]> git.karo-electronics.de Git - karo-tx-linux.git/blob - include/linux/mm.h
Merge remote-tracking branch 'tip/auto-latest'
[karo-tx-linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30
31 static inline void set_max_mapnr(unsigned long limit)
32 {
33         max_mapnr = limit;
34 }
35 #else
36 static inline void set_max_mapnr(unsigned long limit) { }
37 #endif
38
39 extern unsigned long totalram_pages;
40 extern void * high_memory;
41 extern int page_cluster;
42
43 #ifdef CONFIG_SYSCTL
44 extern int sysctl_legacy_va_layout;
45 #else
46 #define sysctl_legacy_va_layout 0
47 #endif
48
49 #include <asm/page.h>
50 #include <asm/pgtable.h>
51 #include <asm/processor.h>
52
53 extern unsigned long sysctl_user_reserve_kbytes;
54 extern unsigned long sysctl_admin_reserve_kbytes;
55
56 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
58 /* to align the pointer to the (next) page boundary */
59 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
61 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
64 /*
65  * Linux kernel virtual memory manager primitives.
66  * The idea being to have a "virtual" mm in the same way
67  * we have a virtual fs - giving a cleaner interface to the
68  * mm details, and allowing different kinds of memory mappings
69  * (from shared memory to executable loading to arbitrary
70  * mmap() functions).
71  */
72
73 extern struct kmem_cache *vm_area_cachep;
74
75 #ifndef CONFIG_MMU
76 extern struct rb_root nommu_region_tree;
77 extern struct rw_semaphore nommu_region_sem;
78
79 extern unsigned int kobjsize(const void *objp);
80 #endif
81
82 /*
83  * vm_flags in vm_area_struct, see mm_types.h.
84  */
85 #define VM_NONE         0x00000000
86
87 #define VM_READ         0x00000001      /* currently active flags */
88 #define VM_WRITE        0x00000002
89 #define VM_EXEC         0x00000004
90 #define VM_SHARED       0x00000008
91
92 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
93 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
94 #define VM_MAYWRITE     0x00000020
95 #define VM_MAYEXEC      0x00000040
96 #define VM_MAYSHARE     0x00000080
97
98 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
99 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
100 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
101
102 #define VM_LOCKED       0x00002000
103 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
104
105                                         /* Used by sys_madvise() */
106 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
107 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
108
109 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
110 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
111 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
112 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
113 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
114 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
115 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
116 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
117
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
120 #else
121 # define VM_SOFTDIRTY   0
122 #endif
123
124 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
125 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
126 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
127 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
128
129 #if defined(CONFIG_X86)
130 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
131 #elif defined(CONFIG_PPC)
132 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
133 #elif defined(CONFIG_PARISC)
134 # define VM_GROWSUP     VM_ARCH_1
135 #elif defined(CONFIG_METAG)
136 # define VM_GROWSUP     VM_ARCH_1
137 #elif defined(CONFIG_IA64)
138 # define VM_GROWSUP     VM_ARCH_1
139 #elif !defined(CONFIG_MMU)
140 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
141 #endif
142
143 #ifndef VM_GROWSUP
144 # define VM_GROWSUP     VM_NONE
145 #endif
146
147 /* Bits set in the VMA until the stack is in its final location */
148 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
149
150 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
151 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152 #endif
153
154 #ifdef CONFIG_STACK_GROWSUP
155 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156 #else
157 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158 #endif
159
160 /*
161  * Special vmas that are non-mergable, non-mlock()able.
162  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
163  */
164 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
165
166 /*
167  * mapping from the currently active vm_flags protection bits (the
168  * low four bits) to a page protection mask..
169  */
170 extern pgprot_t protection_map[16];
171
172 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
173 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
174 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
175 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
176 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
177 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
178 #define FAULT_FLAG_TRIED        0x40    /* second try */
179 #define FAULT_FLAG_USER         0x80    /* The fault originated in userspace */
180
181 /*
182  * vm_fault is filled by the the pagefault handler and passed to the vma's
183  * ->fault function. The vma's ->fault is responsible for returning a bitmask
184  * of VM_FAULT_xxx flags that give details about how the fault was handled.
185  *
186  * pgoff should be used in favour of virtual_address, if possible. If pgoff
187  * is used, one may implement ->remap_pages to get nonlinear mapping support.
188  */
189 struct vm_fault {
190         unsigned int flags;             /* FAULT_FLAG_xxx flags */
191         pgoff_t pgoff;                  /* Logical page offset based on vma */
192         void __user *virtual_address;   /* Faulting virtual address */
193
194         struct page *page;              /* ->fault handlers should return a
195                                          * page here, unless VM_FAULT_NOPAGE
196                                          * is set (which is also implied by
197                                          * VM_FAULT_ERROR).
198                                          */
199 };
200
201 /*
202  * These are the virtual MM functions - opening of an area, closing and
203  * unmapping it (needed to keep files on disk up-to-date etc), pointer
204  * to the functions called when a no-page or a wp-page exception occurs. 
205  */
206 struct vm_operations_struct {
207         void (*open)(struct vm_area_struct * area);
208         void (*close)(struct vm_area_struct * area);
209         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
210
211         /* notification that a previously read-only page is about to become
212          * writable, if an error is returned it will cause a SIGBUS */
213         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
214
215         /* called by access_process_vm when get_user_pages() fails, typically
216          * for use by special VMAs that can switch between memory and hardware
217          */
218         int (*access)(struct vm_area_struct *vma, unsigned long addr,
219                       void *buf, int len, int write);
220 #ifdef CONFIG_NUMA
221         /*
222          * set_policy() op must add a reference to any non-NULL @new mempolicy
223          * to hold the policy upon return.  Caller should pass NULL @new to
224          * remove a policy and fall back to surrounding context--i.e. do not
225          * install a MPOL_DEFAULT policy, nor the task or system default
226          * mempolicy.
227          */
228         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
229
230         /*
231          * get_policy() op must add reference [mpol_get()] to any policy at
232          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
233          * in mm/mempolicy.c will do this automatically.
234          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237          * must return NULL--i.e., do not "fallback" to task or system default
238          * policy.
239          */
240         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241                                         unsigned long addr);
242         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243                 const nodemask_t *to, unsigned long flags);
244 #endif
245         /* called by sys_remap_file_pages() to populate non-linear mapping */
246         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247                            unsigned long size, pgoff_t pgoff);
248 };
249
250 struct mmu_gather;
251 struct inode;
252
253 #define page_private(page)              ((page)->private)
254 #define set_page_private(page, v)       ((page)->private = (v))
255
256 /* It's valid only if the page is free path or free_list */
257 static inline void set_freepage_migratetype(struct page *page, int migratetype)
258 {
259         page->index = migratetype;
260 }
261
262 /* It's valid only if the page is free path or free_list */
263 static inline int get_freepage_migratetype(struct page *page)
264 {
265         return page->index;
266 }
267
268 /*
269  * FIXME: take this include out, include page-flags.h in
270  * files which need it (119 of them)
271  */
272 #include <linux/page-flags.h>
273 #include <linux/huge_mm.h>
274
275 /*
276  * Methods to modify the page usage count.
