]> git.karo-electronics.de Git - karo-tx-linux.git/blob - fs/reiserfs/inode.c
Linux-2.6.12-rc2
[karo-tx-linux.git] / fs / reiserfs / inode.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <linux/config.h>
6 #include <linux/time.h>
7 #include <linux/fs.h>
8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_acl.h>
10 #include <linux/reiserfs_xattr.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20
21 extern int reiserfs_default_io_size; /* default io size devuned in super.c */
22
23 static int reiserfs_commit_write(struct file *f, struct page *page,
24                                  unsigned from, unsigned to);
25 static int reiserfs_prepare_write(struct file *f, struct page *page,
26                                   unsigned from, unsigned to);
27
28 void reiserfs_delete_inode (struct inode * inode)
29 {
30     /* We need blocks for transaction + (user+group) quota update (possibly delete) */
31     int jbegin_count = JOURNAL_PER_BALANCE_CNT * 2 + 2 * REISERFS_QUOTA_INIT_BLOCKS;
32     struct reiserfs_transaction_handle th ;
33   
34     reiserfs_write_lock(inode->i_sb);
35
36     /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
37     if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
38         down (&inode->i_sem); 
39
40         reiserfs_delete_xattrs (inode);
41
42         if (journal_begin(&th, inode->i_sb, jbegin_count)) {
43             up (&inode->i_sem);
44             goto out;
45         }
46         reiserfs_update_inode_transaction(inode) ;
47
48         if (reiserfs_delete_object (&th, inode)) {
49             up (&inode->i_sem);
50             goto out;
51         }
52
53         /* Do quota update inside a transaction for journaled quotas. We must do that
54          * after delete_object so that quota updates go into the same transaction as
55          * stat data deletion */
56         DQUOT_FREE_INODE(inode);
57
58         if (journal_end(&th, inode->i_sb, jbegin_count)) {
59             up (&inode->i_sem);
60             goto out;
61         }
62
63         up (&inode->i_sem);
64
65         /* all items of file are deleted, so we can remove "save" link */
66         remove_save_link (inode, 0/* not truncate */); /* we can't do anything
67                                                         * about an error here */
68     } else {
69         /* no object items are in the tree */
70         ;
71     }
72 out:
73     clear_inode (inode); /* note this must go after the journal_end to prevent deadlock */
74     inode->i_blocks = 0;
75     reiserfs_write_unlock(inode->i_sb);
76 }
77
78 static void _make_cpu_key (struct cpu_key * key, int version, __u32 dirid, __u32 objectid, 
79                loff_t offset, int type, int length )
80 {
81     key->version = version;
82
83     key->on_disk_key.k_dir_id = dirid;
84     key->on_disk_key.k_objectid = objectid;
85     set_cpu_key_k_offset (key, offset);
86     set_cpu_key_k_type (key, type);  
87     key->key_length = length;
88 }
89
90
91 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
92    offset and type of key */
93 void make_cpu_key (struct cpu_key * key, struct inode * inode, loff_t offset,
94               int type, int length )
95 {
96   _make_cpu_key (key, get_inode_item_key_version (inode), le32_to_cpu (INODE_PKEY (inode)->k_dir_id),
97                  le32_to_cpu (INODE_PKEY (inode)->k_objectid), 
98                  offset, type, length);
99 }
100
101
102 //
103 // when key is 0, do not set version and short key
104 //
105 inline void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
106                                int version,
107                                loff_t offset, int type, int length, 
108                                int entry_count/*or ih_free_space*/)
109 {
110     if (key) {
111         ih->ih_key.k_dir_id = cpu_to_le32 (key->on_disk_key.k_dir_id);
112         ih->ih_key.k_objectid = cpu_to_le32 (key->on_disk_key.k_objectid);
113     }
114     put_ih_version( ih, version );
115     set_le_ih_k_offset (ih, offset);
116     set_le_ih_k_type (ih, type);
117     put_ih_item_len( ih, length );
118     /*    set_ih_free_space (ih, 0);*/
119     // for directory items it is entry count, for directs and stat
120     // datas - 0xffff, for indirects - 0
121     put_ih_entry_count( ih, entry_count );
122 }
123
124 //
125 // FIXME: we might cache recently accessed indirect item
126
127 // Ugh.  Not too eager for that....
128 //  I cut the code until such time as I see a convincing argument (benchmark).
129 // I don't want a bloated inode struct..., and I don't like code complexity....
130
131 /* cutting the code is fine, since it really isn't in use yet and is easy
132 ** to add back in.  But, Vladimir has a really good idea here.  Think
133 ** about what happens for reading a file.  For each page,
134 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
135 ** an indirect item.  This indirect item has X number of pointers, where
136 ** X is a big number if we've done the block allocation right.  But,
137 ** we only use one or two of these pointers during each call to readpage,
138 ** needlessly researching again later on.
139 **
140 ** The size of the cache could be dynamic based on the size of the file.
141 **
142 ** I'd also like to see us cache the location the stat data item, since
143 ** we are needlessly researching for that frequently.
144 **
145 ** --chris
146 */
147
148 /* If this page has a file tail in it, and
149 ** it was read in by get_block_create_0, the page data is valid,
150 ** but tail is still sitting in a direct item, and we can't write to
151 ** it.  So, look through this page, and check all the mapped buffers
152 ** to make sure they have valid block numbers.  Any that don't need
153 ** to be unmapped, so that block_prepare_write will correctly call
154 ** reiserfs_get_block to convert the tail into an unformatted node
155 */
156 static inline void fix_tail_page_for_writing(struct page *page) {
157     struct buffer_head *head, *next, *bh ;
158
159     if (page && page_has_buffers(page)) {
160         head = page_buffers(page) ;
161         bh = head ;
162         do {
163             next = bh->b_this_page ;
164             if (buffer_mapped(bh) && bh->b_blocknr == 0) {
165                 reiserfs_unmap_buffer(bh) ;
166             }
167             bh = next ;
168         } while (bh != head) ;
169     }
170 }
171
172 /* reiserfs_get_block does not need to allocate a block only if it has been
173    done already or non-hole position has been found in the indirect item */
174 static inline int allocation_needed (int retval, b_blocknr_t allocated, 
175                                      struct item_head * ih,
176                                      __u32 * item, int pos_in_item)
177 {
178   if (allocated)
179          return 0;
180   if (retval == POSITION_FOUND && is_indirect_le_ih (ih) && 
181       get_block_num(item, pos_in_item))
182          return 0;
183   return 1;
184 }
185
186 static inline int indirect_item_found (int retval, struct item_head * ih)
187 {
188   return (retval == POSITION_FOUND) && is_indirect_le_ih (ih);
189 }
190
191
192 static inline void set_block_dev_mapped (struct buffer_head * bh, 
193                                          b_blocknr_t block, struct inode * inode)
194 {
195         map_bh(bh, inode->i_sb, block);
196 }
197
198
199 //
200 // files which were created in the earlier version can not be longer,
201 // than 2 gb
202 //
203 static int file_capable (struct inode * inode, long block)
204 {
205     if (get_inode_item_key_version (inode) != KEY_FORMAT_3_5 || // it is new file.
206         block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
207         return 1;
208
209     return 0;
210 }
211
212 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
213                                 struct inode *inode, struct path *path) {
214   struct super_block *s = th->t_super ;
215   int len = th->t_blocks_allocated ;
216   int err;
217
218   BUG_ON (!th->t_trans_id);
219   BUG_ON (!th->t_refcount);
220
221   /* we cannot restart while nested */
222   if (th->t_refcount > 1) {
223       return 0  ;
224   }
225   pathrelse(path) ;
226   reiserfs_update_sd(th, inode) ;
227   err = journal_end(th, s, len) ;
228   if (!err) {
229       err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6) ;
230       if (!err)
231         reiserfs_update_inode_transaction(inode) ;
232   }
233   return err;
234 }
235
236 // it is called by get_block when create == 0. Returns block number
237 // for 'block'-th logical block of file. When it hits direct item it
238 // returns 0 (being called from bmap) or read direct item into piece
239 // of page (bh_result)
240
241 // Please improve the english/clarity in the comment above, as it is
242 // hard to understand.
243
244 static int _get_block_create_0 (struct inode * inode, long block,
245                                  struct buffer_head * bh_result,
246                                  int args)
247 {
248     INITIALIZE_PATH (path);
249     struct cpu_key key;
250     struct buffer_head * bh;
251     struct item_head * ih, tmp_ih;
252     int fs_gen ;
253     int blocknr;
254     char * p = NULL;
255     int chars;
256     int ret ;
257     int done = 0 ;
258     unsigned long offset ;
259
260     // prepare the key to look for the 'block'-th block of file
261     make_cpu_key (&key, inode,
262                   (loff_t)block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 3);
263
264 research:
265     if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND) {
266         pathrelse (&path);
267         if (p)
268             kunmap(bh_result->b_page) ;
269         // We do not return -ENOENT if there is a hole but page is uptodate, because it means
270         // That there is some MMAPED data associated with it that is yet to be written to disk.
271         if ((args & GET_BLOCK_NO_HOLE) && !PageUptodate(bh_result->b_page) ) {
272             return -ENOENT ;
273         }
274         return 0 ;
275     }
276     
277     //
278     bh = get_last_bh (&path);
279     ih = get_ih (&path);
280     if (is_indirect_le_ih (ih)) {
281         __u32 * ind_item = (__u32 *)B_I_PITEM (bh, ih);
282         
283         /* FIXME: here we could cache indirect item or part of it in
284            the inode to avoid search_by_key in case of subsequent
285            access to file */
286         blocknr = get_block_num(ind_item, path.pos_in_item) ;
287         ret = 0 ;
288         if (blocknr) {
289             map_bh(bh_result, inode->i_sb, blocknr);
290             if (path.pos_in_item == ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
291                 set_buffer_boundary(bh_result);
292             }
293         } else 
294             // We do not return -ENOENT if there is a hole but page is uptodate, because it means
295             // That there is some MMAPED data associated with it that is yet to  be written to disk.
296             if ((args & GET_BLOCK_NO_HOLE) && !PageUptodate(bh_result->b_page) ) {
297             ret = -ENOENT ;
298             }
299
300         pathrelse (&path);
301         if (p)
302             kunmap(bh_result->b_page) ;
303         return ret ;
304     }
305
306     // requested data are in direct item(s)
307     if (!(args & GET_BLOCK_READ_DIRECT)) {
308         // we are called by bmap. FIXME: we can not map block of file
309         // when it is stored in direct item(s)
310         pathrelse (&path);      
311         if (p)
312             kunmap(bh_result->b_page) ;
313         return -ENOENT;
314     }
315
316     /* if we've got a direct item, and the buffer or page was uptodate,
317     ** we don't want to pull data off disk again.  skip to the
318     ** end, where we map the buffer and return
319     */
320     if (buffer_uptodate(bh_result)) {
321         goto finished ;
322     } else 
323         /*
324         ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
325         ** pages without any buffers.  If the page is up to date, we don't want
326         ** read old data off disk.  Set the up to date bit on the buffer instead
327         ** and jump to the end
328         */
329             if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
330                 set_buffer_uptodate(bh_result);
331                 goto finished ;
332     }
333
334     // read file tail into part of page
335     offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1) ;
336     fs_gen = get_generation(inode->i_sb) ;
337     copy_item_head (&tmp_ih, ih);
338
339     /* we only want to kmap if we are reading the tail into the page.
340     ** this is not the common case, so we don't kmap until we are
341     ** sure we need to.  But, this means the item might move if
342     ** kmap schedules
343     */
344     if (!p) {
345         p = (char *)kmap(bh_result->b_page) ;
346         if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
347             goto research;
348         }
349     }
350     p += offset ;
351     memset (p, 0, inode->i_sb->s_blocksize);
352     do {
353         if (!is_direct_le_ih (ih)) {
354             BUG ();
355         }
356         /* make sure we don't read more bytes than actually exist in
357         ** the file.  This can happen in odd cases where i_size isn't
358         ** correct, and when direct item padding results in a few 
359         ** extra bytes at the end of the direct item
360         */
361         if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
362             break ;
363         if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
364             chars = inode->i_size - (le_ih_k_offset(ih) - 1) - path.pos_in_item;
365             done = 1 ;
366         } else {
367             chars = ih_item_len(ih) - path.pos_in_item;
368         }
369         memcpy (p, B_I_PITEM (bh, ih) + path.pos_in_item, chars);
370
371         if (done) 
372             break ;
373
374         p += chars;
375
376         if (PATH_LAST_POSITION (&path) != (B_NR_ITEMS (bh) - 1))
377             // we done, if read direct item is not the last item of
378             // node FIXME: we could try to check right delimiting key
379             // to see whether direct item continues in the right
380             // neighbor or rely on i_size
381             break;
382
383         // update key to look for the next piece
384         set_cpu_key_k_offset (&key, cpu_key_k_offset (&key) + chars);
385         if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND)
386             // we read something from tail, even if now we got IO_ERROR
387             break;
388         bh = get_last_bh (&path);
389         ih = get_ih (&path);
390     } while (1);
391
392     flush_dcache_page(bh_result->b_page) ;
393     kunmap(bh_result->b_page) ;
394
395 finished:
396     pathrelse (&path);
397     /* this buffer has valid data, but isn't valid for io.  mapping it to
398      * block #0 tells the rest of reiserfs it just has a tail in it
399      */
400     map_bh(bh_result, inode->i_sb, 0);
401     set_buffer_uptodate (bh_result);
402     return 0;
403 }
404
405
406 // this is called to create file map. So, _get_block_create_0 will not
407 // read direct item
408 static int reiserfs_bmap (struct inode * inode, sector_t block,
409                           struct buffer_head * bh_result, int create)
410 {
411     if (!file_capable (inode, block))
412         return -EFBIG;
413
414     reiserfs_write_lock(inode->i_sb);
415     /* do not read the direct item */
416     _get_block_create_0 (inode, block, bh_result, 0) ;
417     reiserfs_write_unlock(inode->i_sb);
418     return 0;
419 }
420
421 /* special version of get_block that is only used by grab_tail_page right
422 ** now.  It is sent to block_prepare_write, and when you try to get a
423 ** block past the end of the file (or a block from a hole) it returns
424 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
425 ** be able to do i/o on the buffers returned, unless an error value
426 ** is also returned.
