]> git.karo-electronics.de Git - karo-tx-linux.git/blob - kernel/time/timekeeping.c
eff94cb8e89e7bf45038eeb7aea0daab40380b40
[karo-tx-linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /*
122  * tk_clock_read - atomic clocksource read() helper
123  *
124  * This helper is necessary to use in the read paths because, while the
125  * seqlock ensures we don't return a bad value while structures are updated,
126  * it doesn't protect from potential crashes. There is the possibility that
127  * the tkr's clocksource may change between the read reference, and the
128  * clock reference passed to the read function.  This can cause crashes if
129  * the wrong clocksource is passed to the wrong read function.
130  * This isn't necessary to use when holding the timekeeper_lock or doing
131  * a read of the fast-timekeeper tkrs (which is protected by its own locking
132  * and update logic).
133  */
134 static inline u64 tk_clock_read(struct tk_read_base *tkr)
135 {
136         struct clocksource *clock = READ_ONCE(tkr->clock);
137
138         return clock->read(clock);
139 }
140
141 #ifdef CONFIG_DEBUG_TIMEKEEPING
142 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
143
144 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
145 {
146
147         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
148         const char *name = tk->tkr_mono.clock->name;
149
150         if (offset > max_cycles) {
151                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
152                                 offset, name, max_cycles);
153                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
154         } else {
155                 if (offset > (max_cycles >> 1)) {
156                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
157                                         offset, name, max_cycles >> 1);
158                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
159                 }
160         }
161
162         if (tk->underflow_seen) {
163                 if (jiffies - tk->last_warning > WARNING_FREQ) {
164                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
165                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
166                         printk_deferred("         Your kernel is probably still fine.\n");
167                         tk->last_warning = jiffies;
168                 }
169                 tk->underflow_seen = 0;
170         }
171
172         if (tk->overflow_seen) {
173                 if (jiffies - tk->last_warning > WARNING_FREQ) {
174                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
175                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
176                         printk_deferred("         Your kernel is probably still fine.\n");
177                         tk->last_warning = jiffies;
178                 }
179                 tk->overflow_seen = 0;
180         }
181 }
182
183 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
184 {
185         struct timekeeper *tk = &tk_core.timekeeper;
186         u64 now, last, mask, max, delta;
187         unsigned int seq;
188
189         /*
190          * Since we're called holding a seqlock, the data may shift
191          * under us while we're doing the calculation. This can cause
192          * false positives, since we'd note a problem but throw the
193          * results away. So nest another seqlock here to atomically
194          * grab the points we are checking with.
195          */
196         do {
197                 seq = read_seqcount_begin(&tk_core.seq);
198                 now = tk_clock_read(tkr);
199                 last = tkr->cycle_last;
200                 mask = tkr->mask;
201                 max = tkr->clock->max_cycles;
202         } while (read_seqcount_retry(&tk_core.seq, seq));
203
204         delta = clocksource_delta(now, last, mask);
205
206         /*
207          * Try to catch underflows by checking if we are seeing small
208          * mask-relative negative values.
209          */
210         if (unlikely((~delta & mask) < (mask >> 3))) {
211                 tk->underflow_seen = 1;
212                 delta = 0;
213         }
214
215         /* Cap delta value to the max_cycles values to avoid mult overflows */
216         if (unlikely(delta > max)) {
217                 tk->overflow_seen = 1;
218                 delta = tkr->clock->max_cycles;
219         }
220
221         return delta;
222 }
223 #else
224 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
225 {
226 }
227 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
228 {
229         u64 cycle_now, delta;
230
231         /* read clocksource */
232         cycle_now = tk_clock_read(tkr);
233
234         /* calculate the delta since the last update_wall_time */
235         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
236
237         return delta;
238 }
239 #endif
240
241 /**
242  * tk_setup_internals - Set up internals to use clocksource clock.
243  *
244  * @tk:         The target timekeeper to setup.
245  * @clock:              Pointer to clocksource.
246  *
247  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
248  * pair and interval request.
249  *
250  * Unless you're the timekeeping code, you should not be using this!
251  */
252 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
253 {
254         u64 interval;
255         u64 tmp, ntpinterval;
256         struct clocksource *old_clock;
257
258         ++tk->cs_was_changed_seq;
259         old_clock = tk->tkr_mono.clock;
260         tk->tkr_mono.clock = clock;
261         tk->tkr_mono.mask = clock->mask;
262         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
263
264         tk->tkr_raw.clock = clock;
265         tk->tkr_raw.mask = clock->mask;
266         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
267
268         /* Do the ns -> cycle conversion first, using original mult */
269         tmp = NTP_INTERVAL_LENGTH;
270         tmp <<= clock->shift;
271         ntpinterval = tmp;
272         tmp += clock->mult/2;
273         do_div(tmp, clock->mult);
274         if (tmp == 0)
275                 tmp = 1;
276
277         interval = (u64) tmp;
278         tk->cycle_interval = interval;
279
280         /* Go back from cycles -> shifted ns */
281         tk->xtime_interval = interval * clock->mult;
282         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
283         tk->raw_interval = (interval * clock->mult) >> clock->shift;
284
285          /* if changing clocks, convert xtime_nsec shift units */
286         if (old_clock) {
287                 int shift_change = clock->shift - old_clock->shift;
288                 if (shift_change < 0)
289                         tk->tkr_mono.xtime_nsec >>= -shift_change;
290                 else
291                         tk->tkr_mono.xtime_nsec <<= shift_change;
292         }
293         tk->tkr_raw.xtime_nsec = 0;
294
295         tk->tkr_mono.shift = clock->shift;
296         tk->tkr_raw.shift = clock->shift;
297
298         tk->ntp_error = 0;
299         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
300         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
301
302         /*
303          * The timekeeper keeps its own mult values for the currently
304          * active clocksource. These value will be adjusted via NTP
305          * to counteract clock drifting.
306          */
307         tk->tkr_mono.mult = clock->mult;
308         tk->tkr_raw.mult = clock->mult;
309         tk->ntp_err_mult = 0;
310 }
311
312 /* Timekeeper helper functions. */
313
314 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
315 static u32 default_arch_gettimeoffset(void) { return 0; }
316 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
317 #else
318 static inline u32 arch_gettimeoffset(void) { return 0; }
319 #endif
320
321 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
322 {
323         u64 nsec;
324
325         nsec = delta * tkr->mult + tkr->xtime_nsec;
326         nsec >>= tkr->shift;
327
328         /* If arch requires, add in get_arch_timeoffset() */
329         return nsec + arch_gettimeoffset();
330 }
331
332 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
333 {
334         u64 delta;
335
336         delta = timekeeping_get_delta(tkr);
337         return timekeeping_delta_to_ns(tkr, delta);
338 }
339
340 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
341 {
342         u64 delta;
343
344         /* calculate the delta since the last update_wall_time */
345         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
346         return timekeeping_delta_to_ns(tkr, delta);
347 }
348
349 /**
350  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
351  * @tkr: Timekeeping readout base from which we take the update
352  *
353  * We want to use this from any context including NMI and tracing /
354  * instrumenting the timekeeping code itself.
355  *
356  * Employ the latch technique; see @raw_write_seqcount_latch.
357  *
358  * So if a NMI hits the update of base[0] then it will use base[1]
359  * which is still consistent. In the worst case this can result is a
360  * slightly wrong timestamp (a few nanoseconds). See
361  * @ktime_get_mono_fast_ns.
362  */
363 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
364 {
365         struct tk_read_base *base = tkf->base;
366
367         /* Force readers off to base[1] */
368         raw_write_seqcount_latch(&tkf->seq);
369
370         /* Update base[0] */
371         memcpy(base, tkr, sizeof(*base));
372
373         /* Force readers back to base[0] */
374         raw_write_seqcount_latch(&tkf->seq);
375
376         /* Update base[1] */
377         memcpy(base + 1, base, sizeof(*base));
378 }
379
380 /**
381  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
382  *
383  * This timestamp is not guaranteed to be monotonic across an update.
384  * The timestamp is calculated by:
385  *
386  *      now = base_mono + clock_delta * slope
387  *
388  * So if the update lowers the slope, readers who are forced to the
389  * not yet updated second array are still using the old steeper slope.
390  *
391  * tmono
392  * ^
393  * |    o  n
394  * |   o n
395  * |  u
396  * | o
397  * |o
398  * |12345678---> reader order
399  *
400  * o = old slope
401  * u = update
402  * n = new slope
403  *
404  * So reader 6 will observe time going backwards versus reader 5.