277  *
278  * What counts for a page usage:
279  * - cache mapping   (page->mapping)
280  * - private data    (page->private)
281  * - page mapped in a task's page tables, each mapping
282  *   is counted separately
283  *
284  * Also, many kernel routines increase the page count before a critical
285  * routine so they can be sure the page doesn't go away from under them.
286  */
287
288 /*
289  * Drop a ref, return true if the refcount fell to zero (the page has no users)
290  */
291 static inline int put_page_testzero(struct page *page)
292 {
293         VM_BUG_ON(atomic_read(&page->_count) == 0);
294         return atomic_dec_and_test(&page->_count);
295 }
296
297 /*
298  * Try to grab a ref unless the page has a refcount of zero, return false if
299  * that is the case.
300  * This can be called when MMU is off so it must not access
301  * any of the virtual mappings.
302  */
303 static inline int get_page_unless_zero(struct page *page)
304 {
305         return atomic_inc_not_zero(&page->_count);
306 }
307
308 /*
309  * Try to drop a ref unless the page has a refcount of one, return false if
310  * that is the case.
311  * This is to make sure that the refcount won't become zero after this drop.
312  * This can be called when MMU is off so it must not access
313  * any of the virtual mappings.
314  */
315 static inline int put_page_unless_one(struct page *page)
316 {
317         return atomic_add_unless(&page->_count, -1, 1);
318 }
319
320 extern int page_is_ram(unsigned long pfn);
321
322 /* Support for virtually mapped pages */
323 struct page *vmalloc_to_page(const void *addr);
324 unsigned long vmalloc_to_pfn(const void *addr);
325
326 /*
327  * Determine if an address is within the vmalloc range
328  *
329  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
330  * is no special casing required.
331  */
332 static inline int is_vmalloc_addr(const void *x)
333 {
334 #ifdef CONFIG_MMU
335         unsigned long addr = (unsigned long)x;
336
337         return addr >= VMALLOC_START && addr < VMALLOC_END;
338 #else
339         return 0;
340 #endif
341 }
342 #ifdef CONFIG_MMU
343 extern int is_vmalloc_or_module_addr(const void *x);
344 #else
345 static inline int is_vmalloc_or_module_addr(const void *x)
346 {
347         return 0;
348 }
349 #endif
350
351 static inline void compound_lock(struct page *page)
352 {
353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
354         VM_BUG_ON(PageSlab(page));
355         bit_spin_lock(PG_compound_lock, &page->flags);
356 #endif
357 }
358
359 static inline void compound_unlock(struct page *page)
360 {
361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
362         VM_BUG_ON(PageSlab(page));
363         bit_spin_unlock(PG_compound_lock, &page->flags);
364 #endif
365 }
366
367 static inline unsigned long compound_lock_irqsave(struct page *page)
368 {
369         unsigned long uninitialized_var(flags);
370 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
371         local_irq_save(flags);
372         compound_lock(page);
373 #endif
374         return flags;
375 }
376
377 static inline void compound_unlock_irqrestore(struct page *page,
378                                               unsigned long flags)
379 {
380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
381         compound_unlock(page);
382         local_irq_restore(flags);
383 #endif
384 }
385
386 static inline struct page *compound_head(struct page *page)
387 {
388         if (unlikely(PageTail(page)))
389                 return page->first_page;
390         return page;
391 }
392
393 /*
394  * The atomic page->_mapcount, starts from -1: so that transitions
395  * both from it and to it can be tracked, using atomic_inc_and_test
396  * and atomic_add_negative(-1).
397  */
398 static inline void page_mapcount_reset(struct page *page)
399 {
400         atomic_set(&(page)->_mapcount, -1);
401 }
402
403 static inline int page_mapcount(struct page *page)
404 {
405         return atomic_read(&(page)->_mapcount) + 1;
406 }
407
408 static inline int page_count(struct page *page)
409 {
410         return atomic_read(&compound_head(page)->_count);
411 }
412
413 static inline void get_huge_page_tail(struct page *page)
414 {
415         /*
416          * __split_huge_page_refcount() cannot run
417          * from under us.
418          */
419         VM_BUG_ON(page_mapcount(page) < 0);
420         VM_BUG_ON(atomic_read(&page->_count) != 0);
421         atomic_inc(&page->_mapcount);
422 }
423
424 extern bool __get_page_tail(struct page *page);
425
426 static inline void get_page(struct page *page)
427 {
428         if (unlikely(PageTail(page)))
429                 if (likely(__get_page_tail(page)))
430                         return;
431         /*
432          * Getting a normal page or the head of a compound page
433          * requires to already have an elevated page->_count.
434          */
435         VM_BUG_ON(atomic_read(&page->_count) <= 0);
436         atomic_inc(&page->_count);
437 }
438
439 static inline struct page *virt_to_head_page(const void *x)
440 {
441         struct page *page = virt_to_page(x);
442         return compound_head(page);
443 }
444
445 /*
446  * Setup the page count before being freed into the page allocator for
447  * the first time (boot or memory hotplug)
448  */
449 static inline void init_page_count(struct page *page)
450 {
451         atomic_set(&page->_count, 1);
452 }
453
454 /*
455  * PageBuddy() indicate that the page is free and in the buddy system
456  * (see mm/page_alloc.c).
457  *
458  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
459  * -2 so that an underflow of the page_mapcount() won't be mistaken
460  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
461  * efficiently by most CPU architectures.
462  */
463 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
464
465 static inline int PageBuddy(struct page *page)
466 {
467         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
468 }
469
470 static inline void __SetPageBuddy(struct page *page)
471 {
472         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
473         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
474 }
475
476 static inline void __ClearPageBuddy(struct page *page)
477 {
478         VM_BUG_ON(!PageBuddy(page));
479         atomic_set(&page->_mapcount, -1);
480 }
481
482 void put_page(struct page *page);
483 void put_pages_list(struct list_head *pages);
484
485 void split_page(struct page *page, unsigned int order);
486 int split_free_page(struct page *page);
487
488 /*
489  * Compound pages have a destructor function.  Provide a
490  * prototype for that function and accessor functions.
491  * These are _only_ valid on the head of a PG_compound page.
492  */
493 typedef void compound_page_dtor(struct page *);
494
495 static inline void set_compound_page_dtor(struct page *page,
496                                                 compound_page_dtor *dtor)
497 {
498         page[1].lru.next = (void *)dtor;
499 }
500
501 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
502 {
503         return (compound_page_dtor *)page[1].lru.next;
504 }
505
506 static inline int compound_order(struct page *page)
507 {
508         if (!PageHead(page))
509                 return 0;
510         return (unsigned long)page[1].lru.prev;
511 }
512
513 static inline void set_compound_order(struct page *page, unsigned long order)
514 {
515         page[1].lru.prev = (void *)order;
516 }
517
518 #ifdef CONFIG_MMU
519 /*
520  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
521  * servicing faults for write access.  In the normal case, do always want
522  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
523  * that do not have writing enabled, when used by access_process_vm.
