]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/mm.h
Merge branch 'x86/uv'
[karo-tx-linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33         max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52
53 extern unsigned long sysctl_user_reserve_kbytes;
54 extern unsigned long sysctl_admin_reserve_kbytes;
55
56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
58 /* to align the pointer to the (next) page boundary */
59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
64 /*
65  * Linux kernel virtual memory manager primitives.
66  * The idea being to have a "virtual" mm in the same way
67  * we have a virtual fs - giving a cleaner interface to the
68  * mm details, and allowing different kinds of memory mappings
69  * (from shared memory to executable loading to arbitrary
70  * mmap() functions).
71  */
72
73 extern struct kmem_cache *vm_area_cachep;
74
75 #ifndef CONFIG_MMU
76 extern struct rb_root nommu_region_tree;
77 extern struct rw_semaphore nommu_region_sem;
78
79 extern unsigned int kobjsize(const void *objp);
80 #endif
81
82 /*
83  * vm_flags in vm_area_struct, see mm_types.h.
84  */
85 #define VM_NONE         0x00000000
86
87 #define VM_READ         0x00000001      /* currently active flags */
88 #define VM_WRITE        0x00000002
89 #define VM_EXEC         0x00000004
90 #define VM_SHARED       0x00000008
91
92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
93 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
94 #define VM_MAYWRITE     0x00000020
95 #define VM_MAYEXEC      0x00000040
96 #define VM_MAYSHARE     0x00000080
97
98 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
99 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
100 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
101
102 #define VM_LOCKED       0x00002000
103 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
104
105                                         /* Used by sys_madvise() */
106 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
107 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
108
109 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
110 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
111 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
112 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
113 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
114 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
115 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
116 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
117
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
120 #else
121 # define VM_SOFTDIRTY   0
122 #endif
123
124 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
125 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
126 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
127 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
128
129 #if defined(CONFIG_X86)
130 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
131 #elif defined(CONFIG_PPC)
132 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
133 #elif defined(CONFIG_PARISC)
134 # define VM_GROWSUP     VM_ARCH_1
135 #elif defined(CONFIG_METAG)
136 # define VM_GROWSUP     VM_ARCH_1
137 #elif defined(CONFIG_IA64)
138 # define VM_GROWSUP     VM_ARCH_1
139 #elif !defined(CONFIG_MMU)
140 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
141 #endif
142
143 #ifndef VM_GROWSUP
144 # define VM_GROWSUP     VM_NONE
145 #endif
146
147 /* Bits set in the VMA until the stack is in its final location */
148 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
149
150 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
151 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152 #endif
153
154 #ifdef CONFIG_STACK_GROWSUP
155 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156 #else
157 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158 #endif
159
160 /*
161  * Special vmas that are non-mergable, non-mlock()able.
162  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
163  */
164 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
165
166 /*
167  * mapping from the currently active vm_flags protection bits (the
168  * low four bits) to a page protection mask..
169  */
170 extern pgprot_t protection_map[16];
171
172 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
173 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
174 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
175 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
176 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
177 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
178 #define FAULT_FLAG_TRIED        0x40    /* second try */
179 #define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
180
181 /*
182  * vm_fault is filled by the the pagefault handler and passed to the vma's
183  * ->fault function. The vma's ->fault is responsible for returning a bitmask
184  * of VM_FAULT_xxx flags that give details about how the fault was handled.
185  *
186  * pgoff should be used in favour of virtual_address, if possible. If pgoff
187  * is used, one may implement ->remap_pages to get nonlinear mapping support.
188  */
189 struct vm_fault {
190         unsigned int flags;             /* FAULT_FLAG_xxx flags */
191         pgoff_t pgoff;                  /* Logical page offset based on vma */
192         void __user *virtual_address;   /* Faulting virtual address */
193
194         struct page *page;              /* ->fault handlers should return a
195                                          * page here, unless VM_FAULT_NOPAGE
196                                          * is set (which is also implied by
197                                          * VM_FAULT_ERROR).
198                                          */
199 };
200
201 /*
202  * These are the virtual MM functions - opening of an area, closing and
203  * unmapping it (needed to keep files on disk up-to-date etc), pointer
204  * to the functions called when a no-page or a wp-page exception occurs. 
205  */
206 struct vm_operations_struct {
207         void (*open)(struct vm_area_struct * area);
208         void (*close)(struct vm_area_struct * area);
209         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
210
211         /* notification that a previously read-only page is about to become
212          * writable, if an error is returned it will cause a SIGBUS */
213         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
214
215         /* called by access_process_vm when get_user_pages() fails, typically
216          * for use by special VMAs that can switch between memory and hardware
217          */
218         int (*access)(struct vm_area_struct *vma, unsigned long addr,
219                       void *buf, int len, int write);
220 #ifdef CONFIG_NUMA
221         /*
222          * set_policy() op must add a reference to any non-NULL @new mempolicy
223          * to hold the policy upon return.  Caller should pass NULL @new to
224          * remove a policy and fall back to surrounding context--i.e. do not
225          * install a MPOL_DEFAULT policy, nor the task or system default
226          * mempolicy.
227          */
228         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
229
230         /*
231          * get_policy() op must add reference [mpol_get()] to any policy at
232          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
233          * in mm/mempolicy.c will do this automatically.
234          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237          * must return NULL--i.e., do not "fallback" to task or system default
238          * policy.
239          */
240         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241                                         unsigned long addr);
242         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243                 const nodemask_t *to, unsigned long flags);
244 #endif
245         /* called by sys_remap_file_pages() to populate non-linear mapping */
246         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247                            unsigned long size, pgoff_t pgoff);
248 };
249
250 struct mmu_gather;
251 struct inode;
252
253 #define page_private(page)              ((page)->private)
254 #define set_page_private(page, v)       ((page)->private = (v))
255
256 /* It's valid only if the page is free path or free_list */
257 static inline void set_freepage_migratetype(struct page *page, int migratetype)
258 {
259         page->index = migratetype;
260 }
261
262 /* It's valid only if the page is free path or free_list */
263 static inline int get_freepage_migratetype(struct page *page)
264 {
265         return page->index;
266 }
267
268 /*
269  * FIXME: take this include out, include page-flags.h in
270  * files which need it (119 of them)
271  */
272 #include <linux/page-flags.h>
273 #include <linux/huge_mm.h>
274
275 /*
276  * Methods to modify the page usage count.
277  *
278  * What counts for a page usage:
279  * - cache mapping   (page->mapping)
280  * - private data    (page->private)
281  * - page mapped in a task's page tables, each mapping
282  *   is counted separately
283  *
284  * Also, many kernel routines increase the page count before a critical
285  * routine so they can be sure the page doesn't go away from under them.
