]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/futex.c
Merge branch 'akpm-current/current'
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74  * READ this before attempting to hack on futexes!
75  *
76  * Basic futex operation and ordering guarantees
77  * =============================================
78  *
79  * The waiter reads the futex value in user space and calls
80  * futex_wait(). This function computes the hash bucket and acquires
81  * the hash bucket lock. After that it reads the futex user space value
82  * again and verifies that the data has not changed. If it has not changed
83  * it enqueues itself into the hash bucket, releases the hash bucket lock
84  * and schedules.
85  *
86  * The waker side modifies the user space value of the futex and calls
87  * futex_wake(). This function computes the hash bucket and acquires the
88  * hash bucket lock. Then it looks for waiters on that futex in the hash
89  * bucket and wakes them.
90  *
91  * In futex wake up scenarios where no tasks are blocked on a futex, taking
92  * the hb spinlock can be avoided and simply return. In order for this
93  * optimization to work, ordering guarantees must exist so that the waiter
94  * being added to the list is acknowledged when the list is concurrently being
95  * checked by the waker, avoiding scenarios like the following:
96  *
97  * CPU 0                               CPU 1
98  * val = *futex;
99  * sys_futex(WAIT, futex, val);
100  *   futex_wait(futex, val);
101  *   uval = *futex;
102  *                                     *futex = newval;
103  *                                     sys_futex(WAKE, futex);
104  *                                       futex_wake(futex);
105  *                                       if (queue_empty())
106  *                                         return;
107  *   if (uval == val)
108  *      lock(hash_bucket(futex));
109  *      queue();
110  *     unlock(hash_bucket(futex));
111  *     schedule();
112  *
113  * This would cause the waiter on CPU 0 to wait forever because it
114  * missed the transition of the user space value from val to newval
115  * and the waker did not find the waiter in the hash bucket queue.
116  *
117  * The correct serialization ensures that a waiter either observes
118  * the changed user space value before blocking or is woken by a
119  * concurrent waker:
120  *
121  * CPU 0                                 CPU 1
122  * val = *futex;
123  * sys_futex(WAIT, futex, val);
124  *   futex_wait(futex, val);
125  *
126  *   waiters++; (a)
127  *   mb(); (A) <-- paired with -.
128  *                              |
129  *   lock(hash_bucket(futex));  |
130  *                              |
131  *   uval = *futex;             |
132  *                              |        *futex = newval;
133  *                              |        sys_futex(WAKE, futex);
134  *                              |          futex_wake(futex);
135  *                              |
136  *                              `------->  mb(); (B)
137  *   if (uval == val)
138  *     queue();
139  *     unlock(hash_bucket(futex));
140  *     schedule();                         if (waiters)
141  *                                           lock(hash_bucket(futex));
142  *   else                                    wake_waiters(futex);
143  *     waiters--; (b)                        unlock(hash_bucket(futex));
144  *
145  * Where (A) orders the waiters increment and the futex value read through
146  * atomic operations (see hb_waiters_inc) and where (B) orders the write
147  * to futex and the waiters read -- this is done by the barriers for both
148  * shared and private futexes in get_futex_key_refs().
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         if (!debugfs_create_bool("ignore-private", mode, dir,
312                                  &fail_futex.ignore_private)) {
313                 debugfs_remove_recursive(dir);
314                 return -ENOMEM;
315         }
316
317         return 0;
318 }
319
320 late_initcall(fail_futex_debugfs);
321
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
323
324 #else
325 static inline bool should_fail_futex(bool fshared)
326 {
327         return false;
328 }
329 #endif /* CONFIG_FAIL_FUTEX */
330
331 static inline void futex_get_mm(union futex_key *key)
332 {
333         atomic_inc(&key->private.mm->mm_count);
334         /*
335          * Ensure futex_get_mm() implies a full barrier such that
336          * get_futex_key() implies a full barrier. This is relied upon
337          * as full barrier (B), see the ordering comment above.
338          */
339         smp_mb__after_atomic();
340 }
341
342 /*
343  * Reflects a new waiter being added to the waitqueue.
344  */
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
346 {
347 #ifdef CONFIG_SMP
348         atomic_inc(&hb->waiters);
349         /*
350          * Full barrier (A), see the ordering comment above.
351          */
352         smp_mb__after_atomic();
353 #endif
354 }
355
356 /*
357  * Reflects a waiter being removed from the waitqueue by wakeup
358  * paths.
359  */
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
361 {
362 #ifdef CONFIG_SMP
363         atomic_dec(&hb->waiters);
364 #endif
365 }
366
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
368 {
369 #ifdef CONFIG_SMP
370         return atomic_read(&hb->waiters);
371 #else
372         return 1;
373 #endif
374 }
375
376 /*
377  * We hash on the keys returned from get_futex_key (see below).
378  */
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 {
381         u32 hash = jhash2((u32*)&key->both.word,
382                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383                           key->both.offset);
384         return &futex_queues[hash & (futex_hashsize - 1)];
385 }
386
387 /*
388  * Return 1 if two futex_keys are equal, 0 otherwise.
389  */
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
391 {
392         return (key1 && key2
393                 && key1->both.word == key2->both.word
394                 && key1->both.ptr == key2->both.ptr
395                 && key1->both.offset == key2->both.offset);
396 }
397
398 /*
399  * Take a reference to the resource addressed by a key.
400  * Can be called while holding spinlocks.
401  *
402  */
403 static void get_futex_key_refs(union futex_key *key)
404 {
405         if (!key->both.ptr)
406                 return;
407
408         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409         case FUT_OFF_INODE:
410                 ihold(key->shared.inode); /* implies MB (B) */
411                 break;
412         case FUT_OFF_MMSHARED:
413                 futex_get_mm(key); /* implies MB (B) */
414                 break;
415         default:
416                 /*
417                  * Private futexes do not hold reference on an inode or
418                  * mm, therefore the only purpose of calling get_futex_key_refs
419                  * is because we need the barrier for the lockless waiter check.
420                  */
421                 smp_mb(); /* explicit MB (B) */
422         }
423 }
424
425 /*
426  * Drop a reference to the resource addressed by a key.
427  * The hash bucket spinlock must not be held. This is
428  * a no-op for private futexes, see comment in the get
429  * counterpart.
430  */
431 static void drop_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr) {
434                 /* If we're here then we tried to put a key we failed to get */
435                 WARN_ON_ONCE(1);
436                 return;
437         }
438
439         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440         case FUT_OFF_INODE:
441                 iput(key->shared.inode);
442                 break;
443         case FUT_OFF_MMSHARED:
444                 mmdrop(key->private.mm);
445                 break;
446         }
447 }
448
449 /**
450  * get_futex_key() - Get parameters which are the keys for a futex
451  * @uaddr:      virtual address of the futex
452  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453  * @key:        address where result is stored.
454  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
455  *              VERIFY_WRITE)
456  *
457  * Return: a negative error code or 0
458  *
459  * The key words are stored in *key on success.
460  *
461  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
463  * We can usually work out the index without swapping in the page.
464  *
465  * lock_page() might sleep, the caller should not hold a spinlock.
466  */
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
469 {
470         unsigned long address = (unsigned long)uaddr;
471         struct mm_struct *mm = current->mm;
472         struct page *page;
473         int err, ro = 0;
474
475         /*
476          * The futex address must be "naturally" aligned.
477          */
478         key->both.offset = address % PAGE_SIZE;
479         if (unlikely((address % sizeof(u32)) != 0))
480                 return -EINVAL;
481         address -= key->both.offset;
482
483         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
484                 return -EFAULT;
485
486         if (unlikely(should_fail_futex(fshared)))
487                 return -EFAULT;
488
489         /*
490          * PROCESS_PRIVATE futexes are fast.
491          * As the mm cannot disappear under us and the 'key' only needs
492          * virtual address, we dont even have to find the underlying vma.
493          * Note : We do have to check 'uaddr' is a valid user address,
494          *        but access_ok() should be faster than find_vma()
495          */
496         if (!fshared) {
497                 key->private.mm = mm;
498                 key->private.address = address;
499                 get_futex_key_refs(key);  /* implies MB (B) */
500                 return 0;
501         }
502
503 again:
504         /* Ignore any VERIFY_READ mapping (futex common case) */
505         if (unlikely(should_fail_futex(fshared)))
506                 return -EFAULT;
507
508         err = get_user_pages_fast(address, 1, 1, &page);
509         /*
510          * If write access is not required (eg. FUTEX_WAIT), try
511          * and get read-only access.
512          */
513         if (err == -EFAULT && rw == VERIFY_READ) {
514                 err = get_user_pages_fast(address, 1, 0, &page);
515                 ro = 1;
516         }
517         if (err < 0)
518                 return err;
519         else
520                 err = 0;
521
522         lock_page(page);
523         /*
524          * If page->mapping is NULL, then it cannot be a PageAnon
525          * page; but it might be the ZERO_PAGE or in the gate area or
526          * in a special mapping (all cases which we are happy to fail);
527          * or it may have been a good file page when get_user_pages_fast
528          * found it, but truncated or holepunched or subjected to
529          * invalidate_complete_page2 before we got the page lock (also
530          * cases which we are happy to fail).  And we hold a reference,
531          * so refcount care in invalidate_complete_page's remove_mapping
532          * prevents drop_caches from setting mapping to NULL beneath us.
533          *
534          * The case we do have to guard against is when memory pressure made
535          * shmem_writepage move it from filecache to swapcache beneath us:
536          * an unlikely race, but we do need to retry for page->mapping.
537          */
538         if (!page->mapping) {
539                 int shmem_swizzled = PageSwapCache(page);
540                 unlock_page(page);
541                 put_page(page);
542                 if (shmem_swizzled)
543                         goto again;
544                 return -EFAULT;
545         }
546
547         /*
548          * Private mappings are handled in a simple way.
549          *
550          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
551          * it's a read-only handle, it's expected that futexes attach to
552          * the object not the particular process.
553          */
554         if (PageAnon(page)) {
555                 /*
556                  * A RO anonymous page will never change and thus doesn't make
557                  * sense for futex operations.
558                  */
559                 if (unlikely(should_fail_futex(fshared)) || ro) {
560                         err = -EFAULT;
561                         goto out;
562                 }
563
564                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
565                 key->private.mm = mm;
566                 key->private.address = address;
567         } else {
568                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
569                 key->shared.inode = page->mapping->host;
570                 key->shared.pgoff = basepage_index(page);
571         }
572
573         get_futex_key_refs(key); /* implies MB (B) */
574
575 out:
576         unlock_page(page);
577         put_page(page);
578         return err;
579 }
580
581 static inline void put_futex_key(union futex_key *key)
582 {
583         drop_futex_key_refs(key);
584 }
585
586 /**
587  * fault_in_user_writeable() - Fault in user address and verify RW access
588  * @uaddr:      pointer to faulting user space address
589  *
590  * Slow path to fixup the fault we just took in the atomic write
591  * access to @uaddr.
592  *
593  * We have no generic implementation of a non-destructive write to the
594  * user address. We know that we faulted in the atomic pagefault
595  * disabled section so we can as well avoid the #PF overhead by
596  * calling get_user_pages() right away.