405  *
406  * While other CPUs are likely to be able observe that, the only way
407  * for a CPU local observation is when an NMI hits in the middle of
408  * the update. Timestamps taken from that NMI context might be ahead
409  * of the following timestamps. Callers need to be aware of that and
410  * deal with it.
411  */
412 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
413 {
414         struct tk_read_base *tkr;
415         unsigned int seq;
416         u64 now;
417
418         do {
419                 seq = raw_read_seqcount_latch(&tkf->seq);
420                 tkr = tkf->base + (seq & 0x01);
421                 now = ktime_to_ns(tkr->base);
422
423                 now += timekeeping_delta_to_ns(tkr,
424                                 clocksource_delta(
425                                         tk_clock_read(tkr),
426                                         tkr->cycle_last,
427                                         tkr->mask));
428         } while (read_seqcount_retry(&tkf->seq, seq));
429
430         return now;
431 }
432
433 u64 ktime_get_mono_fast_ns(void)
434 {
435         return __ktime_get_fast_ns(&tk_fast_mono);
436 }
437 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
438
439 u64 ktime_get_raw_fast_ns(void)
440 {
441         return __ktime_get_fast_ns(&tk_fast_raw);
442 }
443 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
444
445 /**
446  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
447  *
448  * To keep it NMI safe since we're accessing from tracing, we're not using a
449  * separate timekeeper with updates to monotonic clock and boot offset
450  * protected with seqlocks. This has the following minor side effects:
451  *
452  * (1) Its possible that a timestamp be taken after the boot offset is updated
453  * but before the timekeeper is updated. If this happens, the new boot offset
454  * is added to the old timekeeping making the clock appear to update slightly
455  * earlier:
456  *    CPU 0                                        CPU 1
457  *    timekeeping_inject_sleeptime64()
458  *    __timekeeping_inject_sleeptime(tk, delta);
459  *                                                 timestamp();
460  *    timekeeping_update(tk, TK_CLEAR_NTP...);
461  *
462  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
463  * partially updated.  Since the tk->offs_boot update is a rare event, this
464  * should be a rare occurrence which postprocessing should be able to handle.
465  */
466 u64 notrace ktime_get_boot_fast_ns(void)
467 {
468         struct timekeeper *tk = &tk_core.timekeeper;
469
470         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
471 }
472 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
473
474 /* Suspend-time cycles value for halted fast timekeeper. */
475 static u64 cycles_at_suspend;
476
477 static u64 dummy_clock_read(struct clocksource *cs)
478 {
479         return cycles_at_suspend;
480 }
481
482 static struct clocksource dummy_clock = {
483         .read = dummy_clock_read,
484 };
485
486 /**
487  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
488  * @tk: Timekeeper to snapshot.
489  *
490  * It generally is unsafe to access the clocksource after timekeeping has been
491  * suspended, so take a snapshot of the readout base of @tk and use it as the
492  * fast timekeeper's readout base while suspended.  It will return the same
493  * number of cycles every time until timekeeping is resumed at which time the
494  * proper readout base for the fast timekeeper will be restored automatically.
495  */
496 static void halt_fast_timekeeper(struct timekeeper *tk)
497 {
498         static struct tk_read_base tkr_dummy;
499         struct tk_read_base *tkr = &tk->tkr_mono;
500
501         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
502         cycles_at_suspend = tk_clock_read(tkr);
503         tkr_dummy.clock = &dummy_clock;
504         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
505
506         tkr = &tk->tkr_raw;
507         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
508         tkr_dummy.clock = &dummy_clock;
509         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
510 }
511
512 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
513
514 static inline void update_vsyscall(struct timekeeper *tk)
515 {
516         struct timespec xt, wm;
517
518         xt = timespec64_to_timespec(tk_xtime(tk));
519         wm = timespec64_to_timespec(tk->wall_to_monotonic);
520         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
521                             tk->tkr_mono.cycle_last);
522 }
523
524 static inline void old_vsyscall_fixup(struct timekeeper *tk)
525 {
526         s64 remainder;
527
528         /*
529         * Store only full nanoseconds into xtime_nsec after rounding
530         * it up and add the remainder to the error difference.
531         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
532         * by truncating the remainder in vsyscalls. However, it causes
533         * additional work to be done in timekeeping_adjust(). Once
534         * the vsyscall implementations are converted to use xtime_nsec
535         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
536         * users are removed, this can be killed.
537         */
538         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
539         if (remainder != 0) {
540                 tk->tkr_mono.xtime_nsec -= remainder;
541                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
542                 tk->ntp_error += remainder << tk->ntp_error_shift;
543                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
544         }
545 }
546 #else
547 #define old_vsyscall_fixup(tk)
548 #endif
549
550 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
551
552 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
553 {
554         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
555 }
556
557 /**
558  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
559  */
560 int pvclock_gtod_register_notifier(struct notifier_block *nb)
561 {
562         struct timekeeper *tk = &tk_core.timekeeper;
563         unsigned long flags;
564         int ret;
565
566         raw_spin_lock_irqsave(&timekeeper_lock, flags);
567         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
568         update_pvclock_gtod(tk, true);
569         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
570
571         return ret;
572 }
573 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
574
575 /**
576  * pvclock_gtod_unregister_notifier - unregister a pvclock
577  * timedata update listener
578  */
579 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
580 {
581         unsigned long flags;
582         int ret;
583
584         raw_spin_lock_irqsave(&timekeeper_lock, flags);
585         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
586         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
587
588         return ret;
589 }
590 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
591
592 /*
593  * tk_update_leap_state - helper to update the next_leap_ktime
594  */
595 static inline void tk_update_leap_state(struct timekeeper *tk)
596 {
597         tk->next_leap_ktime = ntp_get_next_leap();
598         if (tk->next_leap_ktime != KTIME_MAX)
599                 /* Convert to monotonic time */
600                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
601 }
602
603 /*
604  * Update the ktime_t based scalar nsec members of the timekeeper
605  */
606 static inline void tk_update_ktime_data(struct timekeeper *tk)
607 {
608         u64 seconds;
609         u32 nsec;
610
611         /*
612          * The xtime based monotonic readout is:
613          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
614          * The ktime based monotonic readout is:
615          *      nsec = base_mono + now();
616          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
617          */
618         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
619         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
620         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
621
622         /* Update the monotonic raw base */
623         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
624
625         /*
626          * The sum of the nanoseconds portions of xtime and
627          * wall_to_monotonic can be greater/equal one second. Take
628          * this into account before updating tk->ktime_sec.
629          */
630         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
631         if (nsec >= NSEC_PER_SEC)
632                 seconds++;
633         tk->ktime_sec = seconds;
634 }
635
636 /* must hold timekeeper_lock */
637 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
638 {
639         if (action & TK_CLEAR_NTP) {
640                 tk->ntp_error = 0;
641                 ntp_clear();
642         }
643
644         tk_update_leap_state(tk);
645         tk_update_ktime_data(tk);
646
647         update_vsyscall(tk);
648         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
649
650         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
651         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
652
653         if (action & TK_CLOCK_WAS_SET)
654                 tk->clock_was_set_seq++;
655         /*
656          * The mirroring of the data to the shadow-timekeeper needs
657          * to happen last here to ensure we don't over-write the
658          * timekeeper structure on the next update with stale data
659          */
660         if (action & TK_MIRROR)
661                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
662                        sizeof(tk_core.timekeeper));
663 }
664
665 /**
666  * timekeeping_forward_now - update clock to the current time
667  *
668  * Forward the current clock to update its state since the last call to
669  * update_wall_time(). This is useful before significant clock changes,
670  * as it avoids having to deal with this time offset explicitly.
671  */
672 static void timekeeping_forward_now(struct timekeeper *tk)
673 {
674         u64 cycle_now, delta;
675         u64 nsec;
676
677         cycle_now = tk_clock_read(&tk->tkr_mono);
678         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
679         tk->tkr_mono.cycle_last = cycle_now;
680         tk->tkr_raw.cycle_last  = cycle_now;
681
682         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
683
684         /* If arch requires, add in get_arch_timeoffset() */
685         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
686
687         tk_normalize_xtime(tk);
688
689         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
690         timespec64_add_ns(&tk->raw_time, nsec);
691 }
692
693 /**
694  * __getnstimeofday64 - Returns the time of day in a timespec64.
695  * @ts:         pointer to the timespec to be set
696  *
697  * Updates the time of day in the timespec.