286  */
287
288 /*
289  * Drop a ref, return true if the refcount fell to zero (the page has no users)
290  */
291 static inline int put_page_testzero(struct page *page)
292 {
293         VM_BUG_ON(atomic_read(&page->_count) == 0);
294         return atomic_dec_and_test(&page->_count);
295 }
296
297 /*
298  * Try to grab a ref unless the page has a refcount of zero, return false if
299  * that is the case.
300  */
301 static inline int get_page_unless_zero(struct page *page)
302 {
303         return atomic_inc_not_zero(&page->_count);
304 }
305
306 extern int page_is_ram(unsigned long pfn);
307
308 /* Support for virtually mapped pages */
309 struct page *vmalloc_to_page(const void *addr);
310 unsigned long vmalloc_to_pfn(const void *addr);
311
312 /*
313  * Determine if an address is within the vmalloc range
314  *
315  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
316  * is no special casing required.
317  */
318 static inline int is_vmalloc_addr(const void *x)
319 {
320 #ifdef CONFIG_MMU
321         unsigned long addr = (unsigned long)x;
322
323         return addr >= VMALLOC_START && addr < VMALLOC_END;
324 #else
325         return 0;
326 #endif
327 }
328 #ifdef CONFIG_MMU
329 extern int is_vmalloc_or_module_addr(const void *x);
330 #else
331 static inline int is_vmalloc_or_module_addr(const void *x)
332 {
333         return 0;
334 }
335 #endif
336
337 static inline void compound_lock(struct page *page)
338 {
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340         VM_BUG_ON(PageSlab(page));
341         bit_spin_lock(PG_compound_lock, &page->flags);
342 #endif
343 }
344
345 static inline void compound_unlock(struct page *page)
346 {
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348         VM_BUG_ON(PageSlab(page));
349         bit_spin_unlock(PG_compound_lock, &page->flags);
350 #endif
351 }
352
353 static inline unsigned long compound_lock_irqsave(struct page *page)
354 {
355         unsigned long uninitialized_var(flags);
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357         local_irq_save(flags);
358         compound_lock(page);
359 #endif
360         return flags;
361 }
362
363 static inline void compound_unlock_irqrestore(struct page *page,
364                                               unsigned long flags)
365 {
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367         compound_unlock(page);
368         local_irq_restore(flags);
369 #endif
370 }
371
372 static inline struct page *compound_head(struct page *page)
373 {
374         if (unlikely(PageTail(page)))
375                 return page->first_page;
376         return page;
377 }
378
379 /*
380  * The atomic page->_mapcount, starts from -1: so that transitions
381  * both from it and to it can be tracked, using atomic_inc_and_test
382  * and atomic_add_negative(-1).
383  */
384 static inline void page_mapcount_reset(struct page *page)
385 {
386         atomic_set(&(page)->_mapcount, -1);
387 }
388
389 static inline int page_mapcount(struct page *page)
390 {
391         return atomic_read(&(page)->_mapcount) + 1;
392 }
393
394 static inline int page_count(struct page *page)
395 {
396         return atomic_read(&compound_head(page)->_count);
397 }
398
399 static inline void get_huge_page_tail(struct page *page)
400 {
401         /*
402          * __split_huge_page_refcount() cannot run
403          * from under us.
404          */
405         VM_BUG_ON(page_mapcount(page) < 0);
406         VM_BUG_ON(atomic_read(&page->_count) != 0);
407         atomic_inc(&page->_mapcount);
408 }
409
410 extern bool __get_page_tail(struct page *page);
411
412 static inline void get_page(struct page *page)
413 {
414         if (unlikely(PageTail(page)))
415                 if (likely(__get_page_tail(page)))
416                         return;
417         /*
418          * Getting a normal page or the head of a compound page
419          * requires to already have an elevated page->_count.
420          */
421         VM_BUG_ON(atomic_read(&page->_count) <= 0);
422         atomic_inc(&page->_count);
423 }
424
425 static inline struct page *virt_to_head_page(const void *x)
426 {
427         struct page *page = virt_to_page(x);
428         return compound_head(page);
429 }
430
431 /*
432  * Setup the page count before being freed into the page allocator for
433  * the first time (boot or memory hotplug)
434  */
435 static inline void init_page_count(struct page *page)
436 {
437         atomic_set(&page->_count, 1);
438 }
439
440 /*
441  * PageBuddy() indicate that the page is free and in the buddy system
442  * (see mm/page_alloc.c).
443  *
444  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
445  * -2 so that an underflow of the page_mapcount() won't be mistaken
446  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
447  * efficiently by most CPU architectures.
448  */
449 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
450
451 static inline int PageBuddy(struct page *page)
452 {
453         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
454 }
455
456 static inline void __SetPageBuddy(struct page *page)
457 {
458         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
459         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
460 }
461
462 static inline void __ClearPageBuddy(struct page *page)
463 {
464         VM_BUG_ON(!PageBuddy(page));
465         atomic_set(&page->_mapcount, -1);
466 }
467
468 void put_page(struct page *page);
469 void put_pages_list(struct list_head *pages);
470
471 void split_page(struct page *page, unsigned int order);
472 int split_free_page(struct page *page);
473
474 /*
475  * Compound pages have a destructor function.  Provide a
476  * prototype for that function and accessor functions.
477  * These are _only_ valid on the head of a PG_compound page.
478  */
479 typedef void compound_page_dtor(struct page *);
480
481 static inline void set_compound_page_dtor(struct page *page,
482                                                 compound_page_dtor *dtor)
483 {
484         page[1].lru.next = (void *)dtor;
485 }
486
487 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
488 {
489         return (compound_page_dtor *)page[1].lru.next;
490 }
491
492 static inline int compound_order(struct page *page)
493 {
494         if (!PageHead(page))
495                 return 0;
496         return (unsigned long)page[1].lru.prev;
497 }
498
499 static inline void set_compound_order(struct page *page, unsigned long order)
500 {
501         page[1].lru.prev = (void *)order;
502 }
503
504 #ifdef CONFIG_MMU
505 /*
506  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
507  * servicing faults for write access.  In the normal case, do always want
508  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
509  * that do not have writing enabled, when used by access_process_vm.
510  */
511 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512 {
513         if (likely(vma->vm_flags & VM_WRITE))
514                 pte = pte_mkwrite(pte);
515         return pte;
516 }
517 #endif
518
519 /*
520  * Multiple processes may "see" the same page. E.g. for untouched
521  * mappings of /dev/null, all processes see the same page full of
522  * zeroes, and text pages of executables and shared libraries have
523  * only one copy in memory, at most, normally.
524  *
525  * For the non-reserved pages, page_count(page) denotes a reference count.
526  *   page_count() == 0 means the page is free. page->lru is then used for
527  *   freelist management in the buddy allocator.
528  *   page_count() > 0  means the page has been allocated.