524  */
525 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
526 {
527         if (likely(vma->vm_flags & VM_WRITE))
528                 pte = pte_mkwrite(pte);
529         return pte;
530 }
531 #endif
532
533 /*
534  * Multiple processes may "see" the same page. E.g. for untouched
535  * mappings of /dev/null, all processes see the same page full of
536  * zeroes, and text pages of executables and shared libraries have
537  * only one copy in memory, at most, normally.
538  *
539  * For the non-reserved pages, page_count(page) denotes a reference count.
540  *   page_count() == 0 means the page is free. page->lru is then used for
541  *   freelist management in the buddy allocator.
542  *   page_count() > 0  means the page has been allocated.
543  *
544  * Pages are allocated by the slab allocator in order to provide memory
545  * to kmalloc and kmem_cache_alloc. In this case, the management of the
546  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
547  * unless a particular usage is carefully commented. (the responsibility of
548  * freeing the kmalloc memory is the caller's, of course).
549  *
550  * A page may be used by anyone else who does a __get_free_page().
551  * In this case, page_count still tracks the references, and should only
552  * be used through the normal accessor functions. The top bits of page->flags
553  * and page->virtual store page management information, but all other fields
554  * are unused and could be used privately, carefully. The management of this
555  * page is the responsibility of the one who allocated it, and those who have
556  * subsequently been given references to it.
557  *
558  * The other pages (we may call them "pagecache pages") are completely
559  * managed by the Linux memory manager: I/O, buffers, swapping etc.
560  * The following discussion applies only to them.
561  *
562  * A pagecache page contains an opaque `private' member, which belongs to the
563  * page's address_space. Usually, this is the address of a circular list of
564  * the page's disk buffers. PG_private must be set to tell the VM to call
565  * into the filesystem to release these pages.
566  *
567  * A page may belong to an inode's memory mapping. In this case, page->mapping
568  * is the pointer to the inode, and page->index is the file offset of the page,
569  * in units of PAGE_CACHE_SIZE.
570  *
571  * If pagecache pages are not associated with an inode, they are said to be
572  * anonymous pages. These may become associated with the swapcache, and in that
573  * case PG_swapcache is set, and page->private is an offset into the swapcache.
574  *
575  * In either case (swapcache or inode backed), the pagecache itself holds one
576  * reference to the page. Setting PG_private should also increment the
577  * refcount. The each user mapping also has a reference to the page.
578  *
579  * The pagecache pages are stored in a per-mapping radix tree, which is
580  * rooted at mapping->page_tree, and indexed by offset.
581  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
582  * lists, we instead now tag pages as dirty/writeback in the radix tree.
583  *
584  * All pagecache pages may be subject to I/O:
585  * - inode pages may need to be read from disk,
586  * - inode pages which have been modified and are MAP_SHARED may need
587  *   to be written back to the inode on disk,
588  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
589  *   modified may need to be swapped out to swap space and (later) to be read
590  *   back into memory.
591  */
592
593 /*
594  * The zone field is never updated after free_area_init_core()
595  * sets it, so none of the operations on it need to be atomic.
596  */
597
598 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
599 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
600 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
601 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
602 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
603
604 /*
605  * Define the bit shifts to access each section.  For non-existent
606  * sections we define the shift as 0; that plus a 0 mask ensures
607  * the compiler will optimise away reference to them.
608  */
609 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
610 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
611 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
612 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
613
614 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
615 #ifdef NODE_NOT_IN_PAGE_FLAGS
616 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
617 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
618                                                 SECTIONS_PGOFF : ZONES_PGOFF)
619 #else
620 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
622                                                 NODES_PGOFF : ZONES_PGOFF)
623 #endif
624
625 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
626
627 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
628 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
629 #endif
630
631 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
632 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
633 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
634 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_WIDTH) - 1)
635 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
636
637 static inline enum zone_type page_zonenum(const struct page *page)
638 {
639         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
640 }
641
642 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
643 #define SECTION_IN_PAGE_FLAGS
644 #endif
645
646 /*
647  * The identification function is mainly used by the buddy allocator for
648  * determining if two pages could be buddies. We are not really identifying
649  * the zone since we could be using the section number id if we do not have
650  * node id available in page flags.
651  * We only guarantee that it will return the same value for two combinable
652  * pages in a zone.
653  */
654 static inline int page_zone_id(struct page *page)
655 {
656         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
657 }
658
659 static inline int zone_to_nid(struct zone *zone)
660 {
661 #ifdef CONFIG_NUMA
662         return zone->node;
663 #else
664         return 0;
665 #endif
666 }
667
668 #ifdef NODE_NOT_IN_PAGE_FLAGS
669 extern int page_to_nid(const struct page *page);
670 #else
671 static inline int page_to_nid(const struct page *page)
672 {
673         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
674 }
675 #endif
676
677 #ifdef CONFIG_NUMA_BALANCING
678 static inline int cpu_pid_to_cpupid(int cpu, int pid)
679 {
680         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
681 }
682
683 static inline int cpupid_to_pid(int cpupid)
684 {
685         return cpupid & LAST__PID_MASK;
686 }
687
688 static inline int cpupid_to_cpu(int cpupid)
689 {
690         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
691 }
692
693 static inline int cpupid_to_nid(int cpupid)
694 {
695         return cpu_to_node(cpupid_to_cpu(cpupid));
696 }
697
698 static inline bool cpupid_pid_unset(int cpupid)
699 {
700         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
701 }
702
703 static inline bool cpupid_cpu_unset(int cpupid)
704 {
705         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
706 }
707
708 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
709 {
710         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
711 }
712
713 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
714 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
715 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
716 {
717         return xchg(&page->_last_cpupid, cpupid);
718 }
719
720 static inline int page_cpupid_last(struct page *page)
721 {
722         return page->_last_cpupid;
723 }
724 static inline void page_cpupid_reset_last(struct page *page)
725 {
726         page->_last_cpupid = -1;
727 }
728 #else
729 static inline int page_cpupid_last(struct page *page)
730 {
731         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
732 }
733
734 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
735
736 static inline void page_cpupid_reset_last(struct page *page)
737 {
738         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
739
740         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
741         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
742 }
743 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
744 #else /* !CONFIG_NUMA_BALANCING */
745 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
746 {
747         return page_to_nid(page); /* XXX */
748 }
749
750 static inline int page_cpupid_last(struct page *page)
751 {
752         return page_to_nid(page); /* XXX */
753 }
754
755 static inline int cpupid_to_nid(int cpupid)
756 {
757         return -1;
758 }
759
760 static inline int cpupid_to_pid(int cpupid)
761 {
762         return -1;
763 }
764
765 static inline int cpupid_to_cpu(int cpupid)
766 {
767         return -1;
768 }
769