427 ** 
428 ** So, this allows block_prepare_write to be used for reading a single block
429 ** in a page.  Where it does not produce a valid page for holes, or past the
430 ** end of the file.  This turns out to be exactly what we need for reading
431 ** tails for conversion.
432 **
433 ** The point of the wrapper is forcing a certain value for create, even
434 ** though the VFS layer is calling this function with create==1.  If you 
435 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 
436 ** don't use this function.
437 */
438 static int reiserfs_get_block_create_0 (struct inode * inode, sector_t block,
439                         struct buffer_head * bh_result, int create) {
440     return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE) ;
441 }
442
443 /* This is special helper for reiserfs_get_block in case we are executing
444    direct_IO request. */
445 static int reiserfs_get_blocks_direct_io(struct inode *inode,
446                                          sector_t iblock,
447                                          unsigned long max_blocks,
448                                          struct buffer_head *bh_result,
449                                          int create)
450 {
451     int ret ;
452
453     bh_result->b_page = NULL;
454
455     /* We set the b_size before reiserfs_get_block call since it is
456        referenced in convert_tail_for_hole() that may be called from
457        reiserfs_get_block() */
458     bh_result->b_size = (1 << inode->i_blkbits);
459
460     ret = reiserfs_get_block(inode, iblock, bh_result,
461                              create | GET_BLOCK_NO_DANGLE) ;
462     if (ret)
463         goto out;
464
465     /* don't allow direct io onto tail pages */
466     if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
467         /* make sure future calls to the direct io funcs for this offset
468         ** in the file fail by unmapping the buffer
469         */
470         clear_buffer_mapped(bh_result);
471         ret = -EINVAL ;
472     }
473     /* Possible unpacked tail. Flush the data before pages have
474        disappeared */
475     if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
476         int err;
477         lock_kernel();
478         err = reiserfs_commit_for_inode(inode);
479         REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
480         unlock_kernel();
481         if (err < 0)
482             ret = err;
483     }
484 out:
485     return ret ;
486 }
487
488
489 /*
490 ** helper function for when reiserfs_get_block is called for a hole
491 ** but the file tail is still in a direct item
492 ** bh_result is the buffer head for the hole
493 ** tail_offset is the offset of the start of the tail in the file
494 **
495 ** This calls prepare_write, which will start a new transaction
496 ** you should not be in a transaction, or have any paths held when you
497 ** call this.
498 */
499 static int convert_tail_for_hole(struct inode *inode, 
500                                  struct buffer_head *bh_result,
501                                  loff_t tail_offset) {
502     unsigned long index ;
503     unsigned long tail_end ; 
504     unsigned long tail_start ;
505     struct page * tail_page ;
506     struct page * hole_page = bh_result->b_page ;
507     int retval = 0 ;
508
509     if ((tail_offset & (bh_result->b_size - 1)) != 1) 
510         return -EIO ;
511
512     /* always try to read until the end of the block */
513     tail_start = tail_offset & (PAGE_CACHE_SIZE - 1) ;
514     tail_end = (tail_start | (bh_result->b_size - 1)) + 1 ;
515
516     index = tail_offset >> PAGE_CACHE_SHIFT ;
517     /* hole_page can be zero in case of direct_io, we are sure
518        that we cannot get here if we write with O_DIRECT into
519        tail page */
520     if (!hole_page || index != hole_page->index) {
521         tail_page = grab_cache_page(inode->i_mapping, index) ;
522         retval = -ENOMEM;
523         if (!tail_page) {
524             goto out ;
525         }
526     } else {
527         tail_page = hole_page ;
528     }
529
530     /* we don't have to make sure the conversion did not happen while
531     ** we were locking the page because anyone that could convert
532     ** must first take i_sem.
533     **
534     ** We must fix the tail page for writing because it might have buffers
535     ** that are mapped, but have a block number of 0.  This indicates tail
536     ** data that has been read directly into the page, and block_prepare_write
537     ** won't trigger a get_block in this case.
538     */
539     fix_tail_page_for_writing(tail_page) ;
540     retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
541     if (retval)
542         goto unlock ;
543
544     /* tail conversion might change the data in the page */
545     flush_dcache_page(tail_page) ;
546
547     retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end) ;
548
549 unlock:
550     if (tail_page != hole_page) {
551         unlock_page(tail_page) ;
552         page_cache_release(tail_page) ;
553     }
554 out:
555     return retval ;
556 }
557
558 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
559                            long block,
560                            struct inode *inode, 
561                            b_blocknr_t *allocated_block_nr, 
562                            struct path * path,
563                            int flags) {
564     BUG_ON (!th->t_trans_id);
565   
566 #ifdef REISERFS_PREALLOCATE
567     if (!(flags & GET_BLOCK_NO_ISEM)) {
568         return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, path, block);
569     }
570 #endif
571     return reiserfs_new_unf_blocknrs (th, inode, allocated_block_nr, path, block);
572 }
573
574 int reiserfs_get_block (struct inode * inode, sector_t block,
575                         struct buffer_head * bh_result, int create)
576 {
577     int repeat, retval = 0;
578     b_blocknr_t allocated_block_nr = 0;// b_blocknr_t is (unsigned) 32 bit int
579     INITIALIZE_PATH(path);
580     int pos_in_item;
581     struct cpu_key key;
582     struct buffer_head * bh, * unbh = NULL;
583     struct item_head * ih, tmp_ih;
584     __u32 * item;
585     int done;
586     int fs_gen;
587     struct reiserfs_transaction_handle *th = NULL;
588     /* space reserved in transaction batch: 
589         . 3 balancings in direct->indirect conversion
590         . 1 block involved into reiserfs_update_sd()
591        XXX in practically impossible worst case direct2indirect()
592        can incur (much) more than 3 balancings.
593        quota update for user, group */
594     int jbegin_count = JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS;
595     int version;
596     int dangle = 1;
597     loff_t new_offset = (((loff_t)block) << inode->i_sb->s_blocksize_bits) + 1 ;
598
599                                 /* bad.... */
600     reiserfs_write_lock(inode->i_sb);
601     version = get_inode_item_key_version (inode);
602
603     if (block < 0) {
604         reiserfs_write_unlock(inode->i_sb);
605         return -EIO;
606     }
607
608     if (!file_capable (inode, block)) {
609         reiserfs_write_unlock(inode->i_sb);
610         return -EFBIG;
611     }
612
613     /* if !create, we aren't changing the FS, so we don't need to
614     ** log anything, so we don't need to start a transaction
615     */
616     if (!(create & GET_BLOCK_CREATE)) {
617         int ret ;
618         /* find number of block-th logical block of the file */
619         ret = _get_block_create_0 (inode, block, bh_result, 
620                                    create | GET_BLOCK_READ_DIRECT) ;
621         reiserfs_write_unlock(inode->i_sb);
622         return ret;
623     }
624     /*
625      * if we're already in a transaction, make sure to close
626      * any new transactions we start in this func
627      */
628     if ((create & GET_BLOCK_NO_DANGLE) ||
629         reiserfs_transaction_running(inode->i_sb))
630         dangle = 0;
631
632     /* If file is of such a size, that it might have a tail and tails are enabled
633     ** we should mark it as possibly needing tail packing on close
634     */
635     if ( (have_large_tails (inode->i_sb) && inode->i_size < i_block_size (inode)*4) ||
636          (have_small_tails (inode->i_sb) && inode->i_size < i_block_size(inode)) )
637         REISERFS_I(inode)->i_flags |= i_pack_on_close_mask ;
638
639     /* set the key of the first byte in the 'block'-th block of file */
640     make_cpu_key (&key, inode, new_offset,
641                   TYPE_ANY, 3/*key length*/);
642     if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
643 start_trans:
644         th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
645         if (!th) {
646             retval = -ENOMEM;
647             goto failure;
648         }
649         reiserfs_update_inode_transaction(inode) ;
650     }
651  research:
652
653     retval = search_for_position_by_key (inode->i_sb, &key, &path);
654     if (retval == IO_ERROR) {
655         retval = -EIO;
656         goto failure;
657     }
658         
659     bh = get_last_bh (&path);
660     ih = get_ih (&path);
661     item = get_item (&path);
662     pos_in_item = path.pos_in_item;
663
664     fs_gen = get_generation (inode->i_sb);
665     copy_item_head (&tmp_ih, ih);
666
667     if (allocation_needed (retval, allocated_block_nr, ih, item, pos_in_item)) {
668         /* we have to allocate block for the unformatted node */
669         if (!th) {
670             pathrelse(&path) ;
671             goto start_trans;
672         }
673
674         repeat = _allocate_block(th, block, inode, &allocated_block_nr, &path, create);
675
676         if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
677             /* restart the transaction to give the journal a chance to free
678             ** some blocks.  releases the path, so we have to go back to
679             ** research if we succeed on the second try
680             */
681             SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
682             retval = restart_transaction(th, inode, &path) ;
683             if (retval)
684                 goto failure;
685             repeat = _allocate_block(th, block, inode, &allocated_block_nr, NULL, create);
686
687             if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
688                 goto research ;
689             }
690             if (repeat == QUOTA_EXCEEDED)
691                 retval = -EDQUOT;
692             else
693                 retval = -ENOSPC;
694             goto failure;
695         }
696
697         if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
698             goto research;
699         }
700     }
701
702     if (indirect_item_found (retval, ih)) {
703         b_blocknr_t unfm_ptr;
704         /* 'block'-th block is in the file already (there is
705            corresponding cell in some indirect item). But it may be
706            zero unformatted node pointer (hole) */
707         unfm_ptr = get_block_num (item, pos_in_item);
708         if (unfm_ptr == 0) {
709             /* use allocated block to plug the hole */
710             reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
711             if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
712                 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
713                 goto research;
714             }
715             set_buffer_new(bh_result);
716             if (buffer_dirty(bh_result) && reiserfs_data_ordered(inode->i_sb))
717                 reiserfs_add_ordered_list(inode, bh_result);
718             put_block_num(item, pos_in_item, allocated_block_nr) ;
719             unfm_ptr = allocated_block_nr;
720             journal_mark_dirty (th, inode->i_sb, bh);
721             reiserfs_update_sd(th, inode) ;
722         }
723         set_block_dev_mapped(bh_result, unfm_ptr, inode);
724         pathrelse (&path);
725         retval = 0;
726         if (!dangle && th)
727             retval = reiserfs_end_persistent_transaction(th);
728
729         reiserfs_write_unlock(inode->i_sb);
730          
731         /* the item was found, so new blocks were not added to the file
732         ** there is no need to make sure the inode is updated with this 
733         ** transaction
734         */
735         return retval;
736     }
737
738     if (!th) {
739         pathrelse(&path) ;
740         goto start_trans;
741     }
742
743     /* desired position is not found or is in the direct item. We have
744        to append file with holes up to 'block'-th block converting
745        direct items to indirect one if necessary */
746     done = 0;
747     do {
748         if (is_statdata_le_ih (ih)) {
749             __u32 unp = 0;
750             struct cpu_key tmp_key;
751
752             /* indirect item has to be inserted */
753             make_le_item_head (&tmp_ih, &key, version, 1, TYPE_INDIRECT, 
754                                UNFM_P_SIZE, 0/* free_space */);
755
756             if (cpu_key_k_offset (&key) == 1) {
757                 /* we are going to add 'block'-th block to the file. Use
758                    allocated block for that */
759                 unp = cpu_to_le32 (allocated_block_nr);
760                 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
761                 set_buffer_new(bh_result);
762                 done = 1;
763             }
764             tmp_key = key; // ;)
765             set_cpu_key_k_offset (&tmp_key, 1);
766             PATH_LAST_POSITION(&path) ++;
767
768             retval = reiserfs_insert_item (th, &path, &tmp_key, &tmp_ih, inode, (char *)&unp);
769             if (retval) {
770                 reiserfs_free_block (th, inode, allocated_block_nr, 1);
771                 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
772             }
773             //mark_tail_converted (inode);
774         } else if (is_direct_le_ih (ih)) {
775             /* direct item has to be converted */
776             loff_t tail_offset;
777
778             tail_offset = ((le_ih_k_offset (ih) - 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
779             if (tail_offset == cpu_key_k_offset (&key)) {
780                 /* direct item we just found fits into block we have