597  */
598 static int fault_in_user_writeable(u32 __user *uaddr)
599 {
600         struct mm_struct *mm = current->mm;
601         int ret;
602
603         down_read(&mm->mmap_sem);
604         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
605                                FAULT_FLAG_WRITE);
606         up_read(&mm->mmap_sem);
607
608         return ret < 0 ? ret : 0;
609 }
610
611 /**
612  * futex_top_waiter() - Return the highest priority waiter on a futex
613  * @hb:         the hash bucket the futex_q's reside in
614  * @key:        the futex key (to distinguish it from other futex futex_q's)
615  *
616  * Must be called with the hb lock held.
617  */
618 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
619                                         union futex_key *key)
620 {
621         struct futex_q *this;
622
623         plist_for_each_entry(this, &hb->chain, list) {
624                 if (match_futex(&this->key, key))
625                         return this;
626         }
627         return NULL;
628 }
629
630 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
631                                       u32 uval, u32 newval)
632 {
633         int ret;
634
635         pagefault_disable();
636         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
637         pagefault_enable();
638
639         return ret;
640 }
641
642 static int get_futex_value_locked(u32 *dest, u32 __user *from)
643 {
644         int ret;
645
646         pagefault_disable();
647         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
648         pagefault_enable();
649
650         return ret ? -EFAULT : 0;
651 }
652
653
654 /*
655  * PI code:
656  */
657 static int refill_pi_state_cache(void)
658 {
659         struct futex_pi_state *pi_state;
660
661         if (likely(current->pi_state_cache))
662                 return 0;
663
664         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
665
666         if (!pi_state)
667                 return -ENOMEM;
668
669         INIT_LIST_HEAD(&pi_state->list);
670         /* pi_mutex gets initialized later */
671         pi_state->owner = NULL;
672         atomic_set(&pi_state->refcount, 1);
673         pi_state->key = FUTEX_KEY_INIT;
674
675         current->pi_state_cache = pi_state;
676
677         return 0;
678 }
679
680 static struct futex_pi_state * alloc_pi_state(void)
681 {
682         struct futex_pi_state *pi_state = current->pi_state_cache;
683
684         WARN_ON(!pi_state);
685         current->pi_state_cache = NULL;
686
687         return pi_state;
688 }
689
690 /*
691  * Must be called with the hb lock held.
692  */
693 static void free_pi_state(struct futex_pi_state *pi_state)
694 {
695         if (!pi_state)
696                 return;
697
698         if (!atomic_dec_and_test(&pi_state->refcount))
699                 return;
700
701         /*
702          * If pi_state->owner is NULL, the owner is most probably dying
703          * and has cleaned up the pi_state already
704          */
705         if (pi_state->owner) {
706                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
707                 list_del_init(&pi_state->list);
708                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
709
710                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
711         }
712
713         if (current->pi_state_cache)
714                 kfree(pi_state);
715         else {
716                 /*
717                  * pi_state->list is already empty.
718                  * clear pi_state->owner.
719                  * refcount is at 0 - put it back to 1.
720                  */
721                 pi_state->owner = NULL;
722                 atomic_set(&pi_state->refcount, 1);
723                 current->pi_state_cache = pi_state;
724         }
725 }
726
727 /*
728  * Look up the task based on what TID userspace gave us.
729  * We dont trust it.
730  */
731 static struct task_struct * futex_find_get_task(pid_t pid)
732 {
733         struct task_struct *p;
734
735         rcu_read_lock();
736         p = find_task_by_vpid(pid);
737         if (p)
738                 get_task_struct(p);
739
740         rcu_read_unlock();
741
742         return p;
743 }
744
745 /*
746  * This task is holding PI mutexes at exit time => bad.
747  * Kernel cleans up PI-state, but userspace is likely hosed.
748  * (Robust-futex cleanup is separate and might save the day for userspace.)
749  */
750 void exit_pi_state_list(struct task_struct *curr)
751 {
752         struct list_head *next, *head = &curr->pi_state_list;
753         struct futex_pi_state *pi_state;
754         struct futex_hash_bucket *hb;
755         union futex_key key = FUTEX_KEY_INIT;
756
757         if (!futex_cmpxchg_enabled)
758                 return;
759         /*
760          * We are a ZOMBIE and nobody can enqueue itself on
761          * pi_state_list anymore, but we have to be careful
762          * versus waiters unqueueing themselves:
763          */
764         raw_spin_lock_irq(&curr->pi_lock);
765         while (!list_empty(head)) {
766
767                 next = head->next;
768                 pi_state = list_entry(next, struct futex_pi_state, list);
769                 key = pi_state->key;
770                 hb = hash_futex(&key);
771                 raw_spin_unlock_irq(&curr->pi_lock);
772
773                 spin_lock(&hb->lock);
774
775                 raw_spin_lock_irq(&curr->pi_lock);
776                 /*
777                  * We dropped the pi-lock, so re-check whether this
778                  * task still owns the PI-state:
779                  */
780                 if (head->next != next) {
781                         spin_unlock(&hb->lock);
782                         continue;
783                 }
784
785                 WARN_ON(pi_state->owner != curr);
786                 WARN_ON(list_empty(&pi_state->list));
787                 list_del_init(&pi_state->list);
788                 pi_state->owner = NULL;
789                 raw_spin_unlock_irq(&curr->pi_lock);
790
791                 rt_mutex_unlock(&pi_state->pi_mutex);
792
793                 spin_unlock(&hb->lock);
794
795                 raw_spin_lock_irq(&curr->pi_lock);
796         }
797         raw_spin_unlock_irq(&curr->pi_lock);
798 }
799
800 /*
801  * We need to check the following states:
802  *
803  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
804  *
805  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
806  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
807  *
808  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
809  *
810  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
811  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
812  *
813  * [6]  Found  | Found    | task      | 0         | 1      | Valid
814  *
815  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
816  *
817  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
818  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
819  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
820  *
821  * [1]  Indicates that the kernel can acquire the futex atomically. We
822  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
823  *
824  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
825  *      thread is found then it indicates that the owner TID has died.
826  *
827  * [3]  Invalid. The waiter is queued on a non PI futex
828  *
829  * [4]  Valid state after exit_robust_list(), which sets the user space
830  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
831  *
832  * [5]  The user space value got manipulated between exit_robust_list()
833  *      and exit_pi_state_list()
834  *
835  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
836  *      the pi_state but cannot access the user space value.
837  *
838  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
839  *
840  * [8]  Owner and user space value match
841  *
842  * [9]  There is no transient state which sets the user space TID to 0
843  *      except exit_robust_list(), but this is indicated by the
844  *      FUTEX_OWNER_DIED bit. See [4]
845  *
846  * [10] There is no transient state which leaves owner and user space
847  *      TID out of sync.
848  */
849
850 /*
851  * Validate that the existing waiter has a pi_state and sanity check
852  * the pi_state against the user space value. If correct, attach to
853  * it.
854  */
855 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
856                               struct futex_pi_state **ps)
857 {
858         pid_t pid = uval & FUTEX_TID_MASK;
859
860         /*
861          * Userspace might have messed up non-PI and PI futexes [3]
862          */
863         if (unlikely(!pi_state))
864                 return -EINVAL;
865
866         WARN_ON(!atomic_read(&pi_state->refcount));
867
868         /*
869          * Handle the owner died case:
870          */
871         if (uval & FUTEX_OWNER_DIED) {
872                 /*
873                  * exit_pi_state_list sets owner to NULL and wakes the
874                  * topmost waiter. The task which acquires the
875                  * pi_state->rt_mutex will fixup owner.
876                  */
877                 if (!pi_state->owner) {
878                         /*
879                          * No pi state owner, but the user space TID
880                          * is not 0. Inconsistent state. [5]
881                          */
882                         if (pid)
883                                 return -EINVAL;
884                         /*
885                          * Take a ref on the state and return success. [4]
886                          */
887                         goto out_state;
888                 }
889
890                 /*
891                  * If TID is 0, then either the dying owner has not
892                  * yet executed exit_pi_state_list() or some waiter
893                  * acquired the rtmutex in the pi state, but did not
894                  * yet fixup the TID in user space.
895                  *
896                  * Take a ref on the state and return success. [6]
897                  */
898                 if (!pid)
899                         goto out_state;
900         } else {
901                 /*
902                  * If the owner died bit is not set, then the pi_state
903                  * must have an owner. [7]
904                  */
905                 if (!pi_state->owner)
906                         return -EINVAL;
907         }
908
909         /*
910          * Bail out if user space manipulated the futex value. If pi
911          * state exists then the owner TID must be the same as the
912          * user space TID. [9/10]
913          */
914         if (pid != task_pid_vnr(pi_state->owner))
915                 return -EINVAL;
916 out_state:
917         atomic_inc(&pi_state->refcount);
918         *ps = pi_state;
919         return 0;
920 }
921
922 /*
923  * Lookup the task for the TID provided from user space and attach to
924  * it after doing proper sanity checks.
925  */
926 static int attach_to_pi_owner(u32 uval, union futex_key *key,
927                               struct futex_pi_state **ps)
928 {
929         pid_t pid = uval & FUTEX_TID_MASK;
930         struct futex_pi_state *pi_state;
931         struct task_struct *p;
932
933         /*
934          * We are the first waiter - try to look up the real owner and attach
935          * the new pi_state to it, but bail out when TID = 0 [1]
936          */
937         if (!pid)
938                 return -ESRCH;
939         p = futex_find_get_task(pid);
940         if (!p)
941                 return -ESRCH;
942
943         if (unlikely(p->flags & PF_KTHREAD)) {
944                 put_task_struct(p);
945                 return -EPERM;
946         }
947
948         /*
949          * We need to look at the task state flags to figure out,
950          * whether the task is exiting. To protect against the do_exit
951          * change of the task flags, we do this protected by
952          * p->pi_lock:
953          */
954         raw_spin_lock_irq(&p->pi_lock);
955         if (unlikely(p->flags & PF_EXITING)) {
956                 /*
957                  * The task is on the way out. When PF_EXITPIDONE is
958                  * set, we know that the task has finished the
959                  * cleanup:
960                  */
961                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
962
963                 raw_spin_unlock_irq(&p->pi_lock);
964                 put_task_struct(p);
965                 return ret;
966         }
967
968         /*
969          * No existing pi state. First waiter. [2]
970          */
971         pi_state = alloc_pi_state();
972
973         /*
974          * Initialize the pi_mutex in locked state and make @p
975          * the owner of it:
976          */
977         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
978
979         /* Store the key for possible exit cleanups: */
980         pi_state->key = *key;
981
982         WARN_ON(!list_empty(&pi_state->list));
983         list_add(&pi_state->list, &p->pi_state_list);
984         pi_state->owner = p;
985         raw_spin_unlock_irq(&p->pi_lock);
986
987         put_task_struct(p);
988
989         *ps = pi_state;
990
991         return 0;
992 }
993
994 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
995                            union futex_key *key, struct futex_pi_state **ps)
996 {
997         struct futex_q *match = futex_top_waiter(hb, key);
998
999         /*
1000          * If there is a waiter on that futex, validate it and
1001          * attach to the pi_state when the validation succeeds.