529  *
530  * Pages are allocated by the slab allocator in order to provide memory
531  * to kmalloc and kmem_cache_alloc. In this case, the management of the
532  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533  * unless a particular usage is carefully commented. (the responsibility of
534  * freeing the kmalloc memory is the caller's, of course).
535  *
536  * A page may be used by anyone else who does a __get_free_page().
537  * In this case, page_count still tracks the references, and should only
538  * be used through the normal accessor functions. The top bits of page->flags
539  * and page->virtual store page management information, but all other fields
540  * are unused and could be used privately, carefully. The management of this
541  * page is the responsibility of the one who allocated it, and those who have
542  * subsequently been given references to it.
543  *
544  * The other pages (we may call them "pagecache pages") are completely
545  * managed by the Linux memory manager: I/O, buffers, swapping etc.
546  * The following discussion applies only to them.
547  *
548  * A pagecache page contains an opaque `private' member, which belongs to the
549  * page's address_space. Usually, this is the address of a circular list of
550  * the page's disk buffers. PG_private must be set to tell the VM to call
551  * into the filesystem to release these pages.
552  *
553  * A page may belong to an inode's memory mapping. In this case, page->mapping
554  * is the pointer to the inode, and page->index is the file offset of the page,
555  * in units of PAGE_CACHE_SIZE.
556  *
557  * If pagecache pages are not associated with an inode, they are said to be
558  * anonymous pages. These may become associated with the swapcache, and in that
559  * case PG_swapcache is set, and page->private is an offset into the swapcache.
560  *
561  * In either case (swapcache or inode backed), the pagecache itself holds one
562  * reference to the page. Setting PG_private should also increment the
563  * refcount. The each user mapping also has a reference to the page.
564  *
565  * The pagecache pages are stored in a per-mapping radix tree, which is
566  * rooted at mapping->page_tree, and indexed by offset.
567  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568  * lists, we instead now tag pages as dirty/writeback in the radix tree.
569  *
570  * All pagecache pages may be subject to I/O:
571  * - inode pages may need to be read from disk,
572  * - inode pages which have been modified and are MAP_SHARED may need
573  *   to be written back to the inode on disk,
574  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575  *   modified may need to be swapped out to swap space and (later) to be read
576  *   back into memory.
577  */
578
579 /*
580  * The zone field is never updated after free_area_init_core()
581  * sets it, so none of the operations on it need to be atomic.
582  */
583
584 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
585 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
586 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
587 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
588 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
589
590 /*
591  * Define the bit shifts to access each section.  For non-existent
592  * sections we define the shift as 0; that plus a 0 mask ensures
593  * the compiler will optimise away reference to them.
594  */
595 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
596 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
597 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
598 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
599
600 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
601 #ifdef NODE_NOT_IN_PAGE_FLAGS
602 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
603 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
604                                                 SECTIONS_PGOFF : ZONES_PGOFF)
605 #else
606 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
607 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
608                                                 NODES_PGOFF : ZONES_PGOFF)
609 #endif
610
611 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
612
613 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
614 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
615 #endif
616
617 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
618 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
619 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
620 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_WIDTH) - 1)
621 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
622
623 static inline enum zone_type page_zonenum(const struct page *page)
624 {
625         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
626 }
627
628 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
629 #define SECTION_IN_PAGE_FLAGS
630 #endif
631
632 /*
633  * The identification function is mainly used by the buddy allocator for
634  * determining if two pages could be buddies. We are not really identifying
635  * the zone since we could be using the section number id if we do not have
636  * node id available in page flags.
637  * We only guarantee that it will return the same value for two combinable
638  * pages in a zone.
639  */
640 static inline int page_zone_id(struct page *page)
641 {
642         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
643 }
644
645 static inline int zone_to_nid(struct zone *zone)
646 {
647 #ifdef CONFIG_NUMA
648         return zone->node;
649 #else
650         return 0;
651 #endif
652 }
653
654 #ifdef NODE_NOT_IN_PAGE_FLAGS
655 extern int page_to_nid(const struct page *page);
656 #else
657 static inline int page_to_nid(const struct page *page)
658 {
659         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
660 }
661 #endif
662
663 #ifdef CONFIG_NUMA_BALANCING
664 static inline int cpu_pid_to_cpupid(int cpu, int pid)
665 {
666         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
667 }
668
669 static inline int cpupid_to_pid(int cpupid)
670 {
671         return cpupid & LAST__PID_MASK;
672 }
673
674 static inline int cpupid_to_cpu(int cpupid)
675 {
676         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
677 }
678
679 static inline int cpupid_to_nid(int cpupid)
680 {
681         return cpu_to_node(cpupid_to_cpu(cpupid));
682 }
683
684 static inline bool cpupid_pid_unset(int cpupid)
685 {
686         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
687 }
688
689 static inline bool cpupid_cpu_unset(int cpupid)
690 {
691         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
692 }
693
694 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
695 {
696         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
697 }
698
699 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
700 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
701 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
702 {
703         return xchg(&page->_last_cpupid, cpupid);
704 }
705
706 static inline int page_cpupid_last(struct page *page)
707 {
708         return page->_last_cpupid;
709 }
710 static inline void page_cpupid_reset_last(struct page *page)
711 {
712         page->_last_cpupid = -1;
713 }
714 #else
715 static inline int page_cpupid_last(struct page *page)
716 {
717         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
718 }
719
720 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
721
722 static inline void page_cpupid_reset_last(struct page *page)
723 {
724         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
725
726         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
727         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
728 }
729 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
730 #else /* !CONFIG_NUMA_BALANCING */
731 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
732 {
733         return page_to_nid(page); /* XXX */
734 }
735
736 static inline int page_cpupid_last(struct page *page)
737 {
738         return page_to_nid(page); /* XXX */
739 }
740
741 static inline int cpupid_to_nid(int cpupid)
742 {
743         return -1;
744 }
745
746 static inline int cpupid_to_pid(int cpupid)
747 {
748         return -1;
749 }
750
751 static inline int cpupid_to_cpu(int cpupid)
752 {
753         return -1;
754 }
755
756 static inline int cpu_pid_to_cpupid(int nid, int pid)
757 {
758         return -1;
759 }
760
761 static inline bool cpupid_pid_unset(int cpupid)
762 {
763         return 1;
764 }
765
766 static inline void page_cpupid_reset_last(struct page *page)
767 {
768 }
769
770 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
771 {
772         return false;
773 }
774 #endif /* CONFIG_NUMA_BALANCING */
775
776 static inline struct zone *page_zone(const struct page *page)
777 {
778         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
779 }
780
781 #ifdef SECTION_IN_PAGE_FLAGS
782 static inline void set_page_section(struct page *page, unsigned long section)
783 {
784         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
785         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
786 }
787
788 static inline unsigned long page_to_section(const struct page *page)
789 {
790         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
791 }
792 #endif
793
794 static inline void set_page_zone(struct page *page, enum zone_type zone)
795 {
796         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
797         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
798 }
799
800 static inline void set_page_node(struct page *page, unsigned long node)
801 {
802         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
803         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
804 }
805
806 static inline void set_page_links(struct page *page, enum zone_type zone,
807         unsigned long node, unsigned long pfn)
808 {
809         set_page_zone(page, zone);
810         set_page_node(page, node);
811 #ifdef SECTION_IN_PAGE_FLAGS
812         set_page_section(page, pfn_to_section_nr(pfn));
813 #endif
814 }
815
816 /*
817  * Some inline functions in vmstat.h depend on page_zone()
818  */
819 #include <linux/vmstat.h>
820
821 static __always_inline void *lowmem_page_address(const struct page *page)
822 {
823         return __va(PFN_PHYS(page_to_pfn(page)));
824 }
825
826 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
827 #define HASHED_PAGE_VIRTUAL
828 #endif
829
830 #if defined(WANT_PAGE_VIRTUAL)
831 #define page_address(page) ((page)->virtual)
832 #define set_page_address(page, address)                 \
833         do {                                            \
834                 (page)->virtual = (address);            \
835         } while(0)
836 #define page_address_init()  do { } while(0)
837 #endif
838
839 #if defined(HASHED_PAGE_VIRTUAL)
840 void *page_address(const struct page *page);
841 void set_page_address(struct page *page, void *virtual);
842 void page_address_init(void);
843 #endif
844
845 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
846 #define page_address(page) lowmem_page_address(page)
847 #define set_page_address(page, address)  do { } while(0)
848 #define page_address_init()  do { } while(0)
849 #endif
850
851 /*
852  * On an anonymous page mapped into a user virtual memory area,
853  * page->mapping points to its anon_vma, not to a struct address_space;
854  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
855  *
856  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
857  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
858  * and then page->mapping points, not to an anon_vma, but to a private
859  * structure which KSM associates with that merged page.  See ksm.h.