781                    to map. Convert it into unformatted node: use
782                    bh_result for the conversion */
783                 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
784                 unbh = bh_result;
785                 done = 1;
786             } else {
787                 /* we have to padd file tail stored in direct item(s)
788                    up to block size and convert it to unformatted
789                    node. FIXME: this should also get into page cache */
790
791                 pathrelse(&path) ;
792                 /*
793                  * ugly, but we can only end the transaction if
794                  * we aren't nested
795                  */
796                 BUG_ON (!th->t_refcount);
797                 if (th->t_refcount == 1) {
798                     retval = reiserfs_end_persistent_transaction(th);
799                     th = NULL;
800                     if (retval)
801                         goto failure;
802                 }
803
804                 retval = convert_tail_for_hole(inode, bh_result, tail_offset) ;
805                 if (retval) {
806                     if ( retval != -ENOSPC )
807                         reiserfs_warning (inode->i_sb, "clm-6004: convert tail failed inode %lu, error %d", inode->i_ino, retval) ;
808                     if (allocated_block_nr) {
809                         /* the bitmap, the super, and the stat data == 3 */
810                         if (!th)
811                             th = reiserfs_persistent_transaction(inode->i_sb,3);
812                         if (th)
813                             reiserfs_free_block (th,inode,allocated_block_nr,1);
814                     }
815                     goto failure ;
816                 }
817                 goto research ;
818             }
819             retval = direct2indirect (th, inode, &path, unbh, tail_offset);
820             if (retval) {
821                 reiserfs_unmap_buffer(unbh);
822                 reiserfs_free_block (th, inode, allocated_block_nr, 1);
823                 goto failure;
824             }
825             /* it is important the set_buffer_uptodate is done after
826             ** the direct2indirect.  The buffer might contain valid
827             ** data newer than the data on disk (read by readpage, changed,
828             ** and then sent here by writepage).  direct2indirect needs
829             ** to know if unbh was already up to date, so it can decide
830             ** if the data in unbh needs to be replaced with data from
831             ** the disk
832             */
833             set_buffer_uptodate (unbh);
834
835             /* unbh->b_page == NULL in case of DIRECT_IO request, this means
836                buffer will disappear shortly, so it should not be added to
837              */
838             if ( unbh->b_page ) {
839                 /* we've converted the tail, so we must
840                 ** flush unbh before the transaction commits
841                 */
842                 reiserfs_add_tail_list(inode, unbh) ;
843
844                 /* mark it dirty now to prevent commit_write from adding
845                 ** this buffer to the inode's dirty buffer list
846                 */
847                 /*
848                  * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
849                  * It's still atomic, but it sets the page dirty too,
850                  * which makes it eligible for writeback at any time by the
851                  * VM (which was also the case with __mark_buffer_dirty())
852                  */
853                 mark_buffer_dirty(unbh) ;
854             }
855         } else {
856             /* append indirect item with holes if needed, when appending
857                pointer to 'block'-th block use block, which is already
858                allocated */
859             struct cpu_key tmp_key;
860             unp_t unf_single=0; // We use this in case we need to allocate only
861                                 // one block which is a fastpath
862             unp_t *un;
863             __u64 max_to_insert=MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE;
864             __u64 blocks_needed;
865
866             RFALSE( pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
867                     "vs-804: invalid position for append");
868             /* indirect item has to be appended, set up key of that position */
869             make_cpu_key (&tmp_key, inode,
870                           le_key_k_offset (version, &(ih->ih_key)) + op_bytes_number (ih, inode->i_sb->s_blocksize),
871                           //pos_in_item * inode->i_sb->s_blocksize,
872                           TYPE_INDIRECT, 3);// key type is unimportant
873
874             blocks_needed = 1 + ((cpu_key_k_offset (&key) - cpu_key_k_offset (&tmp_key)) >> inode->i_sb->s_blocksize_bits);
875             RFALSE( blocks_needed < 0, "green-805: invalid offset");
876
877             if ( blocks_needed == 1 ) {
878                 un = &unf_single;
879             } else {
880                 un=kmalloc( min(blocks_needed,max_to_insert)*UNFM_P_SIZE,
881                             GFP_ATOMIC); // We need to avoid scheduling.
882                 if ( !un) {
883                     un = &unf_single;
884                     blocks_needed = 1;
885                     max_to_insert = 0;
886                 } else
887                     memset(un, 0, UNFM_P_SIZE * min(blocks_needed,max_to_insert));
888             }
889             if ( blocks_needed <= max_to_insert) {
890                 /* we are going to add target block to the file. Use allocated
891                    block for that */
892                 un[blocks_needed-1] = cpu_to_le32 (allocated_block_nr);
893                 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
894                 set_buffer_new(bh_result);
895                 done = 1;
896             } else {
897                 /* paste hole to the indirect item */
898                 /* If kmalloc failed, max_to_insert becomes zero and it means we
899                    only have space for one block */
900                 blocks_needed=max_to_insert?max_to_insert:1;
901             }
902             retval = reiserfs_paste_into_item (th, &path, &tmp_key, inode, (char *)un, UNFM_P_SIZE * blocks_needed);
903
904             if (blocks_needed != 1)
905                 kfree(un);
906
907             if (retval) {
908                 reiserfs_free_block (th, inode, allocated_block_nr, 1);
909                 goto failure;
910             }
911             if (!done) {
912                 /* We need to mark new file size in case this function will be
913                    interrupted/aborted later on. And we may do this only for
914                    holes. */
915                 inode->i_size += inode->i_sb->s_blocksize * blocks_needed;
916             }
917         }
918
919         if (done == 1)
920             break;
921
922         /* this loop could log more blocks than we had originally asked
923         ** for.  So, we have to allow the transaction to end if it is
924         ** too big or too full.  Update the inode so things are 
925         ** consistent if we crash before the function returns
926         **
927         ** release the path so that anybody waiting on the path before
928         ** ending their transaction will be able to continue.
929         */
930         if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
931           retval = restart_transaction(th, inode, &path) ;
932           if (retval)
933             goto failure;
934         }
935         /* inserting indirect pointers for a hole can take a 
936         ** long time.  reschedule if needed
937         */
938         cond_resched();
939
940         retval = search_for_position_by_key (inode->i_sb, &key, &path);
941         if (retval == IO_ERROR) {
942             retval = -EIO;
943             goto failure;
944         }
945         if (retval == POSITION_FOUND) {
946             reiserfs_warning (inode->i_sb, "vs-825: reiserfs_get_block: "
947                               "%K should not be found", &key);
948             retval = -EEXIST;
949             if (allocated_block_nr)
950                 reiserfs_free_block (th, inode, allocated_block_nr, 1);
951             pathrelse(&path) ;
952             goto failure;
953         }
954         bh = get_last_bh (&path);
955         ih = get_ih (&path);
956         item = get_item (&path);
957         pos_in_item = path.pos_in_item;
958     } while (1);
959
960
961     retval = 0;
962
963  failure:
964     if (th && (!dangle || (retval && !th->t_trans_id))) {
965         int err;
966         if (th->t_trans_id)
967             reiserfs_update_sd(th, inode);
968         err = reiserfs_end_persistent_transaction(th);
969         if (err)
970             retval = err;
971     }
972
973     reiserfs_write_unlock(inode->i_sb);
974     reiserfs_check_path(&path) ;
975     return retval;
976 }
977
978 static int
979 reiserfs_readpages(struct file *file, struct address_space *mapping,
980                 struct list_head *pages, unsigned nr_pages)
981 {
982     return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
983 }
984
985 /* Compute real number of used bytes by file
986  * Following three functions can go away when we'll have enough space in stat item
987  */
988 static int real_space_diff(struct inode *inode, int sd_size)
989 {
990     int bytes;
991     loff_t blocksize = inode->i_sb->s_blocksize ;
992
993     if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
994         return sd_size ;
995
996     /* End of file is also in full block with indirect reference, so round
997     ** up to the next block.
998     **
999     ** there is just no way to know if the tail is actually packed
1000     ** on the file, so we have to assume it isn't.  When we pack the
1001     ** tail, we add 4 bytes to pretend there really is an unformatted
1002     ** node pointer
1003     */
1004     bytes = ((inode->i_size + (blocksize-1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + sd_size;
1005     return bytes ;
1006 }
1007
1008 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1009                                         int sd_size)
1010 {
1011     if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1012         return inode->i_size + (loff_t)(real_space_diff(inode, sd_size)) ;
1013     }
1014     return ((loff_t)real_space_diff(inode, sd_size)) + (((loff_t)blocks) << 9);
1015 }
1016
1017 /* Compute number of blocks used by file in ReiserFS counting */
1018 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1019 {
1020     loff_t bytes = inode_get_bytes(inode) ;
1021     loff_t real_space = real_space_diff(inode, sd_size) ;
1022
1023     /* keeps fsck and non-quota versions of reiserfs happy */
1024     if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1025         bytes += (loff_t)511 ;
1026     }
1027
1028     /* files from before the quota patch might i_blocks such that
1029     ** bytes < real_space.  Deal with that here to prevent it from
1030     ** going negative.
1031     */
1032     if (bytes < real_space)
1033         return 0 ;
1034     return (bytes - real_space) >> 9;
1035 }
1036
1037 //
1038 // BAD: new directories have stat data of new type and all other items
1039 // of old type. Version stored in the inode says about body items, so
1040 // in update_stat_data we can not rely on inode, but have to check
1041 // item version directly
1042 //
1043
1044 // called by read_locked_inode
1045 static void init_inode (struct inode * inode, struct path * path)
1046 {
1047     struct buffer_head * bh;
1048     struct item_head * ih;
1049     __u32 rdev;
1050     //int version = ITEM_VERSION_1;
1051
1052     bh = PATH_PLAST_BUFFER (path);
1053     ih = PATH_PITEM_HEAD (path);
1054
1055
1056     copy_key (INODE_PKEY (inode), &(ih->ih_key));
1057     inode->i_blksize = reiserfs_default_io_size;
1058
1059     INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list ));
1060     REISERFS_I(inode)->i_flags = 0;
1061     REISERFS_I(inode)->i_prealloc_block = 0;
1062     REISERFS_I(inode)->i_prealloc_count = 0;
1063     REISERFS_I(inode)->i_trans_id = 0;
1064     REISERFS_I(inode)->i_jl = NULL;
1065     REISERFS_I(inode)->i_acl_access = NULL;
1066     REISERFS_I(inode)->i_acl_default = NULL;
1067     init_rwsem (&REISERFS_I(inode)->xattr_sem);
1068
1069     if (stat_data_v1 (ih)) {
1070         struct stat_data_v1 * sd = (struct stat_data_v1 *)B_I_PITEM (bh, ih);
1071         unsigned long blocks;
1072
1073         set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1074         set_inode_sd_version (inode, STAT_DATA_V1);
1075         inode->i_mode  = sd_v1_mode(sd);
1076         inode->i_nlink = sd_v1_nlink(sd);
1077         inode->i_uid   = sd_v1_uid(sd);
1078         inode->i_gid   = sd_v1_gid(sd);
1079         inode->i_size  = sd_v1_size(sd);
1080         inode->i_atime.tv_sec = sd_v1_atime(sd);
1081         inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1082         inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1083         inode->i_atime.tv_nsec = 0;
1084         inode->i_ctime.tv_nsec = 0;
1085         inode->i_mtime.tv_nsec = 0;
1086
1087         inode->i_blocks = sd_v1_blocks(sd);
1088         inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id);
1089         blocks = (inode->i_size + 511) >> 9;
1090         blocks = _ROUND_UP (blocks, inode->i_sb->s_blocksize >> 9);
1091         if (inode->i_blocks > blocks) {
1092             // there was a bug in <=3.5.23 when i_blocks could take negative
1093             // values. Starting from 3.5.17 this value could even be stored in
1094             // stat data. For such files we set i_blocks based on file
1095             // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1096             // only updated if file's inode will ever change
1097             inode->i_blocks = blocks;
1098         }
1099
1100         rdev = sd_v1_rdev(sd);
1101         REISERFS_I(inode)->i_first_direct_byte = sd_v1_first_direct_byte(sd);
1102         /* an early bug in the quota code can give us an odd number for the
1103         ** block count.  This is incorrect, fix it here.
