]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/proc/task_mmu.c
mm: introduce VM_LOCKONFAULT
[karo-tx-linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void vma_stop(struct proc_maps_private *priv)
120 {
121         struct mm_struct *mm = priv->mm;
122
123         release_task_mempolicy(priv);
124         up_read(&mm->mmap_sem);
125         mmput(mm);
126 }
127
128 static struct vm_area_struct *
129 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
130 {
131         if (vma == priv->tail_vma)
132                 return NULL;
133         return vma->vm_next ?: priv->tail_vma;
134 }
135
136 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
137 {
138         if (m->count < m->size) /* vma is copied successfully */
139                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *ppos)
143 {
144         struct proc_maps_private *priv = m->private;
145         unsigned long last_addr = m->version;
146         struct mm_struct *mm;
147         struct vm_area_struct *vma;
148         unsigned int pos = *ppos;
149
150         /* See m_cache_vma(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
160                 return NULL;
161
162         down_read(&mm->mmap_sem);
163         hold_task_mempolicy(priv);
164         priv->tail_vma = get_gate_vma(mm);
165
166         if (last_addr) {
167                 vma = find_vma(mm, last_addr);
168                 if (vma && (vma = m_next_vma(priv, vma)))
169                         return vma;
170         }
171
172         m->version = 0;
173         if (pos < mm->map_count) {
174                 for (vma = mm->mmap; pos; pos--) {
175                         m->version = vma->vm_start;
176                         vma = vma->vm_next;
177                 }
178                 return vma;
179         }
180
181         /* we do not bother to update m->version in this case */
182         if (pos == mm->map_count && priv->tail_vma)
183                 return priv->tail_vma;
184
185         vma_stop(priv);
186         return NULL;
187 }
188
189 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct vm_area_struct *next;
193
194         (*pos)++;
195         next = m_next_vma(priv, v);
196         if (!next)
197                 vma_stop(priv);
198         return next;
199 }
200
201 static void m_stop(struct seq_file *m, void *v)
202 {
203         struct proc_maps_private *priv = m->private;
204
205         if (!IS_ERR_OR_NULL(v))
206                 vma_stop(priv);
207         if (priv->task) {
208                 put_task_struct(priv->task);
209                 priv->task = NULL;
210         }
211 }
212
213 static int proc_maps_open(struct inode *inode, struct file *file,
214                         const struct seq_operations *ops, int psize)
215 {
216         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
217
218         if (!priv)
219                 return -ENOMEM;
220
221         priv->inode = inode;
222         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
223         if (IS_ERR(priv->mm)) {
224                 int err = PTR_ERR(priv->mm);
225
226                 seq_release_private(inode, file);
227                 return err;
228         }
229
230         return 0;
231 }
232
233 static int proc_map_release(struct inode *inode, struct file *file)
234 {
235         struct seq_file *seq = file->private_data;
236         struct proc_maps_private *priv = seq->private;
237
238         if (priv->mm)
239                 mmdrop(priv->mm);
240
241         return seq_release_private(inode, file);
242 }
243
244 static int do_maps_open(struct inode *inode, struct file *file,
245                         const struct seq_operations *ops)
246 {
247         return proc_maps_open(inode, file, ops,
248                                 sizeof(struct proc_maps_private));
249 }
250
251 static pid_t pid_of_stack(struct proc_maps_private *priv,
252                                 struct vm_area_struct *vma, bool is_pid)
253 {
254         struct inode *inode = priv->inode;
255         struct task_struct *task;
256         pid_t ret = 0;
257
258         rcu_read_lock();
259         task = pid_task(proc_pid(inode), PIDTYPE_PID);
260         if (task) {
261                 task = task_of_stack(task, vma, is_pid);
262                 if (task)
263                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
264         }
265         rcu_read_unlock();
266
267         return ret;
268 }
269
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
272 {
273         struct mm_struct *mm = vma->vm_mm;
274         struct file *file = vma->vm_file;
275         struct proc_maps_private *priv = m->private;
276         vm_flags_t flags = vma->vm_flags;
277         unsigned long ino = 0;
278         unsigned long long pgoff = 0;
279         unsigned long start, end;
280         dev_t dev = 0;
281         const char *name = NULL;
282
283         if (file) {
284                 struct inode *inode = file_inode(vma->vm_file);
285                 dev = inode->i_sb->s_dev;
286                 ino = inode->i_ino;
287                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
288         }
289
290         /* We don't show the stack guard page in /proc/maps */
291         start = vma->vm_start;
292         if (stack_guard_page_start(vma, start))
293                 start += PAGE_SIZE;
294         end = vma->vm_end;
295         if (stack_guard_page_end(vma, end))
296                 end -= PAGE_SIZE;
297
298         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
299         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
300                         start,
301                         end,
302                         flags & VM_READ ? 'r' : '-',
303                         flags & VM_WRITE ? 'w' : '-',
304                         flags & VM_EXEC ? 'x' : '-',
305                         flags & VM_MAYSHARE ? 's' : 'p',
306                         pgoff,
307                         MAJOR(dev), MINOR(dev), ino);
308
309         /*
310          * Print the dentry name for named mappings, and a
311          * special [heap] marker for the heap:
312          */
313         if (file) {
314                 seq_pad(m, ' ');
315                 seq_file_path(m, file, "\n");
316                 goto done;
317         }
318
319         if (vma->vm_ops && vma->vm_ops->name) {
320                 name = vma->vm_ops->name(vma);
321                 if (name)
322                         goto done;
323         }
324
325         name = arch_vma_name(vma);
326         if (!name) {
327                 pid_t tid;
328
329                 if (!mm) {
330                         name = "[vdso]";
331                         goto done;
332                 }
333
334                 if (vma->vm_start <= mm->brk &&
335                     vma->vm_end >= mm->start_brk) {
336                         name = "[heap]";
337                         goto done;
338                 }
339
340                 tid = pid_of_stack(priv, vma, is_pid);
341                 if (tid != 0) {
342                         /*
343                          * Thread stack in /proc/PID/task/TID/maps or
344                          * the main process stack.