860  *
861  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
862  *
863  * Please note that, confusingly, "page_mapping" refers to the inode
864  * address_space which maps the page from disk; whereas "page_mapped"
865  * refers to user virtual address space into which the page is mapped.
866  */
867 #define PAGE_MAPPING_ANON       1
868 #define PAGE_MAPPING_KSM        2
869 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
870
871 extern struct address_space *page_mapping(struct page *page);
872
873 /* Neutral page->mapping pointer to address_space or anon_vma or other */
874 static inline void *page_rmapping(struct page *page)
875 {
876         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
877 }
878
879 extern struct address_space *__page_file_mapping(struct page *);
880
881 static inline
882 struct address_space *page_file_mapping(struct page *page)
883 {
884         if (unlikely(PageSwapCache(page)))
885                 return __page_file_mapping(page);
886
887         return page->mapping;
888 }
889
890 static inline int PageAnon(struct page *page)
891 {
892         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
893 }
894
895 /*
896  * Return the pagecache index of the passed page.  Regular pagecache pages
897  * use ->index whereas swapcache pages use ->private
898  */
899 static inline pgoff_t page_index(struct page *page)
900 {
901         if (unlikely(PageSwapCache(page)))
902                 return page_private(page);
903         return page->index;
904 }
905
906 extern pgoff_t __page_file_index(struct page *page);
907
908 /*
909  * Return the file index of the page. Regular pagecache pages use ->index
910  * whereas swapcache pages use swp_offset(->private)
911  */
912 static inline pgoff_t page_file_index(struct page *page)
913 {
914         if (unlikely(PageSwapCache(page)))
915                 return __page_file_index(page);
916
917         return page->index;
918 }
919
920 /*
921  * Return true if this page is mapped into pagetables.
922  */
923 static inline int page_mapped(struct page *page)
924 {
925         return atomic_read(&(page)->_mapcount) >= 0;
926 }
927
928 /*
929  * Different kinds of faults, as returned by handle_mm_fault().
930  * Used to decide whether a process gets delivered SIGBUS or
931  * just gets major/minor fault counters bumped up.
932  */
933
934 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
935
936 #define VM_FAULT_OOM    0x0001
937 #define VM_FAULT_SIGBUS 0x0002
938 #define VM_FAULT_MAJOR  0x0004
939 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
940 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
941 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
942
943 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
944 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
945 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
946 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
947
948 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
949
950 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
951                          VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
952
953 /* Encode hstate index for a hwpoisoned large page */
954 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
955 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
956
957 /*
958  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
959  */
960 extern void pagefault_out_of_memory(void);
961
962 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
963
964 /*
965  * Flags passed to show_mem() and show_free_areas() to suppress output in
966  * various contexts.
967  */
968 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
969 #define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
970
971 extern void show_free_areas(unsigned int flags);
972 extern bool skip_free_areas_node(unsigned int flags, int nid);
973
974 int shmem_zero_setup(struct vm_area_struct *);
975
976 extern int can_do_mlock(void);
977 extern int user_shm_lock(size_t, struct user_struct *);
978 extern void user_shm_unlock(size_t, struct user_struct *);
979
980 /*
981  * Parameter block passed down to zap_pte_range in exceptional cases.
982  */
983 struct zap_details {
984         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
985         struct address_space *check_mapping;    /* Check page->mapping if set */
986         pgoff_t first_index;                    /* Lowest page->index to unmap */
987         pgoff_t last_index;                     /* Highest page->index to unmap */
988 };
989
990 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
991                 pte_t pte);
992
993 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
994                 unsigned long size);
995 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
996                 unsigned long size, struct zap_details *);
997 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
998                 unsigned long start, unsigned long end);
999
1000 /**
1001  * mm_walk - callbacks for walk_page_range
1002  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1003  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1004  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1005  *             this handler is required to be able to handle
1006  *             pmd_trans_huge() pmds.  They may simply choose to
1007  *             split_huge_page() instead of handling it explicitly.
1008  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1009  * @pte_hole: if set, called for each hole at all levels
1010  * @hugetlb_entry: if set, called for each hugetlb entry
1011  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1012  *                            is used.