1104         */
1105         if (inode->i_blocks & 1) {
1106             inode->i_blocks++ ;
1107         }
1108         inode_set_bytes(inode, to_real_used_space(inode, inode->i_blocks,
1109                                                   SD_V1_SIZE));
1110         /* nopack is initially zero for v1 objects. For v2 objects,
1111            nopack is initialised from sd_attrs */
1112         REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1113     } else {
1114         // new stat data found, but object may have old items
1115         // (directories and symlinks)
1116         struct stat_data * sd = (struct stat_data *)B_I_PITEM (bh, ih);
1117
1118         inode->i_mode   = sd_v2_mode(sd);
1119         inode->i_nlink  = sd_v2_nlink(sd);
1120         inode->i_uid    = sd_v2_uid(sd);
1121         inode->i_size   = sd_v2_size(sd);
1122         inode->i_gid    = sd_v2_gid(sd);
1123         inode->i_mtime.tv_sec  = sd_v2_mtime(sd);
1124         inode->i_atime.tv_sec = sd_v2_atime(sd);
1125         inode->i_ctime.tv_sec  = sd_v2_ctime(sd);
1126         inode->i_ctime.tv_nsec = 0;
1127         inode->i_mtime.tv_nsec = 0;
1128         inode->i_atime.tv_nsec = 0;
1129         inode->i_blocks = sd_v2_blocks(sd);
1130         rdev            = sd_v2_rdev(sd);
1131         if( S_ISCHR( inode -> i_mode ) || S_ISBLK( inode -> i_mode ) )
1132             inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id);
1133         else
1134             inode->i_generation = sd_v2_generation(sd);
1135
1136         if (S_ISDIR (inode->i_mode) || S_ISLNK (inode->i_mode))
1137             set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1138         else
1139             set_inode_item_key_version (inode, KEY_FORMAT_3_6);
1140         REISERFS_I(inode)->i_first_direct_byte = 0;
1141         set_inode_sd_version (inode, STAT_DATA_V2);
1142         inode_set_bytes(inode, to_real_used_space(inode, inode->i_blocks,
1143                                                   SD_V2_SIZE));
1144         /* read persistent inode attributes from sd and initalise
1145            generic inode flags from them */
1146         REISERFS_I(inode)->i_attrs = sd_v2_attrs( sd );
1147         sd_attrs_to_i_attrs( sd_v2_attrs( sd ), inode );
1148     }
1149
1150     pathrelse (path);
1151     if (S_ISREG (inode->i_mode)) {
1152         inode->i_op = &reiserfs_file_inode_operations;
1153         inode->i_fop = &reiserfs_file_operations;
1154         inode->i_mapping->a_ops = &reiserfs_address_space_operations ;
1155     } else if (S_ISDIR (inode->i_mode)) {
1156         inode->i_op = &reiserfs_dir_inode_operations;
1157         inode->i_fop = &reiserfs_dir_operations;
1158     } else if (S_ISLNK (inode->i_mode)) {
1159         inode->i_op = &reiserfs_symlink_inode_operations;
1160         inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1161     } else {
1162         inode->i_blocks = 0;
1163         inode->i_op = &reiserfs_special_inode_operations;
1164         init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1165     }
1166 }
1167
1168
1169 // update new stat data with inode fields
1170 static void inode2sd (void * sd, struct inode * inode, loff_t size)
1171 {
1172     struct stat_data * sd_v2 = (struct stat_data *)sd;
1173     __u16 flags;
1174
1175     set_sd_v2_mode(sd_v2, inode->i_mode );
1176     set_sd_v2_nlink(sd_v2, inode->i_nlink );
1177     set_sd_v2_uid(sd_v2, inode->i_uid );
1178     set_sd_v2_size(sd_v2, size );
1179     set_sd_v2_gid(sd_v2, inode->i_gid );
1180     set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec );
1181     set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec );
1182     set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec );
1183     set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1184     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1185         set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1186     else
1187         set_sd_v2_generation(sd_v2, inode->i_generation);
1188     flags = REISERFS_I(inode)->i_attrs;
1189     i_attrs_to_sd_attrs( inode, &flags );
1190     set_sd_v2_attrs( sd_v2, flags );
1191 }
1192
1193
1194 // used to copy inode's fields to old stat data
1195 static void inode2sd_v1 (void * sd, struct inode * inode, loff_t size)
1196 {
1197     struct stat_data_v1 * sd_v1 = (struct stat_data_v1 *)sd;
1198
1199     set_sd_v1_mode(sd_v1, inode->i_mode );
1200     set_sd_v1_uid(sd_v1, inode->i_uid );
1201     set_sd_v1_gid(sd_v1, inode->i_gid );
1202     set_sd_v1_nlink(sd_v1, inode->i_nlink );
1203     set_sd_v1_size(sd_v1, size );
1204     set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec );
1205     set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec );
1206     set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec );
1207
1208     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1209         set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1210     else
1211         set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1212
1213     // Sigh. i_first_direct_byte is back
1214     set_sd_v1_first_direct_byte(sd_v1, REISERFS_I(inode)->i_first_direct_byte);
1215 }
1216
1217
1218 /* NOTE, you must prepare the buffer head before sending it here,
1219 ** and then log it after the call
1220 */
1221 static void update_stat_data (struct path * path, struct inode * inode,
1222                               loff_t size)
1223 {
1224     struct buffer_head * bh;
1225     struct item_head * ih;
1226   
1227     bh = PATH_PLAST_BUFFER (path);
1228     ih = PATH_PITEM_HEAD (path);
1229
1230     if (!is_statdata_le_ih (ih))
1231         reiserfs_panic (inode->i_sb, "vs-13065: update_stat_data: key %k, found item %h",
1232                         INODE_PKEY (inode), ih);
1233   
1234     if (stat_data_v1 (ih)) {
1235         // path points to old stat data
1236         inode2sd_v1 (B_I_PITEM (bh, ih), inode, size);
1237     } else {
1238         inode2sd (B_I_PITEM (bh, ih), inode, size);
1239     }
1240
1241     return;
1242 }
1243
1244
1245 void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1246                               struct inode * inode, loff_t size)
1247 {
1248     struct cpu_key key;
1249     INITIALIZE_PATH(path);
1250     struct buffer_head *bh ;
1251     int fs_gen ;
1252     struct item_head *ih, tmp_ih ;
1253     int retval;
1254
1255     BUG_ON (!th->t_trans_id);
1256
1257     make_cpu_key (&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);//key type is unimportant
1258     
1259     for(;;) {
1260         int pos;
1261         /* look for the object's stat data */
1262         retval = search_item (inode->i_sb, &key, &path);
1263         if (retval == IO_ERROR) {
1264             reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: "
1265                               "i/o failure occurred trying to update %K stat data",
1266                               &key);
1267             return;
1268         }
1269         if (retval == ITEM_NOT_FOUND) {
1270             pos = PATH_LAST_POSITION (&path);
1271             pathrelse(&path) ;
1272             if (inode->i_nlink == 0) {
1273                 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found");*/
1274                 return;
1275             }
1276             reiserfs_warning (inode->i_sb, "vs-13060: reiserfs_update_sd: "
1277                               "stat data of object %k (nlink == %d) not found (pos %d)",
1278                               INODE_PKEY (inode), inode->i_nlink, pos);
1279             reiserfs_check_path(&path) ;
1280             return;
1281         }
1282         
1283         /* sigh, prepare_for_journal might schedule.  When it schedules the
1284         ** FS might change.  We have to detect that, and loop back to the
1285         ** search if the stat data item has moved
1286         */
1287         bh = get_last_bh(&path) ;
1288         ih = get_ih(&path) ;
1289         copy_item_head (&tmp_ih, ih);
1290         fs_gen = get_generation (inode->i_sb);
1291         reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
1292         if (fs_changed (fs_gen, inode->i_sb) && item_moved(&tmp_ih, &path)) {
1293             reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
1294             continue ;  /* Stat_data item has been moved after scheduling. */
1295         }
1296         break;
1297     }
1298     update_stat_data (&path, inode, size);
1299     journal_mark_dirty(th, th->t_super, bh) ; 
1300     pathrelse (&path);
1301     return;
1302 }
1303
1304 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1305 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1306 ** and clear the key in the private portion of the inode, otherwise a
1307 ** corresponding iput might try to delete whatever object the inode last
1308 ** represented.
1309 */
1310 static void reiserfs_make_bad_inode(struct inode *inode) {
1311     memset(INODE_PKEY(inode), 0, KEY_SIZE);
1312     make_bad_inode(inode);
1313 }
1314
1315 //
1316 // initially this function was derived from minix or ext2's analog and
1317 // evolved as the prototype did
1318 //
1319
1320 int reiserfs_init_locked_inode (struct inode * inode, void *p)
1321 {
1322     struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p ;
1323     inode->i_ino = args->objectid;
1324     INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1325     return 0;
1326 }
1327
1328 /* looks for stat data in the tree, and fills up the fields of in-core
1329    inode stat data fields */
1330 void reiserfs_read_locked_inode (struct inode * inode, struct reiserfs_iget_args *args)
1331 {
1332     INITIALIZE_PATH (path_to_sd);
1333     struct cpu_key key;
1334     unsigned long dirino;
1335     int retval;
1336
1337     dirino = args->dirid ;
1338
1339     /* set version 1, version 2 could be used too, because stat data
1340        key is the same in both versions */
1341     key.version = KEY_FORMAT_3_5;
1342     key.on_disk_key.k_dir_id = dirino;
1343     key.on_disk_key.k_objectid = inode->i_ino;
1344     key.on_disk_key.u.k_offset_v1.k_offset = SD_OFFSET;
1345     key.on_disk_key.u.k_offset_v1.k_uniqueness = SD_UNIQUENESS;
1346
1347     /* look for the object's stat data */
1348     retval = search_item (inode->i_sb, &key, &path_to_sd);
1349     if (retval == IO_ERROR) {
1350         reiserfs_warning (inode->i_sb, "vs-13070: reiserfs_read_locked_inode: "
1351                           "i/o failure occurred trying to find stat data of %K",
1352                           &key);
1353         reiserfs_make_bad_inode(inode) ;
1354         return;
1355     }
1356     if (retval != ITEM_FOUND) {
1357         /* a stale NFS handle can trigger this without it being an error */
1358         pathrelse (&path_to_sd);
1359         reiserfs_make_bad_inode(inode) ;
1360         inode->i_nlink = 0;
1361         return;
1362     }
1363
1364     init_inode (inode, &path_to_sd);
1365    
1366     /* It is possible that knfsd is trying to access inode of a file
1367        that is being removed from the disk by some other thread. As we
1368        update sd on unlink all that is required is to check for nlink
1369        here. This bug was first found by Sizif when debugging
1370        SquidNG/Butterfly, forgotten, and found again after Philippe
1371        Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 
1372
1373        More logical fix would require changes in fs/inode.c:iput() to
1374        remove inode from hash-table _after_ fs cleaned disk stuff up and
1375        in iget() to return NULL if I_FREEING inode is found in
1376        hash-table. */
1377     /* Currently there is one place where it's ok to meet inode with
1378        nlink==0: processing of open-unlinked and half-truncated files
1379        during mount (fs/reiserfs/super.c:finish_unfinished()). */
1380     if( ( inode -> i_nlink == 0 ) && 
1381         ! REISERFS_SB(inode -> i_sb) -> s_is_unlinked_ok ) {
1382             reiserfs_warning (inode->i_sb,
1383                               "vs-13075: reiserfs_read_locked_inode: "
1384                               "dead inode read from disk %K. "
1385                               "This is likely to be race with knfsd. Ignore",
1386                               &key );
1387             reiserfs_make_bad_inode( inode );
1388     }
1389
1390     reiserfs_check_path(&path_to_sd) ; /* init inode should be relsing */
1391
1392 }
1393
1394 /**
1395  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1396  *
1397  * @inode:    inode from hash table to check
1398  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1399  *
1400  * This function is called by iget5_locked() to distinguish reiserfs inodes
1401  * having the same inode numbers. Such inodes can only exist due to some
1402  * error condition. One of them should be bad. Inodes with identical
1403  * inode numbers (objectids) are distinguished by parent directory ids.
