]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 #ifdef CONFIG_JBD_DEBUG
94 void __jbd_debug(int level, const char *file, const char *func,
95                  unsigned int line, const char *fmt, ...)
96 {
97         struct va_format vaf;
98         va_list args;
99
100         if (level > journal_enable_debug)
101                 return;
102         va_start(args, fmt);
103         vaf.fmt = fmt;
104         vaf.va = &args;
105         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
106         va_end(args);
107 }
108 EXPORT_SYMBOL(__jbd_debug);
109 #endif
110
111 /*
112  * Helper function used to manage commit timeouts
113  */
114
115 static void commit_timeout(unsigned long __data)
116 {
117         struct task_struct * p = (struct task_struct *) __data;
118
119         wake_up_process(p);
120 }
121
122 /*
123  * kjournald: The main thread function used to manage a logging device
124  * journal.
125  *
126  * This kernel thread is responsible for two things:
127  *
128  * 1) COMMIT:  Every so often we need to commit the current state of the
129  *    filesystem to disk.  The journal thread is responsible for writing
130  *    all of the metadata buffers to disk.
131  *
132  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
133  *    of the data in that part of the log has been rewritten elsewhere on
134  *    the disk.  Flushing these old buffers to reclaim space in the log is
135  *    known as checkpointing, and this thread is responsible for that job.
136  */
137
138 static int kjournald(void *arg)
139 {
140         journal_t *journal = arg;
141         transaction_t *transaction;
142
143         /*
144          * Set up an interval timer which can be used to trigger a commit wakeup
145          * after the commit interval expires
146          */
147         setup_timer(&journal->j_commit_timer, commit_timeout,
148                         (unsigned long)current);
149
150         set_freezable();
151
152         /* Record that the journal thread is running */
153         journal->j_task = current;
154         wake_up(&journal->j_wait_done_commit);
155
156         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
157                         journal->j_commit_interval / HZ);
158
159         /*
160          * And now, wait forever for commit wakeup events.
161          */
162         spin_lock(&journal->j_state_lock);
163
164 loop:
165         if (journal->j_flags & JFS_UNMOUNT)
166                 goto end_loop;
167
168         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
169                 journal->j_commit_sequence, journal->j_commit_request);
170
171         if (journal->j_commit_sequence != journal->j_commit_request) {
172                 jbd_debug(1, "OK, requests differ\n");
173                 spin_unlock(&journal->j_state_lock);
174                 del_timer_sync(&journal->j_commit_timer);
175                 journal_commit_transaction(journal);
176                 spin_lock(&journal->j_state_lock);
177                 goto loop;
178         }
179
180         wake_up(&journal->j_wait_done_commit);
181         if (freezing(current)) {
182                 /*
183                  * The simpler the better. Flushing journal isn't a
184                  * good idea, because that depends on threads that may
185                  * be already stopped.
186                  */
187                 jbd_debug(1, "Now suspending kjournald\n");
188                 spin_unlock(&journal->j_state_lock);
189                 try_to_freeze();
190                 spin_lock(&journal->j_state_lock);
191         } else {
192                 /*
193                  * We assume on resume that commits are already there,
194                  * so we don't sleep
195                  */
196                 DEFINE_WAIT(wait);
197                 int should_sleep = 1;
198
199                 prepare_to_wait(&journal->j_wait_commit, &wait,
200                                 TASK_INTERRUPTIBLE);
201                 if (journal->j_commit_sequence != journal->j_commit_request)
202                         should_sleep = 0;
203                 transaction = journal->j_running_transaction;
204                 if (transaction && time_after_eq(jiffies,
205                                                 transaction->t_expires))
206                         should_sleep = 0;
207                 if (journal->j_flags & JFS_UNMOUNT)
208                         should_sleep = 0;
209                 if (should_sleep) {
210                         spin_unlock(&journal->j_state_lock);
211                         schedule();
212                         spin_lock(&journal->j_state_lock);
213                 }
214                 finish_wait(&journal->j_wait_commit, &wait);
215         }
216
217         jbd_debug(1, "kjournald wakes\n");
218
219         /*
220          * Were we woken up by a commit wakeup event?
221          */
222         transaction = journal->j_running_transaction;
223         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
224                 journal->j_commit_request = transaction->t_tid;
225                 jbd_debug(1, "woke because of timeout\n");
226         }
227         goto loop;
228
229 end_loop:
230         spin_unlock(&journal->j_state_lock);
231         del_timer_sync(&journal->j_commit_timer);
232         journal->j_task = NULL;
233         wake_up(&journal->j_wait_done_commit);
234         jbd_debug(1, "Journal thread exiting.\n");
235         return 0;
236 }
237
238 static int journal_start_thread(journal_t *journal)
239 {
240         struct task_struct *t;
241
242         t = kthread_run(kjournald, journal, "kjournald");
243         if (IS_ERR(t))
244                 return PTR_ERR(t);
245
246         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
247         return 0;
248 }
249
250 static void journal_kill_thread(journal_t *journal)
251 {
252         spin_lock(&journal->j_state_lock);
253         journal->j_flags |= JFS_UNMOUNT;
254
255         while (journal->j_task) {
256                 wake_up(&journal->j_wait_commit);
257                 spin_unlock(&journal->j_state_lock);
258                 wait_event(journal->j_wait_done_commit,
259                                 journal->j_task == NULL);
260                 spin_lock(&journal->j_state_lock);
261         }
262         spin_unlock(&journal->j_state_lock);
263 }
264
265 /*
266  * journal_write_metadata_buffer: write a metadata buffer to the journal.
267  *
268  * Writes a metadata buffer to a given disk block.  The actual IO is not
269  * performed but a new buffer_head is constructed which labels the data
270  * to be written with the correct destination disk block.
271  *
272  * Any magic-number escaping which needs to be done will cause a
273  * copy-out here.  If the buffer happens to start with the
274  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
275  * magic number is only written to the log for descripter blocks.  In
276  * this case, we copy the data and replace the first word with 0, and we
277  * return a result code which indicates that this buffer needs to be
278  * marked as an escaped buffer in the corresponding log descriptor
279  * block.  The missing word can then be restored when the block is read
280  * during recovery.
281  *
282  * If the source buffer has already been modified by a new transaction
283  * since we took the last commit snapshot, we use the frozen copy of
284  * that data for IO.  If we end up using the existing buffer_head's data
285  * for the write, then we *have* to lock the buffer to prevent anyone
286  * else from using and possibly modifying it while the IO is in
287  * progress.
288  *
289  * The function returns a pointer to the buffer_heads to be used for IO.
290  *
291  * We assume that the journal has already been locked in this function.
292  *
293  * Return value:
294  *  <0: Error
295  * >=0: Finished OK
296  *
297  * On success:
298  * Bit 0 set == escape performed on the data
299  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
300  */
301
302 int journal_write_metadata_buffer(transaction_t *transaction,
303                                   struct journal_head  *jh_in,
304                                   struct journal_head **jh_out,
305                                   unsigned int blocknr)
306 {
307         int need_copy_out = 0;
308         int done_copy_out = 0;
309         int do_escape = 0;
310         char *mapped_data;
311         struct buffer_head *new_bh;
312         struct journal_head *new_jh;
313         struct page *new_page;
314         unsigned int new_offset;
315         struct buffer_head *bh_in = jh2bh(jh_in);
316         journal_t *journal = transaction->t_journal;
317
318         /*
319          * The buffer really shouldn't be locked: only the current committing
320          * transaction is allowed to write it, so nobody else is allowed
321          * to do any IO.
322          *
323          * akpm: except if we're journalling data, and write() output is
324          * also part of a shared mapping, and another thread has
325          * decided to launch a writepage() against this buffer.
326          */
327         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
328
329         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
330         /* keep subsequent assertions sane */
331         atomic_set(&new_bh->b_count, 1);
332         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
333
334         /*
335          * If a new transaction has already done a buffer copy-out, then
336          * we use that version of the data for the commit.
