }
3049
3050 /*
3051  * For ext4 extent files, ext4 will do direct-io write to holes,
3052  * preallocated extents, and those write extend the file, no need to
3053  * fall back to buffered IO.
3054  *
3055  * For holes, we fallocate those blocks, mark them as uninitialized
3056  * If those blocks were preallocated, we mark sure they are split, but
3057  * still keep the range to write as uninitialized.
3058  *
3059  * The unwritten extents will be converted to written when DIO is completed.
3060  * For async direct IO, since the IO may still pending when return, we
3061  * set up an end_io call back function, which will do the conversion
3062  * when async direct IO completed.
3063  *
3064  * If the O_DIRECT write will extend the file then add this inode to the
3065  * orphan list.  So recovery will truncate it back to the original size
3066  * if the machine crashes during the write.
3067  *
3068  */
3069 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3070                               const struct iovec *iov, loff_t offset,
3071                               unsigned long nr_segs)
3072 {
3073         struct file *file = iocb->ki_filp;
3074         struct inode *inode = file->f_mapping->host;
3075         ssize_t ret;
3076         size_t count = iov_length(iov, nr_segs);
3077         int overwrite = 0;
3078         get_block_t *get_block_func = NULL;
3079         int dio_flags = 0;
3080         loff_t final_size = offset + count;
3081         ext4_io_end_t *io_end = NULL;
3082
3083         /* Use the old path for reads and writes beyond i_size. */
3084         if (rw != WRITE || final_size > inode->i_size)
3085                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3086
3087         BUG_ON(iocb->private == NULL);
3088
3089         /*
3090          * Make all waiters for direct IO properly wait also for extent
3091          * conversion. This also disallows race between truncate() and
3092          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3093          */
3094         if (rw == WRITE)
3095                 atomic_inc(&inode->i_dio_count);
3096
3097         /* If we do a overwrite dio, i_mutex locking can be released */
3098         overwrite = *((int *)iocb->private);
3099
3100         if (overwrite) {
3101                 down_read(&EXT4_I(inode)->i_data_sem);
3102                 mutex_unlock(&inode->i_mutex);
3103         }
3104
3105         /*
3106          * We could direct write to holes and fallocate.
3107          *
3108          * Allocated blocks to fill the hole are marked as
3109          * uninitialized to prevent parallel buffered read to expose
3110          * the stale data before DIO complete the data IO.
3111          *
3112          * As to previously fallocated extents, ext4 get_block will
3113          * just simply mark the buffer mapped but still keep the
3114          * extents uninitialized.
3115          *
3116          * For non AIO case, we will convert those unwritten extents
3117          * to written after return back from blockdev_direct_IO.
3118          *
3119          * For async DIO, the conversion needs to be deferred when the
3120          * IO is completed. The ext4 end_io callback function will be
3121          * called to take care of the conversion work.  Here for async
3122          * case, we allocate an io_end structure to hook to the iocb.
3123          */
3124         iocb->private = NULL;
3125         ext4_inode_aio_set(inode, NULL);
3126         if (!is_sync_kiocb(iocb)) {
3127                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3128                 if (!io_end) {
3129                         ret = -ENOMEM;
3130                         goto retake_lock;
3131                 }
3132                 /*
3133                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3134                  */
3135                 iocb->private = ext4_get_io_end(io_end);
3136                 /*
3137                  * we save the io structure for current async direct
3138                  * IO, so that later ext4_map_blocks() could flag the
3139                  * io structure whether there is a unwritten extents
3140                  * needs to be converted when IO is completed.
3141                  */
3142                 ext4_inode_aio_set(inode, io_end);
3143         }
3144
3145         if (overwrite) {
3146                 get_block_func = ext4_get_block_write_nolock;
3147         } else {
3148                 get_block_func = ext4_get_block_write;
3149                 dio_flags = DIO_LOCKING;
3150         }
3151         ret = __blockdev_direct_IO(rw, iocb, inode,
3152                                    inode->i_sb->s_bdev, iov,
3153                                    offset, nr_segs,
3154                                    get_block_func,
3155                                    ext4_end_io_dio,
3156                                    NULL,
3157                                    dio_flags);
3158
3159         /*
3160          * Put our reference to io_end. This can free the io_end structure e.g.
3161          * in sync IO case or in case of error. It can even perform extent
3162          * conversion if all bios we submitted finished before we got here.
3163          * Note that in that case iocb->private can be already set to NULL
3164          * here.
3165          */
3166         if (io_end) {
3167                 ext4_inode_aio_set(inode, NULL);
3168                 ext4_put_io_end(io_end);
3169                 /*
3170                  * When no IO was submitted ext4_end_io_dio() was not
3171                  * called so we have to put iocb's reference.
3172                  */
3173                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3174                         WARN_ON(iocb->private != io_end);
3175                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3176                         ext4_put_io_end(io_end);
3177                         iocb->private = NULL;
3178                 }
3179         }
3180         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3181                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3182                 int err;
3183                 /*
3184                  * for non AIO case, since the IO is already
3185                  * completed, we could do the conversion right here
3186                  */
3187                 err = ext4_convert_unwritten_extents(NULL, inode,
3188                                                      offset, ret);
3189                 if (err < 0)
3190                         ret = err;
3191                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3192         }
3193
3194 retake_lock:
3195         if (rw == WRITE)
3196                 inode_dio_done(inode);
3197         /* take i_mutex locking again if we do a ovewrite dio */
3198         if (overwrite) {
3199                 up_read(&EXT4_I(inode)->i_data_sem);
3200                 mutex_lock(&inode->i_mutex);
3201         }
3202
3203         return ret;
3204 }
3205
3206 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3207                               const struct iovec *iov, loff_t offset,
3208                               unsigned long nr_segs)
3209 {
3210         struct file *file = iocb->ki_filp;
3211         struct inode *inode = file->f_mapping->host;
3212         ssize_t ret;
3213
3214         /*
3215          * If we are doing data journalling we don't support O_DIRECT
3216          */
3217         if (ext4_should_journal_data(inode))
3218                 return 0;
3219
3220         /* Let buffer I/O handle the inline data case. */
3221         if (ext4_has_inline_data(inode))
3222                 return 0;
3223
3224         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3225         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3226                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3227         else
3228                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3229         trace_ext4_direct_IO_exit(inode, offset,
3230                                 iov_length(iov, nr_segs), rw, ret);
3231         return ret;
3232 }
3233
3234 /*
3235  * Pages can be marked dirty completely asynchronously from ext4's journalling
3236  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3237  * much here because ->set_page_dirty is called under VFS locks.  The page is
3238  * not necessarily locked.
3239  *
3240  * We cannot just dirty the page and leave attached buffers clean, because the
3241  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3242  * or jbddirty because all the journalling code will explode.
3243  *
3244  * So what we do is to mark the page "pending dirty" and next time writepage
3245  * is called, propagate that into the buffers appropriately.
3246  */
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3248 {
3249         SetPageChecked(page);
3250         return __set_page_dirty_nobuffers(page);
3251 }
3252
3253 static const struct address_space_operations ext4_aops = {
3254         .readpage               = ext4_readpage,
3255         .readpages              = ext4_readpages,
3256         .writepage              = ext4_writepage,
3257         .writepages             = ext4_writepages,
3258         .write_begin            = ext4_write_begin,
3259         .write_end              = ext4_write_end,
3260         .bmap                   = ext4_bmap,
3261         .invalidatepage         = ext4_invalidatepage,
3262         .releasepage            = ext4_releasepage,
3263         .direct_IO              = ext4_direct_IO,
3264         .migratepage            = buffer_migrate_page,
3265         .is_partially_uptodate  = block_is_partially_uptodate,
3266         .error_remove_page      = generic_error_remove_page,
3267 };
3268
3269 static const struct address_space_operations ext4_journalled_aops = {
3270         .readpage               = ext4_readpage,
3271         .readpages              = ext4_readpages,
3272         .writepage              = ext4_writepage,
3273         .writepages             = ext4_writepages,
3274         .write_begin            = ext4_write_begin,
3275         .write_end              = ext4_journalled_write_end,
3276         .set_page_dirty         = ext4_journalled_set_page_dirty,
3277         .bmap                   = ext4_bmap,
3278         .invalidatepage         = ext4_journalled_invalidatepage,
3279         .releasepage            = ext4_releasepage,
3280         .direct_IO              = ext4_direct_IO,
3281         .is_partially_uptodate  = block_is_partially_uptodate,
3282         .error_remove_page      = generic_error_remove_page,
3283 };
3284
3285 static const struct address_space_operations ext4_da_aops = {
3286         .readpage               = ext4_readpage,
3287         .readpages              = ext4_readpages,
3288         .writepage              = ext4_writepage,
3289         .writepages             = ext4_writepages,
3290         .write_begin            = ext4_da_write_begin,
3291         .write_end              = ext4_da_write_end,
3292         .bmap                   = ext4_bmap,
3293         .invalidatepage         = ext4_da_invalidatepage,
3294         .releasepage            = ext4_releasepage,
3295         .direct_IO              = ext4_direct_IO,
3296         .migratepage            = buffer_migrate_page,
3297         .is_partially_uptodate  = block_is_partially_uptodate,
3298         .error_remove_page      = generic_error_remove_page,
3299 };
3300
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303         switch (ext4_inode_journal_mode(inode)) {
3304         case EXT4_INODE_ORDERED_DATA_MODE:
3305                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306                 break;
3307         case EXT4_INODE_WRITEBACK_DATA_MODE:
3308                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309                 break;
3310         case EXT4_INODE_JOURNAL_DATA_MODE:
3311                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3312                 return;
3313         default:
3314                 BUG();
3315         }
3316         if (test_opt(inode->i_sb, DELALLOC))
3317                 inode->i_mapping->a_ops = &ext4_da_aops;
3318         else
3319                 inode->i_mapping->a_ops = &ext4_aops;
3320 }
3321
3322 /*
3323  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3324  * up to the end of the block which corresponds to `from'.