345                          */
346                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
347                             vma->vm_end >= mm->start_stack)) {
348                                 name = "[stack]";
349                         } else {
350                                 /* Thread stack in /proc/PID/maps */
351                                 seq_pad(m, ' ');
352                                 seq_printf(m, "[stack:%d]", tid);
353                         }
354                 }
355         }
356
357 done:
358         if (name) {
359                 seq_pad(m, ' ');
360                 seq_puts(m, name);
361         }
362         seq_putc(m, '\n');
363 }
364
365 static int show_map(struct seq_file *m, void *v, int is_pid)
366 {
367         show_map_vma(m, v, is_pid);
368         m_cache_vma(m, v);
369         return 0;
370 }
371
372 static int show_pid_map(struct seq_file *m, void *v)
373 {
374         return show_map(m, v, 1);
375 }
376
377 static int show_tid_map(struct seq_file *m, void *v)
378 {
379         return show_map(m, v, 0);
380 }
381
382 static const struct seq_operations proc_pid_maps_op = {
383         .start  = m_start,
384         .next   = m_next,
385         .stop   = m_stop,
386         .show   = show_pid_map
387 };
388
389 static const struct seq_operations proc_tid_maps_op = {
390         .start  = m_start,
391         .next   = m_next,
392         .stop   = m_stop,
393         .show   = show_tid_map
394 };
395
396 static int pid_maps_open(struct inode *inode, struct file *file)
397 {
398         return do_maps_open(inode, file, &proc_pid_maps_op);
399 }
400
401 static int tid_maps_open(struct inode *inode, struct file *file)
402 {
403         return do_maps_open(inode, file, &proc_tid_maps_op);
404 }
405
406 const struct file_operations proc_pid_maps_operations = {
407         .open           = pid_maps_open,
408         .read           = seq_read,
409         .llseek         = seq_lseek,
410         .release        = proc_map_release,
411 };
412
413 const struct file_operations proc_tid_maps_operations = {
414         .open           = tid_maps_open,
415         .read           = seq_read,
416         .llseek         = seq_lseek,
417         .release        = proc_map_release,
418 };
419
420 /*
421  * Proportional Set Size(PSS): my share of RSS.
422  *
423  * PSS of a process is the count of pages it has in memory, where each
424  * page is divided by the number of processes sharing it.  So if a
425  * process has 1000 pages all to itself, and 1000 shared with one other
426  * process, its PSS will be 1500.
427  *
428  * To keep (accumulated) division errors low, we adopt a 64bit
429  * fixed-point pss counter to minimize division errors. So (pss >>
430  * PSS_SHIFT) would be the real byte count.
431  *
432  * A shift of 12 before division means (assuming 4K page size):
433  *      - 1M 3-user-pages add up to 8KB errors;
434  *      - supports mapcount up to 2^24, or 16M;
435  *      - supports PSS up to 2^52 bytes, or 4PB.
436  */
437 #define PSS_SHIFT 12
438
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats {
441         unsigned long resident;
442         unsigned long shared_clean;
443         unsigned long shared_dirty;
444         unsigned long private_clean;
445         unsigned long private_dirty;
446         unsigned long referenced;
447         unsigned long anonymous;
448         unsigned long anonymous_thp;
449         unsigned long swap;
450         unsigned long shared_hugetlb;
451         unsigned long private_hugetlb;
452         u64 pss;
453         u64 swap_pss;
454 };
455
456 static void smaps_account(struct mem_size_stats *mss, struct page *page,
457                 unsigned long size, bool young, bool dirty)
458 {
459         int mapcount;
460
461         if (PageAnon(page))
462                 mss->anonymous += size;
463
464         mss->resident += size;
465         /* Accumulate the size in pages that have been accessed. */
466         if (young || page_is_young(page) || PageReferenced(page))
467                 mss->referenced += size;
468         mapcount = page_mapcount(page);
469         if (mapcount >= 2) {
470                 u64 pss_delta;
471
472                 if (dirty || PageDirty(page))
473                         mss->shared_dirty += size;
474                 else
475                         mss->shared_clean += size;
476                 pss_delta = (u64)size << PSS_SHIFT;
477                 do_div(pss_delta, mapcount);
478                 mss->pss += pss_delta;
479         } else {
480                 if (dirty || PageDirty(page))
481                         mss->private_dirty += size;
482                 else
483                         mss->private_clean += size;
484                 mss->pss += (u64)size << PSS_SHIFT;
485         }
486 }
487
488 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
489                 struct mm_walk *walk)
490 {
491         struct mem_size_stats *mss = walk->private;
492         struct vm_area_struct *vma = walk->vma;
493         struct page *page = NULL;
494
495         if (pte_present(*pte)) {
496                 page = vm_normal_page(vma, addr, *pte);
497         } else if (is_swap_pte(*pte)) {
498                 swp_entry_t swpent = pte_to_swp_entry(*pte);
499
500                 if (!non_swap_entry(swpent)) {
501                         int mapcount;
502
503                         mss->swap += PAGE_SIZE;
504                         mapcount = swp_swapcount(swpent);
505                         if (mapcount >= 2) {
506                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
507
508                                 do_div(pss_delta, mapcount);
509                                 mss->swap_pss += pss_delta;
510                         } else {
511                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
512                         }
513                 } else if (is_migration_entry(swpent))
514                         page = migration_entry_to_page(swpent);
515         }
516
517         if (!page)
518                 return;
519         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
520 }
521
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
524                 struct mm_walk *walk)
525 {
526         struct mem_size_stats *mss = walk->private;
527         struct vm_area_struct *vma = walk->vma;
528         struct page *page;
529
530         /* FOLL_DUMP will return -EFAULT on huge zero page */
531         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
532         if (IS_ERR_OR_NULL(page))
533                 return;
534         mss->anonymous_thp += HPAGE_PMD_SIZE;
535         smaps_account(mss, page, HPAGE_PMD_SIZE,
536                         pmd_young(*pmd), pmd_dirty(*pmd));
537 }
538 #else
539 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
540                 struct mm_walk *walk)
541 {
542 }
543 #endif
544
545 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
546                            struct mm_walk *walk)
547 {
548         struct vm_area_struct *vma = walk->vma;
549         pte_t *pte;
550         spinlock_t *ptl;
551
552         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
553                 smaps_pmd_entry(pmd, addr, walk);
554                 spin_unlock(ptl);
555                 return 0;
556         }
557
558         if (pmd_trans_unstable(pmd))
559                 return 0;
560         /*
561          * The mmap_sem held all the way back in m_start() is what
562          * keeps khugepaged out of here and from collapsing things
563          * in here.