770 static inline int cpu_pid_to_cpupid(int nid, int pid)
771 {
772         return -1;
773 }
774
775 static inline bool cpupid_pid_unset(int cpupid)
776 {
777         return 1;
778 }
779
780 static inline void page_cpupid_reset_last(struct page *page)
781 {
782 }
783
784 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
785 {
786         return false;
787 }
788 #endif /* CONFIG_NUMA_BALANCING */
789
790 static inline struct zone *page_zone(const struct page *page)
791 {
792         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
793 }
794
795 #ifdef SECTION_IN_PAGE_FLAGS
796 static inline void set_page_section(struct page *page, unsigned long section)
797 {
798         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
799         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
800 }
801
802 static inline unsigned long page_to_section(const struct page *page)
803 {
804         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
805 }
806 #endif
807
808 static inline void set_page_zone(struct page *page, enum zone_type zone)
809 {
810         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
811         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
812 }
813
814 static inline void set_page_node(struct page *page, unsigned long node)
815 {
816         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
817         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
818 }
819
820 static inline void set_page_links(struct page *page, enum zone_type zone,
821         unsigned long node, unsigned long pfn)
822 {
823         set_page_zone(page, zone);
824         set_page_node(page, node);
825 #ifdef SECTION_IN_PAGE_FLAGS
826         set_page_section(page, pfn_to_section_nr(pfn));
827 #endif
828 }
829
830 /*
831  * Some inline functions in vmstat.h depend on page_zone()
832  */
833 #include <linux/vmstat.h>
834
835 static __always_inline void *lowmem_page_address(const struct page *page)
836 {
837         return __va(PFN_PHYS(page_to_pfn(page)));
838 }
839
840 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
841 #define HASHED_PAGE_VIRTUAL
842 #endif
843
844 #if defined(WANT_PAGE_VIRTUAL)
845 #define page_address(page) ((page)->virtual)
846 #define set_page_address(page, address)                 \
847         do {                                            \
848                 (page)->virtual = (address);            \
849         } while(0)
850 #define page_address_init()  do { } while(0)
851 #endif
852
853 #if defined(HASHED_PAGE_VIRTUAL)
854 void *page_address(const struct page *page);
855 void set_page_address(struct page *page, void *virtual);
856 void page_address_init(void);
857 #endif
858
859 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
860 #define page_address(page) lowmem_page_address(page)
861 #define set_page_address(page, address)  do { } while(0)
862 #define page_address_init()  do { } while(0)
863 #endif
864
865 /*
866  * On an anonymous page mapped into a user virtual memory area,
867  * page->mapping points to its anon_vma, not to a struct address_space;
868  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
869  *
870  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
871  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
872  * and then page->mapping points, not to an anon_vma, but to a private
873  * structure which KSM associates with that merged page.  See ksm.h.
874  *
875  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
876  *
877  * Please note that, confusingly, "page_mapping" refers to the inode
878  * address_space which maps the page from disk; whereas "page_mapped"
879  * refers to user virtual address space into which the page is mapped.
880  */
881 #define PAGE_MAPPING_ANON       1
882 #define PAGE_MAPPING_KSM        2
883 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
884
885 extern struct address_space *page_mapping(struct page *page);
886
887 /* Neutral page->mapping pointer to address_space or anon_vma or other */
888 static inline void *page_rmapping(struct page *page)
889 {
890         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
891 }
892
893 extern struct address_space *__page_file_mapping(struct page *);
894
895 static inline
896 struct address_space *page_file_mapping(struct page *page)
897 {
898         if (unlikely(PageSwapCache(page)))
899                 return __page_file_mapping(page);
900
901         return page->mapping;
902 }
903
904 static inline int PageAnon(struct page *page)
905 {
906         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
907 }
908
909 /*
910  * Return the pagecache index of the passed page.  Regular pagecache pages
911  * use ->index whereas swapcache pages use ->private
912  */
913 static inline pgoff_t page_index(struct page *page)
914 {
915         if (unlikely(PageSwapCache(page)))
916                 return page_private(page);
917         return page->index;
918 }
919
920 extern pgoff_t __page_file_index(struct page *page);
921
922 /*
923  * Return the file index of the page. Regular pagecache pages use ->index
924  * whereas swapcache pages use swp_offset(->private)
925  */
926 static inline pgoff_t page_file_index(struct page *page)
927 {
928         if (unlikely(PageSwapCache(page)))
929                 return __page_file_index(page);
930
931         return page->index;
932 }
933
934 /*
935  * Return true if this page is mapped into pagetables.
936  */
937 static inline int page_mapped(struct page *page)
938 {
939         return atomic_read(&(page)->_mapcount) >= 0;
940 }
941
942 /*
943  * Different kinds of faults, as returned by handle_mm_fault().
944  * Used to decide whether a process gets delivered SIGBUS or
945  * just gets major/minor fault counters bumped up.
946  */
947
948 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
949
950 #define VM_FAULT_OOM    0x0001
951 #define VM_FAULT_SIGBUS 0x0002
952 #define VM_FAULT_MAJOR  0x0004
953 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
954 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
955 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
956
957 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
958 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
959 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
960 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
961
962 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
963
964 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
965                          VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
966
967 /* Encode hstate index for a hwpoisoned large page */
968 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
969 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
970
971 /*
972  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
973  */
974 extern void pagefault_out_of_memory(void);
975
976 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
977
978 /*
979  * Flags passed to show_mem() and show_free_areas() to suppress output in
980  * various contexts.
981  */
982 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
983 #define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
984
985 extern void show_free_areas(unsigned int flags);
986 extern bool skip_free_areas_node(unsigned int flags, int nid);
987
988 int shmem_zero_setup(struct vm_area_struct *);
989
990 extern int can_do_mlock(void);
991 extern int user_shm_lock(size_t, struct user_struct *);
992 extern void user_shm_unlock(size_t, struct user_struct *);
993
994 /*
995  * Parameter block passed down to zap_pte_range in exceptional cases.
996  */
997 struct zap_details {
998         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
999         struct address_space *check_mapping;    /* Check page->mapping if set */
1000         pgoff_t first_index;                    /* Lowest page->index to unmap */
1001         pgoff_t last_index;                     /* Highest page->index to unmap */
1002 };
1003
1004 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1005                 pte_t pte);
1006
1007 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1008                 unsigned long size);
1009 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1010                 unsigned long size, struct zap_details *);
1011 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1012                 unsigned long start, unsigned long end);
1013
1014 /**
1015  * mm_walk - callbacks for walk_page_range
1016  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1017  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1018  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1019  *             this handler is required to be able to handle
1020  *             pmd_trans_huge() pmds.  They may simply choose to
1021  *             split_huge_page() instead of handling it explicitly.
1022  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1023  * @pte_hole: if set, called for each hole at all levels
1024  * @hugetlb_entry: if set, called for each hugetlb entry
1025  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1026  *                            is used.