3325  * This required during truncate. We need to physically zero the tail end
3326  * of that block so it doesn't yield old data if the file is later grown.
3327  */
3328 int ext4_block_truncate_page(handle_t *handle,
3329                 struct address_space *mapping, loff_t from)
3330 {
3331         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3332         unsigned length;
3333         unsigned blocksize;
3334         struct inode *inode = mapping->host;
3335
3336         blocksize = inode->i_sb->s_blocksize;
3337         length = blocksize - (offset & (blocksize - 1));
3338
3339         return ext4_block_zero_page_range(handle, mapping, from, length);
3340 }
3341
3342 /*
3343  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3344  * starting from file offset 'from'.  The range to be zero'd must
3345  * be contained with in one block.  If the specified range exceeds
3346  * the end of the block it will be shortened to end of the block
3347  * that cooresponds to 'from'
3348  */
3349 int ext4_block_zero_page_range(handle_t *handle,
3350                 struct address_space *mapping, loff_t from, loff_t length)
3351 {
3352         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3353         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3354         unsigned blocksize, max, pos;
3355         ext4_lblk_t iblock;
3356         struct inode *inode = mapping->host;
3357         struct buffer_head *bh;
3358         struct page *page;
3359         int err = 0;
3360
3361         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3362                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3363         if (!page)
3364                 return -ENOMEM;
3365
3366         blocksize = inode->i_sb->s_blocksize;
3367         max = blocksize - (offset & (blocksize - 1));
3368
3369         /*
3370          * correct length if it does not fall between
3371          * 'from' and the end of the block
3372          */
3373         if (length > max || length < 0)
3374                 length = max;
3375
3376         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3377
3378         if (!page_has_buffers(page))
3379                 create_empty_buffers(page, blocksize, 0);
3380
3381         /* Find the buffer that contains "offset" */
3382         bh = page_buffers(page);
3383         pos = blocksize;
3384         while (offset >= pos) {
3385                 bh = bh->b_this_page;
3386                 iblock++;
3387                 pos += blocksize;
3388         }
3389         if (buffer_freed(bh)) {
3390                 BUFFER_TRACE(bh, "freed: skip");
3391                 goto unlock;
3392         }
3393         if (!buffer_mapped(bh)) {
3394                 BUFFER_TRACE(bh, "unmapped");
3395                 ext4_get_block(inode, iblock, bh, 0);
3396                 /* unmapped? It's a hole - nothing to do */
3397                 if (!buffer_mapped(bh)) {
3398                         BUFFER_TRACE(bh, "still unmapped");
3399                         goto unlock;
3400                 }
3401         }
3402
3403         /* Ok, it's mapped. Make sure it's up-to-date */
3404         if (PageUptodate(page))
3405                 set_buffer_uptodate(bh);
3406
3407         if (!buffer_uptodate(bh)) {
3408                 err = -EIO;
3409                 ll_rw_block(READ, 1, &bh);
3410                 wait_on_buffer(bh);
3411                 /* Uhhuh. Read error. Complain and punt. */
3412                 if (!buffer_uptodate(bh))
3413                         goto unlock;
3414         }
3415         if (ext4_should_journal_data(inode)) {
3416                 BUFFER_TRACE(bh, "get write access");
3417                 err = ext4_journal_get_write_access(handle, bh);
3418                 if (err)
3419                         goto unlock;
3420         }
3421         zero_user(page, offset, length);
3422         BUFFER_TRACE(bh, "zeroed end of block");
3423
3424         if (ext4_should_journal_data(inode)) {
3425                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3426         } else {
3427                 err = 0;
3428                 mark_buffer_dirty(bh);
3429                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3430                         err = ext4_jbd2_file_inode(handle, inode);
3431         }
3432
3433 unlock:
3434         unlock_page(page);
3435         page_cache_release(page);
3436         return err;
3437 }
3438
3439 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3440                              loff_t lstart, loff_t length)
3441 {
3442         struct super_block *sb = inode->i_sb;
3443         struct address_space *mapping = inode->i_mapping;
3444         unsigned partial_start, partial_end;
3445         ext4_fsblk_t start, end;
3446         loff_t byte_end = (lstart + length - 1);
3447         int err = 0;
3448
3449         partial_start = lstart & (sb->s_blocksize - 1);
3450         partial_end = byte_end & (sb->s_blocksize - 1);
3451
3452         start = lstart >> sb->s_blocksize_bits;
3453         end = byte_end >> sb->s_blocksize_bits;
3454
3455         /* Handle partial zero within the single block */
3456         if (start == end &&
3457             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3458                 err = ext4_block_zero_page_range(handle, mapping,
3459                                                  lstart, length);
3460                 return err;
3461         }
3462         /* Handle partial zero out on the start of the range */
3463         if (partial_start) {
3464                 err = ext4_block_zero_page_range(handle, mapping,
3465                                                  lstart, sb->s_blocksize);
3466                 if (err)
3467                         return err;
3468         }
3469         /* Handle partial zero out on the end of the range */
3470         if (partial_end != sb->s_blocksize - 1)
3471                 err = ext4_block_zero_page_range(handle, mapping,
3472                                                  byte_end - partial_end,
3473                                                  partial_end + 1);
3474         return err;
3475 }
3476
3477 int ext4_can_truncate(struct inode *inode)
3478 {
3479         if (S_ISREG(inode->i_mode))
3480                 return 1;
3481         if (S_ISDIR(inode->i_mode))
3482                 return 1;
3483         if (S_ISLNK(inode->i_mode))
3484                 return !ext4_inode_is_fast_symlink(inode);
3485         return 0;
3486 }
3487
3488 /*
3489  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3490  * associated with the given offset and length
3491  *
3492  * @inode:  File inode
3493  * @offset: The offset where the hole will begin
3494  * @len:    The length of the hole
3495  *
3496  * Returns: 0 on success or negative on failure
3497  */
3498
3499 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3500 {
3501         struct super_block *sb = inode->i_sb;
3502         ext4_lblk_t first_block, stop_block;
3503         struct address_space *mapping = inode->i_mapping;
3504         loff_t first_block_offset, last_block_offset;
3505         handle_t *handle;
3506         unsigned int credits;
3507         int ret = 0;
3508
3509         if (!S_ISREG(inode->i_mode))
3510                 return -EOPNOTSUPP;
3511
3512         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3513                 /* TODO: Add support for bigalloc file systems */
3514                 return -EOPNOTSUPP;
3515         }
3516
3517         trace_ext4_punch_hole(inode, offset, length);
3518
3519         /*
3520          * Write out all dirty pages to avoid race conditions
3521          * Then release them.