698  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
699  */
700 int __getnstimeofday64(struct timespec64 *ts)
701 {
702         struct timekeeper *tk = &tk_core.timekeeper;
703         unsigned long seq;
704         u64 nsecs;
705
706         do {
707                 seq = read_seqcount_begin(&tk_core.seq);
708
709                 ts->tv_sec = tk->xtime_sec;
710                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
711
712         } while (read_seqcount_retry(&tk_core.seq, seq));
713
714         ts->tv_nsec = 0;
715         timespec64_add_ns(ts, nsecs);
716
717         /*
718          * Do not bail out early, in case there were callers still using
719          * the value, even in the face of the WARN_ON.
720          */
721         if (unlikely(timekeeping_suspended))
722                 return -EAGAIN;
723         return 0;
724 }
725 EXPORT_SYMBOL(__getnstimeofday64);
726
727 /**
728  * getnstimeofday64 - Returns the time of day in a timespec64.
729  * @ts:         pointer to the timespec64 to be set
730  *
731  * Returns the time of day in a timespec64 (WARN if suspended).
732  */
733 void getnstimeofday64(struct timespec64 *ts)
734 {
735         WARN_ON(__getnstimeofday64(ts));
736 }
737 EXPORT_SYMBOL(getnstimeofday64);
738
739 ktime_t ktime_get(void)
740 {
741         struct timekeeper *tk = &tk_core.timekeeper;
742         unsigned int seq;
743         ktime_t base;
744         u64 nsecs;
745
746         WARN_ON(timekeeping_suspended);
747
748         do {
749                 seq = read_seqcount_begin(&tk_core.seq);
750                 base = tk->tkr_mono.base;
751                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
752
753         } while (read_seqcount_retry(&tk_core.seq, seq));
754
755         return ktime_add_ns(base, nsecs);
756 }
757 EXPORT_SYMBOL_GPL(ktime_get);
758
759 u32 ktime_get_resolution_ns(void)
760 {
761         struct timekeeper *tk = &tk_core.timekeeper;
762         unsigned int seq;
763         u32 nsecs;
764
765         WARN_ON(timekeeping_suspended);
766
767         do {
768                 seq = read_seqcount_begin(&tk_core.seq);
769                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
770         } while (read_seqcount_retry(&tk_core.seq, seq));
771
772         return nsecs;
773 }
774 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
775
776 static ktime_t *offsets[TK_OFFS_MAX] = {
777         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
778         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
779         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
780 };
781
782 ktime_t ktime_get_with_offset(enum tk_offsets offs)
783 {
784         struct timekeeper *tk = &tk_core.timekeeper;
785         unsigned int seq;
786         ktime_t base, *offset = offsets[offs];
787         u64 nsecs;
788
789         WARN_ON(timekeeping_suspended);
790
791         do {
792                 seq = read_seqcount_begin(&tk_core.seq);
793                 base = ktime_add(tk->tkr_mono.base, *offset);
794                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
795
796         } while (read_seqcount_retry(&tk_core.seq, seq));
797
798         return ktime_add_ns(base, nsecs);
799
800 }
801 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
802
803 /**
804  * ktime_mono_to_any() - convert mononotic time to any other time
805  * @tmono:      time to convert.
806  * @offs:       which offset to use
807  */
808 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
809 {
810         ktime_t *offset = offsets[offs];
811         unsigned long seq;
812         ktime_t tconv;
813
814         do {
815                 seq = read_seqcount_begin(&tk_core.seq);
816                 tconv = ktime_add(tmono, *offset);
817         } while (read_seqcount_retry(&tk_core.seq, seq));
818
819         return tconv;
820 }
821 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
822
823 /**
824  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
825  */
826 ktime_t ktime_get_raw(void)
827 {
828         struct timekeeper *tk = &tk_core.timekeeper;
829         unsigned int seq;
830         ktime_t base;
831         u64 nsecs;
832
833         do {
834                 seq = read_seqcount_begin(&tk_core.seq);
835                 base = tk->tkr_raw.base;
836                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
837
838         } while (read_seqcount_retry(&tk_core.seq, seq));
839
840         return ktime_add_ns(base, nsecs);
841 }
842 EXPORT_SYMBOL_GPL(ktime_get_raw);
843
844 /**
845  * ktime_get_ts64 - get the monotonic clock in timespec64 format
846  * @ts:         pointer to timespec variable
847  *
848  * The function calculates the monotonic clock from the realtime
849  * clock and the wall_to_monotonic offset and stores the result
850  * in normalized timespec64 format in the variable pointed to by @ts.
851  */
852 void ktime_get_ts64(struct timespec64 *ts)
853 {
854         struct timekeeper *tk = &tk_core.timekeeper;
855         struct timespec64 tomono;
856         unsigned int seq;
857         u64 nsec;
858
859         WARN_ON(timekeeping_suspended);
860
861         do {
862                 seq = read_seqcount_begin(&tk_core.seq);
863                 ts->tv_sec = tk->xtime_sec;
864                 nsec = timekeeping_get_ns(&tk->tkr_mono);
865                 tomono = tk->wall_to_monotonic;
866
867         } while (read_seqcount_retry(&tk_core.seq, seq));
868
869         ts->tv_sec += tomono.tv_sec;
870         ts->tv_nsec = 0;
871         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
872 }
873 EXPORT_SYMBOL_GPL(ktime_get_ts64);
874
875 /**
876  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
877  *
878  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
879  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
880  * works on both 32 and 64 bit systems. On 32 bit systems the readout
881  * covers ~136 years of uptime which should be enough to prevent
882  * premature wrap arounds.
883  */
884 time64_t ktime_get_seconds(void)
885 {
886         struct timekeeper *tk = &tk_core.timekeeper;
887
888         WARN_ON(timekeeping_suspended);
889         return tk->ktime_sec;
890 }
891 EXPORT_SYMBOL_GPL(ktime_get_seconds);
892
893 /**
894  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
895  *
896  * Returns the wall clock seconds since 1970. This replaces the
897  * get_seconds() interface which is not y2038 safe on 32bit systems.
898  *
899  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
900  * 32bit systems the access must be protected with the sequence
901  * counter to provide "atomic" access to the 64bit tk->xtime_sec
902  * value.
903  */
904 time64_t ktime_get_real_seconds(void)
905 {
906         struct timekeeper *tk = &tk_core.timekeeper;
907         time64_t seconds;
908         unsigned int seq;
909
910         if (IS_ENABLED(CONFIG_64BIT))
911                 return tk->xtime_sec;
912
913         do {
914                 seq = read_seqcount_begin(&tk_core.seq);
915                 seconds = tk->xtime_sec;
916
917         } while (read_seqcount_retry(&tk_core.seq, seq));
918
919         return seconds;
920 }
921 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
922
923 /**
924  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
925  * but without the sequence counter protect. This internal function
926  * is called just when timekeeping lock is already held.
927  */
928 time64_t __ktime_get_real_seconds(void)
929 {
930         struct timekeeper *tk = &tk_core.timekeeper;
931
932         return tk->xtime_sec;
933 }
934
935 /**
936  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
937  * @systime_snapshot:   pointer to struct receiving the system time snapshot
938  */
939 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
940 {
941         struct timekeeper *tk = &tk_core.timekeeper;
942         unsigned long seq;
943         ktime_t base_raw;
944         ktime_t base_real;
945         u64 nsec_raw;
946         u64 nsec_real;
947         u64 now;
948
949         WARN_ON_ONCE(timekeeping_suspended);
950
951         do {
952                 seq = read_seqcount_begin(&tk_core.seq);
953                 now = tk_clock_read(&tk->tkr_mono);
954                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
955                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
956                 base_real = ktime_add(tk->tkr_mono.base,
957                                       tk_core.timekeeper.offs_real);
958                 base_raw = tk->tkr_raw.base;
959                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
960                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
961         } while (read_seqcount_retry(&tk_core.seq, seq));
962
963         systime_snapshot->cycles = now;
964         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
965         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
966 }
967 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
968
969 /* Scale base by mult/div checking for overflow */
970 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
971 {
972         u64 tmp, rem;
973
974         tmp = div64_u64_rem(*base, div, &rem);
975
976         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
977             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
978                 return -EOVERFLOW;
979         tmp *= mult;
980         rem *= mult;
981
982         do_div(rem, div);
983         *base = tmp + rem;
984         return 0;
985 }
986
987 /**
988  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
989  * @history:                    Snapshot representing start of history
990  * @partial_history_cycles:     Cycle offset into history (fractional part)
991  * @total_history_cycles:       Total history length in cycles
992  * @discontinuity:              True indicates clock was set on history period
993  * @ts:                         Cross timestamp that should be adjusted using
994  *      partial/total ratio
995  *
996  * Helper function used by get_device_system_crosststamp() to correct the
997  * crosstimestamp corresponding to the start of the current interval to the
998  * system counter value (timestamp point) provided by the driver. The
999  * total_history_* quantities are the total history starting at the provided
1000  * reference point and ending at the start of the current interval. The cycle
1001  * count between the driver timestamp point and the start of the current
1002  * interval is partial_history_cycles.