337          */
338         jbd_lock_bh_state(bh_in);
339 repeat:
340         if (jh_in->b_frozen_data) {
341                 done_copy_out = 1;
342                 new_page = virt_to_page(jh_in->b_frozen_data);
343                 new_offset = offset_in_page(jh_in->b_frozen_data);
344         } else {
345                 new_page = jh2bh(jh_in)->b_page;
346                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
347         }
348
349         mapped_data = kmap_atomic(new_page);
350         /*
351          * Check for escaping
352          */
353         if (*((__be32 *)(mapped_data + new_offset)) ==
354                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
355                 need_copy_out = 1;
356                 do_escape = 1;
357         }
358         kunmap_atomic(mapped_data);
359
360         /*
361          * Do we need to do a data copy?
362          */
363         if (need_copy_out && !done_copy_out) {
364                 char *tmp;
365
366                 jbd_unlock_bh_state(bh_in);
367                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
368                 jbd_lock_bh_state(bh_in);
369                 if (jh_in->b_frozen_data) {
370                         jbd_free(tmp, bh_in->b_size);
371                         goto repeat;
372                 }
373
374                 jh_in->b_frozen_data = tmp;
375                 mapped_data = kmap_atomic(new_page);
376                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
377                 kunmap_atomic(mapped_data);
378
379                 new_page = virt_to_page(tmp);
380                 new_offset = offset_in_page(tmp);
381                 done_copy_out = 1;
382         }
383
384         /*
385          * Did we need to do an escaping?  Now we've done all the
386          * copying, we can finally do so.
387          */
388         if (do_escape) {
389                 mapped_data = kmap_atomic(new_page);
390                 *((unsigned int *)(mapped_data + new_offset)) = 0;
391                 kunmap_atomic(mapped_data);
392         }
393
394         set_bh_page(new_bh, new_page, new_offset);
395         new_jh->b_transaction = NULL;
396         new_bh->b_size = jh2bh(jh_in)->b_size;
397         new_bh->b_bdev = transaction->t_journal->j_dev;
398         new_bh->b_blocknr = blocknr;
399         set_buffer_mapped(new_bh);
400         set_buffer_dirty(new_bh);
401
402         *jh_out = new_jh;
403
404         /*
405          * The to-be-written buffer needs to get moved to the io queue,
406          * and the original buffer whose contents we are shadowing or
407          * copying is moved to the transaction's shadow queue.
408          */
409         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
410         spin_lock(&journal->j_list_lock);
411         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
412         spin_unlock(&journal->j_list_lock);
413         jbd_unlock_bh_state(bh_in);
414
415         JBUFFER_TRACE(new_jh, "file as BJ_IO");
416         journal_file_buffer(new_jh, transaction, BJ_IO);
417
418         return do_escape | (done_copy_out << 1);
419 }
420
421 /*
422  * Allocation code for the journal file.  Manage the space left in the
423  * journal, so that we can begin checkpointing when appropriate.
424  */
425
426 /*
427  * __log_space_left: Return the number of free blocks left in the journal.
428  *
429  * Called with the journal already locked.
430  *
431  * Called under j_state_lock
432  */
433
434 int __log_space_left(journal_t *journal)
435 {
436         int left = journal->j_free;
437
438         assert_spin_locked(&journal->j_state_lock);
439
440         /*
441          * Be pessimistic here about the number of those free blocks which
442          * might be required for log descriptor control blocks.
443          */
444
445 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
446
447         left -= MIN_LOG_RESERVED_BLOCKS;
448
449         if (left <= 0)
450                 return 0;
451         left -= (left >> 3);
452         return left;
453 }
454
455 /*
456  * Called under j_state_lock.  Returns true if a transaction commit was started.
457  */
458 int __log_start_commit(journal_t *journal, tid_t target)
459 {
460         /*
461          * The only transaction we can possibly wait upon is the
462          * currently running transaction (if it exists).  Otherwise,
463          * the target tid must be an old one.
464          */
465         if (journal->j_commit_request != target &&
466             journal->j_running_transaction &&
467             journal->j_running_transaction->t_tid == target) {
468                 /*
469                  * We want a new commit: OK, mark the request and wakeup the
470                  * commit thread.  We do _not_ do the commit ourselves.
471                  */
472
473                 journal->j_commit_request = target;
474                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
475                           journal->j_commit_request,
476                           journal->j_commit_sequence);
477                 wake_up(&journal->j_wait_commit);
478                 return 1;
479         } else if (!tid_geq(journal->j_commit_request, target))
480                 /* This should never happen, but if it does, preserve
481                    the evidence before kjournald goes into a loop and
482                    increments j_commit_sequence beyond all recognition. */
483                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
484                     journal->j_commit_request, journal->j_commit_sequence,
485                     target, journal->j_running_transaction ?
486                     journal->j_running_transaction->t_tid : 0);
487         return 0;
488 }
489
490 int log_start_commit(journal_t *journal, tid_t tid)
491 {
492         int ret;
493
494         spin_lock(&journal->j_state_lock);
495         ret = __log_start_commit(journal, tid);
496         spin_unlock(&journal->j_state_lock);
497         return ret;
498 }
499
500 /*
501  * Force and wait upon a commit if the calling process is not within
502  * transaction.  This is used for forcing out undo-protected data which contains
503  * bitmaps, when the fs is running out of space.
504  *
505  * We can only force the running transaction if we don't have an active handle;
506  * otherwise, we will deadlock.
507  *
508  * Returns true if a transaction was started.
509  */
510 int journal_force_commit_nested(journal_t *journal)
511 {
512         transaction_t *transaction = NULL;
513         tid_t tid;
514
515         spin_lock(&journal->j_state_lock);
516         if (journal->j_running_transaction && !current->journal_info) {
517                 transaction = journal->j_running_transaction;
518                 __log_start_commit(journal, transaction->t_tid);
519         } else if (journal->j_committing_transaction)
520                 transaction = journal->j_committing_transaction;
521
522         if (!transaction) {
523                 spin_unlock(&journal->j_state_lock);
524                 return 0;       /* Nothing to retry */
525         }
526
527         tid = transaction->t_tid;
528         spin_unlock(&journal->j_state_lock);
529         log_wait_commit(journal, tid);
530         return 1;
531 }
532
533 /*
534  * Start a commit of the current running transaction (if any).  Returns true
535  * if a transaction is going to be committed (or is currently already
536  * committing), and fills its tid in at *ptid
537  */
538 int journal_start_commit(journal_t *journal, tid_t *ptid)
539 {
540         int ret = 0;
541
542         spin_lock(&journal->j_state_lock);
543         if (journal->j_running_transaction) {
544                 tid_t tid = journal->j_running_transaction->t_tid;
545
546                 __log_start_commit(journal, tid);
547                 /* There's a running transaction and we've just made sure
548                  * it's commit has been scheduled. */
549                 if (ptid)
550                         *ptid = tid;
551                 ret = 1;
552         } else if (journal->j_committing_transaction) {
553                 /*
554                  * If commit has been started, then we have to wait for
555                  * completion of that transaction.
556                  */
557                 if (ptid)
558                         *ptid = journal->j_committing_transaction->t_tid;
559                 ret = 1;
560         }
561         spin_unlock(&journal->j_state_lock);
562         return ret;
563 }
564
565 /*
566  * Wait for a specified commit to complete.
567  * The caller may not hold the journal lock.
568  */
569 int log_wait_commit(journal_t *journal, tid_t tid)
570 {
571         int err = 0;
572
573 #ifdef CONFIG_JBD_DEBUG
574         spin_lock(&journal->j_state_lock);
575         if (!tid_geq(journal->j_commit_request, tid)) {
576                 printk(KERN_EMERG
577                        "%s: error: j_commit_request=%d, tid=%d\n",
578                        __func__, journal->j_commit_request, tid);
579         }
580         spin_unlock(&journal->j_state_lock);
581 #endif
582         spin_lock(&journal->j_state_lock);
583         /*
584          * Not running or committing trans? Must be already committed. This
585          * saves us from waiting for a *long* time when tid overflows.