3522          */
3523         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3524                 ret = filemap_write_and_wait_range(mapping, offset,
3525                                                    offset + length - 1);
3526                 if (ret)
3527                         return ret;
3528         }
3529
3530         mutex_lock(&inode->i_mutex);
3531         /* It's not possible punch hole on append only file */
3532         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3533                 ret = -EPERM;
3534                 goto out_mutex;
3535         }
3536         if (IS_SWAPFILE(inode)) {
3537                 ret = -ETXTBSY;
3538                 goto out_mutex;
3539         }
3540
3541         /* No need to punch hole beyond i_size */
3542         if (offset >= inode->i_size)
3543                 goto out_mutex;
3544
3545         /*
3546          * If the hole extends beyond i_size, set the hole
3547          * to end after the page that contains i_size
3548          */
3549         if (offset + length > inode->i_size) {
3550                 length = inode->i_size +
3551                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552                    offset;
3553         }
3554
3555         if (offset & (sb->s_blocksize - 1) ||
3556             (offset + length) & (sb->s_blocksize - 1)) {
3557                 /*
3558                  * Attach jinode to inode for jbd2 if we do any zeroing of
3559                  * partial block
3560                  */
3561                 ret = ext4_inode_attach_jinode(inode);
3562                 if (ret < 0)
3563                         goto out_mutex;
3564
3565         }
3566
3567         first_block_offset = round_up(offset, sb->s_blocksize);
3568         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569
3570         /* Now release the pages and zero block aligned part of pages*/
3571         if (last_block_offset > first_block_offset)
3572                 truncate_pagecache_range(inode, first_block_offset,
3573                                          last_block_offset);
3574
3575         /* Wait all existing dio workers, newcomers will block on i_mutex */
3576         ext4_inode_block_unlocked_dio(inode);
3577         inode_dio_wait(inode);
3578
3579         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580                 credits = ext4_writepage_trans_blocks(inode);
3581         else
3582                 credits = ext4_blocks_for_truncate(inode);
3583         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584         if (IS_ERR(handle)) {
3585                 ret = PTR_ERR(handle);
3586                 ext4_std_error(sb, ret);
3587                 goto out_dio;
3588         }
3589
3590         ret = ext4_zero_partial_blocks(handle, inode, offset,
3591                                        length);
3592         if (ret)
3593                 goto out_stop;
3594
3595         first_block = (offset + sb->s_blocksize - 1) >>
3596                 EXT4_BLOCK_SIZE_BITS(sb);
3597         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598
3599         /* If there are no blocks to remove, return now */
3600         if (first_block >= stop_block)
3601                 goto out_stop;
3602
3603         down_write(&EXT4_I(inode)->i_data_sem);
3604         ext4_discard_preallocations(inode);
3605
3606         ret = ext4_es_remove_extent(inode, first_block,
3607                                     stop_block - first_block);
3608         if (ret) {
3609                 up_write(&EXT4_I(inode)->i_data_sem);
3610                 goto out_stop;
3611         }
3612
3613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614                 ret = ext4_ext_remove_space(inode, first_block,
3615                                             stop_block - 1);
3616         else
3617                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3618                                             stop_block);
3619
3620         ext4_discard_preallocations(inode);
3621         up_write(&EXT4_I(inode)->i_data_sem);
3622         if (IS_SYNC(inode))
3623                 ext4_handle_sync(handle);
3624         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3625         ext4_mark_inode_dirty(handle, inode);
3626 out_stop:
3627         ext4_journal_stop(handle);
3628 out_dio:
3629         ext4_inode_resume_unlocked_dio(inode);
3630 out_mutex:
3631         mutex_unlock(&inode->i_mutex);
3632         return ret;
3633 }
3634
3635 int ext4_inode_attach_jinode(struct inode *inode)
3636 {
3637         struct ext4_inode_info *ei = EXT4_I(inode);
3638         struct jbd2_inode *jinode;
3639
3640         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3641                 return 0;
3642
3643         jinode = jbd2_alloc_inode(GFP_KERNEL);
3644         spin_lock(&inode->i_lock);
3645         if (!ei->jinode) {
3646                 if (!jinode) {
3647                         spin_unlock(&inode->i_lock);
3648                         return -ENOMEM;
3649                 }
3650                 ei->jinode = jinode;
3651                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3652                 jinode = NULL;
3653         }
3654         spin_unlock(&inode->i_lock);
3655         if (unlikely(jinode != NULL))
3656                 jbd2_free_inode(jinode);
3657         return 0;
3658 }
3659
3660 /*
3661  * ext4_truncate()
3662  *
3663  * We block out ext4_get_block() block instantiations across the entire
3664  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3665  * simultaneously on behalf of the same inode.
3666  *
3667  * As we work through the truncate and commit bits of it to the journal there
3668  * is one core, guiding principle: the file's tree must always be consistent on
3669  * disk.  We must be able to restart the truncate after a crash.
3670  *
3671  * The file's tree may be transiently inconsistent in memory (although it
3672  * probably isn't), but whenever we close off and commit a journal transaction,
3673  * the contents of (the filesystem + the journal) must be consistent and
3674  * restartable.  It's pretty simple, really: bottom up, right to left (although
3675  * left-to-right works OK too).
3676  *
3677  * Note that at recovery time, journal replay occurs *before* the restart of
3678  * truncate against the orphan inode list.
3679  *
3680  * The committed inode has the new, desired i_size (which is the same as
3681  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3682  * that this inode's truncate did not complete and it will again call
3683  * ext4_truncate() to have another go.  So there will be instantiated blocks
3684  * to the right of the truncation point in a crashed ext4 filesystem.  But
3685  * that's fine - as long as they are linked from the inode, the post-crash
3686  * ext4_truncate() run will find them and release them.
3687  */
3688 void ext4_truncate(struct inode *inode)
3689 {
3690         struct ext4_inode_info *ei = EXT4_I(inode);
3691         unsigned int credits;
3692         handle_t *handle;
3693         struct address_space *mapping = inode->i_mapping;
3694
3695         /*
3696          * There is a possibility that we're either freeing the inode
3697          * or it completely new indode. In those cases we might not
3698          * have i_mutex locked because it's not necessary.
3699          */
3700         if (!(inode->i_state & (I_NEW|I_FREEING)))
3701                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3702         trace_ext4_truncate_enter(inode);
3703
3704         if (!ext4_can_truncate(inode))
3705                 return;
3706
3707         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3708
3709         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3710                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3711
3712         if (ext4_has_inline_data(inode)) {
3713                 int has_inline = 1;
3714
3715                 ext4_inline_data_truncate(inode, &has_inline);
3716                 if (has_inline)
3717                         return;
3718         }
3719
3720         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3721         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3722                 if (ext4_inode_attach_jinode(inode) < 0)
3723                         return;
3724         }
3725
3726         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3727                 credits = ext4_writepage_trans_blocks(inode);
3728         else
3729                 credits = ext4_blocks_for_truncate(inode);
3730
3731         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3732         if (IS_ERR(handle)) {
3733                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3734                 return;
3735         }
3736
3737         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3738                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3739
3740         /*
3741          * We add the inode to the orphan list, so that if this
3742          * truncate spans multiple transactions, and we crash, we will
3743          * resume the truncate when the filesystem recovers.  It also
3744          * marks the inode dirty, to catch the new size.
3745          *
3746          * Implication: the file must always be in a sane, consistent
3747          * truncatable state while each transaction commits.
3748          */
3749         if (ext4_orphan_add(handle, inode))
3750                 goto out_stop;
3751
3752         down_write(&EXT4_I(inode)->i_data_sem);
3753
3754         ext4_discard_preallocations(inode);
3755
3756         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3757                 ext4_ext_truncate(handle, inode);
3758         else
3759                 ext4_ind_truncate(handle, inode);
3760
3761         up_write(&ei->i_data_sem);
3762
3763         if (IS_SYNC(inode))
3764                 ext4_handle_sync(handle);
3765
3766 out_stop:
3767         /*
3768          * If this was a simple ftruncate() and the file will remain alive,
3769          * then we need to clear up the orphan record which we created above.
3770          * However, if this was a real unlink then we were called by
3771          * ext4_delete_inode(), and we allow that function to clean up the
3772          * orphan info for us.
3773          */
3774         if (inode->i_nlink)
3775                 ext4_orphan_del(handle, inode);
3776
3777         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3778         ext4_mark_inode_dirty(handle, inode);
3779         ext4_journal_stop(handle);
3780
3781         trace_ext4_truncate_exit(inode);
3782 }
3783
3784 /*
3785  * ext4_get_inode_loc returns with an extra refcount against the inode's
3786  * underlying buffer_head on success. If 'in_mem' is true, we have all
3787  * data in memory that is needed to recreate the on-disk version of this
3788  * inode.
3789  */
3790 static int __ext4_get_inode_loc(struct inode *inode,
3791                                 struct ext4_iloc *iloc, int in_mem)
3792 {
3793         struct ext4_group_desc  *gdp;
3794         struct buffer_head      *bh;
3795         struct super_block      *sb = inode->i_sb;
3796         ext4_fsblk_t            block;
3797         int                     inodes_per_block, inode_offset;
3798
3799         iloc->bh = NULL;
3800         if (!ext4_valid_inum(sb, inode->i_ino))
3801                 return -EIO;
3802
3803         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3804         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3805         if (!gdp)
3806                 return -EIO;
3807
3808         /*
3809          * Figure out the offset within the block group inode table
3810          */
3811         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3812         inode_offset = ((inode->i_ino - 1) %
3813                         EXT4_INODES_PER_GROUP(sb));
3814         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3815         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3816
3817         bh = sb_getblk(sb, block);
3818         if (unlikely(!bh))
3819                 return -ENOMEM;
3820         if (!buffer_uptodate(bh)) {
3821                 lock_buffer(bh);
3822
3823                 /*
3824                  * If the buffer has the write error flag, we have failed
3825                  * to write out another inode in the same block.  In this
3826                  * case, we don't have to read the block because we may
3827                  * read the old inode data successfully.