1027  *
1028  * (see walk_page_range for more details)
1029  */
1030 struct mm_walk {
1031         int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1032                          unsigned long next, struct mm_walk *walk);
1033         int (*pud_entry)(pud_t *pud, unsigned long addr,
1034                          unsigned long next, struct mm_walk *walk);
1035         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1036                          unsigned long next, struct mm_walk *walk);
1037         int (*pte_entry)(pte_t *pte, unsigned long addr,
1038                          unsigned long next, struct mm_walk *walk);
1039         int (*pte_hole)(unsigned long addr, unsigned long next,
1040                         struct mm_walk *walk);
1041         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1042                              unsigned long addr, unsigned long next,
1043                              struct mm_walk *walk);
1044         struct mm_struct *mm;
1045         void *private;
1046 };
1047
1048 int walk_page_range(unsigned long addr, unsigned long end,
1049                 struct mm_walk *walk);
1050 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1051                 unsigned long end, unsigned long floor, unsigned long ceiling);
1052 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1053                         struct vm_area_struct *vma);
1054 void unmap_mapping_range(struct address_space *mapping,
1055                 loff_t const holebegin, loff_t const holelen, int even_cows);
1056 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1057         unsigned long *pfn);
1058 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1059                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1060 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1061                         void *buf, int len, int write);
1062
1063 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1064                 loff_t const holebegin, loff_t const holelen)
1065 {
1066         unmap_mapping_range(mapping, holebegin, holelen, 0);
1067 }
1068
1069 extern void truncate_pagecache(struct inode *inode, loff_t new);
1070 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1071 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1072 int truncate_inode_page(struct address_space *mapping, struct page *page);
1073 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1074 int invalidate_inode_page(struct page *page);
1075
1076 #ifdef CONFIG_MMU
1077 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1078                         unsigned long address, unsigned int flags);
1079 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1080                             unsigned long address, unsigned int fault_flags);
1081 #else
1082 static inline int handle_mm_fault(struct mm_struct *mm,
1083                         struct vm_area_struct *vma, unsigned long address,
1084                         unsigned int flags)
1085 {
1086         /* should never happen if there's no MMU */
1087         BUG();
1088         return VM_FAULT_SIGBUS;
1089 }
1090 static inline int fixup_user_fault(struct task_struct *tsk,
1091                 struct mm_struct *mm, unsigned long address,
1092                 unsigned int fault_flags)
1093 {
1094         /* should never happen if there's no MMU */
1095         BUG();
1096         return -EFAULT;
1097 }
1098 #endif
1099
1100 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1101 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1102                 void *buf, int len, int write);
1103
1104 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1105                       unsigned long start, unsigned long nr_pages,
1106                       unsigned int foll_flags, struct page **pages,
1107                       struct vm_area_struct **vmas, int *nonblocking);
1108 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1109                     unsigned long start, unsigned long nr_pages,
1110                     int write, int force, struct page **pages,
1111                     struct vm_area_struct **vmas);
1112 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1113                         struct page **pages);
1114 struct kvec;
1115 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1116                         struct page **pages);
1117 int get_kernel_page(unsigned long start, int write, struct page **pages);
1118 struct page *get_dump_page(unsigned long addr);
1119
1120 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1121 extern void do_invalidatepage(struct page *page, unsigned int offset,
1122                               unsigned int length);
1123
1124 int __set_page_dirty_nobuffers(struct page *page);
1125 int __set_page_dirty_no_writeback(struct page *page);
1126 int redirty_page_for_writepage(struct writeback_control *wbc,
1127                                 struct page *page);
1128 void account_page_dirtied(struct page *page, struct address_space *mapping);
1129 void account_page_writeback(struct page *page);
1130 int set_page_dirty(struct page *page);
1131 int set_page_dirty_lock(struct page *page);
1132 int clear_page_dirty_for_io(struct page *page);
1133
1134 /* Is the vma a continuation of the stack vma above it? */
1135 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1136 {
1137         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1138 }
1139
1140 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1141                                              unsigned long addr)
1142 {
1143         return (vma->vm_flags & VM_GROWSDOWN) &&
1144                 (vma->vm_start == addr) &&
1145                 !vma_growsdown(vma->vm_prev, addr);
1146 }
1147
1148 /* Is the vma a continuation of the stack vma below it? */
1149 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1150 {
1151         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1152 }
1153
1154 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1155                                            unsigned long addr)
1156 {
1157         return (vma->vm_flags & VM_GROWSUP) &&
1158                 (vma->vm_end == addr) &&
1159                 !vma_growsup(vma->vm_next, addr);
1160 }
1161
1162 extern pid_t
1163 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1164
1165 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1166                 unsigned long old_addr, struct vm_area_struct *new_vma,
1167                 unsigned long new_addr, unsigned long len,
1168                 bool need_rmap_locks);
1169 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1170                               unsigned long end, pgprot_t newprot,
1171                               int dirty_accountable, int prot_numa);
1172 extern int mprotect_fixup(struct vm_area_struct *vma,
1173                           struct vm_area_struct **pprev, unsigned long start,
1174                           unsigned long end, unsigned long newflags);
1175
1176 /*
1177  * doesn't attempt to fault and will return short.
1178  */
1179 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1180                           struct page **pages);
1181 /*
1182  * per-process(per-mm_struct) statistics.
1183  */
1184 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1185 {
1186         long val = atomic_long_read(&mm->rss_stat.count[member]);
1187
1188 #ifdef SPLIT_RSS_COUNTING
1189         /*
1190          * counter is updated in asynchronous manner and may go to minus.
1191          * But it's never be expected number for users.
1192          */
1193         if (val < 0)
1194                 val = 0;
1195 #endif
1196         return (unsigned long)val;
1197 }
1198
1199 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1200 {
1201         atomic_long_add(value, &mm->rss_stat.count[member]);
1202 }
1203
1204 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1205 {
1206         atomic_long_inc(&mm->rss_stat.count[member]);
1207 }
1208
1209 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1210 {
1211         atomic_long_dec(&mm->rss_stat.count[member]);
1212 }
1213
1214 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1215 {
1216         return get_mm_counter(mm, MM_FILEPAGES) +
1217                 get_mm_counter(mm, MM_ANONPAGES);
1218 }
1219
1220 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1221 {
1222         return max(mm->hiwater_rss, get_mm_rss(mm));
1223 }
1224
1225 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1226 {
1227         return max(mm->hiwater_vm, mm->total_vm);
1228 }
1229
1230 static inline void update_hiwater_rss(struct mm_struct *mm)
1231 {
1232         unsigned long _rss = get_mm_rss(mm);
1233
1234         if ((mm)->hiwater_rss < _rss)
1235                 (mm)->hiwater_rss = _rss;
1236 }
1237
1238 static inline void update_hiwater_vm(struct mm_struct *mm)
1239 {
1240         if (mm->hiwater_vm < mm->total_vm)
1241                 mm->hiwater_vm = mm->total_vm;
1242 }
1243
1244 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1245                                          struct mm_struct *mm)
1246 {
1247         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1248
1249         if (*maxrss < hiwater_rss)
1250                 *maxrss = hiwater_rss;
1251 }
1252
1253 #if defined(SPLIT_RSS_COUNTING)
1254 void sync_mm_rss(struct mm_struct *mm);
1255 #else
1256 static inline void sync_mm_rss(struct mm_struct *mm)
1257 {
1258 }
1259 #endif
1260
1261 int vma_wants_writenotify(struct vm_area_struct *vma);
1262
1263 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1264                                spinlock_t **ptl);
1265 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1266                                     spinlock_t **ptl)
1267 {
1268         pte_t *ptep;
1269         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1270         return ptep;
1271 }
1272
1273 #ifdef __PAGETABLE_PUD_FOLDED
1274 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1275                                                 unsigned long address)
1276 {
1277         return 0;
1278 }
1279 #else
1280 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1281 #endif
1282
1283 #ifdef __PAGETABLE_PMD_FOLDED
1284 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1285                                                 unsigned long address)
1286 {
1287         return 0;
1288 }
1289 #else
1290 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1291 #endif
1292
1293 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1294                 pmd_t *pmd, unsigned long address);
1295 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1296
1297 /*
1298  * The following ifdef needed to get the 4level-fixup.h header to work.