586          */
587         if (!((journal->j_running_transaction &&
588                journal->j_running_transaction->t_tid == tid) ||
589               (journal->j_committing_transaction &&
590                journal->j_committing_transaction->t_tid == tid)))
591                 goto out_unlock;
592
593         if (!tid_geq(journal->j_commit_waited, tid))
594                 journal->j_commit_waited = tid;
595         while (tid_gt(tid, journal->j_commit_sequence)) {
596                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
597                                   tid, journal->j_commit_sequence);
598                 wake_up(&journal->j_wait_commit);
599                 spin_unlock(&journal->j_state_lock);
600                 wait_event(journal->j_wait_done_commit,
601                                 !tid_gt(tid, journal->j_commit_sequence));
602                 spin_lock(&journal->j_state_lock);
603         }
604 out_unlock:
605         spin_unlock(&journal->j_state_lock);
606
607         if (unlikely(is_journal_aborted(journal))) {
608                 printk(KERN_EMERG "journal commit I/O error\n");
609                 err = -EIO;
610         }
611         return err;
612 }
613
614 /*
615  * Return 1 if a given transaction has not yet sent barrier request
616  * connected with a transaction commit. If 0 is returned, transaction
617  * may or may not have sent the barrier. Used to avoid sending barrier
618  * twice in common cases.
619  */
620 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
621 {
622         int ret = 0;
623         transaction_t *commit_trans;
624
625         if (!(journal->j_flags & JFS_BARRIER))
626                 return 0;
627         spin_lock(&journal->j_state_lock);
628         /* Transaction already committed? */
629         if (tid_geq(journal->j_commit_sequence, tid))
630                 goto out;
631         /*
632          * Transaction is being committed and we already proceeded to
633          * writing commit record?
634          */
635         commit_trans = journal->j_committing_transaction;
636         if (commit_trans && commit_trans->t_tid == tid &&
637             commit_trans->t_state >= T_COMMIT_RECORD)
638                 goto out;
639         ret = 1;
640 out:
641         spin_unlock(&journal->j_state_lock);
642         return ret;
643 }
644 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
645
646 /*
647  * Log buffer allocation routines:
648  */
649
650 int journal_next_log_block(journal_t *journal, unsigned int *retp)
651 {
652         unsigned int blocknr;
653
654         spin_lock(&journal->j_state_lock);
655         J_ASSERT(journal->j_free > 1);
656
657         blocknr = journal->j_head;
658         journal->j_head++;
659         journal->j_free--;
660         if (journal->j_head == journal->j_last)
661                 journal->j_head = journal->j_first;
662         spin_unlock(&journal->j_state_lock);
663         return journal_bmap(journal, blocknr, retp);
664 }
665
666 /*
667  * Conversion of logical to physical block numbers for the journal
668  *
669  * On external journals the journal blocks are identity-mapped, so
670  * this is a no-op.  If needed, we can use j_blk_offset - everything is
671  * ready.
672  */
673 int journal_bmap(journal_t *journal, unsigned int blocknr,
674                  unsigned int *retp)
675 {
676         int err = 0;
677         unsigned int ret;
678
679         if (journal->j_inode) {
680                 ret = bmap(journal->j_inode, blocknr);
681                 if (ret)
682                         *retp = ret;
683                 else {
684                         char b[BDEVNAME_SIZE];
685
686                         printk(KERN_ALERT "%s: journal block not found "
687                                         "at offset %u on %s\n",
688                                 __func__,
689                                 blocknr,
690                                 bdevname(journal->j_dev, b));
691                         err = -EIO;
692                         __journal_abort_soft(journal, err);
693                 }
694         } else {
695                 *retp = blocknr; /* +journal->j_blk_offset */
696         }
697         return err;
698 }
699
700 /*
701  * We play buffer_head aliasing tricks to write data/metadata blocks to
702  * the journal without copying their contents, but for journal
703  * descriptor blocks we do need to generate bona fide buffers.
704  *
705  * After the caller of journal_get_descriptor_buffer() has finished modifying
706  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
707  * But we don't bother doing that, so there will be coherency problems with
708  * mmaps of blockdevs which hold live JBD-controlled filesystems.
709  */
710 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
711 {
712         struct buffer_head *bh;
713         unsigned int blocknr;
714         int err;
715
716         err = journal_next_log_block(journal, &blocknr);
717
718         if (err)
719                 return NULL;
720
721         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
722         if (!bh)
723                 return NULL;
724         lock_buffer(bh);
725         memset(bh->b_data, 0, journal->j_blocksize);
726         set_buffer_uptodate(bh);
727         unlock_buffer(bh);
728         BUFFER_TRACE(bh, "return this buffer");
729         return journal_add_journal_head(bh);
730 }
731
732 /*
733  * Management for journal control blocks: functions to create and
734  * destroy journal_t structures, and to initialise and read existing
735  * journal blocks from disk.  */
736
737 /* First: create and setup a journal_t object in memory.  We initialise
738  * very few fields yet: that has to wait until we have created the
739  * journal structures from from scratch, or loaded them from disk. */
740
741 static journal_t * journal_init_common (void)
742 {
743         journal_t *journal;
744         int err;
745
746         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
747         if (!journal)
748                 goto fail;
749
750         init_waitqueue_head(&journal->j_wait_transaction_locked);
751         init_waitqueue_head(&journal->j_wait_logspace);
752         init_waitqueue_head(&journal->j_wait_done_commit);
753         init_waitqueue_head(&journal->j_wait_checkpoint);
754         init_waitqueue_head(&journal->j_wait_commit);
755         init_waitqueue_head(&journal->j_wait_updates);
756         mutex_init(&journal->j_checkpoint_mutex);
757         spin_lock_init(&journal->j_revoke_lock);
758         spin_lock_init(&journal->j_list_lock);
759         spin_lock_init(&journal->j_state_lock);
760
761         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
762
763         /* The journal is marked for error until we succeed with recovery! */
764         journal->j_flags = JFS_ABORT;
765
766         /* Set up a default-sized revoke table for the new mount. */
767         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
768         if (err) {
769                 kfree(journal);
770                 goto fail;
771         }
772         return journal;
773 fail:
774         return NULL;
775 }
776
777 /* journal_init_dev and journal_init_inode:
778  *
779  * Create a journal structure assigned some fixed set of disk blocks to
780  * the journal.  We don't actually touch those disk blocks yet, but we
781  * need to set up all of the mapping information to tell the journaling
782  * system where the journal blocks are.
783  *
784  */
785
786 /**
787  *  journal_t * journal_init_dev() - creates and initialises a journal structure
788  *  @bdev: Block device on which to create the journal
789  *  @fs_dev: Device which hold journalled filesystem for this journal.
790  *  @start: Block nr Start of journal.
791  *  @len:  Length of the journal in blocks.
792  *  @blocksize: blocksize of journalling device
793  *
794  *  Returns: a newly created journal_t *
795  *
796  *  journal_init_dev creates a journal which maps a fixed contiguous
797  *  range of blocks on an arbitrary block device.
798  *
799  */
800 journal_t * journal_init_dev(struct block_device *bdev,
801                         struct block_device *fs_dev,
802                         int start, int len, int blocksize)
803 {
804         journal_t *journal = journal_init_common();
805         struct buffer_head *bh;
806         int n;
807
808         if (!journal)
809                 return NULL;
810
811         /* journal descriptor can store up to n blocks -bzzz */
812         journal->j_blocksize = blocksize;
813         n = journal->j_blocksize / sizeof(journal_block_tag_t);
814         journal->j_wbufsize = n;
815         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
816         if (!journal->j_wbuf) {
817                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
818                         __func__);
819                 goto out_err;
820         }
821         journal->j_dev = bdev;
822         journal->j_fs_dev = fs_dev;
823         journal->j_blk_offset = start;
824         journal->j_maxlen = len;
825
826         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
827         if (!bh) {
828                 printk(KERN_ERR
829                        "%s: Cannot get buffer for journal superblock\n",
830                        __func__);
831                 goto out_err;
832         }
833         journal->j_sb_buffer = bh;
834         journal->j_superblock = (journal_superblock_t *)bh->b_data;
835
836         return journal;
837 out_err:
838         kfree(journal->j_wbuf);
839         kfree(journal);
840         return NULL;
841 }
842
843 /**
844  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
845  *  @inode: An inode to create the journal in
846  *
847  * journal_init_inode creates a journal which maps an on-disk inode as
848  * the journal.  The inode must exist already, must support bmap() and
849  * must have all data blocks preallocated.