1002          */
1003         if (match)
1004                 return attach_to_pi_state(uval, match->pi_state, ps);
1005
1006         /*
1007          * We are the first waiter - try to look up the owner based on
1008          * @uval and attach to it.
1009          */
1010         return attach_to_pi_owner(uval, key, ps);
1011 }
1012
1013 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1014 {
1015         u32 uninitialized_var(curval);
1016
1017         if (unlikely(should_fail_futex(true)))
1018                 return -EFAULT;
1019
1020         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1021                 return -EFAULT;
1022
1023         /*If user space value changed, let the caller retry */
1024         return curval != uval ? -EAGAIN : 0;
1025 }
1026
1027 /**
1028  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1029  * @uaddr:              the pi futex user address
1030  * @hb:                 the pi futex hash bucket
1031  * @key:                the futex key associated with uaddr and hb
1032  * @ps:                 the pi_state pointer where we store the result of the
1033  *                      lookup
1034  * @task:               the task to perform the atomic lock work for.  This will
1035  *                      be "current" except in the case of requeue pi.
1036  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1037  *
1038  * Return:
1039  *  0 - ready to wait;
1040  *  1 - acquired the lock;
1041  * <0 - error
1042  *
1043  * The hb->lock and futex_key refs shall be held by the caller.
1044  */
1045 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1046                                 union futex_key *key,
1047                                 struct futex_pi_state **ps,
1048                                 struct task_struct *task, int set_waiters)
1049 {
1050         u32 uval, newval, vpid = task_pid_vnr(task);
1051         struct futex_q *match;
1052         int ret;
1053
1054         /*
1055          * Read the user space value first so we can validate a few
1056          * things before proceeding further.
1057          */
1058         if (get_futex_value_locked(&uval, uaddr))
1059                 return -EFAULT;
1060
1061         if (unlikely(should_fail_futex(true)))
1062                 return -EFAULT;
1063
1064         /*
1065          * Detect deadlocks.
1066          */
1067         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1068                 return -EDEADLK;
1069
1070         if ((unlikely(should_fail_futex(true))))
1071                 return -EDEADLK;
1072
1073         /*
1074          * Lookup existing state first. If it exists, try to attach to
1075          * its pi_state.
1076          */
1077         match = futex_top_waiter(hb, key);
1078         if (match)
1079                 return attach_to_pi_state(uval, match->pi_state, ps);
1080
1081         /*
1082          * No waiter and user TID is 0. We are here because the
1083          * waiters or the owner died bit is set or called from
1084          * requeue_cmp_pi or for whatever reason something took the
1085          * syscall.
1086          */
1087         if (!(uval & FUTEX_TID_MASK)) {
1088                 /*
1089                  * We take over the futex. No other waiters and the user space
1090                  * TID is 0. We preserve the owner died bit.
1091                  */
1092                 newval = uval & FUTEX_OWNER_DIED;
1093                 newval |= vpid;
1094
1095                 /* The futex requeue_pi code can enforce the waiters bit */
1096                 if (set_waiters)
1097                         newval |= FUTEX_WAITERS;
1098
1099                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1100                 /* If the take over worked, return 1 */
1101                 return ret < 0 ? ret : 1;
1102         }
1103
1104         /*
1105          * First waiter. Set the waiters bit before attaching ourself to
1106          * the owner. If owner tries to unlock, it will be forced into
1107          * the kernel and blocked on hb->lock.
1108          */
1109         newval = uval | FUTEX_WAITERS;
1110         ret = lock_pi_update_atomic(uaddr, uval, newval);
1111         if (ret)
1112                 return ret;
1113         /*
1114          * If the update of the user space value succeeded, we try to
1115          * attach to the owner. If that fails, no harm done, we only
1116          * set the FUTEX_WAITERS bit in the user space variable.
1117          */
1118         return attach_to_pi_owner(uval, key, ps);
1119 }
1120
1121 /**
1122  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1123  * @q:  The futex_q to unqueue
1124  *
1125  * The q->lock_ptr must not be NULL and must be held by the caller.
1126  */
1127 static void __unqueue_futex(struct futex_q *q)
1128 {
1129         struct futex_hash_bucket *hb;
1130
1131         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1132             || WARN_ON(plist_node_empty(&q->list)))
1133                 return;
1134
1135         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1136         plist_del(&q->list, &hb->chain);
1137         hb_waiters_dec(hb);
1138 }
1139
1140 /*
1141  * The hash bucket lock must be held when this is called.
1142  * Afterwards, the futex_q must not be accessed. Callers
1143  * must ensure to later call wake_up_q() for the actual
1144  * wakeups to occur.
1145  */
1146 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1147 {
1148         struct task_struct *p = q->task;
1149
1150         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1151                 return;
1152
1153         /*
1154          * Queue the task for later wakeup for after we've released
1155          * the hb->lock. wake_q_add() grabs reference to p.
1156          */
1157         wake_q_add(wake_q, p);
1158         __unqueue_futex(q);
1159         /*
1160          * The waiting task can free the futex_q as soon as
1161          * q->lock_ptr = NULL is written, without taking any locks. A
1162          * memory barrier is required here to prevent the following
1163          * store to lock_ptr from getting ahead of the plist_del.
1164          */
1165         smp_wmb();
1166         q->lock_ptr = NULL;
1167 }
1168
1169 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1170                          struct futex_hash_bucket *hb)
1171 {
1172         struct task_struct *new_owner;
1173         struct futex_pi_state *pi_state = this->pi_state;
1174         u32 uninitialized_var(curval), newval;
1175         WAKE_Q(wake_q);
1176         bool deboost;
1177         int ret = 0;
1178
1179         if (!pi_state)
1180                 return -EINVAL;
1181
1182         /*
1183          * If current does not own the pi_state then the futex is
1184          * inconsistent and user space fiddled with the futex value.
1185          */
1186         if (pi_state->owner != current)
1187                 return -EINVAL;
1188
1189         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1190         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1191
1192         /*
1193          * It is possible that the next waiter (the one that brought
1194          * this owner to the kernel) timed out and is no longer
1195          * waiting on the lock.
1196          */
1197         if (!new_owner)
1198                 new_owner = this->task;
1199
1200         /*
1201          * We pass it to the next owner. The WAITERS bit is always
1202          * kept enabled while there is PI state around. We cleanup the
1203          * owner died bit, because we are the owner.
1204          */
1205         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1206
1207         if (unlikely(should_fail_futex(true)))
1208                 ret = -EFAULT;
1209
1210         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1211                 ret = -EFAULT;
1212         else if (curval != uval)
1213                 ret = -EINVAL;
1214         if (ret) {
1215                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1216                 return ret;
1217         }
1218
1219         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1220         WARN_ON(list_empty(&pi_state->list));
1221         list_del_init(&pi_state->list);
1222         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1223
1224         raw_spin_lock_irq(&new_owner->pi_lock);
1225         WARN_ON(!list_empty(&pi_state->list));
1226         list_add(&pi_state->list, &new_owner->pi_state_list);
1227         pi_state->owner = new_owner;
1228         raw_spin_unlock_irq(&new_owner->pi_lock);
1229
1230         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1231
1232         deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1233
1234         /*
1235          * First unlock HB so the waiter does not spin on it once he got woken
1236          * up. Second wake up the waiter before the priority is adjusted. If we
1237          * deboost first (and lose our higher priority), then the task might get
1238          * scheduled away before the wake up can take place.
1239          */
1240         spin_unlock(&hb->lock);
1241         wake_up_q(&wake_q);
1242         if (deboost)
1243                 rt_mutex_adjust_prio(current);
1244
1245         return 0;
1246 }
1247
1248 /*
1249  * Express the locking dependencies for lockdep:
1250  */
1251 static inline void
1252 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1253 {
1254         if (hb1 <= hb2) {
1255                 spin_lock(&hb1->lock);
1256                 if (hb1 < hb2)
1257                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1258         } else { /* hb1 > hb2 */
1259                 spin_lock(&hb2->lock);
1260                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1261         }
1262 }
1263
1264 static inline void
1265 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1266 {
1267         spin_unlock(&hb1->lock);
1268         if (hb1 != hb2)
1269                 spin_unlock(&hb2->lock);
1270 }
1271
1272 /*
1273  * Wake up waiters matching bitset queued on this futex (uaddr).
1274  */
1275 static int
1276 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1277 {
1278         struct futex_hash_bucket *hb;
1279         struct futex_q *this, *next;
1280         union futex_key key = FUTEX_KEY_INIT;
1281         int ret;
1282         WAKE_Q(wake_q);
1283
1284         if (!bitset)
1285                 return -EINVAL;
1286
1287         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1288         if (unlikely(ret != 0))
1289                 goto out;
1290
1291         hb = hash_futex(&key);
1292
1293         /* Make sure we really have tasks to wakeup */
1294         if (!hb_waiters_pending(hb))
1295                 goto out_put_key;
1296
1297         spin_lock(&hb->lock);
1298
1299         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1300                 if (match_futex (&this->key, &key)) {
1301                         if (this->pi_state || this->rt_waiter) {
1302                                 ret = -EINVAL;
1303                                 break;
1304                         }
1305
1306                         /* Check if one of the bits is set in both bitsets */
1307                         if (!(this->bitset & bitset))
1308                                 continue;
1309
1310                         mark_wake_futex(&wake_q, this);
1311                         if (++ret >= nr_wake)
1312                                 break;
1313                 }
1314         }
1315
1316         spin_unlock(&hb->lock);
1317         wake_up_q(&wake_q);
1318 out_put_key:
1319         put_futex_key(&key);
1320 out:
1321         return ret;
1322 }
1323
1324 /*
1325  * Wake up all waiters hashed on the physical page that is mapped
1326  * to this virtual address:
1327  */
1328 static int
1329 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1330               int nr_wake, int nr_wake2, int op)
1331 {
1332         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1333         struct futex_hash_bucket *hb1, *hb2;
1334         struct futex_q *this, *next;
1335         int ret, op_ret;
1336         WAKE_Q(wake_q);
1337
1338 retry:
1339         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1340         if (unlikely(ret != 0))
1341                 goto out;
1342         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1343         if (unlikely(ret != 0))
1344                 goto out_put_key1;
1345
1346         hb1 = hash_futex(&key1);
1347         hb2 = hash_futex(&key2);
1348
1349 retry_private:
1350         double_lock_hb(hb1, hb2);
1351         op_ret = futex_atomic_op_inuser(op, uaddr2);
1352         if (unlikely(op_ret < 0)) {
1353
1354                 double_unlock_hb(hb1, hb2);
1355
1356 #ifndef CONFIG_MMU
1357                 /*
1358                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1359                  * but we might get them from range checking
1360                  */
1361                 ret = op_ret;
1362                 goto out_put_keys;
1363 #endif
1364
1365                 if (unlikely(op_ret != -EFAULT)) {
1366                         ret = op_ret;
1367                         goto out_put_keys;
1368                 }
1369
1370                 ret = fault_in_user_writeable(uaddr2);
1371                 if (ret)
1372                         goto out_put_keys;
1373
1374                 if (!(flags & FLAGS_SHARED))
1375                         goto retry_private;
1376
1377                 put_futex_key(&key2);
1378                 put_futex_key(&key1);
1379                 goto retry;
1380         }
1381
1382         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1383                 if (match_futex (&this->key, &key1)) {
1384                         if (this->pi_state || this->rt_waiter) {
1385                                 ret = -EINVAL;
1386                                 goto out_unlock;
1387                         }
1388                         mark_wake_futex(&wake_q, this);
1389                         if (++ret >= nr_wake)
1390                                 break;
1391                 }
1392         }
1393
1394         if (op_ret > 0) {
1395                 op_ret = 0;
1396                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1397                         if (match_futex (&this->key, &key2)) {
1398                                 if (this->pi_state || this->rt_waiter) {
1399                                         ret = -EINVAL;
1400                                         goto out_unlock;
1401                                 }
1402                                 mark_wake_futex(&wake_q, this);
1403                                 if (++op_ret >= nr_wake2)
1404                                         break;
1405                         }
1406                 }
1407                 ret += op_ret;
1408         }
1409
1410 out_unlock:
1411         double_unlock_hb(hb1, hb2);
1412         wake_up_q(&wake_q);
1413 out_put_keys:
1414         put_futex_key(&key2);
1415 out_put_key1:
1416         put_futex_key(&key1);
1417 out:
1418         return ret;
1419 }
1420
1421 /**
1422  * requeue_futex() - Requeue a futex_q from one hb to another
1423  * @q:          the futex_q to requeue
1424  * @hb1:        the source hash_bucket
1425  * @hb2:        the target hash_bucket
1426  * @key2:       the new key for the requeued futex_q
1427  */
1428 static inline
1429 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1430                    struct futex_hash_bucket *hb2, union futex_key *key2)
1431 {
1432
1433         /*
1434          * If key1 and key2 hash to the same bucket, no need to
1435          * requeue.