1404  *
1405  */
1406 int reiserfs_find_actor( struct inode *inode, void *opaque )
1407 {
1408     struct reiserfs_iget_args *args;
1409
1410     args = opaque;
1411     /* args is already in CPU order */
1412     return (inode->i_ino == args->objectid) &&
1413         (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1414 }
1415
1416 struct inode * reiserfs_iget (struct super_block * s, const struct cpu_key * key)
1417 {
1418     struct inode * inode;
1419     struct reiserfs_iget_args args ;
1420
1421     args.objectid = key->on_disk_key.k_objectid ;
1422     args.dirid = key->on_disk_key.k_dir_id ;
1423     inode = iget5_locked (s, key->on_disk_key.k_objectid, 
1424                    reiserfs_find_actor, reiserfs_init_locked_inode, (void *)(&args));
1425     if (!inode) 
1426         return ERR_PTR(-ENOMEM) ;
1427
1428     if (inode->i_state & I_NEW) {
1429         reiserfs_read_locked_inode(inode, &args);
1430         unlock_new_inode(inode);
1431     }
1432
1433     if (comp_short_keys (INODE_PKEY (inode), key) || is_bad_inode (inode)) {
1434         /* either due to i/o error or a stale NFS handle */
1435         iput (inode);
1436         inode = NULL;
1437     }
1438     return inode;
1439 }
1440
1441 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1442 {
1443     __u32 *data = vobjp;
1444     struct cpu_key key ;
1445     struct dentry *result;
1446     struct inode *inode;
1447     
1448     key.on_disk_key.k_objectid = data[0] ;
1449     key.on_disk_key.k_dir_id = data[1] ;
1450     reiserfs_write_lock(sb);
1451     inode = reiserfs_iget(sb, &key) ;
1452     if (inode && !IS_ERR(inode) && data[2] != 0 &&
1453         data[2] != inode->i_generation) {
1454             iput(inode) ;
1455             inode = NULL ;
1456     }
1457     reiserfs_write_unlock(sb);
1458     if (!inode)
1459             inode = ERR_PTR(-ESTALE);
1460     if (IS_ERR(inode))
1461             return ERR_PTR(PTR_ERR(inode));
1462     result = d_alloc_anon(inode);
1463     if (!result) {
1464             iput(inode);
1465             return ERR_PTR(-ENOMEM);
1466     }
1467     return result;
1468 }
1469
1470 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1471                                      int len, int fhtype,
1472                                   int (*acceptable)(void *contect, struct dentry *de),
1473                                   void *context) {
1474     __u32 obj[3], parent[3];
1475
1476     /* fhtype happens to reflect the number of u32s encoded.
1477      * due to a bug in earlier code, fhtype might indicate there
1478      * are more u32s then actually fitted.
1479      * so if fhtype seems to be more than len, reduce fhtype.
1480      * Valid types are:
1481      *   2 - objectid + dir_id - legacy support
1482      *   3 - objectid + dir_id + generation
1483      *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1484      *   5 - objectid + dir_id + generation + objectid and dirid of parent
1485      *   6 - as above plus generation of directory
1486      * 6 does not fit in NFSv2 handles
1487      */
1488     if (fhtype > len) {
1489             if (fhtype != 6 || len != 5)
1490                     reiserfs_warning (sb, "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1491                            fhtype, len);
1492             fhtype = 5;
1493     }
1494
1495     obj[0] = data[0];
1496     obj[1] = data[1];
1497     if (fhtype == 3 || fhtype >= 5)
1498             obj[2] = data[2];
1499     else    obj[2] = 0; /* generation number */
1500
1501     if (fhtype >= 4) {
1502             parent[0] = data[fhtype>=5?3:2] ;
1503             parent[1] = data[fhtype>=5?4:3] ;
1504             if (fhtype == 6)
1505                     parent[2] = data[5];
1506             else    parent[2] = 0;
1507     }
1508     return sb->s_export_op->find_exported_dentry(sb, obj, fhtype < 4 ? NULL : parent,
1509                                acceptable, context);
1510 }
1511
1512 int reiserfs_encode_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent) {
1513     struct inode *inode = dentry->d_inode ;
1514     int maxlen = *lenp;
1515     
1516     if (maxlen < 3)
1517         return 255 ;
1518
1519     data[0] = inode->i_ino ;
1520     data[1] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ;
1521     data[2] = inode->i_generation ;
1522     *lenp = 3 ;
1523     /* no room for directory info? return what we've stored so far */
1524     if (maxlen < 5 || ! need_parent)
1525         return 3 ;
1526
1527     spin_lock(&dentry->d_lock);
1528     inode = dentry->d_parent->d_inode ;
1529     data[3] = inode->i_ino ;
1530     data[4] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ;
1531     *lenp = 5 ;
1532     if (maxlen >= 6) {
1533             data[5] = inode->i_generation ;
1534             *lenp = 6 ;
1535     }
1536     spin_unlock(&dentry->d_lock);
1537     return *lenp ;
1538 }
1539
1540
1541 /* looks for stat data, then copies fields to it, marks the buffer
1542    containing stat data as dirty */
1543 /* reiserfs inodes are never really dirty, since the dirty inode call
1544 ** always logs them.  This call allows the VFS inode marking routines
1545 ** to properly mark inodes for datasync and such, but only actually
1546 ** does something when called for a synchronous update.
1547 */
1548 int reiserfs_write_inode (struct inode * inode, int do_sync) {
1549     struct reiserfs_transaction_handle th ;
1550     int jbegin_count = 1 ;
1551
1552     if (inode->i_sb->s_flags & MS_RDONLY)
1553         return -EROFS;
1554     /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1555     ** these cases are just when the system needs ram, not when the 
1556     ** inode needs to reach disk for safety, and they can safely be
1557     ** ignored because the altered inode has already been logged.
1558     */
1559     if (do_sync && !(current->flags & PF_MEMALLOC)) {
1560         reiserfs_write_lock(inode->i_sb);
1561         if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1562             reiserfs_update_sd (&th, inode);
1563             journal_end_sync(&th, inode->i_sb, jbegin_count) ;
1564         }
1565         reiserfs_write_unlock(inode->i_sb);
1566     }
1567     return 0;
1568 }
1569
1570 /* stat data of new object is inserted already, this inserts the item
1571    containing "." and ".." entries */
1572 static int reiserfs_new_directory (struct reiserfs_transaction_handle *th, 
1573                                    struct inode *inode,
1574                                    struct item_head * ih, struct path * path,
1575                                    struct inode * dir)
1576 {
1577     struct super_block * sb = th->t_super;
1578     char empty_dir [EMPTY_DIR_SIZE];
1579     char * body = empty_dir;
1580     struct cpu_key key;
1581     int retval;
1582
1583     BUG_ON (!th->t_trans_id);
1584     
1585     _make_cpu_key (&key, KEY_FORMAT_3_5, le32_to_cpu (ih->ih_key.k_dir_id),
1586                    le32_to_cpu (ih->ih_key.k_objectid), DOT_OFFSET, TYPE_DIRENTRY, 3/*key length*/);
1587     
1588     /* compose item head for new item. Directories consist of items of
1589        old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1590        is done by reiserfs_new_inode */
1591     if (old_format_only (sb)) {
1592         make_le_item_head (ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1593         
1594         make_empty_dir_item_v1 (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid,
1595                                 INODE_PKEY (dir)->k_dir_id, 
1596                                 INODE_PKEY (dir)->k_objectid );
1597     } else {
1598         make_le_item_head (ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1599         
1600         make_empty_dir_item (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid,
1601                                 INODE_PKEY (dir)->k_dir_id, 
1602                                 INODE_PKEY (dir)->k_objectid );
1603     }
1604     
1605     /* look for place in the tree for new item */
1606     retval = search_item (sb, &key, path);
1607     if (retval == IO_ERROR) {
1608         reiserfs_warning (sb, "vs-13080: reiserfs_new_directory: "
1609                           "i/o failure occurred creating new directory");
1610         return -EIO;
1611     }
1612     if (retval == ITEM_FOUND) {
1613         pathrelse (path);
1614         reiserfs_warning (sb, "vs-13070: reiserfs_new_directory: "
1615                           "object with this key exists (%k)", &(ih->ih_key));
1616         return -EEXIST;
1617     }
1618
1619     /* insert item, that is empty directory item */
1620     return reiserfs_insert_item (th, path, &key, ih, inode, body);
1621 }
1622
1623
1624 /* stat data of object has been inserted, this inserts the item
1625    containing the body of symlink */
1626 static int reiserfs_new_symlink (struct reiserfs_transaction_handle *th, 
1627                                  struct inode *inode,   /* Inode of symlink */
1628                                  struct item_head * ih,
1629                                  struct path * path, const char * symname, int item_len)
1630 {
1631     struct super_block * sb = th->t_super;
1632     struct cpu_key key;
1633     int retval;
1634
1635     BUG_ON (!th->t_trans_id);
1636
1637     _make_cpu_key (&key, KEY_FORMAT_3_5, 
1638                    le32_to_cpu (ih->ih_key.k_dir_id), 
1639                    le32_to_cpu (ih->ih_key.k_objectid),
1640                    1, TYPE_DIRECT, 3/*key length*/);
1641
1642     make_le_item_head (ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 0/*free_space*/);
1643
1644     /* look for place in the tree for new item */
1645     retval = search_item (sb, &key, path);
1646     if (retval == IO_ERROR) {
1647         reiserfs_warning (sb, "vs-13080: reiserfs_new_symlinik: "
1648                           "i/o failure occurred creating new symlink");
1649         return -EIO;
1650     }
1651     if (retval == ITEM_FOUND) {
1652         pathrelse (path);
1653         reiserfs_warning (sb, "vs-13080: reiserfs_new_symlink: "
1654                           "object with this key exists (%k)", &(ih->ih_key));
1655         return -EEXIST;
1656     }
1657
1658     /* insert item, that is body of symlink */
1659     return reiserfs_insert_item (th, path, &key, ih, inode, symname);
1660 }
1661
1662
1663 /* inserts the stat data into the tree, and then calls
1664    reiserfs_new_directory (to insert ".", ".." item if new object is
1665    directory) or reiserfs_new_symlink (to insert symlink body if new
1666    object is symlink) or nothing (if new object is regular file) 
1667
1668    NOTE! uid and gid must already be set in the inode.  If we return
1669    non-zero due to an error, we have to drop the quota previously allocated
1670    for the fresh inode.  This can only be done outside a transaction, so
1671    if we return non-zero, we also end the transaction.  */
1672 int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1673                         struct inode * dir, int mode, 
1674                         const char * symname, 
1675                         /* 0 for regular, EMTRY_DIR_SIZE for dirs, 
1676                            strlen (symname) for symlinks)*/
1677                          loff_t i_size, struct dentry *dentry, 
1678                          struct inode *inode)
1679 {
1680     struct super_block * sb;
1681     INITIALIZE_PATH (path_to_key);
1682     struct cpu_key key;
1683     struct item_head ih;
1684     struct stat_data sd;
1685     int retval;
1686     int err;
1687
1688     BUG_ON (!th->t_trans_id);
1689   
1690     if (DQUOT_ALLOC_INODE(inode)) {
1691         err = -EDQUOT;
1692         goto out_end_trans;
1693     }
1694     if (!dir || !dir->i_nlink) {
1695         err = -EPERM;
1696         goto out_bad_inode;
1697     }
1698
1699     sb = dir->i_sb;
1700
1701     /* item head of new item */
1702     ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1703     ih.ih_key.k_objectid = cpu_to_le32 (reiserfs_get_unused_objectid (th));
1704     if (!ih.ih_key.k_objectid) {
1705         err = -ENOMEM;
1706         goto out_bad_inode ;
1707     }
1708     if (old_format_only (sb))
1709         /* not a perfect generation count, as object ids can be reused, but 
1710         ** this is as good as reiserfs can do right now.
1711         ** note that the private part of inode isn't filled in yet, we have
1712         ** to use the directory.