850  */
851 journal_t * journal_init_inode (struct inode *inode)
852 {
853         struct buffer_head *bh;
854         journal_t *journal = journal_init_common();
855         int err;
856         int n;
857         unsigned int blocknr;
858
859         if (!journal)
860                 return NULL;
861
862         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
863         journal->j_inode = inode;
864         jbd_debug(1,
865                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
866                   journal, inode->i_sb->s_id, inode->i_ino,
867                   (long long) inode->i_size,
868                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
869
870         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
871         journal->j_blocksize = inode->i_sb->s_blocksize;
872
873         /* journal descriptor can store up to n blocks -bzzz */
874         n = journal->j_blocksize / sizeof(journal_block_tag_t);
875         journal->j_wbufsize = n;
876         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
877         if (!journal->j_wbuf) {
878                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
879                         __func__);
880                 goto out_err;
881         }
882
883         err = journal_bmap(journal, 0, &blocknr);
884         /* If that failed, give up */
885         if (err) {
886                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
887                        __func__);
888                 goto out_err;
889         }
890
891         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
892         if (!bh) {
893                 printk(KERN_ERR
894                        "%s: Cannot get buffer for journal superblock\n",
895                        __func__);
896                 goto out_err;
897         }
898         journal->j_sb_buffer = bh;
899         journal->j_superblock = (journal_superblock_t *)bh->b_data;
900
901         return journal;
902 out_err:
903         kfree(journal->j_wbuf);
904         kfree(journal);
905         return NULL;
906 }
907
908 /*
909  * If the journal init or create aborts, we need to mark the journal
910  * superblock as being NULL to prevent the journal destroy from writing
911  * back a bogus superblock.
912  */
913 static void journal_fail_superblock (journal_t *journal)
914 {
915         struct buffer_head *bh = journal->j_sb_buffer;
916         brelse(bh);
917         journal->j_sb_buffer = NULL;
918 }
919
920 /*
921  * Given a journal_t structure, initialise the various fields for
922  * startup of a new journaling session.  We use this both when creating
923  * a journal, and after recovering an old journal to reset it for
924  * subsequent use.
925  */
926
927 static int journal_reset(journal_t *journal)
928 {
929         journal_superblock_t *sb = journal->j_superblock;
930         unsigned int first, last;
931
932         first = be32_to_cpu(sb->s_first);
933         last = be32_to_cpu(sb->s_maxlen);
934         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
935                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
936                        first, last);
937                 journal_fail_superblock(journal);
938                 return -EINVAL;
939         }
940
941         journal->j_first = first;
942         journal->j_last = last;
943
944         journal->j_head = first;
945         journal->j_tail = first;
946         journal->j_free = last - first;
947
948         journal->j_tail_sequence = journal->j_transaction_sequence;
949         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
950         journal->j_commit_request = journal->j_commit_sequence;
951
952         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
953
954         /*
955          * As a special case, if the on-disk copy is already marked as needing
956          * no recovery (s_start == 0), then we can safely defer the superblock
957          * update until the next commit by setting JFS_FLUSHED.  This avoids
958          * attempting a write to a potential-readonly device.
959          */
960         if (sb->s_start == 0) {
961                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
962                         "(start %u, seq %d, errno %d)\n",
963                         journal->j_tail, journal->j_tail_sequence,
964                         journal->j_errno);
965                 journal->j_flags |= JFS_FLUSHED;
966         } else {
967                 /* Lock here to make assertions happy... */
968                 mutex_lock(&journal->j_checkpoint_mutex);
969                 /*
970                  * Update log tail information. We use WRITE_FUA since new
971                  * transaction will start reusing journal space and so we
972                  * must make sure information about current log tail is on
973                  * disk before that.
974                  */
975                 journal_update_sb_log_tail(journal,
976                                            journal->j_tail_sequence,
977                                            journal->j_tail,
978                                            WRITE_FUA);
979                 mutex_unlock(&journal->j_checkpoint_mutex);
980         }
981         return journal_start_thread(journal);
982 }
983
984 /**
985  * int journal_create() - Initialise the new journal file
986  * @journal: Journal to create. This structure must have been initialised
987  *
988  * Given a journal_t structure which tells us which disk blocks we can
989  * use, create a new journal superblock and initialise all of the
990  * journal fields from scratch.
991  **/
992 int journal_create(journal_t *journal)
993 {
994         unsigned int blocknr;
995         struct buffer_head *bh;
996         journal_superblock_t *sb;
997         int i, err;
998
999         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
1000                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
1001                         journal->j_maxlen);
1002                 journal_fail_superblock(journal);
1003                 return -EINVAL;
1004         }
1005
1006         if (journal->j_inode == NULL) {
1007                 /*
1008                  * We don't know what block to start at!
1009                  */
1010                 printk(KERN_EMERG
1011                        "%s: creation of journal on external device!\n",
1012                        __func__);
1013                 BUG();
1014         }
1015
1016         /* Zero out the entire journal on disk.  We cannot afford to
1017            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1018         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1019         for (i = 0; i < journal->j_maxlen; i++) {
1020                 err = journal_bmap(journal, i, &blocknr);
1021                 if (err)
1022                         return err;
1023                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1024                 if (unlikely(!bh))
1025                         return -ENOMEM;
1026                 lock_buffer(bh);
1027                 memset (bh->b_data, 0, journal->j_blocksize);
1028                 BUFFER_TRACE(bh, "marking dirty");
1029                 mark_buffer_dirty(bh);
1030                 BUFFER_TRACE(bh, "marking uptodate");
1031                 set_buffer_uptodate(bh);
1032                 unlock_buffer(bh);
1033                 __brelse(bh);
1034         }
1035
1036         sync_blockdev(journal->j_dev);
1037         jbd_debug(1, "JBD: journal cleared.\n");
1038
1039         /* OK, fill in the initial static fields in the new superblock */
1040         sb = journal->j_superblock;
1041
1042         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1043         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1044
1045         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1046         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1047         sb->s_first     = cpu_to_be32(1);
1048
1049         journal->j_transaction_sequence = 1;
1050
1051         journal->j_flags &= ~JFS_ABORT;
1052         journal->j_format_version = 2;
1053
1054         return journal_reset(journal);
1055 }
1056
1057 static void journal_write_superblock(journal_t *journal, int write_op)
1058 {
1059         struct buffer_head *bh = journal->j_sb_buffer;
1060         int ret;
1061
1062         trace_journal_write_superblock(journal, write_op);
1063         if (!(journal->j_flags & JFS_BARRIER))
1064                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1065         lock_buffer(bh);
1066         if (buffer_write_io_error(bh)) {
1067                 char b[BDEVNAME_SIZE];
1068                 /*
1069                  * Oh, dear.  A previous attempt to write the journal
1070                  * superblock failed.  This could happen because the
1071                  * USB device was yanked out.  Or it could happen to
1072                  * be a transient write error and maybe the block will
1073                  * be remapped.  Nothing we can do but to retry the
1074                  * write and hope for the best.
1075                  */
1076                 printk(KERN_ERR "JBD: previous I/O error detected "
1077                        "for journal superblock update for %s.\n",
1078                        journal_dev_name(journal, b));
1079                 clear_buffer_write_io_error(bh);
1080                 set_buffer_uptodate(bh);
1081         }
1082
1083         get_bh(bh);
1084         bh->b_end_io = end_buffer_write_sync;
1085         ret = submit_bh(write_op, bh);
1086         wait_on_buffer(bh);
1087         if (buffer_write_io_error(bh)) {
1088                 clear_buffer_write_io_error(bh);
1089                 set_buffer_uptodate(bh);
1090                 ret = -EIO;
1091         }
1092         if (ret) {
1093                 char b[BDEVNAME_SIZE];
1094                 printk(KERN_ERR "JBD: Error %d detected "
1095                        "when updating journal superblock for %s.\n",
1096                        ret, journal_dev_name(journal, b));
1097         }
1098 }
1099
1100 /**
1101  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1102  * @journal: The journal to update.
1103  * @tail_tid: TID of the new transaction at the tail of the log
1104  * @tail_block: The first block of the transaction at the tail of the log
1105  * @write_op: With which operation should we write the journal sb
1106  *
1107  * Update a journal's superblock information about log tail and write it to
1108  * disk, waiting for the IO to complete.