1003  */
1004 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1005                                          u64 partial_history_cycles,
1006                                          u64 total_history_cycles,
1007                                          bool discontinuity,
1008                                          struct system_device_crosststamp *ts)
1009 {
1010         struct timekeeper *tk = &tk_core.timekeeper;
1011         u64 corr_raw, corr_real;
1012         bool interp_forward;
1013         int ret;
1014
1015         if (total_history_cycles == 0 || partial_history_cycles == 0)
1016                 return 0;
1017
1018         /* Interpolate shortest distance from beginning or end of history */
1019         interp_forward = partial_history_cycles > total_history_cycles / 2;
1020         partial_history_cycles = interp_forward ?
1021                 total_history_cycles - partial_history_cycles :
1022                 partial_history_cycles;
1023
1024         /*
1025          * Scale the monotonic raw time delta by:
1026          *      partial_history_cycles / total_history_cycles
1027          */
1028         corr_raw = (u64)ktime_to_ns(
1029                 ktime_sub(ts->sys_monoraw, history->raw));
1030         ret = scale64_check_overflow(partial_history_cycles,
1031                                      total_history_cycles, &corr_raw);
1032         if (ret)
1033                 return ret;
1034
1035         /*
1036          * If there is a discontinuity in the history, scale monotonic raw
1037          *      correction by:
1038          *      mult(real)/mult(raw) yielding the realtime correction
1039          * Otherwise, calculate the realtime correction similar to monotonic
1040          *      raw calculation
1041          */
1042         if (discontinuity) {
1043                 corr_real = mul_u64_u32_div
1044                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1045         } else {
1046                 corr_real = (u64)ktime_to_ns(
1047                         ktime_sub(ts->sys_realtime, history->real));
1048                 ret = scale64_check_overflow(partial_history_cycles,
1049                                              total_history_cycles, &corr_real);
1050                 if (ret)
1051                         return ret;
1052         }
1053
1054         /* Fixup monotonic raw and real time time values */
1055         if (interp_forward) {
1056                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1057                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1058         } else {
1059                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1060                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1061         }
1062
1063         return 0;
1064 }
1065
1066 /*
1067  * cycle_between - true if test occurs chronologically between before and after
1068  */
1069 static bool cycle_between(u64 before, u64 test, u64 after)
1070 {
1071         if (test > before && test < after)
1072                 return true;
1073         if (test < before && before > after)
1074                 return true;
1075         return false;
1076 }
1077
1078 /**
1079  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1080  * @get_time_fn:        Callback to get simultaneous device time and
1081  *      system counter from the device driver
1082  * @ctx:                Context passed to get_time_fn()
1083  * @history_begin:      Historical reference point used to interpolate system
1084  *      time when counter provided by the driver is before the current interval
1085  * @xtstamp:            Receives simultaneously captured system and device time
1086  *
1087  * Reads a timestamp from a device and correlates it to system time
1088  */
1089 int get_device_system_crosststamp(int (*get_time_fn)
1090                                   (ktime_t *device_time,
1091                                    struct system_counterval_t *sys_counterval,
1092                                    void *ctx),
1093                                   void *ctx,
1094                                   struct system_time_snapshot *history_begin,
1095                                   struct system_device_crosststamp *xtstamp)
1096 {
1097         struct system_counterval_t system_counterval;
1098         struct timekeeper *tk = &tk_core.timekeeper;
1099         u64 cycles, now, interval_start;
1100         unsigned int clock_was_set_seq = 0;
1101         ktime_t base_real, base_raw;
1102         u64 nsec_real, nsec_raw;
1103         u8 cs_was_changed_seq;
1104         unsigned long seq;
1105         bool do_interp;
1106         int ret;
1107
1108         do {
1109                 seq = read_seqcount_begin(&tk_core.seq);
1110                 /*
1111                  * Try to synchronously capture device time and a system
1112                  * counter value calling back into the device driver
1113                  */
1114                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1115                 if (ret)
1116                         return ret;
1117
1118                 /*
1119                  * Verify that the clocksource associated with the captured
1120                  * system counter value is the same as the currently installed
1121                  * timekeeper clocksource
1122                  */
1123                 if (tk->tkr_mono.clock != system_counterval.cs)
1124                         return -ENODEV;
1125                 cycles = system_counterval.cycles;
1126
1127                 /*
1128                  * Check whether the system counter value provided by the
1129                  * device driver is on the current timekeeping interval.
1130                  */
1131                 now = tk_clock_read(&tk->tkr_mono);
1132                 interval_start = tk->tkr_mono.cycle_last;
1133                 if (!cycle_between(interval_start, cycles, now)) {
1134                         clock_was_set_seq = tk->clock_was_set_seq;
1135                         cs_was_changed_seq = tk->cs_was_changed_seq;
1136                         cycles = interval_start;
1137                         do_interp = true;
1138                 } else {
1139                         do_interp = false;
1140                 }
1141
1142                 base_real = ktime_add(tk->tkr_mono.base,
1143                                       tk_core.timekeeper.offs_real);
1144                 base_raw = tk->tkr_raw.base;
1145
1146                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1147                                                      system_counterval.cycles);
1148                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1149                                                     system_counterval.cycles);
1150         } while (read_seqcount_retry(&tk_core.seq, seq));
1151
1152         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1153         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1154
1155         /*
1156          * Interpolate if necessary, adjusting back from the start of the
1157          * current interval
1158          */
1159         if (do_interp) {
1160                 u64 partial_history_cycles, total_history_cycles;
1161                 bool discontinuity;
1162
1163                 /*
1164                  * Check that the counter value occurs after the provided
1165                  * history reference and that the history doesn't cross a
1166                  * clocksource change
1167                  */
1168                 if (!history_begin ||
1169                     !cycle_between(history_begin->cycles,
1170                                    system_counterval.cycles, cycles) ||
1171                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1172                         return -EINVAL;
1173                 partial_history_cycles = cycles - system_counterval.cycles;
1174                 total_history_cycles = cycles - history_begin->cycles;
1175                 discontinuity =
1176                         history_begin->clock_was_set_seq != clock_was_set_seq;
1177
1178                 ret = adjust_historical_crosststamp(history_begin,
1179                                                     partial_history_cycles,
1180                                                     total_history_cycles,
1181                                                     discontinuity, xtstamp);
1182                 if (ret)
1183                         return ret;
1184         }
1185
1186         return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1189
1190 /**
1191  * do_gettimeofday - Returns the time of day in a timeval
1192  * @tv:         pointer to the timeval to be set
1193  *
1194  * NOTE: Users should be converted to using getnstimeofday()
1195  */
1196 void do_gettimeofday(struct timeval *tv)
1197 {
1198         struct timespec64 now;
1199
1200         getnstimeofday64(&now);
1201         tv->tv_sec = now.tv_sec;
1202         tv->tv_usec = now.tv_nsec/1000;
1203 }
1204 EXPORT_SYMBOL(do_gettimeofday);
1205
1206 /**
1207  * do_settimeofday64 - Sets the time of day.
1208  * @ts:     pointer to the timespec64 variable containing the new time
1209  *
1210  * Sets the time of day to the new time and update NTP and notify hrtimers
1211  */
1212 int do_settimeofday64(const struct timespec64 *ts)
1213 {
1214         struct timekeeper *tk = &tk_core.timekeeper;
1215         struct timespec64 ts_delta, xt;
1216         unsigned long flags;
1217         int ret = 0;
1218
1219         if (!timespec64_valid_strict(ts))
1220                 return -EINVAL;
1221
1222         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1223         write_seqcount_begin(&tk_core.seq);
1224
1225         timekeeping_forward_now(tk);
1226
1227         xt = tk_xtime(tk);
1228         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1229         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1230
1231         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1232                 ret = -EINVAL;
1233                 goto out;
1234         }
1235
1236         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1237
1238         tk_set_xtime(tk, ts);
1239 out:
1240         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1241
1242         write_seqcount_end(&tk_core.seq);
1243         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1244
1245         /* signal hrtimers about time change */
1246         clock_was_set();
1247
1248         return ret;
1249 }
1250 EXPORT_SYMBOL(do_settimeofday64);
1251
1252 /**
1253  * timekeeping_inject_offset - Adds or subtracts from the current time.
1254  * @tv:         pointer to the timespec variable containing the offset
1255  *
1256  * Adds or subtracts an offset value from the current time.