1436          */
1437         if (likely(&hb1->chain != &hb2->chain)) {
1438                 plist_del(&q->list, &hb1->chain);
1439                 hb_waiters_dec(hb1);
1440                 plist_add(&q->list, &hb2->chain);
1441                 hb_waiters_inc(hb2);
1442                 q->lock_ptr = &hb2->lock;
1443         }
1444         get_futex_key_refs(key2);
1445         q->key = *key2;
1446 }
1447
1448 /**
1449  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1450  * @q:          the futex_q
1451  * @key:        the key of the requeue target futex
1452  * @hb:         the hash_bucket of the requeue target futex
1453  *
1454  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1455  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1456  * to the requeue target futex so the waiter can detect the wakeup on the right
1457  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1458  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1459  * to protect access to the pi_state to fixup the owner later.  Must be called
1460  * with both q->lock_ptr and hb->lock held.
1461  */
1462 static inline
1463 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1464                            struct futex_hash_bucket *hb)
1465 {
1466         get_futex_key_refs(key);
1467         q->key = *key;
1468
1469         __unqueue_futex(q);
1470
1471         WARN_ON(!q->rt_waiter);
1472         q->rt_waiter = NULL;
1473
1474         q->lock_ptr = &hb->lock;
1475
1476         wake_up_state(q->task, TASK_NORMAL);
1477 }
1478
1479 /**
1480  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1481  * @pifutex:            the user address of the to futex
1482  * @hb1:                the from futex hash bucket, must be locked by the caller
1483  * @hb2:                the to futex hash bucket, must be locked by the caller
1484  * @key1:               the from futex key
1485  * @key2:               the to futex key
1486  * @ps:                 address to store the pi_state pointer
1487  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1488  *
1489  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1490  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1491  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1492  * hb1 and hb2 must be held by the caller.
1493  *
1494  * Return:
1495  *  0 - failed to acquire the lock atomically;
1496  * >0 - acquired the lock, return value is vpid of the top_waiter
1497  * <0 - error
1498  */
1499 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1500                                  struct futex_hash_bucket *hb1,
1501                                  struct futex_hash_bucket *hb2,
1502                                  union futex_key *key1, union futex_key *key2,
1503                                  struct futex_pi_state **ps, int set_waiters)
1504 {
1505         struct futex_q *top_waiter = NULL;
1506         u32 curval;
1507         int ret, vpid;
1508
1509         if (get_futex_value_locked(&curval, pifutex))
1510                 return -EFAULT;
1511
1512         if (unlikely(should_fail_futex(true)))
1513                 return -EFAULT;
1514
1515         /*
1516          * Find the top_waiter and determine if there are additional waiters.
1517          * If the caller intends to requeue more than 1 waiter to pifutex,
1518          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1519          * as we have means to handle the possible fault.  If not, don't set
1520          * the bit unecessarily as it will force the subsequent unlock to enter
1521          * the kernel.
1522          */
1523         top_waiter = futex_top_waiter(hb1, key1);
1524
1525         /* There are no waiters, nothing for us to do. */
1526         if (!top_waiter)
1527                 return 0;
1528
1529         /* Ensure we requeue to the expected futex. */
1530         if (!match_futex(top_waiter->requeue_pi_key, key2))
1531                 return -EINVAL;
1532
1533         /*
1534          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1535          * the contended case or if set_waiters is 1.  The pi_state is returned
1536          * in ps in contended cases.
1537          */
1538         vpid = task_pid_vnr(top_waiter->task);
1539         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1540                                    set_waiters);
1541         if (ret == 1) {
1542                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1543                 return vpid;
1544         }
1545         return ret;
1546 }
1547
1548 /**
1549  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1550  * @uaddr1:     source futex user address
1551  * @flags:      futex flags (FLAGS_SHARED, etc.)
1552  * @uaddr2:     target futex user address
1553  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1554  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1555  * @cmpval:     @uaddr1 expected value (or %NULL)
1556  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1557  *              pi futex (pi to pi requeue is not supported)
1558  *
1559  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1560  * uaddr2 atomically on behalf of the top waiter.
1561  *
1562  * Return:
1563  * >=0 - on success, the number of tasks requeued or woken;
1564  *  <0 - on error
1565  */
1566 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1567                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1568                          u32 *cmpval, int requeue_pi)
1569 {
1570         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1571         int drop_count = 0, task_count = 0, ret;
1572         struct futex_pi_state *pi_state = NULL;
1573         struct futex_hash_bucket *hb1, *hb2;
1574         struct futex_q *this, *next;
1575         WAKE_Q(wake_q);
1576
1577         if (requeue_pi) {
1578                 /*
1579                  * Requeue PI only works on two distinct uaddrs. This
1580                  * check is only valid for private futexes. See below.
1581                  */
1582                 if (uaddr1 == uaddr2)
1583                         return -EINVAL;
1584
1585                 /*
1586                  * requeue_pi requires a pi_state, try to allocate it now
1587                  * without any locks in case it fails.
1588                  */
1589                 if (refill_pi_state_cache())
1590                         return -ENOMEM;
1591                 /*
1592                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1593                  * + nr_requeue, since it acquires the rt_mutex prior to
1594                  * returning to userspace, so as to not leave the rt_mutex with
1595                  * waiters and no owner.  However, second and third wake-ups
1596                  * cannot be predicted as they involve race conditions with the
1597                  * first wake and a fault while looking up the pi_state.  Both
1598                  * pthread_cond_signal() and pthread_cond_broadcast() should
1599                  * use nr_wake=1.
1600                  */
1601                 if (nr_wake != 1)
1602                         return -EINVAL;
1603         }
1604
1605 retry:
1606         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1607         if (unlikely(ret != 0))
1608                 goto out;
1609         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1610                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1611         if (unlikely(ret != 0))
1612                 goto out_put_key1;
1613
1614         /*
1615          * The check above which compares uaddrs is not sufficient for
1616          * shared futexes. We need to compare the keys:
1617          */
1618         if (requeue_pi && match_futex(&key1, &key2)) {
1619                 ret = -EINVAL;
1620                 goto out_put_keys;
1621         }
1622
1623         hb1 = hash_futex(&key1);
1624         hb2 = hash_futex(&key2);
1625
1626 retry_private:
1627         hb_waiters_inc(hb2);
1628         double_lock_hb(hb1, hb2);
1629
1630         if (likely(cmpval != NULL)) {
1631                 u32 curval;
1632
1633                 ret = get_futex_value_locked(&curval, uaddr1);
1634
1635                 if (unlikely(ret)) {
1636                         double_unlock_hb(hb1, hb2);
1637                         hb_waiters_dec(hb2);
1638
1639                         ret = get_user(curval, uaddr1);
1640                         if (ret)
1641                                 goto out_put_keys;
1642
1643                         if (!(flags & FLAGS_SHARED))
1644                                 goto retry_private;
1645
1646                         put_futex_key(&key2);
1647                         put_futex_key(&key1);
1648                         goto retry;
1649                 }
1650                 if (curval != *cmpval) {
1651                         ret = -EAGAIN;
1652                         goto out_unlock;
1653                 }
1654         }
1655
1656         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1657                 /*
1658                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1659                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1660                  * bit.  We force this here where we are able to easily handle
1661                  * faults rather in the requeue loop below.
1662                  */
1663                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1664                                                  &key2, &pi_state, nr_requeue);
1665
1666                 /*
1667                  * At this point the top_waiter has either taken uaddr2 or is
1668                  * waiting on it.  If the former, then the pi_state will not
1669                  * exist yet, look it up one more time to ensure we have a
1670                  * reference to it. If the lock was taken, ret contains the
1671                  * vpid of the top waiter task.
1672                  */
1673                 if (ret > 0) {
1674                         WARN_ON(pi_state);
1675                         drop_count++;
1676                         task_count++;
1677                         /*
1678                          * If we acquired the lock, then the user
1679                          * space value of uaddr2 should be vpid. It
1680                          * cannot be changed by the top waiter as it
1681                          * is blocked on hb2 lock if it tries to do
1682                          * so. If something fiddled with it behind our
1683                          * back the pi state lookup might unearth
1684                          * it. So we rather use the known value than
1685                          * rereading and handing potential crap to
1686                          * lookup_pi_state.
1687                          */
1688                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1689                 }
1690
1691                 switch (ret) {
1692                 case 0:
1693                         break;
1694                 case -EFAULT:
1695                         free_pi_state(pi_state);
1696                         pi_state = NULL;
1697                         double_unlock_hb(hb1, hb2);
1698                         hb_waiters_dec(hb2);
1699                         put_futex_key(&key2);
1700                         put_futex_key(&key1);
1701                         ret = fault_in_user_writeable(uaddr2);
1702                         if (!ret)
1703                                 goto retry;
1704                         goto out;
1705                 case -EAGAIN:
1706                         /*
1707                          * Two reasons for this:
1708                          * - Owner is exiting and we just wait for the
1709                          *   exit to complete.
1710                          * - The user space value changed.