1013  *
1014  * (see walk_page_range for more details)
1015  */
1016 struct mm_walk {
1017         int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1018                          unsigned long next, struct mm_walk *walk);
1019         int (*pud_entry)(pud_t *pud, unsigned long addr,
1020                          unsigned long next, struct mm_walk *walk);
1021         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1022                          unsigned long next, struct mm_walk *walk);
1023         int (*pte_entry)(pte_t *pte, unsigned long addr,
1024                          unsigned long next, struct mm_walk *walk);
1025         int (*pte_hole)(unsigned long addr, unsigned long next,
1026                         struct mm_walk *walk);
1027         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1028                              unsigned long addr, unsigned long next,
1029                              struct mm_walk *walk);
1030         struct mm_struct *mm;
1031         void *private;
1032 };
1033
1034 int walk_page_range(unsigned long addr, unsigned long end,
1035                 struct mm_walk *walk);
1036 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1037                 unsigned long end, unsigned long floor, unsigned long ceiling);
1038 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1039                         struct vm_area_struct *vma);
1040 void unmap_mapping_range(struct address_space *mapping,
1041                 loff_t const holebegin, loff_t const holelen, int even_cows);
1042 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1043         unsigned long *pfn);
1044 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1045                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1046 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1047                         void *buf, int len, int write);
1048
1049 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1050                 loff_t const holebegin, loff_t const holelen)
1051 {
1052         unmap_mapping_range(mapping, holebegin, holelen, 0);
1053 }
1054
1055 extern void truncate_pagecache(struct inode *inode, loff_t new);
1056 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1057 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1058 int truncate_inode_page(struct address_space *mapping, struct page *page);
1059 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1060 int invalidate_inode_page(struct page *page);
1061
1062 #ifdef CONFIG_MMU
1063 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1064                         unsigned long address, unsigned int flags);
1065 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1066                             unsigned long address, unsigned int fault_flags);
1067 #else
1068 static inline int handle_mm_fault(struct mm_struct *mm,
1069                         struct vm_area_struct *vma, unsigned long address,
1070                         unsigned int flags)
1071 {
1072         /* should never happen if there's no MMU */
1073         BUG();
1074         return VM_FAULT_SIGBUS;
1075 }
1076 static inline int fixup_user_fault(struct task_struct *tsk,
1077                 struct mm_struct *mm, unsigned long address,
1078                 unsigned int fault_flags)
1079 {
1080         /* should never happen if there's no MMU */
1081         BUG();
1082         return -EFAULT;
1083 }
1084 #endif
1085
1086 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1087 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1088                 void *buf, int len, int write);
1089
1090 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1091                       unsigned long start, unsigned long nr_pages,
1092                       unsigned int foll_flags, struct page **pages,
1093                       struct vm_area_struct **vmas, int *nonblocking);
1094 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1095                     unsigned long start, unsigned long nr_pages,
1096                     int write, int force, struct page **pages,
1097                     struct vm_area_struct **vmas);
1098 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1099                         struct page **pages);
1100 struct kvec;
1101 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1102                         struct page **pages);
1103 int get_kernel_page(unsigned long start, int write, struct page **pages);
1104 struct page *get_dump_page(unsigned long addr);
1105
1106 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1107 extern void do_invalidatepage(struct page *page, unsigned int offset,
1108                               unsigned int length);
1109
1110 int __set_page_dirty_nobuffers(struct page *page);
1111 int __set_page_dirty_no_writeback(struct page *page);
1112 int redirty_page_for_writepage(struct writeback_control *wbc,
1113                                 struct page *page);
1114 void account_page_dirtied(struct page *page, struct address_space *mapping);
1115 void account_page_writeback(struct page *page);
1116 int set_page_dirty(struct page *page);
1117 int set_page_dirty_lock(struct page *page);
1118 int clear_page_dirty_for_io(struct page *page);
1119
1120 /* Is the vma a continuation of the stack vma above it? */
1121 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1122 {
1123         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1124 }
1125
1126 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1127                                              unsigned long addr)
1128 {
1129         return (vma->vm_flags & VM_GROWSDOWN) &&
1130                 (vma->vm_start == addr) &&
1131                 !vma_growsdown(vma->vm_prev, addr);
1132 }
1133
1134 /* Is the vma a continuation of the stack vma below it? */
1135 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1136 {
1137         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1138 }
1139
1140 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1141                                            unsigned long addr)
1142 {
1143         return (vma->vm_flags & VM_GROWSUP) &&
1144                 (vma->vm_end == addr) &&
1145                 !vma_growsup(vma->vm_next, addr);
1146 }
1147
1148 extern pid_t
1149 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1150
1151 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1152                 unsigned long old_addr, struct vm_area_struct *new_vma,
1153                 unsigned long new_addr, unsigned long len,
1154                 bool need_rmap_locks);
1155 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1156                               unsigned long end, pgprot_t newprot,
1157                               int dirty_accountable, int prot_numa);
1158 extern int mprotect_fixup(struct vm_area_struct *vma,
1159                           struct vm_area_struct **pprev, unsigned long start,
1160                           unsigned long end, unsigned long newflags);
1161
1162 /*
1163  * doesn't attempt to fault and will return short.
1164  */
1165 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1166                           struct page **pages);
1167 /*
1168  * per-process(per-mm_struct) statistics.
1169  */
1170 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1171 {
1172         long val = atomic_long_read(&mm->rss_stat.count[member]);
1173
1174 #ifdef SPLIT_RSS_COUNTING
1175         /*
1176          * counter is updated in asynchronous manner and may go to minus.
1177          * But it's never be expected number for users.
1178          */
1179         if (val < 0)
1180                 val = 0;
1181 #endif
1182         return (unsigned long)val;
1183 }
1184
1185 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1186 {
1187         atomic_long_add(value, &mm->rss_stat.count[member]);
1188 }
1189
1190 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1191 {
1192         atomic_long_inc(&mm->rss_stat.count[member]);
1193 }
1194
1195 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1196 {
1197         atomic_long_dec(&mm->rss_stat.count[member]);
1198 }
1199
1200 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1201 {
1202         return get_mm_counter(mm, MM_FILEPAGES) +
1203                 get_mm_counter(mm, MM_ANONPAGES);
1204 }
1205
1206 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1207 {
1208         return max(mm->hiwater_rss, get_mm_rss(mm));
1209 }
1210
1211 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1212 {
1213         return max(mm->hiwater_vm, mm->total_vm);
1214 }
1215
1216 static inline void update_hiwater_rss(struct mm_struct *mm)
1217 {
1218         unsigned long _rss = get_mm_rss(mm);
1219
1220         if ((mm)->hiwater_rss < _rss)
1221                 (mm)->hiwater_rss = _rss;
1222 }
1223
1224 static inline void update_hiwater_vm(struct mm_struct *mm)
1225 {
1226         if (mm->hiwater_vm < mm->total_vm)
1227                 mm->hiwater_vm = mm->total_vm;
1228 }
1229
1230 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1231                                          struct mm_struct *mm)
1232 {
1233         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1234
1235         if (*maxrss < hiwater_rss)
1236                 *maxrss = hiwater_rss;
1237 }
1238
1239 #if defined(SPLIT_RSS_COUNTING)
1240 void sync_mm_rss(struct mm_struct *mm);
1241 #else
1242 static inline void sync_mm_rss(struct mm_struct *mm)
1243 {
1244 }
1245 #endif
1246
1247 int vma_wants_writenotify(struct vm_area_struct *vma);
1248
1249 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1250                                spinlock_t **ptl);
1251 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1252                                     spinlock_t **ptl)
1253 {
1254         pte_t *ptep;
1255         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1256         return ptep;
1257 }
1258
1259 #ifdef __PAGETABLE_PUD_FOLDED
1260 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1261                                                 unsigned long address)
1262 {
1263         return 0;
1264 }
1265 #else
1266 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1267 #endif
1268
1269 #ifdef __PAGETABLE_PMD_FOLDED
1270 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1271                                                 unsigned long address)
1272 {
1273         return 0;
1274 }
1275 #else
1276 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1277 #endif
1278
1279 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1280                 pmd_t *pmd, unsigned long address);
1281 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1282
1283 /*
1284  * The following ifdef needed to get the 4level-fixup.h header to work.