564          */
565         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
566         for (; addr != end; pte++, addr += PAGE_SIZE)
567                 smaps_pte_entry(pte, addr, walk);
568         pte_unmap_unlock(pte - 1, ptl);
569         cond_resched();
570         return 0;
571 }
572
573 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
574 {
575         /*
576          * Don't forget to update Documentation/ on changes.
577          */
578         static const char mnemonics[BITS_PER_LONG][2] = {
579                 /*
580                  * In case if we meet a flag we don't know about.
581                  */
582                 [0 ... (BITS_PER_LONG-1)] = "??",
583
584                 [ilog2(VM_READ)]        = "rd",
585                 [ilog2(VM_WRITE)]       = "wr",
586                 [ilog2(VM_EXEC)]        = "ex",
587                 [ilog2(VM_SHARED)]      = "sh",
588                 [ilog2(VM_MAYREAD)]     = "mr",
589                 [ilog2(VM_MAYWRITE)]    = "mw",
590                 [ilog2(VM_MAYEXEC)]     = "me",
591                 [ilog2(VM_MAYSHARE)]    = "ms",
592                 [ilog2(VM_GROWSDOWN)]   = "gd",
593                 [ilog2(VM_PFNMAP)]      = "pf",
594                 [ilog2(VM_DENYWRITE)]   = "dw",
595 #ifdef CONFIG_X86_INTEL_MPX
596                 [ilog2(VM_MPX)]         = "mp",
597 #endif
598                 [ilog2(VM_LOCKED)]      = "lo",
599                 [ilog2(VM_IO)]          = "io",
600                 [ilog2(VM_SEQ_READ)]    = "sr",
601                 [ilog2(VM_RAND_READ)]   = "rr",
602                 [ilog2(VM_DONTCOPY)]    = "dc",
603                 [ilog2(VM_DONTEXPAND)]  = "de",
604                 [ilog2(VM_LOCKONFAULT)] = "lf",
605                 [ilog2(VM_ACCOUNT)]     = "ac",
606                 [ilog2(VM_NORESERVE)]   = "nr",
607                 [ilog2(VM_HUGETLB)]     = "ht",
608                 [ilog2(VM_ARCH_1)]      = "ar",
609                 [ilog2(VM_DONTDUMP)]    = "dd",
610 #ifdef CONFIG_MEM_SOFT_DIRTY
611                 [ilog2(VM_SOFTDIRTY)]   = "sd",
612 #endif
613                 [ilog2(VM_MIXEDMAP)]    = "mm",
614                 [ilog2(VM_HUGEPAGE)]    = "hg",
615                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
616                 [ilog2(VM_MERGEABLE)]   = "mg",
617                 [ilog2(VM_UFFD_MISSING)]= "um",
618                 [ilog2(VM_UFFD_WP)]     = "uw",
619         };
620         size_t i;
621
622         seq_puts(m, "VmFlags: ");
623         for (i = 0; i < BITS_PER_LONG; i++) {
624                 if (vma->vm_flags & (1UL << i)) {
625                         seq_printf(m, "%c%c ",
626                                    mnemonics[i][0], mnemonics[i][1]);
627                 }
628         }
629         seq_putc(m, '\n');
630 }
631
632 #ifdef CONFIG_HUGETLB_PAGE
633 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
634                                  unsigned long addr, unsigned long end,
635                                  struct mm_walk *walk)
636 {
637         struct mem_size_stats *mss = walk->private;
638         struct vm_area_struct *vma = walk->vma;
639         struct page *page = NULL;
640
641         if (pte_present(*pte)) {
642                 page = vm_normal_page(vma, addr, *pte);
643         } else if (is_swap_pte(*pte)) {
644                 swp_entry_t swpent = pte_to_swp_entry(*pte);
645
646                 if (is_migration_entry(swpent))
647                         page = migration_entry_to_page(swpent);
648         }
649         if (page) {
650                 int mapcount = page_mapcount(page);
651
652                 if (mapcount >= 2)
653                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
654                 else
655                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
656         }
657         return 0;
658 }
659 #endif /* HUGETLB_PAGE */
660
661 static int show_smap(struct seq_file *m, void *v, int is_pid)
662 {
663         struct vm_area_struct *vma = v;
664         struct mem_size_stats mss;
665         struct mm_walk smaps_walk = {
666                 .pmd_entry = smaps_pte_range,
667 #ifdef CONFIG_HUGETLB_PAGE
668                 .hugetlb_entry = smaps_hugetlb_range,
669 #endif
670                 .mm = vma->vm_mm,
671                 .private = &mss,
672         };
673
674         memset(&mss, 0, sizeof mss);
675         /* mmap_sem is held in m_start */
676         walk_page_vma(vma, &smaps_walk);
677
678         show_map_vma(m, vma, is_pid);
679
680         seq_printf(m,
681                    "Size:           %8lu kB\n"
682                    "Rss:            %8lu kB\n"
683                    "Pss:            %8lu kB\n"
684                    "Shared_Clean:   %8lu kB\n"
685                    "Shared_Dirty:   %8lu kB\n"
686                    "Private_Clean:  %8lu kB\n"
687                    "Private_Dirty:  %8lu kB\n"
688                    "Referenced:     %8lu kB\n"
689                    "Anonymous:      %8lu kB\n"
690                    "AnonHugePages:  %8lu kB\n"
691                    "Shared_Hugetlb: %8lu kB\n"
692                    "Private_Hugetlb: %8lu kB\n"
693                    "Swap:           %8lu kB\n"
694                    "SwapPss:        %8lu kB\n"
695                    "KernelPageSize: %8lu kB\n"
696                    "MMUPageSize:    %8lu kB\n"
697                    "Locked:         %8lu kB\n",
698                    (vma->vm_end - vma->vm_start) >> 10,
699                    mss.resident >> 10,
700                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
701                    mss.shared_clean  >> 10,
702                    mss.shared_dirty  >> 10,
703                    mss.private_clean >> 10,
704                    mss.private_dirty >> 10,
705                    mss.referenced >> 10,
706                    mss.anonymous >> 10,
707                    mss.anonymous_thp >> 10,
708                    mss.shared_hugetlb >> 10,
709                    mss.private_hugetlb >> 10,
710                    mss.swap >> 10,
711                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
712                    vma_kernel_pagesize(vma) >> 10,
713                    vma_mmu_pagesize(vma) >> 10,
714                    (vma->vm_flags & VM_LOCKED) ?