1257  */
1258 int timekeeping_inject_offset(struct timespec *ts)
1259 {
1260         struct timekeeper *tk = &tk_core.timekeeper;
1261         unsigned long flags;
1262         struct timespec64 ts64, tmp;
1263         int ret = 0;
1264
1265         if (!timespec_inject_offset_valid(ts))
1266                 return -EINVAL;
1267
1268         ts64 = timespec_to_timespec64(*ts);
1269
1270         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1271         write_seqcount_begin(&tk_core.seq);
1272
1273         timekeeping_forward_now(tk);
1274
1275         /* Make sure the proposed value is valid */
1276         tmp = timespec64_add(tk_xtime(tk),  ts64);
1277         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1278             !timespec64_valid_strict(&tmp)) {
1279                 ret = -EINVAL;
1280                 goto error;
1281         }
1282
1283         tk_xtime_add(tk, &ts64);
1284         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1285
1286 error: /* even if we error out, we forwarded the time, so call update */
1287         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1288
1289         write_seqcount_end(&tk_core.seq);
1290         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1291
1292         /* signal hrtimers about time change */
1293         clock_was_set();
1294
1295         return ret;
1296 }
1297 EXPORT_SYMBOL(timekeeping_inject_offset);
1298
1299 /**
1300  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1301  *
1302  */
1303 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1304 {
1305         tk->tai_offset = tai_offset;
1306         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1307 }
1308
1309 /**
1310  * change_clocksource - Swaps clocksources if a new one is available
1311  *
1312  * Accumulates current time interval and initializes new clocksource
1313  */
1314 static int change_clocksource(void *data)
1315 {
1316         struct timekeeper *tk = &tk_core.timekeeper;
1317         struct clocksource *new, *old;
1318         unsigned long flags;
1319
1320         new = (struct clocksource *) data;
1321
1322         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1323         write_seqcount_begin(&tk_core.seq);
1324
1325         timekeeping_forward_now(tk);
1326         /*
1327          * If the cs is in module, get a module reference. Succeeds
1328          * for built-in code (owner == NULL) as well.
1329          */
1330         if (try_module_get(new->owner)) {
1331                 if (!new->enable || new->enable(new) == 0) {
1332                         old = tk->tkr_mono.clock;
1333                         tk_setup_internals(tk, new);
1334                         if (old->disable)
1335                                 old->disable(old);
1336                         module_put(old->owner);
1337                 } else {
1338                         module_put(new->owner);
1339                 }
1340         }
1341         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1342
1343         write_seqcount_end(&tk_core.seq);
1344         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1345
1346         return 0;
1347 }
1348
1349 /**
1350  * timekeeping_notify - Install a new clock source
1351  * @clock:              pointer to the clock source
1352  *
1353  * This function is called from clocksource.c after a new, better clock
1354  * source has been registered. The caller holds the clocksource_mutex.
1355  */
1356 int timekeeping_notify(struct clocksource *clock)
1357 {
1358         struct timekeeper *tk = &tk_core.timekeeper;
1359
1360         if (tk->tkr_mono.clock == clock)
1361                 return 0;
1362         stop_machine(change_clocksource, clock, NULL);
1363         tick_clock_notify();
1364         return tk->tkr_mono.clock == clock ? 0 : -1;
1365 }
1366
1367 /**
1368  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1369  * @ts:         pointer to the timespec64 to be set
1370  *
1371  * Returns the raw monotonic time (completely un-modified by ntp)
1372  */
1373 void getrawmonotonic64(struct timespec64 *ts)
1374 {
1375         struct timekeeper *tk = &tk_core.timekeeper;
1376         struct timespec64 ts64;
1377         unsigned long seq;
1378         u64 nsecs;
1379
1380         do {
1381                 seq = read_seqcount_begin(&tk_core.seq);
1382                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1383                 ts64 = tk->raw_time;
1384
1385         } while (read_seqcount_retry(&tk_core.seq, seq));
1386
1387         timespec64_add_ns(&ts64, nsecs);
1388         *ts = ts64;
1389 }
1390 EXPORT_SYMBOL(getrawmonotonic64);
1391
1392
1393 /**
1394  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1395  */
1396 int timekeeping_valid_for_hres(void)
1397 {
1398         struct timekeeper *tk = &tk_core.timekeeper;
1399         unsigned long seq;
1400         int ret;
1401
1402         do {
1403                 seq = read_seqcount_begin(&tk_core.seq);
1404
1405                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1406
1407         } while (read_seqcount_retry(&tk_core.seq, seq));
1408
1409         return ret;
1410 }
1411
1412 /**
1413  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1414  */
1415 u64 timekeeping_max_deferment(void)
1416 {
1417         struct timekeeper *tk = &tk_core.timekeeper;
1418         unsigned long seq;
1419         u64 ret;
1420
1421         do {
1422                 seq = read_seqcount_begin(&tk_core.seq);
1423
1424                 ret = tk->tkr_mono.clock->max_idle_ns;
1425
1426         } while (read_seqcount_retry(&tk_core.seq, seq));
1427
1428         return ret;
1429 }
1430
1431 /**
1432  * read_persistent_clock -  Return time from the persistent clock.
1433  *
1434  * Weak dummy function for arches that do not yet support it.
1435  * Reads the time from the battery backed persistent clock.
1436  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1437  *
1438  *  XXX - Do be sure to remove it once all arches implement it.
1439  */
1440 void __weak read_persistent_clock(struct timespec *ts)
1441 {
1442         ts->tv_sec = 0;
1443         ts->tv_nsec = 0;
1444 }
1445
1446 void __weak read_persistent_clock64(struct timespec64 *ts64)
1447 {
1448         struct timespec ts;
1449
1450         read_persistent_clock(&ts);
1451         *ts64 = timespec_to_timespec64(ts);
1452 }
1453
1454 /**
1455  * read_boot_clock64 -  Return time of the system start.
1456  *
1457  * Weak dummy function for arches that do not yet support it.
1458  * Function to read the exact time the system has been started.
1459  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1460  *
1461  *  XXX - Do be sure to remove it once all arches implement it.
1462  */
1463 void __weak read_boot_clock64(struct timespec64 *ts)
1464 {
1465         ts->tv_sec = 0;
1466         ts->tv_nsec = 0;
1467 }
1468
1469 /* Flag for if timekeeping_resume() has injected sleeptime */
1470 static bool sleeptime_injected;
1471
1472 /* Flag for if there is a persistent clock on this platform */
1473 static bool persistent_clock_exists;
1474
1475 /*
1476  * timekeeping_init - Initializes the clocksource and common timekeeping values
1477  */
1478 void __init timekeeping_init(void)
1479 {
1480         struct timekeeper *tk = &tk_core.timekeeper;
1481         struct clocksource *clock;
1482         unsigned long flags;
1483         struct timespec64 now, boot, tmp;
1484
1485         read_persistent_clock64(&now);
1486         if (!timespec64_valid_strict(&now)) {
1487                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1488                         "         Check your CMOS/BIOS settings.\n");
1489                 now.tv_sec = 0;
1490                 now.tv_nsec = 0;
1491         } else if (now.tv_sec || now.tv_nsec)
1492                 persistent_clock_exists = true;
1493
1494         read_boot_clock64(&boot);
1495         if (!timespec64_valid_strict(&boot)) {
1496                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1497                         "         Check your CMOS/BIOS settings.\n");
1498                 boot.tv_sec = 0;
1499                 boot.tv_nsec = 0;
1500         }
1501
1502         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1503         write_seqcount_begin(&tk_core.seq);
1504         ntp_init();
1505
1506         clock = clocksource_default_clock();
1507         if (clock->enable)
1508                 clock->enable(clock);
1509         tk_setup_internals(tk, clock);
1510
1511         tk_set_xtime(tk, &now);
1512         tk->raw_time.tv_sec = 0;
1513         tk->raw_time.tv_nsec = 0;
1514         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1515                 boot = tk_xtime(tk);
1516
1517         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1518         tk_set_wall_to_mono(tk, tmp);
1519
1520         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1521
1522         write_seqcount_end(&tk_core.seq);
1523         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1524 }
1525
1526 /* time in seconds when suspend began for persistent clock */
1527 static struct timespec64 timekeeping_suspend_time;
1528
1529 /**
1530  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1531  * @delta: pointer to a timespec delta value
1532  *
1533  * Takes a timespec offset measuring a suspend interval and properly
1534  * adds the sleep offset to the timekeeping variables.