1285  * Remove it when 4level-fixup.h has been removed.
1286  */
1287 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1288 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1289 {
1290         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1291                 NULL: pud_offset(pgd, address);
1292 }
1293
1294 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1295 {
1296         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1297                 NULL: pmd_offset(pud, address);
1298 }
1299 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1300
1301 #if USE_SPLIT_PTLOCKS
1302 /*
1303  * We tuck a spinlock to guard each pagetable page into its struct page,
1304  * at page->private, with BUILD_BUG_ON to make sure that this will not
1305  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1306  * When freeing, reset page->mapping so free_pages_check won't complain.
1307  */
1308 #define __pte_lockptr(page)     &((page)->ptl)
1309 #define pte_lock_init(_page)    do {                                    \
1310         spin_lock_init(__pte_lockptr(_page));                           \
1311 } while (0)
1312 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1313 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1314 #else   /* !USE_SPLIT_PTLOCKS */
1315 /*
1316  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1317  */
1318 #define pte_lock_init(page)     do {} while (0)
1319 #define pte_lock_deinit(page)   do {} while (0)
1320 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1321 #endif /* USE_SPLIT_PTLOCKS */
1322
1323 static inline void pgtable_page_ctor(struct page *page)
1324 {
1325         pte_lock_init(page);
1326         inc_zone_page_state(page, NR_PAGETABLE);
1327 }
1328
1329 static inline void pgtable_page_dtor(struct page *page)
1330 {
1331         pte_lock_deinit(page);
1332         dec_zone_page_state(page, NR_PAGETABLE);
1333 }
1334
1335 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1336 ({                                                      \
1337         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1338         pte_t *__pte = pte_offset_map(pmd, address);    \
1339         *(ptlp) = __ptl;                                \
1340         spin_lock(__ptl);                               \
1341         __pte;                                          \
1342 })
1343
1344 #define pte_unmap_unlock(pte, ptl)      do {            \
1345         spin_unlock(ptl);                               \
1346         pte_unmap(pte);                                 \
1347 } while (0)
1348
1349 #define pte_alloc_map(mm, vma, pmd, address)                            \
1350         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1351                                                         pmd, address))? \
1352          NULL: pte_offset_map(pmd, address))
1353
1354 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1355         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1356                                                         pmd, address))? \
1357                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1358
1359 #define pte_alloc_kernel(pmd, address)                  \
1360         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1361                 NULL: pte_offset_kernel(pmd, address))
1362
1363 extern void free_area_init(unsigned long * zones_size);
1364 extern void free_area_init_node(int nid, unsigned long * zones_size,
1365                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1366 extern void free_initmem(void);
1367
1368 /*
1369  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1370  * into the buddy system. The freed pages will be poisoned with pattern
1371  * "poison" if it's within range [0, UCHAR_MAX].
1372  * Return pages freed into the buddy system.
1373  */
1374 extern unsigned long free_reserved_area(void *start, void *end,
1375                                         int poison, char *s);
1376
1377 #ifdef  CONFIG_HIGHMEM
1378 /*
1379  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1380  * and totalram_pages.
1381  */
1382 extern void free_highmem_page(struct page *page);
1383 #endif
1384
1385 extern void adjust_managed_page_count(struct page *page, long count);
1386 extern void mem_init_print_info(const char *str);
1387
1388 /* Free the reserved page into the buddy system, so it gets managed. */
1389 static inline void __free_reserved_page(struct page *page)
1390 {
1391         ClearPageReserved(page);
1392         init_page_count(page);
1393         __free_page(page);
1394 }
1395
1396 static inline void free_reserved_page(struct page *page)
1397 {
1398         __free_reserved_page(page);
1399         adjust_managed_page_count(page, 1);
1400 }
1401
1402 static inline void mark_page_reserved(struct page *page)
1403 {
1404         SetPageReserved(page);
1405         adjust_managed_page_count(page, -1);
1406 }
1407
1408 /*
1409  * Default method to free all the __init memory into the buddy system.
1410  * The freed pages will be poisoned with pattern "poison" if it's within
1411  * range [0, UCHAR_MAX].
1412  * Return pages freed into the buddy system.
1413  */
1414 static inline unsigned long free_initmem_default(int poison)
1415 {
1416         extern char __init_begin[], __init_end[];
1417
1418         return free_reserved_area(&__init_begin, &__init_end,
1419                                   poison, "unused kernel");
1420 }
1421
1422 static inline unsigned long get_num_physpages(void)
1423 {
1424         int nid;
1425         unsigned long phys_pages = 0;
1426
1427         for_each_online_node(nid)
1428                 phys_pages += node_present_pages(nid);
1429
1430         return phys_pages;
1431 }
1432
1433 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1434 /*
1435  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1436  * zones, allocate the backing mem_map and account for memory holes in a more
1437  * architecture independent manner. This is a substitute for creating the
1438  * zone_sizes[] and zholes_size[] arrays and passing them to
1439  * free_area_init_node()
1440  *
1441  * An architecture is expected to register range of page frames backed by
1442  * physical memory with memblock_add[_node]() before calling
1443  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1444  * usage, an architecture is expected to do something like
1445  *
1446  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1447  *                                                       max_highmem_pfn};
1448  * for_each_valid_physical_page_range()
1449  *      memblock_add_node(base, size, nid)
1450  * free_area_init_nodes(max_zone_pfns);
1451  *
1452  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1453  * registered physical page range.  Similarly
1454  * sparse_memory_present_with_active_regions() calls memory_present() for
1455  * each range when SPARSEMEM is enabled.