3828                  */
3829                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3830                         set_buffer_uptodate(bh);
3831
3832                 if (buffer_uptodate(bh)) {
3833                         /* someone brought it uptodate while we waited */
3834                         unlock_buffer(bh);
3835                         goto has_buffer;
3836                 }
3837
3838                 /*
3839                  * If we have all information of the inode in memory and this
3840                  * is the only valid inode in the block, we need not read the
3841                  * block.
3842                  */
3843                 if (in_mem) {
3844                         struct buffer_head *bitmap_bh;
3845                         int i, start;
3846
3847                         start = inode_offset & ~(inodes_per_block - 1);
3848
3849                         /* Is the inode bitmap in cache? */
3850                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3851                         if (unlikely(!bitmap_bh))
3852                                 goto make_io;
3853
3854                         /*
3855                          * If the inode bitmap isn't in cache then the
3856                          * optimisation may end up performing two reads instead
3857                          * of one, so skip it.
3858                          */
3859                         if (!buffer_uptodate(bitmap_bh)) {
3860                                 brelse(bitmap_bh);
3861                                 goto make_io;
3862                         }
3863                         for (i = start; i < start + inodes_per_block; i++) {
3864                                 if (i == inode_offset)
3865                                         continue;
3866                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3867                                         break;
3868                         }
3869                         brelse(bitmap_bh);
3870                         if (i == start + inodes_per_block) {
3871                                 /* all other inodes are free, so skip I/O */
3872                                 memset(bh->b_data, 0, bh->b_size);
3873                                 set_buffer_uptodate(bh);
3874                                 unlock_buffer(bh);
3875                                 goto has_buffer;
3876                         }
3877                 }
3878
3879 make_io:
3880                 /*
3881                  * If we need to do any I/O, try to pre-readahead extra
3882                  * blocks from the inode table.
3883                  */
3884                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3885                         ext4_fsblk_t b, end, table;
3886                         unsigned num;
3887                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3888
3889                         table = ext4_inode_table(sb, gdp);
3890                         /* s_inode_readahead_blks is always a power of 2 */
3891                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3892                         if (table > b)
3893                                 b = table;
3894                         end = b + ra_blks;
3895                         num = EXT4_INODES_PER_GROUP(sb);
3896                         if (ext4_has_group_desc_csum(sb))
3897                                 num -= ext4_itable_unused_count(sb, gdp);
3898                         table += num / inodes_per_block;
3899                         if (end > table)
3900                                 end = table;
3901                         while (b <= end)
3902                                 sb_breadahead(sb, b++);
3903                 }
3904
3905                 /*
3906                  * There are other valid inodes in the buffer, this inode
3907                  * has in-inode xattrs, or we don't have this inode in memory.
3908                  * Read the block from disk.
3909                  */
3910                 trace_ext4_load_inode(inode);
3911                 get_bh(bh);
3912                 bh->b_end_io = end_buffer_read_sync;
3913                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3914                 wait_on_buffer(bh);
3915                 if (!buffer_uptodate(bh)) {
3916                         EXT4_ERROR_INODE_BLOCK(inode, block,
3917                                                "unable to read itable block");
3918                         brelse(bh);
3919                         return -EIO;
3920                 }
3921         }
3922 has_buffer:
3923         iloc->bh = bh;
3924         return 0;
3925 }
3926
3927 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3928 {
3929         /* We have all inode data except xattrs in memory here. */
3930         return __ext4_get_inode_loc(inode, iloc,
3931                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3932 }
3933
3934 void ext4_set_inode_flags(struct inode *inode)
3935 {
3936         unsigned int flags = EXT4_I(inode)->i_flags;
3937
3938         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3939         if (flags & EXT4_SYNC_FL)
3940                 inode->i_flags |= S_SYNC;
3941         if (flags & EXT4_APPEND_FL)
3942                 inode->i_flags |= S_APPEND;
3943         if (flags & EXT4_IMMUTABLE_FL)
3944                 inode->i_flags |= S_IMMUTABLE;
3945         if (flags & EXT4_NOATIME_FL)
3946                 inode->i_flags |= S_NOATIME;
3947         if (flags & EXT4_DIRSYNC_FL)
3948                 inode->i_flags |= S_DIRSYNC;
3949 }
3950
3951 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3952 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3953 {
3954         unsigned int vfs_fl;
3955         unsigned long old_fl, new_fl;
3956
3957         do {
3958                 vfs_fl = ei->vfs_inode.i_flags;
3959                 old_fl = ei->i_flags;
3960                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3961                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3962                                 EXT4_DIRSYNC_FL);
3963                 if (vfs_fl & S_SYNC)
3964                         new_fl |= EXT4_SYNC_FL;
3965                 if (vfs_fl & S_APPEND)
3966                         new_fl |= EXT4_APPEND_FL;
3967                 if (vfs_fl & S_IMMUTABLE)
3968                         new_fl |= EXT4_IMMUTABLE_FL;
3969                 if (vfs_fl & S_NOATIME)
3970                         new_fl |= EXT4_NOATIME_FL;
3971                 if (vfs_fl & S_DIRSYNC)
3972                         new_fl |= EXT4_DIRSYNC_FL;
3973         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3974 }
3975
3976 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3977                                   struct ext4_inode_info *ei)
3978 {
3979         blkcnt_t i_blocks ;
3980         struct inode *inode = &(ei->vfs_inode);
3981         struct super_block *sb = inode->i_sb;
3982
3983         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3984                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3985                 /* we are using combined 48 bit field */
3986                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3987                                         le32_to_cpu(raw_inode->i_blocks_lo);
3988                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3989                         /* i_blocks represent file system block size */
3990                         return i_blocks  << (inode->i_blkbits - 9);
3991                 } else {
3992                         return i_blocks;
3993                 }
3994         } else {
3995                 return le32_to_cpu(raw_inode->i_blocks_lo);
3996         }
3997 }
3998
3999 static inline void ext4_iget_extra_inode(struct inode *inode,
4000                                          struct ext4_inode *raw_inode,
4001                                          struct ext4_inode_info *ei)
4002 {
4003         __le32 *magic = (void *)raw_inode +
4004                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4005         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4006                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4007                 ext4_find_inline_data_nolock(inode);
4008         } else
4009                 EXT4_I(inode)->i_inline_off = 0;
4010 }
4011
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014         struct ext4_iloc iloc;
4015         struct ext4_inode *raw_inode;
4016         struct ext4_inode_info *ei;
4017         struct inode *inode;
4018         journal_t *journal = EXT4_SB(sb)->s_journal;
4019         long ret;
4020         int block;
4021         uid_t i_uid;
4022         gid_t i_gid;
4023
4024         inode = iget_locked(sb, ino);
4025         if (!inode)
4026                 return ERR_PTR(-ENOMEM);
4027         if (!(inode->i_state & I_NEW))
4028                 return inode;
4029
4030         ei = EXT4_I(inode);
4031         iloc.bh = NULL;
4032
4033         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4034         if (ret < 0)
4035                 goto bad_inode;
4036         raw_inode = ext4_raw_inode(&iloc);
4037
4038         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4039                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4040                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4041                     EXT4_INODE_SIZE(inode->i_sb)) {
4042                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4043                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4044                                 EXT4_INODE_SIZE(inode->i_sb));
4045                         ret = -EIO;
4046                         goto bad_inode;
4047                 }
4048         } else
4049                 ei->i_extra_isize = 0;
4050
4051         /* Precompute checksum seed for inode metadata */
4052         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4053                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4054                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4055                 __u32 csum;
4056                 __le32 inum = cpu_to_le32(inode->i_ino);
4057                 __le32 gen = raw_inode->i_generation;
4058                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4059                                    sizeof(inum));
4060                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4061                                               sizeof(gen));
4062         }
4063
4064         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4065                 EXT4_ERROR_INODE(inode, "checksum invalid");
4066                 ret = -EIO;
4067                 goto bad_inode;
4068         }
4069
4070         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4071         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4072         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4073         if (!(test_opt(inode->i_sb, NO_UID32))) {
4074                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4075                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4076         }
4077         i_uid_write(inode, i_uid);
4078         i_gid_write(inode, i_gid);
4079         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4080
4081         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4082         ei->i_inline_off = 0;
4083         ei->i_dir_start_lookup = 0;
4084         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4085         /* We now have enough fields to check if the inode was active or not.