1299  * Remove it when 4level-fixup.h has been removed.
1300  */
1301 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1302 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1303 {
1304         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1305                 NULL: pud_offset(pgd, address);
1306 }
1307
1308 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1309 {
1310         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1311                 NULL: pmd_offset(pud, address);
1312 }
1313 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1314
1315 #if USE_SPLIT_PTLOCKS
1316 /*
1317  * We tuck a spinlock to guard each pagetable page into its struct page,
1318  * at page->private, with BUILD_BUG_ON to make sure that this will not
1319  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1320  * When freeing, reset page->mapping so free_pages_check won't complain.
1321  */
1322 #define __pte_lockptr(page)     &((page)->ptl)
1323 #define pte_lock_init(_page)    do {                                    \
1324         spin_lock_init(__pte_lockptr(_page));                           \
1325 } while (0)
1326 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1327 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1328 #else   /* !USE_SPLIT_PTLOCKS */
1329 /*
1330  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1331  */
1332 #define pte_lock_init(page)     do {} while (0)
1333 #define pte_lock_deinit(page)   do {} while (0)
1334 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1335 #endif /* USE_SPLIT_PTLOCKS */
1336
1337 static inline void pgtable_page_ctor(struct page *page)
1338 {
1339         pte_lock_init(page);
1340         inc_zone_page_state(page, NR_PAGETABLE);
1341 }
1342
1343 static inline void pgtable_page_dtor(struct page *page)
1344 {
1345         pte_lock_deinit(page);
1346         dec_zone_page_state(page, NR_PAGETABLE);
1347 }
1348
1349 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1350 ({                                                      \
1351         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1352         pte_t *__pte = pte_offset_map(pmd, address);    \
1353         *(ptlp) = __ptl;                                \
1354         spin_lock(__ptl);                               \
1355         __pte;                                          \
1356 })
1357
1358 #define pte_unmap_unlock(pte, ptl)      do {            \
1359         spin_unlock(ptl);                               \
1360         pte_unmap(pte);                                 \
1361 } while (0)
1362
1363 #define pte_alloc_map(mm, vma, pmd, address)                            \
1364         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1365                                                         pmd, address))? \
1366          NULL: pte_offset_map(pmd, address))
1367
1368 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1369         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1370                                                         pmd, address))? \
1371                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1372
1373 #define pte_alloc_kernel(pmd, address)                  \
1374         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1375                 NULL: pte_offset_kernel(pmd, address))
1376
1377 extern void free_area_init(unsigned long * zones_size);
1378 extern void free_area_init_node(int nid, unsigned long * zones_size,
1379                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1380 extern void free_initmem(void);
1381
1382 /*
1383  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1384  * into the buddy system. The freed pages will be poisoned with pattern
1385  * "poison" if it's within range [0, UCHAR_MAX].
1386  * Return pages freed into the buddy system.
1387  */
1388 extern unsigned long free_reserved_area(void *start, void *end,
1389                                         int poison, char *s);
1390
1391 #ifdef  CONFIG_HIGHMEM
1392 /*
1393  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1394  * and totalram_pages.
1395  */
1396 extern void free_highmem_page(struct page *page);
1397 #endif
1398
1399 extern void adjust_managed_page_count(struct page *page, long count);
1400 extern void mem_init_print_info(const char *str);
1401
1402 /* Free the reserved page into the buddy system, so it gets managed. */
1403 static inline void __free_reserved_page(struct page *page)
1404 {
1405         ClearPageReserved(page);
1406         init_page_count(page);
1407         __free_page(page);
1408 }
1409
1410 static inline void free_reserved_page(struct page *page)
1411 {
1412         __free_reserved_page(page);
1413         adjust_managed_page_count(page, 1);
1414 }
1415
1416 static inline void mark_page_reserved(struct page *page)
1417 {
1418         SetPageReserved(page);
1419         adjust_managed_page_count(page, -1);
1420 }
1421
1422 /*
1423  * Default method to free all the __init memory into the buddy system.
1424  * The freed pages will be poisoned with pattern "poison" if it's within
1425  * range [0, UCHAR_MAX].
1426  * Return pages freed into the buddy system.
1427  */
1428 static inline unsigned long free_initmem_default(int poison)
1429 {
1430         extern char __init_begin[], __init_end[];
1431
1432         return free_reserved_area(&__init_begin, &__init_end,
1433                                   poison, "unused kernel");
1434 }
1435
1436 static inline unsigned long get_num_physpages(void)
1437 {
1438         int nid;
1439         unsigned long phys_pages = 0;
1440
1441         for_each_online_node(nid)
1442                 phys_pages += node_present_pages(nid);
1443
1444         return phys_pages;
1445 }
1446
1447 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1448 /*
1449  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1450  * zones, allocate the backing mem_map and account for memory holes in a more
1451  * architecture independent manner. This is a substitute for creating the
1452  * zone_sizes[] and zholes_size[] arrays and passing them to
1453  * free_area_init_node()
1454  *
1455  * An architecture is expected to register range of page frames backed by
1456  * physical memory with memblock_add[_node]() before calling
1457  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1458  * usage, an architecture is expected to do something like
1459  *
1460  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1461  *                                                       max_highmem_pfn};
1462  * for_each_valid_physical_page_range()
1463  *      memblock_add_node(base, size, nid)
1464  * free_area_init_nodes(max_zone_pfns);
1465  *
1466  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1467  * registered physical page range.  Similarly
1468  * sparse_memory_present_with_active_regions() calls memory_present() for
1469  * each range when SPARSEMEM is enabled.