1713         */
1714         inode->i_generation = le32_to_cpu (INODE_PKEY (dir)->k_objectid);
1715     else
1716 #if defined( USE_INODE_GENERATION_COUNTER )
1717         inode->i_generation = le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1718 #else
1719         inode->i_generation = ++event;
1720 #endif
1721
1722     /* fill stat data */
1723     inode->i_nlink = (S_ISDIR (mode) ? 2 : 1);
1724
1725     /* uid and gid must already be set by the caller for quota init */
1726
1727     /* symlink cannot be immutable or append only, right? */
1728     if( S_ISLNK( inode -> i_mode ) )
1729             inode -> i_flags &= ~ ( S_IMMUTABLE | S_APPEND );
1730
1731     inode->i_mtime = inode->i_atime = inode->i_ctime =
1732             CURRENT_TIME_SEC;
1733     inode->i_size = i_size;
1734     inode->i_blocks = 0;
1735     inode->i_bytes = 0;
1736     REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 
1737       U32_MAX/*NO_BYTES_IN_DIRECT_ITEM*/;
1738
1739     INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list ));
1740     REISERFS_I(inode)->i_flags = 0;
1741     REISERFS_I(inode)->i_prealloc_block = 0;
1742     REISERFS_I(inode)->i_prealloc_count = 0;
1743     REISERFS_I(inode)->i_trans_id = 0;
1744     REISERFS_I(inode)->i_jl = NULL;
1745     REISERFS_I(inode)->i_attrs =
1746         REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1747     sd_attrs_to_i_attrs( REISERFS_I(inode) -> i_attrs, inode );
1748     REISERFS_I(inode)->i_acl_access = NULL;
1749     REISERFS_I(inode)->i_acl_default = NULL;
1750     init_rwsem (&REISERFS_I(inode)->xattr_sem);
1751
1752     if (old_format_only (sb))
1753         make_le_item_head (&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1754     else
1755         make_le_item_head (&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1756
1757     /* key to search for correct place for new stat data */
1758     _make_cpu_key (&key, KEY_FORMAT_3_6, le32_to_cpu (ih.ih_key.k_dir_id),
1759                    le32_to_cpu (ih.ih_key.k_objectid), SD_OFFSET, TYPE_STAT_DATA, 3/*key length*/);
1760
1761     /* find proper place for inserting of stat data */
1762     retval = search_item (sb, &key, &path_to_key);
1763     if (retval == IO_ERROR) {
1764         err = -EIO;
1765         goto out_bad_inode;
1766     }
1767     if (retval == ITEM_FOUND) {
1768         pathrelse (&path_to_key);
1769         err = -EEXIST;
1770         goto out_bad_inode;
1771     }
1772     if (old_format_only (sb)) {
1773         if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1774             pathrelse (&path_to_key);
1775             /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1776             err = -EINVAL;
1777             goto out_bad_inode;
1778         }
1779         inode2sd_v1 (&sd, inode, inode->i_size);
1780     } else {
1781         inode2sd (&sd, inode, inode->i_size);
1782     }
1783     // these do not go to on-disk stat data
1784     inode->i_ino = le32_to_cpu (ih.ih_key.k_objectid);
1785     inode->i_blksize = reiserfs_default_io_size;
1786   
1787     // store in in-core inode the key of stat data and version all
1788     // object items will have (directory items will have old offset
1789     // format, other new objects will consist of new items)
1790     memcpy (INODE_PKEY (inode), &(ih.ih_key), KEY_SIZE);
1791     if (old_format_only (sb) || S_ISDIR(mode) || S_ISLNK(mode))
1792         set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1793     else
1794         set_inode_item_key_version (inode, KEY_FORMAT_3_6);
1795     if (old_format_only (sb))
1796         set_inode_sd_version (inode, STAT_DATA_V1);
1797     else
1798         set_inode_sd_version (inode, STAT_DATA_V2);
1799     
1800     /* insert the stat data into the tree */
1801 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1802     if (REISERFS_I(dir)->new_packing_locality)
1803         th->displace_new_blocks = 1;
1804 #endif
1805     retval = reiserfs_insert_item (th, &path_to_key, &key, &ih, inode, (char *)(&sd));
1806     if (retval) {
1807         err = retval;
1808         reiserfs_check_path(&path_to_key) ;
1809         goto out_bad_inode;
1810     }
1811
1812 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1813     if (!th->displace_new_blocks)
1814         REISERFS_I(dir)->new_packing_locality = 0;
1815 #endif
1816     if (S_ISDIR(mode)) {
1817         /* insert item with "." and ".." */
1818         retval = reiserfs_new_directory (th, inode, &ih, &path_to_key, dir);
1819     }
1820
1821     if (S_ISLNK(mode)) {
1822         /* insert body of symlink */
1823         if (!old_format_only (sb))
1824             i_size = ROUND_UP(i_size);
1825         retval = reiserfs_new_symlink (th, inode, &ih, &path_to_key, symname, i_size);
1826     }
1827     if (retval) {
1828         err = retval;
1829         reiserfs_check_path(&path_to_key) ;
1830         journal_end(th, th->t_super, th->t_blocks_allocated);
1831         goto out_inserted_sd;
1832     }
1833
1834     /* XXX CHECK THIS */
1835     if (reiserfs_posixacl (inode->i_sb)) {
1836         retval = reiserfs_inherit_default_acl (dir, dentry, inode);
1837         if (retval) {
1838             err = retval;
1839             reiserfs_check_path(&path_to_key) ;
1840             journal_end(th, th->t_super, th->t_blocks_allocated);
1841             goto out_inserted_sd;
1842         }
1843     } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1844         reiserfs_warning (inode->i_sb, "ACLs aren't enabled in the fs, "
1845                           "but vfs thinks they are!");
1846     } else if (is_reiserfs_priv_object (dir)) {
1847         reiserfs_mark_inode_private (inode);
1848     }
1849
1850     insert_inode_hash (inode);
1851     reiserfs_update_sd(th, inode);
1852     reiserfs_check_path(&path_to_key) ;
1853
1854     return 0;
1855
1856 /* it looks like you can easily compress these two goto targets into
1857  * one.  Keeping it like this doesn't actually hurt anything, and they
1858  * are place holders for what the quota code actually needs.
1859  */
1860 out_bad_inode:
1861     /* Invalidate the object, nothing was inserted yet */
1862     INODE_PKEY(inode)->k_objectid = 0;
1863
1864     /* Quota change must be inside a transaction for journaling */
1865     DQUOT_FREE_INODE(inode);
1866
1867 out_end_trans:
1868     journal_end(th, th->t_super, th->t_blocks_allocated) ;
1869     /* Drop can be outside and it needs more credits so it's better to have it outside */
1870     DQUOT_DROP(inode);
1871     inode->i_flags |= S_NOQUOTA;
1872     make_bad_inode(inode);
1873
1874 out_inserted_sd:
1875     inode->i_nlink = 0;
1876     th->t_trans_id = 0; /* so the caller can't use this handle later */
1877     iput(inode);
1878     return err;
1879 }
1880
1881 /*
1882 ** finds the tail page in the page cache,
1883 ** reads the last block in.
1884 **
1885 ** On success, page_result is set to a locked, pinned page, and bh_result
1886 ** is set to an up to date buffer for the last block in the file.  returns 0.
1887 **
1888 ** tail conversion is not done, so bh_result might not be valid for writing
1889 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1890 ** trying to write the block.
1891 **
1892 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1893 */
1894 static int grab_tail_page(struct inode *p_s_inode, 
1895                           struct page **page_result, 
1896                           struct buffer_head **bh_result) {
1897
1898     /* we want the page with the last byte in the file,
1899     ** not the page that will hold the next byte for appending
1900     */
1901     unsigned long index = (p_s_inode->i_size-1) >> PAGE_CACHE_SHIFT ;
1902     unsigned long pos = 0 ;
1903     unsigned long start = 0 ;
1904     unsigned long blocksize = p_s_inode->i_sb->s_blocksize ;
1905     unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1) ;
1906     struct buffer_head *bh ;
1907     struct buffer_head *head ;
1908     struct page * page ;
1909     int error ;
1910     
1911     /* we know that we are only called with inode->i_size > 0.
1912     ** we also know that a file tail can never be as big as a block
1913     ** If i_size % blocksize == 0, our file is currently block aligned
1914     ** and it won't need converting or zeroing after a truncate.
1915     */
1916     if ((offset & (blocksize - 1)) == 0) {
1917         return -ENOENT ;
1918     }
1919     page = grab_cache_page(p_s_inode->i_mapping, index) ;
1920     error = -ENOMEM ;
1921     if (!page) {
1922         goto out ;
1923     }
1924     /* start within the page of the last block in the file */
1925     start = (offset / blocksize) * blocksize ;
1926
1927     error = block_prepare_write(page, start, offset, 
1928                                 reiserfs_get_block_create_0) ;
1929     if (error)
1930         goto unlock ;
1931
1932     head = page_buffers(page) ;      
1933     bh = head;
1934     do {
1935         if (pos >= start) {
1936             break ;
1937         }
1938         bh = bh->b_this_page ;
1939         pos += blocksize ;
1940     } while(bh != head) ;
1941
1942     if (!buffer_uptodate(bh)) {
1943         /* note, this should never happen, prepare_write should
1944         ** be taking care of this for us.  If the buffer isn't up to date,
1945         ** I've screwed up the code to find the buffer, or the code to
1946         ** call prepare_write
1947         */
1948         reiserfs_warning (p_s_inode->i_sb,
1949                           "clm-6000: error reading block %lu on dev %s",
1950                           bh->b_blocknr,
1951                           reiserfs_bdevname (p_s_inode->i_sb)) ;
1952         error = -EIO ;
1953         goto unlock ;
1954     }
1955     *bh_result = bh ;
1956     *page_result = page ;
1957
1958 out:
1959     return error ;
1960
1961 unlock:
1962     unlock_page(page) ;
1963     page_cache_release(page) ;
1964     return error ;
1965 }
1966
1967 /*
1968 ** vfs version of truncate file.  Must NOT be called with
1969 ** a transaction already started.
1970 **
1971 ** some code taken from block_truncate_page
1972 */
1973 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) {
1974     struct reiserfs_transaction_handle th ;
1975     /* we want the offset for the first byte after the end of the file */
1976     unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1) ;
1977     unsigned blocksize = p_s_inode->i_sb->s_blocksize ;
1978     unsigned length ;
1979     struct page *page = NULL ;
1980     int error ;
1981     struct buffer_head *bh = NULL ;
1982
1983     reiserfs_write_lock(p_s_inode->i_sb);
1984
1985     if (p_s_inode->i_size > 0) {
1986         if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
1987             // -ENOENT means we truncated past the end of the file, 
1988             // and get_block_create_0 could not find a block to read in,
1989             // which is ok.
1990             if (error != -ENOENT)
1991                 reiserfs_warning (p_s_inode->i_sb,
1992                                   "clm-6001: grab_tail_page failed %d",
1993                                   error);
1994             page = NULL ;
1995             bh = NULL ;
1996         }
1997     }
1998
1999     /* so, if page != NULL, we have a buffer head for the offset at 
2000     ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 
2001     ** then we have an unformatted node.  Otherwise, we have a direct item, 
2002     ** and no zeroing is required on disk.  We zero after the truncate, 
2003     ** because the truncate might pack the item anyway 
2004     ** (it will unmap bh if it packs).
2005     */
2006     /* it is enough to reserve space in transaction for 2 balancings:
2007        one for "save" link adding and another for the first
2008        cut_from_item. 1 is for update_sd */
2009     error = journal_begin (&th, p_s_inode->i_sb,
2010                            JOURNAL_PER_BALANCE_CNT * 2 + 1);
2011     if (error)
2012         goto out;
2013     reiserfs_update_inode_transaction(p_s_inode) ;
2014     if (update_timestamps)
2015             /* we are doing real truncate: if the system crashes before the last
2016                transaction of truncating gets committed - on reboot the file
2017                either appears truncated properly or not truncated at all */
2018         add_save_link (&th, p_s_inode, 1);
2019     error = reiserfs_do_truncate (&th, p_s_inode, page, update_timestamps) ;
2020     if (error)
2021         goto out;
2022     error = journal_end (&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2023     if (error)
2024         goto out;
2025
2026     if (update_timestamps) {
2027         error = remove_save_link (p_s_inode, 1/* truncate */);
2028         if (error)
2029             goto out;
2030     }
2031
2032     if (page) {
2033         length = offset & (blocksize - 1) ;
2034         /* if we are not on a block boundary */
2035         if (length) {
2036             char *kaddr;
2037
2038             length = blocksize - length ;
2039             kaddr = kmap_atomic(page, KM_USER0) ;
2040             memset(kaddr + offset, 0, length) ;   
2041             flush_dcache_page(page) ;
2042             kunmap_atomic(kaddr, KM_USER0) ;
2043             if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2044                 mark_buffer_dirty(bh) ;
2045             }
2046         }
2047         unlock_page(page) ;
2048         page_cache_release(page) ;
2049     }
2050
2051     reiserfs_write_unlock(p_s_inode->i_sb);
2052     return 0;
2053 out:
2054     if (page) {
2055         unlock_page (page);
2056         page_cache_release (page);
2057     }
2058     reiserfs_write_unlock(p_s_inode->i_sb);
2059     return error;
2060 }
2061
2062 static int map_block_for_writepage(struct inode *inode, 
2063                                struct buffer_head *bh_result, 
2064                                unsigned long block) {
2065     struct reiserfs_transaction_handle th ;
2066     int fs_gen ;
2067     struct item_head tmp_ih ;
2068     struct item_head *ih ;
2069     struct buffer_head *bh ;
2070     __u32 *item ;
2071     struct cpu_key key ;
2072     INITIALIZE_PATH(path) ;
2073     int pos_in_item ;
2074     int jbegin_count = JOURNAL_PER_BALANCE_CNT ;
2075     loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1 ;
2076     int retval ;
2077     int use_get_block = 0 ;
2078     int bytes_copied = 0 ;
2079     int copy_size ;
2080     int trans_running = 0;
2081
2082     /* catch places below that try to log something without starting a trans */
2083     th.t_trans_id = 0;
2084
2085     if (!buffer_uptodate(bh_result)) {
2086         return -EIO;
2087     }
2088
2089     kmap(bh_result->b_page) ;
2090 start_over:
2091     reiserfs_write_lock(inode->i_sb);
2092     make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3) ;
2093
2094 research:
2095     retval = search_for_position_by_key(inode->i_sb, &key, &path) ;
2096     if (retval != POSITION_FOUND) {
2097         use_get_block = 1;
2098         goto out ;
2099     } 
2100
2101     bh = get_last_bh(&path) ;
2102     ih = get_ih(&path) ;
2103     item = get_item(&path) ;
2104     pos_in_item = path.pos_in_item ;
2105
2106     /* we've found an unformatted node */
2107     if (indirect_item_found(retval, ih)) {
2108         if (bytes_copied > 0) {
2109             reiserfs_warning (inode->i_sb, "clm-6002: bytes_copied %d",
2110                               bytes_copied) ;
2111         }
2112         if (!get_block_num(item, pos_in_item)) {
2113             /* crap, we are writing to a hole */
2114             use_get_block = 1;
2115             goto out ;
2116         }
2117         set_block_dev_mapped(bh_result, get_block_num(item,pos_in_item),inode);
2118     } else if (is_direct_le_ih(ih)) {
2119         char *p ; 
2120         p = page_address(bh_result->b_page) ;
2121         p += (byte_offset -1) & (PAGE_CACHE_SIZE - 1) ;
2122         copy_size = ih_item_len(ih) - pos_in_item;
2123
2124         fs_gen = get_generation(inode->i_sb) ;
2125         copy_item_head(&tmp_ih, ih) ;
2126
2127         if (!trans_running) {
2128             /* vs-3050 is gone, no need to drop the path */
2129             retval = journal_begin(&th, inode->i_sb, jbegin_count) ;
2130             if (retval)
2131                 goto out;
2132             reiserfs_update_inode_transaction(inode) ;
2133             trans_running = 1;
2134             if (fs_changed(fs_gen, inode->i_sb) && item_moved(&tmp_ih, &path)) {
2135                 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
2136                 goto research;
2137             }
2138         }
2139
2140         reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
2141
2142         if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
2143             reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
2144             goto research;
2145         }
2146
2147         memcpy( B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, copy_size) ;
2148
2149         journal_mark_dirty(&th, inode->i_sb, bh) ;
2150         bytes_copied += copy_size ;
2151         set_block_dev_mapped(bh_result, 0, inode);
2152
2153         /* are there still bytes left? */
2154         if (bytes_copied < bh_result->b_size && 
2155             (byte_offset + bytes_copied) < inode->i_size) {
2156             set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + copy_size) ;
2157             goto research ;
2158         }
2159     } else {
2160         reiserfs_warning (inode->i_sb,
2161                           "clm-6003: bad item inode %lu, device %s",
2162                           inode->i_ino, reiserfs_bdevname (inode->i_sb)) ;
2163         retval = -EIO ;
2164         goto out ;
2165     }
2166     retval = 0 ;
2167     
2168 out:
2169     pathrelse(&path) ;
2170     if (trans_running) {
2171         int err = journal_end(&th, inode->i_sb, jbegin_count) ;
2172         if (err)
2173             retval = err;
2174         trans_running = 0;
2175     }
2176     reiserfs_write_unlock(inode->i_sb);
2177
2178     /* this is where we fill in holes in the file. */
2179     if (use_get_block) {
2180         retval = reiserfs_get_block(inode, block, bh_result, 
2181                                     GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM |
2182                                     GET_BLOCK_NO_DANGLE);
2183         if (!retval) {
2184             if (!buffer_mapped(bh_result) || bh_result->b_blocknr == 0) {
2185                 /* get_block failed to find a mapped unformatted node. */
2186                 use_get_block = 0 ;
2187                 goto start_over ;
2188             }
2189         }
2190     }
2191     kunmap(bh_result->b_page) ;
2192
2193     if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2194         /* we've copied data from the page into the direct item, so the
2195          * buffer in the page is now clean, mark it to reflect that.