1456  *
1457  * See mm/page_alloc.c for more information on each function exposed by
1458  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1459  */
1460 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1461 unsigned long node_map_pfn_alignment(void);
1462 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1463                                                 unsigned long end_pfn);
1464 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1465                                                 unsigned long end_pfn);
1466 extern void get_pfn_range_for_nid(unsigned int nid,
1467                         unsigned long *start_pfn, unsigned long *end_pfn);
1468 extern unsigned long find_min_pfn_with_active_regions(void);
1469 extern void free_bootmem_with_active_regions(int nid,
1470                                                 unsigned long max_low_pfn);
1471 extern void sparse_memory_present_with_active_regions(int nid);
1472
1473 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1474
1475 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1476     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1477 static inline int __early_pfn_to_nid(unsigned long pfn)
1478 {
1479         return 0;
1480 }
1481 #else
1482 /* please see mm/page_alloc.c */
1483 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1484 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1485 /* there is a per-arch backend function. */
1486 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1487 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1488 #endif
1489
1490 extern void set_dma_reserve(unsigned long new_dma_reserve);
1491 extern void memmap_init_zone(unsigned long, int, unsigned long,
1492                                 unsigned long, enum memmap_context);
1493 extern void setup_per_zone_wmarks(void);
1494 extern int __meminit init_per_zone_wmark_min(void);
1495 extern void mem_init(void);
1496 extern void __init mmap_init(void);
1497 extern void show_mem(unsigned int flags);
1498 extern void si_meminfo(struct sysinfo * val);
1499 extern void si_meminfo_node(struct sysinfo *val, int nid);
1500
1501 extern __printf(3, 4)
1502 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1503
1504 extern void setup_per_cpu_pageset(void);
1505
1506 extern void zone_pcp_update(struct zone *zone);
1507 extern void zone_pcp_reset(struct zone *zone);
1508
1509 /* page_alloc.c */
1510 extern int min_free_kbytes;
1511
1512 /* nommu.c */
1513 extern atomic_long_t mmap_pages_allocated;
1514 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1515
1516 /* interval_tree.c */
1517 void vma_interval_tree_insert(struct vm_area_struct *node,
1518                               struct rb_root *root);
1519 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1520                                     struct vm_area_struct *prev,
1521                                     struct rb_root *root);
1522 void vma_interval_tree_remove(struct vm_area_struct *node,
1523                               struct rb_root *root);
1524 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1525                                 unsigned long start, unsigned long last);
1526 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1527                                 unsigned long start, unsigned long last);
1528
1529 #define vma_interval_tree_foreach(vma, root, start, last)               \
1530         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1531              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1532
1533 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1534                                         struct list_head *list)
1535 {
1536         list_add_tail(&vma->shared.nonlinear, list);
1537 }
1538
1539 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1540                                    struct rb_root *root);
1541 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1542                                    struct rb_root *root);
1543 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1544         struct rb_root *root, unsigned long start, unsigned long last);
1545 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1546         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1547 #ifdef CONFIG_DEBUG_VM_RB
1548 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1549 #endif
1550
1551 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1552         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1553              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1554
1555 /* mmap.c */
1556 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1557 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1558         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1559 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1560         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1561         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1562         struct mempolicy *);
1563 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1564 extern int split_vma(struct mm_struct *,
1565         struct vm_area_struct *, unsigned long addr, int new_below);
1566 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1567 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1568         struct rb_node **, struct rb_node *);
1569 extern void unlink_file_vma(struct vm_area_struct *);
1570 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1571         unsigned long addr, unsigned long len, pgoff_t pgoff,
1572         bool *need_rmap_locks);
1573 extern void exit_mmap(struct mm_struct *);
1574
1575 extern int mm_take_all_locks(struct mm_struct *mm);
1576 extern void mm_drop_all_locks(struct mm_struct *mm);
1577
1578 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1579 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1580
1581 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1582 extern int install_special_mapping(struct mm_struct *mm,
1583                                    unsigned long addr, unsigned long len,
1584                                    unsigned long flags, struct page **pages);
1585
1586 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1587
1588 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1589         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1590 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1591         unsigned long len, unsigned long prot, unsigned long flags,
1592         unsigned long pgoff, unsigned long *populate);
1593 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1594
1595 #ifdef CONFIG_MMU
1596 extern int __mm_populate(unsigned long addr, unsigned long len,
1597                          int ignore_errors);
1598 static inline void mm_populate(unsigned long addr, unsigned long len)
1599 {
1600         /* Ignore errors */
1601         (void) __mm_populate(addr, len, 1);
1602 }
1603 #else
1604 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1605 #endif
1606
1607 /* These take the mm semaphore themselves */
1608 extern unsigned long vm_brk(unsigned long, unsigned long);
1609 extern int vm_munmap(unsigned long, size_t);
1610 extern unsigned long vm_mmap(struct file *, unsigned long,
1611         unsigned long, unsigned long,
1612         unsigned long, unsigned long);
1613
1614 struct vm_unmapped_area_info {
1615 #define VM_UNMAPPED_AREA_TOPDOWN 1
1616         unsigned long flags;
1617         unsigned long length;
1618         unsigned long low_limit;
1619         unsigned long high_limit;
1620         unsigned long align_mask;
1621         unsigned long align_offset;
1622 };
1623
1624 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1625 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1626
1627 /*
1628  * Search for an unmapped address range.
1629  *
1630  * We are looking for a range that:
1631  * - does not intersect with any VMA;
1632  * - is contained within the [low_limit, high_limit) interval;
1633  * - is at least the desired size.