1109  */
1110 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1111                                 unsigned int tail_block, int write_op)
1112 {
1113         journal_superblock_t *sb = journal->j_superblock;
1114
1115         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1116         jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1117                   tail_block, tail_tid);
1118
1119         sb->s_sequence = cpu_to_be32(tail_tid);
1120         sb->s_start    = cpu_to_be32(tail_block);
1121
1122         journal_write_superblock(journal, write_op);
1123
1124         /* Log is no longer empty */
1125         spin_lock(&journal->j_state_lock);
1126         WARN_ON(!sb->s_sequence);
1127         journal->j_flags &= ~JFS_FLUSHED;
1128         spin_unlock(&journal->j_state_lock);
1129 }
1130
1131 /**
1132  * mark_journal_empty() - Mark on disk journal as empty.
1133  * @journal: The journal to update.
1134  *
1135  * Update a journal's dynamic superblock fields to show that journal is empty.
1136  * Write updated superblock to disk waiting for IO to complete.
1137  */
1138 static void mark_journal_empty(journal_t *journal)
1139 {
1140         journal_superblock_t *sb = journal->j_superblock;
1141
1142         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1143         spin_lock(&journal->j_state_lock);
1144         /* Is it already empty? */
1145         if (sb->s_start == 0) {
1146                 spin_unlock(&journal->j_state_lock);
1147                 return;
1148         }
1149         jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1150                   journal->j_tail_sequence);
1151
1152         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1153         sb->s_start    = cpu_to_be32(0);
1154         spin_unlock(&journal->j_state_lock);
1155
1156         journal_write_superblock(journal, WRITE_FUA);
1157
1158         spin_lock(&journal->j_state_lock);
1159         /* Log is empty */
1160         journal->j_flags |= JFS_FLUSHED;
1161         spin_unlock(&journal->j_state_lock);
1162 }
1163
1164 /**
1165  * journal_update_sb_errno() - Update error in the journal.
1166  * @journal: The journal to update.
1167  *
1168  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1169  * to complete.
1170  */
1171 static void journal_update_sb_errno(journal_t *journal)
1172 {
1173         journal_superblock_t *sb = journal->j_superblock;
1174
1175         spin_lock(&journal->j_state_lock);
1176         jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1177                   journal->j_errno);
1178         sb->s_errno = cpu_to_be32(journal->j_errno);
1179         spin_unlock(&journal->j_state_lock);
1180
1181         journal_write_superblock(journal, WRITE_SYNC);
1182 }
1183
1184 /*
1185  * Read the superblock for a given journal, performing initial
1186  * validation of the format.
1187  */
1188
1189 static int journal_get_superblock(journal_t *journal)
1190 {
1191         struct buffer_head *bh;
1192         journal_superblock_t *sb;
1193         int err = -EIO;
1194
1195         bh = journal->j_sb_buffer;
1196
1197         J_ASSERT(bh != NULL);
1198         if (!buffer_uptodate(bh)) {
1199                 ll_rw_block(READ, 1, &bh);
1200                 wait_on_buffer(bh);
1201                 if (!buffer_uptodate(bh)) {
1202                         printk (KERN_ERR
1203                                 "JBD: IO error reading journal superblock\n");
1204                         goto out;
1205                 }
1206         }
1207
1208         sb = journal->j_superblock;
1209
1210         err = -EINVAL;
1211
1212         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1213             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1214                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1215                 goto out;
1216         }
1217
1218         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1219         case JFS_SUPERBLOCK_V1:
1220                 journal->j_format_version = 1;
1221                 break;
1222         case JFS_SUPERBLOCK_V2:
1223                 journal->j_format_version = 2;
1224                 break;
1225         default:
1226                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1227                 goto out;
1228         }
1229
1230         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1231                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1232         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1233                 printk (KERN_WARNING "JBD: journal file too short\n");
1234                 goto out;
1235         }
1236
1237         if (be32_to_cpu(sb->s_first) == 0 ||
1238             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1239                 printk(KERN_WARNING
1240                         "JBD: Invalid start block of journal: %u\n",
1241                         be32_to_cpu(sb->s_first));
1242                 goto out;
1243         }
1244
1245         return 0;
1246
1247 out:
1248         journal_fail_superblock(journal);
1249         return err;
1250 }
1251
1252 /*
1253  * Load the on-disk journal superblock and read the key fields into the
1254  * journal_t.
1255  */
1256
1257 static int load_superblock(journal_t *journal)
1258 {
1259         int err;
1260         journal_superblock_t *sb;
1261
1262         err = journal_get_superblock(journal);
1263         if (err)
1264                 return err;
1265
1266         sb = journal->j_superblock;
1267
1268         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1269         journal->j_tail = be32_to_cpu(sb->s_start);
1270         journal->j_first = be32_to_cpu(sb->s_first);
1271         journal->j_last = be32_to_cpu(sb->s_maxlen);
1272         journal->j_errno = be32_to_cpu(sb->s_errno);
1273
1274         return 0;
1275 }
1276
1277
1278 /**
1279  * int journal_load() - Read journal from disk.
1280  * @journal: Journal to act on.
1281  *
1282  * Given a journal_t structure which tells us which disk blocks contain
1283  * a journal, read the journal from disk to initialise the in-memory
1284  * structures.
1285  */
1286 int journal_load(journal_t *journal)
1287 {
1288         int err;
1289         journal_superblock_t *sb;
1290
1291         err = load_superblock(journal);
1292         if (err)
1293                 return err;
1294
1295         sb = journal->j_superblock;
1296         /* If this is a V2 superblock, then we have to check the
1297          * features flags on it. */
1298
1299         if (journal->j_format_version >= 2) {
1300                 if ((sb->s_feature_ro_compat &
1301                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1302                     (sb->s_feature_incompat &
1303                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1304                         printk (KERN_WARNING
1305                                 "JBD: Unrecognised features on journal\n");
1306                         return -EINVAL;
1307                 }
1308         }
1309
1310         /* Let the recovery code check whether it needs to recover any
1311          * data from the journal. */
1312         if (journal_recover(journal))
1313                 goto recovery_error;
1314
1315         /* OK, we've finished with the dynamic journal bits:
1316          * reinitialise the dynamic contents of the superblock in memory
1317          * and reset them on disk. */
1318         if (journal_reset(journal))
1319                 goto recovery_error;
1320
1321         journal->j_flags &= ~JFS_ABORT;
1322         journal->j_flags |= JFS_LOADED;
1323         return 0;
1324
1325 recovery_error:
1326         printk (KERN_WARNING "JBD: recovery failed\n");
1327         return -EIO;
1328 }
1329
1330 /**
1331  * void journal_destroy() - Release a journal_t structure.
1332  * @journal: Journal to act on.
1333  *
1334  * Release a journal_t structure once it is no longer in use by the
1335  * journaled object.
1336  * Return <0 if we couldn't clean up the journal.
1337  */
1338 int journal_destroy(journal_t *journal)
1339 {
1340         int err = 0;
1341
1342         
1343         /* Wait for the commit thread to wake up and die. */
1344         journal_kill_thread(journal);
1345
1346         /* Force a final log commit */
1347         if (journal->j_running_transaction)
1348                 journal_commit_transaction(journal);
1349
1350         /* Force any old transactions to disk */
1351
1352         /* We cannot race with anybody but must keep assertions happy */
1353         mutex_lock(&journal->j_checkpoint_mutex);
1354         /* Totally anal locking here... */
1355         spin_lock(&journal->j_list_lock);
1356         while (journal->j_checkpoint_transactions != NULL) {
1357                 spin_unlock(&journal->j_list_lock);
1358                 log_do_checkpoint(journal);
1359                 spin_lock(&journal->j_list_lock);
1360         }
1361
1362         J_ASSERT(journal->j_running_transaction == NULL);
1363         J_ASSERT(journal->j_committing_transaction == NULL);
1364         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1365         spin_unlock(&journal->j_list_lock);
1366
1367         if (journal->j_sb_buffer) {
1368                 if (!is_journal_aborted(journal)) {
1369                         journal->j_tail_sequence =
1370                                 ++journal->j_transaction_sequence;
1371                         mark_journal_empty(journal);
1372                 } else
1373                         err = -EIO;
1374                 brelse(journal->j_sb_buffer);
1375         }
1376         mutex_unlock(&journal->j_checkpoint_mutex);
1377
1378         if (journal->j_inode)
1379                 iput(journal->j_inode);
1380         if (journal->j_revoke)
1381                 journal_destroy_revoke(journal);
1382         kfree(journal->j_wbuf);
1383         kfree(journal);
1384
1385         return err;
1386 }
1387
1388
1389 /**
1390  *int journal_check_used_features () - Check if features specified are used.
