]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 /* L: Logical segment # in volume, R: Relative segment # in main area */
18 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
19 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
20
21 #define IS_DATASEG(t)                                                   \
22         ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||           \
23         (t == CURSEG_WARM_DATA))
24
25 #define IS_NODESEG(t)                                                   \
26         ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||           \
27         (t == CURSEG_WARM_NODE))
28
29 #define IS_CURSEG(sbi, seg)                                             \
30         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
33          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
34          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
35          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
36
37 #define IS_CURSEC(sbi, secno)                                           \
38         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
39           sbi->segs_per_sec) || \
40          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
41           sbi->segs_per_sec) || \
42          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
43           sbi->segs_per_sec) || \
44          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
45           sbi->segs_per_sec) || \
46          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
47           sbi->segs_per_sec) || \
48          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
49           sbi->segs_per_sec))   \
50
51 #define START_BLOCK(sbi, segno)                                         \
52         (SM_I(sbi)->seg0_blkaddr +                                      \
53          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
54 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
55         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
56
57 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
58
59 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
60         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
61 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
62         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
63 #define GET_SEGNO(sbi, blk_addr)                                        \
64         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
65         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
66                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)                                   \
68         ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
70         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno)                               \
73         ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
79         (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
81         (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(sit_i, segno)               \
83         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define f2fs_bitmap_size(nr)                    \
85         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
86 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
87 #define TOTAL_SECS(sbi) (sbi->total_sections)
88
89 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
90         (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
91 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
92         (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
94         (min((int)max_hw_blocks, BIO_MAX_PAGES))
95
96 /* during checkpoint, bio_private is used to synchronize the last bio */
97 struct bio_private {
98         struct f2fs_sb_info *sbi;
99         bool is_sync;
100         void *wait;
101 };
102
103 /*
104  * indicate a block allocation direction: RIGHT and LEFT.
105  * RIGHT means allocating new sections towards the end of volume.
106  * LEFT means the opposite direction.
107  */
108 enum {
109         ALLOC_RIGHT = 0,
110         ALLOC_LEFT
111 };
112
113 /*
114  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
115  * LFS writes data sequentially with cleaning operations.
116  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
117  */
118 enum {
119         LFS = 0,
120         SSR
121 };
122
123 /*
124  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
125  * GC_CB is based on cost-benefit algorithm.
126  * GC_GREEDY is based on greedy algorithm.
127  */
128 enum {
129         GC_CB = 0,
130         GC_GREEDY
131 };
132
133 /*
134  * BG_GC means the background cleaning job.
135  * FG_GC means the on-demand cleaning job.
136  */
137 enum {
138         BG_GC = 0,
139         FG_GC
140 };
141
142 /* for a function parameter to select a victim segment */
143 struct victim_sel_policy {
144         int alloc_mode;                 /* LFS or SSR */
145         int gc_mode;                    /* GC_CB or GC_GREEDY */
146         unsigned long *dirty_segmap;    /* dirty segment bitmap */
147         unsigned int max_search;        /* maximum # of segments to search */
148         unsigned int offset;            /* last scanned bitmap offset */
149         unsigned int ofs_unit;          /* bitmap search unit */
150         unsigned int min_cost;          /* minimum cost */
151         unsigned int min_segno;         /* segment # having min. cost */
152 };
153
154 struct seg_entry {
155         unsigned short valid_blocks;    /* # of valid blocks */
156         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
157         /*
158          * # of valid blocks and the validity bitmap stored in the the last
159          * checkpoint pack. This information is used by the SSR mode.