4086          * This is needed because nfsd might try to access dead inodes
4087          * the test is that same one that e2fsck uses
4088          * NeilBrown 1999oct15
4089          */
4090         if (inode->i_nlink == 0) {
4091                 if ((inode->i_mode == 0 ||
4092                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4093                     ino != EXT4_BOOT_LOADER_INO) {
4094                         /* this inode is deleted */
4095                         ret = -ESTALE;
4096                         goto bad_inode;
4097                 }
4098                 /* The only unlinked inodes we let through here have
4099                  * valid i_mode and are being read by the orphan
4100                  * recovery code: that's fine, we're about to complete
4101                  * the process of deleting those.
4102                  * OR it is the EXT4_BOOT_LOADER_INO which is
4103                  * not initialized on a new filesystem. */
4104         }
4105         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4106         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4107         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4108         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4109                 ei->i_file_acl |=
4110                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4111         inode->i_size = ext4_isize(raw_inode);
4112         ei->i_disksize = inode->i_size;
4113 #ifdef CONFIG_QUOTA
4114         ei->i_reserved_quota = 0;
4115 #endif
4116         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117         ei->i_block_group = iloc.block_group;
4118         ei->i_last_alloc_group = ~0;
4119         /*
4120          * NOTE! The in-memory inode i_data array is in little-endian order
4121          * even on big-endian machines: we do NOT byteswap the block numbers!
4122          */
4123         for (block = 0; block < EXT4_N_BLOCKS; block++)
4124                 ei->i_data[block] = raw_inode->i_block[block];
4125         INIT_LIST_HEAD(&ei->i_orphan);
4126
4127         /*
4128          * Set transaction id's of transactions that have to be committed
4129          * to finish f[data]sync. We set them to currently running transaction
4130          * as we cannot be sure that the inode or some of its metadata isn't
4131          * part of the transaction - the inode could have been reclaimed and
4132          * now it is reread from disk.
4133          */
4134         if (journal) {
4135                 transaction_t *transaction;
4136                 tid_t tid;
4137
4138                 read_lock(&journal->j_state_lock);
4139                 if (journal->j_running_transaction)
4140                         transaction = journal->j_running_transaction;
4141                 else
4142                         transaction = journal->j_committing_transaction;
4143                 if (transaction)
4144                         tid = transaction->t_tid;
4145                 else
4146                         tid = journal->j_commit_sequence;
4147                 read_unlock(&journal->j_state_lock);
4148                 ei->i_sync_tid = tid;
4149                 ei->i_datasync_tid = tid;
4150         }
4151
4152         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4153                 if (ei->i_extra_isize == 0) {
4154                         /* The extra space is currently unused. Use it. */
4155                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4156                                             EXT4_GOOD_OLD_INODE_SIZE;
4157                 } else {
4158                         ext4_iget_extra_inode(inode, raw_inode, ei);
4159                 }
4160         }
4161
4162         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4163         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4164         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4165         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4166
4167         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4168         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4169                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4170                         inode->i_version |=
4171                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4172         }
4173
4174         ret = 0;
4175         if (ei->i_file_acl &&
4176             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4177                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4178                                  ei->i_file_acl);
4179                 ret = -EIO;
4180                 goto bad_inode;
4181         } else if (!ext4_has_inline_data(inode)) {
4182                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4183                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4184                             (S_ISLNK(inode->i_mode) &&
4185                              !ext4_inode_is_fast_symlink(inode))))
4186                                 /* Validate extent which is part of inode */
4187                                 ret = ext4_ext_check_inode(inode);
4188                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4189                            (S_ISLNK(inode->i_mode) &&
4190                             !ext4_inode_is_fast_symlink(inode))) {
4191                         /* Validate block references which are part of inode */
4192                         ret = ext4_ind_check_inode(inode);
4193                 }
4194         }
4195         if (ret)
4196                 goto bad_inode;
4197
4198         if (S_ISREG(inode->i_mode)) {
4199                 inode->i_op = &ext4_file_inode_operations;
4200                 inode->i_fop = &ext4_file_operations;
4201                 ext4_set_aops(inode);
4202         } else if (S_ISDIR(inode->i_mode)) {
4203                 inode->i_op = &ext4_dir_inode_operations;
4204                 inode->i_fop = &ext4_dir_operations;
4205         } else if (S_ISLNK(inode->i_mode)) {
4206                 if (ext4_inode_is_fast_symlink(inode)) {
4207                         inode->i_op = &ext4_fast_symlink_inode_operations;
4208                         nd_terminate_link(ei->i_data, inode->i_size,
4209                                 sizeof(ei->i_data) - 1);
4210                 } else {
4211                         inode->i_op = &ext4_symlink_inode_operations;
4212                         ext4_set_aops(inode);
4213                 }
4214         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4215               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4216                 inode->i_op = &ext4_special_inode_operations;
4217                 if (raw_inode->i_block[0])
4218                         init_special_inode(inode, inode->i_mode,
4219                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4220                 else
4221                         init_special_inode(inode, inode->i_mode,
4222                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4223         } else if (ino == EXT4_BOOT_LOADER_INO) {
4224                 make_bad_inode(inode);
4225         } else {
4226                 ret = -EIO;
4227                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4228                 goto bad_inode;
4229         }
4230         brelse(iloc.bh);
4231         ext4_set_inode_flags(inode);
4232         unlock_new_inode(inode);
4233         return inode;
4234
4235 bad_inode:
4236         brelse(iloc.bh);
4237         iget_failed(inode);
4238         return ERR_PTR(ret);
4239 }
4240
4241 static int ext4_inode_blocks_set(handle_t *handle,
4242                                 struct ext4_inode *raw_inode,
4243                                 struct ext4_inode_info *ei)
4244 {
4245         struct inode *inode = &(ei->vfs_inode);
4246         u64 i_blocks = inode->i_blocks;
4247         struct super_block *sb = inode->i_sb;
4248
4249         if (i_blocks <= ~0U) {
4250                 /*
4251                  * i_blocks can be represented in a 32 bit variable
4252                  * as multiple of 512 bytes
4253                  */
4254                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4255                 raw_inode->i_blocks_high = 0;
4256                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257                 return 0;
4258         }
4259         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4260                 return -EFBIG;
4261
4262         if (i_blocks <= 0xffffffffffffULL) {
4263                 /*
4264                  * i_blocks can be represented in a 48 bit variable
4265                  * as multiple of 512 bytes
4266                  */
4267                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4269                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270         } else {
4271                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272                 /* i_block is stored in file system block size */
4273                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4274                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276         }
4277         return 0;
4278 }
4279
4280 /*
4281  * Post the struct inode info into an on-disk inode location in the
4282  * buffer-cache.  This gobbles the caller's reference to the
4283  * buffer_head in the inode location struct.
4284  *
4285  * The caller must have write access to iloc->bh.
4286  */
4287 static int ext4_do_update_inode(handle_t *handle,
4288                                 struct inode *inode,
4289                                 struct ext4_iloc *iloc)
4290 {
4291         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4292         struct ext4_inode_info *ei = EXT4_I(inode);
4293         struct buffer_head *bh = iloc->bh;
4294         int err = 0, rc, block;
4295         int need_datasync = 0;
4296         uid_t i_uid;
4297         gid_t i_gid;
4298
4299         /* For fields not not tracking in the in-memory inode,
4300          * initialise them to zero for new inodes. */
4301         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4302                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4303
4304         ext4_get_inode_flags(ei);
4305         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4306         i_uid = i_uid_read(inode);
4307         i_gid = i_gid_read(inode);
4308         if (!(test_opt(inode->i_sb, NO_UID32))) {
4309                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4310                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4311 /*
4312  * Fix up interoperability with old kernels. Otherwise, old inodes get
4313  * re-used with the upper 16 bits of the uid/gid intact
4314  */
4315                 if (!ei->i_dtime) {
4316                         raw_inode->i_uid_high =
4317                                 cpu_to_le16(high_16_bits(i_uid));
4318                         raw_inode->i_gid_high =
4319                                 cpu_to_le16(high_16_bits(i_gid));
4320                 } else {
4321                         raw_inode->i_uid_high = 0;
4322                         raw_inode->i_gid_high = 0;
4323                 }
4324         } else {
4325                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4326                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4327                 raw_inode->i_uid_high = 0;
4328                 raw_inode->i_gid_high = 0;
4329         }
4330         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4331
4332         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4333         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4334         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4335         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4336
4337         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4338                 goto out_brelse;
4339         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4340         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4341         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4342             cpu_to_le32(EXT4_OS_HURD))
4343                 raw_inode->i_file_acl_high =
4344                         cpu_to_le16(ei->i_file_acl >> 32);
4345         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4346         if (ei->i_disksize != ext4_isize(raw_inode)) {
4347                 ext4_isize_set(raw_inode, ei->i_disksize);
4348                 need_datasync = 1;
4349         }
4350         if (ei->i_disksize > 0x7fffffffULL) {
4351                 struct super_block *sb = inode->i_sb;
4352                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4353                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4354                                 EXT4_SB(sb)->s_es->s_rev_level ==
4355                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4356                         /* If this is the first large file
4357                          * created, add a flag to the superblock.