1391  * @journal: Journal to check.
1392  * @compat: bitmask of compatible features
1393  * @ro: bitmask of features that force read-only mount
1394  * @incompat: bitmask of incompatible features
1395  *
1396  * Check whether the journal uses all of a given set of
1397  * features.  Return true (non-zero) if it does.
1398  **/
1399
1400 int journal_check_used_features (journal_t *journal, unsigned long compat,
1401                                  unsigned long ro, unsigned long incompat)
1402 {
1403         journal_superblock_t *sb;
1404
1405         if (!compat && !ro && !incompat)
1406                 return 1;
1407         if (journal->j_format_version == 1)
1408                 return 0;
1409
1410         sb = journal->j_superblock;
1411
1412         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1413             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1414             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1415                 return 1;
1416
1417         return 0;
1418 }
1419
1420 /**
1421  * int journal_check_available_features() - Check feature set in journalling layer
1422  * @journal: Journal to check.
1423  * @compat: bitmask of compatible features
1424  * @ro: bitmask of features that force read-only mount
1425  * @incompat: bitmask of incompatible features
1426  *
1427  * Check whether the journaling code supports the use of
1428  * all of a given set of features on this journal.  Return true
1429  * (non-zero) if it can. */
1430
1431 int journal_check_available_features (journal_t *journal, unsigned long compat,
1432                                       unsigned long ro, unsigned long incompat)
1433 {
1434         if (!compat && !ro && !incompat)
1435                 return 1;
1436
1437         /* We can support any known requested features iff the
1438          * superblock is in version 2.  Otherwise we fail to support any
1439          * extended sb features. */
1440
1441         if (journal->j_format_version != 2)
1442                 return 0;
1443
1444         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1445             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1446             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1447                 return 1;
1448
1449         return 0;
1450 }
1451
1452 /**
1453  * int journal_set_features () - Mark a given journal feature in the superblock
1454  * @journal: Journal to act on.
1455  * @compat: bitmask of compatible features
1456  * @ro: bitmask of features that force read-only mount
1457  * @incompat: bitmask of incompatible features
1458  *
1459  * Mark a given journal feature as present on the
1460  * superblock.  Returns true if the requested features could be set.
1461  *
1462  */
1463
1464 int journal_set_features (journal_t *journal, unsigned long compat,
1465                           unsigned long ro, unsigned long incompat)
1466 {
1467         journal_superblock_t *sb;
1468
1469         if (journal_check_used_features(journal, compat, ro, incompat))
1470                 return 1;
1471
1472         if (!journal_check_available_features(journal, compat, ro, incompat))
1473                 return 0;
1474
1475         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1476                   compat, ro, incompat);
1477
1478         sb = journal->j_superblock;
1479
1480         sb->s_feature_compat    |= cpu_to_be32(compat);
1481         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1482         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1483
1484         return 1;
1485 }
1486
1487
1488 /**
1489  * int journal_update_format () - Update on-disk journal structure.
1490  * @journal: Journal to act on.
1491  *
1492  * Given an initialised but unloaded journal struct, poke about in the
1493  * on-disk structure to update it to the most recent supported version.
1494  */
1495 int journal_update_format (journal_t *journal)
1496 {
1497         journal_superblock_t *sb;
1498         int err;
1499
1500         err = journal_get_superblock(journal);
1501         if (err)
1502                 return err;
1503
1504         sb = journal->j_superblock;
1505
1506         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1507         case JFS_SUPERBLOCK_V2:
1508                 return 0;
1509         case JFS_SUPERBLOCK_V1:
1510                 return journal_convert_superblock_v1(journal, sb);
1511         default:
1512                 break;
1513         }
1514         return -EINVAL;
1515 }
1516
1517 static int journal_convert_superblock_v1(journal_t *journal,
1518                                          journal_superblock_t *sb)
1519 {
1520         int offset, blocksize;
1521         struct buffer_head *bh;
1522
1523         printk(KERN_WARNING
1524                 "JBD: Converting superblock from version 1 to 2.\n");
1525
1526         /* Pre-initialise new fields to zero */
1527         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1528         blocksize = be32_to_cpu(sb->s_blocksize);
1529         memset(&sb->s_feature_compat, 0, blocksize-offset);
1530
1531         sb->s_nr_users = cpu_to_be32(1);
1532         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1533         journal->j_format_version = 2;
1534
1535         bh = journal->j_sb_buffer;
1536         BUFFER_TRACE(bh, "marking dirty");
1537         mark_buffer_dirty(bh);
1538         sync_dirty_buffer(bh);
1539         return 0;
1540 }
1541
1542
1543 /**
1544  * int journal_flush () - Flush journal
1545  * @journal: Journal to act on.
1546  *
1547  * Flush all data for a given journal to disk and empty the journal.
1548  * Filesystems can use this when remounting readonly to ensure that
1549  * recovery does not need to happen on remount.
1550  */
1551
1552 int journal_flush(journal_t *journal)
1553 {
1554         int err = 0;
1555         transaction_t *transaction = NULL;
1556
1557         spin_lock(&journal->j_state_lock);
1558
1559         /* Force everything buffered to the log... */
1560         if (journal->j_running_transaction) {
1561                 transaction = journal->j_running_transaction;
1562                 __log_start_commit(journal, transaction->t_tid);
1563         } else if (journal->j_committing_transaction)
1564                 transaction = journal->j_committing_transaction;
1565
1566         /* Wait for the log commit to complete... */
1567         if (transaction) {
1568                 tid_t tid = transaction->t_tid;
1569
1570                 spin_unlock(&journal->j_state_lock);
1571                 log_wait_commit(journal, tid);
1572         } else {
1573                 spin_unlock(&journal->j_state_lock);
1574         }
1575
1576         /* ...and flush everything in the log out to disk. */
1577         spin_lock(&journal->j_list_lock);
1578         while (!err && journal->j_checkpoint_transactions != NULL) {
1579                 spin_unlock(&journal->j_list_lock);
1580                 mutex_lock(&journal->j_checkpoint_mutex);
1581                 err = log_do_checkpoint(journal);
1582                 mutex_unlock(&journal->j_checkpoint_mutex);
1583                 spin_lock(&journal->j_list_lock);
1584         }
1585         spin_unlock(&journal->j_list_lock);
1586
1587         if (is_journal_aborted(journal))
1588                 return -EIO;
1589
1590         mutex_lock(&journal->j_checkpoint_mutex);
1591         cleanup_journal_tail(journal);
1592
1593         /* Finally, mark the journal as really needing no recovery.
1594          * This sets s_start==0 in the underlying superblock, which is
1595          * the magic code for a fully-recovered superblock.  Any future
1596          * commits of data to the journal will restore the current
1597          * s_start value. */
1598         mark_journal_empty(journal);
1599         mutex_unlock(&journal->j_checkpoint_mutex);
1600         spin_lock(&journal->j_state_lock);
1601         J_ASSERT(!journal->j_running_transaction);
1602         J_ASSERT(!journal->j_committing_transaction);
1603         J_ASSERT(!journal->j_checkpoint_transactions);
1604         J_ASSERT(journal->j_head == journal->j_tail);
1605         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1606         spin_unlock(&journal->j_state_lock);
1607         return 0;
1608 }
1609
1610 /**
1611  * int journal_wipe() - Wipe journal contents
1612  * @journal: Journal to act on.
1613  * @write: flag (see below)
1614  *
1615  * Wipe out all of the contents of a journal, safely.  This will produce
1616  * a warning if the journal contains any valid recovery information.
1617  * Must be called between journal_init_*() and journal_load().
1618  *
1619  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1620  * we merely suppress recovery.