2196          */
2197         lock_buffer(bh_result);
2198         clear_buffer_dirty(bh_result);
2199         unlock_buffer(bh_result);
2200     }
2201     return retval ;
2202 }
2203
2204 /* 
2205  * mason@suse.com: updated in 2.5.54 to follow the same general io 
2206  * start/recovery path as __block_write_full_page, along with special
2207  * code to handle reiserfs tails.
2208  */
2209 static int reiserfs_write_full_page(struct page *page, struct writeback_control *wbc) {
2210     struct inode *inode = page->mapping->host ;
2211     unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT ;
2212     int error = 0;
2213     unsigned long block ;
2214     struct buffer_head *head, *bh;
2215     int partial = 0 ;
2216     int nr = 0;
2217     int checked = PageChecked(page);
2218     struct reiserfs_transaction_handle th;
2219     struct super_block *s = inode->i_sb;
2220     int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2221     th.t_trans_id = 0;
2222
2223     /* The page dirty bit is cleared before writepage is called, which
2224      * means we have to tell create_empty_buffers to make dirty buffers
2225      * The page really should be up to date at this point, so tossing
2226      * in the BH_Uptodate is just a sanity check.
2227      */
2228     if (!page_has_buffers(page)) {
2229         create_empty_buffers(page, s->s_blocksize,
2230                             (1 << BH_Dirty) | (1 << BH_Uptodate));
2231     }
2232     head = page_buffers(page) ;
2233
2234     /* last page in the file, zero out any contents past the
2235     ** last byte in the file
2236     */
2237     if (page->index >= end_index) {
2238         char *kaddr;
2239         unsigned last_offset;
2240
2241         last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1) ;
2242         /* no file contents in this page */
2243         if (page->index >= end_index + 1 || !last_offset) {
2244             unlock_page(page);
2245             return 0;
2246         }
2247         kaddr = kmap_atomic(page, KM_USER0);
2248         memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE-last_offset) ;
2249         flush_dcache_page(page) ;
2250         kunmap_atomic(kaddr, KM_USER0) ;
2251     }
2252     bh = head ;
2253     block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits) ;
2254     /* first map all the buffers, logging any direct items we find */
2255     do {
2256         if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) ||
2257            (buffer_mapped(bh) && bh->b_blocknr == 0))) {
2258             /* not mapped yet, or it points to a direct item, search
2259              * the btree for the mapping info, and log any direct
2260              * items found
2261              */
2262             if ((error = map_block_for_writepage(inode, bh, block))) {
2263                 goto fail ;
2264             }
2265         }
2266         bh = bh->b_this_page;
2267         block++;
2268     } while(bh != head) ;
2269
2270     /*
2271      * we start the transaction after map_block_for_writepage,
2272      * because it can create holes in the file (an unbounded operation).
2273      * starting it here, we can make a reliable estimate for how many
2274      * blocks we're going to log
2275      */
2276     if (checked) {
2277         ClearPageChecked(page);
2278         reiserfs_write_lock(s);
2279         error = journal_begin(&th, s, bh_per_page + 1);
2280         if (error) {
2281             reiserfs_write_unlock(s);
2282             goto fail;
2283         }
2284         reiserfs_update_inode_transaction(inode);
2285     }
2286     /* now go through and lock any dirty buffers on the page */
2287     do {
2288         get_bh(bh);
2289         if (!buffer_mapped(bh))
2290             continue;
2291         if (buffer_mapped(bh) && bh->b_blocknr == 0)
2292             continue;
2293
2294         if (checked) {
2295             reiserfs_prepare_for_journal(s, bh, 1);
2296             journal_mark_dirty(&th, s, bh);
2297             continue;
2298         }
2299         /* from this point on, we know the buffer is mapped to a
2300          * real block and not a direct item
2301          */
2302         if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2303             lock_buffer(bh);
2304         } else {
2305             if (test_set_buffer_locked(bh)) {
2306                 redirty_page_for_writepage(wbc, page);
2307                 continue;
2308             }
2309         }
2310         if (test_clear_buffer_dirty(bh)) {
2311             mark_buffer_async_write(bh);
2312         } else {
2313             unlock_buffer(bh);
2314         }
2315     } while((bh = bh->b_this_page) != head);
2316
2317     if (checked) {
2318         error = journal_end(&th, s, bh_per_page + 1);
2319         reiserfs_write_unlock(s);
2320         if (error)
2321             goto fail;
2322     }
2323     BUG_ON(PageWriteback(page));
2324     set_page_writeback(page);
2325     unlock_page(page);
2326
2327     /*
2328      * since any buffer might be the only dirty buffer on the page, 
2329      * the first submit_bh can bring the page out of writeback.
2330      * be careful with the buffers.
2331      */
2332     do {
2333         struct buffer_head *next = bh->b_this_page;
2334         if (buffer_async_write(bh)) {
2335             submit_bh(WRITE, bh);
2336             nr++;
2337         }
2338         put_bh(bh);
2339         bh = next;
2340     } while(bh != head);
2341
2342     error = 0;
2343 done:
2344     if (nr == 0) {
2345         /*
2346          * if this page only had a direct item, it is very possible for
2347          * no io to be required without there being an error.  Or, 
2348          * someone else could have locked them and sent them down the 
2349          * pipe without locking the page
2350          */
2351         bh = head ;
2352         do {
2353             if (!buffer_uptodate(bh)) {
2354                 partial = 1;
2355                 break;
2356             }
2357             bh = bh->b_this_page;
2358         } while(bh != head);
2359         if (!partial)
2360             SetPageUptodate(page);
2361         end_page_writeback(page);
2362     }
2363     return error;
2364
2365 fail:
2366     /* catches various errors, we need to make sure any valid dirty blocks
2367      * get to the media.  The page is currently locked and not marked for 
2368      * writeback
2369      */
2370     ClearPageUptodate(page);
2371     bh = head;
2372     do {
2373         get_bh(bh);
2374         if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2375             lock_buffer(bh);
2376             mark_buffer_async_write(bh);
2377         } else {
2378             /*
2379              * clear any dirty bits that might have come from getting
2380              * attached to a dirty page
2381              */
2382              clear_buffer_dirty(bh);
2383         }
2384         bh = bh->b_this_page;
2385     } while(bh != head);
2386     SetPageError(page);
2387     BUG_ON(PageWriteback(page));
2388     set_page_writeback(page);
2389     unlock_page(page);
2390     do {
2391         struct buffer_head *next = bh->b_this_page;
2392         if (buffer_async_write(bh)) {
2393             clear_buffer_dirty(bh);
2394             submit_bh(WRITE, bh);
2395             nr++;
2396         }
2397         put_bh(bh);
2398         bh = next;
2399     } while(bh != head);
2400     goto done;
2401 }
2402
2403
2404 static int reiserfs_readpage (struct file *f, struct page * page)
2405 {
2406     return block_read_full_page (page, reiserfs_get_block);
2407 }
2408
2409
2410 static int reiserfs_writepage (struct page * page, struct writeback_control *wbc)
2411 {
2412     struct inode *inode = page->mapping->host ;
2413     reiserfs_wait_on_write_block(inode->i_sb) ;
2414     return reiserfs_write_full_page(page, wbc) ;
2415 }
2416
2417 static int reiserfs_prepare_write(struct file *f, struct page *page,
2418                            unsigned from, unsigned to) {
2419     struct inode *inode = page->mapping->host ;
2420     int ret;
2421     int old_ref = 0;
2422
2423     reiserfs_wait_on_write_block(inode->i_sb) ;
2424     fix_tail_page_for_writing(page) ;
2425     if (reiserfs_transaction_running(inode->i_sb)) {
2426         struct reiserfs_transaction_handle *th;
2427         th = (struct reiserfs_transaction_handle *)current->journal_info;
2428         BUG_ON (!th->t_refcount);
2429         BUG_ON (!th->t_trans_id);
2430         old_ref = th->t_refcount;
2431         th->t_refcount++;
2432     }
2433
2434     ret = block_prepare_write(page, from, to, reiserfs_get_block) ;
2435     if (ret && reiserfs_transaction_running(inode->i_sb)) {
2436         struct reiserfs_transaction_handle *th = current->journal_info;
2437         /* this gets a little ugly.  If reiserfs_get_block returned an
2438          * error and left a transacstion running, we've got to close it,
2439          * and we've got to free handle if it was a persistent transaction.
2440          *
2441          * But, if we had nested into an existing transaction, we need
2442          * to just drop the ref count on the handle.
2443          *
2444          * If old_ref == 0, the transaction is from reiserfs_get_block,
2445          * and it was a persistent trans.  Otherwise, it was nested above.
2446          */
2447         if (th->t_refcount > old_ref) {
2448             if (old_ref)
2449                 th->t_refcount--;
2450             else {
2451                 int err;
2452                 reiserfs_write_lock(inode->i_sb);
2453                 err = reiserfs_end_persistent_transaction(th);
2454                 reiserfs_write_unlock(inode->i_sb);
2455                 if (err)
2456                     ret = err;
2457             }
2458         }
2459     }
2460     return ret;
2461
2462 }
2463
2464
2465 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) {
2466   return generic_block_bmap(as, block, reiserfs_bmap) ;
2467 }
2468
2469 static int reiserfs_commit_write(struct file *f, struct page *page, 
2470                                  unsigned from, unsigned to) {
2471     struct inode *inode = page->mapping->host ;
2472     loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2473     int ret = 0;
2474     int update_sd = 0;
2475     struct reiserfs_transaction_handle *th = NULL;
2476     
2477     reiserfs_wait_on_write_block(inode->i_sb) ;
2478     if (reiserfs_transaction_running(inode->i_sb)) {
2479         th = current->journal_info;
2480     }
2481     reiserfs_commit_page(inode, page, from, to);
2482  
2483     /* generic_commit_write does this for us, but does not update the
2484     ** transaction tracking stuff when the size changes.  So, we have
2485     ** to do the i_size updates here.