715                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
716
717         show_smap_vma_flags(m, vma);
718         m_cache_vma(m, vma);
719         return 0;
720 }
721
722 static int show_pid_smap(struct seq_file *m, void *v)
723 {
724         return show_smap(m, v, 1);
725 }
726
727 static int show_tid_smap(struct seq_file *m, void *v)
728 {
729         return show_smap(m, v, 0);
730 }
731
732 static const struct seq_operations proc_pid_smaps_op = {
733         .start  = m_start,
734         .next   = m_next,
735         .stop   = m_stop,
736         .show   = show_pid_smap
737 };
738
739 static const struct seq_operations proc_tid_smaps_op = {
740         .start  = m_start,
741         .next   = m_next,
742         .stop   = m_stop,
743         .show   = show_tid_smap
744 };
745
746 static int pid_smaps_open(struct inode *inode, struct file *file)
747 {
748         return do_maps_open(inode, file, &proc_pid_smaps_op);
749 }
750
751 static int tid_smaps_open(struct inode *inode, struct file *file)
752 {
753         return do_maps_open(inode, file, &proc_tid_smaps_op);
754 }
755
756 const struct file_operations proc_pid_smaps_operations = {
757         .open           = pid_smaps_open,
758         .read           = seq_read,
759         .llseek         = seq_lseek,
760         .release        = proc_map_release,
761 };
762
763 const struct file_operations proc_tid_smaps_operations = {
764         .open           = tid_smaps_open,
765         .read           = seq_read,
766         .llseek         = seq_lseek,
767         .release        = proc_map_release,
768 };
769
770 enum clear_refs_types {
771         CLEAR_REFS_ALL = 1,
772         CLEAR_REFS_ANON,
773         CLEAR_REFS_MAPPED,
774         CLEAR_REFS_SOFT_DIRTY,
775         CLEAR_REFS_MM_HIWATER_RSS,
776         CLEAR_REFS_LAST,
777 };
778
779 struct clear_refs_private {
780         enum clear_refs_types type;
781 };
782
783 #ifdef CONFIG_MEM_SOFT_DIRTY
784 static inline void clear_soft_dirty(struct vm_area_struct *vma,
785                 unsigned long addr, pte_t *pte)
786 {
787         /*
788          * The soft-dirty tracker uses #PF-s to catch writes
789          * to pages, so write-protect the pte as well. See the
790          * Documentation/vm/soft-dirty.txt for full description
791          * of how soft-dirty works.
792          */
793         pte_t ptent = *pte;
794
795         if (pte_present(ptent)) {
796                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
797                 ptent = pte_wrprotect(ptent);
798                 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
799                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
800         } else if (is_swap_pte(ptent)) {
801                 ptent = pte_swp_clear_soft_dirty(ptent);
802                 set_pte_at(vma->vm_mm, addr, pte, ptent);
803         }
804 }
805 #else
806 static inline void clear_soft_dirty(struct vm_area_struct *vma,
807                 unsigned long addr, pte_t *pte)
808 {
809 }
810 #endif
811
812 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
813 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
814                 unsigned long addr, pmd_t *pmdp)
815 {
816         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
817
818         pmd = pmd_wrprotect(pmd);
819         pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
820
821         if (vma->vm_flags & VM_SOFTDIRTY)
822                 vma->vm_flags &= ~VM_SOFTDIRTY;
823
824         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
825 }
826 #else
827 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
828                 unsigned long addr, pmd_t *pmdp)
829 {
830 }
831 #endif
832
833 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
834                                 unsigned long end, struct mm_walk *walk)
835 {
836         struct clear_refs_private *cp = walk->private;
837         struct vm_area_struct *vma = walk->vma;
838         pte_t *pte, ptent;
839         spinlock_t *ptl;
840         struct page *page;
841
842         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
843                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
844                         clear_soft_dirty_pmd(vma, addr, pmd);
845                         goto out;
846                 }
847
848                 page = pmd_page(*pmd);
849
850                 /* Clear accessed and referenced bits. */
851                 pmdp_test_and_clear_young(vma, addr, pmd);
852                 test_and_clear_page_young(page);
853                 ClearPageReferenced(page);
854 out:
855                 spin_unlock(ptl);
856                 return 0;
857         }
858
859         if (pmd_trans_unstable(pmd))
860                 return 0;
861
862         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
863         for (; addr != end; pte++, addr += PAGE_SIZE) {
864                 ptent = *pte;
865
866                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
867                         clear_soft_dirty(vma, addr, pte);
868                         continue;
869                 }
870
871                 if (!pte_present(ptent))
872                         continue;
873
874                 page = vm_normal_page(vma, addr, ptent);
875                 if (!page)
876                         continue;
877
878                 /* Clear accessed and referenced bits. */
879                 ptep_test_and_clear_young(vma, addr, pte);
880                 test_and_clear_page_young(page);
881                 ClearPageReferenced(page);
882         }
883         pte_unmap_unlock(pte - 1, ptl);
884         cond_resched();
885         return 0;
886 }
887
888 static int clear_refs_test_walk(unsigned long start, unsigned long end,
889                                 struct mm_walk *walk)
890 {
891         struct clear_refs_private *cp = walk->private;
892         struct vm_area_struct *vma = walk->vma;
893
894         if (vma->vm_flags & VM_PFNMAP)
895                 return 1;
896
897         /*
898          * Writing 1 to /proc/pid/clear_refs affects all pages.