1711                          */
1712                         free_pi_state(pi_state);
1713                         pi_state = NULL;
1714                         double_unlock_hb(hb1, hb2);
1715                         hb_waiters_dec(hb2);
1716                         put_futex_key(&key2);
1717                         put_futex_key(&key1);
1718                         cond_resched();
1719                         goto retry;
1720                 default:
1721                         goto out_unlock;
1722                 }
1723         }
1724
1725         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1726                 if (task_count - nr_wake >= nr_requeue)
1727                         break;
1728
1729                 if (!match_futex(&this->key, &key1))
1730                         continue;
1731
1732                 /*
1733                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1734                  * be paired with each other and no other futex ops.
1735                  *
1736                  * We should never be requeueing a futex_q with a pi_state,
1737                  * which is awaiting a futex_unlock_pi().
1738                  */
1739                 if ((requeue_pi && !this->rt_waiter) ||
1740                     (!requeue_pi && this->rt_waiter) ||
1741                     this->pi_state) {
1742                         ret = -EINVAL;
1743                         break;
1744                 }
1745
1746                 /*
1747                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1748                  * lock, we already woke the top_waiter.  If not, it will be
1749                  * woken by futex_unlock_pi().
1750                  */
1751                 if (++task_count <= nr_wake && !requeue_pi) {
1752                         mark_wake_futex(&wake_q, this);
1753                         continue;
1754                 }
1755
1756                 /* Ensure we requeue to the expected futex for requeue_pi. */
1757                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1758                         ret = -EINVAL;
1759                         break;
1760                 }
1761
1762                 /*
1763                  * Requeue nr_requeue waiters and possibly one more in the case
1764                  * of requeue_pi if we couldn't acquire the lock atomically.
1765                  */
1766                 if (requeue_pi) {
1767                         /* Prepare the waiter to take the rt_mutex. */
1768                         atomic_inc(&pi_state->refcount);
1769                         this->pi_state = pi_state;
1770                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1771                                                         this->rt_waiter,
1772                                                         this->task);
1773                         if (ret == 1) {
1774                                 /* We got the lock. */
1775                                 requeue_pi_wake_futex(this, &key2, hb2);
1776                                 drop_count++;
1777                                 continue;
1778                         } else if (ret) {
1779                                 /* -EDEADLK */
1780                                 this->pi_state = NULL;
1781                                 free_pi_state(pi_state);
1782                                 goto out_unlock;
1783                         }
1784                 }
1785                 requeue_futex(this, hb1, hb2, &key2);
1786                 drop_count++;
1787         }
1788
1789 out_unlock:
1790         free_pi_state(pi_state);
1791         double_unlock_hb(hb1, hb2);
1792         wake_up_q(&wake_q);
1793         hb_waiters_dec(hb2);
1794
1795         /*
1796          * drop_futex_key_refs() must be called outside the spinlocks. During
1797          * the requeue we moved futex_q's from the hash bucket at key1 to the
1798          * one at key2 and updated their key pointer.  We no longer need to
1799          * hold the references to key1.
1800          */
1801         while (--drop_count >= 0)
1802                 drop_futex_key_refs(&key1);
1803
1804 out_put_keys:
1805         put_futex_key(&key2);
1806 out_put_key1:
1807         put_futex_key(&key1);
1808 out:
1809         return ret ? ret : task_count;
1810 }
1811
1812 /* The key must be already stored in q->key. */
1813 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1814         __acquires(&hb->lock)
1815 {
1816         struct futex_hash_bucket *hb;
1817
1818         hb = hash_futex(&q->key);
1819
1820         /*
1821          * Increment the counter before taking the lock so that
1822          * a potential waker won't miss a to-be-slept task that is
1823          * waiting for the spinlock. This is safe as all queue_lock()
1824          * users end up calling queue_me(). Similarly, for housekeeping,
1825          * decrement the counter at queue_unlock() when some error has
1826          * occurred and we don't end up adding the task to the list.
1827          */
1828         hb_waiters_inc(hb);
1829
1830         q->lock_ptr = &hb->lock;
1831
1832         spin_lock(&hb->lock); /* implies MB (A) */
1833         return hb;
1834 }
1835
1836 static inline void
1837 queue_unlock(struct futex_hash_bucket *hb)
1838         __releases(&hb->lock)
1839 {
1840         spin_unlock(&hb->lock);
1841         hb_waiters_dec(hb);
1842 }
1843
1844 /**
1845  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1846  * @q:  The futex_q to enqueue
1847  * @hb: The destination hash bucket
1848  *
1849  * The hb->lock must be held by the caller, and is released here. A call to
1850  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1851  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1852  * or nothing if the unqueue is done as part of the wake process and the unqueue
1853  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1854  * an example).
1855  */
1856 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1857         __releases(&hb->lock)
1858 {
1859         int prio;
1860
1861         /*
1862          * The priority used to register this element is
1863          * - either the real thread-priority for the real-time threads
1864          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1865          * - or MAX_RT_PRIO for non-RT threads.
1866          * Thus, all RT-threads are woken first in priority order, and
1867          * the others are woken last, in FIFO order.
1868          */
1869         prio = min(current->normal_prio, MAX_RT_PRIO);
1870
1871         plist_node_init(&q->list, prio);
1872         plist_add(&q->list, &hb->chain);
1873         q->task = current;
1874         spin_unlock(&hb->lock);
1875 }
1876
1877 /**
1878  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1879  * @q:  The futex_q to unqueue
1880  *
1881  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1882  * be paired with exactly one earlier call to queue_me().
1883  *
1884  * Return:
1885  *   1 - if the futex_q was still queued (and we removed unqueued it);
1886  *   0 - if the futex_q was already removed by the waking thread
1887  */
1888 static int unqueue_me(struct futex_q *q)
1889 {
1890         spinlock_t *lock_ptr;
1891         int ret = 0;
1892
1893         /* In the common case we don't take the spinlock, which is nice. */
1894 retry:
1895         lock_ptr = q->lock_ptr;
1896         barrier();
1897         if (lock_ptr != NULL) {
1898                 spin_lock(lock_ptr);
1899                 /*
1900                  * q->lock_ptr can change between reading it and
1901                  * spin_lock(), causing us to take the wrong lock.  This
1902                  * corrects the race condition.
1903                  *
1904                  * Reasoning goes like this: if we have the wrong lock,
1905                  * q->lock_ptr must have changed (maybe several times)
1906                  * between reading it and the spin_lock().  It can
1907                  * change again after the spin_lock() but only if it was
1908                  * already changed before the spin_lock().  It cannot,
1909                  * however, change back to the original value.  Therefore
1910                  * we can detect whether we acquired the correct lock.
1911                  */
1912                 if (unlikely(lock_ptr != q->lock_ptr)) {
1913                         spin_unlock(lock_ptr);
1914                         goto retry;
1915                 }
1916                 __unqueue_futex(q);
1917
1918                 BUG_ON(q->pi_state);
1919
1920                 spin_unlock(lock_ptr);
1921                 ret = 1;
1922         }
1923
1924         drop_futex_key_refs(&q->key);
1925         return ret;
1926 }
1927
1928 /*
1929  * PI futexes can not be requeued and must remove themself from the
1930  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1931  * and dropped here.
1932  */
1933 static void unqueue_me_pi(struct futex_q *q)
1934         __releases(q->lock_ptr)
1935 {
1936         __unqueue_futex(q);
1937
1938         BUG_ON(!q->pi_state);
1939         free_pi_state(q->pi_state);
1940         q->pi_state = NULL;
1941
1942         spin_unlock(q->lock_ptr);
1943 }
1944
1945 /*
1946  * Fixup the pi_state owner with the new owner.
1947  *
1948  * Must be called with hash bucket lock held and mm->sem held for non
1949  * private futexes.
1950  */
1951 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1952                                 struct task_struct *newowner)
1953 {
1954         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1955         struct futex_pi_state *pi_state = q->pi_state;
1956         struct task_struct *oldowner = pi_state->owner;
1957         u32 uval, uninitialized_var(curval), newval;
1958         int ret;
1959
1960         /* Owner died? */
1961         if (!pi_state->owner)
1962                 newtid |= FUTEX_OWNER_DIED;
1963
1964         /*
1965          * We are here either because we stole the rtmutex from the
1966          * previous highest priority waiter or we are the highest priority
1967          * waiter but failed to get the rtmutex the first time.
1968          * We have to replace the newowner TID in the user space variable.
1969          * This must be atomic as we have to preserve the owner died bit here.
1970          *
1971          * Note: We write the user space value _before_ changing the pi_state
1972          * because we can fault here. Imagine swapped out pages or a fork
1973          * that marked all the anonymous memory readonly for cow.
1974          *
1975          * Modifying pi_state _before_ the user space value would
1976          * leave the pi_state in an inconsistent state when we fault
1977          * here, because we need to drop the hash bucket lock to
1978          * handle the fault. This might be observed in the PID check
1979          * in lookup_pi_state.
1980          */
1981 retry:
1982         if (get_futex_value_locked(&uval, uaddr))
1983                 goto handle_fault;
1984
1985         while (1) {
1986                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1987
1988                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1989                         goto handle_fault;
1990                 if (curval == uval)
1991                         break;
1992                 uval = curval;
1993         }
1994
1995         /*
1996          * We fixed up user space. Now we need to fix the pi_state
1997          * itself.
1998          */
1999         if (pi_state->owner != NULL) {
2000                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2001                 WARN_ON(list_empty(&pi_state->list));
2002                 list_del_init(&pi_state->list);
2003                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2004         }
2005
2006         pi_state->owner = newowner;
2007
2008         raw_spin_lock_irq(&newowner->pi_lock);
2009         WARN_ON(!list_empty(&pi_state->list));
2010         list_add(&pi_state->list, &newowner->pi_state_list);
2011         raw_spin_unlock_irq(&newowner->pi_lock);
2012         return 0;
2013
2014         /*
2015          * To handle the page fault we need to drop the hash bucket
2016          * lock here. That gives the other task (either the highest priority
2017          * waiter itself or the task which stole the rtmutex) the
2018          * chance to try the fixup of the pi_state. So once we are
2019          * back from handling the fault we need to check the pi_state
2020          * after reacquiring the hash bucket lock and before trying to
2021          * do another fixup. When the fixup has been done already we
2022          * simply return.
2023          */
2024 handle_fault:
2025         spin_unlock(q->lock_ptr);
2026
2027         ret = fault_in_user_writeable(uaddr);
2028
2029         spin_lock(q->lock_ptr);
2030
2031         /*
2032          * Check if someone else fixed it for us:
2033          */
2034         if (pi_state->owner != oldowner)
2035                 return 0;
2036
2037         if (ret)
2038                 return ret;
2039
2040         goto retry;
2041 }
2042
2043 static long futex_wait_restart(struct restart_block *restart);
2044
2045 /**
2046  * fixup_owner() - Post lock pi_state and corner case management
2047  * @uaddr:      user address of the futex
2048  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2049  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2050  *
2051  * After attempting to lock an rt_mutex, this function is called to cleanup
2052  * the pi_state owner as well as handle race conditions that may allow us to
2053  * acquire the lock. Must be called with the hb lock held.