160          */
161         unsigned short ckpt_valid_blocks;
162         unsigned char *ckpt_valid_map;
163         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
164         unsigned long long mtime;       /* modification time of the segment */
165 };
166
167 struct sec_entry {
168         unsigned int valid_blocks;      /* # of valid blocks in a section */
169 };
170
171 struct segment_allocation {
172         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
173 };
174
175 struct sit_info {
176         const struct segment_allocation *s_ops;
177
178         block_t sit_base_addr;          /* start block address of SIT area */
179         block_t sit_blocks;             /* # of blocks used by SIT area */
180         block_t written_valid_blocks;   /* # of valid blocks in main area */
181         char *sit_bitmap;               /* SIT bitmap pointer */
182         unsigned int bitmap_size;       /* SIT bitmap size */
183
184         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
185         unsigned int dirty_sentries;            /* # of dirty sentries */
186         unsigned int sents_per_block;           /* # of SIT entries per block */
187         struct mutex sentry_lock;               /* to protect SIT cache */
188         struct seg_entry *sentries;             /* SIT segment-level cache */
189         struct sec_entry *sec_entries;          /* SIT section-level cache */
190
191         /* for cost-benefit algorithm in cleaning procedure */
192         unsigned long long elapsed_time;        /* elapsed time after mount */
193         unsigned long long mounted_time;        /* mount time */
194         unsigned long long min_mtime;           /* min. modification time */
195         unsigned long long max_mtime;           /* max. modification time */
196 };
197
198 struct free_segmap_info {
199         unsigned int start_segno;       /* start segment number logically */
200         unsigned int free_segments;     /* # of free segments */
201         unsigned int free_sections;     /* # of free sections */
202         rwlock_t segmap_lock;           /* free segmap lock */
203         unsigned long *free_segmap;     /* free segment bitmap */
204         unsigned long *free_secmap;     /* free section bitmap */
205 };
206
207 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
208 enum dirty_type {
209         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
210         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
211         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
212         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
213         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
214         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
215         DIRTY,                  /* to count # of dirty segments */
216         PRE,                    /* to count # of entirely obsolete segments */
217         NR_DIRTY_TYPE
218 };
219
220 struct dirty_seglist_info {
221         const struct victim_selection *v_ops;   /* victim selction operation */
222         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
223         struct mutex seglist_lock;              /* lock for segment bitmaps */
224         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
225         unsigned long *victim_secmap;           /* background GC victims */
226 };
227
228 /* victim selection function for cleaning and SSR */
229 struct victim_selection {
230         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
231                                                         int, int, char);
232 };
233
234 /* for active log information */
235 struct curseg_info {
236         struct mutex curseg_mutex;              /* lock for consistency */
237         struct f2fs_summary_block *sum_blk;     /* cached summary block */
238         unsigned char alloc_type;               /* current allocation type */
239         unsigned int segno;                     /* current segment number */
240         unsigned short next_blkoff;             /* next block offset to write */
241         unsigned int zone;                      /* current zone number */
242         unsigned int next_segno;                /* preallocated segment */
243 };
244
245 /*
246  * inline functions
247  */
248 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
249 {
250         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
251 }
252
253 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
254                                                 unsigned int segno)
255 {
256         struct sit_info *sit_i = SIT_I(sbi);
257         return &sit_i->sentries[segno];
258 }
259
260 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
261                                                 unsigned int segno)
262 {
263         struct sit_info *sit_i = SIT_I(sbi);
264         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
265 }
266
267 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
268                                 unsigned int segno, int section)
269 {
270         /*
271          * In order to get # of valid blocks in a section instantly from many
272          * segments, f2fs manages two counting structures separately.
273          */
274         if (section > 1)
275                 return get_sec_entry(sbi, segno)->valid_blocks;
276         else
277                 return get_seg_entry(sbi, segno)->valid_blocks;
278 }
279
280 static inline void seg_info_from_raw_sit(struct seg_entry *se,
281                                         struct f2fs_sit_entry *rs)
282 {
283         se->valid_blocks = GET_SIT_VBLOCKS(rs);
284         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
285         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
286         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
287         se->type = GET_SIT_TYPE(rs);
288         se->mtime = le64_to_cpu(rs->mtime);
289 }
290
291 static inline void seg_info_to_raw_sit(struct seg_entry *se,
292                                         struct f2fs_sit_entry *rs)
293 {
294         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
295                                         se->valid_blocks;
296         rs->vblocks = cpu_to_le16(raw_vblocks);
297         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
298         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