899          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
900          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
901          * Writing 4 to /proc/pid/clear_refs affects all pages.
902          */
903         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
904                 return 1;
905         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
906                 return 1;
907         return 0;
908 }
909
910 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
911                                 size_t count, loff_t *ppos)
912 {
913         struct task_struct *task;
914         char buffer[PROC_NUMBUF];
915         struct mm_struct *mm;
916         struct vm_area_struct *vma;
917         enum clear_refs_types type;
918         int itype;
919         int rv;
920
921         memset(buffer, 0, sizeof(buffer));
922         if (count > sizeof(buffer) - 1)
923                 count = sizeof(buffer) - 1;
924         if (copy_from_user(buffer, buf, count))
925                 return -EFAULT;
926         rv = kstrtoint(strstrip(buffer), 10, &itype);
927         if (rv < 0)
928                 return rv;
929         type = (enum clear_refs_types)itype;
930         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
931                 return -EINVAL;
932
933         task = get_proc_task(file_inode(file));
934         if (!task)
935                 return -ESRCH;
936         mm = get_task_mm(task);
937         if (mm) {
938                 struct clear_refs_private cp = {
939                         .type = type,
940                 };
941                 struct mm_walk clear_refs_walk = {
942                         .pmd_entry = clear_refs_pte_range,
943                         .test_walk = clear_refs_test_walk,
944                         .mm = mm,
945                         .private = &cp,
946                 };
947
948                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
949                         /*
950                          * Writing 5 to /proc/pid/clear_refs resets the peak
951                          * resident set size to this mm's current rss value.
952                          */
953                         down_write(&mm->mmap_sem);
954                         reset_mm_hiwater_rss(mm);
955                         up_write(&mm->mmap_sem);
956                         goto out_mm;
957                 }
958
959                 down_read(&mm->mmap_sem);
960                 if (type == CLEAR_REFS_SOFT_DIRTY) {
961                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
962                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
963                                         continue;
964                                 up_read(&mm->mmap_sem);
965                                 down_write(&mm->mmap_sem);
966                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
967                                         vma->vm_flags &= ~VM_SOFTDIRTY;
968                                         vma_set_page_prot(vma);
969                                 }
970                                 downgrade_write(&mm->mmap_sem);
971                                 break;
972                         }
973                         mmu_notifier_invalidate_range_start(mm, 0, -1);
974                 }
975                 walk_page_range(0, ~0UL, &clear_refs_walk);
976                 if (type == CLEAR_REFS_SOFT_DIRTY)
977                         mmu_notifier_invalidate_range_end(mm, 0, -1);
978                 flush_tlb_mm(mm);
979                 up_read(&mm->mmap_sem);
980 out_mm:
981                 mmput(mm);
982         }
983         put_task_struct(task);
984
985         return count;
986 }
987
988 const struct file_operations proc_clear_refs_operations = {
989         .write          = clear_refs_write,
990         .llseek         = noop_llseek,
991 };
992
993 typedef struct {
994         u64 pme;
995 } pagemap_entry_t;
996
997 struct pagemapread {
998         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
999         pagemap_entry_t *buffer;
1000         bool show_pfn;
1001 };
1002
1003 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1004 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1005
1006 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1007 #define PM_PFRAME_BITS          55
1008 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1009 #define PM_SOFT_DIRTY           BIT_ULL(55)
1010 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1011 #define PM_FILE                 BIT_ULL(61)
1012 #define PM_SWAP                 BIT_ULL(62)
1013 #define PM_PRESENT              BIT_ULL(63)
1014
1015 #define PM_END_OF_BUFFER    1
1016
1017 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1018 {
1019         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1020 }
1021
1022 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1023                           struct pagemapread *pm)
1024 {
1025         pm->buffer[pm->pos++] = *pme;
1026         if (pm->pos >= pm->len)
1027                 return PM_END_OF_BUFFER;
1028         return 0;
1029 }
1030
1031 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1032                                 struct mm_walk *walk)
1033 {
1034         struct pagemapread *pm = walk->private;
1035         unsigned long addr = start;
1036         int err = 0;
1037
1038         while (addr < end) {
1039                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1040                 pagemap_entry_t pme = make_pme(0, 0);
1041                 /* End of address space hole, which we mark as non-present. */
1042                 unsigned long hole_end;
1043
1044                 if (vma)
1045                         hole_end = min(end, vma->vm_start);
1046                 else
1047                         hole_end = end;
1048
1049                 for (; addr < hole_end; addr += PAGE_SIZE) {
1050                         err = add_to_pagemap(addr, &pme, pm);
1051                         if (err)
1052                                 goto out;
1053                 }
1054
1055                 if (!vma)
1056                         break;
1057
1058                 /* Addresses in the VMA. */
1059                 if (vma->vm_flags & VM_SOFTDIRTY)
1060                         pme = make_pme(0, PM_SOFT_DIRTY);
1061                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1062                         err = add_to_pagemap(addr, &pme, pm);
1063                         if (err)
1064                                 goto out;
1065                 }
1066         }
1067 out:
1068         return err;
1069 }
1070
1071 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1072                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1073 {
1074         u64 frame = 0, flags = 0;