4358                          */
4359                         err = ext4_journal_get_write_access(handle,
4360                                         EXT4_SB(sb)->s_sbh);
4361                         if (err)
4362                                 goto out_brelse;
4363                         ext4_update_dynamic_rev(sb);
4364                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4365                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4366                         ext4_handle_sync(handle);
4367                         err = ext4_handle_dirty_super(handle, sb);
4368                 }
4369         }
4370         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4371         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4372                 if (old_valid_dev(inode->i_rdev)) {
4373                         raw_inode->i_block[0] =
4374                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4375                         raw_inode->i_block[1] = 0;
4376                 } else {
4377                         raw_inode->i_block[0] = 0;
4378                         raw_inode->i_block[1] =
4379                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4380                         raw_inode->i_block[2] = 0;
4381                 }
4382         } else if (!ext4_has_inline_data(inode)) {
4383                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4384                         raw_inode->i_block[block] = ei->i_data[block];
4385         }
4386
4387         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4388         if (ei->i_extra_isize) {
4389                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4390                         raw_inode->i_version_hi =
4391                         cpu_to_le32(inode->i_version >> 32);
4392                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4393         }
4394
4395         ext4_inode_csum_set(inode, raw_inode, ei);
4396
4397         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4398         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4399         if (!err)
4400                 err = rc;
4401         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4402
4403         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4404 out_brelse:
4405         brelse(bh);
4406         ext4_std_error(inode->i_sb, err);
4407         return err;
4408 }
4409
4410 /*
4411  * ext4_write_inode()
4412  *
4413  * We are called from a few places:
4414  *
4415  * - Within generic_file_write() for O_SYNC files.
4416  *   Here, there will be no transaction running. We wait for any running
4417  *   transaction to commit.
4418  *
4419  * - Within sys_sync(), kupdate and such.
4420  *   We wait on commit, if tol to.
4421  *
4422  * - Within prune_icache() (PF_MEMALLOC == true)
4423  *   Here we simply return.  We can't afford to block kswapd on the
4424  *   journal commit.
4425  *
4426  * In all cases it is actually safe for us to return without doing anything,
4427  * because the inode has been copied into a raw inode buffer in
4428  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4429  * knfsd.
4430  *
4431  * Note that we are absolutely dependent upon all inode dirtiers doing the
4432  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4433  * which we are interested.
4434  *
4435  * It would be a bug for them to not do this.  The code:
4436  *
4437  *      mark_inode_dirty(inode)
4438  *      stuff();
4439  *      inode->i_size = expr;
4440  *
4441  * is in error because a kswapd-driven write_inode() could occur while
4442  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4443  * will no longer be on the superblock's dirty inode list.
4444  */
4445 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4446 {
4447         int err;
4448
4449         if (current->flags & PF_MEMALLOC)
4450                 return 0;
4451
4452         if (EXT4_SB(inode->i_sb)->s_journal) {
4453                 if (ext4_journal_current_handle()) {
4454                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4455                         dump_stack();
4456                         return -EIO;
4457                 }
4458
4459                 if (wbc->sync_mode != WB_SYNC_ALL)
4460                         return 0;
4461
4462                 err = ext4_force_commit(inode->i_sb);
4463         } else {
4464                 struct ext4_iloc iloc;
4465
4466                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4467                 if (err)
4468                         return err;
4469                 if (wbc->sync_mode == WB_SYNC_ALL)
4470                         sync_dirty_buffer(iloc.bh);
4471                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4472                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4473                                          "IO error syncing inode");
4474                         err = -EIO;
4475                 }
4476                 brelse(iloc.bh);
4477         }
4478         return err;
4479 }
4480
4481 /*
4482  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4483  * buffers that are attached to a page stradding i_size and are undergoing
4484  * commit. In that case we have to wait for commit to finish and try again.
4485  */
4486 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4487 {
4488         struct page *page;
4489         unsigned offset;
4490         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4491         tid_t commit_tid = 0;
4492         int ret;
4493
4494         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4495         /*
4496          * All buffers in the last page remain valid? Then there's nothing to
4497          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4498          * blocksize case
4499          */
4500         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4501                 return;
4502         while (1) {
4503                 page = find_lock_page(inode->i_mapping,
4504                                       inode->i_size >> PAGE_CACHE_SHIFT);
4505                 if (!page)
4506                         return;
4507                 ret = __ext4_journalled_invalidatepage(page, offset,
4508                                                 PAGE_CACHE_SIZE - offset);
4509                 unlock_page(page);
4510                 page_cache_release(page);
4511                 if (ret != -EBUSY)
4512                         return;
4513                 commit_tid = 0;
4514                 read_lock(&journal->j_state_lock);
4515                 if (journal->j_committing_transaction)
4516                         commit_tid = journal->j_committing_transaction->t_tid;
4517                 read_unlock(&journal->j_state_lock);
4518                 if (commit_tid)
4519                         jbd2_log_wait_commit(journal, commit_tid);
4520         }
4521 }
4522
4523 /*
4524  * ext4_setattr()
4525  *
4526  * Called from notify_change.
4527  *
4528  * We want to trap VFS attempts to truncate the file as soon as
4529  * possible.  In particular, we want to make sure that when the VFS
4530  * shrinks i_size, we put the inode on the orphan list and modify
4531  * i_disksize immediately, so that during the subsequent flushing of
4532  * dirty pages and freeing of disk blocks, we can guarantee that any
4533  * commit will leave the blocks being flushed in an unused state on
4534  * disk.  (On recovery, the inode will get truncated and the blocks will
4535  * be freed, so we have a strong guarantee that no future commit will
4536  * leave these blocks visible to the user.)
4537  *
4538  * Another thing we have to assure is that if we are in ordered mode
4539  * and inode is still attached to the committing transaction, we must
4540  * we start writeout of all the dirty pages which are being truncated.
4541  * This way we are sure that all the data written in the previous
4542  * transaction are already on disk (truncate waits for pages under
4543  * writeback).
4544  *
4545  * Called with inode->i_mutex down.
4546  */
4547 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4548 {
4549         struct inode *inode = dentry->d_inode;
4550         int error, rc = 0;
4551         int orphan = 0;
4552         const unsigned int ia_valid = attr->ia_valid;
4553
4554         error = inode_change_ok(inode, attr);
4555         if (error)
4556                 return error;
4557
4558         if (is_quota_modification(inode, attr))
4559                 dquot_initialize(inode);
4560         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4561             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4562                 handle_t *handle;
4563
4564                 /* (user+group)*(old+new) structure, inode write (sb,
4565                  * inode block, ? - but truncate inode update has it) */
4566                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4567                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4568                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4569                 if (IS_ERR(handle)) {
4570                         error = PTR_ERR(handle);
4571                         goto err_out;
4572                 }
4573                 error = dquot_transfer(inode, attr);
4574                 if (error) {
4575                         ext4_journal_stop(handle);
4576                         return error;
4577                 }
4578                 /* Update corresponding info in inode so that everything is in
4579                  * one transaction */
4580                 if (attr->ia_valid & ATTR_UID)
4581                         inode->i_uid = attr->ia_uid;
4582                 if (attr->ia_valid & ATTR_GID)
4583                         inode->i_gid = attr->ia_gid;
4584                 error = ext4_mark_inode_dirty(handle, inode);
4585                 ext4_journal_stop(handle);
4586         }
4587
4588         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4589                 handle_t *handle;
4590
4591                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4592                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4593
4594                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4595                                 return -EFBIG;
4596                 }
4597                 if (S_ISREG(inode->i_mode) &&
4598                     (attr->ia_size < inode->i_size)) {
4599                         if (ext4_should_order_data(inode)) {
4600                                 error = ext4_begin_ordered_truncate(inode,
4601                                                             attr->ia_size);
4602                                 if (error)
4603                                         goto err_out;
4604                         }
4605                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4606                         if (IS_ERR(handle)) {
4607                                 error = PTR_ERR(handle);
4608                                 goto err_out;
4609                         }
4610                         if (ext4_handle_valid(handle)) {
4611                                 error = ext4_orphan_add(handle, inode);
4612                                 orphan = 1;
4613                         }
4614                         down_write(&EXT4_I(inode)->i_data_sem);
4615                         EXT4_I(inode)->i_disksize = attr->ia_size;
4616                         rc = ext4_mark_inode_dirty(handle, inode);
4617                         if (!error)
4618                                 error = rc;
4619                         /*
4620                          * We have to update i_size under i_data_sem together
4621                          * with i_disksize to avoid races with writeback code
4622                          * running ext4_wb_update_i_disksize().