1621  */
1622
1623 int journal_wipe(journal_t *journal, int write)
1624 {
1625         int err = 0;
1626
1627         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1628
1629         err = load_superblock(journal);
1630         if (err)
1631                 return err;
1632
1633         if (!journal->j_tail)
1634                 goto no_recovery;
1635
1636         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1637                 write ? "Clearing" : "Ignoring");
1638
1639         err = journal_skip_recovery(journal);
1640         if (write) {
1641                 /* Lock to make assertions happy... */
1642                 mutex_lock(&journal->j_checkpoint_mutex);
1643                 mark_journal_empty(journal);
1644                 mutex_unlock(&journal->j_checkpoint_mutex);
1645         }
1646
1647  no_recovery:
1648         return err;
1649 }
1650
1651 /*
1652  * journal_dev_name: format a character string to describe on what
1653  * device this journal is present.
1654  */
1655
1656 static const char *journal_dev_name(journal_t *journal, char *buffer)
1657 {
1658         struct block_device *bdev;
1659
1660         if (journal->j_inode)
1661                 bdev = journal->j_inode->i_sb->s_bdev;
1662         else
1663                 bdev = journal->j_dev;
1664
1665         return bdevname(bdev, buffer);
1666 }
1667
1668 /*
1669  * Journal abort has very specific semantics, which we describe
1670  * for journal abort.
1671  *
1672  * Two internal function, which provide abort to te jbd layer
1673  * itself are here.
1674  */
1675
1676 /*
1677  * Quick version for internal journal use (doesn't lock the journal).
1678  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1679  * and don't attempt to make any other journal updates.
1680  */
1681 static void __journal_abort_hard(journal_t *journal)
1682 {
1683         transaction_t *transaction;
1684         char b[BDEVNAME_SIZE];
1685
1686         if (journal->j_flags & JFS_ABORT)
1687                 return;
1688
1689         printk(KERN_ERR "Aborting journal on device %s.\n",
1690                 journal_dev_name(journal, b));
1691
1692         spin_lock(&journal->j_state_lock);
1693         journal->j_flags |= JFS_ABORT;
1694         transaction = journal->j_running_transaction;
1695         if (transaction)
1696                 __log_start_commit(journal, transaction->t_tid);
1697         spin_unlock(&journal->j_state_lock);
1698 }
1699
1700 /* Soft abort: record the abort error status in the journal superblock,
1701  * but don't do any other IO. */
1702 static void __journal_abort_soft (journal_t *journal, int errno)
1703 {
1704         if (journal->j_flags & JFS_ABORT)
1705                 return;
1706
1707         if (!journal->j_errno)
1708                 journal->j_errno = errno;
1709
1710         __journal_abort_hard(journal);
1711
1712         if (errno)
1713                 journal_update_sb_errno(journal);
1714 }
1715
1716 /**
1717  * void journal_abort () - Shutdown the journal immediately.
1718  * @journal: the journal to shutdown.
1719  * @errno:   an error number to record in the journal indicating
1720  *           the reason for the shutdown.
1721  *
1722  * Perform a complete, immediate shutdown of the ENTIRE
1723  * journal (not of a single transaction).  This operation cannot be
1724  * undone without closing and reopening the journal.
1725  *
1726  * The journal_abort function is intended to support higher level error
1727  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1728  * mode.
1729  *
1730  * Journal abort has very specific semantics.  Any existing dirty,
1731  * unjournaled buffers in the main filesystem will still be written to
1732  * disk by bdflush, but the journaling mechanism will be suspended
1733  * immediately and no further transaction commits will be honoured.
1734  *
1735  * Any dirty, journaled buffers will be written back to disk without
1736  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1737  * filesystem, but we _do_ attempt to leave as much data as possible
1738  * behind for fsck to use for cleanup.
1739  *
1740  * Any attempt to get a new transaction handle on a journal which is in
1741  * ABORT state will just result in an -EROFS error return.  A
1742  * journal_stop on an existing handle will return -EIO if we have
1743  * entered abort state during the update.
1744  *
1745  * Recursive transactions are not disturbed by journal abort until the
1746  * final journal_stop, which will receive the -EIO error.
1747  *
1748  * Finally, the journal_abort call allows the caller to supply an errno
1749  * which will be recorded (if possible) in the journal superblock.  This
1750  * allows a client to record failure conditions in the middle of a
1751  * transaction without having to complete the transaction to record the
1752  * failure to disk.  ext3_error, for example, now uses this
1753  * functionality.
1754  *
1755  * Errors which originate from within the journaling layer will NOT
1756  * supply an errno; a null errno implies that absolutely no further
1757  * writes are done to the journal (unless there are any already in
1758  * progress).
1759  *
1760  */
1761
1762 void journal_abort(journal_t *journal, int errno)
1763 {
1764         __journal_abort_soft(journal, errno);
1765 }
1766
1767 /**
1768  * int journal_errno () - returns the journal's error state.
1769  * @journal: journal to examine.
1770  *
1771  * This is the errno numbet set with journal_abort(), the last
1772  * time the journal was mounted - if the journal was stopped
1773  * without calling abort this will be 0.
1774  *
1775  * If the journal has been aborted on this mount time -EROFS will
1776  * be returned.
1777  */
1778 int journal_errno(journal_t *journal)
1779 {
1780         int err;
1781
1782         spin_lock(&journal->j_state_lock);
1783         if (journal->j_flags & JFS_ABORT)
1784                 err = -EROFS;
1785         else
1786                 err = journal->j_errno;
1787         spin_unlock(&journal->j_state_lock);
1788         return err;
1789 }
1790
1791 /**
1792  * int journal_clear_err () - clears the journal's error state
1793  * @journal: journal to act on.
1794  *
1795  * An error must be cleared or Acked to take a FS out of readonly
1796  * mode.
1797  */
1798 int journal_clear_err(journal_t *journal)
1799 {
1800         int err = 0;
1801
1802         spin_lock(&journal->j_state_lock);
1803         if (journal->j_flags & JFS_ABORT)
1804                 err = -EROFS;
1805         else
1806                 journal->j_errno = 0;
1807         spin_unlock(&journal->j_state_lock);
1808         return err;
1809 }
1810
1811 /**
1812  * void journal_ack_err() - Ack journal err.
1813  * @journal: journal to act on.
1814  *
1815  * An error must be cleared or Acked to take a FS out of readonly
1816  * mode.
1817  */
1818 void journal_ack_err(journal_t *journal)
1819 {
1820         spin_lock(&journal->j_state_lock);
1821         if (journal->j_errno)
1822                 journal->j_flags |= JFS_ACK_ERR;
1823         spin_unlock(&journal->j_state_lock);
1824 }
1825
1826 int journal_blocks_per_page(struct inode *inode)
1827 {
1828         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1829 }
1830
1831 /*
1832  * Journal_head storage management
1833  */
1834 static struct kmem_cache *journal_head_cache;
1835 #ifdef CONFIG_JBD_DEBUG
1836 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1837 #endif
1838
1839 static int journal_init_journal_head_cache(void)
1840 {
1841         int retval;
1842
1843         J_ASSERT(journal_head_cache == NULL);
1844         journal_head_cache = kmem_cache_create("journal_head",
1845                                 sizeof(struct journal_head),
1846                                 0,              /* offset */
1847                                 SLAB_TEMPORARY, /* flags */
1848                                 NULL);          /* ctor */
1849         retval = 0;
1850         if (!journal_head_cache) {
1851                 retval = -ENOMEM;
1852                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1853         }
1854         return retval;
1855 }
1856
1857 static void journal_destroy_journal_head_cache(void)
1858 {
1859         if (journal_head_cache) {
1860                 kmem_cache_destroy(journal_head_cache);
1861                 journal_head_cache = NULL;
1862         }
1863 }
1864
1865 /*
1866  * journal_head splicing and dicing
1867  */
1868 static struct journal_head *journal_alloc_journal_head(void)
1869 {
1870         struct journal_head *ret;
1871
1872 #ifdef CONFIG_JBD_DEBUG
1873         atomic_inc(&nr_journal_heads);
1874 #endif
1875         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1876         if (ret == NULL) {
1877                 jbd_debug(1, "out of memory for journal_head\n");
1878                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1879                                    __func__);
1880
1881                 while (ret == NULL) {
1882                         yield();
1883                         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1884                 }
1885         }
1886         return ret;
1887 }
1888
1889 static void journal_free_journal_head(struct journal_head *jh)
1890 {
1891 #ifdef CONFIG_JBD_DEBUG
1892         atomic_dec(&nr_journal_heads);
1893         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1894 #endif
1895         kmem_cache_free(journal_head_cache, jh);
1896 }
1897
1898 /*
1899  * A journal_head is attached to a buffer_head whenever JBD has an
1900  * interest in the buffer.