1075         struct page *page = NULL;
1076
1077         if (pte_present(pte)) {
1078                 if (pm->show_pfn)
1079                         frame = pte_pfn(pte);
1080                 flags |= PM_PRESENT;
1081                 page = vm_normal_page(vma, addr, pte);
1082                 if (pte_soft_dirty(pte))
1083                         flags |= PM_SOFT_DIRTY;
1084         } else if (is_swap_pte(pte)) {
1085                 swp_entry_t entry;
1086                 if (pte_swp_soft_dirty(pte))
1087                         flags |= PM_SOFT_DIRTY;
1088                 entry = pte_to_swp_entry(pte);
1089                 frame = swp_type(entry) |
1090                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1091                 flags |= PM_SWAP;
1092                 if (is_migration_entry(entry))
1093                         page = migration_entry_to_page(entry);
1094         }
1095
1096         if (page && !PageAnon(page))
1097                 flags |= PM_FILE;
1098         if (page && page_mapcount(page) == 1)
1099                 flags |= PM_MMAP_EXCLUSIVE;
1100         if (vma->vm_flags & VM_SOFTDIRTY)
1101                 flags |= PM_SOFT_DIRTY;
1102
1103         return make_pme(frame, flags);
1104 }
1105
1106 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1107                              struct mm_walk *walk)
1108 {
1109         struct vm_area_struct *vma = walk->vma;
1110         struct pagemapread *pm = walk->private;
1111         spinlock_t *ptl;
1112         pte_t *pte, *orig_pte;
1113         int err = 0;
1114
1115 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1116         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1117                 u64 flags = 0, frame = 0;
1118                 pmd_t pmd = *pmdp;
1119
1120                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1121                         flags |= PM_SOFT_DIRTY;
1122
1123                 /*
1124                  * Currently pmd for thp is always present because thp
1125                  * can not be swapped-out, migrated, or HWPOISONed
1126                  * (split in such cases instead.)
1127                  * This if-check is just to prepare for future implementation.
1128                  */
1129                 if (pmd_present(pmd)) {
1130                         struct page *page = pmd_page(pmd);
1131
1132                         if (page_mapcount(page) == 1)
1133                                 flags |= PM_MMAP_EXCLUSIVE;
1134
1135                         flags |= PM_PRESENT;
1136                         if (pm->show_pfn)
1137                                 frame = pmd_pfn(pmd) +
1138                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1139                 }
1140
1141                 for (; addr != end; addr += PAGE_SIZE) {
1142                         pagemap_entry_t pme = make_pme(frame, flags);
1143
1144                         err = add_to_pagemap(addr, &pme, pm);
1145                         if (err)
1146                                 break;
1147                         if (pm->show_pfn && (flags & PM_PRESENT))
1148                                 frame++;
1149                 }
1150                 spin_unlock(ptl);
1151                 return err;
1152         }
1153
1154         if (pmd_trans_unstable(pmdp))
1155                 return 0;
1156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1157
1158         /*
1159          * We can assume that @vma always points to a valid one and @end never
1160          * goes beyond vma->vm_end.
1161          */
1162         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1163         for (; addr < end; pte++, addr += PAGE_SIZE) {
1164                 pagemap_entry_t pme;
1165
1166                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1167                 err = add_to_pagemap(addr, &pme, pm);
1168                 if (err)
1169                         break;
1170         }
1171         pte_unmap_unlock(orig_pte, ptl);
1172
1173         cond_resched();
1174
1175         return err;
1176 }
1177
1178 #ifdef CONFIG_HUGETLB_PAGE
1179 /* This function walks within one hugetlb entry in the single call */
1180 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1181                                  unsigned long addr, unsigned long end,
1182                                  struct mm_walk *walk)
1183 {
1184         struct pagemapread *pm = walk->private;
1185         struct vm_area_struct *vma = walk->vma;
1186         u64 flags = 0, frame = 0;
1187         int err = 0;
1188         pte_t pte;
1189
1190         if (vma->vm_flags & VM_SOFTDIRTY)
1191                 flags |= PM_SOFT_DIRTY;
1192
1193         pte = huge_ptep_get(ptep);
1194         if (pte_present(pte)) {
1195                 struct page *page = pte_page(pte);
1196
1197                 if (!PageAnon(page))
1198                         flags |= PM_FILE;
1199
1200                 if (page_mapcount(page) == 1)
1201                         flags |= PM_MMAP_EXCLUSIVE;
1202
1203                 flags |= PM_PRESENT;
1204                 if (pm->show_pfn)
1205                         frame = pte_pfn(pte) +
1206                                 ((addr & ~hmask) >> PAGE_SHIFT);
1207         }
1208
1209         for (; addr != end; addr += PAGE_SIZE) {
1210                 pagemap_entry_t pme = make_pme(frame, flags);
1211
1212                 err = add_to_pagemap(addr, &pme, pm);
1213                 if (err)
1214                         return err;
1215                 if (pm->show_pfn && (flags & PM_PRESENT))
1216                         frame++;
1217         }
1218
1219         cond_resched();
1220
1221         return err;
1222 }
1223 #endif /* HUGETLB_PAGE */
1224
1225 /*
1226  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1227  *
1228  * For each page in the address space, this file contains one 64-bit entry
1229  * consisting of the following:
1230  *
1231  * Bits 0-54  page frame number (PFN) if present
1232  * Bits 0-4   swap type if swapped
1233  * Bits 5-54  swap offset if swapped
1234  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1235  * Bit  56    page exclusively mapped
1236  * Bits 57-60 zero
1237  * Bit  61    page is file-page or shared-anon
1238  * Bit  62    page swapped
1239  * Bit  63    page present
1240  *
1241  * If the page is not present but in swap, then the PFN contains an
1242  * encoding of the swap file number and the page's offset into the
1243  * swap. Unmapped pages return a null PFN. This allows determining
1244  * precisely which pages are mapped (or in swap) and comparing mapped
1245  * pages between processes.
1246  *
1247  * Efficient users of this interface will use /proc/pid/maps to
1248  * determine which areas of memory are actually mapped and llseek to
1249  * skip over unmapped regions.