299         se->ckpt_valid_blocks = se->valid_blocks;
300         rs->mtime = cpu_to_le64(se->mtime);
301 }
302
303 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
304                 unsigned int max, unsigned int segno)
305 {
306         unsigned int ret;
307         read_lock(&free_i->segmap_lock);
308         ret = find_next_bit(free_i->free_segmap, max, segno);
309         read_unlock(&free_i->segmap_lock);
310         return ret;
311 }
312
313 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
314 {
315         struct free_segmap_info *free_i = FREE_I(sbi);
316         unsigned int secno = segno / sbi->segs_per_sec;
317         unsigned int start_segno = secno * sbi->segs_per_sec;
318         unsigned int next;
319
320         write_lock(&free_i->segmap_lock);
321         clear_bit(segno, free_i->free_segmap);
322         free_i->free_segments++;
323
324         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
325         if (next >= start_segno + sbi->segs_per_sec) {
326                 clear_bit(secno, free_i->free_secmap);
327                 free_i->free_sections++;
328         }
329         write_unlock(&free_i->segmap_lock);
330 }
331
332 static inline void __set_inuse(struct f2fs_sb_info *sbi,
333                 unsigned int segno)
334 {
335         struct free_segmap_info *free_i = FREE_I(sbi);
336         unsigned int secno = segno / sbi->segs_per_sec;
337         set_bit(segno, free_i->free_segmap);
338         free_i->free_segments--;
339         if (!test_and_set_bit(secno, free_i->free_secmap))
340                 free_i->free_sections--;
341 }
342
343 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
344                 unsigned int segno)
345 {
346         struct free_segmap_info *free_i = FREE_I(sbi);
347         unsigned int secno = segno / sbi->segs_per_sec;
348         unsigned int start_segno = secno * sbi->segs_per_sec;
349         unsigned int next;
350
351         write_lock(&free_i->segmap_lock);
352         if (test_and_clear_bit(segno, free_i->free_segmap)) {
353                 free_i->free_segments++;
354
355                 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
356                                                                 start_segno);
357                 if (next >= start_segno + sbi->segs_per_sec) {
358                         if (test_and_clear_bit(secno, free_i->free_secmap))
359                                 free_i->free_sections++;
360                 }
361         }
362         write_unlock(&free_i->segmap_lock);
363 }
364
365 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
366                 unsigned int segno)
367 {
368         struct free_segmap_info *free_i = FREE_I(sbi);
369         unsigned int secno = segno / sbi->segs_per_sec;
370         write_lock(&free_i->segmap_lock);
371         if (!test_and_set_bit(segno, free_i->free_segmap)) {
372                 free_i->free_segments--;
373                 if (!test_and_set_bit(secno, free_i->free_secmap))
374                         free_i->free_sections--;
375         }
376         write_unlock(&free_i->segmap_lock);
377 }
378
379 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
380                 void *dst_addr)
381 {
382         struct sit_info *sit_i = SIT_I(sbi);
383         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
384 }
385
386 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
387 {
388         struct sit_info *sit_i = SIT_I(sbi);
389         block_t vblocks;
390
391         mutex_lock(&sit_i->sentry_lock);
392         vblocks = sit_i->written_valid_blocks;
393         mutex_unlock(&sit_i->sentry_lock);
394
395         return vblocks;
396 }
397
398 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
399 {
400         struct free_segmap_info *free_i = FREE_I(sbi);
401         unsigned int free_segs;
402
403         read_lock(&free_i->segmap_lock);
404         free_segs = free_i->free_segments;
405         read_unlock(&free_i->segmap_lock);
406
407         return free_segs;
408 }
409
410 static inline int reserved_segments(struct f2fs_sb_info *sbi)
411 {
412         return SM_I(sbi)->reserved_segments;
413 }
414
415 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
416 {
417         struct free_segmap_info *free_i = FREE_I(sbi);
418         unsigned int free_secs;
419
420         read_lock(&free_i->segmap_lock);
421         free_secs = free_i->free_sections;
422         read_unlock(&free_i->segmap_lock);
423
424         return free_secs;
425 }
426
427 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
428 {
429         return DIRTY_I(sbi)->nr_dirty[PRE];
430 }
431
432 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
433 {
434         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
435                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
436                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
437                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
438                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
439                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
440 }
441
442 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
443 {
444         return SM_I(sbi)->ovp_segments;
445 }
446
447 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
448 {
449         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
450 }
451
452 static inline int reserved_sections(struct f2fs_sb_info *sbi)
453 {
454         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
455 }
456
457 static inline bool need_SSR(struct f2fs_sb_info *sbi)
458 {
459         return ((prefree_segments(sbi) / sbi->segs_per_sec)
460                         + free_sections(sbi) < overprovision_sections(sbi));
461 }
462
463 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
464 {
465         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
466         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
467
468         if (sbi->por_doing)
469                 return false;
470
471         return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
472                                                 reserved_sections(sbi)));
473 }
474
475 static inline int utilization(struct f2fs_sb_info *sbi)
476 {
477         return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
478 }
479
480 /*
481  * Sometimes f2fs may be better to drop out-of-place update policy.