4623                          */
4624                         if (!error)
4625                                 i_size_write(inode, attr->ia_size);
4626                         up_write(&EXT4_I(inode)->i_data_sem);
4627                         ext4_journal_stop(handle);
4628                         if (error) {
4629                                 ext4_orphan_del(NULL, inode);
4630                                 goto err_out;
4631                         }
4632                 } else
4633                         i_size_write(inode, attr->ia_size);
4634
4635                 /*
4636                  * Blocks are going to be removed from the inode. Wait
4637                  * for dio in flight.  Temporarily disable
4638                  * dioread_nolock to prevent livelock.
4639                  */
4640                 if (orphan) {
4641                         if (!ext4_should_journal_data(inode)) {
4642                                 ext4_inode_block_unlocked_dio(inode);
4643                                 inode_dio_wait(inode);
4644                                 ext4_inode_resume_unlocked_dio(inode);
4645                         } else
4646                                 ext4_wait_for_tail_page_commit(inode);
4647                 }
4648                 /*
4649                  * Truncate pagecache after we've waited for commit
4650                  * in data=journal mode to make pages freeable.
4651                  */
4652                         truncate_pagecache(inode, inode->i_size);
4653         }
4654         /*
4655          * We want to call ext4_truncate() even if attr->ia_size ==
4656          * inode->i_size for cases like truncation of fallocated space
4657          */
4658         if (attr->ia_valid & ATTR_SIZE)
4659                 ext4_truncate(inode);
4660
4661         if (!rc) {
4662                 setattr_copy(inode, attr);
4663                 mark_inode_dirty(inode);
4664         }
4665
4666         /*
4667          * If the call to ext4_truncate failed to get a transaction handle at
4668          * all, we need to clean up the in-core orphan list manually.
4669          */
4670         if (orphan && inode->i_nlink)
4671                 ext4_orphan_del(NULL, inode);
4672
4673         if (!rc && (ia_valid & ATTR_MODE))
4674                 rc = ext4_acl_chmod(inode);
4675
4676 err_out:
4677         ext4_std_error(inode->i_sb, error);
4678         if (!error)
4679                 error = rc;
4680         return error;
4681 }
4682
4683 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4684                  struct kstat *stat)
4685 {
4686         struct inode *inode;
4687         unsigned long long delalloc_blocks;
4688
4689         inode = dentry->d_inode;
4690         generic_fillattr(inode, stat);
4691
4692         /*
4693          * We can't update i_blocks if the block allocation is delayed
4694          * otherwise in the case of system crash before the real block
4695          * allocation is done, we will have i_blocks inconsistent with
4696          * on-disk file blocks.
4697          * We always keep i_blocks updated together with real
4698          * allocation. But to not confuse with user, stat
4699          * will return the blocks that include the delayed allocation
4700          * blocks for this file.
4701          */
4702         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4703                                 EXT4_I(inode)->i_reserved_data_blocks);
4704
4705         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4706         return 0;
4707 }
4708
4709 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4710                                    int pextents)
4711 {
4712         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4713                 return ext4_ind_trans_blocks(inode, lblocks);
4714         return ext4_ext_index_trans_blocks(inode, pextents);
4715 }
4716
4717 /*
4718  * Account for index blocks, block groups bitmaps and block group
4719  * descriptor blocks if modify datablocks and index blocks
4720  * worse case, the indexs blocks spread over different block groups
4721  *
4722  * If datablocks are discontiguous, they are possible to spread over
4723  * different block groups too. If they are contiguous, with flexbg,
4724  * they could still across block group boundary.
4725  *
4726  * Also account for superblock, inode, quota and xattr blocks
4727  */
4728 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4729                                   int pextents)
4730 {
4731         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4732         int gdpblocks;
4733         int idxblocks;
4734         int ret = 0;
4735
4736         /*
4737          * How many index blocks need to touch to map @lblocks logical blocks
4738          * to @pextents physical extents?
4739          */
4740         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4741
4742         ret = idxblocks;
4743
4744         /*
4745          * Now let's see how many group bitmaps and group descriptors need
4746          * to account
4747          */
4748         groups = idxblocks + pextents;
4749         gdpblocks = groups;
4750         if (groups > ngroups)
4751                 groups = ngroups;
4752         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4753                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4754
4755         /* bitmaps and block group descriptor blocks */
4756         ret += groups + gdpblocks;
4757
4758         /* Blocks for super block, inode, quota and xattr blocks */
4759         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4760
4761         return ret;
4762 }
4763
4764 /*
4765  * Calculate the total number of credits to reserve to fit
4766  * the modification of a single pages into a single transaction,
4767  * which may include multiple chunks of block allocations.
4768  *
4769  * This could be called via ext4_write_begin()
4770  *
4771  * We need to consider the worse case, when
4772  * one new block per extent.
4773  */
4774 int ext4_writepage_trans_blocks(struct inode *inode)
4775 {
4776         int bpp = ext4_journal_blocks_per_page(inode);
4777         int ret;
4778
4779         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4780
4781         /* Account for data blocks for journalled mode */
4782         if (ext4_should_journal_data(inode))
4783                 ret += bpp;
4784         return ret;
4785 }
4786
4787 /*
4788  * Calculate the journal credits for a chunk of data modification.
4789  *
4790  * This is called from DIO, fallocate or whoever calling
4791  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4792  *
4793  * journal buffers for data blocks are not included here, as DIO
4794  * and fallocate do no need to journal data buffers.
4795  */
4796 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4797 {
4798         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4799 }
4800
4801 /*
4802  * The caller must have previously called ext4_reserve_inode_write().
4803  * Give this, we know that the caller already has write access to iloc->bh.
4804  */
4805 int ext4_mark_iloc_dirty(handle_t *handle,
4806                          struct inode *inode, struct ext4_iloc *iloc)
4807 {
4808         int err = 0;
4809
4810         if (IS_I_VERSION(inode))
4811                 inode_inc_iversion(inode);
4812
4813         /* the do_update_inode consumes one bh->b_count */
4814         get_bh(iloc->bh);
4815
4816         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4817         err = ext4_do_update_inode(handle, inode, iloc);
4818         put_bh(iloc->bh);
4819         return err;
4820 }
4821
4822 /*
4823  * On success, We end up with an outstanding reference count against
4824  * iloc->bh.  This _must_ be cleaned up later.
4825  */
4826
4827 int
4828 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4829                          struct ext4_iloc *iloc)
4830 {
4831         int err;
4832
4833         err = ext4_get_inode_loc(inode, iloc);
4834         if (!err) {
4835                 BUFFER_TRACE(iloc->bh, "get_write_access");
4836                 err = ext4_journal_get_write_access(handle, iloc->bh);
4837                 if (err) {
4838                         brelse(iloc->bh);
4839                         iloc->bh = NULL;
4840                 }
4841         }
4842         ext4_std_error(inode->i_sb, err);
4843         return err;
4844 }
4845
4846 /*
4847  * Expand an inode by new_extra_isize bytes.
4848  * Returns 0 on success or negative error number on failure.
4849  */
4850 static int ext4_expand_extra_isize(struct inode *inode,
4851                                    unsigned int new_extra_isize,
4852                                    struct ext4_iloc iloc,
4853                                    handle_t *handle)
4854 {
4855         struct ext4_inode *raw_inode;
4856         struct ext4_xattr_ibody_header *header;
4857
4858         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4859                 return 0;
4860
4861         raw_inode = ext4_raw_inode(&iloc);
4862
4863         header = IHDR(inode, raw_inode);
4864
4865         /* No extended attributes present */
4866         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4867             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4868                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4869                         new_extra_isize);
4870                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4871                 return 0;
4872         }
4873
4874         /* try to expand with EAs present */
4875         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4876                                           raw_inode, handle);
4877 }
4878
4879 /*
4880  * What we do here is to mark the in-core inode as clean with respect to inode
4881  * dirtiness (it may still be data-dirty).
4882  * This means that the in-core inode may be reaped by prune_icache
4883  * without having to perform any I/O.  This is a very good thing,
4884  * because *any* task may call prune_icache - even ones which
4885  * have a transaction open against a different journal.
4886  *
4887  * Is this cheating?  Not really.  Sure, we haven't written the
4888  * inode out, but prune_icache isn't a user-visible syncing function.
4889  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4890  * we start and wait on commits.