1250  */
1251 static ssize_t pagemap_read(struct file *file, char __user *buf,
1252                             size_t count, loff_t *ppos)
1253 {
1254         struct mm_struct *mm = file->private_data;
1255         struct pagemapread pm;
1256         struct mm_walk pagemap_walk = {};
1257         unsigned long src;
1258         unsigned long svpfn;
1259         unsigned long start_vaddr;
1260         unsigned long end_vaddr;
1261         int ret = 0, copied = 0;
1262
1263         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1264                 goto out;
1265
1266         ret = -EINVAL;
1267         /* file position must be aligned */
1268         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1269                 goto out_mm;
1270
1271         ret = 0;
1272         if (!count)
1273                 goto out_mm;
1274
1275         /* do not disclose physical addresses: attack vector */
1276         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1277
1278         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1279         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1280         ret = -ENOMEM;
1281         if (!pm.buffer)
1282                 goto out_mm;
1283
1284         pagemap_walk.pmd_entry = pagemap_pmd_range;
1285         pagemap_walk.pte_hole = pagemap_pte_hole;
1286 #ifdef CONFIG_HUGETLB_PAGE
1287         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1288 #endif
1289         pagemap_walk.mm = mm;
1290         pagemap_walk.private = &pm;
1291
1292         src = *ppos;
1293         svpfn = src / PM_ENTRY_BYTES;
1294         start_vaddr = svpfn << PAGE_SHIFT;
1295         end_vaddr = mm->task_size;
1296
1297         /* watch out for wraparound */
1298         if (svpfn > mm->task_size >> PAGE_SHIFT)
1299                 start_vaddr = end_vaddr;
1300
1301         /*
1302          * The odds are that this will stop walking way
1303          * before end_vaddr, because the length of the
1304          * user buffer is tracked in "pm", and the walk
1305          * will stop when we hit the end of the buffer.
1306          */
1307         ret = 0;
1308         while (count && (start_vaddr < end_vaddr)) {
1309                 int len;
1310                 unsigned long end;
1311
1312                 pm.pos = 0;
1313                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1314                 /* overflow ? */
1315                 if (end < start_vaddr || end > end_vaddr)
1316                         end = end_vaddr;
1317                 down_read(&mm->mmap_sem);
1318                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1319                 up_read(&mm->mmap_sem);
1320                 start_vaddr = end;
1321
1322                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1323                 if (copy_to_user(buf, pm.buffer, len)) {
1324                         ret = -EFAULT;
1325                         goto out_free;
1326                 }
1327                 copied += len;
1328                 buf += len;
1329                 count -= len;
1330         }
1331         *ppos += copied;
1332         if (!ret || ret == PM_END_OF_BUFFER)
1333                 ret = copied;
1334
1335 out_free:
1336         kfree(pm.buffer);
1337 out_mm:
1338         mmput(mm);
1339 out:
1340         return ret;
1341 }
1342
1343 static int pagemap_open(struct inode *inode, struct file *file)
1344 {
1345         struct mm_struct *mm;
1346
1347         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1348         if (IS_ERR(mm))
1349                 return PTR_ERR(mm);
1350         file->private_data = mm;
1351         return 0;
1352 }
1353
1354 static int pagemap_release(struct inode *inode, struct file *file)
1355 {
1356         struct mm_struct *mm = file->private_data;
1357
1358         if (mm)
1359                 mmdrop(mm);
1360         return 0;
1361 }
1362
1363 const struct file_operations proc_pagemap_operations = {
1364         .llseek         = mem_lseek, /* borrow this */
1365         .read           = pagemap_read,
1366         .open           = pagemap_open,
1367         .release        = pagemap_release,
1368 };
1369 #endif /* CONFIG_PROC_PAGE_MONITOR */
1370
1371 #ifdef CONFIG_NUMA
1372
1373 struct numa_maps {
1374         unsigned long pages;
1375         unsigned long anon;
1376         unsigned long active;
1377         unsigned long writeback;
1378         unsigned long mapcount_max;
1379         unsigned long dirty;
1380         unsigned long swapcache;
1381         unsigned long node[MAX_NUMNODES];
1382 };
1383
1384 struct numa_maps_private {
1385         struct proc_maps_private proc_maps;
1386         struct numa_maps md;
1387 };
1388
1389 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1390                         unsigned long nr_pages)
1391 {
1392         int count = page_mapcount(page);
1393
1394         md->pages += nr_pages;
1395         if (pte_dirty || PageDirty(page))
1396                 md->dirty += nr_pages;
1397
1398         if (PageSwapCache(page))
1399                 md->swapcache += nr_pages;
1400
1401         if (PageActive(page) || PageUnevictable(page))
1402                 md->active += nr_pages;
1403
1404         if (PageWriteback(page))
1405                 md->writeback += nr_pages;
1406
1407         if (PageAnon(page))
1408                 md->anon += nr_pages;
1409
1410         if (count > md->mapcount_max)
1411                 md->mapcount_max = count;
1412
1413         md->node[page_to_nid(page)] += nr_pages;
1414 }
1415
1416 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1417                 unsigned long addr)
1418 {
1419         struct page *page;
1420         int nid;
1421
1422         if (!pte_present(pte))
1423                 return NULL;
1424
1425         page = vm_normal_page(vma, addr, pte);
1426         if (!page)
1427                 return NULL;
1428
1429         if (PageReserved(page))
1430                 return NULL;
1431
1432         nid = page_to_nid(page);
1433         if (!node_isset(nid, node_states[N_MEMORY]))
1434                 return NULL;
1435
1436         return page;
1437 }
1438
1439 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1440                 unsigned long end, struct mm_walk *walk)
1441 {
1442         struct numa_maps *md = walk->private;
1443         struct vm_area_struct *vma = walk->vma;
1444         spinlock_t *ptl;
1445         pte_t *orig_pte;
1446         pte_t *pte;
1447
1448         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1449                 pte_t huge_pte = *(pte_t *)pmd;
1450                 struct page *page;
1451
1452                 page = can_gather_numa_stats(huge_pte, vma, addr);
1453                 if (page)
1454                         gather_stats(page, md, pte_dirty(huge_pte),
1455                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1456                 spin_unlock(ptl);
1457                 return 0;
1458         }
1459
1460         if (pmd_trans_unstable(pmd))
1461                 return 0;
1462         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1463         do {
1464                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1465                 if (!page)
1466                         continue;
1467                 gather_stats(page, md, pte_dirty(*pte), 1);
1468
1469         } while (pte++, addr += PAGE_SIZE, addr != end);
1470         pte_unmap_unlock(orig_pte, ptl);
1471         return 0;
1472 }
1473 #ifdef CONFIG_HUGETLB_PAGE
1474 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1475                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1476 {
1477         struct numa_maps *md;
1478         struct page *page;
1479
1480         if (!pte_present(*pte))
1481                 return 0;
1482
1483         page = pte_page(*pte);
1484         if (!page)
1485                 return 0;
1486
1487         md = walk->private;
1488         gather_stats(page, md, pte_dirty(*pte), 1);
1489         return 0;
1490 }
1491
1492 #else
1493 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1494                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1495 {
1496         return 0;
1497 }
1498 #endif
1499
1500 /*
1501  * Display pages allocated per node and memory policy via /proc.