1535  */
1536 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1537                                            struct timespec64 *delta)
1538 {
1539         if (!timespec64_valid_strict(delta)) {
1540                 printk_deferred(KERN_WARNING
1541                                 "__timekeeping_inject_sleeptime: Invalid "
1542                                 "sleep delta value!\n");
1543                 return;
1544         }
1545         tk_xtime_add(tk, delta);
1546         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1547         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1548         tk_debug_account_sleep_time(delta);
1549 }
1550
1551 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1552 /**
1553  * We have three kinds of time sources to use for sleep time
1554  * injection, the preference order is:
1555  * 1) non-stop clocksource
1556  * 2) persistent clock (ie: RTC accessible when irqs are off)
1557  * 3) RTC
1558  *
1559  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1560  * If system has neither 1) nor 2), 3) will be used finally.
1561  *
1562  *
1563  * If timekeeping has injected sleeptime via either 1) or 2),
1564  * 3) becomes needless, so in this case we don't need to call
1565  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1566  * means.
1567  */
1568 bool timekeeping_rtc_skipresume(void)
1569 {
1570         return sleeptime_injected;
1571 }
1572
1573 /**
1574  * 1) can be determined whether to use or not only when doing
1575  * timekeeping_resume() which is invoked after rtc_suspend(),
1576  * so we can't skip rtc_suspend() surely if system has 1).
1577  *
1578  * But if system has 2), 2) will definitely be used, so in this
1579  * case we don't need to call rtc_suspend(), and this is what
1580  * timekeeping_rtc_skipsuspend() means.
1581  */
1582 bool timekeeping_rtc_skipsuspend(void)
1583 {
1584         return persistent_clock_exists;
1585 }
1586
1587 /**
1588  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1589  * @delta: pointer to a timespec64 delta value
1590  *
1591  * This hook is for architectures that cannot support read_persistent_clock64
1592  * because their RTC/persistent clock is only accessible when irqs are enabled.
1593  * and also don't have an effective nonstop clocksource.
1594  *
1595  * This function should only be called by rtc_resume(), and allows
1596  * a suspend offset to be injected into the timekeeping values.
1597  */
1598 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1599 {
1600         struct timekeeper *tk = &tk_core.timekeeper;
1601         unsigned long flags;
1602
1603         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1604         write_seqcount_begin(&tk_core.seq);
1605
1606         timekeeping_forward_now(tk);
1607
1608         __timekeeping_inject_sleeptime(tk, delta);
1609
1610         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1611
1612         write_seqcount_end(&tk_core.seq);
1613         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1614
1615         /* signal hrtimers about time change */
1616         clock_was_set();
1617 }
1618 #endif
1619
1620 /**
1621  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1622  */
1623 void timekeeping_resume(void)
1624 {
1625         struct timekeeper *tk = &tk_core.timekeeper;
1626         struct clocksource *clock = tk->tkr_mono.clock;
1627         unsigned long flags;
1628         struct timespec64 ts_new, ts_delta;
1629         u64 cycle_now;
1630
1631         sleeptime_injected = false;
1632         read_persistent_clock64(&ts_new);
1633
1634         clockevents_resume();
1635         clocksource_resume();
1636
1637         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1638         write_seqcount_begin(&tk_core.seq);
1639
1640         /*
1641          * After system resumes, we need to calculate the suspended time and
1642          * compensate it for the OS time. There are 3 sources that could be
1643          * used: Nonstop clocksource during suspend, persistent clock and rtc
1644          * device.
1645          *
1646          * One specific platform may have 1 or 2 or all of them, and the
1647          * preference will be:
1648          *      suspend-nonstop clocksource -> persistent clock -> rtc
1649          * The less preferred source will only be tried if there is no better
1650          * usable source. The rtc part is handled separately in rtc core code.
1651          */
1652         cycle_now = tk_clock_read(&tk->tkr_mono);
1653         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1654                 cycle_now > tk->tkr_mono.cycle_last) {
1655                 u64 nsec, cyc_delta;
1656
1657                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1658                                               tk->tkr_mono.mask);
1659                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1660                 ts_delta = ns_to_timespec64(nsec);
1661                 sleeptime_injected = true;
1662         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1663                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1664                 sleeptime_injected = true;
1665         }
1666
1667         if (sleeptime_injected)
1668                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1669
1670         /* Re-base the last cycle value */
1671         tk->tkr_mono.cycle_last = cycle_now;
1672         tk->tkr_raw.cycle_last  = cycle_now;
1673
1674         tk->ntp_error = 0;
1675         timekeeping_suspended = 0;
1676         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1677         write_seqcount_end(&tk_core.seq);
1678         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1679
1680         touch_softlockup_watchdog();
1681
1682         tick_resume();
1683         hrtimers_resume();
1684 }
1685
1686 int timekeeping_suspend(void)
1687 {
1688         struct timekeeper *tk = &tk_core.timekeeper;
1689         unsigned long flags;
1690         struct timespec64               delta, delta_delta;
1691         static struct timespec64        old_delta;
1692
1693         read_persistent_clock64(&timekeeping_suspend_time);
1694
1695         /*
1696          * On some systems the persistent_clock can not be detected at
1697          * timekeeping_init by its return value, so if we see a valid
1698          * value returned, update the persistent_clock_exists flag.
1699          */
1700         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1701                 persistent_clock_exists = true;
1702
1703         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1704         write_seqcount_begin(&tk_core.seq);
1705         timekeeping_forward_now(tk);
1706         timekeeping_suspended = 1;
1707
1708         if (persistent_clock_exists) {
1709                 /*
1710                  * To avoid drift caused by repeated suspend/resumes,
1711                  * which each can add ~1 second drift error,
1712                  * try to compensate so the difference in system time
1713                  * and persistent_clock time stays close to constant.
1714                  */
1715                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1716                 delta_delta = timespec64_sub(delta, old_delta);
1717                 if (abs(delta_delta.tv_sec) >= 2) {
1718                         /*
1719                          * if delta_delta is too large, assume time correction
1720                          * has occurred and set old_delta to the current delta.
1721                          */
1722                         old_delta = delta;
1723                 } else {
1724                         /* Otherwise try to adjust old_system to compensate */
1725                         timekeeping_suspend_time =
1726                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1727                 }
1728         }
1729
1730         timekeeping_update(tk, TK_MIRROR);
1731         halt_fast_timekeeper(tk);
1732         write_seqcount_end(&tk_core.seq);
1733         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1734
1735         tick_suspend();
1736         clocksource_suspend();
1737         clockevents_suspend();
1738
1739         return 0;
1740 }
1741
1742 /* sysfs resume/suspend bits for timekeeping */
1743 static struct syscore_ops timekeeping_syscore_ops = {
1744         .resume         = timekeeping_resume,
1745         .suspend        = timekeeping_suspend,
1746 };
1747
1748 static int __init timekeeping_init_ops(void)
1749 {
1750         register_syscore_ops(&timekeeping_syscore_ops);
1751         return 0;
1752 }
1753 device_initcall(timekeeping_init_ops);
1754
1755 /*
1756  * Apply a multiplier adjustment to the timekeeper
1757  */
1758 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1759                                                          s64 offset,
1760                                                          bool negative,
1761                                                          int adj_scale)
1762 {
1763         s64 interval = tk->cycle_interval;
1764         s32 mult_adj = 1;
1765
1766         if (negative) {
1767                 mult_adj = -mult_adj;
1768                 interval = -interval;
1769                 offset  = -offset;
1770         }
1771         mult_adj <<= adj_scale;
1772         interval <<= adj_scale;
1773         offset <<= adj_scale;
1774
1775         /*
1776          * So the following can be confusing.
1777          *
1778          * To keep things simple, lets assume mult_adj == 1 for now.
1779          *
1780          * When mult_adj != 1, remember that the interval and offset values
1781          * have been appropriately scaled so the math is the same.
1782          *
1783          * The basic idea here is that we're increasing the multiplier
1784          * by one, this causes the xtime_interval to be incremented by
1785          * one cycle_interval. This is because:
1786          *      xtime_interval = cycle_interval * mult
1787          * So if mult is being incremented by one:
1788          *      xtime_interval = cycle_interval * (mult + 1)
1789          * Its the same as:
1790          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1791          * Which can be shortened to:
1792          *      xtime_interval += cycle_interval
1793          *
1794          * So offset stores the non-accumulated cycles. Thus the current
1795          * time (in shifted nanoseconds) is:
1796          *      now = (offset * adj) + xtime_nsec
1797          * Now, even though we're adjusting the clock frequency, we have
1798          * to keep time consistent. In other words, we can't jump back
1799          * in time, and we also want to avoid jumping forward in time.
1800          *
1801          * So given the same offset value, we need the time to be the same
1802          * both before and after the freq adjustment.