1901  *
1902  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1903  * is set.  This bit is tested in core kernel code where we need to take
1904  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1905  * there.
1906  *
1907  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1908  *
1909  * When a buffer has its BH_JBD bit set it is immune from being released by
1910  * core kernel code, mainly via ->b_count.
1911  *
1912  * A journal_head is detached from its buffer_head when the journal_head's
1913  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1914  * transaction (b_cp_transaction) hold their references to b_jcount.
1915  *
1916  * Various places in the kernel want to attach a journal_head to a buffer_head
1917  * _before_ attaching the journal_head to a transaction.  To protect the
1918  * journal_head in this situation, journal_add_journal_head elevates the
1919  * journal_head's b_jcount refcount by one.  The caller must call
1920  * journal_put_journal_head() to undo this.
1921  *
1922  * So the typical usage would be:
1923  *
1924  *      (Attach a journal_head if needed.  Increments b_jcount)
1925  *      struct journal_head *jh = journal_add_journal_head(bh);
1926  *      ...
1927  *      (Get another reference for transaction)
1928  *      journal_grab_journal_head(bh);
1929  *      jh->b_transaction = xxx;
1930  *      (Put original reference)
1931  *      journal_put_journal_head(jh);
1932  */
1933
1934 /*
1935  * Give a buffer_head a journal_head.
1936  *
1937  * May sleep.
1938  */
1939 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1940 {
1941         struct journal_head *jh;
1942         struct journal_head *new_jh = NULL;
1943
1944 repeat:
1945         if (!buffer_jbd(bh))
1946                 new_jh = journal_alloc_journal_head();
1947
1948         jbd_lock_bh_journal_head(bh);
1949         if (buffer_jbd(bh)) {
1950                 jh = bh2jh(bh);
1951         } else {
1952                 J_ASSERT_BH(bh,
1953                         (atomic_read(&bh->b_count) > 0) ||
1954                         (bh->b_page && bh->b_page->mapping));
1955
1956                 if (!new_jh) {
1957                         jbd_unlock_bh_journal_head(bh);
1958                         goto repeat;
1959                 }
1960
1961                 jh = new_jh;
1962                 new_jh = NULL;          /* We consumed it */
1963                 set_buffer_jbd(bh);
1964                 bh->b_private = jh;
1965                 jh->b_bh = bh;
1966                 get_bh(bh);
1967                 BUFFER_TRACE(bh, "added journal_head");
1968         }
1969         jh->b_jcount++;
1970         jbd_unlock_bh_journal_head(bh);
1971         if (new_jh)
1972                 journal_free_journal_head(new_jh);
1973         return bh->b_private;
1974 }
1975
1976 /*
1977  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1978  * having a journal_head, return NULL
1979  */
1980 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1981 {
1982         struct journal_head *jh = NULL;
1983
1984         jbd_lock_bh_journal_head(bh);
1985         if (buffer_jbd(bh)) {
1986                 jh = bh2jh(bh);
1987                 jh->b_jcount++;
1988         }
1989         jbd_unlock_bh_journal_head(bh);
1990         return jh;
1991 }
1992
1993 static void __journal_remove_journal_head(struct buffer_head *bh)
1994 {
1995         struct journal_head *jh = bh2jh(bh);
1996
1997         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1998         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1999         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2000         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2001         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2002         J_ASSERT_BH(bh, buffer_jbd(bh));
2003         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2004         BUFFER_TRACE(bh, "remove journal_head");
2005         if (jh->b_frozen_data) {
2006                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2007                 jbd_free(jh->b_frozen_data, bh->b_size);
2008         }
2009         if (jh->b_committed_data) {
2010                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2011                 jbd_free(jh->b_committed_data, bh->b_size);
2012         }
2013         bh->b_private = NULL;
2014         jh->b_bh = NULL;        /* debug, really */
2015         clear_buffer_jbd(bh);
2016         journal_free_journal_head(jh);
2017 }
2018
2019 /*
2020  * Drop a reference on the passed journal_head.  If it fell to zero then
2021  * release the journal_head from the buffer_head.
2022  */
2023 void journal_put_journal_head(struct journal_head *jh)
2024 {
2025         struct buffer_head *bh = jh2bh(jh);
2026
2027         jbd_lock_bh_journal_head(bh);
2028         J_ASSERT_JH(jh, jh->b_jcount > 0);
2029         --jh->b_jcount;
2030         if (!jh->b_jcount) {
2031                 __journal_remove_journal_head(bh);
2032                 jbd_unlock_bh_journal_head(bh);
2033                 __brelse(bh);
2034         } else
2035                 jbd_unlock_bh_journal_head(bh);
2036 }
2037
2038 /*
2039  * debugfs tunables
2040  */
2041 #ifdef CONFIG_JBD_DEBUG
2042
2043 u8 journal_enable_debug __read_mostly;
2044 EXPORT_SYMBOL(journal_enable_debug);
2045
2046 static struct dentry *jbd_debugfs_dir;
2047 static struct dentry *jbd_debug;
2048
2049 static void __init jbd_create_debugfs_entry(void)
2050 {
2051         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2052         if (jbd_debugfs_dir)
2053                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2054                                                jbd_debugfs_dir,
2055                                                &journal_enable_debug);
2056 }
2057
2058 static void __exit jbd_remove_debugfs_entry(void)
2059 {
2060         debugfs_remove(jbd_debug);
2061         debugfs_remove(jbd_debugfs_dir);
2062 }
2063
2064 #else
2065
2066 static inline void jbd_create_debugfs_entry(void)
2067 {
2068 }
2069
2070 static inline void jbd_remove_debugfs_entry(void)
2071 {
2072 }
2073
2074 #endif
2075
2076 struct kmem_cache *jbd_handle_cache;
2077
2078 static int __init journal_init_handle_cache(void)
2079 {
2080         jbd_handle_cache = kmem_cache_create("journal_handle",
2081                                 sizeof(handle_t),
2082                                 0,              /* offset */
2083                                 SLAB_TEMPORARY, /* flags */
2084                                 NULL);          /* ctor */
2085         if (jbd_handle_cache == NULL) {
2086                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2087                 return -ENOMEM;
2088         }
2089         return 0;
2090 }
2091
2092 static void journal_destroy_handle_cache(void)
2093 {
2094         if (jbd_handle_cache)
2095                 kmem_cache_destroy(jbd_handle_cache);
2096 }
2097
2098 /*
2099  * Module startup and shutdown
2100  */
2101
2102 static int __init journal_init_caches(void)
2103 {
2104         int ret;
2105
2106         ret = journal_init_revoke_caches();
2107         if (ret == 0)
2108                 ret = journal_init_journal_head_cache();
2109         if (ret == 0)
2110                 ret = journal_init_handle_cache();
2111         return ret;
2112 }
2113
2114 static void journal_destroy_caches(void)
2115 {
2116         journal_destroy_revoke_caches();
2117         journal_destroy_journal_head_cache();
2118         journal_destroy_handle_cache();
2119 }
2120
2121 static int __init journal_init(void)
2122 {
2123         int ret;
2124
2125         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2126
2127         ret = journal_init_caches();
2128         if (ret != 0)
2129                 journal_destroy_caches();
2130         jbd_create_debugfs_entry();
2131         return ret;
2132 }
2133
2134 static void __exit journal_exit(void)
2135 {
2136 #ifdef CONFIG_JBD_DEBUG
2137         int n = atomic_read(&nr_journal_heads);
2138         if (n)
2139                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2140 #endif
2141         jbd_remove_debugfs_entry();
2142         journal_destroy_caches();
2143 }
2144
2145 MODULE_LICENSE("GPL");
2146 module_init(journal_init);
2147 module_exit(journal_exit);
2148