482  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
483  * data in the original place likewise other traditional file systems.
484  * But, currently set 100 in percentage, which means it is disabled.
485  * See below need_inplace_update().
486  */
487 #define MIN_IPU_UTIL            100
488 static inline bool need_inplace_update(struct inode *inode)
489 {
490         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
491         if (S_ISDIR(inode->i_mode))
492                 return false;
493         if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
494                 return true;
495         return false;
496 }
497
498 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
499                 int type)
500 {
501         struct curseg_info *curseg = CURSEG_I(sbi, type);
502         return curseg->segno;
503 }
504
505 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
506                 int type)
507 {
508         struct curseg_info *curseg = CURSEG_I(sbi, type);
509         return curseg->alloc_type;
510 }
511
512 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
513 {
514         struct curseg_info *curseg = CURSEG_I(sbi, type);
515         return curseg->next_blkoff;
516 }
517
518 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
519 {
520         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
521         BUG_ON(segno > end_segno);
522 }
523
524 /*
525  * This function is used for only debugging.
526  * NOTE: In future, we have to remove this function.
527  */
528 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
529 {
530         struct f2fs_sm_info *sm_info = SM_I(sbi);
531         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
532         block_t start_addr = sm_info->seg0_blkaddr;
533         block_t end_addr = start_addr + total_blks - 1;
534         BUG_ON(blk_addr < start_addr);
535         BUG_ON(blk_addr > end_addr);
536 }
537
538 /*
539  * Summary block is always treated as invalid block
540  */
541 static inline void check_block_count(struct f2fs_sb_info *sbi,
542                 int segno, struct f2fs_sit_entry *raw_sit)
543 {
544         struct f2fs_sm_info *sm_info = SM_I(sbi);
545         unsigned int end_segno = sm_info->segment_count - 1;
546         int valid_blocks = 0;
547         int i;
548
549         /* check segment usage */
550         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
551
552         /* check boundary of a given segment number */
553         BUG_ON(segno > end_segno);
554
555         /* check bitmap with valid block count */
556         for (i = 0; i < sbi->blocks_per_seg; i++)
557                 if (f2fs_test_bit(i, raw_sit->valid_map))
558                         valid_blocks++;
559         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
560 }
561
562 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
563                                                 unsigned int start)
564 {
565         struct sit_info *sit_i = SIT_I(sbi);
566         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
567         block_t blk_addr = sit_i->sit_base_addr + offset;
568
569         check_seg_range(sbi, start);
570
571         /* calculate sit block address */
572         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
573                 blk_addr += sit_i->sit_blocks;
574
575         return blk_addr;
576 }
577
578 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
579                                                 pgoff_t block_addr)
580 {
581         struct sit_info *sit_i = SIT_I(sbi);
582         block_addr -= sit_i->sit_base_addr;
583         if (block_addr < sit_i->sit_blocks)
584                 block_addr += sit_i->sit_blocks;
585         else
586                 block_addr -= sit_i->sit_blocks;
587
588         return block_addr + sit_i->sit_base_addr;
589 }
590
591 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
592 {
593         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
594
595         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
596                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
597         else
598                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
599 }
600
601 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
602 {
603         struct sit_info *sit_i = SIT_I(sbi);
604         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
605                                                 sit_i->mounted_time;
606 }
607
608 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
609                         unsigned int ofs_in_node, unsigned char version)
610 {
611         sum->nid = cpu_to_le32(nid);
612         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
613         sum->version = version;
614 }
615
616 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
617 {
618         return __start_cp_addr(sbi) +
619                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
620 }
621
622 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
623 {
624         return __start_cp_addr(sbi) +
625                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
626                                 - (base + 1) + type;
627 }
628
629 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
630 {
631         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
632                 return true;
633         return false;
634 }
635
636 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
637 {
638         struct block_device *bdev = sbi->sb->s_bdev;
639         struct request_queue *q = bdev_get_queue(bdev);
640         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
641 }