1470  *
1471  * See mm/page_alloc.c for more information on each function exposed by
1472  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1473  */
1474 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1475 unsigned long node_map_pfn_alignment(void);
1476 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1477                                                 unsigned long end_pfn);
1478 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1479                                                 unsigned long end_pfn);
1480 extern void get_pfn_range_for_nid(unsigned int nid,
1481                         unsigned long *start_pfn, unsigned long *end_pfn);
1482 extern unsigned long find_min_pfn_with_active_regions(void);
1483 extern void free_bootmem_with_active_regions(int nid,
1484                                                 unsigned long max_low_pfn);
1485 extern void sparse_memory_present_with_active_regions(int nid);
1486
1487 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1488
1489 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1490     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1491 static inline int __early_pfn_to_nid(unsigned long pfn)
1492 {
1493         return 0;
1494 }
1495 #else
1496 /* please see mm/page_alloc.c */
1497 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1498 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1499 /* there is a per-arch backend function. */
1500 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1501 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1502 #endif
1503
1504 extern void set_dma_reserve(unsigned long new_dma_reserve);
1505 extern void memmap_init_zone(unsigned long, int, unsigned long,
1506                                 unsigned long, enum memmap_context);
1507 extern void setup_per_zone_wmarks(void);
1508 extern int __meminit init_per_zone_wmark_min(void);
1509 extern void mem_init(void);
1510 extern void __init mmap_init(void);
1511 extern void show_mem(unsigned int flags);
1512 extern void si_meminfo(struct sysinfo * val);
1513 extern void si_meminfo_node(struct sysinfo *val, int nid);
1514
1515 extern __printf(3, 4)
1516 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1517
1518 extern void setup_per_cpu_pageset(void);
1519
1520 extern void zone_pcp_update(struct zone *zone);
1521 extern void zone_pcp_reset(struct zone *zone);
1522
1523 /* page_alloc.c */
1524 extern int min_free_kbytes;
1525
1526 /* nommu.c */
1527 extern atomic_long_t mmap_pages_allocated;
1528 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1529
1530 /* interval_tree.c */
1531 void vma_interval_tree_insert(struct vm_area_struct *node,
1532                               struct rb_root *root);
1533 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1534                                     struct vm_area_struct *prev,
1535                                     struct rb_root *root);
1536 void vma_interval_tree_remove(struct vm_area_struct *node,
1537                               struct rb_root *root);
1538 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1539                                 unsigned long start, unsigned long last);
1540 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1541                                 unsigned long start, unsigned long last);
1542
1543 #define vma_interval_tree_foreach(vma, root, start, last)               \
1544         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1545              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1546
1547 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1548                                         struct list_head *list)
1549 {
1550         list_add_tail(&vma->shared.nonlinear, list);
1551 }
1552
1553 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1554                                    struct rb_root *root);
1555 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1556                                    struct rb_root *root);
1557 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1558         struct rb_root *root, unsigned long start, unsigned long last);
1559 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1560         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1561 #ifdef CONFIG_DEBUG_VM_RB
1562 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1563 #endif
1564
1565 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1566         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1567              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1568
1569 /* mmap.c */
1570 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1571 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1572         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1573 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1574         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1575         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1576         struct mempolicy *);
1577 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1578 extern int split_vma(struct mm_struct *,
1579         struct vm_area_struct *, unsigned long addr, int new_below);
1580 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1581 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1582         struct rb_node **, struct rb_node *);
1583 extern void unlink_file_vma(struct vm_area_struct *);
1584 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1585         unsigned long addr, unsigned long len, pgoff_t pgoff,
1586         bool *need_rmap_locks);
1587 extern void exit_mmap(struct mm_struct *);
1588
1589 extern int mm_take_all_locks(struct mm_struct *mm);
1590 extern void mm_drop_all_locks(struct mm_struct *mm);
1591
1592 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1593 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1594
1595 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1596 extern int install_special_mapping(struct mm_struct *mm,
1597                                    unsigned long addr, unsigned long len,
1598                                    unsigned long flags, struct page **pages);
1599
1600 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1601
1602 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1603         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1604 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1605         unsigned long len, unsigned long prot, unsigned long flags,
1606         unsigned long pgoff, unsigned long *populate);
1607 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1608
1609 #ifdef CONFIG_MMU
1610 extern int __mm_populate(unsigned long addr, unsigned long len,
1611                          int ignore_errors);
1612 static inline void mm_populate(unsigned long addr, unsigned long len)
1613 {
1614         /* Ignore errors */
1615         (void) __mm_populate(addr, len, 1);
1616 }
1617 #else
1618 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1619 #endif
1620
1621 /* These take the mm semaphore themselves */
1622 extern unsigned long vm_brk(unsigned long, unsigned long);
1623 extern int vm_munmap(unsigned long, size_t);
1624 extern unsigned long vm_mmap(struct file *, unsigned long,
1625         unsigned long, unsigned long,
1626         unsigned long, unsigned long);
1627
1628 struct vm_unmapped_area_info {
1629 #define VM_UNMAPPED_AREA_TOPDOWN 1
1630         unsigned long flags;
1631         unsigned long length;
1632         unsigned long low_limit;
1633         unsigned long high_limit;
1634         unsigned long align_mask;
1635         unsigned long align_offset;
1636 };
1637
1638 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1639 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1640
1641 /*
1642  * Search for an unmapped address range.
1643  *
1644  * We are looking for a range that:
1645  * - does not intersect with any VMA;
1646  * - is contained within the [low_limit, high_limit) interval;
1647  * - is at least the desired size.