1803          *      now = (offset * adj_1) + xtime_nsec_1
1804          *      now = (offset * adj_2) + xtime_nsec_2
1805          * So:
1806          *      (offset * adj_1) + xtime_nsec_1 =
1807          *              (offset * adj_2) + xtime_nsec_2
1808          * And we know:
1809          *      adj_2 = adj_1 + 1
1810          * So:
1811          *      (offset * adj_1) + xtime_nsec_1 =
1812          *              (offset * (adj_1+1)) + xtime_nsec_2
1813          *      (offset * adj_1) + xtime_nsec_1 =
1814          *              (offset * adj_1) + offset + xtime_nsec_2
1815          * Canceling the sides:
1816          *      xtime_nsec_1 = offset + xtime_nsec_2
1817          * Which gives us:
1818          *      xtime_nsec_2 = xtime_nsec_1 - offset
1819          * Which simplfies to:
1820          *      xtime_nsec -= offset
1821          *
1822          * XXX - TODO: Doc ntp_error calculation.
1823          */
1824         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1825                 /* NTP adjustment caused clocksource mult overflow */
1826                 WARN_ON_ONCE(1);
1827                 return;
1828         }
1829
1830         tk->tkr_mono.mult += mult_adj;
1831         tk->xtime_interval += interval;
1832         tk->tkr_mono.xtime_nsec -= offset;
1833         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1834 }
1835
1836 /*
1837  * Calculate the multiplier adjustment needed to match the frequency
1838  * specified by NTP
1839  */
1840 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1841                                                         s64 offset)
1842 {
1843         s64 interval = tk->cycle_interval;
1844         s64 xinterval = tk->xtime_interval;
1845         u32 base = tk->tkr_mono.clock->mult;
1846         u32 max = tk->tkr_mono.clock->maxadj;
1847         u32 cur_adj = tk->tkr_mono.mult;
1848         s64 tick_error;
1849         bool negative;
1850         u32 adj_scale;
1851
1852         /* Remove any current error adj from freq calculation */
1853         if (tk->ntp_err_mult)
1854                 xinterval -= tk->cycle_interval;
1855
1856         tk->ntp_tick = ntp_tick_length();
1857
1858         /* Calculate current error per tick */
1859         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1860         tick_error -= (xinterval + tk->xtime_remainder);
1861
1862         /* Don't worry about correcting it if its small */
1863         if (likely((tick_error >= 0) && (tick_error <= interval)))
1864                 return;
1865
1866         /* preserve the direction of correction */
1867         negative = (tick_error < 0);
1868
1869         /* If any adjustment would pass the max, just return */
1870         if (negative && (cur_adj - 1) <= (base - max))
1871                 return;
1872         if (!negative && (cur_adj + 1) >= (base + max))
1873                 return;
1874         /*
1875          * Sort out the magnitude of the correction, but
1876          * avoid making so large a correction that we go
1877          * over the max adjustment.
1878          */
1879         adj_scale = 0;
1880         tick_error = abs(tick_error);
1881         while (tick_error > interval) {
1882                 u32 adj = 1 << (adj_scale + 1);
1883
1884                 /* Check if adjustment gets us within 1 unit from the max */
1885                 if (negative && (cur_adj - adj) <= (base - max))
1886                         break;
1887                 if (!negative && (cur_adj + adj) >= (base + max))
1888                         break;
1889
1890                 adj_scale++;
1891                 tick_error >>= 1;
1892         }
1893
1894         /* scale the corrections */
1895         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1896 }
1897
1898 /*
1899  * Adjust the timekeeper's multiplier to the correct frequency
1900  * and also to reduce the accumulated error value.
1901  */
1902 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1903 {
1904         /* Correct for the current frequency error */
1905         timekeeping_freqadjust(tk, offset);
1906
1907         /* Next make a small adjustment to fix any cumulative error */
1908         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1909                 tk->ntp_err_mult = 1;
1910                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1911         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1912                 /* Undo any existing error adjustment */
1913                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1914                 tk->ntp_err_mult = 0;
1915         }
1916
1917         if (unlikely(tk->tkr_mono.clock->maxadj &&
1918                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1919                         > tk->tkr_mono.clock->maxadj))) {
1920                 printk_once(KERN_WARNING
1921                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1922                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1923                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1924         }
1925
1926         /*
1927          * It may be possible that when we entered this function, xtime_nsec
1928          * was very small.  Further, if we're slightly speeding the clocksource
1929          * in the code above, its possible the required corrective factor to
1930          * xtime_nsec could cause it to underflow.
1931          *
1932          * Now, since we already accumulated the second, cannot simply roll
1933          * the accumulated second back, since the NTP subsystem has been
1934          * notified via second_overflow. So instead we push xtime_nsec forward
1935          * by the amount we underflowed, and add that amount into the error.
1936          *
1937          * We'll correct this error next time through this function, when
1938          * xtime_nsec is not as small.
1939          */
1940         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1942                 tk->tkr_mono.xtime_nsec = 0;
1943                 tk->ntp_error += neg << tk->ntp_error_shift;
1944         }
1945 }
1946
1947 /**
1948  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949  *
1950  * Helper function that accumulates the nsecs greater than a second
1951  * from the xtime_nsec field to the xtime_secs field.
1952  * It also calls into the NTP code to handle leapsecond processing.
1953  *
1954  */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958         unsigned int clock_set = 0;
1959
1960         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961                 int leap;
1962
1963                 tk->tkr_mono.xtime_nsec -= nsecps;
1964                 tk->xtime_sec++;
1965
1966                 /* Figure out if its a leap sec and apply if needed */
1967                 leap = second_overflow(tk->xtime_sec);
1968                 if (unlikely(leap)) {
1969                         struct timespec64 ts;
1970
1971                         tk->xtime_sec += leap;
1972
1973                         ts.tv_sec = leap;
1974                         ts.tv_nsec = 0;
1975                         tk_set_wall_to_mono(tk,
1976                                 timespec64_sub(tk->wall_to_monotonic, ts));
1977
1978                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1979
1980                         clock_set = TK_CLOCK_WAS_SET;
1981                 }
1982         }
1983         return clock_set;
1984 }
1985
1986 /**
1987  * logarithmic_accumulation - shifted accumulation of cycles
1988  *
1989  * This functions accumulates a shifted interval of cycles into
1990  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1991  * loop.
1992  *
1993  * Returns the unconsumed cycles.
1994  */
1995 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1996                                     u32 shift, unsigned int *clock_set)
1997 {
1998         u64 interval = tk->cycle_interval << shift;
1999         u64 raw_nsecs;
2000
2001         /* If the offset is smaller than a shifted interval, do nothing */
2002         if (offset < interval)
2003                 return offset;
2004
2005         /* Accumulate one shifted interval */
2006         offset -= interval;
2007         tk->tkr_mono.cycle_last += interval;
2008         tk->tkr_raw.cycle_last  += interval;
2009
2010         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2011         *clock_set |= accumulate_nsecs_to_secs(tk);
2012
2013         /* Accumulate raw time */
2014         raw_nsecs = (u64)tk->raw_interval << shift;
2015         raw_nsecs += tk->raw_time.tv_nsec;
2016         if (raw_nsecs >= NSEC_PER_SEC) {
2017                 u64 raw_secs = raw_nsecs;
2018                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2019                 tk->raw_time.tv_sec += raw_secs;
2020         }
2021         tk->raw_time.tv_nsec = raw_nsecs;
2022
2023         /* Accumulate error between NTP and clock interval */
2024         tk->ntp_error += tk->ntp_tick << shift;
2025         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2026                                                 (tk->ntp_error_shift + shift);
2027
2028         return offset;
2029 }
2030
2031 /**
2032  * update_wall_time - Uses the current clocksource to increment the wall time
2033  *
2034  */
2035 void update_wall_time(void)
2036 {
2037         struct timekeeper *real_tk = &tk_core.timekeeper;
2038         struct timekeeper *tk = &shadow_timekeeper;
2039         u64 offset;
2040         int shift = 0, maxshift;
2041         unsigned int clock_set = 0;
2042         unsigned long flags;
2043
2044         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2045
2046         /* Make sure we're fully resumed: */
2047         if (unlikely(timekeeping_suspended))
2048                 goto out;
2049
2050 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2051         offset = real_tk->cycle_interval;
2052 #else
2053         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2054                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2055 #endif
2056
2057         /* Check if there's really nothing to do */
2058         if (offset < real_tk->cycle_interval)
2059                 goto out;
2060
2061         /* Do some additional sanity checking */
2062         timekeeping_check_update(real_tk, offset);
2063
2064         /*
2065          * With NO_HZ we may have to accumulate many cycle_intervals
2066          * (think "ticks") worth of time at once. To do this efficiently,
2067          * we calculate the largest doubling multiple of cycle_intervals
2068          * that is smaller than the offset.  We then accumulate that
2069          * chunk in one go, and then try to consume the next smaller
2070          * doubled multiple.