1502  */
1503 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1504 {
1505         struct numa_maps_private *numa_priv = m->private;
1506         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1507         struct vm_area_struct *vma = v;
1508         struct numa_maps *md = &numa_priv->md;
1509         struct file *file = vma->vm_file;
1510         struct mm_struct *mm = vma->vm_mm;
1511         struct mm_walk walk = {
1512                 .hugetlb_entry = gather_hugetlb_stats,
1513                 .pmd_entry = gather_pte_stats,
1514                 .private = md,
1515                 .mm = mm,
1516         };
1517         struct mempolicy *pol;
1518         char buffer[64];
1519         int nid;
1520
1521         if (!mm)
1522                 return 0;
1523
1524         /* Ensure we start with an empty set of numa_maps statistics. */
1525         memset(md, 0, sizeof(*md));
1526
1527         pol = __get_vma_policy(vma, vma->vm_start);
1528         if (pol) {
1529                 mpol_to_str(buffer, sizeof(buffer), pol);
1530                 mpol_cond_put(pol);
1531         } else {
1532                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1533         }
1534
1535         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1536
1537         if (file) {
1538                 seq_puts(m, " file=");
1539                 seq_file_path(m, file, "\n\t= ");
1540         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1541                 seq_puts(m, " heap");
1542         } else {
1543                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1544                 if (tid != 0) {
1545                         /*
1546                          * Thread stack in /proc/PID/task/TID/maps or
1547                          * the main process stack.
1548                          */
1549                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1550                             vma->vm_end >= mm->start_stack))
1551                                 seq_puts(m, " stack");
1552                         else
1553                                 seq_printf(m, " stack:%d", tid);
1554                 }
1555         }
1556
1557         if (is_vm_hugetlb_page(vma))
1558                 seq_puts(m, " huge");
1559
1560         /* mmap_sem is held by m_start */
1561         walk_page_vma(vma, &walk);
1562
1563         if (!md->pages)
1564                 goto out;
1565
1566         if (md->anon)
1567                 seq_printf(m, " anon=%lu", md->anon);
1568
1569         if (md->dirty)
1570                 seq_printf(m, " dirty=%lu", md->dirty);
1571
1572         if (md->pages != md->anon && md->pages != md->dirty)
1573                 seq_printf(m, " mapped=%lu", md->pages);
1574
1575         if (md->mapcount_max > 1)
1576                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1577
1578         if (md->swapcache)
1579                 seq_printf(m, " swapcache=%lu", md->swapcache);
1580
1581         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1582                 seq_printf(m, " active=%lu", md->active);
1583
1584         if (md->writeback)
1585                 seq_printf(m, " writeback=%lu", md->writeback);
1586
1587         for_each_node_state(nid, N_MEMORY)
1588                 if (md->node[nid])
1589                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1590
1591         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1592 out:
1593         seq_putc(m, '\n');
1594         m_cache_vma(m, vma);
1595         return 0;
1596 }
1597
1598 static int show_pid_numa_map(struct seq_file *m, void *v)
1599 {
1600         return show_numa_map(m, v, 1);
1601 }
1602
1603 static int show_tid_numa_map(struct seq_file *m, void *v)
1604 {
1605         return show_numa_map(m, v, 0);
1606 }
1607
1608 static const struct seq_operations proc_pid_numa_maps_op = {
1609         .start  = m_start,
1610         .next   = m_next,
1611         .stop   = m_stop,
1612         .show   = show_pid_numa_map,
1613 };
1614
1615 static const struct seq_operations proc_tid_numa_maps_op = {
1616         .start  = m_start,
1617         .next   = m_next,
1618         .stop   = m_stop,
1619         .show   = show_tid_numa_map,
1620 };
1621
1622 static int numa_maps_open(struct inode *inode, struct file *file,
1623                           const struct seq_operations *ops)
1624 {
1625         return proc_maps_open(inode, file, ops,
1626                                 sizeof(struct numa_maps_private));
1627 }
1628
1629 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1630 {
1631         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1632 }
1633
1634 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1635 {
1636         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1637 }
1638
1639 const struct file_operations proc_pid_numa_maps_operations = {
1640         .open           = pid_numa_maps_open,
1641         .read           = seq_read,
1642         .llseek         = seq_lseek,
1643         .release        = proc_map_release,
1644 };
1645
1646 const struct file_operations proc_tid_numa_maps_operations = {
1647         .open           = tid_numa_maps_open,
1648         .read           = seq_read,
1649         .llseek         = seq_lseek,
1650         .release        = proc_map_release,
1651 };
1652 #endif /* CONFIG_NUMA */