4891  */
4892 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4893 {
4894         struct ext4_iloc iloc;
4895         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4896         static unsigned int mnt_count;
4897         int err, ret;
4898
4899         might_sleep();
4900         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4901         err = ext4_reserve_inode_write(handle, inode, &iloc);
4902         if (ext4_handle_valid(handle) &&
4903             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4904             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4905                 /*
4906                  * We need extra buffer credits since we may write into EA block
4907                  * with this same handle. If journal_extend fails, then it will
4908                  * only result in a minor loss of functionality for that inode.
4909                  * If this is felt to be critical, then e2fsck should be run to
4910                  * force a large enough s_min_extra_isize.
4911                  */
4912                 if ((jbd2_journal_extend(handle,
4913                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4914                         ret = ext4_expand_extra_isize(inode,
4915                                                       sbi->s_want_extra_isize,
4916                                                       iloc, handle);
4917                         if (ret) {
4918                                 ext4_set_inode_state(inode,
4919                                                      EXT4_STATE_NO_EXPAND);
4920                                 if (mnt_count !=
4921                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4922                                         ext4_warning(inode->i_sb,
4923                                         "Unable to expand inode %lu. Delete"
4924                                         " some EAs or run e2fsck.",
4925                                         inode->i_ino);
4926                                         mnt_count =
4927                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4928                                 }
4929                         }
4930                 }
4931         }
4932         if (!err)
4933                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4934         return err;
4935 }
4936
4937 /*
4938  * ext4_dirty_inode() is called from __mark_inode_dirty()
4939  *
4940  * We're really interested in the case where a file is being extended.
4941  * i_size has been changed by generic_commit_write() and we thus need
4942  * to include the updated inode in the current transaction.
4943  *
4944  * Also, dquot_alloc_block() will always dirty the inode when blocks
4945  * are allocated to the file.
4946  *
4947  * If the inode is marked synchronous, we don't honour that here - doing
4948  * so would cause a commit on atime updates, which we don't bother doing.
4949  * We handle synchronous inodes at the highest possible level.
4950  */
4951 void ext4_dirty_inode(struct inode *inode, int flags)
4952 {
4953         handle_t *handle;
4954
4955         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4956         if (IS_ERR(handle))
4957                 goto out;
4958
4959         ext4_mark_inode_dirty(handle, inode);
4960
4961         ext4_journal_stop(handle);
4962 out:
4963         return;
4964 }
4965
4966 #if 0
4967 /*
4968  * Bind an inode's backing buffer_head into this transaction, to prevent
4969  * it from being flushed to disk early.  Unlike
4970  * ext4_reserve_inode_write, this leaves behind no bh reference and
4971  * returns no iloc structure, so the caller needs to repeat the iloc
4972  * lookup to mark the inode dirty later.
4973  */
4974 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4975 {
4976         struct ext4_iloc iloc;
4977
4978         int err = 0;
4979         if (handle) {
4980                 err = ext4_get_inode_loc(inode, &iloc);
4981                 if (!err) {
4982                         BUFFER_TRACE(iloc.bh, "get_write_access");
4983                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4984                         if (!err)
4985                                 err = ext4_handle_dirty_metadata(handle,
4986                                                                  NULL,
4987                                                                  iloc.bh);
4988                         brelse(iloc.bh);
4989                 }
4990         }
4991         ext4_std_error(inode->i_sb, err);
4992         return err;
4993 }
4994 #endif
4995
4996 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4997 {
4998         journal_t *journal;
4999         handle_t *handle;
5000         int err;
5001
5002         /*
5003          * We have to be very careful here: changing a data block's
5004          * journaling status dynamically is dangerous.  If we write a
5005          * data block to the journal, change the status and then delete
5006          * that block, we risk forgetting to revoke the old log record
5007          * from the journal and so a subsequent replay can corrupt data.
5008          * So, first we make sure that the journal is empty and that
5009          * nobody is changing anything.
5010          */
5011
5012         journal = EXT4_JOURNAL(inode);
5013         if (!journal)
5014                 return 0;
5015         if (is_journal_aborted(journal))
5016                 return -EROFS;
5017         /* We have to allocate physical blocks for delalloc blocks
5018          * before flushing journal. otherwise delalloc blocks can not
5019          * be allocated any more. even more truncate on delalloc blocks
5020          * could trigger BUG by flushing delalloc blocks in journal.
5021          * There is no delalloc block in non-journal data mode.
5022          */
5023         if (val && test_opt(inode->i_sb, DELALLOC)) {
5024                 err = ext4_alloc_da_blocks(inode);
5025                 if (err < 0)
5026                         return err;
5027         }
5028
5029         /* Wait for all existing dio workers */
5030         ext4_inode_block_unlocked_dio(inode);
5031         inode_dio_wait(inode);
5032
5033         jbd2_journal_lock_updates(journal);
5034
5035         /*
5036          * OK, there are no updates running now, and all cached data is
5037          * synced to disk.  We are now in a completely consistent state
5038          * which doesn't have anything in the journal, and we know that
5039          * no filesystem updates are running, so it is safe to modify
5040          * the inode's in-core data-journaling state flag now.
5041          */
5042
5043         if (val)
5044                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5045         else {
5046                 jbd2_journal_flush(journal);
5047                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5048         }
5049         ext4_set_aops(inode);
5050
5051         jbd2_journal_unlock_updates(journal);
5052         ext4_inode_resume_unlocked_dio(inode);
5053
5054         /* Finally we can mark the inode as dirty. */
5055
5056         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5057         if (IS_ERR(handle))
5058                 return PTR_ERR(handle);
5059
5060         err = ext4_mark_inode_dirty(handle, inode);
5061         ext4_handle_sync(handle);
5062         ext4_journal_stop(handle);
5063         ext4_std_error(inode->i_sb, err);
5064
5065         return err;
5066 }
5067
5068 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5069 {
5070         return !buffer_mapped(bh);
5071 }
5072
5073 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5074 {
5075         struct page *page = vmf->page;
5076         loff_t size;
5077         unsigned long len;
5078         int ret;
5079         struct file *file = vma->vm_file;
5080         struct inode *inode = file_inode(file);
5081         struct address_space *mapping = inode->i_mapping;
5082         handle_t *handle;
5083         get_block_t *get_block;
5084         int retries = 0;
5085
5086         sb_start_pagefault(inode->i_sb);
5087         file_update_time(vma->vm_file);
5088         /* Delalloc case is easy... */
5089         if (test_opt(inode->i_sb, DELALLOC) &&
5090             !ext4_should_journal_data(inode) &&
5091             !ext4_nonda_switch(inode->i_sb)) {
5092                 do {
5093                         ret = __block_page_mkwrite(vma, vmf,
5094                                                    ext4_da_get_block_prep);
5095                 } while (ret == -ENOSPC &&
5096                        ext4_should_retry_alloc(inode->i_sb, &retries));
5097                 goto out_ret;
5098         }
5099
5100         lock_page(page);
5101         size = i_size_read(inode);
5102         /* Page got truncated from under us? */
5103         if (page->mapping != mapping || page_offset(page) > size) {
5104                 unlock_page(page);
5105                 ret = VM_FAULT_NOPAGE;
5106                 goto out;
5107         }
5108
5109         if (page->index == size >> PAGE_CACHE_SHIFT)
5110                 len = size & ~PAGE_CACHE_MASK;
5111         else
5112                 len = PAGE_CACHE_SIZE;
5113         /*
5114          * Return if we have all the buffers mapped. This avoids the need to do
5115          * journal_start/journal_stop which can block and take a long time
5116          */
5117         if (page_has_buffers(page)) {
5118                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5119                                             0, len, NULL,
5120                                             ext4_bh_unmapped)) {
5121                         /* Wait so that we don't change page under IO */
5122                         wait_for_stable_page(page);
5123                         ret = VM_FAULT_LOCKED;
5124                         goto out;
5125                 }
5126         }
5127         unlock_page(page);
5128         /* OK, we need to fill the hole... */
5129         if (ext4_should_dioread_nolock(inode))
5130                 get_block = ext4_get_block_write;
5131         else
5132                 get_block = ext4_get_block;
5133 retry_alloc:
5134         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5135                                     ext4_writepage_trans_blocks(inode));
5136         if (IS_ERR(handle)) {
5137                 ret = VM_FAULT_SIGBUS;
5138                 goto out;
5139         }
5140         ret = __block_page_mkwrite(vma, vmf, get_block);
5141         if (!ret && ext4_should_journal_data(inode)) {
5142                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5143                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5144                         unlock_page(page);
5145                         ret = VM_FAULT_SIGBUS;
5146                         ext4_journal_stop(handle);
5147                         goto out;
5148                 }
5149                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5150         }
5151         ext4_journal_stop(handle);
5152         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5153                 goto retry_alloc;
5154 out_ret:
5155         ret = block_page_mkwrite_return(ret);
5156 out:
5157         sb_end_pagefault(inode->i_sb);
5158         return ret;
5159 }