2071          */
2072         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2073         shift = max(0, shift);
2074         /* Bound shift to one less than what overflows tick_length */
2075         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2076         shift = min(shift, maxshift);
2077         while (offset >= tk->cycle_interval) {
2078                 offset = logarithmic_accumulation(tk, offset, shift,
2079                                                         &clock_set);
2080                 if (offset < tk->cycle_interval<<shift)
2081                         shift--;
2082         }
2083
2084         /* correct the clock when NTP error is too big */
2085         timekeeping_adjust(tk, offset);
2086
2087         /*
2088          * XXX This can be killed once everyone converts
2089          * to the new update_vsyscall.
2090          */
2091         old_vsyscall_fixup(tk);
2092
2093         /*
2094          * Finally, make sure that after the rounding
2095          * xtime_nsec isn't larger than NSEC_PER_SEC
2096          */
2097         clock_set |= accumulate_nsecs_to_secs(tk);
2098
2099         write_seqcount_begin(&tk_core.seq);
2100         /*
2101          * Update the real timekeeper.
2102          *
2103          * We could avoid this memcpy by switching pointers, but that
2104          * requires changes to all other timekeeper usage sites as
2105          * well, i.e. move the timekeeper pointer getter into the
2106          * spinlocked/seqcount protected sections. And we trade this
2107          * memcpy under the tk_core.seq against one before we start
2108          * updating.
2109          */
2110         timekeeping_update(tk, clock_set);
2111         memcpy(real_tk, tk, sizeof(*tk));
2112         /* The memcpy must come last. Do not put anything here! */
2113         write_seqcount_end(&tk_core.seq);
2114 out:
2115         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2116         if (clock_set)
2117                 /* Have to call _delayed version, since in irq context*/
2118                 clock_was_set_delayed();
2119 }
2120
2121 /**
2122  * getboottime64 - Return the real time of system boot.
2123  * @ts:         pointer to the timespec64 to be set
2124  *
2125  * Returns the wall-time of boot in a timespec64.
2126  *
2127  * This is based on the wall_to_monotonic offset and the total suspend
2128  * time. Calls to settimeofday will affect the value returned (which
2129  * basically means that however wrong your real time clock is at boot time,
2130  * you get the right time here).
2131  */
2132 void getboottime64(struct timespec64 *ts)
2133 {
2134         struct timekeeper *tk = &tk_core.timekeeper;
2135         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2136
2137         *ts = ktime_to_timespec64(t);
2138 }
2139 EXPORT_SYMBOL_GPL(getboottime64);
2140
2141 unsigned long get_seconds(void)
2142 {
2143         struct timekeeper *tk = &tk_core.timekeeper;
2144
2145         return tk->xtime_sec;
2146 }
2147 EXPORT_SYMBOL(get_seconds);
2148
2149 struct timespec __current_kernel_time(void)
2150 {
2151         struct timekeeper *tk = &tk_core.timekeeper;
2152
2153         return timespec64_to_timespec(tk_xtime(tk));
2154 }
2155
2156 struct timespec64 current_kernel_time64(void)
2157 {
2158         struct timekeeper *tk = &tk_core.timekeeper;
2159         struct timespec64 now;
2160         unsigned long seq;
2161
2162         do {
2163                 seq = read_seqcount_begin(&tk_core.seq);
2164
2165                 now = tk_xtime(tk);
2166         } while (read_seqcount_retry(&tk_core.seq, seq));
2167
2168         return now;
2169 }
2170 EXPORT_SYMBOL(current_kernel_time64);
2171
2172 struct timespec64 get_monotonic_coarse64(void)
2173 {
2174         struct timekeeper *tk = &tk_core.timekeeper;
2175         struct timespec64 now, mono;
2176         unsigned long seq;
2177
2178         do {
2179                 seq = read_seqcount_begin(&tk_core.seq);
2180
2181                 now = tk_xtime(tk);
2182                 mono = tk->wall_to_monotonic;
2183         } while (read_seqcount_retry(&tk_core.seq, seq));
2184
2185         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2186                                 now.tv_nsec + mono.tv_nsec);
2187
2188         return now;
2189 }
2190 EXPORT_SYMBOL(get_monotonic_coarse64);
2191
2192 /*
2193  * Must hold jiffies_lock
2194  */
2195 void do_timer(unsigned long ticks)
2196 {
2197         jiffies_64 += ticks;
2198         calc_global_load(ticks);
2199 }
2200
2201 /**
2202  * ktime_get_update_offsets_now - hrtimer helper
2203  * @cwsseq:     pointer to check and store the clock was set sequence number
2204  * @offs_real:  pointer to storage for monotonic -> realtime offset
2205  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2206  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2207  *
2208  * Returns current monotonic time and updates the offsets if the
2209  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2210  * different.
2211  *
2212  * Called from hrtimer_interrupt() or retrigger_next_event()
2213  */
2214 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2215                                      ktime_t *offs_boot, ktime_t *offs_tai)
2216 {
2217         struct timekeeper *tk = &tk_core.timekeeper;
2218         unsigned int seq;
2219         ktime_t base;
2220         u64 nsecs;
2221
2222         do {
2223                 seq = read_seqcount_begin(&tk_core.seq);
2224
2225                 base = tk->tkr_mono.base;
2226                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2227                 base = ktime_add_ns(base, nsecs);
2228
2229                 if (*cwsseq != tk->clock_was_set_seq) {
2230                         *cwsseq = tk->clock_was_set_seq;
2231                         *offs_real = tk->offs_real;
2232                         *offs_boot = tk->offs_boot;
2233                         *offs_tai = tk->offs_tai;
2234                 }
2235
2236                 /* Handle leapsecond insertion adjustments */
2237                 if (unlikely(base >= tk->next_leap_ktime))
2238                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2239
2240         } while (read_seqcount_retry(&tk_core.seq, seq));
2241
2242         return base;
2243 }
2244
2245 /**
2246  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2247  */
2248 int do_adjtimex(struct timex *txc)
2249 {
2250         struct timekeeper *tk = &tk_core.timekeeper;
2251         unsigned long flags;
2252         struct timespec64 ts;
2253         s32 orig_tai, tai;
2254         int ret;
2255
2256         /* Validate the data before disabling interrupts */
2257         ret = ntp_validate_timex(txc);
2258         if (ret)
2259                 return ret;
2260
2261         if (txc->modes & ADJ_SETOFFSET) {
2262                 struct timespec delta;
2263                 delta.tv_sec  = txc->time.tv_sec;
2264                 delta.tv_nsec = txc->time.tv_usec;
2265                 if (!(txc->modes & ADJ_NANO))
2266                         delta.tv_nsec *= 1000;
2267                 ret = timekeeping_inject_offset(&delta);
2268                 if (ret)
2269                         return ret;
2270         }
2271
2272         getnstimeofday64(&ts);
2273
2274         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2275         write_seqcount_begin(&tk_core.seq);
2276
2277         orig_tai = tai = tk->tai_offset;
2278         ret = __do_adjtimex(txc, &ts, &tai);
2279
2280         if (tai != orig_tai) {
2281                 __timekeeping_set_tai_offset(tk, tai);
2282                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2283         }
2284         tk_update_leap_state(tk);
2285
2286         write_seqcount_end(&tk_core.seq);
2287         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2288
2289         if (tai != orig_tai)
2290                 clock_was_set();
2291
2292         ntp_notify_cmos_timer();
2293
2294         return ret;
2295 }
2296
2297 #ifdef CONFIG_NTP_PPS
2298 /**
2299  * hardpps() - Accessor function to NTP __hardpps function
2300  */
2301 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2302 {
2303         unsigned long flags;
2304
2305         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2306         write_seqcount_begin(&tk_core.seq);
2307
2308         __hardpps(phase_ts, raw_ts);
2309
2310         write_seqcount_end(&tk_core.seq);
2311         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2312 }
2313 EXPORT_SYMBOL(hardpps);
2314 #endif
2315
2316 /**
2317  * xtime_update() - advances the timekeeping infrastructure
2318  * @ticks:      number of ticks, that have elapsed since the last call.
2319  *
2320  * Must be called with interrupts disabled.
2321  */
2322 void xtime_update(unsigned long ticks)
2323 {
2324         write_seqlock(&jiffies_lock);
2325         do_timer(ticks);
2326         write_sequnlock(&jiffies_lock);
2327         update_wall_time();
2328 }