2486     */
2487     if (pos > inode->i_size) {
2488         struct reiserfs_transaction_handle myth ;
2489         reiserfs_write_lock(inode->i_sb);
2490         /* If the file have grown beyond the border where it
2491            can have a tail, unmark it as needing a tail
2492            packing */
2493         if ( (have_large_tails (inode->i_sb) && inode->i_size > i_block_size (inode)*4) ||
2494              (have_small_tails (inode->i_sb) && inode->i_size > i_block_size(inode)) )
2495             REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask ;
2496
2497         ret = journal_begin(&myth, inode->i_sb, 1) ;
2498         if (ret) {
2499             reiserfs_write_unlock(inode->i_sb);
2500             goto journal_error;
2501         }
2502         reiserfs_update_inode_transaction(inode) ;
2503         inode->i_size = pos ;
2504         reiserfs_update_sd(&myth, inode) ;
2505         update_sd = 1;
2506         ret = journal_end(&myth, inode->i_sb, 1) ;
2507         reiserfs_write_unlock(inode->i_sb);
2508         if (ret)
2509             goto journal_error;
2510     }
2511     if (th) {
2512         reiserfs_write_lock(inode->i_sb);
2513         if (!update_sd)
2514             reiserfs_update_sd(th, inode) ;
2515         ret = reiserfs_end_persistent_transaction(th);
2516         reiserfs_write_unlock(inode->i_sb);
2517         if (ret)
2518             goto out;
2519     }
2520  
2521     /* we test for O_SYNC here so we can commit the transaction
2522     ** for any packed tails the file might have had
2523     */
2524     if (f && (f->f_flags & O_SYNC)) {
2525         reiserfs_write_lock(inode->i_sb);
2526         ret = reiserfs_commit_for_inode(inode) ;
2527         reiserfs_write_unlock(inode->i_sb);
2528     }
2529 out:
2530     return ret ;
2531
2532 journal_error:
2533     if (th) {
2534         reiserfs_write_lock(inode->i_sb);
2535         if (!update_sd)
2536             reiserfs_update_sd(th, inode) ;
2537         ret = reiserfs_end_persistent_transaction(th);
2538         reiserfs_write_unlock(inode->i_sb);
2539     }
2540
2541     return ret;
2542 }
2543
2544 void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode )
2545 {
2546         if( reiserfs_attrs( inode -> i_sb ) ) {
2547                 if( sd_attrs & REISERFS_SYNC_FL )
2548                         inode -> i_flags |= S_SYNC;
2549                 else
2550                         inode -> i_flags &= ~S_SYNC;
2551                 if( sd_attrs & REISERFS_IMMUTABLE_FL )
2552                         inode -> i_flags |= S_IMMUTABLE;
2553                 else
2554                         inode -> i_flags &= ~S_IMMUTABLE;
2555                 if( sd_attrs & REISERFS_APPEND_FL )
2556                         inode -> i_flags |= S_APPEND;
2557                 else
2558                         inode -> i_flags &= ~S_APPEND;
2559                 if( sd_attrs & REISERFS_NOATIME_FL )
2560                         inode -> i_flags |= S_NOATIME;
2561                 else
2562                         inode -> i_flags &= ~S_NOATIME;
2563                 if( sd_attrs & REISERFS_NOTAIL_FL )
2564                         REISERFS_I(inode)->i_flags |= i_nopack_mask;
2565                 else
2566                         REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2567         }
2568 }
2569
2570 void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs )
2571 {
2572         if( reiserfs_attrs( inode -> i_sb ) ) {
2573                 if( inode -> i_flags & S_IMMUTABLE )
2574                         *sd_attrs |= REISERFS_IMMUTABLE_FL;
2575                 else
2576                         *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2577                 if( inode -> i_flags & S_SYNC )
2578                         *sd_attrs |= REISERFS_SYNC_FL;
2579                 else
2580                         *sd_attrs &= ~REISERFS_SYNC_FL;
2581                 if( inode -> i_flags & S_NOATIME )
2582                         *sd_attrs |= REISERFS_NOATIME_FL;
2583                 else
2584                         *sd_attrs &= ~REISERFS_NOATIME_FL;
2585                 if( REISERFS_I(inode)->i_flags & i_nopack_mask )
2586                         *sd_attrs |= REISERFS_NOTAIL_FL;
2587                 else
2588                         *sd_attrs &= ~REISERFS_NOTAIL_FL;
2589         }
2590 }
2591
2592 /* decide if this buffer needs to stay around for data logging or ordered
2593 ** write purposes
2594 */
2595 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2596 {
2597     int ret = 1 ;
2598     struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb) ;
2599
2600     spin_lock(&j->j_dirty_buffers_lock) ;
2601     if (!buffer_mapped(bh)) {
2602         goto free_jh;
2603     }
2604     /* the page is locked, and the only places that log a data buffer
2605      * also lock the page.
2606      */
2607     if (reiserfs_file_data_log(inode)) {
2608         /*
2609          * very conservative, leave the buffer pinned if
2610          * anyone might need it.
2611          */
2612         if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2613             ret = 0 ;
2614         }
2615     } else
2616     if (buffer_dirty(bh) || buffer_locked(bh)) {
2617         struct reiserfs_journal_list *jl;
2618         struct reiserfs_jh *jh = bh->b_private;
2619
2620         /* why is this safe?
2621          * reiserfs_setattr updates i_size in the on disk
2622          * stat data before allowing vmtruncate to be called.
2623          *
2624          * If buffer was put onto the ordered list for this
2625          * transaction, we know for sure either this transaction
2626          * or an older one already has updated i_size on disk,
2627          * and this ordered data won't be referenced in the file
2628          * if we crash.
2629          *
2630          * if the buffer was put onto the ordered list for an older
2631          * transaction, we need to leave it around
2632          */
2633         if (jh && (jl = jh->jl) && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2634             ret = 0;
2635     }
2636 free_jh:
2637     if (ret && bh->b_private) {
2638         reiserfs_free_jh(bh);
2639     }
2640     spin_unlock(&j->j_dirty_buffers_lock) ;
2641     return ret ;
2642 }
2643
2644 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2645 static int reiserfs_invalidatepage(struct page *page, unsigned long offset)
2646 {
2647     struct buffer_head *head, *bh, *next;
2648     struct inode *inode = page->mapping->host;
2649     unsigned int curr_off = 0;
2650     int ret = 1;
2651
2652     BUG_ON(!PageLocked(page));
2653
2654     if (offset == 0)
2655         ClearPageChecked(page);
2656
2657     if (!page_has_buffers(page))
2658         goto out;
2659
2660     head = page_buffers(page);
2661     bh = head;
2662     do {
2663         unsigned int next_off = curr_off + bh->b_size;
2664         next = bh->b_this_page;
2665
2666         /*
2667          * is this block fully invalidated?
2668          */
2669         if (offset <= curr_off) {
2670             if (invalidatepage_can_drop(inode, bh))
2671                 reiserfs_unmap_buffer(bh);
2672             else
2673                 ret = 0;
2674         }
2675         curr_off = next_off;
2676         bh = next;
2677     } while (bh != head);
2678
2679     /*
2680      * We release buffers only if the entire page is being invalidated.
2681      * The get_block cached value has been unconditionally invalidated,
2682      * so real IO is not possible anymore.
2683      */
2684     if (!offset && ret)
2685         ret = try_to_release_page(page, 0);
2686 out:
2687     return ret;
2688 }
2689
2690 static int reiserfs_set_page_dirty(struct page *page) {
2691     struct inode *inode = page->mapping->host;
2692     if (reiserfs_file_data_log(inode)) {
2693         SetPageChecked(page);
2694         return __set_page_dirty_nobuffers(page);
2695     }
2696     return __set_page_dirty_buffers(page);
2697 }
2698
2699 /*
2700  * Returns 1 if the page's buffers were dropped.  The page is locked.
2701  *
2702  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2703  * in the buffers at page_buffers(page).
2704  *
2705  * even in -o notail mode, we can't be sure an old mount without -o notail
2706  * didn't create files with tails.
2707  */
2708 static int reiserfs_releasepage(struct page *page, int unused_gfp_flags)
2709 {
2710     struct inode *inode = page->mapping->host ;
2711     struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb) ;
2712     struct buffer_head *head ;
2713     struct buffer_head *bh ;
2714     int ret = 1 ;
2715
2716     WARN_ON(PageChecked(page));
2717     spin_lock(&j->j_dirty_buffers_lock) ;
2718     head = page_buffers(page) ;
2719     bh = head ;
2720     do {
2721         if (bh->b_private) {
2722             if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2723                 reiserfs_free_jh(bh);
2724             } else {
2725                 ret = 0 ;
2726                 break ;
2727             }
2728         }
2729         bh = bh->b_this_page ;
2730     } while (bh != head) ;
2731     if (ret)
2732         ret = try_to_free_buffers(page) ;
2733     spin_unlock(&j->j_dirty_buffers_lock) ;
2734     return ret ;
2735 }
2736
2737 /* We thank Mingming Cao for helping us understand in great detail what
2738    to do in this section of the code. */
2739 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2740                 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
2741 {
2742     struct file *file = iocb->ki_filp;
2743     struct inode *inode = file->f_mapping->host;
2744
2745     return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2746                         offset, nr_segs, reiserfs_get_blocks_direct_io, NULL);
2747 }
2748
2749 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) {
2750     struct inode *inode = dentry->d_inode ;
2751     int error ;
2752     unsigned int ia_valid = attr->ia_valid;
2753     reiserfs_write_lock(inode->i_sb);
2754     if (attr->ia_valid & ATTR_SIZE) {
2755         /* version 2 items will be caught by the s_maxbytes check
2756         ** done for us in vmtruncate
2757         */
2758         if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2759             attr->ia_size > MAX_NON_LFS) {
2760             error = -EFBIG ;
2761             goto out;
2762         }
2763         /* fill in hole pointers in the expanding truncate case. */
2764         if (attr->ia_size > inode->i_size) {
2765             error = generic_cont_expand(inode, attr->ia_size) ;
2766             if (REISERFS_I(inode)->i_prealloc_count > 0) {
2767                 int err;
2768                 struct reiserfs_transaction_handle th ;
2769                 /* we're changing at most 2 bitmaps, inode + super */
2770                 err = journal_begin(&th, inode->i_sb, 4) ;
2771                 if (!err) {
2772                     reiserfs_discard_prealloc (&th, inode);
2773                     err = journal_end(&th, inode->i_sb, 4) ;
2774                 }
2775                 if (err)
2776                     error = err;
2777             }
2778             if (error)
2779                 goto out;
2780         }
2781     }
2782
2783     if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2784          ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2785         (get_inode_sd_version (inode) == STAT_DATA_V1)) {
2786                 /* stat data of format v3.5 has 16 bit uid and gid */
2787             error = -EINVAL;
2788             goto out;
2789         }
2790
2791     error = inode_change_ok(inode, attr) ;
2792     if (!error) {
2793         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2794             (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2795                 error = reiserfs_chown_xattrs (inode, attr);
2796
2797                 if (!error) {
2798                     struct reiserfs_transaction_handle th;
2799
2800                     /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2801                     journal_begin(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2802                     error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2803                     if (error) {
2804                         journal_end(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2805                         goto out;
2806                     }
2807                     /* Update corresponding info in inode so that everything is in
2808                      * one transaction */
2809                     if (attr->ia_valid & ATTR_UID)
2810                         inode->i_uid = attr->ia_uid;
2811                     if (attr->ia_valid & ATTR_GID)
2812                         inode->i_gid = attr->ia_gid;
2813                     mark_inode_dirty(inode);
2814                     journal_end(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2815                 }
2816         }
2817         if (!error)
2818             error = inode_setattr(inode, attr) ;
2819     }
2820
2821
2822     if (!error && reiserfs_posixacl (inode->i_sb)) {
2823         if (attr->ia_valid & ATTR_MODE)
2824             error = reiserfs_acl_chmod (inode);
2825     }
2826
2827 out:
2828     reiserfs_write_unlock(inode->i_sb);
2829     return error ;
2830 }
2831
2832
2833
2834 struct address_space_operations reiserfs_address_space_operations = {
2835     .writepage = reiserfs_writepage,
2836     .readpage = reiserfs_readpage, 
2837     .readpages = reiserfs_readpages, 
2838     .releasepage = reiserfs_releasepage,
2839     .invalidatepage = reiserfs_invalidatepage,
2840     .sync_page = block_sync_page,
2841     .prepare_write = reiserfs_prepare_write,
2842     .commit_write = reiserfs_commit_write,
2843     .bmap = reiserfs_aop_bmap,
2844     .direct_IO = reiserfs_direct_IO,
2845     .set_page_dirty = reiserfs_set_page_dirty,
2846 } ;