2054  *
2055  * Return:
2056  *  1 - success, lock taken;
2057  *  0 - success, lock not taken;
2058  * <0 - on error (-EFAULT)
2059  */
2060 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2061 {
2062         struct task_struct *owner;
2063         int ret = 0;
2064
2065         if (locked) {
2066                 /*
2067                  * Got the lock. We might not be the anticipated owner if we
2068                  * did a lock-steal - fix up the PI-state in that case:
2069                  */
2070                 if (q->pi_state->owner != current)
2071                         ret = fixup_pi_state_owner(uaddr, q, current);
2072                 goto out;
2073         }
2074
2075         /*
2076          * Catch the rare case, where the lock was released when we were on the
2077          * way back before we locked the hash bucket.
2078          */
2079         if (q->pi_state->owner == current) {
2080                 /*
2081                  * Try to get the rt_mutex now. This might fail as some other
2082                  * task acquired the rt_mutex after we removed ourself from the
2083                  * rt_mutex waiters list.
2084                  */
2085                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2086                         locked = 1;
2087                         goto out;
2088                 }
2089
2090                 /*
2091                  * pi_state is incorrect, some other task did a lock steal and
2092                  * we returned due to timeout or signal without taking the
2093                  * rt_mutex. Too late.
2094                  */
2095                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2096                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2097                 if (!owner)
2098                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2099                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2100                 ret = fixup_pi_state_owner(uaddr, q, owner);
2101                 goto out;
2102         }
2103
2104         /*
2105          * Paranoia check. If we did not take the lock, then we should not be
2106          * the owner of the rt_mutex.
2107          */
2108         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2109                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2110                                 "pi-state %p\n", ret,
2111                                 q->pi_state->pi_mutex.owner,
2112                                 q->pi_state->owner);
2113
2114 out:
2115         return ret ? ret : locked;
2116 }
2117
2118 /**
2119  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2120  * @hb:         the futex hash bucket, must be locked by the caller
2121  * @q:          the futex_q to queue up on
2122  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2123  */
2124 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2125                                 struct hrtimer_sleeper *timeout)
2126 {
2127         /*
2128          * The task state is guaranteed to be set before another task can
2129          * wake it. set_current_state() is implemented using smp_store_mb() and
2130          * queue_me() calls spin_unlock() upon completion, both serializing
2131          * access to the hash list and forcing another memory barrier.
2132          */
2133         set_current_state(TASK_INTERRUPTIBLE);
2134         queue_me(q, hb);
2135
2136         /* Arm the timer */
2137         if (timeout)
2138                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2139
2140         /*
2141          * If we have been removed from the hash list, then another task
2142          * has tried to wake us, and we can skip the call to schedule().
2143          */
2144         if (likely(!plist_node_empty(&q->list))) {
2145                 /*
2146                  * If the timer has already expired, current will already be
2147                  * flagged for rescheduling. Only call schedule if there
2148                  * is no timeout, or if it has yet to expire.
2149                  */
2150                 if (!timeout || timeout->task)
2151                         freezable_schedule();
2152         }
2153         __set_current_state(TASK_RUNNING);
2154 }
2155
2156 /**
2157  * futex_wait_setup() - Prepare to wait on a futex
2158  * @uaddr:      the futex userspace address
2159  * @val:        the expected value
2160  * @flags:      futex flags (FLAGS_SHARED, etc.)
2161  * @q:          the associated futex_q
2162  * @hb:         storage for hash_bucket pointer to be returned to caller
2163  *
2164  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2165  * compare it with the expected value.  Handle atomic faults internally.
2166  * Return with the hb lock held and a q.key reference on success, and unlocked
2167  * with no q.key reference on failure.
2168  *
2169  * Return:
2170  *  0 - uaddr contains val and hb has been locked;
2171  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2172  */
2173 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2174                            struct futex_q *q, struct futex_hash_bucket **hb)
2175 {
2176         u32 uval;
2177         int ret;
2178
2179         /*
2180          * Access the page AFTER the hash-bucket is locked.
2181          * Order is important:
2182          *
2183          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2184          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2185          *
2186          * The basic logical guarantee of a futex is that it blocks ONLY
2187          * if cond(var) is known to be true at the time of blocking, for
2188          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2189          * would open a race condition where we could block indefinitely with
2190          * cond(var) false, which would violate the guarantee.
2191          *
2192          * On the other hand, we insert q and release the hash-bucket only
2193          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2194          * absorb a wakeup if *uaddr does not match the desired values
2195          * while the syscall executes.
2196          */
2197 retry:
2198         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2199         if (unlikely(ret != 0))
2200                 return ret;
2201
2202 retry_private:
2203         *hb = queue_lock(q);
2204
2205         ret = get_futex_value_locked(&uval, uaddr);
2206
2207         if (ret) {
2208                 queue_unlock(*hb);
2209
2210                 ret = get_user(uval, uaddr);
2211                 if (ret)
2212                         goto out;
2213
2214                 if (!(flags & FLAGS_SHARED))
2215                         goto retry_private;
2216
2217                 put_futex_key(&q->key);
2218                 goto retry;
2219         }
2220
2221         if (uval != val) {
2222                 queue_unlock(*hb);
2223                 ret = -EWOULDBLOCK;
2224         }
2225
2226 out:
2227         if (ret)
2228                 put_futex_key(&q->key);
2229         return ret;
2230 }
2231
2232 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2233                       ktime_t *abs_time, u32 bitset)
2234 {
2235         struct hrtimer_sleeper timeout, *to = NULL;
2236         struct restart_block *restart;
2237         struct futex_hash_bucket *hb;
2238         struct futex_q q = futex_q_init;
2239         int ret;
2240
2241         if (!bitset)
2242                 return -EINVAL;
2243         q.bitset = bitset;
2244
2245         if (abs_time) {
2246                 to = &timeout;
2247
2248                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2249                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2250                                       HRTIMER_MODE_ABS);
2251                 hrtimer_init_sleeper(to, current);
2252                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2253                                              current->timer_slack_ns);
2254         }
2255
2256 retry:
2257         /*
2258          * Prepare to wait on uaddr. On success, holds hb lock and increments
2259          * q.key refs.
2260          */
2261         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2262         if (ret)
2263                 goto out;
2264
2265         /* queue_me and wait for wakeup, timeout, or a signal. */
2266         futex_wait_queue_me(hb, &q, to);
2267
2268         /* If we were woken (and unqueued), we succeeded, whatever. */
2269         ret = 0;
2270         /* unqueue_me() drops q.key ref */
2271         if (!unqueue_me(&q))
2272                 goto out;
2273         ret = -ETIMEDOUT;
2274         if (to && !to->task)
2275                 goto out;
2276
2277         /*
2278          * We expect signal_pending(current), but we might be the
2279          * victim of a spurious wakeup as well.
2280          */
2281         if (!signal_pending(current))
2282                 goto retry;
2283
2284         ret = -ERESTARTSYS;
2285         if (!abs_time)
2286                 goto out;
2287
2288         restart = &current->restart_block;
2289         restart->fn = futex_wait_restart;
2290         restart->futex.uaddr = uaddr;
2291         restart->futex.val = val;
2292         restart->futex.time = abs_time->tv64;
2293         restart->futex.bitset = bitset;
2294         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2295
2296         ret = -ERESTART_RESTARTBLOCK;
2297
2298 out:
2299         if (to) {
2300                 hrtimer_cancel(&to->timer);
2301                 destroy_hrtimer_on_stack(&to->timer);
2302         }
2303         return ret;
2304 }
2305
2306
2307 static long futex_wait_restart(struct restart_block *restart)
2308 {
2309         u32 __user *uaddr = restart->futex.uaddr;
2310         ktime_t t, *tp = NULL;
2311
2312         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2313                 t.tv64 = restart->futex.time;
2314                 tp = &t;
2315         }
2316         restart->fn = do_no_restart_syscall;
2317
2318         return (long)futex_wait(uaddr, restart->futex.flags,
2319                                 restart->futex.val, tp, restart->futex.bitset);
2320 }
2321
2322
2323 /*
2324  * Userspace tried a 0 -> TID atomic transition of the futex value
2325  * and failed. The kernel side here does the whole locking operation:
2326  * if there are waiters then it will block as a consequence of relying
2327  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2328  * a 0 value of the futex too.).
2329  *
2330  * Also serves as futex trylock_pi()'ing, and due semantics.
2331  */
2332 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2333                          ktime_t *time, int trylock)
2334 {
2335         struct hrtimer_sleeper timeout, *to = NULL;
2336         struct futex_hash_bucket *hb;
2337         struct futex_q q = futex_q_init;
2338         int res, ret;
2339
2340         if (refill_pi_state_cache())
2341                 return -ENOMEM;
2342
2343         if (time) {
2344                 to = &timeout;
2345                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2346                                       HRTIMER_MODE_ABS);
2347                 hrtimer_init_sleeper(to, current);
2348                 hrtimer_set_expires(&to->timer, *time);
2349         }
2350
2351 retry:
2352         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2353         if (unlikely(ret != 0))
2354                 goto out;
2355
2356 retry_private:
2357         hb = queue_lock(&q);
2358
2359         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2360         if (unlikely(ret)) {
2361                 /*
2362                  * Atomic work succeeded and we got the lock,
2363                  * or failed. Either way, we do _not_ block.
2364                  */
2365                 switch (ret) {
2366                 case 1:
2367                         /* We got the lock. */
2368                         ret = 0;
2369                         goto out_unlock_put_key;
2370                 case -EFAULT:
2371                         goto uaddr_faulted;
2372                 case -EAGAIN:
2373                         /*
2374                          * Two reasons for this:
2375                          * - Task is exiting and we just wait for the
2376                          *   exit to complete.
2377                          * - The user space value changed.
2378                          */
2379                         queue_unlock(hb);
2380                         put_futex_key(&q.key);
2381                         cond_resched();
2382                         goto retry;
2383                 default:
2384                         goto out_unlock_put_key;
2385                 }
2386         }
2387
2388         /*
2389          * Only actually queue now that the atomic ops are done:
2390          */
2391         queue_me(&q, hb);
2392
2393         WARN_ON(!q.pi_state);
2394         /*
2395          * Block on the PI mutex:
2396          */
2397         if (!trylock) {
2398                 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2399         } else {
2400                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2401                 /* Fixup the trylock return value: */
2402                 ret = ret ? 0 : -EWOULDBLOCK;
2403         }
2404
2405         spin_lock(q.lock_ptr);
2406         /*
2407          * Fixup the pi_state owner and possibly acquire the lock if we
2408          * haven't already.
2409          */
2410         res = fixup_owner(uaddr, &q, !ret);
2411         /*
2412          * If fixup_owner() returned an error, proprogate that.  If it acquired
2413          * the lock, clear our -ETIMEDOUT or -EINTR.
2414          */
2415         if (res)
2416                 ret = (res < 0) ? res : 0;
2417
2418         /*
2419          * If fixup_owner() faulted and was unable to handle the fault, unlock
2420          * it and return the fault to userspace.