1648  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1649  */
1650 static inline unsigned long
1651 vm_unmapped_area(struct vm_unmapped_area_info *info)
1652 {
1653         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1654                 return unmapped_area(info);
1655         else
1656                 return unmapped_area_topdown(info);
1657 }
1658
1659 /* truncate.c */
1660 extern void truncate_inode_pages(struct address_space *, loff_t);
1661 extern void truncate_inode_pages_range(struct address_space *,
1662                                        loff_t lstart, loff_t lend);
1663
1664 /* generic vm_area_ops exported for stackable file systems */
1665 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1666 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1667
1668 /* mm/page-writeback.c */
1669 int write_one_page(struct page *page, int wait);
1670 void task_dirty_inc(struct task_struct *tsk);
1671
1672 /* readahead.c */
1673 #define VM_MAX_READAHEAD        128     /* kbytes */
1674 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1675
1676 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1677                         pgoff_t offset, unsigned long nr_to_read);
1678
1679 void page_cache_sync_readahead(struct address_space *mapping,
1680                                struct file_ra_state *ra,
1681                                struct file *filp,
1682                                pgoff_t offset,
1683                                unsigned long size);
1684
1685 void page_cache_async_readahead(struct address_space *mapping,
1686                                 struct file_ra_state *ra,
1687                                 struct file *filp,
1688                                 struct page *pg,
1689                                 pgoff_t offset,
1690                                 unsigned long size);
1691
1692 unsigned long max_sane_readahead(unsigned long nr);
1693 unsigned long ra_submit(struct file_ra_state *ra,
1694                         struct address_space *mapping,
1695                         struct file *filp);
1696
1697 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1698 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1699
1700 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1701 extern int expand_downwards(struct vm_area_struct *vma,
1702                 unsigned long address);
1703 #if VM_GROWSUP
1704 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1705 #else
1706   #define expand_upwards(vma, address) do { } while (0)
1707 #endif
1708
1709 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1710 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1711 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1712                                              struct vm_area_struct **pprev);
1713
1714 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1715    NULL if none.  Assume start_addr < end_addr. */
1716 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1717 {
1718         struct vm_area_struct * vma = find_vma(mm,start_addr);
1719
1720         if (vma && end_addr <= vma->vm_start)
1721                 vma = NULL;
1722         return vma;
1723 }
1724
1725 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1726 {
1727         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1728 }
1729
1730 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1731 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1732                                 unsigned long vm_start, unsigned long vm_end)
1733 {
1734         struct vm_area_struct *vma = find_vma(mm, vm_start);
1735
1736         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1737                 vma = NULL;
1738
1739         return vma;
1740 }
1741
1742 #ifdef CONFIG_MMU
1743 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1744 #else
1745 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1746 {
1747         return __pgprot(0);
1748 }
1749 #endif
1750
1751 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1752 unsigned long change_prot_numa(struct vm_area_struct *vma,
1753                         unsigned long start, unsigned long end);
1754 #endif
1755
1756 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1757 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1758                         unsigned long pfn, unsigned long size, pgprot_t);
1759 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1760 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1761                         unsigned long pfn);
1762 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763                         unsigned long pfn);
1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1765
1766
1767 struct page *follow_page_mask(struct vm_area_struct *vma,
1768                               unsigned long address, unsigned int foll_flags,
1769                               unsigned int *page_mask);
1770
1771 static inline struct page *follow_page(struct vm_area_struct *vma,
1772                 unsigned long address, unsigned int foll_flags)
1773 {
1774         unsigned int unused_page_mask;
1775         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1776 }
1777
1778 #define FOLL_WRITE      0x01    /* check pte is writable */
1779 #define FOLL_TOUCH      0x02    /* mark page accessed */
1780 #define FOLL_GET        0x04    /* do get_page on page */
1781 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1782 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1783 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1784                                  * and return without waiting upon it */
1785 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1786 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1787 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1788 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1789 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1790
1791 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1792                         void *data);
1793 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1794                                unsigned long size, pte_fn_t fn, void *data);
1795
1796 #ifdef CONFIG_PROC_FS
1797 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1798 #else
1799 static inline void vm_stat_account(struct mm_struct *mm,
1800                         unsigned long flags, struct file *file, long pages)
1801 {
1802         mm->total_vm += pages;
1803 }
1804 #endif /* CONFIG_PROC_FS */
1805
1806 #ifdef CONFIG_DEBUG_PAGEALLOC
1807 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1808 #ifdef CONFIG_HIBERNATION
1809 extern bool kernel_page_present(struct page *page);
1810 #endif /* CONFIG_HIBERNATION */
1811 #else
1812 static inline void
1813 kernel_map_pages(struct page *page, int numpages, int enable) {}
1814 #ifdef CONFIG_HIBERNATION
1815 static inline bool kernel_page_present(struct page *page) { return true; }
1816 #endif /* CONFIG_HIBERNATION */
1817 #endif
1818
1819 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1820 #ifdef  __HAVE_ARCH_GATE_AREA
1821 int in_gate_area_no_mm(unsigned long addr);
1822 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1823 #else
1824 int in_gate_area_no_mm(unsigned long addr);
1825 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1826 #endif  /* __HAVE_ARCH_GATE_AREA */
1827
1828 #ifdef CONFIG_SYSCTL
1829 extern int sysctl_drop_caches;
1830 int drop_caches_sysctl_handler(struct ctl_table *, int,
1831                                         void __user *, size_t *, loff_t *);
1832 #endif
1833
1834 unsigned long shrink_slab(struct shrink_control *shrink,
1835                           unsigned long nr_pages_scanned,
1836                           unsigned long lru_pages);
1837
1838 #ifndef CONFIG_MMU
1839 #define randomize_va_space 0
1840 #else
1841 extern int randomize_va_space;
1842 #endif
1843
1844 const char * arch_vma_name(struct vm_area_struct *vma);
1845 void print_vma_addr(char *prefix, unsigned long rip);
1846
1847 void sparse_mem_maps_populate_node(struct page **map_map,
1848                                    unsigned long pnum_begin,
1849                                    unsigned long pnum_end,
1850                                    unsigned long map_count,
1851                                    int nodeid);
1852
1853 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1854 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1855 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1856 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1857 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1858 void *vmemmap_alloc_block(unsigned long size, int node);
1859 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1860 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1861 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1862                                int node);
1863 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1864 void vmemmap_populate_print_last(void);
1865 #ifdef CONFIG_MEMORY_HOTPLUG
1866 void vmemmap_free(unsigned long start, unsigned long end);
1867 #endif
1868 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1869                                   unsigned long size);
1870
1871 enum mf_flags {
1872         MF_COUNT_INCREASED = 1 << 0,
1873         MF_ACTION_REQUIRED = 1 << 1,
1874         MF_MUST_KILL = 1 << 2,
1875         MF_SOFT_OFFLINE = 1 << 3,
1876 };
1877 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1878 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1879 extern int unpoison_memory(unsigned long pfn);
1880 extern int sysctl_memory_failure_early_kill;
1881 extern int sysctl_memory_failure_recovery;
1882 extern void shake_page(struct page *p, int access);
1883 extern atomic_long_t num_poisoned_pages;
1884 extern int soft_offline_page(struct page *page, int flags);
1885
1886 extern void dump_page(struct page *page);
1887
1888 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1889 extern void clear_huge_page(struct page *page,
1890                             unsigned long addr,
1891                             unsigned int pages_per_huge_page);
1892 extern void copy_user_huge_page(struct page *dst, struct page *src,
1893                                 unsigned long addr, struct vm_area_struct *vma,
1894                                 unsigned int pages_per_huge_page);
1895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1896
1897 #ifdef CONFIG_DEBUG_PAGEALLOC
1898 extern unsigned int _debug_guardpage_minorder;
1899
1900 static inline unsigned int debug_guardpage_minorder(void)
1901 {
1902         return _debug_guardpage_minorder;
1903 }
1904
1905 static inline bool page_is_guard(struct page *page)
1906 {
1907         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1908 }
1909 #else
1910 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1911 static inline bool page_is_guard(struct page *page) { return false; }
1912 #endif /* CONFIG_DEBUG_PAGEALLOC */
1913
1914 #if MAX_NUMNODES > 1
1915 void __init setup_nr_node_ids(void);
1916 #else
1917 static inline void setup_nr_node_ids(void) {}
1918 #endif
1919
1920 #endif /* __KERNEL__ */
1921 #endif /* _LINUX_MM_H */