1634  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1635  */
1636 static inline unsigned long
1637 vm_unmapped_area(struct vm_unmapped_area_info *info)
1638 {
1639         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1640                 return unmapped_area(info);
1641         else
1642                 return unmapped_area_topdown(info);
1643 }
1644
1645 /* truncate.c */
1646 extern void truncate_inode_pages(struct address_space *, loff_t);
1647 extern void truncate_inode_pages_range(struct address_space *,
1648                                        loff_t lstart, loff_t lend);
1649
1650 /* generic vm_area_ops exported for stackable file systems */
1651 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1652 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1653
1654 /* mm/page-writeback.c */
1655 int write_one_page(struct page *page, int wait);
1656 void task_dirty_inc(struct task_struct *tsk);
1657
1658 /* readahead.c */
1659 #define VM_MAX_READAHEAD        128     /* kbytes */
1660 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1661
1662 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1663                         pgoff_t offset, unsigned long nr_to_read);
1664
1665 void page_cache_sync_readahead(struct address_space *mapping,
1666                                struct file_ra_state *ra,
1667                                struct file *filp,
1668                                pgoff_t offset,
1669                                unsigned long size);
1670
1671 void page_cache_async_readahead(struct address_space *mapping,
1672                                 struct file_ra_state *ra,
1673                                 struct file *filp,
1674                                 struct page *pg,
1675                                 pgoff_t offset,
1676                                 unsigned long size);
1677
1678 unsigned long max_sane_readahead(unsigned long nr);
1679 unsigned long ra_submit(struct file_ra_state *ra,
1680                         struct address_space *mapping,
1681                         struct file *filp);
1682
1683 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1684 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1685
1686 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1687 extern int expand_downwards(struct vm_area_struct *vma,
1688                 unsigned long address);
1689 #if VM_GROWSUP
1690 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1691 #else
1692   #define expand_upwards(vma, address) do { } while (0)
1693 #endif
1694
1695 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1696 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1697 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1698                                              struct vm_area_struct **pprev);
1699
1700 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1701    NULL if none.  Assume start_addr < end_addr. */
1702 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1703 {
1704         struct vm_area_struct * vma = find_vma(mm,start_addr);
1705
1706         if (vma && end_addr <= vma->vm_start)
1707                 vma = NULL;
1708         return vma;
1709 }
1710
1711 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1712 {
1713         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1714 }
1715
1716 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1717 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1718                                 unsigned long vm_start, unsigned long vm_end)
1719 {
1720         struct vm_area_struct *vma = find_vma(mm, vm_start);
1721
1722         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1723                 vma = NULL;
1724
1725         return vma;
1726 }
1727
1728 #ifdef CONFIG_MMU
1729 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1730 #else
1731 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1732 {
1733         return __pgprot(0);
1734 }
1735 #endif
1736
1737 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1738 unsigned long change_prot_numa(struct vm_area_struct *vma,
1739                         unsigned long start, unsigned long end);
1740 #endif
1741
1742 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1743 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1744                         unsigned long pfn, unsigned long size, pgprot_t);
1745 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1746 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1747                         unsigned long pfn);
1748 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1749                         unsigned long pfn);
1750 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1751
1752
1753 struct page *follow_page_mask(struct vm_area_struct *vma,
1754                               unsigned long address, unsigned int foll_flags,
1755                               unsigned int *page_mask);
1756
1757 static inline struct page *follow_page(struct vm_area_struct *vma,
1758                 unsigned long address, unsigned int foll_flags)
1759 {
1760         unsigned int unused_page_mask;
1761         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1762 }
1763
1764 #define FOLL_WRITE      0x01    /* check pte is writable */
1765 #define FOLL_TOUCH      0x02    /* mark page accessed */
1766 #define FOLL_GET        0x04    /* do get_page on page */
1767 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1768 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1769 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1770                                  * and return without waiting upon it */
1771 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1772 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1773 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1774 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1775 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1776
1777 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1778                         void *data);
1779 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1780                                unsigned long size, pte_fn_t fn, void *data);
1781
1782 #ifdef CONFIG_PROC_FS
1783 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1784 #else
1785 static inline void vm_stat_account(struct mm_struct *mm,
1786                         unsigned long flags, struct file *file, long pages)
1787 {
1788         mm->total_vm += pages;
1789 }
1790 #endif /* CONFIG_PROC_FS */
1791
1792 #ifdef CONFIG_DEBUG_PAGEALLOC
1793 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1794 #ifdef CONFIG_HIBERNATION
1795 extern bool kernel_page_present(struct page *page);
1796 #endif /* CONFIG_HIBERNATION */
1797 #else
1798 static inline void
1799 kernel_map_pages(struct page *page, int numpages, int enable) {}
1800 #ifdef CONFIG_HIBERNATION
1801 static inline bool kernel_page_present(struct page *page) { return true; }
1802 #endif /* CONFIG_HIBERNATION */
1803 #endif
1804
1805 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1806 #ifdef  __HAVE_ARCH_GATE_AREA
1807 int in_gate_area_no_mm(unsigned long addr);
1808 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1809 #else
1810 int in_gate_area_no_mm(unsigned long addr);
1811 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1812 #endif  /* __HAVE_ARCH_GATE_AREA */
1813
1814 #ifdef CONFIG_SYSCTL
1815 extern int sysctl_drop_caches;
1816 int drop_caches_sysctl_handler(struct ctl_table *, int,
1817                                         void __user *, size_t *, loff_t *);
1818 #endif
1819
1820 unsigned long shrink_slab(struct shrink_control *shrink,
1821                           unsigned long nr_pages_scanned,
1822                           unsigned long lru_pages);
1823
1824 #ifndef CONFIG_MMU
1825 #define randomize_va_space 0
1826 #else
1827 extern int randomize_va_space;
1828 #endif
1829
1830 const char * arch_vma_name(struct vm_area_struct *vma);
1831 void print_vma_addr(char *prefix, unsigned long rip);
1832
1833 void sparse_mem_maps_populate_node(struct page **map_map,
1834                                    unsigned long pnum_begin,
1835                                    unsigned long pnum_end,
1836                                    unsigned long map_count,
1837                                    int nodeid);
1838
1839 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1840 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1841 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1842 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1843 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1844 void *vmemmap_alloc_block(unsigned long size, int node);
1845 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1846 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1847 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1848                                int node);
1849 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1850 void vmemmap_populate_print_last(void);
1851 #ifdef CONFIG_MEMORY_HOTPLUG
1852 void vmemmap_free(unsigned long start, unsigned long end);
1853 #endif
1854 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1855                                   unsigned long size);
1856
1857 enum mf_flags {
1858         MF_COUNT_INCREASED = 1 << 0,
1859         MF_ACTION_REQUIRED = 1 << 1,
1860         MF_MUST_KILL = 1 << 2,
1861         MF_SOFT_OFFLINE = 1 << 3,
1862 };
1863 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1864 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1865 extern int unpoison_memory(unsigned long pfn);
1866 extern int sysctl_memory_failure_early_kill;
1867 extern int sysctl_memory_failure_recovery;
1868 extern void shake_page(struct page *p, int access);
1869 extern atomic_long_t num_poisoned_pages;
1870 extern int soft_offline_page(struct page *page, int flags);
1871
1872 extern void dump_page(struct page *page);
1873
1874 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1875 extern void clear_huge_page(struct page *page,
1876                             unsigned long addr,
1877                             unsigned int pages_per_huge_page);
1878 extern void copy_user_huge_page(struct page *dst, struct page *src,
1879                                 unsigned long addr, struct vm_area_struct *vma,
1880                                 unsigned int pages_per_huge_page);
1881 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1882
1883 #ifdef CONFIG_DEBUG_PAGEALLOC
1884 extern unsigned int _debug_guardpage_minorder;
1885
1886 static inline unsigned int debug_guardpage_minorder(void)
1887 {
1888         return _debug_guardpage_minorder;
1889 }
1890
1891 static inline bool page_is_guard(struct page *page)
1892 {
1893         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1894 }
1895 #else
1896 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1897 static inline bool page_is_guard(struct page *page) { return false; }
1898 #endif /* CONFIG_DEBUG_PAGEALLOC */
1899
1900 #if MAX_NUMNODES > 1
1901 void __init setup_nr_node_ids(void);
1902 #else
1903 static inline void setup_nr_node_ids(void) {}
1904 #endif
1905
1906 #endif /* __KERNEL__ */
1907 #endif /* _LINUX_MM_H */