2421          */
2422         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2423                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2424
2425         /* Unqueue and drop the lock */
2426         unqueue_me_pi(&q);
2427
2428         goto out_put_key;
2429
2430 out_unlock_put_key:
2431         queue_unlock(hb);
2432
2433 out_put_key:
2434         put_futex_key(&q.key);
2435 out:
2436         if (to)
2437                 destroy_hrtimer_on_stack(&to->timer);
2438         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2439
2440 uaddr_faulted:
2441         queue_unlock(hb);
2442
2443         ret = fault_in_user_writeable(uaddr);
2444         if (ret)
2445                 goto out_put_key;
2446
2447         if (!(flags & FLAGS_SHARED))
2448                 goto retry_private;
2449
2450         put_futex_key(&q.key);
2451         goto retry;
2452 }
2453
2454 /*
2455  * Userspace attempted a TID -> 0 atomic transition, and failed.
2456  * This is the in-kernel slowpath: we look up the PI state (if any),
2457  * and do the rt-mutex unlock.
2458  */
2459 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2460 {
2461         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2462         union futex_key key = FUTEX_KEY_INIT;
2463         struct futex_hash_bucket *hb;
2464         struct futex_q *match;
2465         int ret;
2466
2467 retry:
2468         if (get_user(uval, uaddr))
2469                 return -EFAULT;
2470         /*
2471          * We release only a lock we actually own:
2472          */
2473         if ((uval & FUTEX_TID_MASK) != vpid)
2474                 return -EPERM;
2475
2476         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2477         if (ret)
2478                 return ret;
2479
2480         hb = hash_futex(&key);
2481         spin_lock(&hb->lock);
2482
2483         /*
2484          * Check waiters first. We do not trust user space values at
2485          * all and we at least want to know if user space fiddled
2486          * with the futex value instead of blindly unlocking.
2487          */
2488         match = futex_top_waiter(hb, &key);
2489         if (match) {
2490                 ret = wake_futex_pi(uaddr, uval, match, hb);
2491                 /*
2492                  * In case of success wake_futex_pi dropped the hash
2493                  * bucket lock.
2494                  */
2495                 if (!ret)
2496                         goto out_putkey;
2497                 /*
2498                  * The atomic access to the futex value generated a
2499                  * pagefault, so retry the user-access and the wakeup:
2500                  */
2501                 if (ret == -EFAULT)
2502                         goto pi_faulted;
2503                 /*
2504                  * wake_futex_pi has detected invalid state. Tell user
2505                  * space.
2506                  */
2507                 goto out_unlock;
2508         }
2509
2510         /*
2511          * We have no kernel internal state, i.e. no waiters in the
2512          * kernel. Waiters which are about to queue themselves are stuck
2513          * on hb->lock. So we can safely ignore them. We do neither
2514          * preserve the WAITERS bit not the OWNER_DIED one. We are the
2515          * owner.
2516          */
2517         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2518                 goto pi_faulted;
2519
2520         /*
2521          * If uval has changed, let user space handle it.
2522          */
2523         ret = (curval == uval) ? 0 : -EAGAIN;
2524
2525 out_unlock:
2526         spin_unlock(&hb->lock);
2527 out_putkey:
2528         put_futex_key(&key);
2529         return ret;
2530
2531 pi_faulted:
2532         spin_unlock(&hb->lock);
2533         put_futex_key(&key);
2534
2535         ret = fault_in_user_writeable(uaddr);
2536         if (!ret)
2537                 goto retry;
2538
2539         return ret;
2540 }
2541
2542 /**
2543  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2544  * @hb:         the hash_bucket futex_q was original enqueued on
2545  * @q:          the futex_q woken while waiting to be requeued
2546  * @key2:       the futex_key of the requeue target futex
2547  * @timeout:    the timeout associated with the wait (NULL if none)
2548  *
2549  * Detect if the task was woken on the initial futex as opposed to the requeue
2550  * target futex.  If so, determine if it was a timeout or a signal that caused
2551  * the wakeup and return the appropriate error code to the caller.  Must be
2552  * called with the hb lock held.
2553  *
2554  * Return:
2555  *  0 = no early wakeup detected;
2556  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2557  */
2558 static inline
2559 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2560                                    struct futex_q *q, union futex_key *key2,
2561                                    struct hrtimer_sleeper *timeout)
2562 {
2563         int ret = 0;
2564
2565         /*
2566          * With the hb lock held, we avoid races while we process the wakeup.
2567          * We only need to hold hb (and not hb2) to ensure atomicity as the
2568          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2569          * It can't be requeued from uaddr2 to something else since we don't
2570          * support a PI aware source futex for requeue.
2571          */
2572         if (!match_futex(&q->key, key2)) {
2573                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2574                 /*
2575                  * We were woken prior to requeue by a timeout or a signal.
2576                  * Unqueue the futex_q and determine which it was.
2577                  */
2578                 plist_del(&q->list, &hb->chain);
2579                 hb_waiters_dec(hb);
2580
2581                 /* Handle spurious wakeups gracefully */
2582                 ret = -EWOULDBLOCK;
2583                 if (timeout && !timeout->task)
2584                         ret = -ETIMEDOUT;
2585                 else if (signal_pending(current))
2586                         ret = -ERESTARTNOINTR;
2587         }
2588         return ret;
2589 }
2590
2591 /**
2592  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2593  * @uaddr:      the futex we initially wait on (non-pi)
2594  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2595  *              the same type, no requeueing from private to shared, etc.
2596  * @val:        the expected value of uaddr
2597  * @abs_time:   absolute timeout
2598  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2599  * @uaddr2:     the pi futex we will take prior to returning to user-space
2600  *
2601  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2602  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2603  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2604  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2605  * without one, the pi logic would not know which task to boost/deboost, if
2606  * there was a need to.
2607  *
2608  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2609  * via the following--
2610  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2611  * 2) wakeup on uaddr2 after a requeue
2612  * 3) signal
2613  * 4) timeout
2614  *
2615  * If 3, cleanup and return -ERESTARTNOINTR.
2616  *
2617  * If 2, we may then block on trying to take the rt_mutex and return via:
2618  * 5) successful lock
2619  * 6) signal
2620  * 7) timeout
2621  * 8) other lock acquisition failure
2622  *
2623  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2624  *
2625  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2626  *
2627  * Return:
2628  *  0 - On success;
2629  * <0 - On error
2630  */
2631 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2632                                  u32 val, ktime_t *abs_time, u32 bitset,
2633                                  u32 __user *uaddr2)
2634 {
2635         struct hrtimer_sleeper timeout, *to = NULL;
2636         struct rt_mutex_waiter rt_waiter;
2637         struct rt_mutex *pi_mutex = NULL;
2638         struct futex_hash_bucket *hb;
2639         union futex_key key2 = FUTEX_KEY_INIT;
2640         struct futex_q q = futex_q_init;
2641         int res, ret;
2642
2643         if (uaddr == uaddr2)
2644                 return -EINVAL;
2645
2646         if (!bitset)
2647                 return -EINVAL;
2648
2649         if (abs_time) {
2650                 to = &timeout;
2651                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2652                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2653                                       HRTIMER_MODE_ABS);
2654                 hrtimer_init_sleeper(to, current);
2655                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2656                                              current->timer_slack_ns);
2657         }
2658
2659         /*
2660          * The waiter is allocated on our stack, manipulated by the requeue
2661          * code while we sleep on uaddr.
2662          */
2663         debug_rt_mutex_init_waiter(&rt_waiter);
2664         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2665         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2666         rt_waiter.task = NULL;
2667
2668         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2669         if (unlikely(ret != 0))
2670                 goto out;
2671
2672         q.bitset = bitset;
2673         q.rt_waiter = &rt_waiter;
2674         q.requeue_pi_key = &key2;
2675
2676         /*
2677          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2678          * count.
2679          */
2680         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2681         if (ret)
2682                 goto out_key2;
2683
2684         /*
2685          * The check above which compares uaddrs is not sufficient for
2686          * shared futexes. We need to compare the keys:
2687          */
2688         if (match_futex(&q.key, &key2)) {
2689                 queue_unlock(hb);
2690                 ret = -EINVAL;
2691                 goto out_put_keys;
2692         }
2693
2694         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2695         futex_wait_queue_me(hb, &q, to);
2696
2697         spin_lock(&hb->lock);
2698         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2699         spin_unlock(&hb->lock);
2700         if (ret)
2701                 goto out_put_keys;
2702
2703         /*
2704          * In order for us to be here, we know our q.key == key2, and since
2705          * we took the hb->lock above, we also know that futex_requeue() has
2706          * completed and we no longer have to concern ourselves with a wakeup
2707          * race with the atomic proxy lock acquisition by the requeue code. The
2708          * futex_requeue dropped our key1 reference and incremented our key2
2709          * reference count.
2710          */
2711
2712         /* Check if the requeue code acquired the second futex for us. */
2713         if (!q.rt_waiter) {
2714                 /*
2715                  * Got the lock. We might not be the anticipated owner if we
2716                  * did a lock-steal - fix up the PI-state in that case.
2717                  */
2718                 if (q.pi_state && (q.pi_state->owner != current)) {
2719                         spin_lock(q.lock_ptr);
2720                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2721                         spin_unlock(q.lock_ptr);
2722                 }
2723         } else {
2724                 /*
2725                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2726                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2727                  * the pi_state.
2728                  */
2729                 WARN_ON(!q.pi_state);
2730                 pi_mutex = &q.pi_state->pi_mutex;
2731                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2732                 debug_rt_mutex_free_waiter(&rt_waiter);
2733
2734                 spin_lock(q.lock_ptr);
2735                 /*
2736                  * Fixup the pi_state owner and possibly acquire the lock if we
2737                  * haven't already.
2738                  */
2739                 res = fixup_owner(uaddr2, &q, !ret);
2740                 /*
2741                  * If fixup_owner() returned an error, proprogate that.  If it
2742                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2743                  */
2744                 if (res)
2745                         ret = (res < 0) ? res : 0;
2746
2747                 /* Unqueue and drop the lock. */
2748                 unqueue_me_pi(&q);
2749         }
2750
2751         /*
2752          * If fixup_pi_state_owner() faulted and was unable to handle the
2753          * fault, unlock the rt_mutex and return the fault to userspace.
2754          */
2755         if (ret == -EFAULT) {
2756                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2757                         rt_mutex_unlock(pi_mutex);
2758         } else if (ret == -EINTR) {
2759                 /*
2760                  * We've already been requeued, but cannot restart by calling
2761                  * futex_lock_pi() directly. We could restart this syscall, but
2762                  * it would detect that the user space "val" changed and return
2763                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2764                  * -EWOULDBLOCK directly.
2765                  */
2766                 ret = -EWOULDBLOCK;
2767         }
2768
2769 out_put_keys:
2770         put_futex_key(&q.key);
2771 out_key2:
2772         put_futex_key(&key2);
2773
2774 out:
2775         if (to) {
2776                 hrtimer_cancel(&to->timer);
2777                 destroy_hrtimer_on_stack(&to->timer);
2778         }
2779         return ret;
2780 }
2781
2782 /*
2783  * Support for robust futexes: the kernel cleans up held futexes at
2784  * thread exit time.
2785  *
2786  * Implementation: user-space maintains a per-thread list of locks it
2787  * is holding. Upon do_exit(), the kernel carefully walks this list,
2788  * and marks all locks that are owned by this thread with the
2789  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2790  * always manipulated with the lock held, so the list is private and
2791  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2792  * field, to allow the kernel to clean up if the thread dies after
2793  * acquiring the lock, but just before it could have added itself to
2794  * the list. There can only be one such pending lock.
2795  */
2796
2797 /**
2798  * sys_set_robust_list() - Set the robust-futex list head of a task
2799  * @head:       pointer to the list-head
2800  * @len:        length of the list-head, as userspace expects
2801  */
2802 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2803                 size_t, len)
2804 {
2805         if (!futex_cmpxchg_enabled)
2806                 return -ENOSYS;
2807         /*
2808          * The kernel knows only one size for now:
2809          */
2810         if (unlikely(len != sizeof(*head)))
2811                 return -EINVAL;
2812
2813         current->robust_list = head;
2814
2815         return 0;
2816 }
2817
2818 /**
2819  * sys_get_robust_list() - Get the robust-futex list head of a task
2820  * @pid:        pid of the process [zero for current task]
2821  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2822  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2823  */
2824 SYSCALL_DEFINE3(get_robust_list, int, pid,
2825                 struct robust_list_head __user * __user *, head_ptr,
2826                 size_t __user *, len_ptr)
2827 {
2828         struct robust_list_head __user *head;
2829         unsigned long ret;
2830         struct task_struct *p;
2831
2832         if (!futex_cmpxchg_enabled)
2833                 return -ENOSYS;
2834
2835         rcu_read_lock();
2836
2837         ret = -ESRCH;
2838         if (!pid)
2839                 p = current;
2840         else {
2841                 p = find_task_by_vpid(pid);
2842                 if (!p)
2843                         goto err_unlock;
2844         }
2845
2846         ret = -EPERM;
2847         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2848                 goto err_unlock;
2849
2850         head = p->robust_list;
2851         rcu_read_unlock();
2852
2853         if (put_user(sizeof(*head), len_ptr))
2854                 return -EFAULT;
2855         return put_user(head, head_ptr);
2856
2857 err_unlock:
2858         rcu_read_unlock();
2859
2860         return ret;
2861 }
2862
2863 /*
2864  * Process a futex-list entry, check whether it's owned by the
2865  * dying task, and do notification if so:
2866  */
2867 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2868 {
2869         u32 uval, uninitialized_var(nval), mval;
2870
2871 retry:
2872         if (get_user(uval, uaddr))
2873                 return -1;
2874
2875         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2876                 /*
2877                  * Ok, this dying thread is truly holding a futex
2878                  * of interest. Set the OWNER_DIED bit atomically
2879                  * via cmpxchg, and if the value had FUTEX_WAITERS
2880                  * set, wake up a waiter (if any). (We have to do a
2881                  * futex_wake() even if OWNER_DIED is already set -
2882                  * to handle the rare but possible case of recursive
2883                  * thread-death.) The rest of the cleanup is done in
2884                  * userspace.
2885                  */
2886                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2887                 /*
2888                  * We are not holding a lock here, but we want to have
2889                  * the pagefault_disable/enable() protection because
2890                  * we want to handle the fault gracefully. If the
2891                  * access fails we try to fault in the futex with R/W
2892                  * verification via get_user_pages. get_user() above
2893                  * does not guarantee R/W access. If that fails we
2894                  * give up and leave the futex locked.
2895                  */
2896                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2897                         if (fault_in_user_writeable(uaddr))
2898                                 return -1;
2899                         goto retry;
2900                 }
2901                 if (nval != uval)
2902                         goto retry;
2903
2904                 /*
2905                  * Wake robust non-PI futexes here. The wakeup of
2906                  * PI futexes happens in exit_pi_state():
2907                  */
2908                 if (!pi && (uval & FUTEX_WAITERS))
2909                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2910         }
2911         return 0;
2912 }
2913
2914 /*
2915  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2916  */
2917 static inline int fetch_robust_entry(struct robust_list __user **entry,
2918                                      struct robust_list __user * __user *head,
2919                                      unsigned int *pi)
2920 {
2921         unsigned long uentry;
2922
2923         if (get_user(uentry, (unsigned long __user *)head))
2924                 return -EFAULT;
2925
2926         *entry = (void __user *)(uentry & ~1UL);
2927         *pi = uentry & 1;
2928
2929         return 0;
2930 }
2931
2932 /*
2933  * Walk curr->robust_list (very carefully, it's a userspace list!)
2934  * and mark any locks found there dead, and notify any waiters.
2935  *
2936  * We silently return on any sign of list-walking problem.
2937  */
2938 void exit_robust_list(struct task_struct *curr)
2939 {
2940         struct robust_list_head __user *head = curr->robust_list;
2941         struct robust_list __user *entry, *next_entry, *pending;
2942         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2943         unsigned int uninitialized_var(next_pi);
2944         unsigned long futex_offset;
2945         int rc;
2946
2947         if (!futex_cmpxchg_enabled)
2948                 return;
2949
2950         /*
2951          * Fetch the list head (which was registered earlier, via
2952          * sys_set_robust_list()):
2953          */
2954         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2955                 return;
2956         /*
2957          * Fetch the relative futex offset:
2958          */
2959         if (get_user(futex_offset, &head->futex_offset))
2960                 return;
2961         /*
2962          * Fetch any possibly pending lock-add first, and handle it
2963          * if it exists:
2964          */
2965         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2966                 return;
2967
2968         next_entry = NULL;      /* avoid warning with gcc */
2969         while (entry != &head->list) {
2970                 /*
2971                  * Fetch the next entry in the list before calling
2972                  * handle_futex_death:
2973                  */
2974                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2975                 /*
2976                  * A pending lock might already be on the list, so
2977                  * don't process it twice:
2978                  */
2979                 if (entry != pending)
2980                         if (handle_futex_death((void __user *)entry + futex_offset,
2981                                                 curr, pi))
2982                                 return;
2983                 if (rc)
2984                         return;
2985                 entry = next_entry;
2986                 pi = next_pi;
2987                 /*
2988                  * Avoid excessively long or circular lists:
2989                  */
2990                 if (!--limit)
2991                         break;
2992
2993                 cond_resched();
2994         }
2995
2996         if (pending)
2997                 handle_futex_death((void __user *)pending + futex_offset,
2998                                    curr, pip);
2999 }
3000
3001 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3002                 u32 __user *uaddr2, u32 val2, u32 val3)
3003 {
3004         int cmd = op & FUTEX_CMD_MASK;
3005         unsigned int flags = 0;
3006
3007         if (!(op & FUTEX_PRIVATE_FLAG))
3008                 flags |= FLAGS_SHARED;
3009
3010         if (op & FUTEX_CLOCK_REALTIME) {
3011                 flags |= FLAGS_CLOCKRT;
3012                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3013                         return -ENOSYS;
3014         }
3015
3016         switch (cmd) {
3017         case FUTEX_LOCK_PI:
3018         case FUTEX_UNLOCK_PI:
3019         case FUTEX_TRYLOCK_PI:
3020         case FUTEX_WAIT_REQUEUE_PI:
3021         case FUTEX_CMP_REQUEUE_PI:
3022                 if (!futex_cmpxchg_enabled)
3023                         return -ENOSYS;
3024         }
3025
3026         switch (cmd) {
3027         case FUTEX_WAIT:
3028                 val3 = FUTEX_BITSET_MATCH_ANY;
3029         case FUTEX_WAIT_BITSET:
3030                 return futex_wait(uaddr, flags, val, timeout, val3);
3031         case FUTEX_WAKE:
3032                 val3 = FUTEX_BITSET_MATCH_ANY;
3033         case FUTEX_WAKE_BITSET:
3034                 return futex_wake(uaddr, flags, val, val3);
3035         case FUTEX_REQUEUE:
3036                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3037         case FUTEX_CMP_REQUEUE:
3038                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3039         case FUTEX_WAKE_OP:
3040                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3041         case FUTEX_LOCK_PI:
3042                 return futex_lock_pi(uaddr, flags, timeout, 0);
3043         case FUTEX_UNLOCK_PI:
3044                 return futex_unlock_pi(uaddr, flags);
3045         case FUTEX_TRYLOCK_PI:
3046                 return futex_lock_pi(uaddr, flags, NULL, 1);
3047         case FUTEX_WAIT_REQUEUE_PI:
3048                 val3 = FUTEX_BITSET_MATCH_ANY;
3049                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3050                                              uaddr2);
3051         case FUTEX_CMP_REQUEUE_PI:
3052                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3053         }
3054         return -ENOSYS;
3055 }
3056
3057
3058 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3059                 struct timespec __user *, utime, u32 __user *, uaddr2,
3060                 u32, val3)
3061 {
3062         struct timespec ts;
3063         ktime_t t, *tp = NULL;
3064         u32 val2 = 0;
3065         int cmd = op & FUTEX_CMD_MASK;
3066
3067         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3068                       cmd == FUTEX_WAIT_BITSET ||
3069                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3070                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3071                         return -EFAULT;
3072                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3073                         return -EFAULT;
3074                 if (!timespec_valid(&ts))
3075                         return -EINVAL;
3076
3077                 t = timespec_to_ktime(ts);
3078                 if (cmd == FUTEX_WAIT)
3079                         t = ktime_add_safe(ktime_get(), t);
3080                 tp = &t;
3081         }
3082         /*
3083          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3084          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3085          */
3086         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3087             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3088                 val2 = (u32) (unsigned long) utime;
3089
3090         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3091 }
3092
3093 static void __init futex_detect_cmpxchg(void)
3094 {
3095 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3096         u32 curval;
3097
3098         /*
3099          * This will fail and we want it. Some arch implementations do
3100          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3101          * functionality. We want to know that before we call in any
3102          * of the complex code paths. Also we want to prevent
3103          * registration of robust lists in that case. NULL is
3104          * guaranteed to fault and we get -EFAULT on functional
3105          * implementation, the non-functional ones will return
3106          * -ENOSYS.
3107          */
3108         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3109                 futex_cmpxchg_enabled = 1;
3110 #endif
3111 }
3112
3113 static int __init futex_init(void)
3114 {
3115         unsigned int futex_shift;
3116         unsigned long i;
3117
3118 #if CONFIG_BASE_SMALL
3119         futex_hashsize = 16;
3120 #else
3121         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3122 #endif
3123
3124         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3125                                                futex_hashsize, 0,
3126                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3127                                                &futex_shift, NULL,
3128                                                futex_hashsize, futex_hashsize);
3129         futex_hashsize = 1UL << futex_shift;
3130
3131         futex_detect_cmpxchg();
3132
3133         for (i = 0; i < futex_hashsize; i++) {
3134                 atomic_set(&futex_queues[i].waiters, 0);
3135                 plist_head_init(&futex_queues[i].chain);
3136                 spin_lock_init(&futex_queues[i].lock);
3137         }
3138
3139         return 0;
3140 }
3141 __initcall(futex_init);